ProCreations commited on
Commit
5ee4795
1 Parent(s): 2602368
Files changed (1) hide show
  1. ai.py +72 -0
ai.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ai.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ from torch.utils.data import DataLoader
7
+ from sklearn.model_selection import train_test_split
8
+ from datasets import load_dataset
9
+ from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
10
+ from tqdm import tqdm
11
+
12
+ # Load IMDb dataset
13
+ dataset = load_dataset("imdb")
14
+ texts, labels = dataset["train"]["text"], dataset["train"]["label"]
15
+
16
+ # Split the dataset into training and validation sets
17
+ train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.1, random_state=42)
18
+
19
+ # Tokenize and preprocess the data
20
+ tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
21
+ train_encodings = tokenizer(train_texts, truncation=True, padding=True, return_tensors="pt", max_length=256)
22
+ val_encodings = tokenizer(val_texts, truncation=True, padding=True, return_tensors="pt", max_length=256)
23
+
24
+ # Define Sentiment Analysis Model
25
+ class SentimentAnalysisModel(nn.Module):
26
+ def __init__(self):
27
+ super(SentimentAnalysisModel, self).__init__()
28
+ self.distilbert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
29
+
30
+ def forward(self, input_ids, attention_mask):
31
+ return self.distilbert(input_ids, attention_mask=attention_mask).logits
32
+
33
+ # Initialize model, criterion, and optimizer
34
+ model = SentimentAnalysisModel()
35
+ criterion = nn.CrossEntropyLoss()
36
+ optimizer = optim.AdamW(model.parameters(), lr=5e-5)
37
+
38
+ # Convert labels to tensor
39
+ train_labels = torch.tensor(train_labels)
40
+ val_labels = torch.tensor(val_labels)
41
+
42
+ # Prepare DataLoader
43
+ train_dataset = torch.utils.data.TensorDataset(train_encodings["input_ids"], train_encodings["attention_mask"], train_labels)
44
+ train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
45
+
46
+ val_dataset = torch.utils.data.TensorDataset(val_encodings["input_ids"], val_encodings["attention_mask"], val_labels)
47
+ val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
48
+
49
+ # Train the model
50
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
51
+ model.to(device)
52
+
53
+ num_epochs = 5 # Increase the number of epochs
54
+ for epoch in range(num_epochs):
55
+ model.train()
56
+ total_loss = 0.0
57
+
58
+ for input_ids, attention_mask, labels in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{num_epochs}"):
59
+ input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
60
+
61
+ optimizer.zero_grad()
62
+ outputs = model(input_ids, attention_mask=attention_mask)
63
+ loss = criterion(outputs, labels)
64
+ loss.backward()
65
+ optimizer.step()
66
+
67
+ total_loss += loss.item()
68
+
69
+ print(f"Epoch {epoch + 1}/{num_epochs}, Average Loss: {total_loss / len(train_loader)}")
70
+
71
+ # Save the trained model
72
+ torch.save(model.state_dict(), "sentiment_analysis_model.pth")