|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
""" EVI Dataset""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{Spithourakis2022evi, |
|
author = {Georgios P. Spithourakis and Ivan Vuli\'{c} and Micha\l{} Lis and I\~{n}igo Casanueva and Pawe\l{} Budzianowski}, |
|
title = {{EVI}: Multilingual Spoken Dialogue Tasks and Dataset for Knowledge-Based Enrolment, Verification, and Identification}, |
|
year = {2022}, |
|
note = {Data available at https://github.com/PolyAI-LDN/evi-paper}, |
|
url = {https://arxiv.org/abs/2204.13496}, |
|
booktitle = {Findings of NAACL (publication pending)} |
|
} |
|
""" |
|
|
|
_ALL_CONFIGS = sorted([ |
|
"en-GB", "fr-FR", "pl-PL" |
|
]) |
|
|
|
_DESCRIPTION = "EVI is a dataset for enrolment, identification, and verification" |
|
|
|
_HOMEPAGE_URL = "https://arxiv.org/abs/2204.13496" |
|
|
|
_AUDIO_DATA_URL = "https://poly-public-data.s3.eu-west-2.amazonaws.com/evi-paper/audios.zip" |
|
|
|
_VERSION = datasets.Version("0.0.5", "") |
|
|
|
|
|
class EviConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for EVI""" |
|
|
|
def __init__( |
|
self, name, version, description, homepage, audio_data_url |
|
): |
|
super().__init__( |
|
name=self.name, |
|
version=version, |
|
description=self.description, |
|
) |
|
self.name = name |
|
self.description = description |
|
self.homepage = homepage |
|
self.audio_data_url = audio_data_url |
|
|
|
|
|
def _build_config(name): |
|
return EviConfig( |
|
name=name, |
|
version=_VERSION, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE_URL, |
|
audio_data_url=_AUDIO_DATA_URL, |
|
) |
|
|
|
|
|
class Evi(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
BUILDER_CONFIGS = [ |
|
_build_config(name) for name in _ALL_CONFIGS |
|
] |
|
|
|
def _info(self): |
|
task_templates = None |
|
langs = _ALL_CONFIGS |
|
features = datasets.Features( |
|
{ |
|
"lang_id": datasets.ClassLabel(names=langs), |
|
"dialogue_id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"turn_id": datasets.Value("int32"), |
|
|
|
"target_profile_id": datasets.Value("string"), |
|
|
|
"asr_transcription": datasets.Value("string"), |
|
"asr_nbest": datasets.Sequence(datasets.Value("string")), |
|
|
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=8_000), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
version=self.config.version, |
|
description=self.config.description, |
|
homepage=self.config.homepage, |
|
license="CC-BY-4.0", |
|
citation=_CITATION, |
|
features=features, |
|
supervised_keys=None, |
|
task_templates=task_templates, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
langs = ([self.config.name]) |
|
|
|
|
|
|
|
|
|
audio_path = "" |
|
text_path = "" |
|
lang2text_path = { |
|
_lang: os.path.join( |
|
text_path, |
|
f"dialogues.{_lang.split('-')[0]}.csv" |
|
) |
|
for _lang in langs |
|
} |
|
lang2audio_path = { |
|
_lang: os.path.join( |
|
audio_path, |
|
f"{_lang.split('-')[0]}" |
|
) |
|
for _lang in langs |
|
} |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_paths": lang2audio_path, |
|
"text_paths": lang2text_path, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, audio_paths, text_paths): |
|
key = 0 |
|
for lang in text_paths.keys(): |
|
text_path = text_paths[lang] |
|
audio_path = audio_paths[lang] |
|
with open(text_path, encoding="utf-8") as fin: |
|
reader = csv.DictReader( |
|
fin, delimiter=",", skipinitialspace=True |
|
) |
|
for dictrow in reader: |
|
dialogue_id = dictrow["dialogue_id"] |
|
turn_id = dictrow["turn_num"] |
|
file_path = os.path.join( |
|
audio_path, |
|
dialogue_id, |
|
f'{turn_id}.wav' |
|
) |
|
if not os.path.isfile(file_path): |
|
file_path = None |
|
example = { |
|
"lang_id": _ALL_CONFIGS.index(lang), |
|
"dialogue_id": dialogue_id, |
|
"speaker_id": dictrow["speaker_id"], |
|
"turn_id": turn_id, |
|
"target_profile_id": dictrow["scenario_id"], |
|
"asr_transcription": dictrow["transcription"], |
|
"asr_nbest": json.loads(dictrow["nbest"]), |
|
"path": file_path, |
|
"audio": file_path, |
|
} |
|
print(example) |
|
yield key, example |
|
key += 1 |
|
|