hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
565c727f90be501e8abede934cc9f94f687d2ef9
1,942
py
Python
finder.py
wilsontayar/unused-file-finder
2ba8db69a7992f08259998ada66b106f36c318c3
[ "MIT" ]
null
null
null
finder.py
wilsontayar/unused-file-finder
2ba8db69a7992f08259998ada66b106f36c318c3
[ "MIT" ]
1
2015-05-27T14:29:25.000Z
2015-05-27T14:29:25.000Z
finder.py
wilsontayar/unused-file-finder
2ba8db69a7992f08259998ada66b106f36c318c3
[ "MIT" ]
1
2015-05-26T20:17:37.000Z
2015-05-26T20:17:37.000Z
import sys import os LOOKUP_EXTENSIONS = [".cshtml", ".gif", ".jpg", ".png", ".js", ".css"] FILES_TO_SEARCH = [".cshtml", ".cs", ".css", ".less", ".js"] def main(argv): directory = argv[0] files_to_look_for = find_view_files_in_directory(directory) print_break() print("Loading files...") print_break() print("files to look for: {0}".format(len(files_to_look_for))) print_break() print("Looking for unused files...") print_break() results = {'using': [], 'not_using': []} for file_name in files_to_look_for: references, looked_at = find_references_for_view_file(directory, file_name) if references: results['using'].append(file_name) else: results['not_using'].append(file_name) print("USING: {0} files".format(len(results['using']))) print("NOT USING: {0} files".format(len(results['not_using']))) for file in results['not_using']: print(file) def print_break(): print("-" * 45) def prepare_file_name_to_look_for(file_name): if ".cshtml" in file_name: return file_name.replace(".cshtml", "") return file_name def find_references_for_view_file(directory, file_name): using = [] looking_in = [] for root, directories, files in os.walk(directory): for filename in [f for f in files if any([f.endswith(ext) for ext in FILES_TO_SEARCH])]: looking_in.append(os.path.join(root, filename)) with open(os.path.join(root, filename), 'r', encoding="ISO-8859-1") as searchfile: content = searchfile.read() if prepare_file_name_to_look_for(file_name) in content: using.append(filename) return (using, looking_in) def find_view_files_in_directory(directory): views = [] for root, directories, files in os.walk(directory): for ext in LOOKUP_EXTENSIONS: for filename in [f for f in files if f.endswith(ext)]: views.append(filename) return views if __name__ == "__main__": if len(sys.argv) == 1: sys.exit("Argument required: application path") main(sys.argv[1:])
25.552632
90
0.703399
f000a17990c00a560b5343bd21010fd37dc0861e
8,176
py
Python
saleor/order/__init__.py
ibutiti/saleor
fffe9a54c01aa07131102474dcb1519e0b59da74
[ "BSD-3-Clause" ]
1
2021-05-29T10:50:02.000Z
2021-05-29T10:50:02.000Z
saleor/order/__init__.py
Niranjoyyengkhom/saleor
4e6c4fe10476508e6b5c06fb1f38f9dc1dfc81a5
[ "CC-BY-4.0" ]
100
2021-06-21T04:32:32.000Z
2022-03-28T04:41:16.000Z
saleor/order/__init__.py
Niranjoyyengkhom/saleor
4e6c4fe10476508e6b5c06fb1f38f9dc1dfc81a5
[ "CC-BY-4.0" ]
null
null
null
from dataclasses import dataclass from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..product.models import ProductVariant from .models import FulfillmentLine, OrderLine class OrderStatus: DRAFT = "draft" # fully editable, not finalized order created by staff users UNCONFIRMED = ( "unconfirmed" # order created by customers when confirmation is required ) UNFULFILLED = "unfulfilled" # order with no items marked as fulfilled PARTIALLY_FULFILLED = ( "partially fulfilled" # order with some items marked as fulfilled ) FULFILLED = "fulfilled" # order with all items marked as fulfilled PARTIALLY_RETURNED = ( "partially_returned" # order with some items marked as returned ) RETURNED = "returned" # order with all items marked as returned CANCELED = "canceled" # permanently canceled order CHOICES = [ (DRAFT, "Draft"), (UNCONFIRMED, "Unconfirmed"), (UNFULFILLED, "Unfulfilled"), (PARTIALLY_FULFILLED, "Partially fulfilled"), (PARTIALLY_RETURNED, "Partially returned"), (RETURNED, "Returned"), (FULFILLED, "Fulfilled"), (CANCELED, "Canceled"), ] class OrderOrigin: CHECKOUT = "checkout" # order created from checkout DRAFT = "draft" # order created from draft order REISSUE = "reissue" # order created from reissue existing one CHOICES = [ (CHECKOUT, "Checkout"), (DRAFT, "Draft"), (REISSUE, "Reissue"), ] class FulfillmentStatus: FULFILLED = "fulfilled" # group of products in an order marked as fulfilled REFUNDED = "refunded" # group of refunded products RETURNED = "returned" # group of returned products REFUNDED_AND_RETURNED = ( "refunded_and_returned" # group of returned and replaced products ) REPLACED = "replaced" # group of replaced products CANCELED = "canceled" # fulfilled group of products in an order marked as canceled CHOICES = [ (FULFILLED, "Fulfilled"), (REFUNDED, "Refunded"), (RETURNED, "Returned"), (REPLACED, "Replaced"), (REFUNDED_AND_RETURNED, "Refunded and returned"), (CANCELED, "Canceled"), ] class OrderEvents: """The different order event types.""" CONFIRMED = "confirmed" DRAFT_CREATED = "draft_created" DRAFT_CREATED_FROM_REPLACE = "draft_created_from_replace" ADDED_PRODUCTS = "added_products" REMOVED_PRODUCTS = "removed_products" PLACED = "placed" PLACED_FROM_DRAFT = "placed_from_draft" OVERSOLD_ITEMS = "oversold_items" CANCELED = "canceled" ORDER_MARKED_AS_PAID = "order_marked_as_paid" ORDER_FULLY_PAID = "order_fully_paid" ORDER_REPLACEMENT_CREATED = "order_replacement_created" ORDER_DISCOUNT_ADDED = "order_discount_added" ORDER_DISCOUNT_AUTOMATICALLY_UPDATED = "order_discount_automatically_updated" ORDER_DISCOUNT_UPDATED = "order_discount_updated" ORDER_DISCOUNT_DELETED = "order_discount_deleted" ORDER_LINE_DISCOUNT_UPDATED = "order_line_discount_updated" ORDER_LINE_DISCOUNT_REMOVED = "order_line_discount_removed" UPDATED_ADDRESS = "updated_address" EMAIL_SENT = "email_sent" PAYMENT_AUTHORIZED = "payment_authorized" PAYMENT_CAPTURED = "payment_captured" PAYMENT_REFUNDED = "payment_refunded" PAYMENT_VOIDED = "payment_voided" PAYMENT_FAILED = "payment_failed" EXTERNAL_SERVICE_NOTIFICATION = "external_service_notification" INVOICE_REQUESTED = "invoice_requested" INVOICE_GENERATED = "invoice_generated" INVOICE_UPDATED = "invoice_updated" INVOICE_SENT = "invoice_sent" FULFILLMENT_CANCELED = "fulfillment_canceled" FULFILLMENT_RESTOCKED_ITEMS = "fulfillment_restocked_items" FULFILLMENT_FULFILLED_ITEMS = "fulfillment_fulfilled_items" FULFILLMENT_REFUNDED = "fulfillment_refunded" FULFILLMENT_RETURNED = "fulfillment_returned" FULFILLMENT_REPLACED = "fulfillment_replaced" TRACKING_UPDATED = "tracking_updated" NOTE_ADDED = "note_added" # Used mostly for importing legacy data from before Enum-based events OTHER = "other" CHOICES = [ (DRAFT_CREATED, "The draft order was created"), (DRAFT_CREATED_FROM_REPLACE, "The draft order with replace lines was created"), (ADDED_PRODUCTS, "Some products were added to the order"), (REMOVED_PRODUCTS, "Some products were removed from the order"), (PLACED, "The order was placed"), (PLACED_FROM_DRAFT, "The draft order was placed"), (OVERSOLD_ITEMS, "The draft order was placed with oversold items"), (CANCELED, "The order was canceled"), (ORDER_MARKED_AS_PAID, "The order was manually marked as fully paid"), (ORDER_FULLY_PAID, "The order was fully paid"), (ORDER_REPLACEMENT_CREATED, "The draft order was created based on this order."), (ORDER_DISCOUNT_ADDED, "New order discount applied to this order."), ( ORDER_DISCOUNT_AUTOMATICALLY_UPDATED, "Order discount was automatically updated after the changes in order.", ), (ORDER_DISCOUNT_UPDATED, "Order discount was updated for this order."), (ORDER_DISCOUNT_DELETED, "Order discount was deleted for this order."), (ORDER_LINE_DISCOUNT_UPDATED, "Order line was discounted."), (ORDER_LINE_DISCOUNT_REMOVED, "The discount for order line was removed."), (UPDATED_ADDRESS, "The address from the placed order was updated"), (EMAIL_SENT, "The email was sent"), (CONFIRMED, "Order was confirmed"), (PAYMENT_AUTHORIZED, "The payment was authorized"), (PAYMENT_CAPTURED, "The payment was captured"), (EXTERNAL_SERVICE_NOTIFICATION, "Notification from external service"), (PAYMENT_REFUNDED, "The payment was refunded"), (PAYMENT_VOIDED, "The payment was voided"), (PAYMENT_FAILED, "The payment was failed"), (INVOICE_REQUESTED, "An invoice was requested"), (INVOICE_GENERATED, "An invoice was generated"), (INVOICE_UPDATED, "An invoice was updated"), (INVOICE_SENT, "An invoice was sent"), (FULFILLMENT_CANCELED, "A fulfillment was canceled"), (FULFILLMENT_RESTOCKED_ITEMS, "The items of the fulfillment were restocked"), (FULFILLMENT_FULFILLED_ITEMS, "Some items were fulfilled"), (FULFILLMENT_REFUNDED, "Some items were refunded"), (FULFILLMENT_RETURNED, "Some items were returned"), (FULFILLMENT_REPLACED, "Some items were replaced"), (TRACKING_UPDATED, "The fulfillment's tracking code was updated"), (NOTE_ADDED, "A note was added to the order"), (OTHER, "An unknown order event containing a message"), ] class OrderEventsEmails: """The different order emails event types.""" CONFIRMED = "confirmed" PAYMENT = "payment_confirmation" SHIPPING = "shipping_confirmation" TRACKING_UPDATED = "tracking_updated" ORDER_CONFIRMATION = "order_confirmation" ORDER_CANCEL = "order_cancel" ORDER_REFUND = "order_refund" FULFILLMENT = "fulfillment_confirmation" DIGITAL_LINKS = "digital_links" CHOICES = [ (PAYMENT, "The payment confirmation email was sent"), (CONFIRMED, "The order confirmed email was sent"), (SHIPPING, "The shipping confirmation email was sent"), (TRACKING_UPDATED, "The fulfillment tracking code email was sent"), (ORDER_CONFIRMATION, "The order placement confirmation email was sent"), (ORDER_CANCEL, "The order cancel confirmation email was sent"), (ORDER_REFUND, "The order refund confirmation email was sent"), (FULFILLMENT, "The fulfillment confirmation email was sent"), (DIGITAL_LINKS, "The email containing the digital links was sent"), ] @dataclass class OrderLineData: line: "OrderLine" quantity: int variant: Optional["ProductVariant"] = None replace: bool = False warehouse_pk: Optional[str] = None @dataclass class FulfillmentLineData: line: "FulfillmentLine" quantity: int replace: bool = False
38.748815
88
0.696184
7401c6e9bfa48ea1d9da04c062c224691b0c5a9e
11,667
py
Python
themark/firstgo.py
bcaplins/NIST_APT_TOOLS
80c25498e8b069b8ee289a2d09c76c932c054cea
[ "Unlicense" ]
null
null
null
themark/firstgo.py
bcaplins/NIST_APT_TOOLS
80c25498e8b069b8ee289a2d09c76c932c054cea
[ "Unlicense" ]
null
null
null
themark/firstgo.py
bcaplins/NIST_APT_TOOLS
80c25498e8b069b8ee289a2d09c76c932c054cea
[ "Unlicense" ]
null
null
null
# standard imports import numpy as np import matplotlib.pyplot as plt # Add parent directory to path import sys import os parent_path = '..\\nistapttools' if parent_path not in sys.path: sys.path.append(os.path.abspath(parent_path)) # custom imports import apt_fileio import m2q_calib import plotting_stuff import initElements_P3 import histogram_functions import peak_param_determination as ppd from histogram_functions import bin_dat import voltage_and_bowl from voltage_and_bowl import do_voltage_and_bowl from voltage_and_bowl import mod_full_vb_correction import colorcet as cc def create_histogram(xs, ys, x_roi=None, delta_x=0.1, y_roi=None, delta_y=0.1): """Create a 2d histogram of the data, specifying the bin intensity, region of interest (on the y-axis), and the spacing of the y bins""" # even number num_x = int(np.ceil((x_roi[1]-x_roi[0])/delta_x)) num_y = int(np.ceil((y_roi[1]-y_roi[0])/delta_y)) return np.histogram2d(xs, ys, bins=[num_x, num_y], range=[x_roi, y_roi], density=False) def _extents(f): """Helper function to determine axis extents based off of the bin edges""" delta = f[1] - f[0] return [f[0] - delta/2, f[-1] + delta/2] def plot_2d_histo(ax, N, x_edges, y_edges, scale='log'): if scale=='log': dat = np.log10(1+N) elif scale=='lin': dat = N """Helper function to plot a histogram on an axis""" ax.imshow(np.transpose(dat), aspect='auto', extent=_extents(x_edges) + _extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='antialiased') def corrhist(epos, delta=1, roi=None): dat = epos['tof'] if roi is None: roi = [0, 1000] N = int(np.ceil((roi[1]-roi[0])/delta)) corrhist = np.zeros([N,N], dtype=int) multi_idxs = np.where(epos['ipp']>1)[0] for multi_idx in multi_idxs: n_hits = epos['ipp'][multi_idx] cluster = dat[multi_idx:multi_idx+n_hits] idx1 = -1 idx2 = -1 for i in range(n_hits): for j in range(i+1,n_hits): idx1 = int(np.floor(cluster[i]/delta)) idx2 = int(np.floor(cluster[j]/delta)) if idx1 < N and idx1>=0 and idx2 < N and idx2>=0: corrhist[idx1,idx2] += 1 edges = np.arange(roi[0],roi[1]+delta,delta) assert edges.size-1 == N return (edges, corrhist+corrhist.T-np.diag(np.diag(corrhist))) def calc_t0(tof,tof_vcorr_fac,tof_bcorr_fac,sigma): BB = tof_bcorr_fac[0::2]+tof_bcorr_fac[1::2] t0 = ((tof_bcorr_fac[0::2]*tof[0::2]+tof_bcorr_fac[1::2]*tof[1::2]) - sigma/(tof_vcorr_fac[0::2]))/BB t0 = np.ravel(np.column_stack((t0,t0))) return t0 def create_sigma_delta_histogram(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas=None, delta_range=None, delta_step=0.5): # Must be a doubles only epos... # scan through a range of sigmas and compute the corrected data if sigmas is None: sigmas = np.linspace(0,2000,2**7) if delta_range is None: delta_range = [0,700] delta_n_bins = int((delta_range[1]-delta_range [0])/delta_step) # print('delta_n_bins = '+str(delta_n_bins)) res_dat = np.zeros((sigmas.size,delta_n_bins)) for sigma_idx in np.arange(sigmas.size): t0 = calc_t0(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas[sigma_idx]) tof_corr = tof_vcorr_fac*tof_bcorr_fac*(raw_tof-t0) dts = np.abs(tof_corr[:-1:2]-tof_corr[1::2]) N, delta_edges = np.histogram(dts, bins=delta_n_bins, range=delta_range) res_dat[sigma_idx,:] = N if np.mod(sigma_idx,10)==0: print("Loop index "+str(sigma_idx+1)+" of "+str(sigmas.size)) delta_centers = 0.5*(delta_edges[:-1]+delta_edges[1:]) return (res_dat, sigmas, delta_centers) def interleave(a,b): return np.ravel(np.column_stack((a,b))) def calc_slope_and_intercept(raw_tof, volt_coeff, bowl_coeff): A = volt_coeff[0::2] B_alpha = bowl_coeff[0::2] B_beta = bowl_coeff[1::2] tof_alpha = raw_tof[0::2] tof_beta = raw_tof[1::2] intercept = 2*A*B_alpha*B_beta*(tof_beta-tof_alpha)/(B_alpha+B_beta) slope = (B_beta-B_alpha)/(B_beta+B_alpha) return (slope, intercept) # Note that x is sums and y is diffs def compute_dist_to_line(slope, intercept, x, y): return np.abs(intercept+slope*x-y)/np.sqrt(1+slope**2) def calc_parametric_line(raw_tof, volt_coeff, bowl_coeff, n=2): if n>0: t = raw_tof.reshape(-1,n) v = volt_coeff.reshape(-1,n) b = bowl_coeff.reshape(-1,n) else: t = raw_tof v = volt_coeff b = bowl_coeff r0 = v*b*(t-np.sum(b*t,axis=1)[:,np.newaxis]/np.sum(b,axis=1)[:,np.newaxis]) r1 = b/np.sum(b,axis=1)[:,np.newaxis] return (r0, r1) def compute_dist_to_parametric_line(r0, r1, q): # q is n_pts by n_dim sigma = (np.dot(r1,q.T)-np.sum(r0*r1,axis=1)[:,np.newaxis])/np.sum(r1**2,axis=1)[:,np.newaxis] d = np.sqrt(np.sum(((r0[:,np.newaxis,:]+np.einsum("np,nd->npd",sigma,r1))-q[np.newaxis,...])**2, axis=-1)) return d, sigma #from itertools import combinations, chain #from scipy.special import comb #def comb_index(n, k): # count = comb(n, k, exact=True) # index = np.fromiter(chain.from_iterable(combinations(range(n), k)), # int, count=count*k) # return index.reshape(-1, k) def cartesian_product(arrays): ndim = len(arrays) return np.stack(np.meshgrid(*arrays), axis=-1).reshape(-1, ndim) plt.close('all') fn = r'C:\Users\capli\Google Drive\NIST\pos_and_epos_files\themark\R20_18140-v02.epos' epos = apt_fileio.read_epos_numpy(fn) import sys sys.exit(0) # voltage and bowl correct ToF data. p_volt = np.array([]) p_bowl = np.array([ 0.89964083, -0.43114144, -0.27484715, -0.25883824]) tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl) roi = [31, 33] idxs = np.where((epos['tof']>roi[0]) & (epos['tof']<roi[1]))[0] fig = plt.figure(num=10) fig.clf() ax = fig.gca() ax.scatter(epos['x_det'][idxs],epos['y_det'][idxs],alpha=0.1,s=0.1) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') roi = [1000, 3000] idxs = np.where((epos['tof']>roi[0]) & (epos['tof']<roi[1]))[0] fig = plt.figure(num=10) fig.clf() ax = fig.gca() ax.scatter(epos['x_det'][idxs],epos['y_det'][idxs],alpha=0.1,s=0.1, c=epos['v_dc'][idxs]/epos['v_dc'].max()) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') vc = np.sqrt(5000)/np.sqrt(epos['v_dc']) plotting_stuff.plot_TOF_vs_time(epos['tof']/vc,epos,1,user_ylim=[0,5000]) # Find transform to m/z space epos_R44['m2q'], p_m2q_R44 = m2q_calib.align_m2q_to_ref_m2q(ref_epos['m2q'],mod_full_vb_correction(epos_R44,p_volt_R44,p_bowl_R44)) epos_R20['m2q'], p_m2q_R20 = m2q_calib.align_m2q_to_ref_m2q(ref_epos['m2q'],mod_full_vb_correction(epos_R20,p_volt_R20,p_bowl_R20)) plotting_stuff.plot_histo(epos_R44['m2q'],fig_idx=1,user_label='R44',scale_factor=1/epos_R44.size) plotting_stuff.plot_histo(epos_R20['m2q'],fig_idx=1,user_label='R20',clearFigure=False,scale_factor=1/epos_R20.size) # Make a correlation histogram of doubles epos_vb_R44 = epos_R44.copy() epos_vb_R44['tof'] = np.sqrt(1e4*epos_R44['m2q']) edges, ch = corrhist(epos_vb_R44,roi = [0, 1000], delta=1) centers = (edges[1:]+edges[:-1])/2.0 fig2 = plt.figure(num=3) fig2.clf() ax2 = fig2.gca() plot_2d_histo(ax2, ch, edges, edges, scale='log') ax2.axis('equal') ax2.axis('square') ax2.set_xlabel('ns') ax2.set_ylabel('ns') ax2.set_title('R44') epos_vb_R20 = epos_R20.copy() epos_vb_R20['tof'] = np.sqrt(1e4*epos_R20['m2q']) edges, ch = corrhist(epos_vb_R20,roi = [0, 1000], delta=1) centers = (edges[1:]+edges[:-1])/2.0 fig2 = plt.figure(num=4) fig2.clf() ax2 = fig2.gca() plot_2d_histo(ax2, ch, edges, edges, scale='log') ax2.axis('equal') ax2.axis('square') ax2.set_xlabel('ns') ax2.set_ylabel('ns') ax2.set_title('R20') plotting_stuff.plot_histo(epos_vb_R44['tof'],fig_idx=5,user_label='R44',scale_factor=1/epos_R44.size,user_xlim=[0, 1000],user_bin_width=.1) plotting_stuff.plot_histo(epos_vb_R20['tof'],fig_idx=5,user_label='R20',clearFigure=False,scale_factor=1/epos_R20.size,user_xlim=[0, 1000],user_bin_width=0.1) plotting_stuff.plot_histo(epos_vb_R44['tof'][epos_vb_R44['ipp']==1],fig_idx=7,user_label='R44 s',scale_factor=1/epos_R44.size,user_xlim=[0, 1000],user_bin_width=.1) plotting_stuff.plot_histo(epos_vb_R20['tof'][epos_vb_R20['ipp']==1],fig_idx=7,user_label='R20 s',clearFigure=False,scale_factor=1/epos_R20.size,user_xlim=[0, 1000],user_bin_width=0.1) plotting_stuff.plot_histo(epos_vb_R44['tof'][epos_vb_R44['ipp']!=1],fig_idx=9,user_label='R44 m',scale_factor=1/epos_R44.size,user_xlim=[0, 1000],user_bin_width=.1) plotting_stuff.plot_histo(epos_vb_R20['tof'][epos_vb_R20['ipp']!=1],fig_idx=9,user_label='R20 m',clearFigure=False,scale_factor=1/epos_R20.size,user_xlim=[0, 1000],user_bin_width=0.1) plotting_stuff.plot_histo(epos_vb_R20['tof'][epos_vb_R20['ipp']==1],fig_idx=101,user_label='R20 s',clearFigure=True,scale_factor=1/epos_R20.size,user_xlim=[0, 1000],user_bin_width=0.1) plotting_stuff.plot_histo(epos_vb_R20['tof'][epos_vb_R20['ipp']!=1],fig_idx=101,user_label='R20 m',clearFigure=False,scale_factor=1/epos_R20.size,user_xlim=[0, 1000],user_bin_width=0.1) plotting_stuff.plot_histo(epos_vb_R44['tof'][epos_vb_R44['ipp']==1],fig_idx=103,user_label='R44 s',clearFigure=True,scale_factor=1/epos_R44.size,user_xlim=[0, 1000],user_bin_width=.1) plotting_stuff.plot_histo(epos_vb_R44['tof'][epos_vb_R44['ipp']!=1],fig_idx=103,user_label='R44 m',clearFigure=False,scale_factor=1/epos_R44.size,user_xlim=[0, 1000],user_bin_width=.1) lhs_roi = [489.3, 491] rhs_roi = [491, 492.7] #lhs_roi = [345.7, 346.5] # #rhs_roi = [346.5, 348] lhs_idxs = np.where((epos_vb_R44['tof']>lhs_roi[0]) & (epos_vb_R44['tof']<lhs_roi[1]))[0] rhs_idxs = np.where((epos_vb_R44['tof']>rhs_roi[0]) & (epos_vb_R44['tof']<rhs_roi[1]))[0] fig = plt.figure(num=400) fig.clf() ax = fig.gca() ax.scatter(epos_vb_R44['x_det'][lhs_idxs],epos_vb_R44['y_det'][lhs_idxs],alpha=0.1,s=3) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') fig = plt.figure(num=401) fig.clf() ax = fig.gca() ax.scatter(epos_vb_R44['x_det'][rhs_idxs],epos_vb_R44['y_det'][rhs_idxs],alpha=0.1,s=3) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') plotting_stuff.plot_bowl_slices( epos_vb_R44['tof'], epos_vb_R44, 1000, clearFigure=True, user_ylim=[0, 1000], ) lhs_roi = [489., 490] rhs_roi = [490, 491] lhs_idxs = np.where((epos_vb_R20['tof']>lhs_roi[0]) & (epos_vb_R20['tof']<lhs_roi[1]))[0] rhs_idxs = np.where((epos_vb_R20['tof']>rhs_roi[0]) & (epos_vb_R20['tof']<rhs_roi[1]))[0] fig = plt.figure(num=500) fig.clf() ax = fig.gca() ax.scatter(epos_vb_R20['x_det'][lhs_idxs],epos_vb_R20['y_det'][lhs_idxs],alpha=0.1,s=3) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') fig = plt.figure(num=501) fig.clf() ax = fig.gca() ax.scatter(epos_vb_R20['x_det'][rhs_idxs],epos_vb_R20['y_det'][rhs_idxs],alpha=0.1,s=3) ax.axis('equal') ax.axis('square') ax.set_xlabel('x') ax.set_ylabel('y') plotting_stuff.plot_bowl_slices( epos_vb_R20['tof'], epos_vb_R20, 1000, clearFigure=True, user_ylim=[0, 1000], )
25.926667
185
0.66161
492d2181b11d8ebeb5a7a118c5b43741979abc15
7,103
py
Python
python/singa/data.py
pavan87/Machine-learning
e5c438c3410c714df3a9cdf4fd760676e5eeb721
[ "Apache-2.0" ]
null
null
null
python/singa/data.py
pavan87/Machine-learning
e5c438c3410c714df3a9cdf4fd760676e5eeb721
[ "Apache-2.0" ]
null
null
null
python/singa/data.py
pavan87/Machine-learning
e5c438c3410c714df3a9cdf4fd760676e5eeb721
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ''' This module includes classes for loading and prefetching data batches. Example usage:: import image_tool from PIL import Image tool = image_tool.ImageTool() def image_transform(img_path): global tool return tool.load(img_path).resize_by_range( (112, 128)).random_crop( (96, 96)).flip().get() data = ImageBatchIter('train.txt', 3, image_transform, shuffle=True, delimiter=',', image_folder='images/', capacity=10) data.start() # imgs is a numpy array for a batch of images, # shape: batch_size, 3 (RGB), height, width imgs, labels = data.next() # convert numpy array back into images for idx in range(imgs.shape[0]): img = Image.fromarray(imgs[idx].astype(np.uint8).transpose(1, 2, 0), 'RGB') img.save('img%d.png' % idx) data.end() ''' import os import random import time from multiprocessing import Process, Queue import numpy as np class ImageBatchIter: '''Utility for iterating over an image dataset to get mini-batches. Args: img_list_file(str): name of the file containing image meta data; each line consists of image_path_suffix delimiter meta_info, where meta info could be label index or label strings, etc. meta_info should not contain the delimiter. If the meta_info of each image is just the label index, then we will parse the label index into a numpy array with length=batchsize (for compatibility); otherwise, we return a list of meta_info; if meta info is available, we return a list of None. batch_size(int): num of samples in one mini-batch image_transform: a function for image augmentation; it accepts the full image path and outputs a list of augmented images. shuffle(boolean): True for shuffling images in the list delimiter(char): delimiter between image_path_suffix and label, e.g., space or comma image_folder(boolean): prefix of the image path capacity(int): the max num of mini-batches in the internal queue. ''' def __init__(self, img_list_file, batch_size, image_transform, shuffle=True, delimiter=' ', image_folder=None, capacity=10): self.img_list_file = img_list_file self.queue = Queue(capacity) self.batch_size = batch_size self.image_transform = image_transform self.shuffle = shuffle self.delimiter = delimiter self.image_folder = image_folder self.stop = False self.p = None with open(img_list_file, 'r') as fd: self.num_samples = len(fd.readlines()) def start(self): self.p = Process(target=self.run) self.p.start() return def next(self): assert self.p is not None, 'call start before next' while self.queue.empty(): time.sleep(0.1) x, y = self.queue.get() # dequeue one mini-batch return x, y def stop(self): self.end(); def end(self): if self.p is not None: self.stop = True time.sleep(0.1) self.p.terminate() def run(self): img_list = [] is_label_index = True for line in open(self.img_list_file, 'r'): item = line.strip('\n').split(self.delimiter) if len(item) < 2: is_label_index = False img_list.append((item[0].strip(), None)) else: if not item[1].strip().isdigit(): # the meta info is not label index is_label_index = False img_list.append((item[0].strip(), item[1].strip())) index = 0 # index for the image if self.shuffle: random.shuffle(img_list) while not self.stop: if not self.queue.full(): x, y = [], [] i = 0 while i < self.batch_size: img_path, img_meta = img_list[index] aug_images = self.image_transform( os.path.join(self.image_folder, img_path)) assert i + len(aug_images) <= self.batch_size, \ 'too many images (%d) in a batch (%d)' % \ (i + len(aug_images), self.batch_size) for img in aug_images: ary = np.asarray(img.convert('RGB'), dtype=np.float32) x.append(ary.transpose(2, 0, 1)) if is_label_index: y.append(int(img_meta)) else: y.append(img_meta) i += 1 index += 1 if index == self.num_samples: index = 0 # reset to the first image if self.shuffle: random.shuffle(img_list) # enqueue one mini-batch if is_label_index: self.queue.put((np.asarray(x), np.asarray(y, dtype=np.int32))) else: self.queue.put((np.asarray(x), y)) else: time.sleep(0.1) return if __name__ == '__main__': import image_tool from PIL import Image tool = image_tool.ImageTool() def image_transform(img_path): global tool return tool.load(img_path).resize_by_range( (112, 128)).random_crop( (96, 96)).flip().get() data = ImageBatchIter('train.txt', 3, image_transform, shuffle=False, delimiter=',', image_folder='images/', capacity=10) data.start() imgs, labels = data.next() print labels for idx in range(imgs.shape[0]): img = Image.fromarray(imgs[idx].astype(np.uint8).transpose(1, 2, 0), 'RGB') img.save('img%d.png' % idx) data.end()
37.582011
90
0.555681
1e98689dd195325a7824d1b3ebaa9b735b238741
2,775
py
Python
src/efficient_det/hyper_parameter_search.py
zeynep68/object-detection-efficientdet
4d4b194bf1641cbb705e7659b66539752986c218
[ "Apache-2.0" ]
null
null
null
src/efficient_det/hyper_parameter_search.py
zeynep68/object-detection-efficientdet
4d4b194bf1641cbb705e7659b66539752986c218
[ "Apache-2.0" ]
null
null
null
src/efficient_det/hyper_parameter_search.py
zeynep68/object-detection-efficientdet
4d4b194bf1641cbb705e7659b66539752986c218
[ "Apache-2.0" ]
null
null
null
from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler from efficient_det.train import distributed_training def hyper_param_search(config, num_tries=10, gpus_per_trial=1, cpus_per_trial=4): """Hyper parameter sweep. Automatically manages resources so all GPUs are used. Includes early stopping. Args: config: num_tries: Number of combinations to try gpus_per_trial (float): Number of GPU(s) for each trial. Can be 0.5 cpus_per_trial (int): Number of CPUs for each trial. Defaults to 4. """ # START RAY TUNE IMPORT import tensorflow as tf # END OF RAY TUNE IMPORTS run_prefix = 'small_space_522_' strategy = tf.distribute.MirroredStrategy() with strategy.scope(): # Asynchronous Hyperband parameter search algorithm # A SYSTEM FOR MASSIVELY PARALLEL HYPERPARAMETER TUNING # https://arxiv.org/pdf/1810.05934.pdf if config['evaluation']: scheduler = ASHAScheduler(metric="mAP", mode="max", grace_period=1, reduction_factor=2, max_t=config['num_epochs']) score_attr = "min-mAP" else: scheduler = ASHAScheduler(metric="val_loss", mode="min", grace_period=1, reduction_factor=2, max_t=config['num_epochs']) score_attr = "max-val_loss" # Reports progress as terminal output reporter = CLIReporter( parameter_columns=["learning_rate", "batch_size", "activations", "optimizer"], metric_columns=["train_loss", 'train_classification_loss', 'train_regression_loss', "training_iteration"]) result = tune.run(distributed_training, resources_per_trial={"cpu": cpus_per_trial, "gpu": gpus_per_trial}, config=config, num_samples=num_tries, name=run_prefix, checkpoint_score_attr=score_attr, scheduler=scheduler, progress_reporter=reporter) if config['evaluation']: best_trial = result.get_best_trial("mAP", "max", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final mAP score:{best_trial.last_result['mAP']}") else: best_trial = result.get_best_trial("val_loss", "min", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final val loss:" f"{best_trial.last_result['val_loss']}")
40.217391
80
0.585225
24bf4f5629aafdcebf3cbade7b1b40f1b9f915ef
11,854
py
Python
reman/tests/tests_reman_views.py
Nels885/csd_dashboard
aa5a3b970c50a2a93af722f962bd87c3728f233c
[ "MIT" ]
null
null
null
reman/tests/tests_reman_views.py
Nels885/csd_dashboard
aa5a3b970c50a2a93af722f962bd87c3728f233c
[ "MIT" ]
null
null
null
reman/tests/tests_reman_views.py
Nels885/csd_dashboard
aa5a3b970c50a2a93af722f962bd87c3728f233c
[ "MIT" ]
null
null
null
from django.urls import reverse from django.contrib.messages import get_messages from django.utils.translation import ugettext as _ from dashboard.tests.base import UnitTest from reman.models import Repair, SparePart, Batch, EcuModel, EcuRefBase, EcuType, Default class RemanTestCase(UnitTest): def setUp(self): super(RemanTestCase, self).setUp() self.psaBarcode = '9612345678' spare_part = SparePart.objects.create(code_produit='test HW_9876543210') ecu_type = EcuType.objects.create(hw_reference='9876543210', technical_data='test', spare_part=spare_part) ref_base = EcuRefBase.objects.create(reman_reference='1234567890', ecu_type=ecu_type) ecu = EcuModel.objects.create(oe_raw_reference='1699999999', ecu_type=ecu_type, psa_barcode=self.psaBarcode) self.batch = Batch.objects.create(year="C", number=1, quantity=10, created_by=self.user, ecu_ref_base=ref_base) self.repair = Repair.objects.create( batch=self.batch, identify_number="C001010001", created_by=self.user, status="Réparé", quality_control=True) self.authError = {"detail": "Informations d'authentification non fournies."} Default.objects.create(code='TEST1', description='Ceci est le test 1') def test_repair_table_page(self): url = reverse('reman:repair_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) # Test if connected with permissions self.add_perms_user(Repair, 'view_repair') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_spare_part_table_page(self): url = reverse('reman:part_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(SparePart, 'view_sparepart') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_repair_pages(self): urls_perms = [ (reverse('reman:create_repair'), 'add_repair'), (reverse('reman:edit_repair', kwargs={'pk': self.repair.pk}), 'change_repair'), (reverse('reman:close_repair', kwargs={'pk': self.repair.pk}), 'change_repair'), (reverse('reman:detail_repair', kwargs={'pk': self.repair.pk}), 'view_repair'), ] for url, perm in urls_perms: response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(Repair, perm) self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) self.client.logout() def test_batch_table(self): url = reverse('reman:batch_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(Batch, 'view_batch') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_out_table(self): url = reverse('reman:out_table') + '?filter=' + self.batch.batch_number response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(Repair, 'close_repair') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) # Invalid form response = self.client.post(url, {'identify_number': ''}) self.assertFormError(response, 'form', 'identify_number', _('This field is required.')) for identify_number in ['C001010001', 'C001010002R']: response = self.client.post(url, {'identify_number': identify_number}) self.assertFormError(response, 'form', 'identify_number', "N° d'identification invalide") Repair.objects.create(batch=self.batch, identify_number="C001010002", created_by=self.user, status="Réparé") response = self.client.post(url, {'identify_number': 'C001010002R'}) self.assertFormError(response, 'form', 'identify_number', "Contrôle qualité non validé, voir avec Atelier.") def test_check_part(self): url = reverse('reman:part_check') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(EcuModel, 'check_ecumodel', 'add_ecumodel') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) # Invalid form response = self.client.post(url, {'psa_barcode': ''}) self.assertFormError(response, 'form', 'psa_barcode', _('This field is required.')) for barcode in ['123456789', '96123']: response = self.client.post(url, {'psa_barcode': barcode}) self.assertFormError(response, 'form', 'psa_barcode', _('The barcode is invalid')) # Valid form barcode_list = [ ('9600000000', '9600000000'), ('9687654321', '9687654321'), ('9800000000', '9800000000'), ('9887654321', '9887654321'), ('96876543210000000000', '9687654321'), ('89661-0H390', '89661-0H390') ] for barcode in barcode_list: response = self.client.post(url, {'psa_barcode': barcode[0]}) self.assertRedirects( response, reverse('reman:part_create', kwargs={'psa_barcode': barcode[1]}), status_code=302) response = self.client.post(url, {'psa_barcode': self.psaBarcode}) ecu = EcuModel.objects.get(psa_barcode=self.psaBarcode) self.assertEquals(response.context['ecu'], ecu) def test_new_part_email(self): url = reverse('reman:part_email', kwargs={'psa_barcode': self.psaBarcode}) response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(EcuModel, 'check_ecumodel') self.login() response = self.client.get(url) messages = list(get_messages(response.wsgi_request)) self.assertEqual(len(messages), 1) self.assertEqual(str(messages[0]), _('Success: The email has been sent.')) self.assertRedirects(response, reverse('reman:part_check'), status_code=302) def test_base_ref_table(self): url = reverse('reman:base_ref_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(EcuRefBase, 'view_ecurefbase') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_ecu_hw_table(self): url = reverse('reman:ecu_hw_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_ecu_hw_generate_view(self): url = reverse('reman:ecu_hw_generate') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.login() response = self.client.get(url) self.assertRedirects(response, reverse('reman:ecu_hw_table'), status_code=302) def test_ecu_dump_table(self): url = reverse('reman:ecu_dump_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_default_table(self): url =reverse('reman:default_table') response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(Default, 'view_default') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_repair_view_set_is_disconnected(self): response = self.client.get(reverse('reman:api_repair-list'), format='json') self.assertEqual(response.status_code, 403) self.assertEqual(response.data, self.authError) def test_part_create_view(self): psa_barcode = '9676543210' url = reverse('reman:part_create', kwargs={'psa_barcode': psa_barcode}) response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(EcuModel, 'check_ecumodel') self.login() for nb in range(2): response = self.client.get(url + f"?next={nb}") if nb == 2: self.assertEqual(response.status_code, 404) else: self.assertEqual(response.status_code, 200) def test_ref_base_edit_view(self): url = reverse('reman:edit_ref_base', kwargs={'psa_barcode': self.psaBarcode}) response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(EcuModel, 'change_ecumodel') self.login() for nb in range(2): response = self.client.get(url + f"?next={nb}") self.assertEqual(response.status_code, 200) def test_batch_pdf_generate(self): url = reverse('reman:batch_pdf', kwargs={'pk': self.batch.pk}) response = self.client.get(url) self.assertRedirects(response, self.nextLoginUrl + url, status_code=302) self.add_perms_user(Batch, 'pdfgen_batch') self.login() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_create_default(self): """ Create Default through CreateView. """ self.add_perms_user(Default, 'add_default') self.login() # First post request = ajax request checking if form in view is valid response = self.client.post( reverse('reman:create_default'), data={ 'code': '', 'description': '', }, HTTP_X_REQUESTED_WITH='XMLHttpRequest' ) # Form has errors self.assertTrue(response.context_data['form'].errors) # No redirection self.assertEqual(response.status_code, 200) # Object is not created defaults = Default.objects.all() self.assertEqual(defaults.count(), 1) # Second post request = non-ajax request creating an object response = self.client.post( reverse('reman:create_default'), data={ 'code': 'TEST2', 'description': 'Ceci est le test 2', }, ) # redirection self.assertEqual(response.status_code, 302) # Object is not created defaults = Default.objects.all() self.assertEqual(defaults.count(), 2) def test_update_default(self): """ Update Default throught UpdateView. """ self.add_perms_user(Default, 'change_default') self.login() # Update object through BSModalUpdateView default = Default.objects.first() response = self.client.post( reverse('reman:update_default', kwargs={'pk': default.pk}), data={ 'code': 'TEST3', 'description': 'Ceci est le test 3', } ) # redirection self.assertEqual(response.status_code, 302) # Object is updated default = Default.objects.first() self.assertEqual(default.code, 'TEST3')
41.739437
120
0.643749
da8f7e928740b8633705edc46e732450db21aecc
25,020
py
Python
tests/cli/client/test_args.py
tnoff/hathor
237dfe37e93443b5a298f9f4b258d15429d754ea
[ "BSD-2-Clause-FreeBSD" ]
2
2017-05-03T17:52:27.000Z
2019-04-04T22:29:27.000Z
tests/cli/client/test_args.py
tnoff/hathor
237dfe37e93443b5a298f9f4b258d15429d754ea
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
tests/cli/client/test_args.py
tnoff/hathor
237dfe37e93443b5a298f9f4b258d15429d754ea
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
from hathor import client, settings, utils from hathor.cli import client as cli from hathor.exc import CLIException from tests import utils as test_utils LOG_LEVELS = [ 'debug', 'info', 'warn', 'error', ] class TestGlobalArgs(test_utils.TestHelper): def setUp(self): # common function to test globals self.func = ['podcast', 'list'] def test_defaults(self): args = cli.parse_args(self.func) self.assertEqual(args.pop('settings'), settings.DEFAULT_SETTINGS_FILE) self.assertEqual(args.pop('module'), 'podcast') self.assertEqual(args.pop('command'), 'list') self.assertEqual(args.pop('column_limit'), settings.COLUMN_LIMIT_DEFAULT) self.assertEqual(args.pop('console_logging'), False) self.assertEqual(args.pop('reverse_sort'), False) null_args = ['database_file', 'logging_file', 'google_api_key', 'podcast_directory', 'keys', 'sort_key', 'datetime_output_format', 'console_logging_level', 'logging_file_level', 'soundcloud_client_id',] for key in null_args: self.assertEqual(args.pop(key), None) self.assert_length(args.keys(), 0) def test_settings(self): settings_file = utils.random_string(prefix='/home/foo/') args = cli.parse_args(['-s', settings_file] + self.func) self.assertEqual(args['settings'], settings_file) args = cli.parse_args(['--settings', settings_file] + self.func) self.assertEqual(args['settings'], settings_file) def test_database(self): database_file = utils.random_string(prefix='/home/bar/') args = cli.parse_args(['-d', database_file] + self.func) self.assertEqual(args['database_file'], database_file) args = cli.parse_args(['--database', database_file] + self.func) self.assertEqual(args['database_file'], database_file) def test_log_file(self): log_file = utils.random_string(prefix='/home/derp/') args = cli.parse_args(['-l', log_file] + self.func) self.assertEqual(args['logging_file'], log_file) args = cli.parse_args(['--log-file', log_file] + self.func) self.assertEqual(args['logging_file'], log_file) def test_log_file_level(self): with self.assertRaises(CLIException) as error: cli.parse_args(['-ll', 'foo']) self.check_error_message("argument -ll/--log-file-level: invalid choice: " "'foo' (choose from 'debug', 'error', 'info', 'warn')", error) for level in LOG_LEVELS: args = cli.parse_args(['-ll', level] + self.func) self.assertEqual(args['logging_file_level'], level) args = cli.parse_args(['--log-file-level', level] + self.func) self.assertEqual(args['logging_file_level'], level) def test_datetime_output_format(self): df = utils.random_string() args = cli.parse_args(['-df', df] + self.func) self.assertEqual(args['datetime_output_format'], df) args = cli.parse_args(['--datetime-format', df] + self.func) self.assertEqual(args['datetime_output_format'], df) def test_soundcloud_client_id(self): sc = utils.random_string() args = cli.parse_args(['-sc', sc] + self.func) self.assertEqual(args['soundcloud_client_id'], sc) args = cli.parse_args(['--soundcloud', sc] + self.func) self.assertEqual(args['soundcloud_client_id'], sc) def test_google_api_key(self): ga = utils.random_string() args = cli.parse_args(['-g', ga] + self.func) self.assertEqual(args['google_api_key'], ga) args = cli.parse_args(['--google', ga] + self.func) self.assertEqual(args['google_api_key'], ga) def test_podcast_directory(self): pd = utils.random_string(prefix='/home/derp/') args = cli.parse_args(['-p', pd] + self.func) self.assertEqual(args['podcast_directory'], pd) args = cli.parse_args(['--podcast-dir', pd] + self.func) self.assertEqual(args['podcast_directory'], pd) def test_column_limit(self): with self.assertRaises(CLIException) as error: cli.parse_args(['-c', 'foo'] + self.func) self.check_error_message("argument -c/--column-limit: invalid int value: 'foo'", error) def test_console_log(self): args = cli.parse_args(['-cl'] + self.func) self.assertTrue(args['console_logging']) args = cli.parse_args(['-cl'] + self.func) self.assertTrue(args['console_logging']) def test_console_log_level(self): with self.assertRaises(CLIException) as error: cli.parse_args(['-cll', 'foo']) self.check_error_message("argument -cll/--console-log-level: invalid choice: " "'foo' (choose from 'debug', 'error', 'info', 'warn')", error) for level in LOG_LEVELS: args = cli.parse_args(['-cll', level] + self.func) self.assertEqual(args['console_logging_level'], level) args = cli.parse_args(['--console-log-level', level] + self.func) self.assertEqual(args['console_logging_level'], level) def test_keys(self): key = utils.random_string() args = cli.parse_args(['-k', key] + self.func) self.assertEqual(args['keys'], key) args = cli.parse_args(['--keys', key] + self.func) self.assertEqual(args['keys'], key) # make sure comma seperated works args = cli.parse_args(['--keys', 'foo,foo2'] + self.func) self.assertEqual(args['keys'], 'foo,foo2') def test_sort_key(self): key = utils.random_string() args = cli.parse_args(['-sk', key] + self.func) self.assertEqual(args['sort_key'], key) args = cli.parse_args(['--sort-key', key] + self.func) self.assertEqual(args['sort_key'], key) class TestFilterArgs(test_utils.TestHelper): def test_filter_list(self): args = cli.parse_args(['filter', 'list']) self.assertEqual(args['module'], 'filter') self.assertEqual(args['command'], 'list') with self.assertRaises(CLIException) as error: cli.parse_args(['filter', 'list', '-i', 'foo']) self.check_error_message("argument -i/--include-podcasts: invalid" " int value: 'foo'", error) with self.assertRaises(CLIException) as error: cli.parse_args(['filter', 'list', '-e', 'foo']) self.check_error_message("argument -e/--exclude-podcasts: invalid" " int value: 'foo'", error) args = cli.parse_args(['filter', 'list', '-i', '5']) self.assertEqual(args['include_podcasts'], [5]) args = cli.parse_args(['filter', 'list', '-i', '5', '7']) self.assertEqual(args['include_podcasts'], [5, 7]) args = cli.parse_args(['filter', 'list', '-e', '5']) self.assertEqual(args['exclude_podcasts'], [5]) args = cli.parse_args(['filter', 'list', '-e', '5', '7']) self.assertEqual(args['exclude_podcasts'], [5, 7]) def test_filter_create(self): regex = utils.random_string() expected = { 'module' : 'filter', 'command' : 'create', 'podcast_id' : 1, 'regex_string' : regex, } args = cli.parse_args(['filter', 'create', '1', regex]) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['filter', 'create', 'foo', 'foo']) self.check_error_message("argument podcast_id: invalid" " int value: 'foo'", error) def test_filter_delete(self): expected = { 'module' : 'filter', 'command' : 'delete', 'filter_input' : [1], } args = cli.parse_args(['filter', 'delete', '1',]) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['filter', 'delete', 'foo']) self.check_error_message("argument filter_input: invalid" " int value: 'foo'", error) # make sure multiple works args = cli.parse_args(['filter', 'delete', '2', '6']) self.assertEqual(args['filter_input'], [2, 6]) class TestPodcastArgs(test_utils.TestHelper): def test_podcast_create(self): expected = { 'module' : 'podcast', 'command' : 'create', 'file_location' : None, 'artist_name' : None, 'automatic_download' : True, 'max_allowed' : None, 'podcast_name' : utils.random_string(), 'archive_type' : 'rss', 'broadcast_id' : utils.random_string(), } common_args = [ 'podcast', 'create', expected['podcast_name'], expected['archive_type'], expected['broadcast_id'], ] args = cli.parse_args(common_args) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['podcast', 'create', 'foo', 'bar', 'foo']) self.check_error_message("argument archive_type: invalid choice:" " 'bar' (choose from 'rss', 'soundcloud', 'youtube')", error) for choice in client.ARCHIVE_TYPES: args = cli.parse_args(['podcast', 'create', 'foo', choice, 'bar']) self.assertEqual(args['archive_type'], choice) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['--max-allowed', 'foo']) self.check_error_message("argument --max-allowed: invalid" " int value: 'foo'", error) args = cli.parse_args(common_args + ['--max-allowed', '8']) self.assertEqual(args['max_allowed'], 8) file_location = utils.random_string() args = cli.parse_args(common_args + ['--file-location', file_location]) self.assertEqual(args['file_location'], file_location) artist = utils.random_string() args = cli.parse_args(common_args + ['--artist-name', artist]) self.assertEqual(args['artist_name'], artist) args = cli.parse_args(common_args + ['--no-auto-download']) self.assertFalse(args['automatic_download']) def test_podcast_list(self): expected = { 'module' : 'podcast', 'command' : 'list', } args = cli.parse_args(['podcast', 'list']) for key, value in expected.items(): self.assertEqual(args[key], value) def test_podcast_show(self): expected = { 'module' : 'podcast', 'command' : 'show', 'podcast_input' : [5], } args = cli.parse_args(['podcast', 'show', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['podcast', 'show', 'foo']) self.check_error_message("argument podcast_input:" " invalid int value: 'foo'", error) args = cli.parse_args(['podcast', 'show', '5', '10']) self.assertEqual(args['podcast_input'], [5, 10]) def test_podcast_delete(self): expected = { 'module' : 'podcast', 'command' : 'delete', 'podcast_input' : [5], 'delete_files' : True, } args = cli.parse_args(['podcast', 'delete', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['podcast', 'delete', 'foo']) self.check_error_message("argument podcast_input:" " invalid int value: 'foo'", error) args = cli.parse_args(['podcast', 'delete', '5', '10']) self.assertEqual(args['podcast_input'], [5, 10]) args = cli.parse_args(['podcast', 'delete', '--keep-files', '5']) self.assertFalse(args['delete_files']) def test_podcast_update(self): expected = { 'module' : 'podcast', 'command' : 'update', 'podcast_id' : 5, } args = cli.parse_args(['podcast', 'update', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['podcast', 'update', 'foo']) self.check_error_message("argument podcast_id:" " invalid int value: 'foo'", error) common_args = ['podcast', 'update', '5'] pod_name = utils.random_string() args = cli.parse_args(common_args + ['--podcast-name', pod_name]) self.assertEqual(args['podcast_name'], pod_name) broadcast_id = utils.random_string() args = cli.parse_args(common_args + ['--broadcast-id', broadcast_id]) self.assertEqual(args['broadcast_id'], broadcast_id) artist_name = utils.random_string() args = cli.parse_args(common_args + ['--artist-name', artist_name]) self.assertEqual(args['artist_name'], artist_name) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['--max-allowed', 'foo']) self.check_error_message("argument --max-allowed:" " invalid int value: 'foo'", error) args = cli.parse_args(common_args + ['--max-allowed', '11']) self.assertEqual(args['max_allowed'], 11) args = cli.parse_args(common_args + ['--auto-download']) self.assertTrue(args['automatic_download']) args = cli.parse_args(common_args + ['--no-auto-download']) self.assertFalse(args['automatic_download']) args = cli.parse_args(common_args) self.assert_none(args['automatic_download']) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['--auto-download', '--no-auto-download']) self.check_error_message("argument --no-auto-download: not allowed" " with argument --auto-download", error) def test_podcast_update_file_location(self): expected = { 'module' : 'podcast', 'command' : 'update-file-location', 'podcast_id' : 5, 'file_location' : 'foo', 'move_files' : True, } args = cli.parse_args(['podcast', 'update-file-location', '5', 'foo']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['podcast', 'update-file-location', 'foo', 'foo']) self.check_error_message("argument podcast_id:" " invalid int value: 'foo'", error) args = cli.parse_args(['podcast', 'update-file-location', '2', 'foo', '--no-move']) self.assertFalse(args['move_files']) def test_podcast_sync(self): expected = { 'module' : 'podcast', 'command' : 'sync', 'sync_web_episodes' : True, 'download_episodes' : True, } args = cli.parse_args(['podcast', 'sync']) for key, value in expected.items(): self.assertEqual(args[key], value) common_args = ['podcast', 'sync'] args = cli.parse_args(common_args + ['--no-web-sync']) self.assertFalse(args['sync_web_episodes']) args = cli.parse_args(common_args + ['--no-download']) self.assertFalse(args['download_episodes']) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['-i', 'foo']) self.check_error_message("argument -i/--include-podcasts:" " invalid int value: 'foo'", error) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['-e', 'foo']) self.check_error_message("argument -e/--exclude-podcasts:" " invalid int value: 'foo'", error) args = cli.parse_args(common_args + ['-i', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--include-podcasts', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['-e', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--exclude-podcasts', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) class TestEpisodeArgs(test_utils.TestHelper): def test_episode_list(self): expected = { 'module' : 'episode', 'command' : 'list', 'only_files' : True, } args = cli.parse_args(['episode', 'list']) for key, value in expected.items(): self.assertEqual(args[key], value) common_args = ['episode', 'list'] with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['-i', 'foo']) self.check_error_message("argument -i/--include-podcasts:" " invalid int value: 'foo'", error) with self.assertRaises(CLIException) as error: cli.parse_args(common_args + ['-e', 'foo']) self.check_error_message("argument -e/--exclude-podcasts:" " invalid int value: 'foo'", error) args = cli.parse_args(common_args + ['-i', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--include-podcasts', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['-e', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--exclude-podcasts', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--all']) self.assertFalse(args['only_files']) def test_episode_show(self): expected = { 'module' : 'episode', 'command' : 'show', 'episode_input' : [5], } args = cli.parse_args(['episode', 'show', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'show', 'bar']) self.check_error_message("argument episode_input:" " invalid int value: 'bar'", error) args = cli.parse_args(['episode', 'show', '6', '12']) self.assertEqual(args['episode_input'], [6, 12]) def test_episosde_delete(self): expected = { 'module' : 'episode', 'command' : 'delete', 'episode_input' : [5], 'delete_files' : True, } args = cli.parse_args(['episode', 'delete', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'delete', 'bar']) self.check_error_message("argument episode_input:" " invalid int value: 'bar'", error) args = cli.parse_args(['episode', 'delete', '6', '12']) self.assertEqual(args['episode_input'], [6, 12]) args = cli.parse_args(['episode', 'delete', '--keep-files', '6']) self.assertFalse(args['delete_files']) def test_episode_delete_file(self): expected = { 'module' : 'episode', 'command' : 'delete-file', 'episode_input' : [5], } args = cli.parse_args(['episode', 'delete-file', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'delete-file', 'bar']) self.check_error_message("argument episode_input:" " invalid int value: 'bar'", error) args = cli.parse_args(['episode', 'delete-file', '6', '12']) self.assertEqual(args['episode_input'], [6, 12]) def test_episode_download(self): expected = { 'module' : 'episode', 'command' : 'download', 'episode_input' : [5], } args = cli.parse_args(['episode', 'download', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'download', 'bar']) self.check_error_message("argument episode_input:" " invalid int value: 'bar'", error) args = cli.parse_args(['episode', 'download', '6', '12']) self.assertEqual(args['episode_input'], [6, 12]) def test_episode_update(self): expected = { 'module' : 'episode', 'command' : 'update', 'episode_id' : 5, } args = cli.parse_args(['episode', 'update', '5']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'update', '5', '--prevent-delete', '--allow-delete']) self.check_error_message("argument --allow-delete: not allowed" " with argument --prevent-delete", error) args = cli.parse_args(['episode', 'update', '5', '--prevent-delete']) self.assertTrue(args['prevent_delete']) args = cli.parse_args(['episode', 'update', '5', '--allow-delete']) self.assertFalse(args['prevent_delete']) args = cli.parse_args(['episode', 'update', '5']) self.assert_none(args['prevent_delete']) def test_episode_update_file__path(self): expected = { 'module' : 'episode', 'command' : 'update-file-path', 'episode_id' : 5, 'file_path' : 'foo' } args = cli.parse_args(['episode', 'update-file-path', '5', 'foo']) for key, value in expected.items(): self.assertEqual(args[key], value) def test_episode_sync(self): expected = { 'module' : 'episode', 'command' : 'sync', } args = cli.parse_args(['episode', 'sync']) for key, value in expected.items(): self.assertEqual(args[key], value) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'sync', '--sync-num', 'bar']) self.check_error_message("argument --sync-num:" " invalid int value: 'bar'", error) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'sync', '-i', 'foo']) self.check_error_message("argument -i/--include-podcasts:" " invalid int value: 'foo'", error) with self.assertRaises(CLIException) as error: cli.parse_args(['episode', 'sync', '-e', 'foo']) self.check_error_message("argument -e/--exclude-podcasts:" " invalid int value: 'foo'", error) common_args = ['episode', 'sync'] args = cli.parse_args(common_args + ['--sync-num', '5']) self.assertEqual(args['max_episode_sync'], 5) args = cli.parse_args(common_args + ['-i', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['-e', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--include-podcasts', '5', '10']) self.assertEqual(args['include_podcasts'], [5, 10]) args = cli.parse_args(common_args + ['--exclude-podcasts', '5', '10']) self.assertEqual(args['exclude_podcasts'], [5, 10]) def test_episode_cleanup(self): expected = { 'module' : 'episode', 'command' : 'cleanup', } args = cli.parse_args(['episode', 'cleanup']) for key, value in expected.items(): self.assertEqual(args[key], value)
41.839465
94
0.564828
a220216ac3c1d533435314c622b65e4530018f47
6,823
py
Python
ArticleRecommendationProject/Recommendation/CollabContentBased.py
Newsrecommender/newsrecommender
f6d2b720833d7cbca0d905812860193824b4e657
[ "MIT" ]
7
2017-07-08T11:22:39.000Z
2020-04-12T01:44:58.000Z
ArticleRecommendationProject/Recommendation/CollabContentBased.py
Newsrecommender/newsrecommender
f6d2b720833d7cbca0d905812860193824b4e657
[ "MIT" ]
null
null
null
ArticleRecommendationProject/Recommendation/CollabContentBased.py
Newsrecommender/newsrecommender
f6d2b720833d7cbca0d905812860193824b4e657
[ "MIT" ]
5
2017-07-09T09:38:59.000Z
2018-10-23T07:41:08.000Z
import yaml import pandas as pd import numpy as np import sys import os from math import sqrt import matplotlib import matplotlib.pyplot as plot import networkx as nx class Collabcontentbased(object): def __init__(self): self.object = object def get_script_directory(self): """ This function returns the directory of the script in scrip mode In interactive mode returns interpreter name. """ path = os.path.realpath(sys.argv[0]) if os.path.isdir(path): return path else: return os.path.dirname(path) def similarity_score(self, Article1, Article2): """ This function calculates Euclidean distance between to objects """ both_viewed = {} for item in self.dataset[Article1]: if item in self.dataset[Article2]: both_viewed[item] = 1 # The Conditions to check if they both have common rating items if len(both_viewed) == 0: return 0 # Finding Euclidean distance sum_of_euclidean_distance = [] for item in self.dataset[Article1]: if item in self.dataset[Article2]: sum_of_euclidean_distance.append(pow(self.dataset[Article1][item] - self.dataset[Article2][item], 2)) sum_of_euclidean_distance = sum(sum_of_euclidean_distance) #print (sum_of_euclidean_distance) return 1/(1+sqrt(sum_of_euclidean_distance)) def pearson_correlation(self, Article1, Article2): """ This function calculates Pearson correlation between two vectors """ both_rated = {} for item in self.dataset[Article1]: if item in self.dataset[Article2]: both_rated[item] = 1 number_of_ratings = len(both_rated) # Checking for number of ratings in common if number_of_ratings == 0: return 0 # Add up all the preferences of each user person1_preferences_sum = sum([self.dataset[Article1][item] for item in both_rated]) person2_preferences_sum = sum([self.dataset[Article2][item] for item in both_rated]) # Sum up the squares of preferences of each user person1_square_preferences_sum = sum([pow(self.dataset[Article1][item],2) for item in both_rated]) person2_square_preferences_sum = sum([pow(self.dataset[Article2][item],2) for item in both_rated]) # Sum up the product value of both preferences for each item product_sum_of_both_users = sum([self.dataset[Article1][item] * self.dataset[Article2][item] for item in both_rated]) # Calculate the pearson score numerator_value = product_sum_of_both_users - (person1_preferences_sum*person2_preferences_sum/number_of_ratings) denominator_value = sqrt((person1_square_preferences_sum - pow(person1_preferences_sum,2)/number_of_ratings) * (person2_square_preferences_sum -pow(person2_preferences_sum,2)/number_of_ratings)) if denominator_value == 0: return 0 else: r = numerator_value/denominator_value return r def find_most_similar_objects(self, Article1, number_of_users): # returns the number_of_users (similar persons) for a given specific person. scores = [(self.pearson_correlation(Article1,other_person),other_person) for other_person in self.dataset if other_person != Article1 ] # Sort the similar persons so that highest scores person will appear at the first scores.sort() scores.reverse() return (scores[0:number_of_users][0][1]) def get_recommendations(self, objects, no_of_recommendations): """ This function generates recommendations for specified object """ recommended_articles = [] input_articles = [] for article in objects: # print (article, find_most_similar_objects(article,2)[0][1], find_most_similar_objects(article,2)[1][1]) input_articles.append(article) recommended_articles.append(self.find_most_similar_objects(article,no_of_recommendations)) return input_articles,recommended_articles def run(self): # 0. Find the path of script and set wd path = self.get_script_directory() os.chdir(path) print ('Script is located at {}'.format(path)) # import config files print("Reading configuration") with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile) user_ratings_files_path = cfg['project_test_conf']['ratings_file_path'] user_ratings_csv_filename = cfg['project_test_conf']['ratings_file_name'] articles_files_path = cfg['project_test_conf']['articles_file_path'] articles_csv_filename = cfg['project_test_conf']['articles_file_name'] ratings_index = cfg['project_test_conf']['ratings_index_column'] output_file_path = cfg['project_test_conf']['output_path'] output_file_name = cfg['project_test_conf']['output_file_name'] ratings_file = os.path.join(user_ratings_files_path, user_ratings_csv_filename) articles_file = os.path.join(articles_files_path, articles_csv_filename) Output_Recommendations = os.path.join(output_file_path, output_file_name) print("Configuration loaded successfully") print ('Reading ratings from file {}'.format(ratings_file)) user_ratings = pd.read_csv(ratings_file, index_col=ratings_index) articles_db = pd.read_csv(articles_file, index_col=ratings_index) objects_list = list(user_ratings.index) user_ratings_T = user_ratings.transpose() self.dataset = user_ratings_T.to_dict() # Get recommendations print('Calculations in progress...') Article, recommended_article = self.get_recommendations(objects_list, 5) print('Calculations completed.') # Create output files print('Creating output file') recommended_article_title = [] for content in recommended_article: recommended_article_title.append(articles_db.Title[content]) input_article_title = [] for content in Article: input_article_title.append(articles_db.Title[content]) df = pd.DataFrame() df['Article'] = Article df['Recommendation'] = recommended_article df['News'] = input_article_title df['Recommended_News'] = recommended_article_title df = df.set_index('Article', drop=True, append=False, inplace=False, verify_integrity=False) df.to_csv(Output_Recommendations) print('Output file created.') print('Check output files at {}'.format(Output_Recommendations)) if __name__ == "__main__": Collabcontentbased().run()
43.183544
202
0.678001
d4f35bed741e094da299267b64cfa2820f50cdd3
22,610
py
Python
Code/GraphMol/SubstructLibrary/Wrap/rough_test.py
nbehrnd/rdkit
3262b498149f8dcdabe8d74b6d3882c685bbc252
[ "BSD-3-Clause" ]
1
2017-08-18T02:26:16.000Z
2017-08-18T02:26:16.000Z
Code/GraphMol/SubstructLibrary/Wrap/rough_test.py
nbehrnd/rdkit
3262b498149f8dcdabe8d74b6d3882c685bbc252
[ "BSD-3-Clause" ]
9
2016-08-08T13:53:40.000Z
2020-03-08T05:52:07.000Z
Code/GraphMol/SubstructLibrary/Wrap/rough_test.py
bp-kelley/rdkit
e0de7c9622ce73894b1e7d9568532f6d5638058a
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2017-2021 Novartis Institute of BioMedical Research # and other RDKit contributors # # All Rights Reserved # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Novartis Institutes for BioMedical Research Inc. # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ This is a rough coverage test of the python wrapper for the SubstructLibrary it is intended to be shallow but broad. """ import doctest, unittest, os, sys from rdkit import RDConfig, RDLogger from rdkit.RDLogger import logger logger = logger() from rdkit import Chem from rdkit.Chem import rdSubstructLibrary import time import pickle import tempfile def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(rdSubstructLibrary)) return tests def makeStereoExamples(): el = "NO" mols = [] for e in el: for e2 in el: if e != e2: smi = "C1CCO[C@@](%s)(%s)1"%(e,e2) m = Chem.MolFromSmiles(smi) if m: mols.append(m) smi = "C1CCO[C@](%s)(%s)1"%(e,e2) m = Chem.MolFromSmiles(smi) if m: mols.append(m) return mols class TestCase(unittest.TestCase): def setUp(self): pass def test0SubstructLibrary(self): for fpholderCls in [None, rdSubstructLibrary.PatternHolder]: for holder in [rdSubstructLibrary.MolHolder(), rdSubstructLibrary.CachedMolHolder(), rdSubstructLibrary.CachedSmilesMolHolder()]: if fpholderCls: fpholder = fpholderCls() else: fpholder = None slib_ = rdSubstructLibrary.SubstructLibrary(holder, fpholder) for i in range(100): m = Chem.MolFromSmiles("c1ccccc1") self.assertEqual(slib_.AddMol(m), i) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: res = slib.GetMatches(m) t2 = time.time() self.assertTrue(len(res) == 100) res = slib.GetMatches(m) self.assertEqual(len(res), 100) self.assertTrue(set(res) == set(list(range(100)))) res = slib.GetMatches(m, maxResults=100); self.assertEqual(len(res), 100) self.assertEqual(len(slib.GetMatches(m, startIdx=0, endIdx=100)), 100) self.assertTrue(slib.HasMatch(m)) self.assertEqual(slib.CountMatches(m), 100) def test1SubstructLibrary(self): for fpholderCls in [None, rdSubstructLibrary.PatternHolder]: for holder in [rdSubstructLibrary.MolHolder(), rdSubstructLibrary.CachedMolHolder(), rdSubstructLibrary.CachedSmilesMolHolder()]: if fpholderCls: fpholder = fpholderCls() else: fpholder = None slib_ = rdSubstructLibrary.SubstructLibrary(holder, fpholder) mols = [] for i in range(100): m = Chem.MolFromSmiles("c1ccccc1") self.assertEqual(slib_.AddMol(m), i*2) mols.append(m) m2 = Chem.MolFromSmiles("CCCC") self.assertEqual(slib_.AddMol(m2), i*2+1) mols.append(m2) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: res = slib.GetMatches(m) self.assertEqual(len(res), 100) self.assertEqual(set(res), set(list(range(0,200,2)))) res = slib.GetMatches(m2) self.assertEqual(len(res), 100) self.assertTrue(set(res) == set(list(range(1,200,2)))) res = slib.GetMatches(m) self.assertEqual(len(res), 100) res = slib.GetMatches(m, maxResults=100); self.assertEqual(len(res), 100) self.assertEqual(len(slib.GetMatches(m, startIdx=0, endIdx=50*2)), 50) self.assertEqual(len(slib.GetMatches(m2, startIdx=1, endIdx=50*2+1)), 50) self.assertTrue(slib.HasMatch(m)) self.assertTrue(slib.HasMatch(m2)) self.assertEqual(slib.CountMatches(m), 100) self.assertEqual(slib.CountMatches(m2), 100) def testOptions(self): mols = makeStereoExamples() * 10 for holderCls in [ rdSubstructLibrary.MolHolder, rdSubstructLibrary.CachedMolHolder, rdSubstructLibrary.CachedSmilesMolHolder, rdSubstructLibrary.CachedTrustedSmilesMolHolder, ]: holder = holderCls() slib_ = rdSubstructLibrary.SubstructLibrary(holder, None) for mol in mols: slib_.AddMol(mol) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: core = Chem.MolFromSmarts("C-1-C-C-O-C(-*)(-*)1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) core = Chem.MolFromSmarts("C-1-C-C-O-C(-[O])(-[N])1") core.SetProp("core", "core") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) def testSmilesCache(self): mols = makeStereoExamples() * 10 holder = rdSubstructLibrary.CachedSmilesMolHolder() slib_ = rdSubstructLibrary.SubstructLibrary(holder, None) for mol in mols: holder.AddSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: core = Chem.MolFromSmarts("C-1-C-C-O-C(-*)(-*)1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) core = Chem.MolFromSmarts("C-1-C-C-O-C(-[O])(-[N])1") core.SetProp("core", "core") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) def testTrustedSmilesCache(self): mols = makeStereoExamples() * 10 holder = rdSubstructLibrary.CachedTrustedSmilesMolHolder() slib_ = rdSubstructLibrary.SubstructLibrary(holder, None) for mol in mols: holder.AddSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: core = Chem.MolFromSmarts("C-1-C-C-O-C(-*)(-*)1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) core = Chem.MolFromSmarts("C-1-C-C-O-C(-[O])(-[N])1") core.SetProp("core", "core") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) def testBinaryCache(self): mols = makeStereoExamples() * 10 holder = rdSubstructLibrary.CachedMolHolder() slib_ = rdSubstructLibrary.SubstructLibrary(holder, None) for mol in mols: holder.AddBinary(mol.ToBinary()) libs = [slib_] if rdSubstructLibrary.SubstructLibraryCanSerialize(): serialized1 = pickle.loads(pickle.dumps(slib_)) serialized2 = rdSubstructLibrary.SubstructLibrary(slib_.Serialize()) libs.append(serialized1) libs.append(serialized2) for slib in libs: core = Chem.MolFromSmarts("C-1-C-C-O-C(-*)(-*)1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) core = Chem.MolFromSmarts("C-1-C-C-O-C(-[O])(-[N])1") core.SetProp("core", "core") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core, useChirality=False) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=False)])) core = Chem.MolFromSmarts("C-1-C-C-O-[C@@](-[O])(-[N])1") res = slib.GetMatches(core) self.assertEqual(len(res), len([x for x in mols if x.HasSubstructMatch(core, useChirality=True)])) def testRingSmartsWithTrustedSmiles(self): pat = Chem.MolFromSmarts("[C&R1]") pat2 = Chem.MolFromSmarts("C@C") # ring bond holder = rdSubstructLibrary.CachedTrustedSmilesMolHolder() lib = rdSubstructLibrary.SubstructLibrary(holder) lib.AddMol(Chem.MolFromSmiles("C1CC1")) # make sure we can get an unsanitized molecule that fails (no ring info) print("Testing atom rings") with self.assertRaises(RuntimeError): holder.GetMol(0).HasSubstructMatch(pat) print("testing bond rings") with self.assertRaises(RuntimeError): holder.GetMol(0).HasSubstructMatch(pat2) # shouldn't throw print("searching atom rings") self.assertEqual(len(lib.GetMatches(pat)), 1) self.assertEqual(lib.CountMatches(pat), 1) print("searching bond rings") self.assertEqual(len(lib.GetMatches(pat2)), 1) self.assertEqual(lib.CountMatches(pat2), 1) print("done") def test_init_from_and_to_stream(self): mols = makeStereoExamples() * 10 holder = rdSubstructLibrary.CachedSmilesMolHolder() # one day I'll fix this, but we need to write text but read binary # grrr.... something about the python_streambuf handler. slib = rdSubstructLibrary.SubstructLibrary(holder, None) for mol in mols: holder.AddSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) if rdSubstructLibrary.SubstructLibraryCanSerialize(): fd, path = tempfile.mkstemp() with open(path, 'w') as file: slib.ToStream(file) with open(path, 'rb') as file: slib2 = rdSubstructLibrary.SubstructLibrary() slib2.InitFromStream(file) self.assertEqual(len(slib), len(slib2)) from io import StringIO, BytesIO s = StringIO() slib.ToStream(s) sb = BytesIO(s.getvalue().encode("ascii")) self.assertTrue(len(sb.getvalue()) > 0) slib3 = rdSubstructLibrary.SubstructLibrary() slib3.InitFromStream(sb) self.assertEqual(len(slib), len(slib2)) def test_addpatterns(self): pdb_ligands = [ "CCS(=O)(=O)c1ccc(OC)c(Nc2ncc(-c3cccc(-c4ccccn4)c3)o2)c1", "COc1ccc(S(=O)(=O)NCC2CC2)cc1Nc1ncc(-c2cccc(-c3cccnc3)c2)o1", "COc1ccc(-c2oc3ncnc(N)c3c2-c2ccc(NC(=O)Nc3cc(C(F)(F)F)ccc3F)cc2)cc1", "COC(=O)Nc1nc2ccc(Oc3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)cc2[nH]1", "COc1cc(Nc2ncnc(-c3cccnc3Nc3ccccc3)n2)cc(OC)c1OC", "O=C(Nc1ccc(Oc2ccccc2)cc1)c1cccnc1NCc1ccncc1", "O=C(Nc1ccc(Oc2ccccc2)cc1)c1cccnc1NCc1ccncc1", "CNC(=O)c1cc(Oc2ccc3[nH]c(Nc4ccc(Cl)c(C(F)(F)F)c4)nc3c2)ccn1", "CNC(=O)c1cc(Oc2ccc3oc(Nc4ccc(Cl)c(OCC5CCC[NH+]5C)c4)nc3c2)ccn1", "CNC(=O)c1cc(Oc2ccc3oc(Nc4ccc(Cl)c(OCC5CCC[NH+]5C)c4)nc3c2)ccn1", "COc1cc2nccc(Oc3ccc4c(c3)OCCN4C(=O)Nc3ccc(Cl)cc3)c2cc1OC", "CNC(=O)c1c(C)oc2cc(Oc3cc[nH+]c4cc(OCCN5CCOCC5)ccc34)ccc12", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)Nc5ccc(Cl)cc5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)Nc5ccc(Cl)cc5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)NC5CC5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)NC5CC5)cccc4c3)c2cc1OC", "Cc1ccc(C(=O)Nc2cc(CCC[NH+](C)C)cc(C(F)(F)F)c2)cc1Nc1ncccc1-c1ccncn1", "COc1cc(Nc2nccc(Nc3ccc4c(C)n[nH]c4c3)n2)cc(OC)c1OC", "COc1cc(Nc2nccc(N(C)c3ccc4c(C)n[nH]c4c3)n2)cc(OC)c1OC", "Cc1ccn(-c2ccc3c(c2)NCC3(C)C)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccn(-c2ccc3c(c2)NCC3(C)C)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccc(C(=O)NCCC2CCCC2)cc1C(=O)Nc1ccc(N)nc1", "Cc1ccc(C(=O)NCCC2CCCC2)cc1C(=O)Nc1ccc(N)nc1", "Cc1ccn(-c2cccc(C(F)(F)F)c2)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccn(-c2cccc(C(F)(F)F)c2)c(=O)c1-c1ccc2nc(N)ncc2c1", "O=C(Nc1cncnc1)c1c(Cl)ccc2c(Nc3cccc(C(F)(F)F)c3)noc12", "O=C(Nc1cncnc1)c1c(Cl)ccc2c(Nc3cccc(C(F)(F)F)c3)noc12", "CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21", "CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21" ] for patterns in [rdSubstructLibrary.PatternHolder(), rdSubstructLibrary.TautomerPatternHolder()]: mols = [Chem.MolFromSmiles(smi) for smi in pdb_ligands] holder = rdSubstructLibrary.CachedMolHolder() slib_with_patterns = rdSubstructLibrary.SubstructLibrary(holder, patterns) for mol in mols: slib_with_patterns.AddMol(mol) for nthreads in [1, 2, 0]: slib_without_patterns = rdSubstructLibrary.SubstructLibrary(holder, None) rdSubstructLibrary.AddPatterns(slib_without_patterns, nthreads) # check for seg fault # were the fingerprints really created slib_without_patterns.GetFpHolder().GetFingerprint(0) for mol in mols: l1 = slib_with_patterns.CountMatches(mol) l2 = slib_without_patterns.CountMatches(mol) self.assertTrue(l1) self.assertEqual(l1,l2) def test_basic_addpatterns(self): # add mols pdb_ligands = [ "CCS(=O)(=O)c1ccc(OC)c(Nc2ncc(-c3cccc(-c4ccccn4)c3)o2)c1", "COc1ccc(S(=O)(=O)NCC2CC2)cc1Nc1ncc(-c2cccc(-c3cccnc3)c2)o1", "COc1ccc(-c2oc3ncnc(N)c3c2-c2ccc(NC(=O)Nc3cc(C(F)(F)F)ccc3F)cc2)cc1", "COC(=O)Nc1nc2ccc(Oc3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)cc2[nH]1", "COc1cc(Nc2ncnc(-c3cccnc3Nc3ccccc3)n2)cc(OC)c1OC", "O=C(Nc1ccc(Oc2ccccc2)cc1)c1cccnc1NCc1ccncc1", "O=C(Nc1ccc(Oc2ccccc2)cc1)c1cccnc1NCc1ccncc1", "CNC(=O)c1cc(Oc2ccc3[nH]c(Nc4ccc(Cl)c(C(F)(F)F)c4)nc3c2)ccn1", "CNC(=O)c1cc(Oc2ccc3oc(Nc4ccc(Cl)c(OCC5CCC[NH+]5C)c4)nc3c2)ccn1", "CNC(=O)c1cc(Oc2ccc3oc(Nc4ccc(Cl)c(OCC5CCC[NH+]5C)c4)nc3c2)ccn1", "COc1cc2nccc(Oc3ccc4c(c3)OCCN4C(=O)Nc3ccc(Cl)cc3)c2cc1OC", "CNC(=O)c1c(C)oc2cc(Oc3cc[nH+]c4cc(OCCN5CCOCC5)ccc34)ccc12", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)Nc5ccc(Cl)cc5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)Nc5ccc(Cl)cc5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)NC5CC5)cccc4c3)c2cc1OC", "COc1cc2[nH+]ccc(Oc3ccc4c(C(=O)NC5CC5)cccc4c3)c2cc1OC", "Cc1ccc(C(=O)Nc2cc(CCC[NH+](C)C)cc(C(F)(F)F)c2)cc1Nc1ncccc1-c1ccncn1", "COc1cc(Nc2nccc(Nc3ccc4c(C)n[nH]c4c3)n2)cc(OC)c1OC", "COc1cc(Nc2nccc(N(C)c3ccc4c(C)n[nH]c4c3)n2)cc(OC)c1OC", "Cc1ccn(-c2ccc3c(c2)NCC3(C)C)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccn(-c2ccc3c(c2)NCC3(C)C)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccc(C(=O)NCCC2CCCC2)cc1C(=O)Nc1ccc(N)nc1", "Cc1ccc(C(=O)NCCC2CCCC2)cc1C(=O)Nc1ccc(N)nc1", "Cc1ccn(-c2cccc(C(F)(F)F)c2)c(=O)c1-c1ccc2nc(N)ncc2c1", "Cc1ccn(-c2cccc(C(F)(F)F)c2)c(=O)c1-c1ccc2nc(N)ncc2c1", "O=C(Nc1cncnc1)c1c(Cl)ccc2c(Nc3cccc(C(F)(F)F)c3)noc12", "O=C(Nc1cncnc1)c1c(Cl)ccc2c(Nc3cccc(C(F)(F)F)c3)noc12", "CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21", "CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21" ] for holder in [rdSubstructLibrary.CachedSmilesMolHolder(), rdSubstructLibrary.CachedTrustedSmilesMolHolder()]: for smi in pdb_ligands: holder.AddSmiles(smi) for patttern in [None, rdSubstructLibrary.PatternHolder(), rdSubstructLibrary.TautomerPatternHolder()]: lib = rdSubstructLibrary.SubstructLibrary(holder) rdSubstructLibrary.AddPatterns(lib, numThreads=-1) self.assertEqual(len(lib.GetMolHolder()), len(lib.GetFpHolder())) for smi in pdb_ligands: self.assertTrue( lib.CountMatches(Chem.MolFromSmiles(smi)) ) def test_PatternHolder(self): for holder in [rdSubstructLibrary.PatternHolder, rdSubstructLibrary.TautomerPatternHolder]: fname = os.path.join(os.environ["RDBASE"], "Data", "NCI", "first_5K.smi") suppl = Chem.SmilesMolSupplier(fname, delimiter="\t", titleLine=False) mols1 = rdSubstructLibrary.CachedTrustedSmilesMolHolder() fps1 = holder(2048) ssslib1 = rdSubstructLibrary.SubstructLibrary(mols1, fps1) mols2 = rdSubstructLibrary.CachedTrustedSmilesMolHolder() fps2 = holder() ssslib2 = rdSubstructLibrary.SubstructLibrary(mols2, fps2) RDLogger.DisableLog('rdApp.error') for i in range(0, 1000, 10): try: mol = suppl[i] except Exception: continue if (not mol): continue mols1.AddSmiles(Chem.MolToSmiles(mol)) fps1.AddFingerprint(fps1.MakeFingerprint(mol)) ssslib2.AddMol(mol) RDLogger.EnableLog('rdApp.error') query = Chem.MolFromSmarts("N") self.assertIsNotNone(query) matches1 = sorted(ssslib1.GetMatches(query)) matches2 = sorted(ssslib2.GetMatches(query)) self.assertEqual(len(matches1), len(matches2)) self.assertTrue(all([m1 == matches2[i] for i, m1 in enumerate(matches1)])) def testMolBundles(self): ssl = rdSubstructLibrary.SubstructLibrary() for smi in ('CCOC','CCNC','COOCOO','CCNC','CCCC'): ssl.AddMol(Chem.MolFromSmiles(smi)) bndl = Chem.MolBundle() for smi in ('COC', 'CCC'): bndl.AddMol(Chem.MolFromSmiles(smi)) self.assertEqual(list(ssl.GetMatches(bndl)),[0, 4]) bndl.AddMol(Chem.MolFromSmiles('CN')) self.assertEqual(list(sorted(ssl.GetMatches(bndl))), [0, 1, 3, 4]) def testSubstructParameters(self): ssl = rdSubstructLibrary.SubstructLibrary() for smi in ('C[C@H](F)Cl','C[C@@H](F)Cl','CC(F)Cl'): ssl.AddMol(Chem.MolFromSmiles(smi)) bndl = Chem.MolBundle() for smi in ('C[C@H](F)Cl',): bndl.AddMol(Chem.MolFromSmiles(smi)) params = Chem.SubstructMatchParameters() self.assertEqual(list(sorted(ssl.GetMatches(bndl,params))), [0, 1, 2]) params.useChirality = True self.assertEqual(list(sorted(ssl.GetMatches(bndl,params))), [0]) def testSearchOrder(self): ssl = rdSubstructLibrary.SubstructLibrary() for smi in ("CCCOC", "CCCCOCC", "CCOC", "COC", "CCCCCOC"): ssl.AddMol(Chem.MolFromSmiles(smi)) ssl.SetSearchOrder((3,2,0,1,4)) self.assertEqual(ssl.GetSearchOrder(),(3,2,0,1,4)) qm = Chem.MolFromSmiles('COC') self.assertEqual(list(ssl.GetMatches(qm,maxResults=2)),[3,2]) def testSearchOrder2(self): ssl = rdSubstructLibrary.SubstructLibrary() for smi in ("CCCOC", "CCCCOCC", "CCOC", "COC", "CCCCCOC"): ssl.AddMol(Chem.MolFromSmiles(smi)) def setSearchSmallestFirst(sslib): searchOrder = list(range(len(sslib))) holder = sslib.GetMolHolder() searchOrder.sort(key=lambda x,holder=holder:holder.GetMol(x).GetNumAtoms()) sslib.SetSearchOrder(searchOrder) setSearchSmallestFirst(ssl) qm = Chem.MolFromSmiles('COC') self.assertEqual(list(ssl.GetMatches(qm)),[3, 2, 0, 1, 4]) if __name__ == '__main__': unittest.main()
40.447227
109
0.657497
b24c13b68a700125579f4922aa4ee6f57d020a98
16,872
py
Python
setup.py
venkatalolla/ose3.9
6ad78c11b7b76f1e05bce5b49601cf1f1d95812b
[ "Apache-2.0" ]
1
2018-11-14T01:47:19.000Z
2018-11-14T01:47:19.000Z
setup.py
venkatalolla/ose3.9
6ad78c11b7b76f1e05bce5b49601cf1f1d95812b
[ "Apache-2.0" ]
null
null
null
setup.py
venkatalolla/ose3.9
6ad78c11b7b76f1e05bce5b49601cf1f1d95812b
[ "Apache-2.0" ]
4
2018-07-30T02:40:11.000Z
2019-11-12T06:59:02.000Z
"""A setuptools based setup module. """ from __future__ import print_function import os import fnmatch import re import sys import subprocess import yaml # Always prefer setuptools over distutils from setuptools import setup, Command from setuptools_lint.setuptools_command import PylintCommand from six import string_types from six.moves import reload_module from yamllint.config import YamlLintConfig from yamllint.cli import Format from yamllint import linter def find_files(base_dir, exclude_dirs, include_dirs, file_regex): ''' find files matching file_regex ''' found = [] exclude_regex = '' include_regex = '' if exclude_dirs is not None: exclude_regex = r'|'.join([fnmatch.translate(x) for x in exclude_dirs]) or r'$.' # Don't use include_dirs, it is broken if include_dirs is not None: include_regex = r'|'.join([fnmatch.translate(x) for x in include_dirs]) or r'$.' for root, dirs, files in os.walk(base_dir): if exclude_dirs is not None: # filter out excludes for dirs dirs[:] = [d for d in dirs if not re.match(exclude_regex, d)] if include_dirs is not None: # filter for includes for dirs dirs[:] = [d for d in dirs if re.match(include_regex, d)] matches = [os.path.join(root, f) for f in files if re.search(file_regex, f) is not None] found.extend(matches) return found def recursive_search(search_list, field): """ Takes a list with nested dicts, and searches all dicts for a key of the field provided. If the items in the list are not dicts, the items are not processed. """ fields_found = [] for item in search_list: if isinstance(item, dict): for key, value in item.items(): if key == field: fields_found.append(value) elif isinstance(value, list): results = recursive_search(value, field) for result in results: fields_found.append(result) return fields_found def find_playbooks(): ''' find Ansible playbooks''' all_playbooks = set() included_playbooks = set() exclude_dirs = ('adhoc', 'tasks') for yaml_file in find_files( os.path.join(os.getcwd(), 'playbooks'), exclude_dirs, None, r'^[^\.].*\.ya?ml$'): with open(yaml_file, 'r') as contents: for task in yaml.safe_load(contents) or {}: if not isinstance(task, dict): # Skip yaml files which are not a dictionary of tasks continue if 'include' in task or 'import_playbook' in task: # Add the playbook and capture included playbooks all_playbooks.add(yaml_file) if 'include' in task: directive = task['include'] else: directive = task['import_playbook'] included_file_name = directive.split()[0] included_file = os.path.normpath( os.path.join(os.path.dirname(yaml_file), included_file_name)) included_playbooks.add(included_file) elif 'hosts' in task: all_playbooks.add(yaml_file) return all_playbooks, included_playbooks class OpenShiftAnsibleYamlLint(Command): ''' Command to run yamllint ''' description = "Run yamllint tests" user_options = [ ('excludes=', 'e', 'directories to exclude'), ('config-file=', 'c', 'config file to use'), ('format=', 'f', 'format to use (standard, parsable)'), ] def initialize_options(self): ''' initialize_options ''' # Reason: Defining these attributes as a part of initialize_options is # consistent with upstream usage # Status: permanently disabled # pylint: disable=attribute-defined-outside-init self.excludes = None self.config_file = None self.format = None def finalize_options(self): ''' finalize_options ''' # Reason: These attributes are defined in initialize_options and this # usage is consistant with upstream usage # Status: permanently disabled # pylint: disable=attribute-defined-outside-init if isinstance(self.excludes, string_types): self.excludes = self.excludes.split(',') if self.format is None: self.format = 'standard' assert (self.format in ['standard', 'parsable']), ( 'unknown format {0}.'.format(self.format)) if self.config_file is None: self.config_file = '.yamllint' assert os.path.isfile(self.config_file), ( 'yamllint config file {0} does not exist.'.format(self.config_file)) def run(self): ''' run command ''' if self.excludes is not None: print("Excludes:\n{0}".format(yaml.dump(self.excludes, default_flow_style=False))) config = YamlLintConfig(file=self.config_file) has_errors = False has_warnings = False if self.format == 'parsable': format_method = Format.parsable else: format_method = Format.standard_color for yaml_file in find_files(os.getcwd(), self.excludes, None, r'^[^\.].*\.ya?ml$'): first = True with open(yaml_file, 'r') as contents: for problem in linter.run(contents, config): if first and self.format != 'parsable': print('\n{0}:'.format(os.path.relpath(yaml_file))) first = False print(format_method(problem, yaml_file)) if problem.level == linter.PROBLEM_LEVELS[2]: has_errors = True elif problem.level == linter.PROBLEM_LEVELS[1]: has_warnings = True if has_errors or has_warnings: print('yamllint issues found') raise SystemExit(1) class OpenShiftAnsiblePylint(PylintCommand): ''' Class to override the default behavior of PylintCommand ''' # Reason: This method needs to be an instance method to conform to the # overridden method's signature # Status: permanently disabled # pylint: disable=no-self-use def find_all_modules(self): ''' find all python files to test ''' exclude_dirs = ('.tox', 'utils', 'test', 'tests', 'git') modules = [] for match in find_files(os.getcwd(), exclude_dirs, None, r'\.py$'): package = os.path.basename(match).replace('.py', '') modules.append(('openshift_ansible', package, match)) return modules def get_finalized_command(self, cmd): ''' override get_finalized_command to ensure we use our find_all_modules method ''' if cmd == 'build_py': return self # Reason: This method needs to be an instance method to conform to the # overridden method's signature # Status: permanently disabled # pylint: disable=no-self-use def with_project_on_sys_path(self, func, func_args, func_kwargs): ''' override behavior, since we don't need to build ''' return func(*func_args, **func_kwargs) class OpenShiftAnsibleGenerateValidation(Command): ''' Command to run generated module validation''' description = "Run generated module validation" user_options = [] def initialize_options(self): ''' initialize_options ''' pass def finalize_options(self): ''' finalize_options ''' pass # self isn't used but I believe is required when it is called. # pylint: disable=no-self-use def run(self): ''' run command ''' # find the files that call generate generate_files = find_files('roles', ['inventory', 'test', 'playbooks', 'utils'], None, 'generate.py$') if len(generate_files) < 1: print('Did not find any code generation. Please verify module code generation.') # noqa: E501 raise SystemExit(1) errors = False for gen in generate_files: print('Checking generated module code: {0}'.format(gen)) try: sys.path.insert(0, os.path.dirname(gen)) # we are importing dynamically. This isn't in # the python path. # pylint: disable=import-error import generate reload_module(generate) generate.verify() except generate.GenerateAnsibleException as gae: print(gae.args) errors = True if errors: print('Found errors while generating module code.') raise SystemExit(1) print('\nAll generate scripts passed.\n') class OpenShiftAnsibleSyntaxCheck(Command): ''' Command to run Ansible syntax check''' description = "Run Ansible syntax check" user_options = [] # Colors FAIL = '\033[31m' # Red ENDC = '\033[0m' # Reset def initialize_options(self): ''' initialize_options ''' pass def finalize_options(self): ''' finalize_options ''' pass def deprecate_jinja2_in_when(self, yaml_contents, yaml_file): ''' Check for Jinja2 templating delimiters in when conditions ''' test_result = False failed_items = [] search_results = recursive_search(yaml_contents, 'when') for item in search_results: if isinstance(item, str): if '{{' in item or '{%' in item: failed_items.append(item) else: for sub_item in item: if '{{' in sub_item or '{%' in sub_item: failed_items.append(sub_item) if len(failed_items) > 0: print('{}Error: Usage of Jinja2 templating delimiters in when ' 'conditions is deprecated in Ansible 2.3.\n' ' File: {}'.format(self.FAIL, yaml_file)) for item in failed_items: print(' Found: "{}"'.format(item)) print(self.ENDC) test_result = True return test_result def deprecate_include(self, yaml_contents, yaml_file): ''' Check for usage of include directive ''' test_result = False search_results = recursive_search(yaml_contents, 'include') if len(search_results) > 0: print('{}Error: The `include` directive is deprecated in Ansible 2.4.\n' 'https://github.com/ansible/ansible/blob/devel/CHANGELOG.md\n' ' File: {}'.format(self.FAIL, yaml_file)) for item in search_results: print(' Found: "include: {}"'.format(item)) print(self.ENDC) test_result = True return test_result def run(self): ''' run command ''' has_errors = False print('#' * 60) print('Ansible Deprecation Checks') exclude_dirs = ('adhoc', 'files', 'meta', 'vars', 'defaults', '.tox') for yaml_file in find_files( os.getcwd(), exclude_dirs, None, r'^[^\.].*\.ya?ml$'): with open(yaml_file, 'r') as contents: yaml_contents = yaml.safe_load(contents) if not isinstance(yaml_contents, list): continue # Check for Jinja2 templating delimiters in when conditions result = self.deprecate_jinja2_in_when(yaml_contents, yaml_file) has_errors = result or has_errors # Check for usage of include: directive result = self.deprecate_include(yaml_contents, yaml_file) has_errors = result or has_errors if not has_errors: print('...PASSED') all_playbooks, included_playbooks = find_playbooks() print('#' * 60) print('Invalid Playbook Include Checks') invalid_include = [] for playbook in included_playbooks: # Ignore imported playbooks in 'common', 'private' and 'init'. It is # expected that these locations would be imported by entry point # playbooks. # Ignore playbooks in 'aws', 'azure', 'gcp' and 'openstack' because these # playbooks do not follow the same component entry point structure. # Ignore deploy_cluster.yml and prerequisites.yml because these are # entry point playbooks but are imported by playbooks in the cloud # provisioning playbooks. ignored = ('common', 'private', 'init', 'aws', 'azure', 'gcp', 'openstack', 'deploy_cluster.yml', 'prerequisites.yml') if any(x in playbook for x in ignored): continue invalid_include.append(playbook) if invalid_include: print('{}Invalid included playbook(s) found. Please ensure' ' component entry point playbooks are not included{}'.format(self.FAIL, self.ENDC)) invalid_include.sort() for playbook in invalid_include: print('{}{}{}'.format(self.FAIL, playbook, self.ENDC)) has_errors = True if not has_errors: print('...PASSED') print('#' * 60) print('Ansible Playbook Entry Point Syntax Checks') # Evaluate the difference between all playbooks and included playbooks entrypoint_playbooks = sorted(all_playbooks.difference(included_playbooks)) print('Entry point playbook count: {}'.format(len(entrypoint_playbooks))) for playbook in entrypoint_playbooks: print('-' * 60) print('Syntax checking playbook: {}'.format(playbook)) # Error on any entry points in 'common' or 'private' invalid_entry_point = ('common', 'private') if any(x in playbook for x in invalid_entry_point): print('{}Invalid entry point playbook or orphaned file. Entry' ' point playbooks are not allowed in \'common\' or' ' \'private\' directories{}'.format(self.FAIL, self.ENDC)) has_errors = True # --syntax-check each entry point playbook try: # Create a host group list to avoid WARNING on unmatched host patterns tox_ansible_inv = os.environ['TOX_ANSIBLE_INV_PATH'] subprocess.check_output( ['ansible-playbook', '-i', tox_ansible_inv, '--syntax-check', playbook, '-e', '@{}_extras'.format(tox_ansible_inv)] ) except subprocess.CalledProcessError as cpe: print('{}Execution failed: {}{}'.format( self.FAIL, cpe, self.ENDC)) has_errors = True if has_errors: raise SystemExit(1) class UnsupportedCommand(Command): ''' Basic Command to override unsupported commands ''' user_options = [] # Reason: This method needs to be an instance method to conform to the # overridden method's signature # Status: permanently disabled # pylint: disable=no-self-use def initialize_options(self): ''' initialize_options ''' pass # Reason: This method needs to be an instance method to conform to the # overridden method's signature # Status: permanently disabled # pylint: disable=no-self-use def finalize_options(self): ''' initialize_options ''' pass # Reason: This method needs to be an instance method to conform to the # overridden method's signature # Status: permanently disabled # pylint: disable=no-self-use def run(self): ''' run command ''' print("Unsupported command for openshift-ansible") setup( name='openshift-ansible', license="Apache 2.0", cmdclass={ 'install': UnsupportedCommand, 'develop': UnsupportedCommand, 'build': UnsupportedCommand, 'build_py': UnsupportedCommand, 'build_ext': UnsupportedCommand, 'egg_info': UnsupportedCommand, 'sdist': UnsupportedCommand, 'lint': OpenShiftAnsiblePylint, 'yamllint': OpenShiftAnsibleYamlLint, 'generate_validation': OpenShiftAnsibleGenerateValidation, 'ansible_syntax': OpenShiftAnsibleSyntaxCheck, }, packages=[], )
37.162996
107
0.584993
66dee474a0314024685f63625b81822e9865ac19
9,705
py
Python
common/src/stack/ws/restapi/views.py
kmcm0/stacki
eb9dff1b45d5725b4986e567876bf61707fec28f
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/ws/restapi/views.py
kmcm0/stacki
eb9dff1b45d5725b4986e567876bf61707fec28f
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/ws/restapi/views.py
kmcm0/stacki
eb9dff1b45d5725b4986e567876bf61707fec28f
[ "BSD-3-Clause" ]
null
null
null
# # @copyright@ # Copyright (c) 2006 - 2019 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ # from django.views.generic import View from django.http import HttpResponse, HttpResponseForbidden from django.utils.decorators import method_decorator from django.views.decorators.csrf import ensure_csrf_cookie from django.contrib.auth import authenticate, login, logout from stack.restapi.models import BlackList from stack.restapi.models import SudoList from stack.exception import CommandError import stack.commands from stack.commands import get_mysql_connection import pymysql import json import os import sys import subprocess import tempfile import logging import shlex import re import traceback # Start a logger log = logging.getLogger("SWS") # MySQL Access Denied Error Codes. # from: https://mariadb.com/kb/en/mariadb/mariadb-error-codes/ MYSQL_EX = [1044, 1045, 1142, 1143, 1227] class StackWS(View): # Decorator Function to check if a user is logged in def _check_login_(func): def runner(inst, *args, **kwargs): request = args[0] if request.user.is_authenticated(): return func(inst, *args, **kwargs) else: j = json.dumps({'logged_in': False}) return HttpResponseForbidden(str(j), content_type="application/json") return runner # HTTP Response to GET. Sole purpose of this function # is to return a CSRF Cookie @method_decorator(ensure_csrf_cookie) def get(self, request): return HttpResponse('{}') # Main POST Function. Runs the actual Stacki Command Line @_check_login_ def post(self, request): body = json.loads(request.body) # Get the command being used cmd = str(body['cmd']) args = shlex.split(cmd) # Log to file log.info("Session Starting") # filter out all the params params = [p for p in filter(lambda x: len(x.split('=')) >= 2, args)] # Filter out all the args args = [a for a in filter(lambda x: len(x.split('=')) == 1, args)] done = False command = None cmd_arg_list = [] # Get the command module to execute mod_name = '.'.join(args) log.info(f'user {request.user.username} called "{mod_name}" {params}') # Check if command is blacklisted if self._blacklisted(mod_name): return HttpResponseForbidden(f'Blacklisted Command: Command {mod_name} is not permitted', content_type="text/plain") # Check if user has permission to run # command module if not request.user.has_perm(mod_name): return HttpResponseForbidden('Unauthorized Command: User %s is not allowed to run %s' % (request.user.username, mod_name), content_type="text/plain") try: # Get command module class if request.user.is_superuser: connection = get_mysql_connection() else: connection = get_mysql_connection('nobody', '') while not done: try: if len(args) == 0: done = True else: mod_name = '.'.join(args) mod = 'stack.commands.%s' % mod_name __import__(mod) m = eval(mod) if hasattr(m, 'Command'): command = m.Command(connection) # Flush the cache, we do this # since multiple threads may be # running and there is no # mechanism for one thread to # invalidate the cache of # another thread. command.db.clearCache() done = True else: cmd_arg_list.append(args.pop()) except ImportError: cmd_arg_list.append(args.pop()) except: log.error("%s" % sys.exc_info()[1]) # If command does not exist, return Not Found if not command: output = {"API Error": "Command Not Found"} return HttpResponse(str(json.dumps(output)), content_type="application/json", status=404) # Handle case where json data is posted (currently only for `stack load`) with tempfile.NamedTemporaryFile(mode='w') as json_file: # Parse the command out. A couple of special # cases are called out. cmd_arg_list.reverse() data = body.get('data') if data: json.dump(data, json_file) json_file.flush() cmd_arg_list.append(json_file.name) cmd_arg_list.extend(params) cmd_arg_list.append("output-format=json") cmd_module = str('.'.join(mod.split('.')[2:])) # Don't allow "run host" commands. This opens # the door for arbitrary command executions if cmd_module == "run.host": return HttpResponseForbidden( "'run host' command is not permitted", content_type="text/plain", ) # If command is a sync/load command, run # it with sudo, as the command will require # some root privileges. However, if the user # isn't a django superuser (with admin privileges) # don't allow command to run. elif self._isSudoCommand(cmd_module): if not request.user.is_superuser: cmd_str = cmd_module.replace('.', ' ') return HttpResponseForbidden( f"Command \"{cmd_str}\" requires Admin Privileges" , content_type="text/plain", ) # Run the sync command using sudo else: c = [ "/usr/bin/sudo", "/opt/stack/bin/stack", ] c.extend(cmd_module.split('.')) c.extend(cmd_arg_list) log.info(f'{c}') p = subprocess.Popen( c, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', ) output, error = p.communicate() rc = p.wait() if rc: j = {"API Error": error, "Output": output} return HttpResponse( str(json.dumps(j)), content_type="application/json", status=500, ) else: if not output: output = {} # Check to see if text is json try: j = json.loads(output) except: j = {"Output": output} return HttpResponse( str(json.dumps(j)), content_type="application/json", status=200, ) # If it's not the sync command, run the # command module wrapper directly. else: try: rc = command.runWrapper(cmd_module, cmd_arg_list) # If we hit a database error, check if it's an access # denied error. If so, sanitize the error message, and # don't expose database access. except pymysql.OperationalError as e: errortext = str(sys.exc_info()[1]) log.error(errortext) if int(e.args[0]) in MYSQL_EX: errortext = "Database Permission Denied. Admin privileges required" status_code = 403 else: status_code = 500 return HttpResponse( json.dumps({'API Error': errortext}), content_type='application/json', status=status_code, ) except CommandError as e: # Get output from command text = command.getText() if not text: text = {} return HttpResponse( json.dumps({'API Error': '%s' % e, 'Output': text}), content_type='application/json', status=500, ) # Any other type of error, simply forward it # to the client except: errortext = str(traceback.format_exc()) log.error(errortext) return HttpResponse( json.dumps({'API Error': errortext}), content_type='application/json', status=500, ) # Get output from command text = command.getText() if not text: text = {} # Check to see if text is json try: j = json.loads(text) except: j = {"Output": text} return HttpResponse( str(json.dumps(j)), content_type="application/json", ) finally: if connection: connection.close() # Check if command is blacklisted def _blacklisted(self, mod): # Get all blacklisted commands c = BlackList.objects.values("command") # Get actual command values bl = map(lambda x: x['command'], c) for cmd in bl: # Make sure to match the module names cmd = re.sub('[ \t]+', '.', cmd) r = re.compile(str(cmd)) m = r.match(mod) if m: # Match the exact blacklisted command if m.group() == mod: return True return False def _isSudoCommand(self, mod): # Get a list of all sudo commands c = SudoList.objects.values("command") sl = [ i['command'] for i in c ] for cmd in sl: cmd = re.sub('[ \t]+', '.', cmd) r = re.compile(str(cmd)) m = r.match(mod) if m and m.group() == mod: return True return False # Function to log in the user def log_in(request): username = request.POST['USERNAME'] password = request.POST['PASSWORD'] user = authenticate(username=username, password=password) if user is not None: login(request, user) s = {'login': 'True'} return HttpResponse(str(json.dumps(s)), content_type="application/json") else: s = {'login': 'False'} return HttpResponse(str(json.dumps(s)), status=401, content_type="application/json") # Function to log out def log_out(request): logout(request) s = {'logout': 'True'} return HttpResponse(str(json.dumps(s)), content_type="application/json") # Function to check log in user def check_user(request): if request.user.is_authenticated(): s = {'user': request.user.username} else: s = {'user': 'None'} return HttpResponse(str(json.dumps(s)), content_type="application/json") # Upload Function. Uploads a file to the provided location def upload(request): ufile = request.FILES["csvFile"] csv_dir = '/tmp/' + ufile.name d = open(csv_dir, 'wb+') chunk = ufile.read() d.write(chunk) d.close() f = open(csv_dir, 'r') text = f.read() f.close() s = {'csv': text, 'name': ufile.name, 'dir': csv_dir} return HttpResponse(str(json.dumps(s)), content_type="application/json")
25.81117
92
0.643174
2609f4bc19cf76159251c67fb2ad3cc3561c7186
4,042
py
Python
facebook_business/adobjects/audiocopyright.py
s-nez/facebook-python-business-sdk
4766644c7585d2e262463862f8aae26d5bea2615
[ "CNRI-Python" ]
1
2020-05-10T20:53:02.000Z
2020-05-10T20:53:02.000Z
facebook_business/adobjects/audiocopyright.py
s-nez/facebook-python-business-sdk
4766644c7585d2e262463862f8aae26d5bea2615
[ "CNRI-Python" ]
null
null
null
facebook_business/adobjects/audiocopyright.py
s-nez/facebook-python-business-sdk
4766644c7585d2e262463862f8aae26d5bea2615
[ "CNRI-Python" ]
1
2018-09-24T14:04:48.000Z
2018-09-24T14:04:48.000Z
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class AudioCopyright( AbstractCrudObject, ): def __init__(self, fbid=None, parent_id=None, api=None): self._isAudioCopyright = True super(AudioCopyright, self).__init__(fbid, parent_id, api) class Field(AbstractObject.Field): creation_time = 'creation_time' displayed_matches_count = 'displayed_matches_count' id = 'id' in_conflict = 'in_conflict' isrc = 'isrc' match_rule = 'match_rule' ownership_countries = 'ownership_countries' reference_file_status = 'reference_file_status' ridge_monitoring_status = 'ridge_monitoring_status' update_time = 'update_time' whitelisted_fb_users = 'whitelisted_fb_users' whitelisted_ig_users = 'whitelisted_ig_users' def api_get(self, fields=None, params=None, batch=None, success=None, failure=None, pending=False): from facebook_business.utils import api_utils if batch is None and (success is not None or failure is not None): api_utils.warning('`success` and `failure` callback only work for batch call.') param_types = { } enums = { } request = FacebookRequest( node_id=self['id'], method='GET', endpoint='/', api=self._api, param_checker=TypeChecker(param_types, enums), target_class=AudioCopyright, api_type='NODE', response_parser=ObjectParser(reuse_object=self), ) request.add_params(params) request.add_fields(fields) if batch is not None: request.add_to_batch(batch, success=success, failure=failure) return request elif pending: return request else: self.assure_call() return request.execute() _field_types = { 'creation_time': 'datetime', 'displayed_matches_count': 'int', 'id': 'string', 'in_conflict': 'bool', 'isrc': 'string', 'match_rule': 'VideoCopyrightRule', 'ownership_countries': 'list<string>', 'reference_file_status': 'string', 'ridge_monitoring_status': 'string', 'update_time': 'datetime', 'whitelisted_fb_users': 'list<Object>', 'whitelisted_ig_users': 'list<string>', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} return field_enum_info
37.775701
103
0.68951
71afc0e93148ea4fd42b32e133043608786f3c7a
523
py
Python
packages/pyre/algebraic/Leaf.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
3
2019-08-02T21:02:47.000Z
2021-09-08T13:59:43.000Z
packages/pyre/algebraic/Leaf.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
packages/pyre/algebraic/Leaf.py
lijun99/pyre
004dfd4c06489b4ba5b32877338ca6440f2d523b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2019 all rights reserved # class Leaf: """ Mix-in class that provides an implementation of the subset of the interface of {Node} that requires traversals of the expression graph rooted at leaf nodes. """ # interface @property def span(self): """ Traverse my subgraph and yield all its nodes """ # just myself yield self # and nothing else return # end of file
18.034483
94
0.596558
621180752abeaa1151b56d2604b139435c29a535
1,124
py
Python
Algorithms/Dutch_National_Flag_Algorithm.py
Pratik110/Python
033ade0dff3dc3bee91eefb53d7eb87a4f4f003d
[ "MIT" ]
null
null
null
Algorithms/Dutch_National_Flag_Algorithm.py
Pratik110/Python
033ade0dff3dc3bee91eefb53d7eb87a4f4f003d
[ "MIT" ]
null
null
null
Algorithms/Dutch_National_Flag_Algorithm.py
Pratik110/Python
033ade0dff3dc3bee91eefb53d7eb87a4f4f003d
[ "MIT" ]
null
null
null
Algorithm = "Dutch National Flag Algorithm" Link = "https://leetcode.com/problems/sort-colors/" Description = "Given an array nums with n objects colored red, white, or blue, sort them in-place so that objects of" \ "the same color are adjacent, with the colors in the order red, white, and blue." \ "We will use the integers 0, 1, and 2 to represent the color red, white, and blue, respectively." Example = "Input: nums = [2,0,2,1,1,0]" \ "Output: [0,0,1,1,2,2]" nums = [0,1,1,2,0,1,2,1,1,0] class Solution: def sortColors(self,nums): low = 0 mid = 0 high = len(nums)-1 while mid <= high: if nums[mid] == 0: temp = nums[low] nums[low] = nums[mid] nums[mid] = temp low+=1 mid+=1 elif nums[mid] == 1: mid+=1 elif nums[mid] == 2: temp = nums[mid] nums[mid] = nums[high] nums[high] = temp high-=1 return nums print(Solution().sortColors(nums))
32.114286
119
0.508897
e9b80c052294c96eda02518562b3049778980752
19,147
py
Python
built-in/MindSpore/Official/cv/detection/CenterFace_for_MindSpore/train.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
null
null
null
built-in/MindSpore/Official/cv/detection/CenterFace_for_MindSpore/train.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
3
2021-03-31T20:15:40.000Z
2022-02-09T23:50:46.000Z
built-in/MindSpore/Official/cv/detection/CenterFace_for_MindSpore/train.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## train centerface example ######################## train centerface and get network model files(.ckpt) : you'd better donot use this file directly, use the training script in folder 'script' """ import os from mindspore import context devid = int(os.getenv('DEVICE_ID')) # sigmoid need to be fp32, thus should not use enable_auto_mixed_precision=True context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=False, device_target="Davinci", save_graphs=True, device_id=devid, reserve_class_name_in_scope=False) #context.set_context(variable_memory_max_size="3GB") # belongs to users hardware import time import argparse import datetime import numpy as np try: from mindspore.train import ParallelMode except: from mindspore.context import ParallelMode from mindspore.nn.optim.adam import Adam from mindspore.nn.optim.momentum import Momentum from mindspore.nn.optim.sgd import SGD from mindspore import Tensor import mindspore.nn as nn from mindspore.common import dtype as mstype from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import ModelCheckpoint, RunContext from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig, Callback import mindspore as ms from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.utils import get_logger from src.utils import AverageMeter from src.lr_scheduler import warmup_step_lr from src.lr_scheduler import warmup_cosine_annealing_lr, \ warmup_cosine_annealing_lr_V2, warmup_cosine_annealing_lr_sample from src.lr_scheduler import MultiStepLR from src.var_init import default_recurisive_init from src.centerface import centerface_mobilev2 from src.utils import load_backbone, get_param_groups from src.config import Config_centerface from src.centerface import CenterFaceWithLossCell, TrainingWrapper try: from src.dataset import get_dataLoader except: from src.dependency.train.dataset import get_dataLoader def parse_args(cloud_args={}): parser = argparse.ArgumentParser('mindspore coco training') # dataset related parser.add_argument('--data_dir', type=str, default='', help='train data dir') parser.add_argument('--annot_path', type=str, default='', help='train data annotation path') parser.add_argument('--img_dir', type=str, default='', help='train data img dir') parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per gpu') # network related parser.add_argument('--pretrained_backbone', default='', type=str, help='model_path, local pretrained backbone' ' model to load') parser.add_argument('--resume', default='', type=str, help='path of pretrained centerface_model') # optimizer and lr related parser.add_argument('--lr_scheduler', default='multistep', type=str, help='lr-scheduler, option type: exponential, cosine_annealing') parser.add_argument('--lr', default=0.001, type=float, help='learning rate of the training') parser.add_argument('--lr_epochs', type=str, default='220,250', help='epoch of lr changing') parser.add_argument('--lr_gamma', type=float, default=0.1, help='decrease lr by a factor of exponential lr_scheduler') parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler') parser.add_argument('--T_max', type=int, default=280, help='T-max in cosine_annealing scheduler') parser.add_argument('--max_epoch', type=int, default=280, help='max epoch num to train the model') parser.add_argument('--warmup_epochs', default=0, type=float, help='warmup epoch') parser.add_argument('--weight_decay', type=float, default=0.0005, help='weight decay') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--optimizer', default='adam', type=str, help='optimizer type, default: adam') # loss related parser.add_argument('--loss_scale', type=int, default=1024, help='static loss scale') parser.add_argument('--label_smooth', type=int, default=0, help='whether to use label smooth in CE') parser.add_argument('--label_smooth_factor', type=float, default=0.1, help='smooth strength of original one-hot') # logging related parser.add_argument('--log_interval', type=int, default=100, help='logging interval') parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location') parser.add_argument('--ckpt_interval', type=int, default=None, help='ckpt_interval') parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank') # distributed related parser.add_argument('--is_distributed', type=int, default=1, help='if multi device') parser.add_argument('--rank', type=int, default=0, help='local rank of distributed') parser.add_argument('--group_size', type=int, default=1, help='world size of distributed') # roma obs parser.add_argument('--train_url', type=str, default="", help='train url') # profiler init, can open when you debug. if train, donot open, since it cost memory and disk space parser.add_argument('--need_profiler', type=int, default=0, help='whether use profiler') # reset default config parser.add_argument('--training_shape', type=str, default="", help='fix training shape') parser.add_argument('--resize_rate', type=int, default=None, help='resize rate for multi-scale training') args, _ = parser.parse_known_args() args = merge_args(args, cloud_args) if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max: args.T_max = args.max_epoch args.lr_epochs = list(map(int, args.lr_epochs.split(','))) return args def merge_args(args, cloud_args): args_dict = vars(args) if isinstance(cloud_args, dict): for key in cloud_args.keys(): val = cloud_args[key] if key in args_dict and val: arg_type = type(args_dict[key]) if arg_type is not type(None): val = arg_type(val) args_dict[key] = val return args def conver_training_shape(args): training_shape = [int(args.training_shape), int(args.training_shape)] return training_shape def train(cloud_args={}): args = parse_args(cloud_args) # init distributed if args.is_distributed: init() args.rank = get_rank() args.group_size = get_group_size() # select for master rank save ckpt or all rank save, compatiable for model parallel args.rank_save_ckpt_flag = 0 if args.is_save_on_master: if args.rank == 0: args.rank_save_ckpt_flag = 1 else: args.rank_save_ckpt_flag = 1 # logger args.outputs_dir = os.path.join(args.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.rank) args.logger.save_args(args) if args.need_profiler: from mindspore.profiler.profiling import Profiler profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True) loss_meter = AverageMeter('loss') context.reset_auto_parallel_context() if args.is_distributed: parallel_mode = ParallelMode.DATA_PARALLEL degree = get_group_size() else: parallel_mode = ParallelMode.STAND_ALONE degree = 1 # context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=degree, parameter_broadcast=True, gradients_mean=True) # Notice: parameter_broadcast should be supported, but current version has bugs, thus been disabled. # To make sure the init weight on all npu is the same, we need to set a static seed in default_recurisive_init when weight initialization context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree) network = centerface_mobilev2() # init, to avoid overflow, some std of weight should be enough small default_recurisive_init(network) if args.pretrained_backbone: network = load_backbone(network, args.pretrained_backbone, args) args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone)) else: args.logger.info('Not load pre-trained backbone, please be careful') if os.path.isfile(args.resume): param_dict = load_checkpoint(args.resume) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.') or key.startswith('moment1.') or key.startswith('moment2.'): continue elif key.startswith('centerface_network.'): param_dict_new[key[19:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load_model {} success'.format(args.resume)) else: args.logger.info('{} not set/exists or not a pre-trained file'.format(args.resume)) network = CenterFaceWithLossCell(network) args.logger.info('finish get network') config = Config_centerface() config.data_dir = args.data_dir config.annot_path = args.annot_path config.img_dir = args.img_dir config.label_smooth = args.label_smooth config.label_smooth_factor = args.label_smooth_factor # -------------reset config----------------- if args.training_shape: config.multi_scale = [conver_training_shape(args)] if args.resize_rate: config.resize_rate = args.resize_rate # data loader data_loader, train_sampler = get_dataLoader(config, args) args.steps_per_epoch = len(data_loader)#data_size args.logger.info('Finish loading dataset') if not args.ckpt_interval: args.ckpt_interval = args.steps_per_epoch # lr scheduler if args.lr_scheduler == 'multistep': lr_fun = MultiStepLR(args.lr, args.lr_epochs, args.lr_gamma, args.steps_per_epoch, args.max_epoch, args.warmup_epochs) lr = lr_fun.get_lr() elif args.lr_scheduler == 'exponential': lr = warmup_step_lr(args.lr, args.lr_epochs, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, gamma=args.lr_gamma ) elif args.lr_scheduler == 'cosine_annealing': lr = warmup_cosine_annealing_lr(args.lr, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, args.T_max, args.eta_min) elif args.lr_scheduler == 'cosine_annealing_V2': lr = warmup_cosine_annealing_lr_V2(args.lr, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, args.T_max, args.eta_min) elif args.lr_scheduler == 'cosine_annealing_sample': lr = warmup_cosine_annealing_lr_sample(args.lr, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, args.T_max, args.eta_min) else: raise NotImplementedError(args.lr_scheduler) if args.optimizer == "adam": opt = Adam(params=get_param_groups(network), learning_rate=Tensor(lr), weight_decay=args.weight_decay, loss_scale=args.loss_scale) args.logger.info("use adam optimizer") elif args.optimizer == "sgd": opt = SGD(params=get_param_groups(network), learning_rate=Tensor(lr), momentum=args.momentum, weight_decay=args.weight_decay, loss_scale=args.loss_scale) else: opt = Momentum(params=get_param_groups(network), learning_rate=Tensor(lr), momentum=args.momentum, weight_decay=args.weight_decay, loss_scale=args.loss_scale) network = TrainingWrapper(network, opt, sens=args.loss_scale) network.set_train() ckpt_history = [] if args.rank_save_ckpt_flag: # checkpoint save ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval, keep_checkpoint_max=ckpt_max_num) ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=args.outputs_dir, prefix='{}'.format(args.rank)) cb_params = _InternalCallbackParam() cb_params.train_network = network cb_params.epoch_num = ckpt_max_num cb_params.cur_epoch_num = 1 run_context = RunContext(cb_params) ckpt_cb.begin(run_context) args.logger.info('args.steps_per_epoch = {} args.ckpt_interval ={}'.format(args.steps_per_epoch, args.ckpt_interval)) old_progress = -1 t_end = time.time() #feed_mode + pytorch dataloader start_epoch = 0 for epoch in range(start_epoch + 1, args.max_epoch + 1): for i, batch_load in enumerate(data_loader): batch ={} batch['input'] = batch_load['input'].detach().cpu().numpy() batch['hm'] = batch_load['hm'].detach().cpu().numpy() batch['reg_mask'] = batch_load['reg_mask'].detach().cpu().numpy() batch['ind'] = batch_load['ind'].detach().cpu().numpy() batch['wh'] = batch_load['wh'].detach().cpu().numpy() batch['landmarks'] = batch_load['landmarks'].detach().cpu().numpy() batch['hps_mask'] = batch_load['hps_mask'].detach().cpu().numpy() batch['wight_mask'] = batch_load['wight_mask'].detach().cpu().numpy() batch['hm_offset'] = batch_load['hm_offset'].detach().cpu().numpy() images = batch['input'] hm = batch['hm'] reg_mask = batch['reg_mask'] ind_origin = batch['ind'] wh_origin = batch['wh'] wight_mask_origin = batch['wight_mask'] hm_offset_origin = batch['hm_offset'] hps_mask_origin = batch['hps_mask'] landmarks_origin = batch['landmarks'] batch_size = args.per_batch_size #8 output_res = config.output_res wh = np.zeros((batch_size, output_res, output_res, 2), dtype=np.float32) hm_offset = np.zeros((batch_size, output_res, output_res, 2), dtype=np.float32) # reg ind = np.zeros((batch_size, output_res, output_res), dtype=np.float32) landmarks = np.zeros((batch_size, output_res, output_res, config.num_joints * 2), dtype=np.float32) # kps hps_mask = np.zeros((batch_size, output_res, output_res, config.num_joints * 2), dtype=np.float32) # kps_mask wight_mask = np.zeros((batch_size, output_res, output_res, 2), dtype=np.float32) for i_1 in range(batch_size): batch_ind_origin = ind_origin[i_1] for k in range(len(batch_ind_origin)): if batch_ind_origin[k] > 0: ct_int = [0, 0] ct_int[0] = batch_ind_origin[k] % output_res ct_int[1] = batch_ind_origin[k] // output_res wh[i_1, ct_int[1], ct_int[0], :] = wh_origin[i_1, k, : ] hm_offset[i_1, ct_int[1], ct_int[0], :] = hm_offset_origin[i_1, k, : ] ind[i_1, ct_int[1], ct_int[0]] = 1.0 landmarks[i_1, ct_int[1], ct_int[0], : ] = landmarks_origin[i_1, k, : ] hps_mask[i_1, ct_int[1], ct_int[0], : ] = hps_mask_origin[i_1, k, : ] wight_mask[i_1, ct_int[1], ct_int[0], 0] = wight_mask_origin[i_1, k] wight_mask[i_1, ct_int[1], ct_int[0], 1] = wight_mask_origin[i_1, k] images = Tensor(images) hm = Tensor(hm) reg_mask = Tensor(reg_mask) ind = Tensor(ind) wh = Tensor(wh) wight_mask = Tensor(wight_mask) hm_offset = Tensor(hm_offset) hps_mask = Tensor(hps_mask) landmarks = Tensor(landmarks) loss, overflow, scaling = network(images, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks) # Tensor to numpy overflow = np.all(overflow.asnumpy()) loss = loss.asnumpy() loss_meter.update(loss) args.logger.info('epoch:{}, iter:{}, average_loss:{}, loss:{}, overflow:{}, loss_scale:{}'.format(epoch, i, loss_meter, loss, overflow, scaling.asnumpy())) end = time.time() if args.rank_save_ckpt_flag: # ckpt progress cb_params.cur_epoch_num = epoch cb_params.cur_step_num = i + 1 + (epoch-1)*args.steps_per_epoch cb_params.batch_num = i + 2 + (epoch-1)*args.steps_per_epoch ckpt_cb.step_end(run_context) time_used = time.time() - t_end fps = args.per_batch_size * args.steps_per_epoch * args.group_size / time_used if args.rank == 0: args.logger.info('epoch[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, loss_meter, fps, lr[i + (epoch-1)*args.steps_per_epoch])) t_end = time.time() loss_meter.reset() args.logger.info('==========end epoch===============') # reset shuffle seed, important for impove performance train_sampler.set_epoch(epoch) if args.need_profiler: profiler.analyse() args.logger.info('==========end training===============') if __name__ == "__main__": train()
44.527907
167
0.629811
ddfd44f2d155c982d19c953dfd5fc3ab97262800
3,621
py
Python
intake/source/tests/test_text.py
gramhagen/intake
de4cbb5df78881dc166b1f02743d22067f2bbd78
[ "BSD-2-Clause" ]
null
null
null
intake/source/tests/test_text.py
gramhagen/intake
de4cbb5df78881dc166b1f02743d22067f2bbd78
[ "BSD-2-Clause" ]
null
null
null
intake/source/tests/test_text.py
gramhagen/intake
de4cbb5df78881dc166b1f02743d22067f2bbd78
[ "BSD-2-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. and Intake contributors # All rights reserved. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- import os import pytest import intake from intake.source.textfiles import TextFilesSource from intake.source import import_name from dask.bytes import open_files here = os.path.abspath(os.path.dirname(__file__)) def test_textfiles(tempdir): open(os.path.join(tempdir, '1.txt'), 'wt').write('hello\nworld') open(os.path.join(tempdir, '2.txt'), 'wt').write('hello\nworld') path = os.path.join(tempdir, '*.txt') t = TextFilesSource(path) t.discover() assert t.npartitions == 2 assert t._get_partition(0) == t.to_dask().to_delayed()[0].compute() out = t.read() assert isinstance(out, list) assert out[0] == 'hello\n' @pytest.mark.parametrize('comp', [None, 'gzip', 'bz2']) def test_complex_text(tempdir, comp): dump, load, read = 'json.dumps', 'json.loads', True dump = import_name(dump) data = [{'something': 'simple', 'and': 0}] * 2 for f in ['1.out', '2.out']: fn = os.path.join(tempdir, f) with open_files([fn], mode='wt', compression=comp)[0] as fo: if read: fo.write(dump(data)) else: dump(data, fo) # that was all setup path = os.path.join(tempdir, '*.out') t = TextFilesSource(path, text_mode=True, compression=comp, decoder=load) t.discover() assert t.npartitions == 2 assert t._get_partition(0) == t.to_dask().to_delayed()[0].compute() out = t.read() assert isinstance(out, list) assert out[0] == data[0] @pytest.mark.parametrize('comp', [None, 'gzip', 'bz2']) @pytest.mark.parametrize('pars', [['msgpack.pack', 'msgpack.unpack', False], ['msgpack.packb', 'msgpack.unpackb', True], ['pickle.dump', 'pickle.load', False], ['pickle.dumps', 'pickle.loads', True]]) def test_complex_bytes(tempdir, comp, pars): dump, load, read = pars dump = import_name(dump) # using bytestrings means not needing extra en/decode argument to msgpack data = [{b'something': b'simple', b'and': 0}] * 2 for f in ['1.out', '2.out']: fn = os.path.join(tempdir, f) with open_files([fn], mode='wb', compression=comp)[0] as fo: if read: fo.write(dump(data)) else: dump(data, fo) # that was all setup path = os.path.join(tempdir, '*.out') t = TextFilesSource(path, text_mode=False, compression=comp, decoder=load, read=read) t.discover() assert t.npartitions == 2 assert t._get_partition(0) == t.to_dask().to_delayed()[0].compute() out = t.read() assert isinstance(out, list) assert out[0] == data[0] def test_text_persist(temp_cache): cat = intake.open_catalog(os.path.join(here, 'sources.yaml')) s = cat.sometext() s2 = s.persist() assert s.read() == s2.read() def test_text_export(temp_cache): import tempfile outdir = tempfile.mkdtemp() cat = intake.open_catalog(os.path.join(here, 'sources.yaml')) s = cat.sometext() out = s.export(outdir) fn = os.path.join(outdir, 'cat.yaml') with open(fn, 'w') as f: f.write(out) cat = intake.open_catalog(fn) s2 = cat[s.name]() assert s.read() == s2.read()
34.817308
78
0.573598
235f09e4cb837545a38b4a1952ecfa35ee4191db
1,457
py
Python
arjuna-samples/workspace/arjex/tests/modules/s01unitee_engine/ep14_my_config/ex01_central.py
test-mile/arjuna
21880b41e061e11bac2e600a3614684f8af75b2f
[ "Apache-2.0" ]
9
2018-11-15T10:09:17.000Z
2021-01-12T05:59:19.000Z
arjuna-samples/workspace/arjex/tests/modules/s01unitee_engine/ep14_my_config/ex01_central.py
test-mile/arjuna
21880b41e061e11bac2e600a3614684f8af75b2f
[ "Apache-2.0" ]
2
2019-07-01T15:33:46.000Z
2019-07-12T13:04:08.000Z
arjuna-samples/workspace/arjex/tests/modules/s01unitee_engine/ep14_my_config/ex01_central.py
test-mile/arjuna
21880b41e061e11bac2e600a3614684f8af75b2f
[ "Apache-2.0" ]
4
2018-12-02T15:14:04.000Z
2020-05-28T12:57:24.000Z
''' This file is a part of Test Mile Arjuna Copyright 2018 Test Mile Software Testing Pvt Ltd Website: www.TestMile.com Email: support [at] testmile.com Creator: Rahul Verma Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from arjuna.tpi.markup import * from arjuna.tpi.helpers import * from arjuna.tpi.enums import ArjunaOption @init_module def setup_module(my): console.display(my.context.get_config().get_browser_type()) my.context.ConfigBuilder().chrome().build("chrome_config") console.display(my.context.get_config("chrome_config").get_browser_type()) @test_function def test_config_from_central(my): console.display(my.context.get_config("chrome_config").get_browser_type()) console.display(my.context.get_config().get_browser_type()) my.context.ConfigBuilder().firefox().build("firefox_config") console.display(my.context.get_config().get_browser_type()) console.display(my.context.get_config("firefox_config").get_browser_type())
34.690476
79
0.780371
b0794cfce39bec6671b2b59a773b07d6b360613c
9,625
py
Python
simpleplots/utils.py
a-maliarov/simplegraphs
bba3fb9420ce136da4f3d5096a9caff970eba87e
[ "MIT" ]
2
2022-02-09T03:33:00.000Z
2022-02-14T11:14:21.000Z
simpleplots/utils.py
a-maliarov/simplegraphs
bba3fb9420ce136da4f3d5096a9caff970eba87e
[ "MIT" ]
2
2022-02-06T17:39:39.000Z
2022-03-31T19:00:13.000Z
simpleplots/utils.py
a-maliarov/simpleplots
bba3fb9420ce136da4f3d5096a9caff970eba87e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ simpleplots.utils ~~~~~~~~~~~~~~~~~ This module contains simpleplots' utilities. """ __all__ = ('get_font', 'get_text_dimensions', 'normalize_float', 'find_gcd', 'decimals', 'isint', 'normalize_values', 'frange', 'smartrange' 'get_indices_of_values_in_list', 'choose_locator') from .base import Theme, Size from .ticker import Locator, AutoLocator, AutoFormatter from .dates import AutoDateLocator, AutoDateFormatter from typing import List, Iterable from numpy.typing import ArrayLike from numbers import Number from PIL import ImageFont from dateutil.relativedelta import relativedelta from datetime import datetime, timedelta from functools import reduce from decimal import * import numpy as np import math import os getcontext().prec = 6 #------------------------------------------------------------------------------- DISPLAYABLE: int = 15360 # maximum number of elements per axis INT_DTYPES: List[str] = ['int8', 'int16', 'int32', 'int64'] FLOAT_DTYPES: List[str] = ['float16', 'float32', 'float64', 'float96', 'float128'] DATE_DTYPE: str = 'datetime64' #------------------------------------------------------------------------------- def get_font(type_: str, theme: Theme, image_width: int) -> ImageFont: """Return ImageFont based theme, type and image width.""" package_directory_path = os.path.abspath(os.path.dirname(__file__)) fonts_folder = os.path.join(package_directory_path, 'fonts') if type_ == 'tick_label': return ImageFont.truetype( os.path.join(fonts_folder, theme.tick_label_font), int(image_width * theme.tick_label_size_perc) ) elif type_ == 'title': return ImageFont.truetype( os.path.join(fonts_folder, theme.title_font), int(image_width * theme.title_size_perc) ) elif type_ == 'legend': return ImageFont.truetype( os.path.join(fonts_folder, theme.legend_font), int(image_width * theme.legend_size_perc) ) def get_text_dimensions(text_string: str, font: ImageFont) -> Size: """Calculates size of a given text string using given font.""" ascent, descent = font.getmetrics() text_width = font.getmask(text_string).getbbox()[2] text_height = font.getmask(text_string).getbbox()[3] + descent return (text_width, text_height) #------------------------------------------------------------------------------- def normalize_float(n: float) -> float: """Normalize floats like '1.230000000003' to just '1.23'.""" return float(Decimal(n).normalize()) def find_gcd(lst: List[int]) -> int: """Find GCD of a list.""" return reduce(math.gcd, lst) def decimals(n: float) -> int: """Get the number of decimals after comma.""" if 'e' in str(n): return int(str(n).split('e')[1][1:]) return len(str(n).split('.')[1]) if len(str(n).split('.')) == 2 else 0 def isint(n: Number) -> bool: """Check if number is integer even if type if float.""" return isinstance(n, int) or n.is_integer() #------------------------------------------------------------------------------- def get_indices_of_values_in_list(values: np.ndarray, lst: np.ndarray) -> np.ndarray: """Get indices of values in list A from list B.""" sorter = np.argsort(lst) ind = sorter[np.searchsorted(lst, values, sorter=sorter)] return ind #------------------------------------------------------------------------------- def normalize_values(values: ArrayLike) -> np.ndarray: """Check input values before trying to plot them.""" values = np.asarray(values) if values.dtype in INT_DTYPES: step = find_gcd(values) max_value = np.max(values) if max_value / step / DISPLAYABLE > 3: round_to = int(math.log10(int(max_value / step / DISPLAYABLE))) + 1 values = np.around(values, decimals=-round_to) return values elif values.dtype in FLOAT_DTYPES: scale = max([decimals(normalize_float(n)) for n in values]) step = 1 * (10 ** -scale) max_value = normalize_float(np.max(values)) if max_value / step / DISPLAYABLE > 3: round_to = int(math.log10(int(max_value / step / DISPLAYABLE))) + 1 values = np.around(values, decimals=round_to) return np.asarray([normalize_float(n) for n in values]) elif all([isinstance(e, datetime) for e in values]): values = values.astype('datetime64[s]') return values elif DATE_DTYPE in str(values.dtype): values = values.astype('datetime64[s]') return values else: raise TypeError('unknown input datatype') #------------------------------------------------------------------------------- def choose_locator(values: np.ndarray) -> Locator: """Returns tick locator based on datatype.""" if values.dtype in INT_DTYPES or values.dtype in FLOAT_DTYPES: return AutoLocator() elif DATE_DTYPE in str(values.dtype): return AutoDateLocator() else: raise TypeError('unknown input datatype') def choose_formatter(values: np.ndarray) -> Locator: """Returns label formatter based on datatype.""" if values.dtype in INT_DTYPES or values.dtype in FLOAT_DTYPES: return AutoFormatter() elif DATE_DTYPE in str(values.dtype): return AutoDateFormatter() else: raise TypeError('unknown input datatype') #------------------------------------------------------------------------------- def frange(start: float, stop: float, step: float = None) -> Iterable[float]: """Generates a range between float numbers.""" start, stop = float(start), float(stop) if not step: start_scale = len(str(start).split('.')[1]) stop_scale = len(str(stop).split('.')[1]) scale = max(start_scale, stop_scale) step = 1 * (10 ** -scale) start, stop = Decimal(start).normalize(), Decimal(stop).normalize() while start <= stop: yield float(start) start += Decimal(step).normalize() #------------------------------------------------------------------------------- def find_min_timedelta(values: np.ndarray) -> dict: """Given an array of dates, finds the minimum timedelta parameters.""" datetime_values = [d.astype(datetime) for d in values] changes = { 'seconds': 0, 'minutes': 0, 'hours': 0, 'days': 0, 'months': 0, 'years': 0 } if (any(d.second for d in datetime_values) and not all(d.second == datetime_values[0].second for d in datetime_values)): changes['seconds'] = 1 if (any(d.minute for d in datetime_values) and not all(d.minute == datetime_values[0].minute for d in datetime_values)): changes['minutes'] = 1 if (any(d.hour for d in datetime_values) and not all(d.hour == datetime_values[0].hour for d in datetime_values)): changes['hours'] = 1 if (any(d.day for d in datetime_values) and not all(d.day == datetime_values[0].day for d in datetime_values)): changes['days'] = 1 if (any(d.month for d in datetime_values) and not all(d.month == datetime_values[0].month for d in datetime_values)): changes['months'] = 1 if (any(d.year for d in datetime_values) and not all(d.year == datetime_values[0].year for d in datetime_values)): changes['years'] = 1 if changes['years'] or changes['months']: return np.timedelta64(1, 'D') elif changes['days']: return np.timedelta64(1, 'h') elif changes['hours']: return np.timedelta64(1, 'm') elif changes['minutes']: return np.timedelta64(1, 's') #------------------------------------------------------------------------------- def smartrange(vmin: Number, vmax: Number, origin_values: np.ndarray) -> np.ndarray: """Fills gaps between vmin and vmax based on input type.""" if vmin == vmax: return origin_values if isinstance(vmin, (float, int)) and isinstance(vmax, (float, int)): if (isint(vmin) and isint(vmax) and origin_values.dtype in INT_DTYPES): all_values = np.append(origin_values, [int(vmin), int(vmax)]) step = find_gcd(all_values) n_range = np.arange(int(vmin), int(vmax) + 1, step) #------------------------------------------------------------------- if max([abs(n) for n in n_range]) <= 10 and len(n_range) <= 5: return np.asarray([i for i in frange(vmin, vmax, 0.1)]) #------------------------------------------------------------------- return n_range else: start, stop = normalize_float(vmin), normalize_float(vmax) start_scale, stop_scale = decimals(start), decimals(stop) origin_values = np.asarray([float(n) for n in origin_values]) origin_scale = max([decimals(normalize_float(n)) for n in origin_values]) scale = max(start_scale, stop_scale, origin_scale) step = 1 * (10 ** -scale) return np.asarray([i for i in frange(vmin, vmax, step)]) elif DATE_DTYPE in str(origin_values.dtype): delta = find_min_timedelta(origin_values) dmin, dmax = np.min(origin_values), np.max(origin_values) if np.datetime64(vmax) > dmax: dmax = np.datetime64(vmax) values = np.arange(dmin, dmax, delta, dtype='datetime64[s]') values = np.append(values, dmax) return values #-------------------------------------------------------------------------------
35.780669
85
0.576104
74a1980e3f0bb77293f31079ba0b1454e4d68069
23,115
py
Python
tests/test_tables.py
bdemchak/PyCy3
4058e41689c78304812b1e6fd8371d797cbb6b5b
[ "MIT" ]
1
2020-02-10T12:50:35.000Z
2020-02-10T12:50:35.000Z
tests/test_tables.py
bdemchak/PyCy3
4058e41689c78304812b1e6fd8371d797cbb6b5b
[ "MIT" ]
2
2020-02-14T21:19:27.000Z
2020-04-21T21:30:26.000Z
tests/test_tables.py
bdemchak/PyCy3
4058e41689c78304812b1e6fd8371d797cbb6b5b
[ "MIT" ]
1
2020-02-10T17:16:17.000Z
2020-02-10T17:16:17.000Z
# -*- coding: utf-8 -*- """ Test functions in tables.py. """ import numpy as np """License: Copyright 2020 The Cytoscape Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest import pandas as df from requests import HTTPError from test_utils import * class TablesTests(unittest.TestCase): def setUp(self): try: close_session(False) # delete_all_networks() except: pass def tearDown(self): pass @print_entry_exit def test_delete_table_column(self): # Initialization load_test_session() def check_delete(table, column): columns = set(get_table_column_names(table=table)) self.assertEqual(delete_table_column(table=table, column=column), '') columns.discard(column) fewer_columns = set(get_table_column_names(table=table)) self.assertSetEqual(set(columns), set(fewer_columns)) check_delete('node', 'BetweennessCentrality') check_delete('edge', 'EdgeBetweenness') check_delete('node', 'boguscolumn') self.assertRaises(CyError, delete_table_column, table='bogustable', column='boguscolumn') self.assertRaises(CyError, get_table_column_names, network='bogus') @print_entry_exit def test_get_table_columns(self): # Initialization load_test_session() # Verify that an empty column list returns all columns, and all columns have at least one non-nan value df = get_table_columns() self.assertSetEqual(set(df.columns), {'BetweennessCentrality', 'gal1RGexp', 'Eccentricity', 'Stress', 'NumberOfDirectedEdges', 'NeighborhoodConnectivity', 'NumberOfUndirectedEdges', 'selected', 'gal4RGsig', 'Degree', 'gal80Rsig', 'SUID', 'gal80Rexp', 'TopologicalCoefficient', 'ClusteringCoefficient', 'Radiality', 'gal4RGexp', 'gal1RGsig', 'name', 'degree.layout', 'ClosenessCentrality', 'COMMON', 'AverageShortestPathLength', 'shared name', 'PartnerOfMultiEdgedNodePairs', 'SelfLoops', 'isExcludedFromPaths', 'IsSingleNode'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that an explicity column list returns exact columns, and each has at least one non-nan value df = get_table_columns(columns=['gal1RGexp', 'Eccentricity', 'Stress']) self.assertSetEqual(set(df.columns), {'gal1RGexp', 'Eccentricity', 'Stress'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that a column list as a comma-separated string returns exact columns, and each has at least one non-nan value df = get_table_columns(columns='Stress, NumberOfDirectedEdges') self.assertSetEqual(set(df.columns), {'Stress', 'NumberOfDirectedEdges'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that a bogus column name still returns a column, though it must be all nan df = get_table_columns(columns='Stress, bogus') self.assertSetEqual(set(df.columns), {'Stress', 'bogus'}) self.assertEqual(len(df.index), get_node_count()) self.assertTrue(True in list(df['Stress'].notnull())) self.assertFalse(False in df['bogus'].isnull()) # Verify that an empty column list returns all columns for edges, too df = get_table_columns(table='edge') self.assertSetEqual(set(df.columns), {'SUID', 'shared name', 'shared interaction', 'name', 'selected', 'interaction', 'EdgeBetweenness'}) self.assertEqual(len(df.index), get_edge_count()) self.assertRaises(CyError, get_table_columns, table='bogustable', columns='boguscolumn') self.assertRaises(CyError, get_table_columns, network='bogus') @print_entry_exit def test_get_table_value(self): # Initialization load_test_session() self.assertEqual(get_table_value('node', 'YDL194W', 'gal1RGexp'), 0.139) self.assertEqual(get_table_value('node', 'YDL194W', 'Degree'), 1) self.assertFalse(get_table_value('node', 'YDL194W', 'IsSingleNode')) self.assertEqual(get_table_value('node', 'YDL194W', 'COMMON'), 'SNF3') self.assertEqual(get_table_value('edge', 'YLR197W (pp) YOR310C', 'EdgeBetweenness'), 2.0) self.assertEqual(get_table_value('network', 'galFiltered.sif', 'publication'), 'Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network\n' 'Trey Ideker, Vesteinn Thorsson, Jeffrey A. Ranish, Rowan Christmas, Jeremy Buhler, Jimmy K. Eng, Roger Bumgarner, David R. Goodlett, Ruedi Aebersold, and Leroy Hood\n' 'Science 4 May 2001: 292 (5518), 929-934. [DOI:10.1126/science.292.5518.929]') # TODO: Fetching a None number raises an error, but should really return a None ... can this be changed? # TODO: Find out if a null string in Cytoscape is the same thing as a None self.assertRaises(CyError, get_table_value, 'node', 'YER056CA', 'gal1RGexp') self.assertIsNone(get_table_value('node', 'YER056CA', 'COMMON')) self.assertRaises(CyError, get_table_value, 'node', 'YDL194W', 'gal1RGexp', network='bogus') @print_entry_exit def test_get_table_column_names(self): # Initialization load_test_session() self.assertSetEqual(set(get_table_column_names()), {'SUID', 'shared name', 'name', 'selected', 'AverageShortestPathLength', 'BetweennessCentrality', 'ClosenessCentrality', 'ClusteringCoefficient', 'Degree', 'Eccentricity', 'IsSingleNode', 'NeighborhoodConnectivity', 'NumberOfDirectedEdges', 'NumberOfUndirectedEdges', 'PartnerOfMultiEdgedNodePairs', 'Radiality', 'SelfLoops', 'Stress', 'TopologicalCoefficient', 'degree.layout', 'COMMON', 'gal1RGexp', 'gal4RGexp', 'gal80Rexp', 'gal1RGsig', 'gal4RGsig', 'gal80Rsig', 'isExcludedFromPaths'}) self.assertSetEqual(set(get_table_column_names('edge')), {'SUID', 'shared name', 'shared interaction', 'name', 'selected', 'interaction', 'EdgeBetweenness'}) self.assertSetEqual(set(get_table_column_names('network')), {'SUID', 'shared name', 'name', 'selected', '__Annotations', 'publication', 'Dataset Name', 'Dataset URL'}) self.assertRaises(CyError, get_table_column_names, 'library') self.assertRaises(CyError, get_table_column_names, network='bogus') @print_entry_exit def test_get_table_column_types(self): # Initialization load_test_session() self.assertDictEqual(get_table_column_types(), {'SUID': 'Long', 'shared name': 'String', 'name': 'String', 'selected': 'Boolean', 'AverageShortestPathLength': 'Double', 'BetweennessCentrality': 'Double', 'ClosenessCentrality': 'Double', 'ClusteringCoefficient': 'Double', 'Degree': 'Integer', 'Eccentricity': 'Integer', 'IsSingleNode': 'Boolean', 'NeighborhoodConnectivity': 'Double', 'NumberOfDirectedEdges': 'Integer', 'NumberOfUndirectedEdges': 'Integer', 'PartnerOfMultiEdgedNodePairs': 'Integer', 'Radiality': 'Double', 'SelfLoops': 'Integer', 'Stress': 'Long', 'TopologicalCoefficient': 'Double', 'degree.layout': 'Integer', 'COMMON': 'String', 'gal1RGexp': 'Double', 'gal4RGexp': 'Double', 'gal80Rexp': 'Double', 'gal1RGsig': 'Double', 'gal4RGsig': 'Double', 'gal80Rsig': 'Double', 'isExcludedFromPaths': 'Boolean'}) self.assertDictEqual(get_table_column_types('edge'), {'SUID': 'Long', 'shared name': 'String', 'shared interaction': 'String', 'name': 'String', 'selected': 'Boolean', 'interaction': 'String', 'EdgeBetweenness': 'Double'}) self.assertDictEqual(get_table_column_types('network'), {'SUID': 'Long', 'shared name': 'String', 'name': 'String', 'selected': 'Boolean', '__Annotations': 'List', 'publication': 'String', 'Dataset Name': 'String', 'Dataset URL': 'String'}) self.assertRaises(CyError, get_table_column_types, 'library') self.assertRaises(CyError, get_table_column_types, 'edge', network='bogus') @print_entry_exit def test_load_table_data_from_file(self): def check_table(original_columns, new_column_name, key_values, table_name='node'): # Make sure we get exactly the expected columns self.assertSetEqual(set(get_table_column_names(table=table_name)), original_columns | {new_column_name}) # Make sure we get exactly the expected number of values in the new column table = get_table_columns(table=table_name, columns=['name', new_column_name]) table.dropna(inplace=True) table.set_index('name', inplace=True) self.assertEqual(len(table.index), len(key_values)) # Make sure the new column values are as expected for key, val in key_values: self.assertEqual(table[new_column_name][key], val) # Initialization load_test_session() node_column_names = set(get_table_column_names()) edge_column_names = set(get_table_column_names(table='edge')) # Verify that a table with column headers can be loaded into the node table res = load_table_data_from_file('data/defaultnode_table.tsv', first_row_as_column_names=True) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with column headers can be loaded into the edge table res = load_table_data_from_file('data/defaultedge_table.tsv', first_row_as_column_names=True, table='edge') check_table(edge_column_names, 'newcol_e', [('YDR277C (pp) YDL194W', 1000), ('YDR277C (pp) YJR022W', 2000), ('YPR145W (pp) YMR117C', 3000)], table_name='edge') # Verify that a spreadsheet with column headers can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.xlsx', first_row_as_column_names=True) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with no header can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.no-header.tsv', first_row_as_column_names=False) check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with extra lines at the beginning can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.extra-lines.tsv', first_row_as_column_names=False, start_load_row=4) check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with different field delimiters can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.semi-delimiter.txt', first_row_as_column_names=False, delimiters=' ,;') check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with values in a different order can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.backwards.tsv', first_row_as_column_names=True, data_key_column_index=2) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with indexing on a different table column can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.COMMON.tsv', first_row_as_column_names=True, table_key_column='COMMON') check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) self.assertRaises(CyError, load_table_data_from_file, 'bogus file name') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', start_load_row=-1) self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', delimiters='bogus') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', data_key_column_index='newcol') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', data_key_column_index=-1) self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', table_key_column='bogus column') @print_entry_exit def test_load_table_data(self): def check_values_added(table_column_names, table_key_name, test_data, data_key_name, data_value_name, table='node'): data = get_table_columns(table=table) self.assertEqual(len(table_column_names) + 2, len(data.columns)) self.assertIn(data_key_name, data.columns) self.assertIn(data_value_name, data.columns) added_data = data[data[table_key_name] == data[data_key_name]] self.assertEqual(len(test_data.index), len(added_data.index)) verify_each_newcol_value = [added_data[added_data[data_key_name] == row[data_key_name]].iloc[0][data_value_name] == row[data_value_name] for row_index, row in test_data.iterrows()] self.assertNotIn(False, verify_each_newcol_value) # Initialization load_test_session() # Verify that adding into rows that don't exist fails unrelated_data = df.DataFrame(data={'id': ['New1', 'New2', 'New3'], 'newcol': [1, 2, 3]}) self.assertRaises(CyError, load_table_data, unrelated_data, data_key_column='id', table='node', table_key_column='name') # Verify that adding into node table rows that do exist succeeds ... checks that string-keys work column_names_string_keyed = get_table_column_names() test_data_string_keyed = df.DataFrame(data={'id': ['YDL194W', 'YDR277C', 'YBR043C'], 'newcol': [1, 2, 3]}) res = load_table_data(test_data_string_keyed, data_key_column='id', table='node', table_key_column='name') self.assertEqual(res, 'Success: Data loaded in defaultnode table') # Verify that ID column and newcol were added, and that the newcols have values only for the named nodes check_values_added(column_names_string_keyed, 'name', test_data_string_keyed, 'id', 'newcol') # Given newcol values, use them as non-string keys to add yet another column column_names_int_keyed = get_table_column_names() test_data_int_keyed = df.DataFrame(data={'newcol_val': [1, 2, 3], 'derived': [100, 200, 300]}) res = load_table_data(test_data_int_keyed, data_key_column='newcol_val', table='node', table_key_column='newcol') self.assertEqual(res, 'Success: Data loaded in defaultnode table') # Verify that newcol_val column and derived were added, and that derived has values only for the newcol nodes check_values_added(column_names_int_keyed, 'newcol', test_data_int_keyed, 'newcol_val', 'derived') # Verify that adding data into edge table rows that do exist succeeds column_names_string_keyed = get_table_column_names(table='edge') test_data_string_keyed = df.DataFrame(data={'id_e': ['YDR277C (pp) YDL194W', 'YDR277C (pp) YJR022W', 'YPR145W (pp) YMR117C'], 'newcol_e': [1000, 2000, 3000]}) res = load_table_data(test_data_string_keyed, data_key_column='id_e', table='edge', table_key_column='name') self.assertEqual(res, 'Success: Data loaded in defaultedge table') # Verify that newcol_val column and derived were added, and that derived has values only for the newcol nodes check_values_added(column_names_string_keyed, 'name', test_data_string_keyed, 'id_e', 'newcol_e', table='edge') # Verify that adding a column with a null works properly, and that adding columns of different types does, too # While we're at it, eyeball the running time to see that it's not crazy slow test_data_suid_name = get_table_columns(columns=['SUID', 'name']) test_data_suid_name['IntCol'] = test_data_suid_name['SUID'] test_data_suid_name['StrCol'] = test_data_suid_name['SUID'] test_data_suid_name['FloatCol'] = test_data_suid_name['SUID'] test_data_suid_name = test_data_suid_name.astype({'IntCol': np.int64, 'StrCol': np.str, 'FloatCol': np.float}) suid_YBL079W = test_data_suid_name.index[test_data_suid_name.name == 'YBL079W'][0] del test_data_suid_name['name'] test_data_suid_name.at[suid_YBL079W, 'FloatCol'] = np.nan # used to be set_value, but it was deprecated # test_data_suid_name.set_value(suid_YBL079W, 'FloatCol', np.nan) res = load_table_data(test_data_suid_name, data_key_column='SUID', table_key_column='SUID') self.assertEqual(res, 'Success: Data loaded in defaultnode table') # Make sure that Cytoscape got all of the column types and values right, including the NAN t = get_table_columns(columns=['SUID', 'IntCol', 'StrCol', 'FloatCol']) for suid, intcol, strcol, floatcol in zip(t['SUID'], t['IntCol'], t['StrCol'], t['FloatCol']): str_suid = str(suid) self.assertEqual(str_suid, str(intcol)) self.assertEqual(str_suid, strcol) if suid == suid_YBL079W: self.assertTrue(np.isnan(floatcol)) else: self.assertEqual(str_suid, str(int(floatcol))) data = get_table_columns() self.assertRaises(CyError, load_table_data, data, table='bogus') self.assertRaises(CyError, load_table_data, data, namespace='bogus') self.assertRaises(CyError, load_table_data, data, network='bogus') @print_entry_exit def test_map_table_column(self): # Initialization load_test_session() # Verify that mapping Yeast from Ensembl to SGD produces a complete (name, SGD) mapping, though # the number of unmapped symbols depends on the mapping database used ... we can't know this df = map_table_column('name', 'Yeast', 'Ensembl', 'SGD') self.assertSetEqual({'name', 'SGD'}, set(df.columns)) self.assertEqual(get_node_count(), len(df.index)) self.assertSetEqual(set(df['name']), set(get_table_columns('node', ['name'])['name'])) empty_mapping = df[df['SGD'].isnull()] self.assertTrue(0 < len(empty_mapping.index) <= len(df.index)) # Verify that mapping a non-existent column and other bad parameters are caught self.assertRaises(CyError, map_table_column, 'bogusname', 'Yeast', 'Ensembl', 'SGD') self.assertRaises(CyError, map_table_column, 'name', 'bogus', 'Ensembl', 'SGD') self.assertRaises(CyError, map_table_column, 'name', 'Yeast', 'bogus', 'SGD') self.assertRaises(CyError, map_table_column, 'name', 'Yeast', 'Ensembl', 'bogus') self.assertRaises(CyError, map_table_column, 'name', 'Yeast', 'Ensembl', 'SGD', table='bogus') self.assertRaises(CyError, map_table_column, 'name', 'Yeast', 'Ensembl', 'SGD', namespace='bogus') self.assertRaises(CyError, map_table_column, 'name', 'Yeast', 'Ensembl', 'SGD', network='bogus') @print_entry_exit def test_rename_table_column(self): # Initialization load_test_session() # Verify that the rename reports OK and the column name is actually changed orig_columns = set(get_table_column_names()) expected_columns = orig_columns.copy() expected_columns.discard('AverageShortestPathLength') expected_columns.add('xAveragex') self.assertEqual(rename_table_column('AverageShortestPathLength', 'xAveragex'), '') self.assertSetEqual(set(get_table_column_names()), expected_columns) # Verify that invalid parameters raise exceptions self.assertRaises(CyError, rename_table_column, 'bogus', 'xAveragex') self.assertRaises(CyError, rename_table_column, '', 'xAveragex') self.assertRaises(CyError, rename_table_column, None, 'xAveragex') self.assertRaises(CyError, rename_table_column, 'xAveragex', '') # self.assertRaises(HTTPError, rename_table_column, 'xAveragex', None) # This should fail, but doesn't # TODO: CyREST shouldn't allow change of name to None ... it shows up as null in Cytoscape self.assertRaises(CyError, rename_table_column, 'xAveragex', 'name') self.assertRaises(CyError, rename_table_column, 'AverageShortestPathLength', 'xAveragex', network='bogus') self.assertRaises(CyError, rename_table_column, 'AverageShortestPathLength', 'xAveragex', namespace='bogus') self.assertRaises(CyError, rename_table_column, 'AverageShortestPathLength', 'xAveragex', table='bogus') if __name__ == '__main__': unittest.main()
59.117647
193
0.664114
630cdbbbaabe9712ec5bd6e0f19e766ff8c98cc0
479
py
Python
ScienceCruiseDataManagement/main/migrations/0026_auto_20170113_0520.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
6
2017-10-06T09:18:04.000Z
2022-02-10T08:54:56.000Z
ScienceCruiseDataManagement/main/migrations/0026_auto_20170113_0520.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
12
2020-02-27T09:24:50.000Z
2021-09-22T17:39:55.000Z
ScienceCruiseDataManagement/main/migrations/0026_auto_20170113_0520.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
1
2017-10-16T13:49:33.000Z
2017-10-16T13:49:33.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-13 03:11 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import smart_selects.db_fields class Migration(migrations.Migration): dependencies = [ ('main', '0025_auto_20170113_0451'), ] operations = [ migrations.RenameModel( old_name='ParentDevice', new_name='SamplingMethod', ), ]
20.826087
48
0.659708
4b78df008cc4ebb4fb7cf0f8c524fdc3fc0e2ed6
25,929
py
Python
arcade/sprite.py
ercasta/arcade
4e664d578344ff845fc18f0b5c1cd6f1ee2028ba
[ "MIT" ]
null
null
null
arcade/sprite.py
ercasta/arcade
4e664d578344ff845fc18f0b5c1cd6f1ee2028ba
[ "MIT" ]
null
null
null
arcade/sprite.py
ercasta/arcade
4e664d578344ff845fc18f0b5c1cd6f1ee2028ba
[ "MIT" ]
null
null
null
""" This module manages all of the code around Sprites. For information on Spatial Hash Maps, see: https://www.gamedev.net/articles/programming/general-and-gameplay-programming/spatial-hashing-r2697/ """ import math from arcade.draw_commands import load_texture from arcade.draw_commands import draw_texture_rectangle from arcade.draw_commands import Texture from arcade.draw_commands import rotate_point from arcade.arcade_types import RGB from typing import Sequence from typing import Tuple FACE_RIGHT = 1 FACE_LEFT = 2 FACE_UP = 3 FACE_DOWN = 4 class Sprite: """ Class that represents a 'sprite' on-screen. Attributes: :alpha: Transparency of sprite. 0 is invisible, 255 is opaque. :angle: Rotation angle in degrees. :bottom: Set/query the sprite location by using the bottom coordinate. \ This will be the 'y' of the bottom of the sprite. :boundary_left: Used in movement. Left boundary of moving sprite. :boundary_right: Used in movement. Right boundary of moving sprite. :boundary_top: Used in movement. Top boundary of moving sprite. :boundary_bottom: Used in movement. Bottom boundary of moving sprite. :center_x: X location of the center of the sprite :center_y: Y location of the center of the sprite :change_x: Movement vector, in the x direction. :change_y: Movement vector, in the y direction. :change_angle: Change in rotation. :color: Color tint the sprite :collision_radius: Used as a fast-check to see if this item is close \ enough to another item. If this check works, we do a slower more accurate check. :cur_texture_index: Index of current texture being used. :guid: Unique identifier for the sprite. Useful when debugging. :height: Height of the sprite. :force: Force being applied to the sprite. Useful when used with Pymunk \ for physics. :left: Set/query the sprite location by using the left coordinate. This \ will be the 'x' of the left of the sprite. :points: Points, in relation to the center of the sprite, that are used \ for collision detection. Arcade defaults to creating points for a rectangle \ that encompass the image. If you are creating a ramp or making better \ hit-boxes, you can custom-set these. :position: A list with the (x, y) of where the sprite is. :repeat_count_x: :repeat_count_y: :right: Set/query the sprite location by using the right coordinate. \ This will be the 'y=x' of the right of the sprite. :sprite_lists: List of all the sprite lists this sprite is part of. :texture: `Texture` class with the current texture. :textures: List of textures associated with this sprite. :top: Set/query the sprite location by using the top coordinate. This \ will be the 'y' of the top of the sprite. :scale: Scale the image up or down. Scale of 1.0 is original size, 0.5 \ is 1/2 height and width. :velocity: Change in x, y expressed as a list. (0, 0) would be not moving. :width: Width of the sprite It is common to over-ride the `update` method and provide mechanics on movement or other sprite updates. :Example: """ def __init__(self, filename: str=None, scale: float=1, image_x: float=0, image_y: float=0, image_width: float=0, image_height: float=0, center_x: float=0, center_y: float=0, repeat_count_x=1, repeat_count_y=1): """ Create a new sprite. Args: filename (str): Filename of an image that represents the sprite. scale (float): Scale the image up or down. Scale of 1.0 is none. image_x (float): Scale the image up or down. Scale of 1.0 is none. image_y (float): Scale the image up or down. Scale of 1.0 is none. image_width (float): Width of the sprite image_height (float): Height of the sprite center_x (float): Location of the sprite center_y (float): Location of the sprite """ if image_width < 0: raise ValueError("Width of image can't be less than zero.") if image_height < 0: raise ValueError("Height entered is less than zero. Height must be a positive float.") if image_width == 0 and image_height != 0: raise ValueError("Width can't be zero.") if image_height == 0 and image_width != 0: raise ValueError("Height can't be zero.") self.sprite_lists = [] if filename is not None: self.texture = load_texture(filename, image_x, image_y, image_width, image_height) self.textures = [self.texture] self._width = self.texture.width * scale self._height = self.texture.height * scale else: self.textures = [] self._texture = None self._width = 0 self._height = 0 self.cur_texture_index = 0 self.scale = scale self._position = [center_x, center_y] self._angle = 0.0 self.velocity = [0, 0] self.change_angle = 0 self.boundary_left = None self.boundary_right = None self.boundary_top = None self.boundary_bottom = None self._alpha = 255 self._collision_radius = None self._color = (255, 255, 255) self._points = None self._point_list_cache = None self.force = [0, 0] self.guid = None self.repeat_count_x = repeat_count_x self.repeat_count_y = repeat_count_y def append_texture(self, texture: Texture): """ Appends a new texture to the list of textures that can be applied to this sprite. """ self.textures.append(texture) def _get_position(self) -> (float, float): """ Get the center x coordinate of the sprite. """ return (self._position[0], self._position[1]) def _set_position(self, new_value: (float, float)): """ Set the center x coordinate of the sprite. """ self.clear_spatial_hashes() self._point_list_cache = None self._position[0] = new_value[0] self._position[1] = new_value[1] self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_location(self) position = property(_get_position, _set_position) def set_position(self, center_x: float, center_y: float): """ Set a sprite's position """ if center_x != self._position[0] or center_y != self._position[1]: from arcade.sprite_list import SpriteList self.clear_spatial_hashes() self._point_list_cache = None self._position[0] = center_x self._position[1] = center_y self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_location(self) def set_points(self, points: Sequence[Sequence[float]]): """ Set a sprite's position """ self._points = points def get_points(self) -> Tuple[Tuple[float, float]]: """ Get the corner points for the rect that makes up the sprite. """ if self._point_list_cache is not None: return self._point_list_cache if self._points is not None: point_list = [] for point in range(len(self._points)): point = (self._points[point][0] + self.center_x, self._points[point][1] + self.center_y) point_list.append(point) self._point_list_cache = tuple(point_list) else: x1, y1 = rotate_point(self.center_x - self.width / 2, self.center_y - self.height / 2, self.center_x, self.center_y, self.angle) x2, y2 = rotate_point(self.center_x + self.width / 2, self.center_y - self.height / 2, self.center_x, self.center_y, self.angle) x3, y3 = rotate_point(self.center_x + self.width / 2, self.center_y + self.height / 2, self.center_x, self.center_y, self.angle) x4, y4 = rotate_point(self.center_x - self.width / 2, self.center_y + self.height / 2, self.center_x, self.center_y, self.angle) self._point_list_cache = ((x1, y1), (x2, y2), (x3, y3), (x4, y4)) return self._point_list_cache points = property(get_points, set_points) def _set_collision_radius(self, collision_radius): """ Set the collision radius. Note: Final collision checking is done via geometry that was set in get_points/set_points. These points are used in the check_for_collision function. This collision_radius variable is used as a "pre-check." We do a super-fast check with collision_radius and see if the sprites are close. If they are, then we look at the geometry and figure if they really are colliding. """ self._collision_radius = collision_radius def _get_collision_radius(self): """ Get the collision radius. Note: Final collision checking is done via geometry that was set in get_points/set_points. These points are used in the check_for_collision function. This collision_radius variable is used as a "pre-check." We do a super-fast check with collision_radius and see if the sprites are close. If they are, then we look at the geometry and figure if they really are colliding. """ if not self._collision_radius: self._collision_radius = max(self.width, self.height) return self._collision_radius collision_radius = property(_get_collision_radius, _set_collision_radius) def __lt__(self, other): return self.texture.texture_id.value < other.texture.texture_id.value def clear_spatial_hashes(self): for sprite_list in self.sprite_lists: if sprite_list.use_spatial_hash and sprite_list.spatial_hash is not None: try: sprite_list.spatial_hash.remove_object(self) except ValueError: print("Warning, attempt to remove item from spatial hash that doesn't exist in the hash.") def add_spatial_hashes(self): for sprite_list in self.sprite_lists: if sprite_list.use_spatial_hash: sprite_list.spatial_hash.insert_object_for_box(self) def _get_bottom(self) -> float: """ Return the y coordinate of the bottom of the sprite. """ points = self.get_points() my_min = points[0][1] for point in range(1, len(points)): my_min = min(my_min, points[point][1]) return my_min def _set_bottom(self, amount: float): """ Set the location of the sprite based on the bottom y coordinate. """ lowest = self._get_bottom() diff = lowest - amount self.center_y -= diff bottom = property(_get_bottom, _set_bottom) def _get_top(self) -> float: """ Return the y coordinate of the top of the sprite. """ points = self.get_points() my_max = points[0][1] for i in range(1, len(points)): my_max = max(my_max, points[i][1]) return my_max def _set_top(self, amount: float): """ The highest y coordinate. """ highest = self._get_top() diff = highest - amount self.center_y -= diff top = property(_get_top, _set_top) def _get_width(self) -> float: """ Get the center x coordinate of the sprite. """ return self._width def _set_width(self, new_value: float): """ Set the center x coordinate of the sprite. """ if new_value != self._width: self.clear_spatial_hashes() self._point_list_cache = None self._width = new_value self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_position(self) width = property(_get_width, _set_width) def _get_height(self) -> float: """ Get the center x coordinate of the sprite. """ return self._height def _set_height(self, new_value: float): """ Set the center x coordinate of the sprite. """ if new_value != self._height: self.clear_spatial_hashes() self._point_list_cache = None self._height = new_value self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_position(self) height = property(_get_height, _set_height) def _get_center_x(self) -> float: """ Get the center x coordinate of the sprite. """ return self._position[0] def _set_center_x(self, new_value: float): """ Set the center x coordinate of the sprite. """ if new_value != self._position[0]: self.clear_spatial_hashes() self._point_list_cache = None self._position[0] = new_value self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_position(self) center_x = property(_get_center_x, _set_center_x) def _get_center_y(self) -> float: """ Get the center y coordinate of the sprite. """ return self._position[1] def _set_center_y(self, new_value: float): """ Set the center y coordinate of the sprite. """ if new_value != self._position[1]: self.clear_spatial_hashes() self._point_list_cache = None self._position[1] = new_value self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_position(self) center_y = property(_get_center_y, _set_center_y) def _get_change_x(self) -> float: """ Get the velocity in the x plane of the sprite. """ return self.velocity[0] def _set_change_x(self, new_value: float): """ Set the velocity in the x plane of the sprite. """ self.velocity[0] = new_value change_x = property(_get_change_x, _set_change_x) def _get_change_y(self) -> float: """ Get the velocity in the y plane of the sprite. """ return self.velocity[1] def _set_change_y(self, new_value: float): """ Set the velocity in the y plane of the sprite. """ self.velocity[1] = new_value change_y = property(_get_change_y, _set_change_y) def _get_angle(self) -> float: """ Get the angle of the sprite's rotation. """ return self._angle def _set_angle(self, new_value: float): """ Set the angle of the sprite's rotation. """ if new_value != self._angle: self.clear_spatial_hashes() self._angle = new_value self._point_list_cache = None self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_angle(self) angle = property(_get_angle, _set_angle) def _get_left(self) -> float: """ Left-most coordinate. """ points = self.get_points() my_min = points[0][0] for i in range(1, len(points)): my_min = min(my_min, points[i][0]) return my_min def _set_left(self, amount: float): """ The left most x coordinate. """ leftmost = self._get_left() diff = amount - leftmost self.center_x += diff left = property(_get_left, _set_left) def _get_right(self) -> float: """ Return the x coordinate of the right-side of the sprite. """ points = self.get_points() my_max = points[0][0] for point in range(1, len(points)): my_max = max(my_max, points[point][0]) return my_max def _set_right(self, amount: float): """ The right most x coordinate. """ rightmost = self._get_right() diff = rightmost - amount self.center_x -= diff right = property(_get_right, _set_right) def get_texture(self) -> Texture: """ Return the texture that the sprite uses. """ return self._texture def set_texture(self, texture: Texture): """ Set the current sprite texture. """ if isinstance(texture, Texture): self.clear_spatial_hashes() self._point_list_cache = None self._texture = texture self._width = texture.width * texture.scale self._height = texture.height * texture.scale self.add_spatial_hashes() for sprite_list in self.sprite_lists: sprite_list.update_texture(self) else: raise SystemError("Can't set the texture to something that is " + "not an instance of the Texture class.") texture = property(get_texture, set_texture) def _get_color(self) -> RGB: """ Return the RGB color associated with the sprite. """ return self._color def _set_color(self, color: RGB): """ Set the current sprite color as a RGB value """ self._color = color for sprite_list in self.sprite_lists: sprite_list.update_position(self) color = property(_get_color, _set_color) def _get_alpha(self) -> RGB: """ Return the RGB color associated with the sprite. """ return self._alpha def _set_alpha(self, alpha: RGB): """ Set the current sprite color as a RGB value """ self._alpha = alpha for sprite_list in self.sprite_lists: sprite_list.update_position(self) alpha = property(_get_alpha, _set_alpha) def register_sprite_list(self, new_list): """ Register this sprite as belonging to a list. We will automatically remove ourselves from the the list when kill() is called. """ self.sprite_lists.append(new_list) def draw(self): """ Draw the sprite. """ if self._alpha != 255: transparent = False else: transparent = True draw_texture_rectangle(self.center_x, self.center_y, self.width, self.height, self.texture, self.angle, self.alpha, # TODO: review this function repeat_count_x=self.repeat_count_x, repeat_count_y=self.repeat_count_y) def update(self): """ Update the sprite. """ self.set_position(self.center_x + self.change_x, self.center_y + self.change_y) self.angle += self.change_angle def update_animation(self): """ Override this to add code that will change what image is shown, so the sprite can be animated. """ pass def remove_from_sprite_lists(self): """ Remove the sprite from all sprite lists. """ for sprite_list in self.sprite_lists: if self in sprite_list: sprite_list.remove(self) self.sprite_lists.clear() def kill(self): """ Alias of `remove_from_sprite_lists` """ self.remove_from_sprite_lists() class AnimatedTimeSprite(Sprite): """ Sprite for platformer games that supports animations. """ def __init__(self, scale: float=1, image_x: float=0, image_y: float=0, center_x: float=0, center_y: float=0): super().__init__(scale=scale, image_x=image_x, image_y=image_y, center_x=center_x, center_y=center_y) self.state = FACE_RIGHT self.cur_texture_index = 0 self.texture_change_frames = 5 self.frame = 0 def update_animation(self): """ Logic for selecting the proper texture to use. """ if self.frame % self.texture_change_frames == 0: self.cur_texture_index += 1 if self.cur_texture_index >= len(self.textures): self.cur_texture_index = 0 self.set_texture(self.cur_texture_index) self.frame += 1 class AnimatedWalkingSprite(Sprite): """ Sprite for platformer games that supports animations. """ def __init__(self, scale: float=1, image_x: float=0, image_y: float=0, center_x: float=0, center_y: float=0): super().__init__(scale=scale, image_x=image_x, image_y=image_y, center_x=center_x, center_y=center_y) self.state = FACE_RIGHT self.stand_right_textures = None self.stand_left_textures = None self.walk_left_textures = None self.walk_right_textures = None self.walk_up_textures = None self.walk_down_textures = None self.cur_texture_index = 0 self.texture_change_distance = 20 self.last_texture_change_center_x = 0 self.last_texture_change_center_y = 0 def update_animation(self): """ Logic for selecting the proper texture to use. """ x1 = self.center_x x2 = self.last_texture_change_center_x y1 = self.center_y y2 = self.last_texture_change_center_y distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) texture_list = [] change_direction = False if self.change_x > 0 \ and self.change_y == 0 \ and self.state != FACE_RIGHT \ and self.walk_right_textures \ and len(self.walk_right_textures) > 0: self.state = FACE_RIGHT change_direction = True elif self.change_x < 0 and self.change_y == 0 and self.state != FACE_LEFT \ and self.walk_left_textures and len(self.walk_left_textures) > 0: self.state = FACE_LEFT change_direction = True elif self.change_y < 0 and self.change_x == 0 and self.state != FACE_DOWN \ and self.walk_down_textures and len(self.walk_down_textures) > 0: self.state = FACE_DOWN change_direction = True elif self.change_y > 0 and self.change_x == 0 and self.state != FACE_UP \ and self.walk_up_textures and len(self.walk_up_textures) > 0: self.state = FACE_UP change_direction = True if self.change_x == 0 and self.change_y == 0: if self.state == FACE_LEFT: self.texture = self.stand_left_textures[0] elif self.state == FACE_RIGHT: self.texture = self.stand_right_textures[0] elif self.state == FACE_UP: self.texture = self.walk_up_textures[0] elif self.state == FACE_DOWN: self.texture = self.walk_down_textures[0] elif change_direction or distance >= self.texture_change_distance: self.last_texture_change_center_x = self.center_x self.last_texture_change_center_y = self.center_y if self.state == FACE_LEFT: texture_list = self.walk_left_textures if texture_list is None or len(texture_list) == 0: raise RuntimeError("update_animation was called on a sprite that doesn't have a " "list of walk left textures.") elif self.state == FACE_RIGHT: texture_list = self.walk_right_textures if texture_list is None or len(texture_list) == 0: raise RuntimeError("update_animation was called on a sprite that doesn't have a list of " "walk right textures.") elif self.state == FACE_UP: texture_list = self.walk_up_textures if texture_list is None or len(texture_list) == 0: raise RuntimeError("update_animation was called on a sprite that doesn't have a list of " "walk up textures.") elif self.state == FACE_DOWN: texture_list = self.walk_down_textures if texture_list is None or len(texture_list) == 0: raise RuntimeError( "update_animation was called on a sprite that doesn't have a list of walk down textures.") self.cur_texture_index += 1 if self.cur_texture_index >= len(texture_list): self.cur_texture_index = 0 self.texture = texture_list[self.cur_texture_index] self.width = self.texture.width * self.scale self.height = self.texture.height * self.scale def get_distance_between_sprites(sprite1: Sprite, sprite2: Sprite) -> float: """ Returns the distance between the two given sprites """ distance = math.sqrt((sprite1.center_x - sprite2.center_x) ** 2 + (sprite1.center_y - sprite2.center_y) ** 2) return distance
36.571227
114
0.594585
22ab7ec10b242599583b3010e8c37e57050f61d6
9,315
py
Python
selfdrive/car/honda/carcontroller.py
reddn/openpilothack
f11b2cfef0cfe8fe9e2f2cbc4348f61e83ff27a1
[ "MIT" ]
1
2021-11-10T05:23:50.000Z
2021-11-10T05:23:50.000Z
selfdrive/car/honda/carcontroller.py
reddn/openpilothack
f11b2cfef0cfe8fe9e2f2cbc4348f61e83ff27a1
[ "MIT" ]
null
null
null
selfdrive/car/honda/carcontroller.py
reddn/openpilothack
f11b2cfef0cfe8fe9e2f2cbc4348f61e83ff27a1
[ "MIT" ]
1
2021-11-10T05:23:52.000Z
2021-11-10T05:23:52.000Z
from cereal import car from collections import namedtuple from selfdrive.boardd.boardd import can_list_to_can_capnp from selfdrive.controls.lib.drive_helpers import rate_limit from common.numpy_fast import clip from selfdrive.car.honda import hondacan from selfdrive.car.honda.values import AH, CruiseButtons, CAR from selfdrive.can.packer import CANPacker import zmq def actuator_hystereses(brake, braking, brake_steady, v_ego, car_fingerprint): # hyst params... TODO: move these to VehicleParams brake_hyst_on = 0.02 # to activate brakes exceed this value brake_hyst_off = 0.005 # to deactivate brakes below this value brake_hyst_gap = 0.01 # don't change brake command for small ocilalitons within this value #*** histeresis logic to avoid brake blinking. go above 0.1 to trigger if (brake < brake_hyst_on and not braking) or brake < brake_hyst_off: brake = 0. braking = brake > 0. # for small brake oscillations within brake_hyst_gap, don't change the brake command if brake == 0.: brake_steady = 0. elif brake > brake_steady + brake_hyst_gap: brake_steady = brake - brake_hyst_gap elif brake < brake_steady - brake_hyst_gap: brake_steady = brake + brake_hyst_gap brake = brake_steady if (car_fingerprint in (CAR.ACURA_ILX, CAR.CRV)) and brake > 0.0: brake += 0.15 return brake, braking, brake_steady def process_hud_alert(hud_alert): # initialize to no alert fcw_display = 0 steer_required = 0 acc_alert = 0 if hud_alert == AH.NONE: # no alert pass elif hud_alert == AH.FCW: # FCW fcw_display = hud_alert[1] elif hud_alert == AH.STEER: # STEER steer_required = hud_alert[1] else: # any other ACC alert acc_alert = hud_alert[1] return fcw_display, steer_required, acc_alert HUDData = namedtuple("HUDData", ["pcm_accel", "v_cruise", "mini_car", "car", "X4", "lanes", "beep", "chime", "fcw", "acc_alert", "steer_required"]) class CarController(object): def __init__(self, dbc_name, enable_camera=True): self.braking = False self.brake_steady = 0. self.brake_last = 0. self.enable_camera = enable_camera self.packer = CANPacker(dbc_name) self.new_radar_config = False self.counter = 0 self.lincontext = zmq.Context() self.linsocket = self.lincontext.socket(zmq.PUB) self.linsocket.bind("tcp://127.0.0.1:8099") self.linsocket.send(bytearray([0xFF,0xFF,0xFF,0xFF])) #initializes the LIN pin at 9600 with even parity self.lkas_active_prev = False self.lkas_signal_changed_timeout = 10 #use counts of frames at 10hz def update(self, sendcan, enabled, CS, frame, actuators, \ pcm_speed, pcm_override, pcm_cancel_cmd, pcm_accel, \ radar_error, hud_v_cruise, hud_show_lanes, hud_show_car, \ hud_alert, snd_beep, snd_chime): """ Controls thread """ if not self.enable_camera: return # *** apply brake hysteresis *** brake, self.braking, self.brake_steady = actuator_hystereses(actuators.brake, self.braking, self.brake_steady, CS.v_ego, CS.CP.carFingerprint) # *** no output if not enabled *** #hacked # if not enabled and CS.pcm_acc_status: # # send pcm acc cancel cmd if drive is disabled but pcm is still on, or if the system can't be activated # pcm_cancel_cmd = True # *** rate limit after the enable check *** self.brake_last = rate_limit(brake, self.brake_last, -2., 1./100) #hacked # vehicle hud display, wait for one update from 10Hz 0x304 msg if hud_show_lanes: hud_lanes = 1 else: hud_lanes = 0 if enabled: if hud_show_car: hud_car = 2 else: hud_car = 1 else: hud_car = 0 # For lateral control-only, send chimes as a beep since we don't send 0x1fa if CS.CP.radarOffCan: snd_beep = snd_beep if snd_beep is not 0 else snd_chime #print chime, alert_id, hud_alert fcw_display, steer_required, acc_alert = process_hud_alert(hud_alert) hud = HUDData(int(pcm_accel), int(round(hud_v_cruise)), 1, hud_car, 0xc1, hud_lanes, int(snd_beep), snd_chime, fcw_display, acc_alert, steer_required) if not all(isinstance(x, int) and 0 <= x < 256 for x in hud): hud = HUDData(0xc6, 255, 64, 0xc0, 209, 0x40, 0, 0, 0, 0) # **** process the car messages **** # *** compute control surfaces *** BRAKE_MAX = 1024/4 if CS.CP.carFingerprint in (CAR.ACURA_ILX): STEER_MAX = 0xF00 elif CS.CP.carFingerprint in (CAR.CRV, CAR.ACURA_RDX): STEER_MAX = 0x3e8 # CR-V only uses 12-bits and requires a lower value (max value from energee) elif CS.CP.carFingerprint in (CAR.ACCORD_2016): STEER_MAX = 0x7f else: STEER_MAX = 0x1000 # steer torque is converted back to CAN reference (positive when steering right) apply_gas = clip(actuators.gas, 0., 1.) apply_brake = int(clip(self.brake_last * BRAKE_MAX, 0, BRAKE_MAX - 1)) apply_steer = int(clip(-actuators.steer * STEER_MAX, -STEER_MAX, STEER_MAX)) # any other cp.vl[0x18F]['STEER_STATUS'] is common and can happen during user override. sending 0 torque to avoid EPS sending error 5 lkas_active = enabled and not CS.steer_not_allowed if lkas_active != self.lkas_active_prev: if lkas_active: self.lkas_signal_changed_timeout = 30 else: self.lkas_signal_changed_timeout = 50 self.lkas_active_prev = lkas_active # Send CAN commands. can_sends = [] # Send steering command. if CS.CP.carFingerprint in (CAR.ACCORD_2016): if lkas_active: lkas_on = 64 lkas_off = 0 chksm_off = 0 big_steer = (apply_steer >> 5) & 0xF little_steer = apply_steer - (big_steer << 5) # steer starts from 0, goes to 15, drops to -16 then up to -1 dashed_lanes = 0 if little_steer > 15: little_steer = little_steer - 32 else: chksm_on = 0 lkas_on = 0 lkas_off = 64 big_steer = 0 little_steer = 0 dashed_lanes = 1 # accord serial has a 1 bit counter, flipping every refresh if self.counter == 0: self.counter = 32 else: self.counter = 0 # can_sends.append(hondacan.create_steering_control_serial(self.packer, self.counter, big_steer, lkas_on, little_steer, lkas_off, chksm)) self.linsocket.send(hondacan.create_steering_control_serial_lin2linrepeater(frame, big_steer, lkas_on, little_steer)) # self.linsocket.send(hondacan.create_steering_control_serial(frame, self.counter, big_steer, lkas_on, little_steer, lkas_off)) # if ((frame) % 50) == 0: # can_sends.append(hondacan.create_steering_control_serial_candata(self.packer, self.counter, big_steer, lkas_on, little_steer, lkas_off, chksm, apply_steer, int(clip(actuators.steer * 100,0,100)))) else: # for if CAR.ACCORD_2016 idx = frame % 4 can_sends.append(hondacan.create_steering_control(self.packer, apply_steer, lkas_active, CS.CP.carFingerprint, idx)) # above is commented bc it should not happen on this branch # Send dashboard UI commands. if (frame % 10) == 0: idx = (frame/10) % 4 #create_ui_commands is hacked if self.lkas_signal_changed_timeout > 0: signal_changed = 1 self.lkas_signal_changed_timeout -= 1 else: signal_changed = 0 can_sends.extend(hondacan.create_ui_commands(self.packer, pcm_speed, hud, CS.CP.carFingerprint, idx, dashed_lanes, signal_changed)) # #hack if CS.CP.radarOffCan: # # If using stock ACC, spam cancel command to kill gas when OP disengages. # if pcm_cancel_cmd: # can_sends.append(hondacan.spam_buttons_command(self.packer, CruiseButtons.CANCEL, idx)) # elif CS.stopped: # can_sends.append(hondacan.spam_buttons_command(self.packer, CruiseButtons.RES_ACCEL, idx)) # else: # # Send gas and brake commands. # if (frame % 2) == 0: # idx = (frame / 2) % 4 # can_sends.append( # hondacan.create_brake_command(self.packer, apply_brake, pcm_override, # pcm_cancel_cmd, hud.chime, hud.fcw, idx)) # if CS.CP.enableGasInterceptor: # # send exactly zero if apply_gas is zero. Interceptor will send the max between read value and apply_gas. # # This prevents unexpected pedal range rescaling # can_sends.append(hondacan.create_gas_command(self.packer, apply_gas, idx)) # # # radar at 20Hz, but these msgs need to be sent at 50Hz on ilx (seems like an Acura bug) # if CS.CP.carFingerprint == CAR.ACURA_ILX: # radar_send_step = 2 # else: # radar_send_step = 5 # # if (frame % radar_send_step) == 0: #removed radarmod # idx = (frame/radar_send_step) % 4 # if not self.new_radar_config: # only change state once # self.new_radar_config = car.RadarState.Error.wrongConfig in radar_error # can_sends.extend(hondacan.create_radar_commands(self.packer, CS.v_ego, CS.CP.carFingerprint, self.new_radar_config, idx)) sendcan.send(can_list_to_can_capnp(can_sends, msgtype='sendcan').to_bytes())
39.978541
205
0.672678
ec8c55df94f2d8baee2f8927737aa128fc29489c
619
py
Python
mitmirror/main/adapters/request_adapter.py
Claayton/mitmirror-api
a78ec3aa84aa3685a26bfaf5e1ba2a3f0f8405d1
[ "MIT" ]
null
null
null
mitmirror/main/adapters/request_adapter.py
Claayton/mitmirror-api
a78ec3aa84aa3685a26bfaf5e1ba2a3f0f8405d1
[ "MIT" ]
1
2021-10-09T20:42:03.000Z
2021-10-09T20:42:03.000Z
mitmirror/main/adapters/request_adapter.py
Claayton/mitmirror-api
a78ec3aa84aa3685a26bfaf5e1ba2a3f0f8405d1
[ "MIT" ]
null
null
null
"""Adaptando requisicos para o FastAPI""" from typing import Callable from fastapi import Request as RequestFastApi from mitmirror.presenters.helpers import HttpRequest async def request_adapter( request: RequestFastApi, callback: Callable, user_id: int = None ): """Adaptador de requisicoes para FastApi""" body = None try: body = await request.json() except: # pylint: disable=W0702 pass http_request = HttpRequest( headers=request.headers, body=body, query=request.query_params ) http_response = callback(user_id, http_request) return http_response
24.76
70
0.71567
2b6a2791dc1b7a8bb8d486e6bb402578ab601b8e
279
py
Python
tests/test.py
pfriesch/neural-pipeline
2df4f7467a721b1fbd93f4439086c6dcee5dac2c
[ "MIT" ]
null
null
null
tests/test.py
pfriesch/neural-pipeline
2df4f7467a721b1fbd93f4439086c6dcee5dac2c
[ "MIT" ]
null
null
null
tests/test.py
pfriesch/neural-pipeline
2df4f7467a721b1fbd93f4439086c6dcee5dac2c
[ "MIT" ]
null
null
null
import unittest from .data_processor_test import * from .data_producer_test import * from .train_config_test import * from .utils_test import * from .train_test import * from .predict_test import * from .monitoring_test import * if __name__ == '__main__': unittest.main()
19.928571
34
0.770609
43d9f6a83a93b4a0da94df83672385573bdfe775
2,940
py
Python
setup/settings/settings.py
scpaes/jungledevs-challenge
188bc7a4aacbb278a9486c57685db53be0477d51
[ "MIT" ]
null
null
null
setup/settings/settings.py
scpaes/jungledevs-challenge
188bc7a4aacbb278a9486c57685db53be0477d51
[ "MIT" ]
6
2021-08-10T02:19:35.000Z
2021-08-10T02:24:05.000Z
setup/settings/settings.py
scpaes/jungledevs-challenge
188bc7a4aacbb278a9486c57685db53be0477d51
[ "MIT" ]
null
null
null
from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework.authtoken', 'rest_framework_swagger', 'drf_yasg', 'django_filters', 'admin_honeypot', 'rest_framework', 'challengenews' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'setup.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'setup.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media_root') MEDIA_URL = '/media/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
25.344828
91
0.690476
83aab244baacd2ecc9fdca56698c2f070ba52ba2
22,498
py
Python
google/cloud/dialogflow_v2/__init__.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
171
2018-09-19T21:16:18.000Z
2020-12-07T17:41:10.000Z
google/cloud/dialogflow_v2/__init__.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
150
2018-09-25T14:04:28.000Z
2020-12-09T21:45:43.000Z
google/cloud/dialogflow_v2/__init__.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
75
2018-09-22T14:12:18.000Z
2020-12-08T07:12:12.000Z
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .services.agents import AgentsClient from .services.agents import AgentsAsyncClient from .services.answer_records import AnswerRecordsClient from .services.answer_records import AnswerRecordsAsyncClient from .services.contexts import ContextsClient from .services.contexts import ContextsAsyncClient from .services.conversation_datasets import ConversationDatasetsClient from .services.conversation_datasets import ConversationDatasetsAsyncClient from .services.conversation_models import ConversationModelsClient from .services.conversation_models import ConversationModelsAsyncClient from .services.conversation_profiles import ConversationProfilesClient from .services.conversation_profiles import ConversationProfilesAsyncClient from .services.conversations import ConversationsClient from .services.conversations import ConversationsAsyncClient from .services.documents import DocumentsClient from .services.documents import DocumentsAsyncClient from .services.entity_types import EntityTypesClient from .services.entity_types import EntityTypesAsyncClient from .services.environments import EnvironmentsClient from .services.environments import EnvironmentsAsyncClient from .services.fulfillments import FulfillmentsClient from .services.fulfillments import FulfillmentsAsyncClient from .services.intents import IntentsClient from .services.intents import IntentsAsyncClient from .services.knowledge_bases import KnowledgeBasesClient from .services.knowledge_bases import KnowledgeBasesAsyncClient from .services.participants import ParticipantsClient from .services.participants import ParticipantsAsyncClient from .services.session_entity_types import SessionEntityTypesClient from .services.session_entity_types import SessionEntityTypesAsyncClient from .services.sessions import SessionsClient from .services.sessions import SessionsAsyncClient from .services.versions import VersionsClient from .services.versions import VersionsAsyncClient from .types.agent import Agent from .types.agent import DeleteAgentRequest from .types.agent import ExportAgentRequest from .types.agent import ExportAgentResponse from .types.agent import GetAgentRequest from .types.agent import GetValidationResultRequest from .types.agent import ImportAgentRequest from .types.agent import RestoreAgentRequest from .types.agent import SearchAgentsRequest from .types.agent import SearchAgentsResponse from .types.agent import SetAgentRequest from .types.agent import TrainAgentRequest from .types.answer_record import AgentAssistantFeedback from .types.answer_record import AgentAssistantRecord from .types.answer_record import AnswerFeedback from .types.answer_record import AnswerRecord from .types.answer_record import ListAnswerRecordsRequest from .types.answer_record import ListAnswerRecordsResponse from .types.answer_record import UpdateAnswerRecordRequest from .types.audio_config import InputAudioConfig from .types.audio_config import OutputAudioConfig from .types.audio_config import SpeechContext from .types.audio_config import SpeechToTextConfig from .types.audio_config import SpeechWordInfo from .types.audio_config import SynthesizeSpeechConfig from .types.audio_config import VoiceSelectionParams from .types.audio_config import AudioEncoding from .types.audio_config import OutputAudioEncoding from .types.audio_config import SpeechModelVariant from .types.audio_config import SsmlVoiceGender from .types.context import Context from .types.context import CreateContextRequest from .types.context import DeleteAllContextsRequest from .types.context import DeleteContextRequest from .types.context import GetContextRequest from .types.context import ListContextsRequest from .types.context import ListContextsResponse from .types.context import UpdateContextRequest from .types.conversation import CompleteConversationRequest from .types.conversation import Conversation from .types.conversation import ConversationPhoneNumber from .types.conversation import CreateConversationRequest from .types.conversation import GetConversationRequest from .types.conversation import ListConversationsRequest from .types.conversation import ListConversationsResponse from .types.conversation import ListMessagesRequest from .types.conversation import ListMessagesResponse from .types.conversation_dataset import ConversationDataset from .types.conversation_dataset import ConversationInfo from .types.conversation_dataset import CreateConversationDatasetOperationMetadata from .types.conversation_dataset import CreateConversationDatasetRequest from .types.conversation_dataset import DeleteConversationDatasetOperationMetadata from .types.conversation_dataset import DeleteConversationDatasetRequest from .types.conversation_dataset import GetConversationDatasetRequest from .types.conversation_dataset import ImportConversationDataOperationMetadata from .types.conversation_dataset import ImportConversationDataOperationResponse from .types.conversation_dataset import ImportConversationDataRequest from .types.conversation_dataset import InputConfig from .types.conversation_dataset import ListConversationDatasetsRequest from .types.conversation_dataset import ListConversationDatasetsResponse from .types.conversation_event import ConversationEvent from .types.conversation_model import ArticleSuggestionModelMetadata from .types.conversation_model import ConversationModel from .types.conversation_model import ConversationModelEvaluation from .types.conversation_model import CreateConversationModelEvaluationOperationMetadata from .types.conversation_model import CreateConversationModelEvaluationRequest from .types.conversation_model import CreateConversationModelOperationMetadata from .types.conversation_model import CreateConversationModelRequest from .types.conversation_model import DeleteConversationModelOperationMetadata from .types.conversation_model import DeleteConversationModelRequest from .types.conversation_model import DeployConversationModelOperationMetadata from .types.conversation_model import DeployConversationModelRequest from .types.conversation_model import EvaluationConfig from .types.conversation_model import GetConversationModelEvaluationRequest from .types.conversation_model import GetConversationModelRequest from .types.conversation_model import InputDataset from .types.conversation_model import ListConversationModelEvaluationsRequest from .types.conversation_model import ListConversationModelEvaluationsResponse from .types.conversation_model import ListConversationModelsRequest from .types.conversation_model import ListConversationModelsResponse from .types.conversation_model import SmartReplyMetrics from .types.conversation_model import SmartReplyModelMetadata from .types.conversation_model import UndeployConversationModelOperationMetadata from .types.conversation_model import UndeployConversationModelRequest from .types.conversation_profile import AutomatedAgentConfig from .types.conversation_profile import ClearSuggestionFeatureConfigOperationMetadata from .types.conversation_profile import ClearSuggestionFeatureConfigRequest from .types.conversation_profile import ConversationProfile from .types.conversation_profile import CreateConversationProfileRequest from .types.conversation_profile import DeleteConversationProfileRequest from .types.conversation_profile import GetConversationProfileRequest from .types.conversation_profile import HumanAgentAssistantConfig from .types.conversation_profile import HumanAgentHandoffConfig from .types.conversation_profile import ListConversationProfilesRequest from .types.conversation_profile import ListConversationProfilesResponse from .types.conversation_profile import LoggingConfig from .types.conversation_profile import NotificationConfig from .types.conversation_profile import SetSuggestionFeatureConfigOperationMetadata from .types.conversation_profile import SetSuggestionFeatureConfigRequest from .types.conversation_profile import SuggestionFeature from .types.conversation_profile import UpdateConversationProfileRequest from .types.document import CreateDocumentRequest from .types.document import DeleteDocumentRequest from .types.document import Document from .types.document import ExportDocumentRequest from .types.document import ExportOperationMetadata from .types.document import GetDocumentRequest from .types.document import ImportDocumentsRequest from .types.document import ImportDocumentsResponse from .types.document import ImportDocumentTemplate from .types.document import KnowledgeOperationMetadata from .types.document import ListDocumentsRequest from .types.document import ListDocumentsResponse from .types.document import ReloadDocumentRequest from .types.document import UpdateDocumentRequest from .types.entity_type import BatchCreateEntitiesRequest from .types.entity_type import BatchDeleteEntitiesRequest from .types.entity_type import BatchDeleteEntityTypesRequest from .types.entity_type import BatchUpdateEntitiesRequest from .types.entity_type import BatchUpdateEntityTypesRequest from .types.entity_type import BatchUpdateEntityTypesResponse from .types.entity_type import CreateEntityTypeRequest from .types.entity_type import DeleteEntityTypeRequest from .types.entity_type import EntityType from .types.entity_type import EntityTypeBatch from .types.entity_type import GetEntityTypeRequest from .types.entity_type import ListEntityTypesRequest from .types.entity_type import ListEntityTypesResponse from .types.entity_type import UpdateEntityTypeRequest from .types.environment import CreateEnvironmentRequest from .types.environment import DeleteEnvironmentRequest from .types.environment import Environment from .types.environment import EnvironmentHistory from .types.environment import GetEnvironmentHistoryRequest from .types.environment import GetEnvironmentRequest from .types.environment import ListEnvironmentsRequest from .types.environment import ListEnvironmentsResponse from .types.environment import TextToSpeechSettings from .types.environment import UpdateEnvironmentRequest from .types.fulfillment import Fulfillment from .types.fulfillment import GetFulfillmentRequest from .types.fulfillment import UpdateFulfillmentRequest from .types.gcs import GcsDestination from .types.gcs import GcsSources from .types.human_agent_assistant_event import HumanAgentAssistantEvent from .types.intent import BatchDeleteIntentsRequest from .types.intent import BatchUpdateIntentsRequest from .types.intent import BatchUpdateIntentsResponse from .types.intent import CreateIntentRequest from .types.intent import DeleteIntentRequest from .types.intent import GetIntentRequest from .types.intent import Intent from .types.intent import IntentBatch from .types.intent import ListIntentsRequest from .types.intent import ListIntentsResponse from .types.intent import UpdateIntentRequest from .types.intent import IntentView from .types.knowledge_base import CreateKnowledgeBaseRequest from .types.knowledge_base import DeleteKnowledgeBaseRequest from .types.knowledge_base import GetKnowledgeBaseRequest from .types.knowledge_base import KnowledgeBase from .types.knowledge_base import ListKnowledgeBasesRequest from .types.knowledge_base import ListKnowledgeBasesResponse from .types.knowledge_base import UpdateKnowledgeBaseRequest from .types.participant import AnalyzeContentRequest from .types.participant import AnalyzeContentResponse from .types.participant import AnnotatedMessagePart from .types.participant import ArticleAnswer from .types.participant import AssistQueryParameters from .types.participant import AutomatedAgentReply from .types.participant import CreateParticipantRequest from .types.participant import DtmfParameters from .types.participant import FaqAnswer from .types.participant import GetParticipantRequest from .types.participant import ListParticipantsRequest from .types.participant import ListParticipantsResponse from .types.participant import Message from .types.participant import MessageAnnotation from .types.participant import OutputAudio from .types.participant import Participant from .types.participant import SmartReplyAnswer from .types.participant import SuggestArticlesRequest from .types.participant import SuggestArticlesResponse from .types.participant import SuggestFaqAnswersRequest from .types.participant import SuggestFaqAnswersResponse from .types.participant import SuggestionResult from .types.participant import SuggestSmartRepliesRequest from .types.participant import SuggestSmartRepliesResponse from .types.participant import UpdateParticipantRequest from .types.session import DetectIntentRequest from .types.session import DetectIntentResponse from .types.session import EventInput from .types.session import QueryInput from .types.session import QueryParameters from .types.session import QueryResult from .types.session import Sentiment from .types.session import SentimentAnalysisRequestConfig from .types.session import SentimentAnalysisResult from .types.session import StreamingDetectIntentRequest from .types.session import StreamingDetectIntentResponse from .types.session import StreamingRecognitionResult from .types.session import TextInput from .types.session_entity_type import CreateSessionEntityTypeRequest from .types.session_entity_type import DeleteSessionEntityTypeRequest from .types.session_entity_type import GetSessionEntityTypeRequest from .types.session_entity_type import ListSessionEntityTypesRequest from .types.session_entity_type import ListSessionEntityTypesResponse from .types.session_entity_type import SessionEntityType from .types.session_entity_type import UpdateSessionEntityTypeRequest from .types.validation_result import ValidationError from .types.validation_result import ValidationResult from .types.version import CreateVersionRequest from .types.version import DeleteVersionRequest from .types.version import GetVersionRequest from .types.version import ListVersionsRequest from .types.version import ListVersionsResponse from .types.version import UpdateVersionRequest from .types.version import Version from .types.webhook import OriginalDetectIntentRequest from .types.webhook import WebhookRequest from .types.webhook import WebhookResponse __all__ = ( "AgentsAsyncClient", "AnswerRecordsAsyncClient", "ContextsAsyncClient", "ConversationDatasetsAsyncClient", "ConversationModelsAsyncClient", "ConversationProfilesAsyncClient", "ConversationsAsyncClient", "DocumentsAsyncClient", "EntityTypesAsyncClient", "EnvironmentsAsyncClient", "FulfillmentsAsyncClient", "IntentsAsyncClient", "KnowledgeBasesAsyncClient", "ParticipantsAsyncClient", "SessionEntityTypesAsyncClient", "SessionsAsyncClient", "VersionsAsyncClient", "Agent", "AgentAssistantFeedback", "AgentAssistantRecord", "AgentsClient", "AnalyzeContentRequest", "AnalyzeContentResponse", "AnnotatedMessagePart", "AnswerFeedback", "AnswerRecord", "AnswerRecordsClient", "ArticleAnswer", "ArticleSuggestionModelMetadata", "AssistQueryParameters", "AudioEncoding", "AutomatedAgentConfig", "AutomatedAgentReply", "BatchCreateEntitiesRequest", "BatchDeleteEntitiesRequest", "BatchDeleteEntityTypesRequest", "BatchDeleteIntentsRequest", "BatchUpdateEntitiesRequest", "BatchUpdateEntityTypesRequest", "BatchUpdateEntityTypesResponse", "BatchUpdateIntentsRequest", "BatchUpdateIntentsResponse", "ClearSuggestionFeatureConfigOperationMetadata", "ClearSuggestionFeatureConfigRequest", "CompleteConversationRequest", "Context", "ContextsClient", "Conversation", "ConversationDataset", "ConversationDatasetsClient", "ConversationEvent", "ConversationInfo", "ConversationModel", "ConversationModelEvaluation", "ConversationModelsClient", "ConversationPhoneNumber", "ConversationProfile", "ConversationProfilesClient", "ConversationsClient", "CreateContextRequest", "CreateConversationDatasetOperationMetadata", "CreateConversationDatasetRequest", "CreateConversationModelEvaluationOperationMetadata", "CreateConversationModelEvaluationRequest", "CreateConversationModelOperationMetadata", "CreateConversationModelRequest", "CreateConversationProfileRequest", "CreateConversationRequest", "CreateDocumentRequest", "CreateEntityTypeRequest", "CreateEnvironmentRequest", "CreateIntentRequest", "CreateKnowledgeBaseRequest", "CreateParticipantRequest", "CreateSessionEntityTypeRequest", "CreateVersionRequest", "DeleteAgentRequest", "DeleteAllContextsRequest", "DeleteContextRequest", "DeleteConversationDatasetOperationMetadata", "DeleteConversationDatasetRequest", "DeleteConversationModelOperationMetadata", "DeleteConversationModelRequest", "DeleteConversationProfileRequest", "DeleteDocumentRequest", "DeleteEntityTypeRequest", "DeleteEnvironmentRequest", "DeleteIntentRequest", "DeleteKnowledgeBaseRequest", "DeleteSessionEntityTypeRequest", "DeleteVersionRequest", "DeployConversationModelOperationMetadata", "DeployConversationModelRequest", "DetectIntentRequest", "DetectIntentResponse", "Document", "DocumentsClient", "DtmfParameters", "EntityType", "EntityTypeBatch", "EntityTypesClient", "Environment", "EnvironmentHistory", "EnvironmentsClient", "EvaluationConfig", "EventInput", "ExportAgentRequest", "ExportAgentResponse", "ExportDocumentRequest", "ExportOperationMetadata", "FaqAnswer", "Fulfillment", "FulfillmentsClient", "GcsDestination", "GcsSources", "GetAgentRequest", "GetContextRequest", "GetConversationDatasetRequest", "GetConversationModelEvaluationRequest", "GetConversationModelRequest", "GetConversationProfileRequest", "GetConversationRequest", "GetDocumentRequest", "GetEntityTypeRequest", "GetEnvironmentHistoryRequest", "GetEnvironmentRequest", "GetFulfillmentRequest", "GetIntentRequest", "GetKnowledgeBaseRequest", "GetParticipantRequest", "GetSessionEntityTypeRequest", "GetValidationResultRequest", "GetVersionRequest", "HumanAgentAssistantConfig", "HumanAgentAssistantEvent", "HumanAgentHandoffConfig", "ImportAgentRequest", "ImportConversationDataOperationMetadata", "ImportConversationDataOperationResponse", "ImportConversationDataRequest", "ImportDocumentTemplate", "ImportDocumentsRequest", "ImportDocumentsResponse", "InputAudioConfig", "InputConfig", "InputDataset", "Intent", "IntentBatch", "IntentView", "IntentsClient", "KnowledgeBase", "KnowledgeBasesClient", "KnowledgeOperationMetadata", "ListAnswerRecordsRequest", "ListAnswerRecordsResponse", "ListContextsRequest", "ListContextsResponse", "ListConversationDatasetsRequest", "ListConversationDatasetsResponse", "ListConversationModelEvaluationsRequest", "ListConversationModelEvaluationsResponse", "ListConversationModelsRequest", "ListConversationModelsResponse", "ListConversationProfilesRequest", "ListConversationProfilesResponse", "ListConversationsRequest", "ListConversationsResponse", "ListDocumentsRequest", "ListDocumentsResponse", "ListEntityTypesRequest", "ListEntityTypesResponse", "ListEnvironmentsRequest", "ListEnvironmentsResponse", "ListIntentsRequest", "ListIntentsResponse", "ListKnowledgeBasesRequest", "ListKnowledgeBasesResponse", "ListMessagesRequest", "ListMessagesResponse", "ListParticipantsRequest", "ListParticipantsResponse", "ListSessionEntityTypesRequest", "ListSessionEntityTypesResponse", "ListVersionsRequest", "ListVersionsResponse", "LoggingConfig", "Message", "MessageAnnotation", "NotificationConfig", "OriginalDetectIntentRequest", "OutputAudio", "OutputAudioConfig", "OutputAudioEncoding", "Participant", "ParticipantsClient", "QueryInput", "QueryParameters", "QueryResult", "ReloadDocumentRequest", "RestoreAgentRequest", "SearchAgentsRequest", "SearchAgentsResponse", "Sentiment", "SentimentAnalysisRequestConfig", "SentimentAnalysisResult", "SessionEntityType", "SessionEntityTypesClient", "SessionsClient", "SetAgentRequest", "SetSuggestionFeatureConfigOperationMetadata", "SetSuggestionFeatureConfigRequest", "SmartReplyAnswer", "SmartReplyMetrics", "SmartReplyModelMetadata", "SpeechContext", "SpeechModelVariant", "SpeechToTextConfig", "SpeechWordInfo", "SsmlVoiceGender", "StreamingDetectIntentRequest", "StreamingDetectIntentResponse", "StreamingRecognitionResult", "SuggestArticlesRequest", "SuggestArticlesResponse", "SuggestFaqAnswersRequest", "SuggestFaqAnswersResponse", "SuggestSmartRepliesRequest", "SuggestSmartRepliesResponse", "SuggestionFeature", "SuggestionResult", "SynthesizeSpeechConfig", "TextInput", "TextToSpeechSettings", "TrainAgentRequest", "UndeployConversationModelOperationMetadata", "UndeployConversationModelRequest", "UpdateAnswerRecordRequest", "UpdateContextRequest", "UpdateConversationProfileRequest", "UpdateDocumentRequest", "UpdateEntityTypeRequest", "UpdateEnvironmentRequest", "UpdateFulfillmentRequest", "UpdateIntentRequest", "UpdateKnowledgeBaseRequest", "UpdateParticipantRequest", "UpdateSessionEntityTypeRequest", "UpdateVersionRequest", "ValidationError", "ValidationResult", "Version", "VersionsClient", "VoiceSelectionParams", "WebhookRequest", "WebhookResponse", )
42.369115
88
0.834119
67cacd89124fd68874302e8ab9d12be22b7b8722
2,384
py
Python
configs/selfsup/simclr/r50_bs256_ep200_mocov2_neck.py
neuroailab/OpenSelfSup
37709c326173a981292fed12c336c82d3356cab2
[ "Apache-2.0" ]
2
2020-07-01T02:46:25.000Z
2021-02-21T03:56:10.000Z
configs/selfsup/simclr/r50_bs256_ep200_mocov2_neck.py
neuroailab/OpenSelfSup
37709c326173a981292fed12c336c82d3356cab2
[ "Apache-2.0" ]
null
null
null
configs/selfsup/simclr/r50_bs256_ep200_mocov2_neck.py
neuroailab/OpenSelfSup
37709c326173a981292fed12c336c82d3356cab2
[ "Apache-2.0" ]
null
null
null
_base_ = '../../base.py' # model settings model = dict( type='SimCLR', pretrained=None, backbone=dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='SyncBN')), neck=dict( type='NonLinearNeckV1', # simple fc-relu-fc neck in MoCo v2 in_channels=2048, hid_channels=2048, out_channels=128, with_avg_pool=True), head=dict(type='ContrastiveHead', temperature=0.1)) # dataset settings data_source_cfg = dict( type='ImageNet', memcached=True, mclient_path='/mnt/lustre/share/memcached_client') data_train_list = 'data/imagenet/meta/train.txt' data_train_root = 'data/imagenet/train' dataset_type = 'ContrastiveDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), dict( type='RandomAppliedTrans', transforms=[ dict( type='ColorJitter', brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2) ], p=0.8), dict(type='RandomGrayscale', p=0.2), dict( type='RandomAppliedTrans', transforms=[ dict( type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, kernel_size=23) ], p=0.5), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ] data = dict( imgs_per_gpu=32, # total 32*8 workers_per_gpu=4, train=dict( type=dataset_type, data_source=dict( list_file=data_train_list, root=data_train_root, **data_source_cfg), pipeline=train_pipeline)) # optimizer optimizer = dict(type='LARS', lr=0.3, weight_decay=0.000001, momentum=0.9, paramwise_options={ '(bn|gn)(\d+)?.(weight|bias)': dict(weight_decay=0., lars_exclude=True), 'bias': dict(weight_decay=0., lars_exclude=True)}) # learning policy lr_config = dict( policy='CosineAnealing', min_lr=0., warmup='linear', warmup_iters=10, warmup_ratio=0.0001, warmup_by_epoch=True) checkpoint_config = dict(interval=10) # runtime settings total_epochs = 200
29.432099
92
0.585151
5cbe7559ff5c9d72eee6f8abf6cbf23660b4c06a
1,999
py
Python
atcoder/python/manhattan.py
yskang/AlgorithmPracticeWithPython
f7129bd1924a7961489198f0ee052d2cd1e9cf40
[ "MIT" ]
null
null
null
atcoder/python/manhattan.py
yskang/AlgorithmPracticeWithPython
f7129bd1924a7961489198f0ee052d2cd1e9cf40
[ "MIT" ]
null
null
null
atcoder/python/manhattan.py
yskang/AlgorithmPracticeWithPython
f7129bd1924a7961489198f0ee052d2cd1e9cf40
[ "MIT" ]
null
null
null
# Title: Manhattan Crepe Cart # Link: hhttps://codingcompetitions.withgoogle.com/codejam/round/0000000000051706/000000000012295c import sys import bisect sys.setrecursionlimit(10 ** 6) read_single_int = lambda: int(sys.stdin.readline().strip()) read_list_int = lambda: list(map(int, sys.stdin.readline().strip().split(' '))) read_list_words = lambda: sys.stdin.readline().strip().split(' ') def solution(p: int, q: int, persons: list): norths = [] souths = [] easts = [] wests = [] for x, y, d in persons: if d == 'N': norths.append(y) elif d == 'S': souths.append(y) elif d == 'E': easts.append(x) elif d == 'W': wests.append(x) norths = sorted(norths) souths = sorted(souths) ys = set(norths) ys.update(souths) ys = sorted(ys) ys = list(map(lambda k: k+1, ys)) max_y_value = -99999 max_y = -99999 for y in [0] + ys: v = bisect.bisect_left(norths, y) v += (len(souths) - bisect.bisect_right(souths, y)) if v > max_y_value: max_y_value = v max_y = y wests = sorted(wests) easts = sorted(easts) xs = set(wests) xs.update(easts) xs = sorted(xs) xs = list(map(lambda k: k+1, xs)) max_x_value = -9999 max_x = -9999 for x in [0] + xs: v = bisect.bisect_left(easts, x) v += (len(wests)-bisect.bisect_right(wests, x)) if v > max_x_value: max_x_value = v max_x = x return '{} {}'.format(max_x, max_y) def main(): t = read_single_int() for case in range(1, t+1): p, q = read_list_int() persons = [] for _ in range(p): x, y, d = read_list_words() persons.append((int(x), int(y), d)) print('Case #{}: {}'.format(case, solution(p, q, persons))) if __name__ == '__main__': main()
26.302632
99
0.528764
059e2589ae4d045f29a95059b303da34f3fbd7d4
9,335
py
Python
huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/list_message_template_details_response.py
githubmilesma/huaweicloud-sdk-python-v3
9d9449ed68a609ca65f0aa50b5b2a1c28445bf03
[ "Apache-2.0" ]
1
2021-04-16T07:59:28.000Z
2021-04-16T07:59:28.000Z
huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/list_message_template_details_response.py
Lencof/huaweicloud-sdk-python-v3
d13dc4e2830a83e295be6e4de021999b3376e34e
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/list_message_template_details_response.py
Lencof/huaweicloud-sdk-python-v3
d13dc4e2830a83e295be6e4de021999b3376e34e
[ "Apache-2.0" ]
1
2022-01-17T02:24:18.000Z
2022-01-17T02:24:18.000Z
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ListMessageTemplateDetailsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'message_template_id': 'str', 'message_template_name': 'str', 'protocol': 'str', 'tag_names': 'list[str]', 'create_time': 'str', 'update_time': 'str', 'content': 'str', 'request_id': 'str' } attribute_map = { 'message_template_id': 'message_template_id', 'message_template_name': 'message_template_name', 'protocol': 'protocol', 'tag_names': 'tag_names', 'create_time': 'create_time', 'update_time': 'update_time', 'content': 'content', 'request_id': 'request_id' } def __init__(self, message_template_id=None, message_template_name=None, protocol=None, tag_names=None, create_time=None, update_time=None, content=None, request_id=None): """ListMessageTemplateDetailsResponse - a model defined in huaweicloud sdk""" super().__init__() self._message_template_id = None self._message_template_name = None self._protocol = None self._tag_names = None self._create_time = None self._update_time = None self._content = None self._request_id = None self.discriminator = None if message_template_id is not None: self.message_template_id = message_template_id if message_template_name is not None: self.message_template_name = message_template_name if protocol is not None: self.protocol = protocol if tag_names is not None: self.tag_names = tag_names if create_time is not None: self.create_time = create_time if update_time is not None: self.update_time = update_time if content is not None: self.content = content if request_id is not None: self.request_id = request_id @property def message_template_id(self): """Gets the message_template_id of this ListMessageTemplateDetailsResponse. 模板ID。 :return: The message_template_id of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._message_template_id @message_template_id.setter def message_template_id(self, message_template_id): """Sets the message_template_id of this ListMessageTemplateDetailsResponse. 模板ID。 :param message_template_id: The message_template_id of this ListMessageTemplateDetailsResponse. :type: str """ self._message_template_id = message_template_id @property def message_template_name(self): """Gets the message_template_name of this ListMessageTemplateDetailsResponse. 模板名称。 :return: The message_template_name of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._message_template_name @message_template_name.setter def message_template_name(self, message_template_name): """Sets the message_template_name of this ListMessageTemplateDetailsResponse. 模板名称。 :param message_template_name: The message_template_name of this ListMessageTemplateDetailsResponse. :type: str """ self._message_template_name = message_template_name @property def protocol(self): """Gets the protocol of this ListMessageTemplateDetailsResponse. 模板支持的协议类型。 目前支持的协议包括: “email”:邮件传输协议。 “default”: “sms”:短信传输协议。 “functionstage”:FunctionGraph(函数)传输协议。 “functiongraph”:FunctionGraph(工作流)传输协议。 “dms”:DMS传输协议。 “http”、“https”:HTTP/HTTPS传输协议。 :return: The protocol of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._protocol @protocol.setter def protocol(self, protocol): """Sets the protocol of this ListMessageTemplateDetailsResponse. 模板支持的协议类型。 目前支持的协议包括: “email”:邮件传输协议。 “default”: “sms”:短信传输协议。 “functionstage”:FunctionGraph(函数)传输协议。 “functiongraph”:FunctionGraph(工作流)传输协议。 “dms”:DMS传输协议。 “http”、“https”:HTTP/HTTPS传输协议。 :param protocol: The protocol of this ListMessageTemplateDetailsResponse. :type: str """ self._protocol = protocol @property def tag_names(self): """Gets the tag_names of this ListMessageTemplateDetailsResponse. 模板tag列表。 是消息模板“{}”内的字段,在具体使用消息模板时,可根据实际情况替为该字段赋值。 :return: The tag_names of this ListMessageTemplateDetailsResponse. :rtype: list[str] """ return self._tag_names @tag_names.setter def tag_names(self, tag_names): """Sets the tag_names of this ListMessageTemplateDetailsResponse. 模板tag列表。 是消息模板“{}”内的字段,在具体使用消息模板时,可根据实际情况替为该字段赋值。 :param tag_names: The tag_names of this ListMessageTemplateDetailsResponse. :type: list[str] """ self._tag_names = tag_names @property def create_time(self): """Gets the create_time of this ListMessageTemplateDetailsResponse. 模板创建时间。 时间格式为UTC时间,YYYY-MM-DDTHH:MM:SSZ。 :return: The create_time of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this ListMessageTemplateDetailsResponse. 模板创建时间。 时间格式为UTC时间,YYYY-MM-DDTHH:MM:SSZ。 :param create_time: The create_time of this ListMessageTemplateDetailsResponse. :type: str """ self._create_time = create_time @property def update_time(self): """Gets the update_time of this ListMessageTemplateDetailsResponse. 模板最后更新时间。时间格式为UTC时间,YYYY-MM-DDTHH:MM:SSZ。 :return: The update_time of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._update_time @update_time.setter def update_time(self, update_time): """Sets the update_time of this ListMessageTemplateDetailsResponse. 模板最后更新时间。时间格式为UTC时间,YYYY-MM-DDTHH:MM:SSZ。 :param update_time: The update_time of this ListMessageTemplateDetailsResponse. :type: str """ self._update_time = update_time @property def content(self): """Gets the content of this ListMessageTemplateDetailsResponse. 模板内容。 :return: The content of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._content @content.setter def content(self, content): """Sets the content of this ListMessageTemplateDetailsResponse. 模板内容。 :param content: The content of this ListMessageTemplateDetailsResponse. :type: str """ self._content = content @property def request_id(self): """Gets the request_id of this ListMessageTemplateDetailsResponse. 请求的唯一标识ID。 :return: The request_id of this ListMessageTemplateDetailsResponse. :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this ListMessageTemplateDetailsResponse. 请求的唯一标识ID。 :param request_id: The request_id of this ListMessageTemplateDetailsResponse. :type: str """ self._request_id = request_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListMessageTemplateDetailsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.116667
203
0.633637
a42c246a551c8421ed31b5b78c59629ddbd58d67
446
py
Python
Heap/heapq.py
liu-yunpeng/algorithms
1bbe34b4a3d2f090007faec25220ac8535213da7
[ "MIT" ]
3
2021-04-24T01:20:27.000Z
2021-04-24T20:39:27.000Z
Heap/heapq.py
liu-yunpeng/algorithms
1bbe34b4a3d2f090007faec25220ac8535213da7
[ "MIT" ]
null
null
null
Heap/heapq.py
liu-yunpeng/algorithms
1bbe34b4a3d2f090007faec25220ac8535213da7
[ "MIT" ]
null
null
null
import heapq lst = [6, 7, 9, 4, 3, 5, 8, 10, 1] # using heapify() to convert list into heap heapq.heapify(lst) # get the largest k elements print(heapq.nlargest(3, lst)) # get the smallest k elements print(heapq.nsmallest(3, lst)) heapq.heappush(lst, 2) heapq.heappush(lst, 12) print(lst) heapq.heappop(lst) heapq.heappop(lst) print(lst) # pop first, then push heapq.heapreplace(lst, 15) # pop push, then pop heapq.heappushpop(lst, 5)
14.866667
43
0.704036
0cfecda054a672cc32a062436e6a5cfeae36e263
21,736
py
Python
rescene/utility.py
zordtk/pyReScene
fe20ee6c72dcbd62e92d53678016321705795871
[ "MIT" ]
null
null
null
rescene/utility.py
zordtk/pyReScene
fe20ee6c72dcbd62e92d53678016321705795871
[ "MIT" ]
null
null
null
rescene/utility.py
zordtk/pyReScene
fe20ee6c72dcbd62e92d53678016321705795871
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2008-2010 ReScene.com # Copyright (c) 2011-2015 pyReScene # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # Port based on the these files: (MIT license) # RarFileNameComparer.cs, RarFileNameFinder.cs, SfvReader.cs # Everything else: MIT license import re import sys import difflib import mmap import warnings import locale import os import shutil import time import zlib from io import BytesIO, TextIOBase, TextIOWrapper from tempfile import mktemp try: import win32api win32api_available = True except ImportError: win32api_available = False # on Windows: # SET NAME=True configure # ECHO %NAME% check # SET NAME= clear # SETX NAME VALUE set environment variables permanently _DEBUG = bool(os.environ.get("RESCENE_DEBUG")) # leave empty for False # disables the spinner from showing while doing some processing _SPINNER = not bool(os.environ.get("RESCENE_NO_SPINNER")) # disables offset information to be printed out in srr -e output # this way the output become more easy to compare _OFFSETS = not bool(os.environ.get("RESCENE_NO_OFFSETS")) # provides the temporary directory location to places where it would be a mess # to pass it as parameter (fingerprint calculation) temporary_directory = None def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emmitted when the function is used.""" def newFunc(*args, **kwargs): warnings.warn("Call to deprecated function %s." % func.__name__, category=DeprecationWarning) return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc # compatibility with 2.x if sys.hexversion < 0x3000000: # prefer 3.x behaviour range = xrange # @ReservedAssignment str = unicode # @ReservedAssignment unicode = unicode # @ReservedAssignment # Export to other modules def fsunicode(path): """Converts a file system "str" object to Unicode""" if isinstance(path, unicode): return path encoding = sys.getfilesystemencoding() return path.decode(encoding or sys.getdefaultencoding()) else: unicode = str # @ReservedAssignment def fsunicode(path): return path # Python BUG: http://bugs.python.org/issue1927 try: # Python < 3 raw_input = raw_input # @ReservedAssignment except NameError: # Python 3 raw_input = input # @ReservedAssignment try: # Python < 3 basestring = basestring # @ReservedAssignment except NameError: # Python 3 basestring = str # @ReservedAssignment class FileType(object): """File types in use to create SRS files for""" MKV, AVI, MP4, WMV, FLAC, MP3, STREAM, M2TS, Unknown = ( "MKV", "AVI", "MP4", "WMV", "FLAC", "MP3", "STREAM", "M2TS", "Unknown") # the extensions that are supported # .m4v is used for some non scene samples, xxx samples and music releases # It is the same file format as MP4 # VA-Anjunabeats_Vol_7__Mixed_By_Above_And_Beyond-(ANJCD014D)-2CD-2009-TT/ # 301-va-anjunabeats_vol_7__bonus_dvd-tt.m4v # Gothic_3_Soundtrack-Promo-CD-2006-XARDAS/ # 05_g3_makingofst-xardas.wmv # 06_g3_makingofst-xardas.m4v # Her-Sweet-Hand.11.01.15.Alex.Shy.Definitely.1.Time.Only.XXX.720p.M4V-OHRLY # Sample/ohrly-hsh115asd1to.sample.m4v # System_Of_A_Down-Aerials-svcd-wcs # system_of_a_down-aerials-svcd-wcs.m2p # System_Of_A_Down-Aerials-svcd-wcs # system_of_a_down-aerials-svcd-wcs.m2p StreamExtensions = ('.vob', '.m2ts', '.ts', '.mpeg', '.mpg', '.m2v', '.m2p') VideoExtensions = ('.mp4', '.m4v', # M4V: used for some XXX releases '.avi', '.mkv', '.wmv') + StreamExtensions AudioExtensions = ('.mp3', '.flac') # TODO: mp2? def __init__(self, file_type, archived_file): self.file_type = file_type self.archived_file = archived_file def __str__(self, *args, **kwargs): return self.file_type class SfvEntry(object): """Represents a record from a .sfv file.""" def __init__(self, file_name, crc32="00000000"): self.file_name = file_name.strip('"') self.crc32 = crc32 def get_crc_32(self): return self.__crc32 def set_crc_32(self, value): if not bool(re.match("^[\dA-F]{1,8}$", value, re.IGNORECASE)): raise ValueError(value + " is not a CRC32 hash.") # Baywatch.S11E11.DVDRiP.XViD-NODLABS.srr CRC is missing a zero self.__crc32 = value.rjust(8, "0") crc32 = property(get_crc_32, set_crc_32, "The crc32 hash.") def __lt__(self, other): """The sort routines are guaranteed to use __lt__ when making comparisons between two objects.""" ext_self = self.file_name[-4:].lower() ext_other = other.file_name[-4:].lower() same_base = self.file_name[:-4].lower() == other.file_name[:-4].lower() if same_base and ext_self != ext_other: if ext_self == ".rar": if bool(re.match("\.[r-z]\d{2}$", ext_other)): return True else: return self.file_name < other.file_name # .rar < .r00 elif ext_other == ".rar": if bool(re.match("\.[r-z]\d{2}$", ext_self)): return False else: return self.file_name < other.file_name # .r00 > .rar # .part1.rar < .part2.rar, r99 < s00, 001 < 002 return self.file_name < other.file_name def __repr__(self): return self.file_name + " " + self.crc32 def __eq__(self, other): if type(other) is type(self): return (self.file_name.lower() == other.file_name.lower() and self.crc32.lower() == other.crc32.lower()) return False def __ne__(self, other): return not self.__eq__(other) __hash__ = None # Avoid DeprecationWarning in Python < 3 def parse_sfv_data(file_data): """Returns a tuple of three lists: (entries, comments, errors). Accepts SFV file data as a byte string. The "comments" and "errors" lists contain lines decoded from the file as text strings. File names must be iso-8859-1 aka latin1. http://en.wikipedia.org/wiki/Extended_ASCII Other text is decoded from latin1 using the "replace" error handler. """ entries = [] # SfvEntry objects comments = [] errors = [] # unrecognized stuff # .sfv files without any \n line breaks exist # e.g. Need_for_Speed_Underground_2_JPN_NGC-WRG (\r\r instead) # (are those made like that or altered on transfer?) file_data = file_data.replace(b"\r", b"\n") for line in file_data.split(b"\n"): if not line.strip(): # ignore blank lines in parsed result pass elif line.lstrip().startswith(b";"): # comment lines must start with ; line = line.decode("latin-1", "replace") comments.append(line) else: # actual data or parsing errors line = line.rstrip() try: text = line.decode("latin-1") text = text.replace("\t", " ") # convert tabs index = text.rindex(" ") # ValueError: substring not found filename = text[:index].strip() # A SFV can contain multiple white spaces crc = text[index + 1:].lstrip() # ValueError: bad CRC e.g. char > F entries.append(SfvEntry(filename, crc)) except ValueError: line = line.decode("latin-1", "replace") errors.append(line) return entries, comments, errors def parse_sfv_file(sfv_file): """Parses an SFV file with parse_sfv_data(). Accepts an open binary file object or a file name.""" try: sfv_file.seek(0) # start at the beginning of the stream sfv_data = sfv_file.read() except AttributeError: try: with open(sfv_file, mode='rb') as fsock: sfv_data = fsock.read() except IOError: if not isinstance(sfv_file, basestring): raise with open("\\\\?\\" + sfv_file, mode='rb') as fsock: sfv_data = fsock.read() return parse_sfv_data(sfv_data) def filter_sfv_duplicates(entries): """Accepts the entries list of the parse functions above. The result will be sorted.""" result = list() previous = None for entry in sorted(entries): if previous is None or not entry.__eq__(previous): result.append(entry) previous = entry return result def same_sfv(one, two): """Only based on actual content, not comments.""" onec, _, _ = parse_sfv_file(one) twoc, _, _ = parse_sfv_file(two) onec.sort() twoc.sort() return onec == twoc def next_archive(rfile, is_old=False): """Returns the name of the next possible RAR archive. Behaviour undefined for *.part99.rar, *.rrar,... It must never occur. is_old: When enabled, makes sure the first .rar file is detected as old style volume naming. It makes '.part02.r00' possible. e.g. Doctor.Who.The.Enemy.Of.The.World.S05E17.DVDRip.x264-PFa """ def inc(extension): # create an array of a string so we can manipulate it extension = list(extension) i = len(extension) - 1 # last element while extension[i] == "9": extension[i] = "0" i -= 1 # go a character back else: # also works with "rstuv" extension[i] = chr(ord(extension[i]) + 1) return "".join(extension) # array back to string if re.match(".*\.part\d*.rar$", rfile, re.IGNORECASE) and not is_old: return inc(rfile[:-4]) + rfile[-4:] elif re.match(".*\.rar$", rfile, re.IGNORECASE): return rfile[:-4] + ".r00" elif not is_rar(rfile): raise AttributeError("The extension must be one form a RAR archive.") else: return inc(rfile) def is_rar(file_name): """True if file_name is a correctly named RAR file. Checks only based on the file name. Legal extensions: - .rar - .r00 - r99, s00 - v99 rar cmd creates beyond this limit - .000 - .999 001 for Accepted.DVDRip.XViD-ALLiANCE Not valid: - .cbr - .exe TODO: SFX support """ return bool(re.match(".*\.(rar|[r-z]\d{2}|\d{3})$", file_name, re.I)) def first_rars(file_iter): """Tries to pick the first RAR file based on file name.""" # group 3: when there is a digit before .rar e.g. test3.rar fre = ".*((\.part0*1\.rar|(?<!\d)\.rar)|((^|[^\d])(?<!part)(\d+\.rar)))$" def is_first(rar): if re.match(fre, rar, re.IGNORECASE): return True return rar.endswith((".000", ".001")) def is_dotrar(rar): return rar.lower().endswith(".rar") # all items will need to be checked at least once: full generator run input_files = list(file_iter) firsts = list(filter(is_first, input_files)) # .000? then no .001 for first in filter(lambda x: x.endswith(".000"), firsts): try: firsts.remove(first[:-1] + "1") except ValueError: # the release consists of a a single .000 file only # e.g. Ys_6_The_Ark_of_Napishtim_USA_FIX_READNFO_PSP-REBORN pass # list still empty? A .part2.r00 situation might be the case. if not len(firsts): firsts = list(filter(is_dotrar, input_files)) have_r00_follower = [] for first in firsts: if first[:-3] + "r00" in input_files: have_r00_follower.append(first) if len(have_r00_follower): firsts = have_r00_follower elif len(input_files) > 1: firsts = [] # probably incomplete, so detect nothing # else: empty list firsts or # there is only a single .rar file provided with a weird name # e.g. name.part3.rar (and it gets detected) return firsts def is_good_srr(filepath): """Tests whether the file path only contains / and none of the other illegal characters: \/:*?"<>| in Windows. Stored files in SRRs contain forward slashes. RAR uses backward slashes.""" ILLEGAL_WINDOWS_CHARACTERS = """\:*?"<>|""" for char in ILLEGAL_WINDOWS_CHARACTERS: if char in filepath: return False return True def joinpath(path, start=""): """Validates and joins a sequence of path elements into an OS path Each path element is an individual directory, subdirectory or file name. Raises ValueError if an element name is not supported by the OS.""" illegal_names = frozenset( ("", os.path.curdir, os.path.pardir, os.path.devnull)) for elem in path: if os.path.dirname(elem) or elem in illegal_names: fmt = "Path element not supported by OS: {0!r}" raise ValueError(fmt.format(elem)) return os.path.join(start, *path) def sep(number, loc=''): """Adds a thousands separator to the number. The function is locale aware.""" locale.setlocale(locale.LC_ALL, loc) return locale.format('%d', number, True) def show_spinner(amount): """amount: a number""" if _SPINNER: sys.stdout.write("\b%s" % ['|', '/', '-', '\\'][amount % 4]) def remove_spinner(): """removes spinner with the backspace char""" if _SPINNER: sys.stdout.write("\b") def empty_folder(folder_path): if os.name == "nt" and win32api_available: folder_path = win32api.GetShortPathName(folder_path) for file_object in os.listdir(folder_path): file_object_path = os.path.join(folder_path, file_object) if os.name == "nt" and win32api_available: file_object_path = win32api.GetShortPathName(file_object_path) if os.path.isfile(file_object_path): os.unlink(file_object_path) else: try: shutil.rmtree(file_object_path) except OSError: remove_folder(file_object_path) def remove_folder(path): """Recursively delete a directory tree.""" if os.name == "nt" and win32api_available: path = win32api.GetShortPathName(path) names = os.listdir(path) for name in names: fullname = os.path.join(path, name) if os.path.isdir(fullname): remove_folder(fullname) else: try: os.remove(fullname) except OSError: try: os.remove("\\\\?\\" + fullname) except OSError: # it's a dir? remove_folder(fullname) try: os.rmdir(path) except OSError: os.rmdir("\\\\?\\" + path) def create_temp_file_name(output_file): """Creates file name for the temporary file based on the name of the output file to create/overwrite later. output_file must be an absolute path. Used to prevent overwriting good files with a broken one later on.""" dirname = os.path.dirname(output_file) prefix = os.path.basename(output_file) tmpfile = mktemp(".tmp", prefix + "-", dirname) # Windows long path support if os.name == "nt": tmpfile = "\\\\?\\" + os.path.abspath(tmpfile) assert not os.path.exists(tmpfile), "Temp file must not exist yet" return tmpfile def replace_result(src, dest): """Replaces the destination file with the source file. Will not do anything when the source file doesn't exist. Used to prevent overwriting good files with a broken one later on.""" if not src.startswith(dest): # Windows long path support if os.name == "nt": dest = "\\\\?\\" + os.path.abspath(dest) # it must come from the above method (create_temp_file_name) assert src.startswith(dest), "src and dest not at same location" # it is possible a temporary source file was never created # (.srr question for replacement is false) if os.path.isfile(src): # delete previous file if it exists: user allowed to overwrite it if os.path.isfile(dest): try: os.unlink(dest) except OSError as delete_error: print("Two processes are now trying to delete the same file!") print(delete_error) if _DEBUG: print(" Destination: {0}".format(dest)) # TODO: work in progress missing srs files # assert False # # # wait 5 seconds for the file to disappear # for _ in range(0, 5): # if os.path.isfile(dest): # time.sleep(1) # else: # break # else: # print("Destination file still not deleted!") # concurrency issue: it can fail here with a # WindowsError/OSError when the other process made the file try: os.rename(src, dest) except OSError: print("Two processes are now trying to output the same file!") if _DEBUG: print(" Source: {0}".format(src)) print(" Destination: {0}".format(dest)) print("This one lost... deleting temp file.") os.unlink(src) raise def calculate_crc32(file_name): """Calculates crc32 for a given file and show a spinner.""" crc = 0 count = 0 with open(file_name, "rb") as f: x = f.read(65536) while x: count += 1 show_spinner(count) crc = zlib.crc32(x, crc) x = f.read(65536) remove_spinner() return crc & 0xFFFFFFFF def capitalized_fn(afile): """ Checks provided file with the file on disk and returns the imput with its exact capitalization on disk. In the second value the capitalization is preserved if it was available. Returns tuple: (exact, capitals) exact: what's on disk captials: the name with capitals (preservation purposes) """ exact = capitals = afile # 1) find the proper file on disk # on Windows it will be found despite capitalization # on Linux it could not when the capitals don't match (file name from sfv) inputfn = os.path.basename(afile) inputdir = os.path.dirname(afile) or os.curdir for cfile in os.listdir(inputdir): if (cfile.lower() == inputfn.lower() and os.path.isfile(os.path.join(inputdir, cfile))): exact = os.path.join(inputdir, cfile) break # 2) use proper capitalization on both OSes # - choose the one with capitals # - not conclusive? use original file name actualfn = os.path.basename(exact) if actualfn.lower() == actualfn: # use file name of SFV either way (no difference is possible) cpath = inputdir capitals = os.path.join(cpath, inputfn) elif inputfn.lower() == inputfn: # actualfn has capitals and input none cpath = inputdir capitals = os.path.join(cpath, actualfn) return exact, capitals ############################################################################### def diff_lists(one, two): """Accepts two lists.""" # d = difflib.Differ() #linejunk=ignore_newline) # oneclean = [] # twoclean = [] # for line in one: # oneclean.append(line.encode('ascii', 'replace')) # for line in two: # twoclean.append(line.encode('ascii', 'replace')) # #a = d.compare(oneclean, twoclean) # print("\n".join(list(a))) # # TODO: remove empty lines? a = difflib.ndiff(one, two, cleanlines) (pos, neg, no) = (0, 0, 0) res = [] for line in a: if line[:1] in "+": pos += 1 res.append("+") elif line[:1] in "-": neg += 1 res.append("-") else: # ? or space no += 1 res.append(" ") # print(res) return pos, neg, no def cleanlines(line): length = len(line.strip().replace("\r", "").replace("\n", "")) return length == 0 def same_nfo(one, two): with open(one, "rt") as f: onec = f._read() with open(two, "rt") as f: twoc = f._read() if len(onec) != len(twoc): return False else: _pos, _neg, no = diff_lists(onec, twoc) return len(no) == len(onec) ############################################################################### def encodeerrors(text, textio, errors="replace"): """Prepare a string with a fallback encoding error handler If the string is not encodable to the output stream, the string is passed through a codec error handler.""" encoding = getattr(textio, "encoding", None) if encoding is None: if isinstance(textio, TextIOBase): # TextIOBase, and therefore StringIO, etc, # have an "encoding" attribute, # despite not doing any encoding return text # Otherwise assume semantics like Python 2's "file" object encoding = sys.getdefaultencoding() try: text.encode(encoding, textio.errors or "strict") except UnicodeEncodeError: text = text.encode(encoding, errors).decode(encoding) return text def decodetext(tbytes, *pos, **kw): """Decode a string using TextIOWrapper""" return TextIOWrapper(BytesIO(tbytes), *pos, **kw).read() """Example SFV files: ; Generated by WIN-SFV32 v1 with MP3-RELEASER [Version:2000.2.2.1] by MorGoTH on 3/11/01 9:42:54 AM (px`hehxW) ; For more information visit http://morgoth.smartftp.com ; ;!SFV_COMMENT_START ; ° ; ² ; ÞÛ² ; ÛÛÛ² ; ²ÛÛÛ²Ý ; ²ÛÛÛÛ²± ; ° ²ÛÛÛÛ²²± ; ÜÜÜܱ ÞÛÛÛÛÛ²²² ° ° ÜÜÜÜ ; ßÛÛ²ÛÛÜÜÜ ° °ÛÛÛÛÛÛ²²²Ý ± °ÜÜÜÛÛÛÛ²ß ; ßÛÛÛÛÛÛÛ²Ûܲ± ÞÛÛÛÛ²Û²²²Ý ± ÛÛ²²ßÛÛÛß ; ²²²²² ßß²ßß ²±Û²²ÜÜÜÜ ß²ßßÜÜÜÜ ²²ÛÛ ÜܲÛÛß ; ±±±±±ÛÜ ÜÛßßÛÛÜßÞÛ ÛÛܲ ÛÛ ßÛÛÜ ÛÛ ÛÛßß ° ; ÛÛÛÛÛÛ ÜÛß ßßÛÛ ÛÛ ÞÛ ÛÛ ÛÛ ÜÜÜÜ ± ; ÛÛÛÛÛÛÛ ÛÛ Û²²²Ü ßÛÛÜÛßß ÛÛÜÜÜ ÛÛ ÛÛÝ°²ÛÛÛÛÛÛÛÛÛ²ÜÜÜÜÜ ; ÛÛÛÛÛÛÛÜ ÛÛÜ ßßÛÛÜ ßÛÛÜÜÛÛßß ßÛÛßß ÛÝ ßÜÜÜÜÛÛÛ²ßßßß ; ÛÛÛÛÛÛÜÜßß ÜÛÜ ßß ßßÛÛÜßß Ûݲ²²²ßßßß ; ßÛÛÛÛÛÛ ÜÛ²ÛÛß° Ü°Ü ßßßÛÛÛÜÜ ; ßÛÛÛÛÛÜ ÛÛß² ±ÜßÛ±Ü ßÛ²²² eu ; ßßÛÛÛ ± ßß ß² ²°Ü ; Ü ° 4 r e a l ± Ü ° ; ° p r e s e n t s ß± ; ß ßß ; ; Created with MorGoTH's MP3 Releaser ;!SFV_COMMENT_END 01-olav_basoski_-_live_at_slam_fm_10-03-01-1real.mp3 2DEA959E ; sfv created by SFV Checker ; "gh-flow.subs.rar" 83a20923 ; ; Total 1 File(s) Combined CRC32 Checksum: 83a20923 """
32.345238
110
0.673261
62ed9b3f37a9b7612bf899204cfcf17aa9f1873b
844
py
Python
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Operators/Attrib.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
2
2015-01-26T07:15:19.000Z
2015-11-09T13:42:11.000Z
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Operators/Attrib.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Operators/Attrib.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
# Copyright (C) 2007 Samuel Abels # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA class Attrib(object): def __init__(self, name): self.name = name
42.2
80
0.75237
50d72e2c72d89a9b49bc4c7895dd1e7d73cf6df5
21,199
py
Python
vspk/v4_0/nuzfbrequest.py
mohaimenhasan/vspk-python
4c7b297427048340b250cc3c74d9214dc0d4bde1
[ "BSD-3-Clause" ]
null
null
null
vspk/v4_0/nuzfbrequest.py
mohaimenhasan/vspk-python
4c7b297427048340b250cc3c74d9214dc0d4bde1
[ "BSD-3-Clause" ]
null
null
null
vspk/v4_0/nuzfbrequest.py
mohaimenhasan/vspk-python
4c7b297427048340b250cc3c74d9214dc0d4bde1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUMetadatasFetcher from .fetchers import NUGlobalMetadatasFetcher from .fetchers import NUJobsFetcher from bambou import NURESTObject class NUZFBRequest(NURESTObject): """ Represents a ZFBRequest in the VSD Notes: A ZFB Request from an NSG """ __rest_name__ = "zfbrequest" __resource_name__ = "zfbrequests" ## Constants CONST_ZFB_APPROVAL_STATUS_DENIED = "DENIED" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" CONST_ZFB_APPROVAL_STATUS_UNASSIGNED = "UNASSIGNED" CONST_ZFB_APPROVAL_STATUS_APPROVED = "APPROVED" CONST_ZFB_APPROVAL_STATUS_ASSIGNED = "ASSIGNED" def __init__(self, **kwargs): """ Initializes a ZFBRequest instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> zfbrequest = NUZFBRequest(id=u'xxxx-xxx-xxx-xxx', name=u'ZFBRequest') >>> zfbrequest = NUZFBRequest(data=my_dict) """ super(NUZFBRequest, self).__init__() # Read/Write Attributes self._mac_address = None self._zfb_approval_status = None self._zfb_bootstrap_enabled = None self._zfb_info = None self._zfb_request_retry_timer = None self._sku = None self._ip_address = None self._cpu_type = None self._nsg_version = None self._uuid = None self._family = None self._last_connected_time = None self._last_updated_by = None self._serial_number = None self._entity_scope = None self._hostname = None self._associated_enterprise_id = None self._associated_enterprise_name = None self._associated_ns_gateway_id = None self._associated_ns_gateway_name = None self._status_string = None self._external_id = None self.expose_attribute(local_name="mac_address", remote_name="MACAddress", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_approval_status", remote_name="ZFBApprovalStatus", attribute_type=str, is_required=False, is_unique=False, choices=[u'APPROVED', u'ASSIGNED', u'DENIED', u'UNASSIGNED']) self.expose_attribute(local_name="zfb_bootstrap_enabled", remote_name="ZFBBootstrapEnabled", attribute_type=bool, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_info", remote_name="ZFBInfo", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_request_retry_timer", remote_name="ZFBRequestRetryTimer", attribute_type=int, is_required=False, is_unique=False) self.expose_attribute(local_name="sku", remote_name="SKU", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="ip_address", remote_name="IPAddress", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="cpu_type", remote_name="CPUType", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="nsg_version", remote_name="NSGVersion", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="uuid", remote_name="UUID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="family", remote_name="family", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_connected_time", remote_name="lastConnectedTime", attribute_type=float, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="serial_number", remote_name="serialNumber", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="hostname", remote_name="hostname", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_enterprise_id", remote_name="associatedEnterpriseID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_enterprise_name", remote_name="associatedEnterpriseName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_ns_gateway_id", remote_name="associatedNSGatewayID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_ns_gateway_name", remote_name="associatedNSGatewayName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="status_string", remote_name="statusString", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) # Fetchers self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.jobs = NUJobsFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) # Properties @property def mac_address(self): """ Get mac_address value. Notes: MAC Address fo the NSG Port1 interface This attribute is named `MACAddress` in VSD API. """ return self._mac_address @mac_address.setter def mac_address(self, value): """ Set mac_address value. Notes: MAC Address fo the NSG Port1 interface This attribute is named `MACAddress` in VSD API. """ self._mac_address = value @property def zfb_approval_status(self): """ Get zfb_approval_status value. Notes: the status of the request This attribute is named `ZFBApprovalStatus` in VSD API. """ return self._zfb_approval_status @zfb_approval_status.setter def zfb_approval_status(self, value): """ Set zfb_approval_status value. Notes: the status of the request This attribute is named `ZFBApprovalStatus` in VSD API. """ self._zfb_approval_status = value @property def zfb_bootstrap_enabled(self): """ Get zfb_bootstrap_enabled value. Notes: whether the NSG should bootstrap, or just simulate bootstrap. Set from System Config This attribute is named `ZFBBootstrapEnabled` in VSD API. """ return self._zfb_bootstrap_enabled @zfb_bootstrap_enabled.setter def zfb_bootstrap_enabled(self, value): """ Set zfb_bootstrap_enabled value. Notes: whether the NSG should bootstrap, or just simulate bootstrap. Set from System Config This attribute is named `ZFBBootstrapEnabled` in VSD API. """ self._zfb_bootstrap_enabled = value @property def zfb_info(self): """ Get zfb_info value. Notes: The Base64 encoded JSON string of ZFB Attributes This attribute is named `ZFBInfo` in VSD API. """ return self._zfb_info @zfb_info.setter def zfb_info(self, value): """ Set zfb_info value. Notes: The Base64 encoded JSON string of ZFB Attributes This attribute is named `ZFBInfo` in VSD API. """ self._zfb_info = value @property def zfb_request_retry_timer(self): """ Get zfb_request_retry_timer value. Notes: ZFB Request retry timer on NSG. Set from System Config This attribute is named `ZFBRequestRetryTimer` in VSD API. """ return self._zfb_request_retry_timer @zfb_request_retry_timer.setter def zfb_request_retry_timer(self, value): """ Set zfb_request_retry_timer value. Notes: ZFB Request retry timer on NSG. Set from System Config This attribute is named `ZFBRequestRetryTimer` in VSD API. """ self._zfb_request_retry_timer = value @property def sku(self): """ Get sku value. Notes: The part number of the NSG This attribute is named `SKU` in VSD API. """ return self._sku @sku.setter def sku(self, value): """ Set sku value. Notes: The part number of the NSG This attribute is named `SKU` in VSD API. """ self._sku = value @property def ip_address(self): """ Get ip_address value. Notes: IP Address of the NSG This attribute is named `IPAddress` in VSD API. """ return self._ip_address @ip_address.setter def ip_address(self, value): """ Set ip_address value. Notes: IP Address of the NSG This attribute is named `IPAddress` in VSD API. """ self._ip_address = value @property def cpu_type(self): """ Get cpu_type value. Notes: Processor Type This attribute is named `CPUType` in VSD API. """ return self._cpu_type @cpu_type.setter def cpu_type(self, value): """ Set cpu_type value. Notes: Processor Type This attribute is named `CPUType` in VSD API. """ self._cpu_type = value @property def nsg_version(self): """ Get nsg_version value. Notes: The Nuage NSG Version This attribute is named `NSGVersion` in VSD API. """ return self._nsg_version @nsg_version.setter def nsg_version(self, value): """ Set nsg_version value. Notes: The Nuage NSG Version This attribute is named `NSGVersion` in VSD API. """ self._nsg_version = value @property def uuid(self): """ Get uuid value. Notes: Redhat UUID This attribute is named `UUID` in VSD API. """ return self._uuid @uuid.setter def uuid(self, value): """ Set uuid value. Notes: Redhat UUID This attribute is named `UUID` in VSD API. """ self._uuid = value @property def family(self): """ Get family value. Notes: NSG Type """ return self._family @family.setter def family(self, value): """ Set family value. Notes: NSG Type """ self._family = value @property def last_connected_time(self): """ Get last_connected_time value. Notes: the time in which the last GET was made from the NSG This attribute is named `lastConnectedTime` in VSD API. """ return self._last_connected_time @last_connected_time.setter def last_connected_time(self, value): """ Set last_connected_time value. Notes: the time in which the last GET was made from the NSG This attribute is named `lastConnectedTime` in VSD API. """ self._last_connected_time = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def serial_number(self): """ Get serial_number value. Notes: The NSG's Serial Number This attribute is named `serialNumber` in VSD API. """ return self._serial_number @serial_number.setter def serial_number(self, value): """ Set serial_number value. Notes: The NSG's Serial Number This attribute is named `serialNumber` in VSD API. """ self._serial_number = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def hostname(self): """ Get hostname value. Notes: hostname of the NSG """ return self._hostname @hostname.setter def hostname(self, value): """ Set hostname value. Notes: hostname of the NSG """ self._hostname = value @property def associated_enterprise_id(self): """ Get associated_enterprise_id value. Notes: the ID of the associated enteprise This attribute is named `associatedEnterpriseID` in VSD API. """ return self._associated_enterprise_id @associated_enterprise_id.setter def associated_enterprise_id(self, value): """ Set associated_enterprise_id value. Notes: the ID of the associated enteprise This attribute is named `associatedEnterpriseID` in VSD API. """ self._associated_enterprise_id = value @property def associated_enterprise_name(self): """ Get associated_enterprise_name value. Notes: name of the associated Enterprise This attribute is named `associatedEnterpriseName` in VSD API. """ return self._associated_enterprise_name @associated_enterprise_name.setter def associated_enterprise_name(self, value): """ Set associated_enterprise_name value. Notes: name of the associated Enterprise This attribute is named `associatedEnterpriseName` in VSD API. """ self._associated_enterprise_name = value @property def associated_ns_gateway_id(self): """ Get associated_ns_gateway_id value. Notes: ID of the assigned NSG This attribute is named `associatedNSGatewayID` in VSD API. """ return self._associated_ns_gateway_id @associated_ns_gateway_id.setter def associated_ns_gateway_id(self, value): """ Set associated_ns_gateway_id value. Notes: ID of the assigned NSG This attribute is named `associatedNSGatewayID` in VSD API. """ self._associated_ns_gateway_id = value @property def associated_ns_gateway_name(self): """ Get associated_ns_gateway_name value. Notes: name of the associated NSG This attribute is named `associatedNSGatewayName` in VSD API. """ return self._associated_ns_gateway_name @associated_ns_gateway_name.setter def associated_ns_gateway_name(self, value): """ Set associated_ns_gateway_name value. Notes: name of the associated NSG This attribute is named `associatedNSGatewayName` in VSD API. """ self._associated_ns_gateway_name = value @property def status_string(self): """ Get status_string value. Notes: Extra status info This attribute is named `statusString` in VSD API. """ return self._status_string @status_string.setter def status_string(self, value): """ Set status_string value. Notes: Extra status info This attribute is named `statusString` in VSD API. """ self._status_string = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value
28.802989
214
0.583046
1c5292b9f47e3e88d43a8c4d34058765d7c0a84f
6,183
py
Python
pint/measurement.py
Suseko/pint
4d0f842d8cd15e6d1763a63a2d1b4a8150847a45
[ "BSD-3-Clause" ]
1,545
2015-01-02T17:08:07.000Z
2022-03-30T15:46:42.000Z
pint/measurement.py
Suseko/pint
4d0f842d8cd15e6d1763a63a2d1b4a8150847a45
[ "BSD-3-Clause" ]
1,253
2015-01-02T22:45:45.000Z
2022-03-31T21:05:47.000Z
pint/measurement.py
Suseko/pint
4d0f842d8cd15e6d1763a63a2d1b4a8150847a45
[ "BSD-3-Clause" ]
425
2015-01-18T16:59:57.000Z
2022-03-30T15:21:07.000Z
""" pint.measurement ~~~~~~~~~~~~~~~~ :copyright: 2016 by Pint Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import re from .compat import ufloat from .formatting import _FORMATS, extract_custom_flags, siunitx_format_unit from .quantity import Quantity MISSING = object() class Measurement(Quantity): """Implements a class to describe a quantity with uncertainty. Parameters ---------- value : pint.Quantity or any numeric type The expected value of the measurement error : pint.Quantity or any numeric type The error or uncertainty of the measurement Returns ------- """ def __new__(cls, value, error, units=MISSING): if units is MISSING: try: value, units = value.magnitude, value.units except AttributeError: # if called with two arguments and the first looks like a ufloat # then assume the second argument is the units, keep value intact if hasattr(value, "nominal_value"): units = error error = MISSING # used for check below else: units = "" try: error = error.to(units).magnitude except AttributeError: pass if error is MISSING: mag = value elif error < 0: raise ValueError("The magnitude of the error cannot be negative") else: mag = ufloat(value, error) inst = super().__new__(cls, mag, units) return inst @property def value(self): return self._REGISTRY.Quantity(self.magnitude.nominal_value, self.units) @property def error(self): return self._REGISTRY.Quantity(self.magnitude.std_dev, self.units) @property def rel(self): return abs(self.magnitude.std_dev / self.magnitude.nominal_value) def __reduce__(self): # See notes in Quantity.__reduce__ from . import _unpickle_measurement return _unpickle_measurement, (Measurement, self.magnitude, self._units) def __repr__(self): return "<Measurement({}, {}, {})>".format( self.magnitude.nominal_value, self.magnitude.std_dev, self.units ) def __str__(self): return "{}".format(self) def __format__(self, spec): # special cases if "Lx" in spec: # the LaTeX siunitx code # the uncertainties module supports formatting # numbers in value(unc) notation (i.e. 1.23(45) instead of 1.23 +/- 0.45), # using type code 'S', which siunitx actually accepts as input. # However, the implementation is incompatible with siunitx. # Uncertainties will do 9.1(1.1), which is invalid, should be 9.1(11). # TODO: add support for extracting options # # Get rid of this code, we'll deal with it here spec = spec.replace("Lx", "") # The most compatible format from uncertainties is the default format, # but even this requires fixups. # For one, SIUnitx does not except some formats that unc does, like 'P', # and 'S' is broken as stated, so... spec = spec.replace("S", "").replace("P", "") # get SIunitx options # TODO: allow user to set this value, somehow opts = _FORMATS["Lx"]["siopts"] if opts != "": opts = r"[" + opts + r"]" # SI requires space between "+-" (or "\pm") and the nominal value # and uncertainty, and doesn't accept "+/-", so this setting # selects the desired replacement. pm_fmt = _FORMATS["Lx"]["pm_fmt"] mstr = format(self.magnitude, spec).replace(r"+/-", pm_fmt) # Also, SIunitx doesn't accept parentheses, which uncs uses with # scientific notation ('e' or 'E' and sometimes 'g' or 'G'). mstr = mstr.replace("(", "").replace(")", " ") ustr = siunitx_format_unit(self.units._units, self._REGISTRY) return r"\SI%s{%s}{%s}" % (opts, mstr, ustr) # standard cases if "L" in spec: newpm = pm = r" \pm " pars = _FORMATS["L"]["parentheses_fmt"] elif "P" in spec: newpm = pm = "±" pars = _FORMATS["P"]["parentheses_fmt"] else: newpm = pm = "+/-" pars = _FORMATS[""]["parentheses_fmt"] if "C" in spec: sp = "" newspec = spec.replace("C", "") pars = _FORMATS["C"]["parentheses_fmt"] else: sp = " " newspec = spec if "H" in spec: newpm = "&plusmn;" newspec = spec.replace("H", "") pars = _FORMATS["H"]["parentheses_fmt"] mag = format(self.magnitude, newspec).replace(pm, sp + newpm + sp) if "(" in mag: # Exponential format has its own parentheses pars = "{}" if "L" in newspec and "S" in newspec: mag = mag.replace("(", r"\left(").replace(")", r"\right)") if "L" in newspec: space = r"\ " else: space = " " uspec = extract_custom_flags(spec) ustr = format(self.units, uspec) if not ("uS" in newspec or "ue" in newspec or "u%" in newspec): mag = pars.format(mag) if "H" in spec: # Fix exponential format mag = re.sub(r"\)e\+0?(\d+)", r")×10<sup>\1</sup>", mag) mag = re.sub(r"\)e-0?(\d+)", r")×10<sup>-\1</sup>", mag) return mag + space + ustr _Measurement = Measurement def build_measurement_class(registry): if ufloat is None: class Measurement: _REGISTRY = registry def __init__(self, *args): raise RuntimeError( "Pint requires the 'uncertainties' package to create a Measurement object." ) else: class Measurement(_Measurement): _REGISTRY = registry return Measurement
32.714286
95
0.547954
b79604a062f0b3fad35e3b5e278d56edab4de024
6,135
py
Python
classset.py
Daedo/Otter
b82a74e908c196838a55abc1e001a30256e87542
[ "MIT" ]
null
null
null
classset.py
Daedo/Otter
b82a74e908c196838a55abc1e001a30256e87542
[ "MIT" ]
null
null
null
classset.py
Daedo/Otter
b82a74e908c196838a55abc1e001a30256e87542
[ "MIT" ]
null
null
null
from typing import Set, List, Any from testclass import * import operator class ClassSet: def __init__(self, classes: List[TestClass]=[]): self._classes = classes # type: List[TestClass] # Cache Unique Elements self._uniques = None # type: List[Set[Any]] self._level = None self._domain = None def get_classes(self): return self._classes def set_classes(self, classes): self._classes = classes self._uniques = None # type: List[Set[Any]] self._level = None self._domain = None classes = property(get_classes, set_classes) def get_unique_elements(self) -> List[Set[any]]: # assume the classes are subsetfree if self._uniques is None: self._uniques = [] # type: list[set[tuple[bool]]] for elem in self.classes: self._uniques.append(set(elem.domain)) for index_a in range(len(self.classes)): for index_b in range(index_a+1, len(self.classes)): self._uniques[index_a] -= self.classes[index_b].domain self._uniques[index_b] -= self.classes[index_a].domain return self._uniques uniques = property(get_unique_elements) def split(self, index: int) -> 'ClassSet,ClassSet': positive = [] negative = [] for test_class in self.classes: if test_class.tup[index] == 0: negative.append(test_class) elif test_class.tup[index] == 1: positive.append(test_class) else: pos, neg = test_class.split(index) positive.append(pos) negative.append(neg) pos = ClassSet(positive) pos._clean_split() neg = ClassSet(negative) neg._clean_split() return pos,neg def get_level_of_uniqueness(self) -> int: if self._level is None: # Compute Unique Elements self._level = 0 for unique_set in self.uniques: if len(unique_set) > 0: self._level += 1 return self._level level_of_uniqueness = property(get_level_of_uniqueness) def get_domain(self) -> Set[any]: if self._domain is None: result = set() for dom_class in self.classes: result |= dom_class.domain self._domain = result return self._domain domain = property(get_domain) def _clean_split(self): self._filter_subsets() keep = [] part_domain = set() for index, unique in enumerate(self.uniques): if len(unique) > 0: keep.append(self.classes[index]) part_domain |= self.classes[index].domain if part_domain == self.domain: self.classes = keep return missing = self.domain - part_domain for index, miss_class in enumerate(self.classes): if not miss_class.domain.isdisjoint(missing): keep.append(self.classes[index]) self.classes = keep def _filter_subsets(self): rem = set() for i, class_a in enumerate(self.classes): if class_a in rem: continue for j, class_b in enumerate(self.classes): if i == j: continue if class_a.is_subset(class_b): rem.add(class_a) break for rem_class in rem: self._classes.remove(rem_class) def __len__(self): return len(self._classes) class SplitClassSet: def __init__(self, positive: ClassSet, negative: ClassSet): self.pos_class = positive self.neg_class = negative len_pos = len(self.pos_class) len_neg = len(self.neg_class) self.total_len = len_neg + len_pos self. pure = (len_pos == 0 or len_neg == 0 or (len_pos == 1 and len_neg == 1)) self._level = None def level_of_uniqueness(self) -> int: if self._level is None: self._level = self.pos_class.level_of_uniqueness self._level += self.neg_class.level_of_uniqueness return self._level def split(self, index): pos_left, pos_right = self.pos_class.split(index) neg_left, neg_right = self.neg_class.split(index) return SplitClassSet(pos_left, neg_left), SplitClassSet(pos_right, neg_right) def is_pure(self): return self.pure def __repr__(self): out = "Pos:\n" for cl in self.pos_class.classes: out += str(cl) + "=> 1\n" out += "Neg:\n" for cl in self.neg_class.classes: out += str(cl) + "=> 0\n" return out def __len__(self): return self.total_len def get_heuristic_counts(self): star_count = None one_count = None zero_count = None classes = set(self.pos_class.classes) | set(self.neg_class.classes) for t_class in classes: tup = t_class.tup if star_count is None: star_count = [0] * len(tup) one_count = [0] * len(tup) zero_count = [0] * len(tup) for i in range(len(tup)): if tup[i] is True: one_count[i] += 1 elif tup[i] is False: zero_count[i] += 1 else: star_count[i] += 1 return list(zip(zero_count, one_count, star_count)) def get_split_order(self): count = self.get_heuristic_counts() # Add index order = list(map(lambda x: [x[0]] + list(x[1]), list(enumerate(count)))) # Remove all entries that have no stars or that are pure order = list(filter(lambda x: x[3] != 0 or (x[2] != 0 and x[1] != 0), order)) order.sort(key=operator.itemgetter(3)) return list(map(lambda x: x[0], order)) def get_split_class_set(positive: List[TestClass], negative: List[TestClass]): return SplitClassSet(ClassSet(positive), ClassSet(negative))
32.807487
86
0.567237
79be78a385ff2cb8dd98c233b5e97484c82faab1
3,314
py
Python
test/functional/test_framework/address.py
BitPalnet/BitPal
0cce7aea31a2e45fecec0e2ef42728aa26355704
[ "MIT" ]
1
2021-03-09T22:25:20.000Z
2021-03-09T22:25:20.000Z
test/functional/test_framework/address.py
BitPalnet/BitPal
0cce7aea31a2e45fecec0e2ef42728aa26355704
[ "MIT" ]
null
null
null
test/functional/test_framework/address.py
BitPalnet/BitPal
0cce7aea31a2e45fecec0e2ef42728aa26355704
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2016-2019 The BitPal Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Encode and decode BASE58, P2PKH and P2SH addresses.""" import enum from .script import hash256, hash160, sha256, CScript, OP_0 from .util import hex_str_to_bytes from . import segwit_addr ADDRESS_BCRT1_UNSPENDABLE = 'bcrt1qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq3xueyj' ADDRESS_BCRT1_UNSPENDABLE_DESCRIPTOR = 'addr(bcrt1qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq3xueyj)#juyq9d97' # Coins sent to this address can be spent with a witness stack of just OP_TRUE ADDRESS_BCRT1_P2WSH_OP_TRUE = 'bcrt1qft5p2uhsdcdc3l2ua4ap5qqfg4pjaqlp250x7us7a8qqhrxrxfsqseac85' class AddressType(enum.Enum): bech32 = 'bech32' p2sh_segwit = 'p2sh-segwit' legacy = 'legacy' # P2PKH chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' def byte_to_base58(b, version): result = '' str = b.hex() str = chr(version).encode('latin-1').hex() + str checksum = hash256(hex_str_to_bytes(str)).hex() str += checksum[:8] value = int('0x'+str,0) while value > 0: result = chars[value % 58] + result value //= 58 while (str[:2] == '00'): result = chars[0] + result str = str[2:] return result # TODO: def base58_decode def keyhash_to_p2pkh(hash, main = False): assert len(hash) == 20 version = 0 if main else 111 return byte_to_base58(hash, version) def scripthash_to_p2sh(hash, main = False): assert len(hash) == 20 version = 5 if main else 196 return byte_to_base58(hash, version) def key_to_p2pkh(key, main = False): key = check_key(key) return keyhash_to_p2pkh(hash160(key), main) def script_to_p2sh(script, main = False): script = check_script(script) return scripthash_to_p2sh(hash160(script), main) def key_to_p2sh_p2wpkh(key, main = False): key = check_key(key) p2shscript = CScript([OP_0, hash160(key)]) return script_to_p2sh(p2shscript, main) def program_to_witness(version, program, main = False): if (type(program) is str): program = hex_str_to_bytes(program) assert 0 <= version <= 16 assert 2 <= len(program) <= 40 assert version > 0 or len(program) in [20, 32] return segwit_addr.encode("bc" if main else "bcrt", version, program) def script_to_p2wsh(script, main = False): script = check_script(script) return program_to_witness(0, sha256(script), main) def key_to_p2wpkh(key, main = False): key = check_key(key) return program_to_witness(0, hash160(key), main) def script_to_p2sh_p2wsh(script, main = False): script = check_script(script) p2shscript = CScript([OP_0, sha256(script)]) return script_to_p2sh(p2shscript, main) def check_key(key): if (type(key) is str): key = hex_str_to_bytes(key) # Assuming this is hex string if (type(key) is bytes and (len(key) == 33 or len(key) == 65)): return key assert False def check_script(script): if (type(script) is str): script = hex_str_to_bytes(script) # Assuming this is hex string if (type(script) is bytes or type(script) is CScript): return script assert False
32.174757
120
0.706397
880612d37103389da74af713a9701b440f4aa3eb
32
py
Python
build/lib/simple-default-backpropagation-ann-package/__init__.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
build/lib/simple-default-backpropagation-ann-package/__init__.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
build/lib/simple-default-backpropagation-ann-package/__init__.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
from GUI import GUI gui = GUI()
10.666667
19
0.6875
0f8edfb439ffc22a93490d3c53d776761d1dd462
15,499
py
Python
maskrcnn_benchmark/data/datasets/evaluation/vg/vg_eval.py
SkrighYZ/scene_graph_benchmark
b17e831a031e11c7b56d12dd092e8f476e48e3d4
[ "MIT" ]
210
2021-04-13T09:16:33.000Z
2022-03-29T03:13:18.000Z
maskrcnn_benchmark/data/datasets/evaluation/vg/vg_eval.py
SkrighYZ/scene_graph_benchmark
b17e831a031e11c7b56d12dd092e8f476e48e3d4
[ "MIT" ]
72
2021-04-13T18:21:37.000Z
2022-03-25T13:45:55.000Z
maskrcnn_benchmark/data/datasets/evaluation/vg/vg_eval.py
SkrighYZ/scene_graph_benchmark
b17e831a031e11c7b56d12dd092e8f476e48e3d4
[ "MIT" ]
55
2021-04-13T09:16:37.000Z
2022-03-29T08:31:04.000Z
# A modification version from chainercv repository. # (See https://github.com/chainer/chainercv/blob/master/chainercv/evaluations/eval_detection_voc.py) from __future__ import division import os import numpy as np import torch from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.data.datasets.evaluation.utils import evaluate_box_proposals def do_vg_evaluation(dataset, predictions, output_folder, box_only, eval_attributes, logger, save_predictions=True): # TODO need to make the use_07_metric format available # for the user to choose # we use int for box_only. 0: False, 1: box for RPN, 2: box for object detection, if box_only: if box_only == 1: limits = [100, 1000] elif box_only == 2: limits = [36, 99] else: raise ValueError("box_only can be either 0/1/2, but get {0}".format(box_only)) areas = {"all": "", "small": "s", "medium": "m", "large": "l"} result = {} for area, suffix in areas.items(): for limit in limits: logger.info("Evaluating bbox proposals@{:d}".format(limit)) stats = evaluate_box_proposals( predictions, dataset, area=area, limit=limit ) key_ar = "AR{}@{:d}".format(suffix, limit) key_num_pos = "num_pos{}@{:d}".format(suffix, limit) result[key_num_pos] = stats["num_pos"] result[key_ar] = stats["ar"].item() key_recalls = "Recalls{}@{:d}".format(suffix, limit) # result[key_recalls] = stats["recalls"] print(key_recalls, stats["recalls"]) print(key_ar, "ar={:.4f}".format(result[key_ar])) print(key_num_pos, "num_pos={:d}".format(result[key_num_pos])) logger.info(result) logger.info(result) # check_expected_results(result, expected_results, expected_results_sigma_tol) if output_folder and save_predictions: if box_only == 1: torch.save(result, os.path.join(output_folder, "rpn_proposals.pth")) elif box_only == 2: torch.save(result, os.path.join(output_folder, "box_proposals.pth")) else: raise ValueError("box_only can be either 0/1/2, but get {0}".format(box_only)) return {"box_proposal": result} pred_boxlists = [] gt_boxlists = [] for image_id, prediction in sorted(predictions.items()): img_info = dataset.get_img_info(image_id) if len(prediction) == 0: continue image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) pred_boxlists.append(prediction) gt_boxlist = dataset.get_groundtruth(image_id) gt_boxlists.append(gt_boxlist) if eval_attributes: classes = dataset.attributes else: classes = dataset.classes result = eval_detection_voc( pred_boxlists=pred_boxlists, gt_boxlists=gt_boxlists, classes=classes, iou_thresh=0.5, eval_attributes=eval_attributes, use_07_metric=False, ) result_str = "mAP: {:.4f}\n".format(result["map"]) for i, ap in enumerate(result["ap"]): # if i == 0: # skip background # continue # we skipped background in result['ap'], so we need to use i+1 if eval_attributes: result_str += "{:<16}: {:.4f}\n".format( dataset.map_attribute_id_to_attribute_name(i+1), ap ) else: result_str += "{:<16}: {:.4f}\n".format( dataset.map_class_id_to_class_name(i+1), ap ) logger.info(result_str) # return mAP and weighted mAP if eval_attributes: if output_folder and save_predictions: with open(os.path.join(output_folder, "result_attr.txt"), "w") as fid: fid.write(result_str) return {"attr": {"map": result["map"], "weighted map": result["weighted map"]}} else: if output_folder and save_predictions: with open(os.path.join(output_folder, "result_obj.txt"), "w") as fid: fid.write(result_str) return {"obj": {"map": result["map"], "weighted map": result["weighted map"]}} def eval_detection_voc(pred_boxlists, gt_boxlists, classes, iou_thresh=0.5, eval_attributes=False, use_07_metric=False): """Evaluate on voc dataset. Args: pred_boxlists(list[BoxList]): pred boxlist, has labels and scores fields. gt_boxlists(list[BoxList]): ground truth boxlist, has labels field. iou_thresh: iou thresh use_07_metric: boolean Returns: dict represents the results """ assert len(gt_boxlists) == len( pred_boxlists ), "Length of gt and pred lists need to be same." aps = [] nposs = [] thresh = [] for i, classname in enumerate(classes): if classname == "__background__" or classname == "__no_attribute__": continue rec, prec, ap, scores, npos = calc_detection_voc_prec_rec(pred_boxlists=pred_boxlists, gt_boxlists=gt_boxlists, \ classindex=i, iou_thresh=iou_thresh, eval_attributes=eval_attributes, use_07_metric=use_07_metric) # Determine per class detection thresholds that maximise f score # if npos > 1: if npos > 1 and type(scores) != np.int: f = np.nan_to_num((prec * rec) / (prec + rec)) thresh += [scores[np.argmax(f)]] else: thresh += [0] aps += [ap] nposs += [float(npos)] print('AP for {} = {:.4f} (npos={:,})'.format(classname, ap, npos)) # if pickle: # with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f: # cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap, # 'scores': scores, 'npos':npos}, f) # Set thresh to mean for classes with poor results thresh = np.array(thresh) avg_thresh = np.mean(thresh[thresh != 0]) thresh[thresh == 0] = avg_thresh # if eval_attributes: # filename = 'attribute_thresholds_' + self._image_set + '.txt' # else: # filename = 'object_thresholds_' + self._image_set + '.txt' # path = os.path.join(output_dir, filename) # with open(path, 'wt') as f: # for i, cls in enumerate(classes[1:]): # f.write('{:s} {:.3f}\n'.format(cls, thresh[i])) weights = np.array(nposs) weights /= weights.sum() print('Mean AP = {:.4f}'.format(np.mean(aps))) print('Weighted Mean AP = {:.4f}'.format(np.average(aps, weights=weights))) print('Mean Detection Threshold = {:.3f}'.format(avg_thresh)) print('~~~~~~~~') print('Results:') for ap, npos in zip(aps, nposs): print('{:.3f}\t{:.3f}'.format(ap, npos)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** PASCAL VOC Python eval code.') print('--------------------------------------------------------------') # pdb.set_trace() return {"ap": aps, "map": np.mean(aps), "weighted map": np.average(aps, weights=weights)} def calc_detection_voc_prec_rec(pred_boxlists, gt_boxlists, classindex, iou_thresh=0.5, eval_attributes=False, use_07_metric=False): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. """ class_recs = {} npos = 0 image_ids = [] confidence = [] BB = [] for image_index, (gt_boxlist, pred_boxlist) in enumerate(zip(gt_boxlists, pred_boxlists)): pred_bbox = pred_boxlist.bbox.numpy() gt_bbox = gt_boxlist.bbox.numpy() if eval_attributes: gt_label = gt_boxlist.get_field("attributes").numpy() pred_label = pred_boxlist.get_field("attr_labels").numpy() pred_score = pred_boxlist.get_field("attr_scores").numpy() else: gt_label = gt_boxlist.get_field("labels").numpy() pred_label = pred_boxlist.get_field("labels").numpy() pred_score = pred_boxlist.get_field("scores").numpy() # get the ground truth information for this class if eval_attributes: gt_mask_l = np.array([classindex in i for i in gt_label]) else: gt_mask_l = gt_label == classindex gt_bbox_l = gt_bbox[gt_mask_l] gt_difficult_l = np.zeros(gt_bbox_l.shape[0], dtype=bool) det = [False] * gt_bbox_l.shape[0] npos = npos + sum(~gt_difficult_l) class_recs[image_index] = {'bbox': gt_bbox_l, 'difficult': gt_difficult_l, 'det': det} # prediction output for each class # pdb.set_trace() if eval_attributes: pred_mask_l = np.logical_and(pred_label == classindex, np.not_equal(pred_score, 0.0)).nonzero() pred_bbox_l = pred_bbox[pred_mask_l[0]] pred_score_l = pred_score[pred_mask_l] else: pred_mask_l = pred_label == classindex pred_bbox_l = pred_bbox[pred_mask_l] pred_score_l = pred_score[pred_mask_l] for bbox_tmp, score_tmp in zip(pred_bbox_l, pred_score_l): image_ids.append(image_index) confidence.append(float(score_tmp)) BB.append([float(z) for z in bbox_tmp]) if npos == 0: # No ground truth examples return 0, 0, 0, 0, npos if len(confidence) == 0: # No detection examples return 0, 0, 0, 0, npos confidence = np.array(confidence) BB = np.array(BB) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = -np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih # union uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + (BBGT[:, 2] - BBGT[:, 0] + 1.) * (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > iou_thresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap, sorted_scores, npos def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def calc_detection_voc_ap(prec, rec, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. This function calculates average precisions from given precisions and recalls. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: prec (list of numpy.array): A list of arrays. :obj:`prec[l]` indicates precision for class :math:`l`. If :obj:`prec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. rec (list of numpy.array): A list of arrays. :obj:`rec[l]` indicates recall for class :math:`l`. If :obj:`rec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric for calculating average precision. The default value is :obj:`False`. Returns: ~numpy.ndarray: This function returns an array of average precisions. The :math:`l`-th value corresponds to the average precision for class :math:`l`. If :obj:`prec[l]` or :obj:`rec[l]` is :obj:`None`, the corresponding value is set to :obj:`numpy.nan`. """ n_fg_class = len(prec) ap = np.empty(n_fg_class) for l in range(n_fg_class): if prec[l] is None or rec[l] is None: ap[l] = np.nan continue if use_07_metric: # 11 point metric ap[l] = 0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec[l] >= t) == 0: p = 0 else: p = np.max(np.nan_to_num(prec[l])[rec[l] >= t]) ap[l] += p / 11 else: # correct AP calculation # first append sentinel values at the end mpre = np.concatenate(([0], np.nan_to_num(prec[l]), [0])) mrec = np.concatenate(([0], rec[l], [1])) mpre = np.maximum.accumulate(mpre[::-1])[::-1] # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap[l] = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap
39.538265
121
0.561004
50666b561825d43a37197be46479ad0e99d7cbf6
12,508
py
Python
thirdparty/DOTA_devkit/dota_evaluation_task1_.py
Artcs1/RotationDetection
095be17345ee9984d8de8f24eb6b5a0b2d764a06
[ "Apache-2.0" ]
850
2020-10-27T08:51:54.000Z
2022-03-30T15:12:06.000Z
thirdparty/DOTA_devkit/dota_evaluation_task1_.py
Artcs1/RotationDetection
095be17345ee9984d8de8f24eb6b5a0b2d764a06
[ "Apache-2.0" ]
94
2020-12-01T02:18:47.000Z
2022-03-30T08:14:27.000Z
thirdparty/DOTA_devkit/dota_evaluation_task1_.py
Artcs1/RotationDetection
095be17345ee9984d8de8f24eb6b5a0b2d764a06
[ "Apache-2.0" ]
149
2020-10-29T03:30:32.000Z
2022-03-29T09:53:23.000Z
# -------------------------------------------------------- # dota_evaluation_task1 # Licensed under The MIT License [see LICENSE for details] # Written by Jian Ding, based on code from Bharath Hariharan # -------------------------------------------------------- """ To use the code, users should to config detpath, annopath and imagesetfile detpath is the path for 15 result files, for the format, you can refer to "http://captain.whu.edu.cn/DOTAweb/tasks.html" search for PATH_TO_BE_CONFIGURED to config the paths Note, the evaluation is on the large scale images """ import numpy as np import polyiou import sys sys.path.append('../..') from libs.configs import cfgs from libs.utils.coordinate_convert import backward_convert def parse_gt(filename): """ :param filename: ground truth file to parse :return: all instances in a picture """ objects = [] with open(filename, 'r') as f: while True: line = f.readline() if line: splitlines = line.strip().split(' ') object_struct = {} if (len(splitlines) < 9): continue object_struct['name'] = splitlines[8] if (len(splitlines) == 9): object_struct['difficult'] = 0 elif (len(splitlines) == 10): object_struct['difficult'] = int(splitlines[9]) object_struct['bbox'] = [float(splitlines[0]), float(splitlines[1]), float(splitlines[2]), float(splitlines[3]), float(splitlines[4]), float(splitlines[5]), float(splitlines[6]), float(splitlines[7])] objects.append(object_struct) else: break return objects def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, # cachedir, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) cachedir: Directory for caching the annotations [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # cachedir caches the annotations in a pickle file # first load gt #if not os.path.isdir(cachedir): # os.mkdir(cachedir) #cachefile = os.path.join(cachedir, 'annots.pkl') # read list of images with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] #print('imagenames: ', imagenames) #if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): #print('parse_files name: ', annopath.format(imagename)) recs[imagename] = parse_gt(annopath.format(imagename)) #if i % 100 == 0: # print ('Reading annotation for {:d}/{:d}'.format( # i + 1, len(imagenames)) ) # save #print ('Saving cached annotations to {:s}'.format(cachefile)) #with open(cachefile, 'w') as f: # cPickle.dump(recs, f) #else: # load #with open(cachefile, 'r') as f: # recs = cPickle.load(f) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} # read dets from Task1* files detfile = detpath.format(classname) with open(detfile, 'r') as f: lines = f.readlines() splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) #print('check confidence: ', confidence) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) #print('check sorted_scores: ', sorted_scores) #print('check sorted_ind: ', sorted_ind) ## note the usage only in numpy not for list BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] #print('check imge_ids: ', image_ids) #print('imge_ids len:', len(image_ids)) # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) ae, iou, tp_num = 0, 0, 0 for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) ## compute det bb with each BBGT if BBGT.size > 0: # compute overlaps # intersection # 1. calculate the overlaps between hbbs, if the iou between hbbs are 0, the iou between obbs are 0, too. # pdb.set_trace() BBGT_xmin = np.min(BBGT[:, 0::2], axis=1) BBGT_ymin = np.min(BBGT[:, 1::2], axis=1) BBGT_xmax = np.max(BBGT[:, 0::2], axis=1) BBGT_ymax = np.max(BBGT[:, 1::2], axis=1) bb_xmin = np.min(bb[0::2]) bb_ymin = np.min(bb[1::2]) bb_xmax = np.max(bb[0::2]) bb_ymax = np.max(bb[1::2]) ixmin = np.maximum(BBGT_xmin, bb_xmin) iymin = np.maximum(BBGT_ymin, bb_ymin) ixmax = np.minimum(BBGT_xmax, bb_xmax) iymax = np.minimum(BBGT_ymax, bb_ymax) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih # union uni = ((bb_xmax - bb_xmin + 1.) * (bb_ymax - bb_ymin + 1.) + (BBGT_xmax - BBGT_xmin + 1.) * (BBGT_ymax - BBGT_ymin + 1.) - inters) overlaps = inters / uni BBGT_keep_mask = overlaps > 0 BBGT_keep = BBGT[BBGT_keep_mask, :] BBGT_keep_index = np.where(overlaps > 0)[0] # pdb.set_trace() def calcoverlaps(BBGT_keep, bb): overlaps = [] for index, GT in enumerate(BBGT_keep): overlap = polyiou.iou_poly(polyiou.VectorDouble(BBGT_keep[index]), polyiou.VectorDouble(bb)) overlaps.append(overlap) return overlaps if len(BBGT_keep) > 0: overlaps = calcoverlaps(BBGT_keep, bb) ovmax = np.max(overlaps) jmax = np.argmax(overlaps) # pdb.set_trace() jmax = BBGT_keep_index[jmax] if ovmax > ovthresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 bb_5p = backward_convert(np.reshape(bb, [-1, 8]), False) gt_5p = backward_convert(np.reshape(BBGT[jmax], [-1, 8]), False) angle_error = abs(bb_5p[0][-1]-gt_5p[0][-1]) % cfgs.ANGLE_RANGE ae += min(angle_error, abs(cfgs.ANGLE_RANGE-angle_error)) iou += polyiou.iou_poly(polyiou.VectorDouble(BBGT[jmax]), polyiou.VectorDouble(bb)) tp_num += 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall # print('check fp:', fp) # print('check tp', tp) print('npos num:', npos) fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap, (ae / tp_num, iou / tp_num) def main(): detpath = r'../../tools/fcos/test_dota/%s/dota_res/Task1_{:s}.txt' % cfgs.VERSION # change the directory to the path of val/labelTxt, if you want to do evaluation on the valset annopath = r'/data/dataset/DOTA/val/labelTxt/labelTxt/{:s}.txt' imagesetfile = r'../../dataloader/dataset/DOTA/val_set.txt' # For DOTA-v1.5 # classnames = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', # 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', 'container-crane'] # For DOTA-v1.0 classnames = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter'] ovthresh = 0.5 classaps, classaes, classious = [], [], [] map, mae, miou = 0, 0, 0 for classname in classnames: print('classname:', classname) rec, prec, ap, ae_iou = voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=ovthresh, use_07_metric=True) map += ap mae += ae_iou[0] miou += ae_iou[1] # print('rec: ', rec, 'prec: ', prec, 'ap: ', ap) print('ap: {}, ae: {}, iou: {}'.format(ap, ae_iou[0], ae_iou[1])) classaps.append(ap) classaes.append(ae_iou[0]) classious.append(ae_iou[1]) # uncomment to show p-r curve of each category # plt.figure(figsize=(8,4)) # plt.xlabel('recall') # plt.ylabel('precision') # plt.plot(rec, prec) # plt.show() map /= len(classnames) mae /= len(classnames) miou /= len(classnames) print('************************' * 2) print('map: {}, mae: {}, miou: {}'.format(map, mae, miou)) print('classaps: {}'.format(100 * np.array(classaps))) print('classaes: {}'.format(classaes)) print('classious: {}'.format(classious)) if __name__ == '__main__': main()
37.449102
149
0.529341
7101183ccdb4121f3893bcbc1898ec763bbda397
266
py
Python
tests/artificial/transf_Integration/trend_Lag1Trend/cycle_12/ar_/test_artificial_128_Integration_Lag1Trend_12__0.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/artificial/transf_Integration/trend_Lag1Trend/cycle_12/ar_/test_artificial_128_Integration_Lag1Trend_12__0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/artificial/transf_Integration/trend_Lag1Trend/cycle_12/ar_/test_artificial_128_Integration_Lag1Trend_12__0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 12, transform = "Integration", sigma = 0.0, exog_count = 0, ar_order = 0);
38
166
0.733083
5fa561e301f6927210036fa24166045ed28233be
1,847
py
Python
cpl_media/__init__.py
matham/cpl_media
4e01b61648562a76f05c5ff696f43972924e9101
[ "MIT" ]
null
null
null
cpl_media/__init__.py
matham/cpl_media
4e01b61648562a76f05c5ff696f43972924e9101
[ "MIT" ]
null
null
null
cpl_media/__init__.py
matham/cpl_media
4e01b61648562a76f05c5ff696f43972924e9101
[ "MIT" ]
1
2020-01-13T19:47:26.000Z
2020-01-13T19:47:26.000Z
"""cpl_media ================= A library providing kivy support for playing and recording from various cameras. """ from functools import wraps import traceback import sys import pathlib import os __all__ = ('error_guard', 'error_callback', 'get_pyinstaller_datas') __version__ = '0.1.3.dev0' def _error_callback(e, exc_info=None, threaded=False): pass error_callback = _error_callback """When set, care must be taken to handle errors from secondary threads. It's signature is ``error_callback(e, exc_info=None, threaded=False)``. """ def error_guard(error_func): """A decorator which wraps the function in `try...except` and calls :func:`error_callback` if a exception is raised. E.g.:: @error_guard def do_something(): do_something_interesting """ @wraps(error_func) def safe_func(*largs, **kwargs): try: return error_func(*largs, **kwargs) except Exception as e: exc_info = sys.exc_info() stack = traceback.extract_stack() tb = traceback.extract_tb(exc_info[2]) full_tb = stack[:-1] + tb exc_line = traceback.format_exception_only(*exc_info[:2]) err = 'Traceback (most recent call last):' err += "".join(traceback.format_list(full_tb)) err += "".join(exc_line) error_callback(e, exc_info=err, threaded=True) return safe_func def get_pyinstaller_datas(): """Returns the ``datas`` list required by PyInstaller to be able to package :mod:`cpl_media` in a application. """ root = pathlib.Path(os.path.dirname(sys.modules[__name__].__file__)) datas = [] for pat in ('**/*.kv', '*.kv'): for f in root.glob(pat): datas.append((str(f), str(f.relative_to(root.parent).parent))) return datas
26.385714
79
0.636708
b2dfcec42ac92e5d3c8ec2ec76590e97fee75e9d
3,913
py
Python
dimsdk/cpu/__init__.py
dimchat/sdk-py
94223b5e6fa7f56eacc523ea3d803086f8b6c64d
[ "MIT" ]
null
null
null
dimsdk/cpu/__init__.py
dimchat/sdk-py
94223b5e6fa7f56eacc523ea3d803086f8b6c64d
[ "MIT" ]
null
null
null
dimsdk/cpu/__init__.py
dimchat/sdk-py
94223b5e6fa7f56eacc523ea3d803086f8b6c64d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # DIM-SDK : Decentralized Instant Messaging Software Development Kit # # Written in 2019 by Moky <albert.moky@gmail.com> # # ============================================================================== # MIT License # # Copyright (c) 2019 Albert Moky # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== """ Content/Command Processing Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ from dimp import * from .content import ContentProcessor from .forward import ForwardContentProcessor from .command import CommandProcessor from .history import HistoryCommandProcessor, GroupCommandProcessor from .grp_invite import InviteCommandProcessor from .grp_expel import ExpelCommandProcessor from .grp_quit import QuitCommandProcessor from .grp_reset import ResetCommandProcessor from .grp_query import QueryCommandProcessor from .meta import MetaCommandProcessor from .document import DocumentCommandProcessor def register_content_processors(): # contents ContentProcessor.register(content_type=0, cpu=ContentProcessor()) # default ContentProcessor.register(content_type=ContentType.FORWARD, cpu=ForwardContentProcessor()) # commands ContentProcessor.register(content_type=ContentType.COMMAND, cpu=CommandProcessor()) ContentProcessor.register(content_type=ContentType.HISTORY, cpu=HistoryCommandProcessor()) def register_command_processors(): # meta CommandProcessor.register(command=Command.META, cpu=MetaCommandProcessor()) # document dpu = DocumentCommandProcessor() CommandProcessor.register(command=Command.DOCUMENT, cpu=dpu) CommandProcessor.register(command='profile', cpu=dpu) CommandProcessor.register(command='visa', cpu=dpu) CommandProcessor.register(command='bulletin', cpu=dpu) # group commands CommandProcessor.register(command='group', cpu=GroupCommandProcessor()) CommandProcessor.register(command=GroupCommand.INVITE, cpu=InviteCommandProcessor()) CommandProcessor.register(command=GroupCommand.EXPEL, cpu=ExpelCommandProcessor()) CommandProcessor.register(command=GroupCommand.QUIT, cpu=QuitCommandProcessor()) CommandProcessor.register(command=GroupCommand.QUERY, cpu=QueryCommandProcessor()) CommandProcessor.register(command=GroupCommand.RESET, cpu=ResetCommandProcessor()) def register_all_processors(): register_content_processors() register_command_processors() register_all_processors() __all__ = [ 'ContentProcessor', 'ForwardContentProcessor', 'CommandProcessor', 'HistoryCommandProcessor', 'GroupCommandProcessor', 'InviteCommandProcessor', 'ExpelCommandProcessor', 'QuitCommandProcessor', 'ResetCommandProcessor', 'QueryCommandProcessor', 'MetaCommandProcessor', 'DocumentCommandProcessor', ]
37.625
94
0.740864
f25f43664e262b25473557c5f11dae91e697e3f6
2,115
py
Python
youtube_dl/extractor/infoq.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
1
2015-02-19T13:13:47.000Z
2015-02-19T13:13:47.000Z
youtube_dl/extractor/infoq.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
2
2019-05-20T12:46:30.000Z
2020-11-07T12:50:32.000Z
youtube_dl/extractor/infoq.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
5
2020-10-25T09:18:58.000Z
2021-05-23T22:57:55.000Z
from __future__ import unicode_literals import base64 from .common import InfoExtractor from ..compat import ( compat_urllib_parse, ) class InfoQIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?infoq\.com/[^/]+/(?P<id>[^/]+)$' _TEST = { 'url': 'http://www.infoq.com/presentations/A-Few-of-My-Favorite-Python-Things', 'md5': 'b5ca0e0a8c1fed93b0e65e48e462f9a2', 'info_dict': { 'id': '12-jan-pythonthings', 'ext': 'mp4', 'description': 'Mike Pirnat presents some tips and tricks, standard libraries and third party packages that make programming in Python a richer experience.', 'title': 'A Few of My Favorite [Python] Things', }, } def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) video_title = self._html_search_regex(r'<title>(.*?)</title>', webpage, 'title') video_description = self._html_search_meta('description', webpage, 'description') # The server URL is hardcoded video_url = 'rtmpe://video.infoq.com/cfx/st/' # Extract video URL encoded_id = self._search_regex( r"jsclassref\s*=\s*'([^']*)'", webpage, 'encoded id') real_id = compat_urllib_parse.unquote(base64.b64decode(encoded_id.encode('ascii')).decode('utf-8')) playpath = 'mp4:' + real_id video_filename = playpath.split('/')[-1] video_id, extension = video_filename.split('.') http_base = self._search_regex( r'EXPRESSINSTALL_SWF\s*=\s*"(https?://[^/"]+/)', webpage, 'HTTP base URL') formats = [{ 'format_id': 'rtmp', 'url': video_url, 'ext': extension, 'play_path': playpath, }, { 'format_id': 'http', 'url': http_base + real_id, }] self._sort_formats(formats) return { 'id': video_id, 'title': video_title, 'description': video_description, 'formats': formats, }
32.538462
169
0.575887
aee6804b55465fa9bcd9d8ef5cc9b1fb8fbeb87e
360
py
Python
libhdhomerun/common/lineup.py
fugf123d/astrilchukj
966e6f85789b9eac554a93320a62d98d517015ea
[ "MIT" ]
null
null
null
libhdhomerun/common/lineup.py
fugf123d/astrilchukj
966e6f85789b9eac554a93320a62d98d517015ea
[ "MIT" ]
null
null
null
libhdhomerun/common/lineup.py
fugf123d/astrilchukj
966e6f85789b9eac554a93320a62d98d517015ea
[ "MIT" ]
null
null
null
from channel import Channel class Lineup(list): def __init__(self, *args, **kwargs): super(Lineup, self).__init__(*args, **kwargs) def get_channel_numbers(self): return [channel.guide_number for channel in self] @classmethod def from_iterable(cls, iterable): return cls([Channel.from_dict(dct) for dct in iterable])
25.714286
64
0.683333
7ab8d78ee794b7954c350e09c63c3cd3b7a14d41
748
py
Python
xlsxwriter/test/vml/test_write_stroke.py
yxwlr995/-Python-Pandas-XlsxWriter
cd28c1b968795b67f3013c49a0e02ffda5898163
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/vml/test_write_stroke.py
yxwlr995/-Python-Pandas-XlsxWriter
cd28c1b968795b67f3013c49a0e02ffda5898163
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/vml/test_write_stroke.py
yxwlr995/-Python-Pandas-XlsxWriter
cd28c1b968795b67f3013c49a0e02ffda5898163
[ "BSD-2-Clause-FreeBSD" ]
1
2020-04-12T16:44:58.000Z
2020-04-12T16:44:58.000Z
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013, John McNamara, jmcnamara@cpan.org # import unittest from ..compatibility import StringIO from ...vml import Vml class TestWriteVstroke(unittest.TestCase): """ Test the Vml _write_stroke() method. """ def setUp(self): self.fh = StringIO() self.vml = Vml() self.vml._set_filehandle(self.fh) def test_write_stroke(self): """Test the _write_stroke() method""" self.vml._write_stroke() exp = """<v:stroke joinstyle="miter"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) if __name__ == '__main__': unittest.main()
20.216216
79
0.552139
eb0425ab38bd578e179ec39d41ae07428735d050
10,955
py
Python
isi_sdk_9_0_0/isi_sdk_9_0_0/models/drives_drive_firmware_node_drive.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_9_0_0/isi_sdk_9_0_0/models/drives_drive_firmware_node_drive.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_9_0_0/isi_sdk_9_0_0/models/drives_drive_firmware_node_drive.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 10 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DrivesDriveFirmwareNodeDrive(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'baynum': 'int', 'current_firmware': 'str', 'desired_firmware': 'str', 'devname': 'str', 'lnum': 'int', 'locnstr': 'str', 'model': 'str' } attribute_map = { 'baynum': 'baynum', 'current_firmware': 'current_firmware', 'desired_firmware': 'desired_firmware', 'devname': 'devname', 'lnum': 'lnum', 'locnstr': 'locnstr', 'model': 'model' } def __init__(self, baynum=None, current_firmware=None, desired_firmware=None, devname=None, lnum=None, locnstr=None, model=None): # noqa: E501 """DrivesDriveFirmwareNodeDrive - a model defined in Swagger""" # noqa: E501 self._baynum = None self._current_firmware = None self._desired_firmware = None self._devname = None self._lnum = None self._locnstr = None self._model = None self.discriminator = None if baynum is not None: self.baynum = baynum if current_firmware is not None: self.current_firmware = current_firmware if desired_firmware is not None: self.desired_firmware = desired_firmware if devname is not None: self.devname = devname if lnum is not None: self.lnum = lnum if locnstr is not None: self.locnstr = locnstr if model is not None: self.model = model @property def baynum(self): """Gets the baynum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 Numerical representation of this drive's bay. # noqa: E501 :return: The baynum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: int """ return self._baynum @baynum.setter def baynum(self, baynum): """Sets the baynum of this DrivesDriveFirmwareNodeDrive. Numerical representation of this drive's bay. # noqa: E501 :param baynum: The baynum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: int """ if baynum is not None and baynum > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `baynum`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if baynum is not None and baynum < 0: # noqa: E501 raise ValueError("Invalid value for `baynum`, must be a value greater than or equal to `0`") # noqa: E501 self._baynum = baynum @property def current_firmware(self): """Gets the current_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 This drive's current firmware revision # noqa: E501 :return: The current_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: str """ return self._current_firmware @current_firmware.setter def current_firmware(self, current_firmware): """Sets the current_firmware of this DrivesDriveFirmwareNodeDrive. This drive's current firmware revision # noqa: E501 :param current_firmware: The current_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: str """ if current_firmware is not None and len(current_firmware) > 255: raise ValueError("Invalid value for `current_firmware`, length must be less than or equal to `255`") # noqa: E501 if current_firmware is not None and len(current_firmware) < 0: raise ValueError("Invalid value for `current_firmware`, length must be greater than or equal to `0`") # noqa: E501 self._current_firmware = current_firmware @property def desired_firmware(self): """Gets the desired_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 This drive's desired firmware revision. # noqa: E501 :return: The desired_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: str """ return self._desired_firmware @desired_firmware.setter def desired_firmware(self, desired_firmware): """Sets the desired_firmware of this DrivesDriveFirmwareNodeDrive. This drive's desired firmware revision. # noqa: E501 :param desired_firmware: The desired_firmware of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: str """ if desired_firmware is not None and len(desired_firmware) > 255: raise ValueError("Invalid value for `desired_firmware`, length must be less than or equal to `255`") # noqa: E501 if desired_firmware is not None and len(desired_firmware) < 0: raise ValueError("Invalid value for `desired_firmware`, length must be greater than or equal to `0`") # noqa: E501 self._desired_firmware = desired_firmware @property def devname(self): """Gets the devname of this DrivesDriveFirmwareNodeDrive. # noqa: E501 This drive's device name. # noqa: E501 :return: The devname of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: str """ return self._devname @devname.setter def devname(self, devname): """Sets the devname of this DrivesDriveFirmwareNodeDrive. This drive's device name. # noqa: E501 :param devname: The devname of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: str """ if devname is not None and len(devname) > 255: raise ValueError("Invalid value for `devname`, length must be less than or equal to `255`") # noqa: E501 if devname is not None and len(devname) < 0: raise ValueError("Invalid value for `devname`, length must be greater than or equal to `0`") # noqa: E501 self._devname = devname @property def lnum(self): """Gets the lnum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 This drive's logical drive number in IFS. # noqa: E501 :return: The lnum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: int """ return self._lnum @lnum.setter def lnum(self, lnum): """Sets the lnum of this DrivesDriveFirmwareNodeDrive. This drive's logical drive number in IFS. # noqa: E501 :param lnum: The lnum of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: int """ if lnum is not None and lnum > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `lnum`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if lnum is not None and lnum < 0: # noqa: E501 raise ValueError("Invalid value for `lnum`, must be a value greater than or equal to `0`") # noqa: E501 self._lnum = lnum @property def locnstr(self): """Gets the locnstr of this DrivesDriveFirmwareNodeDrive. # noqa: E501 String representation of this drive's physical location. # noqa: E501 :return: The locnstr of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: str """ return self._locnstr @locnstr.setter def locnstr(self, locnstr): """Sets the locnstr of this DrivesDriveFirmwareNodeDrive. String representation of this drive's physical location. # noqa: E501 :param locnstr: The locnstr of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: str """ if locnstr is not None and len(locnstr) > 255: raise ValueError("Invalid value for `locnstr`, length must be less than or equal to `255`") # noqa: E501 if locnstr is not None and len(locnstr) < 0: raise ValueError("Invalid value for `locnstr`, length must be greater than or equal to `0`") # noqa: E501 self._locnstr = locnstr @property def model(self): """Gets the model of this DrivesDriveFirmwareNodeDrive. # noqa: E501 This drive's manufacturer and model. # noqa: E501 :return: The model of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :rtype: str """ return self._model @model.setter def model(self, model): """Sets the model of this DrivesDriveFirmwareNodeDrive. This drive's manufacturer and model. # noqa: E501 :param model: The model of this DrivesDriveFirmwareNodeDrive. # noqa: E501 :type: str """ if model is not None and len(model) > 255: raise ValueError("Invalid value for `model`, length must be less than or equal to `255`") # noqa: E501 if model is not None and len(model) < 0: raise ValueError("Invalid value for `model`, length must be greater than or equal to `0`") # noqa: E501 self._model = model def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DrivesDriveFirmwareNodeDrive): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
35.22508
147
0.618622
da984d6838d2fa8f4c7a751bb666e363a16e1e86
717
py
Python
kombu/utils/__init__.py
nlundquist/kombu
483cadced77d82a6ecd0be553b91ce92f04f9617
[ "BSD-3-Clause" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
desktop/core/ext-py/kombu-4.3.0/kombu/utils/__init__.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
desktop/core/ext-py/kombu-4.3.0/kombu/utils/__init__.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
"""DEPRECATED - Import from modules below.""" from __future__ import absolute_import, print_function, unicode_literals from .collections import EqualityDict from .compat import fileno, maybe_fileno, nested, register_after_fork from .div import emergency_dump_state from .functional import ( fxrange, fxrangemax, maybe_list, reprcall, retry_over_time, ) from .imports import symbol_by_name from .objects import cached_property from .uuid import uuid __all__ = ( 'EqualityDict', 'uuid', 'maybe_list', 'fxrange', 'fxrangemax', 'retry_over_time', 'emergency_dump_state', 'cached_property', 'register_after_fork', 'reprkwargs', 'reprcall', 'symbol_by_name', 'nested', 'fileno', 'maybe_fileno', )
34.142857
72
0.764296
8f8fa5f495a91d013c4df279f146ce1be31c98fa
1,767
py
Python
tests/book/ch02/dat.py
xchaoinfo/pyhanlp
d61829a7aa35965e34ca0e220ee7f83bd3e8c5ed
[ "Apache-2.0" ]
2,792
2018-03-19T10:24:23.000Z
2022-03-29T07:46:53.000Z
pyhanlp-master/tests/book/ch02/dat.py
tianmingl/maincode
724c60d5281ba3911ca065d9e144bb1b09e8257f
[ "MIT" ]
50
2018-03-19T11:08:37.000Z
2022-01-11T16:34:00.000Z
pyhanlp-master/tests/book/ch02/dat.py
tianmingl/maincode
724c60d5281ba3911ca065d9e144bb1b09e8257f
[ "MIT" ]
802
2018-03-19T11:08:49.000Z
2022-03-22T07:20:26.000Z
# -*- coding:utf-8 -*- # Author:hankcs # Date: 2018-05-26 21:16 # 《自然语言处理入门》2.5 双数组字典树 # 配套书籍:http://nlp.hankcs.com/book.php # 讨论答疑:https://bbs.hankcs.com/ from pyhanlp import * class DoubleArrayTrie(object): def __init__(self, dic: dict) -> None: m = JClass('java.util.TreeMap')() for k, v in dic.items(): m[k] = v DoubleArrayTrie = JClass('com.hankcs.hanlp.collection.trie.DoubleArrayTrie') dat = DoubleArrayTrie(m) self.base = dat.getBase() self.check = dat.getCheck() self.value = dat.getValueArray(['']) @staticmethod def char_hash(c) -> int: return JClass('java.lang.Character')(c).hashCode() def transition(self, c, b) -> int: """ 状态转移 :param c: 字符 :param b: 初始状态 :return: 转移后的状态,-1表示失败 """ p = self.base[b] + self.char_hash(c) + 1 if self.base[b] == self.check[p]: return p else: return -1 def __getitem__(self, key: str): b = 0 for i in range(0, len(key)): # len(key)次状态转移 p = self.transition(key[i], b) if p is not -1: b = p else: return None p = self.base[b] # 按字符'\0'进行状态转移 n = self.base[p] # 查询base if p == self.check[p] and n < 0: # 状态转移成功且对应词语结尾 index = -n - 1 # 取得字典序 return self.value[index] return None if __name__ == '__main__': dic = {'自然': 'nature', '自然人': 'human', '自然语言': 'language', '自语': 'talk to oneself', '入门': 'introduction'} dat = DoubleArrayTrie(dic) assert dat['自然'] == 'nature' assert dat['自然语言'] == 'language' assert dat['不存在'] is None assert dat['自然\0在'] is None
28.047619
109
0.526882
7a4a0cabee4e9cb1e23f1acf37c6c01b81024d93
11,636
py
Python
backend/data/client/lunarcrush.py
huenique/gibme-crypto
970f2ab072682c4533a348783c29c40a8fcdd26e
[ "MIT" ]
2
2021-05-23T23:29:56.000Z
2021-05-24T00:16:30.000Z
backend/data/client/lunarcrush.py
huenique/gibme-crypto
970f2ab072682c4533a348783c29c40a8fcdd26e
[ "MIT" ]
6
2021-05-20T14:57:19.000Z
2021-05-26T19:45:01.000Z
backend/data/client/lunarcrush.py
huenique/gibme-crypto
970f2ab072682c4533a348783c29c40a8fcdd26e
[ "MIT" ]
null
null
null
""" Lunarcrush client. HTTP API-endpoint connections to lunarCRUSH. Visit `https://lunarcrush.com/developers/docs#` for more information. """ from __future__ import annotations import string from typing import Optional from . import utils BASE_URL = 'https://api.lunarcrush.com/v2?' class QueryFormatter(string.Formatter): def __init__(self, missing='', bad_fmt=''): self.missing = missing self.bad_fmt = bad_fmt self.fields = {} @staticmethod def cleanup(fmtd): if fmtd[-1:] == '&': return fmtd[:-1] else: return fmtd def get_field(self, field_name, args, kwargs): try: pairs = super().get_field(field_name, args, kwargs) key = pairs[0] if key: self.fields[key] = field_name except (KeyError, AttributeError): pairs = None, field_name return pairs def format_field(self, value, spec): if value == None: return self.missing try: if len(self.fields) == 1: return super().format_field(value, spec) else: return super().format_field(f'{self.fields[value]}={value}&', spec) except ValueError: if self.bad_fmt is not None: return self.bad_fmt else: raise class AssetsEndpoint(QueryFormatter): """Details, overall metrics, and time series metrics for one or multiple cryptocurrencies. Usage: - https://api.lunarcrush.com/v2?data=assets? - https://api.lunarcrush.com/v2?data=assets&key=<key>&symbol=LTC """ async def fetch_assets( self, loop, key: str, symbol: str, interval: Optional[str] = None, time_series_indicators: Optional[str] = None, change: Optional[str] = None, data_points: Optional[int] = None, start: Optional[int] = None, end: Optional[int] = None, output: Optional[str] = None, ) -> utils.objects.Response: url_args = { 'base_url': BASE_URL, 'data': 'assets', 'key': key, 'symbol': symbol, 'interval': interval, 'time_series_indicators': time_series_indicators, 'change': change, 'data_points': data_points, 'start': start, 'end': end } fmt = '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}{output}' url_query = await loop.run_in_executor(None, self.cleanup, self.format(fmt, **url_args)) return await utils.get(uri=url_query, output=output) class MarketPairsEndpoint(QueryFormatter): """Provides the exchange information for cryptocurrencies and the other cryptocurrencies they are being traded for. Usage: - https://api.lunarcrush.com/v2?data=market-pairs? """ async def fetch_matket_pairs( self, loop, key: str, symbol: str, limit: Optional[int] = None, page: Optional[int] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'market-pairs', 'key': key, 'symbol': symbol, 'limit': limit, 'page': page, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class MarketEndpoint(QueryFormatter): """Summary information for all supported cryptocurrencies including 5 recent time series values for some metrics. """ async def fetch_market( self, loop, key: str, type: Optional[int] = None, page: Optional[int] = None, sort: Optional[str] = None, desc: Optional[bool] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'market', 'key': key, 'type': type, 'page': page, 'sort': sort, 'desc': desc, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class GlobalEndpoint(QueryFormatter): """Overall aggregated metrics for all supported cryptocurrencies. """ async def fetch_global( self, loop, key: str, interval: Optional[str] = None, change: Optional[str] = None, data_points: Optional[int] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'global', 'key': key, 'interval': interval, 'change': change, 'data_points': data_points, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class MetaEndpoint(QueryFormatter): """Meta information for all supported assets """ async def fetch_meta( self, loop, key: str, type: Optional[str] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'meta', 'key': key, 'type': type, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class ExchangesEndpoint(QueryFormatter): """Meta information for all trackable exchanges. """ async def fetch_exchanges( self, loop, key: str, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'exchanges', 'key': key, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class ExchangeEnpoint(QueryFormatter): """Meta information and market pairs for a single exchange. """ async def fetch_exchange( self, loop, key: str, exchange: str, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'exchange', 'key': key, 'exchange': exchange, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class CoinOfTheDayEndpoint(QueryFormatter): """The current coin of the day """ async def fetch_cod( self, loop, key: str, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'coinoftheday', 'key': key, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class CoinOfTheDayInfoEndpoint(QueryFormatter): """Provides the history of the coin of the day on LunarCRUSH when it was last changed, and when each coin was last coin of the day """ async def fetch_cod_info( self, loop, key: str, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'coinoftheday_info', 'key': key, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class FeedsEndpoint(QueryFormatter): """Social posts, news, and shared links for one or multiple coins. """ async def fetch_feeds( self, loop, key: str, symbol: Optional[str] = None, sources: Optional[str] = None, limit: Optional[int] = None, page: Optional[int] = None, type: Optional[str] = None, start: Optional[int] = None, end: Optional[int] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'feeds', 'key': key, 'symbol': symbol, 'sources': sources, 'limit': limit, 'page': page, 'type': type, 'start': start, 'end': end, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class InfluencersEndpoint(QueryFormatter): """List of social accounts that have the most influence on different assets based on number of followers, engegements, and volume of posts. """ async def fetch_influencers( self, loop, key: str, symbol: Optional[str] = None, days: Optional[int] = None, num_days: Optional[int] = None, limit: Optional[int] = None, order_by: Optional[str] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'influencers', 'key': key, 'symbol': symbol, 'days': days, 'num_days': num_days, 'limit': limit, 'order_by': order_by, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query) class InfluencerEndpoint(QueryFormatter): """Individual influencer details including actual posts. """ async def fetch_influencer( self, loop, key: str, id: Optional[str] = None, screen_name: Optional[str] = None, days: Optional[str] = None, limit: Optional[str] = None, page: Optional[str] = None, output: Optional[str] = None, ): url_args = { 'base_url': BASE_URL, 'data': 'influencer', 'key': key, 'id': id, 'screen_name': screen_name, 'days': days, 'limit': limit, 'page': page, } url_query = self.cleanup( self.format( '{base_url}{data}{key}{symbol}{interval}{time_series_indicators}{change}{data_points}{start}{end}', **url_args)) return await utils.get(url_query)
29.835897
120
0.536954
f84b896c41d98ac7a0aa6b43f0ba7d373bf473ff
34,148
py
Python
utils/data.py
mstrise/dep2label-eye-tracking-data
ad83d75f0953d8562e157dbbe4cfe22b8ca516cd
[ "MIT" ]
1
2019-09-02T18:36:38.000Z
2019-09-02T18:36:38.000Z
utils/data.py
mstrise/dep2label-eye-tracking-data
ad83d75f0953d8562e157dbbe4cfe22b8ca516cd
[ "MIT" ]
null
null
null
utils/data.py
mstrise/dep2label-eye-tracking-data
ad83d75f0953d8562e157dbbe4cfe22b8ca516cd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Author: Jie # @Date: 2017-06-14 17:34:32 # @Last Modified by: Jie Yang, Contact: jieynlp@gmail.com # @Last Modified time: 2018-04-26 13:58:10 import sys import numpy as np from alphabet import Alphabet from functions import * import cPickle as pickle import itertools from ast import literal_eval as make_tuple from collections import OrderedDict START = "</s>" UNKNOWN = "</unk>" PADDING = "</pad>" class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = False self.norm_char_emb = False self.word_alphabet = Alphabet('word') self.char_alphabet = Alphabet('character') self.feature_name = [] self.feature_alphabets = [] self.feature_num = len(self.feature_alphabets) self.feat_config = None self.label_alphabet = {0: Alphabet('label',True)} self.tagScheme = "NoSeg" ## BMES/BIO self.seg = True ### I/O self.train_dir = None self.dev_dir = None self.test_dir = None self.raw_dir = None self.decode_dir = None self.dset_dir = None ## data vocabulary related file self.model_dir = None ## model save file self.load_model_dir = None ## model load file self.word_emb_dir = None self.char_emb_dir = None self.feature_emb_dirs = [] self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.pretrain_word_embedding = None self.pretrain_char_embedding = None self.pretrain_feature_embeddings = [] #Added for pretraining self.PRETRAINED_ALL = "all" self.PRETRAINED_LSTMS = "lstms" self.pretrained_model = None self.pretrained_part = None self.label_size = 0 self.word_alphabet_size = 0 self.char_alphabet_size = 0 #self.label_alphabet_size = 0 self.label_alphabet_sizes = {0:0} self.feature_alphabet_sizes = [] self.feature_emb_dims = [] self.norm_feature_embs = [] self.word_emb_dim = 50 self.char_emb_dim = 30 ###Networks self.word_feature_extractor = "LSTM" ## "LSTM"/"CNN"/"GRU"/ self.use_char = True self.char_feature_extractor = "CNN" ## "LSTM"/"CNN"/"GRU"/None self.use_crf = True self.nbest = None ## Training self.average_batch_loss = False self.optimizer = "SGD" ## "SGD"/"AdaGrad"/"AdaDelta"/"RMSProp"/"Adam" self.status = "train" ### Hyperparameters self.HP_cnn_layer = 4 self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 200 self.HP_feature_default_size = 20 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = None self.HP_momentum = 0 self.HP_l2 = 1e-8 #D: The number of tasks to be solved self.HP_tasks = 1 self.HP_main_tasks = self.HP_tasks self.HP_tasks_weights = [1] self.optimize_with_evalb = False self.optimize_with_las = False self.offset = False self.choice_of_best_model="avg" self.language="English" # self.HP_tasks_inputs = [self.LSTMOUT] #Policy Gradient self.No_samples = 8 self.pg_variance_reduce = True self.variance_reduce_burn_in = 999 self.pg_valsteps = 1000 self.entropy_regularisation = True self.entropy_reg_coeff = 0.01 #Hyper-parameters for disjoint training self.train_task_ids = [] self.dev_task_ids = [] self.test_task_ids = [] self.raw_task_ids = [] self.disjoint = True self.datasets = {} self.tasks_metrics = {} self.HP_tasks_weight_decays = [0] def show_data_summary(self): print("++"*50) print("DATA SUMMARY START:") print(" I/O:") print(" Tag scheme: %s"%(self.tagScheme)) print(" MAX SENTENCE LENGTH: %s"%(self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s"%(self.MAX_WORD_LENGTH)) print(" Number normalized: %s"%(self.number_normalized)) print(" Word alphabet size: %s"%(self.word_alphabet_size)) print(" Char alphabet size: %s"%(self.char_alphabet_size)) for idtask in self.label_alphabet: print (" Label alphabet size for task %s: %s"%(idtask,self.label_alphabet_sizes[idtask])) #print(" Label alphabet size: %s"%(self.label_alphabet_size)) print(" Word embedding dir: %s"%(self.word_emb_dir)) print(" Char embedding dir: %s"%(self.char_emb_dir)) print(" Word embedding size: %s"%(self.word_emb_dim)) print(" Char embedding size: %s"%(self.char_emb_dim)) print(" Norm word emb: %s"%(self.norm_word_emb)) print(" Norm char emb: %s"%(self.norm_char_emb)) print(" Train file directory: %s"%(self.train_dir)) print(" Dev file directory: %s"%(self.dev_dir)) print(" Test file directory: %s"%(self.test_dir)) print(" Raw file directory: %s"%(self.raw_dir)) print(" Dset file directory: %s"%(self.dset_dir)) print(" Model file directory: %s"%(self.model_dir)) print(" Pretrained model : %s"%(self.pretrained_model)) print(" Pretrained part : %s"%(self.pretrained_part)) print(" Loadmodel directory: %s"%(self.load_model_dir)) print(" Decode file directory: %s"%(self.decode_dir)) print(" Train instance number: %s"%(len(self.train_texts))) print(" Dev instance number: %s"%(len(self.dev_texts))) print(" Test instance number: %s"%(len(self.test_texts))) print(" Raw instance number: %s"%(len(self.raw_texts))) print(" FEATURE num: %s"%(self.feature_num)) for idx in range(self.feature_num): print(" Fe: %s alphabet size: %s"%(self.feature_alphabets[idx].name, self.feature_alphabet_sizes[idx])) print(" Fe: %s embedding dir: %s"%(self.feature_alphabets[idx].name, self.feature_emb_dirs[idx])) print(" Fe: %s embedding size: %s"%(self.feature_alphabets[idx].name, self.feature_emb_dims[idx])) print(" Fe: %s norm emb: %s"%(self.feature_alphabets[idx].name, self.norm_feature_embs[idx])) print(" "+"++"*20) print(" Model Network:") print(" Model use_crf: %s"%(self.use_crf)) print(" Model word extractor: %s"%(self.word_feature_extractor)) print(" Model use_char: %s"%(self.use_char)) if self.use_char: print(" Model char extractor: %s"%(self.char_feature_extractor)) print(" Model char_hidden_dim: %s"%(self.HP_char_hidden_dim)) print(" "+"++"*20) print(" Training:") print(" Optimizer: %s"%(self.optimizer)) print(" Iteration: %s"%(self.HP_iteration)) print(" BatchSize: %s"%(self.HP_batch_size)) print(" Average batch loss: %s"%(self.average_batch_loss)) print(" "+"++"*20) print(" Hyperparameters:") print(" Hyper lr: %s"%(self.HP_lr)) print(" Hyper lr_decay: %s"%(self.HP_lr_decay)) print(" Hyper HP_clip: %s"%(self.HP_clip)) print(" Hyper momentum: %s"%(self.HP_momentum)) print(" Hyper l2: %s"%(self.HP_l2)) print(" Hyper hidden_dim: %s"%(self.HP_hidden_dim)) print(" Hyper dropout: %s"%(self.HP_dropout)) print(" Hyper lstm_layer: %s"%(self.HP_lstm_layer)) print(" Hyper bilstm: %s"%(self.HP_bilstm)) print(" Hyper GPU: %s"%(self.HP_gpu)) print(" Hyper number of tasks: %s"%(self.HP_tasks)) print("DATA SUMMARY END.") print("++"*50) sys.stdout.flush() def initial_feature_alphabets(self): for l in open(self.train_dir,'r').readlines(): if not l.startswith("#") and not l.startswith("-BOS-"): items = l.strip("\n").split() break total_column = len(items) if total_column > 2: for idx in range(1, total_column-1): feature_prefix = items[idx].split(']',1)[0]+"]" self.feature_alphabets.append(Alphabet(feature_prefix)) self.feature_name.append(feature_prefix) print "Find feature: ", feature_prefix self.feature_num = len(self.feature_alphabets) self.pretrain_feature_embeddings = [None]*self.feature_num self.feature_emb_dims = [self.HP_feature_default_size]*self.feature_num #self.feature_emb_dims = [20]*self.feature_num self.feature_emb_dirs = [None]*self.feature_num self.norm_feature_embs = [False]*self.feature_num self.feature_alphabet_sizes = [0]*self.feature_num if self.feat_config: for idx in range(self.feature_num): if self.feature_name[idx] in self.feat_config: self.feature_emb_dims[idx] = self.feat_config[self.feature_name[idx]]['emb_size'] self.feature_emb_dirs[idx] = self.feat_config[self.feature_name[idx]]['emb_dir'] self.norm_feature_embs[idx] = self.feat_config[self.feature_name[idx]]['emb_norm'] def build_alphabet(self, input_file): sample_corpus = None in_lines = open(input_file,'r').readlines() for line in in_lines: if line.upper().startswith(TREEBANK_LINE):#Check the treebank this sentence comes from sample_corpus = "["+line.upper().replace(TREEBANK_LINE,"").strip()+"]" elif len(line) > 2: pairs = line.strip().split() word = pairs[0].decode('utf-8') if self.number_normalized: word = normalize_word(word) label = pairs[-1] if self.HP_tasks > 1 or not self.disjoint: #self.task_config[sample_corpus]["nb_tasks"] > 1: label = parse_multitask_label(label) else: label = [label] if len(label) != len(self.label_alphabet) and not self.disjoint: raise ValueError("The number of tasks and the number of labels in the output column do not match") init_label_alp_index = 0 if not self.disjoint else self.task_config[sample_corpus]["idstask"] for idtask, l in enumerate(label,init_label_alp_index): #for idtask, l in enumerate(label): self.label_alphabet[idtask].add(l) self.word_alphabet.add(word) for idx in range(self.feature_num): feat_idx = pairs[idx+1].split(']',1)[-1] self.feature_alphabets[idx].add(feat_idx) for char in word: self.char_alphabet.add(char) self.word_alphabet_size = self.word_alphabet.size() self.char_alphabet_size = self.char_alphabet.size() for idtask in self.label_alphabet: self.label_alphabet_sizes[idtask] = self.label_alphabet[idtask].size() for idx in range(self.feature_num): self.feature_alphabet_sizes[idx] = self.feature_alphabets[idx].size() for idtask in self.label_alphabet: startS = False startB = False for label,_ in self.label_alphabet[idtask].iteritems(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" def fix_alphabet(self): self.word_alphabet.close() self.char_alphabet.close() for idtask in self.label_alphabet: self.label_alphabet[idtask].close() for idx in range(self.feature_num): self.feature_alphabets[idx].close() def build_pretrain_emb(self): if self.word_emb_dir: print("Load pretrained word embedding, norm: %s, dir: %s"%(self.norm_word_emb, self.word_emb_dir)) self.pretrain_word_embedding, self.word_emb_dim = build_pretrain_embedding(self.word_emb_dir, self.word_alphabet, self.word_emb_dim, self.norm_word_emb) if self.char_emb_dir: print("Load pretrained char embedding, norm: %s, dir: %s"%(self.norm_char_emb, self.char_emb_dir)) self.pretrain_char_embedding, self.char_emb_dim = build_pretrain_embedding(self.char_emb_dir, self.char_alphabet, self.char_emb_dim, self.norm_char_emb) for idx in range(self.feature_num): if self.feature_emb_dirs[idx]: print("Load pretrained feature %s embedding:, norm: %s, dir: %s"%(self.feature_name[idx], self.norm_feature_embs[idx], self.feature_emb_dirs[idx])) self.pretrain_feature_embeddings[idx], self.feature_emb_dims[idx] = build_pretrain_embedding(self.feature_emb_dirs[idx], self.feature_alphabets[idx], self.feature_emb_dims[idx], self.norm_feature_embs[idx]) def generate_instance(self, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance(self.train_dir, self.word_alphabet, self.char_alphabet, self.feature_alphabets, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.task_config if self.disjoint else None) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance(self.dev_dir, self.word_alphabet, self.char_alphabet, self.feature_alphabets, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.task_config if self.disjoint else None) elif name == "test": self.test_texts, self.test_Ids = read_instance(self.test_dir, self.word_alphabet, self.char_alphabet, self.feature_alphabets, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.task_config if self.disjoint else None) elif name == "raw": self.raw_texts, self.raw_Ids = read_instance(self.raw_dir, self.word_alphabet, self.char_alphabet, self.feature_alphabets, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.task_config if self.disjoint else None) else: print("Error: you can only generate train/dev/test instance! Illegal input:%s"%(name)) def write_decoded_results(self, predict_results, name, indexes =None): fout = open(self.decode_dir,'w') content_list = [] if name == 'raw': content_list = self.raw_texts elif name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print("Error: illegal name during writing predict result, name should be within train/dev/test/raw !") for task_predict_results in predict_results: sent_num = len(task_predict_results) assert(sent_num == len(content_list)) for idx in range(sent_num): if indexes is not None and idx not in indexes: continue sent_length = len(predict_results[0][idx]) #Index 0 to know the length of the input sentence for idy in range(sent_length): ## content_list[idx] is a list with [word, char, label] inputs = [] for id_input in range(len(content_list[idx])-2): if content_list[idx][id_input][0] != []: if type(content_list[idx][id_input][idy]) == type([]): for feature in content_list[idx][id_input][idy]: inputs.append(feature.encode('utf-8')) else: inputs.append(content_list[idx][id_input][idy].encode('utf-8')) outputs = [] for task in predict_results: outputs.append(task[idx][idy]) fout.write( "\t".join(inputs) + "\t" + "{}".join(outputs) + '\n') fout.write('\n') fout.close() print("Predict %s result has been written into file. %s"%(name, self.decode_dir)) def load(self,data_file): f = open(data_file, 'rb') tmp_dict = pickle.load(f) f.close() self.__dict__.update(tmp_dict) def save(self,save_file): f = open(save_file, 'wb') pickle.dump(self.__dict__, f, 2) f.close() def write_nbest_decoded_results(self, predict_results, pred_scores, name): fout = open(self.decode_dir,'w') sent_num = len(predict_results) content_list = [] if name == 'raw': content_list = self.raw_texts elif name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print("Error: illegal name during writing predict result, name should be within train/dev/test/raw !") for idtask_predict_results, task_predict_results in enumerate(predict_results): sent_num = len(task_predict_results) assert(sent_num == len(content_list)) for idx in range(sent_num): score_string = "# " for idtask_predict_results, task_predict_results in enumerate(predict_results): sent_length = len(task_predict_results[idx][0]) nbest = len(task_predict_results[0]) #Printing the probabilities for idz in range(nbest): score_string += format(pred_scores[idtask_predict_results][idx][idz], '.4f')+" " fout.write(score_string.strip() + "\t") fout.write("\n") for idy in range(sent_length): label_string = content_list[idx][0][idy].encode('utf-8') + "\t" for ifeat in range(len(content_list[idx][1][idy])): label_string += content_list[idx][1][idy][ifeat].encode('utf-8') + "\t" for idtask_predict_results, task_predict_results in enumerate(predict_results): for idz in range(nbest): label_string += task_predict_results[idx][idz][idy]+"," label_string = label_string.strip().strip(",") + "{}" fout.write(label_string) fout.write('\n') fout.write('\n') fout.close() print("Predict %s %s-best result has been written into file. %s"%(name,nbest, self.decode_dir)) def read_config(self,config_file): config = config_file_to_dict(config_file) ## read data: the_item = 'train_dir' if the_item in config: self.train_dir = config[the_item] the_item = 'dev_dir' if the_item in config: self.dev_dir = config[the_item] the_item = 'test_dir' if the_item in config: self.test_dir = config[the_item] the_item = 'raw_dir' if the_item in config: self.raw_dir = config[the_item] the_item = 'decode_dir' if the_item in config: self.decode_dir = config[the_item] the_item = 'dset_dir' if the_item in config: self.dset_dir = config[the_item] the_item = 'model_dir' if the_item in config: self.model_dir = config[the_item] the_item = 'load_model_dir' if the_item in config: self.load_model_dir = config[the_item] the_item = 'word_emb_dir' if the_item in config: self.word_emb_dir = config[the_item] the_item = 'char_emb_dir' if the_item in config: self.char_emb_dir = config[the_item] the_item = 'MAX_SENTENCE_LENGTH' if the_item in config: self.MAX_SENTENCE_LENGTH = int(config[the_item]) the_item = 'MAX_WORD_LENGTH' if the_item in config: self.MAX_WORD_LENGTH = int(config[the_item]) the_item = 'norm_word_emb' if the_item in config: self.norm_word_emb = str2bool(config[the_item]) the_item = 'norm_char_emb' if the_item in config: self.norm_char_emb = str2bool(config[the_item]) the_item = 'number_normalized' if the_item in config: self.number_normalized = str2bool(config[the_item]) the_item = 'seg' if the_item in config: self.seg = str2bool(config[the_item]) the_item = 'word_emb_dim' if the_item in config: self.word_emb_dim = int(config[the_item]) the_item = 'char_emb_dim' if the_item in config: self.char_emb_dim = int(config[the_item]) ## read network: the_item = 'use_crf' if the_item in config: self.use_crf = str2bool(config[the_item]) the_item = 'use_char' if the_item in config: self.use_char = str2bool(config[the_item]) the_item = 'word_seq_feature' if the_item in config: self.word_feature_extractor = config[the_item] the_item = 'char_seq_feature' if the_item in config: self.char_feature_extractor = config[the_item] the_item = 'nbest' if the_item in config: self.nbest = int(config[the_item]) the_item = 'feature' if the_item in config: self.feat_config = config[the_item] ## feat_config is a dict the_item = 'feature_default_size' if the_item in config: self.HP_feature_default_size = int(config[the_item]) ## read training setting: the_item = 'optimizer' if the_item in config: self.optimizer = config[the_item] the_item = 'ave_batch_loss' if the_item in config: self.average_batch_loss = str2bool(config[the_item]) the_item = 'status' if the_item in config: self.status = config[the_item] ## read Hyperparameters: the_item = 'cnn_layer' if the_item in config: self.HP_cnn_layer = int(config[the_item]) the_item = 'iteration' if the_item in config: self.HP_iteration = int(config[the_item]) the_item = 'batch_size' if the_item in config: self.HP_batch_size = int(config[the_item]) the_item = 'char_hidden_dim' if the_item in config: self.HP_char_hidden_dim = int(config[the_item]) the_item = 'hidden_dim' if the_item in config: self.HP_hidden_dim = int(config[the_item]) the_item = 'dropout' if the_item in config: self.HP_dropout = float(config[the_item]) the_item = 'lstm_layer' if the_item in config: self.HP_lstm_layer = int(config[the_item]) the_item = 'bilstm' if the_item in config: self.HP_bilstm = str2bool(config[the_item]) the_item = 'gpu' if the_item in config: self.HP_gpu = str2bool(config[the_item]) the_item = 'learning_rate' if the_item in config: self.HP_lr = float(config[the_item]) the_item = 'lr_decay' if the_item in config: self.HP_lr_decay = float(config[the_item]) the_item = 'clip' if the_item in config: self.HP_clip = float(config[the_item]) the_item = 'momentum' if the_item in config: self.HP_momentum = float(config[the_item]) the_item = 'l2' if the_item in config: self.HP_l2 = float(config[the_item]) #Hyperparameters for auxiliary tasks over the same treebank the_item = 'disjoint' if the_item in config: self.disjoint=str2bool(config[the_item]) if not self.disjoint: the_item = 'tasks' if the_item in config: self.HP_tasks = int(config[the_item]) if self.HP_tasks > 1: self.label_alphabet = {idtask: Alphabet('label',True) for idtask in range(self.HP_tasks)} self.label_alphabet_sizes = {idtask: self.label_alphabet[idtask].size() for idtask in range(self.HP_tasks)} the_item = "main_tasks" if the_item in config: self.HP_main_tasks = int(config[the_item]) print self.HP_main_tasks, self.HP_tasks if self.HP_main_tasks > self.HP_tasks: raise ValueError("HP_main_tasks cannot be greater than HP_tasks") the_item = 'tasks_weights' if the_item in config: self.HP_tasks_weights = map(float,config[the_item].split("|")) else: #Hyperparameters for auxiliary tasks over a different treebank the_item = 'dataset' if the_item in config: self.task_config = config[the_item] ## feat_config is a dict self.HP_tasks = sum([self.task_config[idtask]["nb_tasks"] for idtask in self.task_config]) self.HP_main_tasks = sum([self.task_config[idtask]["nb_tasks"] for idtask in self.task_config if self.task_config[idtask]["main"]]) self.label_alphabet = {idtask: Alphabet('label',True) for idtask in range(self.HP_tasks)} self.label_alphabet_sizes = {idtask: self.label_alphabet[idtask].size() for idtask in range(self.HP_tasks)} self.HP_tasks_weights = [] self.HP_tasks_weight_decays = [] for idtask in self.task_config: for weight in self.task_config[idtask]["weight"]: self.HP_tasks_weights.append(weight) if "weight_decay" in self.task_config[idtask]: for weight_decay in self.task_config[idtask]["weight_decay"]: self.HP_tasks_weight_decays.append(weight_decay) else: for j in range(self.task_config[idtask]["nb_tasks"]): self.HP_tasks_weight_decays.append(0) self.dataset_ids = {treebank:range(self.task_config[treebank]["idstask"], self.task_config[treebank]["idstask"]+self.task_config[treebank]["nb_tasks"]) for id,treebank in enumerate(self.task_config)} self.ignore_after_epoch = {treebank:self.task_config[treebank]["ignore_after_epoch"] if "ignore_after_epoch" in self.task_config[treebank] else self.HP_iteration+1 for treebank in self.task_config} self.inv_dataset_ids = {} for tb in self.dataset_ids: for subtask in self.dataset_ids[tb]: self.inv_dataset_ids[subtask] = tb self.task_metric = {} for dataset in self.task_config: for i in range(self.task_config[dataset]["idstask"], self.task_config[dataset]["idstask"]+self.task_config[dataset]["nb_tasks"]) : if "metric" in self.task_config[dataset]: self.task_metric[i] = self.task_config[dataset]["metric"] the_item = 'evaluate' if the_item in config: self.evaluate = config[the_item] the_item = "gold_dev_trees" if the_item in config: self.gold_dev_trees = config[the_item] the_item = "gold_dev_dep" if the_item in config: self.gold_dev_dep= config[the_item] the_item = "combine_dependency_offset" if the_item in config: self.offset= str2bool(config[the_item]) the_item = "pretrained_model" if the_item in config: self.pretrained_model = config[the_item] the_item = "pretrained_part" if the_item in config: if config[the_item].lower() not in [self.PRETRAINED_ALL, self.PRETRAINED_LSTMS]: raise ValueError("Invalidad value for pretrained_part (must be 'all' or 'lstms' ") self.pretrained_part = config[the_item] the_item = "optimize_with_las" if the_item in config: self.optimize_with_las = str2bool(config[the_item]) the_item = "gold_train_trees" if the_item in config: self.gold_train_trees = config[the_item] def config_file_to_dict(input_file): config = {} fins = open(input_file,'r').readlines() idstask = 0 #Needed for training with disjoint treebanks for line in fins: if len(line) > 0 and line[0] == "#": continue if "=" in line: pair = line.strip().split('#',1)[0].split('=',1) item = pair[0] if item=="feature": if item not in config: feat_dict = {} config[item]= feat_dict feat_dict = config[item] new_pair = pair[-1].split() feat_name = new_pair[0] one_dict = {} one_dict["emb_dir"] = None one_dict["emb_size"] = 10 one_dict["emb_norm"] = False if len(new_pair) > 1: for idx in range(1,len(new_pair)): conf_pair = new_pair[idx].split('=') if conf_pair[0] == "emb_dir": one_dict["emb_dir"]=conf_pair[-1] elif conf_pair[0] == "emb_size": one_dict["emb_size"]=int(conf_pair[-1]) elif conf_pair[0] == "emb_norm": one_dict["emb_norm"]=str2bool(conf_pair[-1]) feat_dict[feat_name] = one_dict elif item=="dataset": if item not in config: task_dict = OrderedDict() config[item] = task_dict task_dict = config[item] new_pair = pair[-1].split() task_name = new_pair[0] one_dict = {} one_dict["nb_tasks"] = None one_dict["main"] = None one_dict["idstask"] = idstask if len(new_pair) > 1: for idx in range(1, len(new_pair)): print line, one_dict conf_pair = new_pair[idx].split("=") if conf_pair[0] == "nb_tasks": one_dict["nb_tasks"]=int(conf_pair[-1]) idstask+=int(conf_pair[-1]) if conf_pair[0] == "main": one_dict["main"] = str2bool(conf_pair[-1]) if conf_pair[0] == "weight": one_dict["weight"] = [float(w) for w in conf_pair[-1].split("|")] if conf_pair[0] == "weight_decay": one_dict["weight_decay"] = [float(w) for w in conf_pair[-1].split("|")] if conf_pair[0] == "metric": one_dict["metric"] = conf_pair[-1] if conf_pair[0] == "ignore_after_epoch": one_dict["ignore_after_epoch"] = int(conf_pair[-1]) task_dict[task_name] = one_dict else: if item in config: print("Warning: duplicated config item found: %s, updated."%(pair[0])) config[item] = pair[-1] return config def str2bool(string): if string == "True" or string == "true" or string == "TRUE": return True else: return False class Task(object): def __init__(self, name, n_task, main): self.name = name self.n_task = n_task self.main = main
42.685
222
0.552887
42cf25b9f49f3148f87d8431524cfcc27b0cd78a
1,970
py
Python
bili/base.py
wyapx/bili-api
65160b01a413710ed31588f1bfff9e5ed14d08be
[ "MIT" ]
null
null
null
bili/base.py
wyapx/bili-api
65160b01a413710ed31588f1bfff9e5ed14d08be
[ "MIT" ]
null
null
null
bili/base.py
wyapx/bili-api
65160b01a413710ed31588f1bfff9e5ed14d08be
[ "MIT" ]
null
null
null
from typing import Dict import aiohttp from .utils import assert_success class Network: def __init__(self, cookies: Dict[str, str] = None) -> None: cookiejar = aiohttp.CookieJar() if cookies: cookiejar.update_cookies(cookies) self._session = aiohttp.ClientSession(cookie_jar=cookiejar) async def get(self, url: str, params=None) -> dict: async with self._session.get(url, params=params) as resp: if resp.status != 200: raise ConnectionError(resp.status, await resp.read()) return await resp.json() async def post(self, url: str, data=None) -> dict: async with self._session.post(url, data=data) as resp: if resp.status != 200: raise ConnectionError(resp.status, await resp.read()) return await resp.json() async def websocket(self, host: str, path="/", port=443, wss=True) -> aiohttp.ClientWebSocketResponse: return await self._session.ws_connect(f"{'wss' if wss else 'ws'}://" f"{host}:{port}{path}") class APIBase: base = None def __init__(self, network: Network) -> None: if not self.base: raise AttributeError("base url not set") self._network = network self._verified = None def _join_url(self, path: str) -> str: return self.base + path async def verify_auth(self): if self._verified is None: assert_success( await self._network.get("https://api.bilibili.com/x/space/myinfo") ) self._verified = True async def _get(self, path: str, params=None) -> dict: return assert_success( await self._network.get(self._join_url(path), params) ) async def _post(self, path: str, data=None) -> dict: return assert_success( await self._network.post(self._join_url(path), data) )
32.833333
106
0.59797
43d67fd6650762365dcf2a075dacfc884ffdc203
1,600
py
Python
src/wallabag/commands/add.py
artur-shaik/wallabag-client
6c03a3beebcf27f51076e0eb11bb99f618f8daa3
[ "MIT" ]
16
2020-09-30T23:08:45.000Z
2022-03-30T02:34:17.000Z
src/wallabag/commands/add.py
artur-shaik/wallabag-client
6c03a3beebcf27f51076e0eb11bb99f618f8daa3
[ "MIT" ]
15
2020-11-05T09:22:38.000Z
2022-03-11T16:56:18.000Z
src/wallabag/commands/add.py
artur-shaik/wallabag-client
6c03a3beebcf27f51076e0eb11bb99f618f8daa3
[ "MIT" ]
1
2021-04-02T11:00:57.000Z
2021-04-02T11:00:57.000Z
# -*- coding: utf-8 -*- from colorama import Fore from wallabag.api.add_entry import AddEntry, Params as AddEntryParams from wallabag.api.entry_exists import EntryExists from wallabag.commands.command import Command from wallabag.commands.tags_param import TagsParam from wallabag.commands.params import Params from wallabag.entry import Entry class AddCommandParams(Params, TagsParam): target_url = None title = None starred = None read = None tags = None def __init__(self, target_url, title=None, starred=None, read=None, tags=None): self.target_url = target_url self.title = title self.starred = starred self.read = read self.tags = tags def validate(self): return self._validate_tags() class AddCommand(Command): def __init__(self, config, params=None): Command.__init__(self) self.config = config self.params = params def _run(self): params = self.params api = EntryExists(self.config, params.target_url) if api.request().response['exists']: return True, "The url was already saved." entry = Entry(AddEntry(self.config, params.target_url, { AddEntryParams.TITLE: params.title, AddEntryParams.READ: params.read, AddEntryParams.STARRED: params.starred, AddEntryParams.TAGS: params.tags }).request().response) return True, ( "Entry successfully added:\n\n" f"\t{Fore.GREEN}{entry.entry_id}. {entry.title}{Fore.RESET}\n")
29.62963
79
0.64875
e87d16d0d0474d51c83be2f03958f2c58f1b88d0
27,057
py
Python
rest_framework/renderers.py
marctc/django-rest-framework
06fd63dade20e1a19276b7414a54b9f5d2ef8329
[ "Unlicense" ]
1
2015-12-31T10:24:25.000Z
2015-12-31T10:24:25.000Z
rest_framework/renderers.py
marctc/django-rest-framework
06fd63dade20e1a19276b7414a54b9f5d2ef8329
[ "Unlicense" ]
null
null
null
rest_framework/renderers.py
marctc/django-rest-framework
06fd63dade20e1a19276b7414a54b9f5d2ef8329
[ "Unlicense" ]
null
null
null
""" Renderers are used to serialize a response into specific media types. They give us a generic way of being able to handle various media types on the response, such as JSON encoded data or HTML output. REST framework also provides an HTML renderer the renders the browsable API. """ from __future__ import unicode_literals import json import django from django import forms from django.core.exceptions import ImproperlyConfigured from django.http.multipartparser import parse_header from django.template import Context, RequestContext, loader, Template from django.test.client import encode_multipart from django.utils import six from django.utils.xmlutils import SimplerXMLGenerator from rest_framework import exceptions, serializers, status, VERSION from rest_framework.compat import ( SHORT_SEPARATORS, LONG_SEPARATORS, StringIO, smart_text, yaml ) from rest_framework.exceptions import ParseError from rest_framework.settings import api_settings from rest_framework.request import is_form_media_type, override_method from rest_framework.utils import encoders from rest_framework.utils.breadcrumbs import get_breadcrumbs from rest_framework.utils.field_mapping import ClassLookupDict def zero_as_none(value): return None if value == 0 else value class BaseRenderer(object): """ All renderers should extend this class, setting the `media_type` and `format` attributes, and override the `.render()` method. """ media_type = None format = None charset = 'utf-8' render_style = 'text' def render(self, data, accepted_media_type=None, renderer_context=None): raise NotImplemented('Renderer class requires .render() to be implemented') class JSONRenderer(BaseRenderer): """ Renderer which serializes to JSON. """ media_type = 'application/json' format = 'json' encoder_class = encoders.JSONEncoder ensure_ascii = not api_settings.UNICODE_JSON compact = api_settings.COMPACT_JSON # We don't set a charset because JSON is a binary encoding, # that can be encoded as utf-8, utf-16 or utf-32. # See: http://www.ietf.org/rfc/rfc4627.txt # Also: http://lucumr.pocoo.org/2013/7/19/application-mimetypes-and-encodings/ charset = None def get_indent(self, accepted_media_type, renderer_context): if accepted_media_type: # If the media type looks like 'application/json; indent=4', # then pretty print the result. # Note that we coerce `indent=0` into `indent=None`. base_media_type, params = parse_header(accepted_media_type.encode('ascii')) try: return zero_as_none(max(min(int(params['indent']), 8), 0)) except (KeyError, ValueError, TypeError): pass # If 'indent' is provided in the context, then pretty print the result. # E.g. If we're being called by the BrowsableAPIRenderer. return renderer_context.get('indent', None) def render(self, data, accepted_media_type=None, renderer_context=None): """ Render `data` into JSON, returning a bytestring. """ if data is None: return bytes() renderer_context = renderer_context or {} indent = self.get_indent(accepted_media_type, renderer_context) separators = SHORT_SEPARATORS if (indent is None and self.compact) else LONG_SEPARATORS ret = json.dumps( data, cls=self.encoder_class, indent=indent, ensure_ascii=self.ensure_ascii, separators=separators ) # On python 2.x json.dumps() returns bytestrings if ensure_ascii=True, # but if ensure_ascii=False, the return type is underspecified, # and may (or may not) be unicode. # On python 3.x json.dumps() returns unicode strings. if isinstance(ret, six.text_type): return bytes(ret.encode('utf-8')) return ret class JSONPRenderer(JSONRenderer): """ Renderer which serializes to json, wrapping the json output in a callback function. """ media_type = 'application/javascript' format = 'jsonp' callback_parameter = 'callback' default_callback = 'callback' charset = 'utf-8' def get_callback(self, renderer_context): """ Determine the name of the callback to wrap around the json output. """ request = renderer_context.get('request', None) params = request and request.query_params or {} return params.get(self.callback_parameter, self.default_callback) def render(self, data, accepted_media_type=None, renderer_context=None): """ Renders into jsonp, wrapping the json output in a callback function. Clients may set the callback function name using a query parameter on the URL, for example: ?callback=exampleCallbackName """ renderer_context = renderer_context or {} callback = self.get_callback(renderer_context) json = super(JSONPRenderer, self).render(data, accepted_media_type, renderer_context) return callback.encode(self.charset) + b'(' + json + b');' class XMLRenderer(BaseRenderer): """ Renderer which serializes to XML. """ media_type = 'application/xml' format = 'xml' charset = 'utf-8' def render(self, data, accepted_media_type=None, renderer_context=None): """ Renders `data` into serialized XML. """ if data is None: return '' stream = StringIO() xml = SimplerXMLGenerator(stream, self.charset) xml.startDocument() xml.startElement("root", {}) self._to_xml(xml, data) xml.endElement("root") xml.endDocument() return stream.getvalue() def _to_xml(self, xml, data): if isinstance(data, (list, tuple)): for item in data: xml.startElement("list-item", {}) self._to_xml(xml, item) xml.endElement("list-item") elif isinstance(data, dict): for key, value in six.iteritems(data): xml.startElement(key, {}) self._to_xml(xml, value) xml.endElement(key) elif data is None: # Don't output any value pass else: xml.characters(smart_text(data)) class YAMLRenderer(BaseRenderer): """ Renderer which serializes to YAML. """ media_type = 'application/yaml' format = 'yaml' encoder = encoders.SafeDumper charset = 'utf-8' ensure_ascii = False def render(self, data, accepted_media_type=None, renderer_context=None): """ Renders `data` into serialized YAML. """ assert yaml, 'YAMLRenderer requires pyyaml to be installed' if data is None: return '' return yaml.dump(data, stream=None, encoding=self.charset, Dumper=self.encoder, allow_unicode=not self.ensure_ascii) class TemplateHTMLRenderer(BaseRenderer): """ An HTML renderer for use with templates. The data supplied to the Response object should be a dictionary that will be used as context for the template. The template name is determined by (in order of preference): 1. An explicit `.template_name` attribute set on the response. 2. An explicit `.template_name` attribute set on this class. 3. The return result of calling `view.get_template_names()`. For example: data = {'users': User.objects.all()} return Response(data, template_name='users.html') For pre-rendered HTML, see StaticHTMLRenderer. """ media_type = 'text/html' format = 'html' template_name = None exception_template_names = [ '%(status_code)s.html', 'api_exception.html' ] charset = 'utf-8' def render(self, data, accepted_media_type=None, renderer_context=None): """ Renders data to HTML, using Django's standard template rendering. The template name is determined by (in order of preference): 1. An explicit .template_name set on the response. 2. An explicit .template_name set on this class. 3. The return result of calling view.get_template_names(). """ renderer_context = renderer_context or {} view = renderer_context['view'] request = renderer_context['request'] response = renderer_context['response'] if response.exception: template = self.get_exception_template(response) else: template_names = self.get_template_names(response, view) template = self.resolve_template(template_names) context = self.resolve_context(data, request, response) return template.render(context) def resolve_template(self, template_names): return loader.select_template(template_names) def resolve_context(self, data, request, response): if response.exception: data['status_code'] = response.status_code return RequestContext(request, data) def get_template_names(self, response, view): if response.template_name: return [response.template_name] elif self.template_name: return [self.template_name] elif hasattr(view, 'get_template_names'): return view.get_template_names() elif hasattr(view, 'template_name'): return [view.template_name] raise ImproperlyConfigured('Returned a template response with no `template_name` attribute set on either the view or response') def get_exception_template(self, response): template_names = [name % {'status_code': response.status_code} for name in self.exception_template_names] try: # Try to find an appropriate error template return self.resolve_template(template_names) except Exception: # Fall back to using eg '404 Not Found' return Template('%d %s' % (response.status_code, response.status_text.title())) # Note, subclass TemplateHTMLRenderer simply for the exception behavior class StaticHTMLRenderer(TemplateHTMLRenderer): """ An HTML renderer class that simply returns pre-rendered HTML. The data supplied to the Response object should be a string representing the pre-rendered HTML content. For example: data = '<html><body>example</body></html>' return Response(data) For template rendered HTML, see TemplateHTMLRenderer. """ media_type = 'text/html' format = 'html' charset = 'utf-8' def render(self, data, accepted_media_type=None, renderer_context=None): renderer_context = renderer_context or {} response = renderer_context['response'] if response and response.exception: request = renderer_context['request'] template = self.get_exception_template(response) context = self.resolve_context(data, request, response) return template.render(context) return data class HTMLFormRenderer(BaseRenderer): """ Renderers serializer data into an HTML form. If the serializer was instantiated without an object then this will return an HTML form not bound to any object, otherwise it will return an HTML form with the appropriate initial data populated from the object. Note that rendering of field and form errors is not currently supported. """ media_type = 'text/html' format = 'form' charset = 'utf-8' template_pack = 'rest_framework/horizontal/' base_template = 'form.html' default_style = ClassLookupDict({ serializers.Field: { 'base_template': 'input.html', 'input_type': 'text' }, serializers.EmailField: { 'base_template': 'input.html', 'input_type': 'email' }, serializers.URLField: { 'base_template': 'input.html', 'input_type': 'url' }, serializers.IntegerField: { 'base_template': 'input.html', 'input_type': 'number' }, serializers.DateTimeField: { 'base_template': 'input.html', 'input_type': 'datetime-local' }, serializers.DateField: { 'base_template': 'input.html', 'input_type': 'date' }, serializers.TimeField: { 'base_template': 'input.html', 'input_type': 'time' }, serializers.BooleanField: { 'base_template': 'checkbox.html' }, serializers.ChoiceField: { 'base_template': 'select.html', # Also valid: 'radio.html' }, serializers.MultipleChoiceField: { 'base_template': 'select_multiple.html', # Also valid: 'checkbox_multiple.html' }, serializers.RelatedField: { 'base_template': 'select.html', # Also valid: 'radio.html' }, serializers.ManyRelatedField: { 'base_template': 'select_multiple.html', # Also valid: 'checkbox_multiple.html' }, serializers.Serializer: { 'base_template': 'fieldset.html' }, serializers.ListSerializer: { 'base_template': 'list_fieldset.html' } }) def render_field(self, field, parent_style): style = dict(self.default_style[field]) style.update(field.style) if 'template_pack' not in style: style['template_pack'] = parent_style.get('template_pack', self.template_pack) style['renderer'] = self if style.get('input_type') == 'datetime-local' and isinstance(field.value, six.text_type): field.value = field.value.rstrip('Z') if 'template' in style: template_name = style['template'] else: template_name = style['template_pack'].strip('/') + '/' + style['base_template'] template = loader.get_template(template_name) context = Context({'field': field, 'style': style}) return template.render(context) def render(self, data, accepted_media_type=None, renderer_context=None): """ Render serializer data and return an HTML form, as a string. """ form = data.serializer meta = getattr(form, 'Meta', None) style = getattr(meta, 'style', {}) if 'template_pack' not in style: style['template_pack'] = self.template_pack if 'base_template' not in style: style['base_template'] = self.base_template style['renderer'] = self # This API needs to be finessed and finalized for 3.1 if 'template' in renderer_context: template_name = renderer_context['template'] elif 'template' in style: template_name = style['template'] else: template_name = style['template_pack'].strip('/') + '/' + style['base_template'] renderer_context = renderer_context or {} request = renderer_context['request'] template = loader.get_template(template_name) context = RequestContext(request, { 'form': form, 'style': style }) return template.render(context) class BrowsableAPIRenderer(BaseRenderer): """ HTML renderer used to self-document the API. """ media_type = 'text/html' format = 'api' template = 'rest_framework/api.html' charset = 'utf-8' form_renderer_class = HTMLFormRenderer def get_default_renderer(self, view): """ Return an instance of the first valid renderer. (Don't use another documenting renderer.) """ renderers = [renderer for renderer in view.renderer_classes if not issubclass(renderer, BrowsableAPIRenderer)] non_template_renderers = [renderer for renderer in renderers if not hasattr(renderer, 'get_template_names')] if not renderers: return None elif non_template_renderers: return non_template_renderers[0]() return renderers[0]() def get_content(self, renderer, data, accepted_media_type, renderer_context): """ Get the content as if it had been rendered by the default non-documenting renderer. """ if not renderer: return '[No renderers were found]' renderer_context['indent'] = 4 content = renderer.render(data, accepted_media_type, renderer_context) render_style = getattr(renderer, 'render_style', 'text') assert render_style in ['text', 'binary'], 'Expected .render_style ' \ '"text" or "binary", but got "%s"' % render_style if render_style == 'binary': return '[%d bytes of binary content]' % len(content) return content def show_form_for_method(self, view, method, request, obj): """ Returns True if a form should be shown for this method. """ if method not in view.allowed_methods: return # Not a valid method if not api_settings.FORM_METHOD_OVERRIDE: return # Cannot use form overloading try: view.check_permissions(request) if obj is not None: view.check_object_permissions(request, obj) except exceptions.APIException: return False # Doesn't have permissions return True def get_rendered_html_form(self, data, view, method, request): """ Return a string representing a rendered HTML form, possibly bound to either the input or output data. In the absence of the View having an associated form then return None. """ # See issue #2089 for refactoring this. serializer = getattr(data, 'serializer', None) if serializer and not getattr(serializer, 'many', False): instance = getattr(serializer, 'instance', None) else: instance = None # If this is valid serializer data, and the form is for the same # HTTP method as was used in the request then use the existing # serializer instance, rather than dynamically creating a new one. if request.method == method and serializer is not None: try: data = request.data except ParseError: data = None existing_serializer = serializer else: data = None existing_serializer = None with override_method(view, request, method) as request: if not self.show_form_for_method(view, method, request, instance): return if method in ('DELETE', 'OPTIONS'): return True # Don't actually need to return a form if ( not getattr(view, 'get_serializer', None) or not any(is_form_media_type(parser.media_type) for parser in view.parser_classes) ): return if existing_serializer is not None: serializer = existing_serializer else: if method in ('PUT', 'PATCH'): serializer = view.get_serializer(instance=instance, data=data) else: serializer = view.get_serializer(data=data) if data is not None: serializer.is_valid() form_renderer = self.form_renderer_class() return form_renderer.render( serializer.data, self.accepted_media_type, dict( list(self.renderer_context.items()) + [('template', 'rest_framework/api_form.html')] ) ) def get_raw_data_form(self, data, view, method, request): """ Returns a form that allows for arbitrary content types to be tunneled via standard HTML forms. (Which are typically application/x-www-form-urlencoded) """ # See issue #2089 for refactoring this. serializer = getattr(data, 'serializer', None) if serializer and not getattr(serializer, 'many', False): instance = getattr(serializer, 'instance', None) else: instance = None with override_method(view, request, method) as request: # If we're not using content overloading there's no point in # supplying a generic form, as the view won't treat the form's # value as the content of the request. if not (api_settings.FORM_CONTENT_OVERRIDE and api_settings.FORM_CONTENTTYPE_OVERRIDE): return None # Check permissions if not self.show_form_for_method(view, method, request, instance): return # If possible, serialize the initial content for the generic form default_parser = view.parser_classes[0] renderer_class = getattr(default_parser, 'renderer_class', None) if (hasattr(view, 'get_serializer') and renderer_class): # View has a serializer defined and parser class has a # corresponding renderer that can be used to render the data. if method in ('PUT', 'PATCH'): serializer = view.get_serializer(instance=instance) else: serializer = view.get_serializer() # Render the raw data content renderer = renderer_class() accepted = self.accepted_media_type context = self.renderer_context.copy() context['indent'] = 4 content = renderer.render(serializer.data, accepted, context) else: content = None # Generate a generic form that includes a content type field, # and a content field. content_type_field = api_settings.FORM_CONTENTTYPE_OVERRIDE content_field = api_settings.FORM_CONTENT_OVERRIDE media_types = [parser.media_type for parser in view.parser_classes] choices = [(media_type, media_type) for media_type in media_types] initial = media_types[0] # NB. http://jacobian.org/writing/dynamic-form-generation/ class GenericContentForm(forms.Form): def __init__(self): super(GenericContentForm, self).__init__() self.fields[content_type_field] = forms.ChoiceField( label='Media type', choices=choices, initial=initial ) self.fields[content_field] = forms.CharField( label='Content', widget=forms.Textarea, initial=content ) return GenericContentForm() def get_name(self, view): return view.get_view_name() def get_description(self, view): return view.get_view_description(html=True) def get_breadcrumbs(self, request): return get_breadcrumbs(request.path) def get_context(self, data, accepted_media_type, renderer_context): """ Returns the context used to render. """ view = renderer_context['view'] request = renderer_context['request'] response = renderer_context['response'] renderer = self.get_default_renderer(view) raw_data_post_form = self.get_raw_data_form(data, view, 'POST', request) raw_data_put_form = self.get_raw_data_form(data, view, 'PUT', request) raw_data_patch_form = self.get_raw_data_form(data, view, 'PATCH', request) raw_data_put_or_patch_form = raw_data_put_form or raw_data_patch_form response_headers = dict(response.items()) renderer_content_type = '' if renderer: renderer_content_type = '%s' % renderer.media_type if renderer.charset: renderer_content_type += ' ;%s' % renderer.charset response_headers['Content-Type'] = renderer_content_type context = { 'content': self.get_content(renderer, data, accepted_media_type, renderer_context), 'view': view, 'request': request, 'response': response, 'description': self.get_description(view), 'name': self.get_name(view), 'version': VERSION, 'breadcrumblist': self.get_breadcrumbs(request), 'allowed_methods': view.allowed_methods, 'available_formats': [renderer_cls.format for renderer_cls in view.renderer_classes], 'response_headers': response_headers, 'put_form': self.get_rendered_html_form(data, view, 'PUT', request), 'post_form': self.get_rendered_html_form(data, view, 'POST', request), 'delete_form': self.get_rendered_html_form(data, view, 'DELETE', request), 'options_form': self.get_rendered_html_form(data, view, 'OPTIONS', request), 'raw_data_put_form': raw_data_put_form, 'raw_data_post_form': raw_data_post_form, 'raw_data_patch_form': raw_data_patch_form, 'raw_data_put_or_patch_form': raw_data_put_or_patch_form, 'display_edit_forms': bool(response.status_code != 403), 'api_settings': api_settings } return context def render(self, data, accepted_media_type=None, renderer_context=None): """ Render the HTML for the browsable API representation. """ self.accepted_media_type = accepted_media_type or '' self.renderer_context = renderer_context or {} template = loader.get_template(self.template) context = self.get_context(data, accepted_media_type, renderer_context) context = RequestContext(renderer_context['request'], context) ret = template.render(context) # Munge DELETE Response code to allow us to return content # (Do this *after* we've rendered the template so that we include # the normal deletion response code in the output) response = renderer_context['response'] if response.status_code == status.HTTP_204_NO_CONTENT: response.status_code = status.HTTP_200_OK return ret class MultiPartRenderer(BaseRenderer): media_type = 'multipart/form-data; boundary=BoUnDaRyStRiNg' format = 'multipart' charset = 'utf-8' BOUNDARY = 'BoUnDaRyStRiNg' if django.VERSION >= (1, 5) else b'BoUnDaRyStRiNg' def render(self, data, accepted_media_type=None, renderer_context=None): return encode_multipart(self.BOUNDARY, data)
36.712347
135
0.625679
4699e759fc9c02fe51f52775f52306f7bef8abfb
3,550
py
Python
test_array.py
sebi06/czi_demos
b3f7801f46de0138a8a1ac245e9c80787e0a3f17
[ "MIT" ]
3
2020-12-31T10:06:42.000Z
2021-11-09T13:44:16.000Z
test_array.py
sebi06/czi_demos
b3f7801f46de0138a8a1ac245e9c80787e0a3f17
[ "MIT" ]
null
null
null
test_array.py
sebi06/czi_demos
b3f7801f46de0138a8a1ac245e9c80787e0a3f17
[ "MIT" ]
null
null
null
import numpy as np import imgfileutils as imf from aicspylibczi import CziFile def get_dimorder(dimstring): """Get the order of dimensions from dimension string :param dimstring: string containing the dimensions :type dimstring: str :return: dims_dict - dictionary with the dimensions and its positions :rtype: dict :return: dimindex_list - list with indices of dimensions :rtype: list :return: numvalid_dims - number of valid dimensions :rtype: integer """ dimindex_list = [] dims = ['R', 'I', 'M', 'H', 'V', 'B', 'S', 'T', 'C', 'Z', 'Y', 'X', '0'] dims_dict = {} for d in dims: dims_dict[d] = dimstring.find(d) dimindex_list.append(dimstring.find(d)) numvalid_dims = sum(i > 0 for i in dimindex_list) return dims_dict, dimindex_list, numvalid_dims filename = r"C:\Temp\input\DTScan_ID4.czi" md, addmd = imf.get_metadata(filename) czi = CziFile(filename) # Get the shape of the data, the coordinate pairs are (start index, size) dimensions = czi.dims_shape() print(dimensions) print(czi.dims) print(czi.size) print(czi.is_mosaic()) # True # Mosaic files ignore the S dimension and use an internal mIndex to reconstruct, the scale factor allows one to generate a manageable image mosaic_data = czi.read_mosaic(C=0, scale_factor=1) print('CZI Mosaic Data Shape : ', mosaic_data.shape) md = {} md['SizeS'] = 1 md['SizeT'] = 3 md['SizeZ'] = 5 md['SizeC'] = 2 md['SizeY'] = 100 md['SizeX'] = 200 dimorder = 'STCYX' dims_dict, dimindex_list, numvalid_dims = get_dimorder(dimorder) new = {k: v for k, v in dims_dict.items() if v != -1} new = {value: key for key, value in new.items()} print(new) ar = np.array(np.zeros([md['SizeY'], md['SizeX']])) out = np.resize(3, (ar.shape[0], ar.shape[1])) # in case of 2 dimensions if dimorder == 'YX': ar = np.array(np.zeros([md['SizeY'], md['SizeX']])) # in case of 3 dimensions if dimorder == 'SYX': ar = np.array(np.zeros([md['SizeS'], md['SizeY'], md['SizeX']])) if dimorder == 'TYX': ar = np.array(np.zeros([md['SizeT'], md['SizeY'], md['SizeX']])) if dimorder == 'ZYX': ar = np.array(np.zeros([md['SizeZ'], md['SizeY'], md['SizeX']])) if dimorder == 'CYX': ar = np.array(np.zeros([md['SizeC'], md['SizeY'], md['SizeX']])) # in case of 4 dimensions if dimorder == 'SCYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'STYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'SZYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'TCYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'TZYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'ZCYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'ZTYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'SCYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'CTYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) if dimorder == 'CZYX': ar = np.array(np.zeros([md['SizeS'], md['SizeC'], md['SizeY'], md['SizeX']])) ar = np.array(np.zeros([md['SizeY'], md['SizeX']])) print(dims_dict) for d in range(0, 6): dim2search = dimorder[d] print(dim2search, dims_dict[dim2search])
26.691729
139
0.62
38f48316fe6a5de705232180e386303792707117
652
py
Python
charades_preprocess/preprocess.py
hudaAlamri/visdial-bert
77fee9e49c629bff314397d7ff029389a08a4ec0
[ "BSD-3-Clause" ]
null
null
null
charades_preprocess/preprocess.py
hudaAlamri/visdial-bert
77fee9e49c629bff314397d7ff029389a08a4ec0
[ "BSD-3-Clause" ]
null
null
null
charades_preprocess/preprocess.py
hudaAlamri/visdial-bert
77fee9e49c629bff314397d7ff029389a08a4ec0
[ "BSD-3-Clause" ]
1
2022-03-07T15:48:19.000Z
2022-03-07T15:48:19.000Z
# parse charades datasets to get the actions set import csv data_all = {} input_file = csv.DictReader(open("../data/Charades/Charades_v1_train.csv")) actions_list = {} for row in input_file: id = row['id'] data_all[id] = row action_list = [v.split(' ')[0] for v in row['actions'].split(';')] actions_list[id] = action_list with open("../data/Charades/Charades_v1_classes.txt") as f: actions_names = dict(x.rstrip().split(None,1) for x in f) # given a video_id, retrieve the set of actions and their temporal locations: vid_id = '9GS13' l_names = [actions_names[each] for each in actions_list[vid_id]] for each in l_names: print(each)
24.148148
77
0.711656
247d152f2b69d9f8a6dff2a79fff958d1b6684c0
3,098
py
Python
apps/gsekit/configfile/handlers/tests.py
iSecloud/bk-process-config-manager
f44c01b7a28dd9328cce6e6066eae42d5365070d
[ "MIT" ]
8
2021-07-08T06:53:57.000Z
2022-03-14T04:05:27.000Z
apps/gsekit/configfile/handlers/tests.py
iSecloud/bk-process-config-manager
f44c01b7a28dd9328cce6e6066eae42d5365070d
[ "MIT" ]
107
2021-07-22T02:20:07.000Z
2022-03-14T08:37:23.000Z
apps/gsekit/configfile/handlers/tests.py
iSecloud/bk-process-config-manager
f44c01b7a28dd9328cce6e6066eae42d5365070d
[ "MIT" ]
12
2021-07-09T08:59:01.000Z
2022-03-08T13:40:41.000Z
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸 (Blueking) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # -*- coding: utf-8 -*- from django.test import TestCase from apps.gsekit.configfile.handlers.config_template import ConfigTemplateHandler from apps.gsekit.process.models import Process class TestConfigTemplateHandlers(TestCase): """ 测试配置处理器 """ def test_bind_template_to_process(self): # 新增配置模板绑定 process_object_list = [ {"process_object_type": Process.ProcessObjectType.INSTANCE, "process_object_id": 1}, {"process_object_type": Process.ProcessObjectType.INSTANCE, "process_object_id": 2}, {"process_object_type": Process.ProcessObjectType.TEMPLATE, "process_object_id": 1}, {"process_object_type": Process.ProcessObjectType.TEMPLATE, "process_object_id": 2}, ] count = ConfigTemplateHandler(config_template_id=1).bind_template_to_process(process_object_list) self.assertEqual(count["deleted_relations_count"], 0) self.assertEqual(count["created_relations_count"], 4) # 变更 process_object_list = [ {"process_object_type": Process.ProcessObjectType.INSTANCE, "process_object_id": 1}, {"process_object_type": Process.ProcessObjectType.TEMPLATE, "process_object_id": 1}, {"process_object_type": Process.ProcessObjectType.TEMPLATE, "process_object_id": 3}, ] count = ConfigTemplateHandler(config_template_id=1).bind_template_to_process(process_object_list) self.assertEqual(count["deleted_relations_count"], 2) self.assertEqual(count["created_relations_count"], 1) def test_bind_process_to_template(self): self.test_bind_template_to_process() # 新增配置模板绑定 process_object_id = 3 process_object_type = Process.ProcessObjectType.TEMPLATE config_template_id_list = [1, 2, 3] count = ConfigTemplateHandler.bind_process_to_template( process_object_type, process_object_id, config_template_id_list ) self.assertEqual(count["deleted_relations_count"], 0) self.assertEqual(count["created_relations_count"], 2) config_template_id_list = [] count = ConfigTemplateHandler.bind_process_to_template( process_object_type, process_object_id, config_template_id_list ) self.assertEqual(count["deleted_relations_count"], 3) self.assertEqual(count["created_relations_count"], 0)
48.40625
115
0.727243
7ada18f15ad6980558f5c11aa42a0784c7a372a0
589
py
Python
apps/about/migrations/0001_initial.py
StepicOrg/stepik-apps
5825bc9b2444ad4690681964d1bed172706f8796
[ "Apache-2.0" ]
5
2017-03-17T10:01:25.000Z
2018-03-23T05:56:25.000Z
apps/about/migrations/0001_initial.py
StepicOrg/stepik-apps
5825bc9b2444ad4690681964d1bed172706f8796
[ "Apache-2.0" ]
4
2020-06-05T17:34:05.000Z
2021-04-19T12:58:48.000Z
apps/about/migrations/0001_initial.py
StepicOrg/stepik-apps
5825bc9b2444ad4690681964d1bed172706f8796
[ "Apache-2.0" ]
2
2017-03-21T13:01:28.000Z
2017-04-27T14:33:20.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-22 08:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='About', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('pub_date', models.DateTimeField()), ], ), ]
24.541667
114
0.575552
d56fdb697519c82350da541bfb1e56a4f610ce7d
860
py
Python
gif_manger.py
Rix565/PygaMone
58879a01b5427328824ab4558f6ea3916f1b844a
[ "MIT" ]
null
null
null
gif_manger.py
Rix565/PygaMone
58879a01b5427328824ab4558f6ea3916f1b844a
[ "MIT" ]
null
null
null
gif_manger.py
Rix565/PygaMone
58879a01b5427328824ab4558f6ea3916f1b844a
[ "MIT" ]
null
null
null
from typing import Optional import pygame_gif __all__: list['Gif'] = [] class Gif(object): def __init__(self, path: str): __all__.append(self) self.path = path self.gif: Optional['pygame_gif.PygameGif'] = None def get(self): if self.gif is None: self.load() return self.gif def load(self): if not self.gif: self.gif = pygame_gif.PygameGif(self.path) def un_load(self): del self.gif self.gif = None def __str__(self): print("Sound : {}".format(self.path)) EMBER = Gif('./assets/textures/ability/ember.gif') SMALL_EMBER = Gif('./assets/textures/ability/small_ember.gif') CONTACT = Gif('./assets/textures/ability/contact.gif') BIDE = Gif('./assets/textures/ability/bide.gif') def unload_all(): for g in __all__: g.un_load()
22.051282
62
0.615116
68173bb18efddfc4c162bf6f1f9a2c185b68f123
12,026
py
Python
snakebite/minicluster.py
shenfe/snakebite
880fffd177a5fa5bbda08ea6da5e5c43a87e1c70
[ "Apache-2.0" ]
null
null
null
snakebite/minicluster.py
shenfe/snakebite
880fffd177a5fa5bbda08ea6da5e5c43a87e1c70
[ "Apache-2.0" ]
null
null
null
snakebite/minicluster.py
shenfe/snakebite
880fffd177a5fa5bbda08ea6da5e5c43a87e1c70
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2013 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import os import subprocess import select import re import datetime try: long # Python 2 except NameError: long = int # Python 3 class MiniCluster(object): ''' Class that spawns a hadoop mini cluster and wrap hadoop functionality This class requires the ``HADOOP_HOME`` environment variable to be set to run the ``hadoop`` command. It will search ``HADOOP_HOME`` for ``hadoop-mapreduce-client-jobclient<version>-tests.jar``, but the location of this jar can also be supplied by the ``HADOOP_JOBCLIENT_JAR`` environment variable. Since the current minicluster interface doesn't provide for specifying the namenode post number, and chooses a random one, this class parses the output from the minicluster to find the port numer. All supplied methods (like :py:func:`put`, :py:func:`ls`, etc) use the hadoop command to perform operations, and not the snakebite client, since this is used for testing snakebite itself. All methods return a list of maps that are snakebite compatible. Example without :mod:`snakebite.client <client>` >>> from snakebite.minicluster import MiniCluster >>> cluster = MiniCluster("/path/to/test/files") >>> ls_output = cluster.ls(["/"]) Example with :mod:`snakebite.client <client>` >>> from snakebite.minicluster import MiniCluster >>> from snakebite.client import Client >>> cluster = MiniCluster("/path/to/test/files") >>> client = Client('localhost', cluster.port) >>> ls_output = client.ls(["/"]) Just as the snakebite client, the cluster methods take a list of strings as paths. Wherever a method takes ``extra_args``, normal hadoop command arguments can be given (like -r, -f, etc). More info can be found at http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CLIMiniCluster.html .. note:: A minicluster will be started at instantiation .. note:: Not all hadoop commands have been implemented, only the ones that were necessary for testing the snakebite client, but please feel free to add them ''' def __init__(self, testfiles_path, start_cluster=True, nnport=None): ''' :param testfiles_path: Local path where test files can be found. Mainly used for ``put()`` :type testfiles_path: string :param start_cluster: start a MiniCluster on initialization. If False, this class will act as an interface to the ``hadoop fs`` command :type start_cluster: boolean ''' self._testfiles_path = testfiles_path self._hadoop_home = os.environ['HADOOP_HOME'] self._jobclient_jar = os.environ.get('HADOOP_JOBCLIENT_JAR') self._hadoop_cmd = "%s/bin/hadoop" % self._hadoop_home if start_cluster: self._start_mini_cluster(nnport) self.host = "localhost" self.port = self._get_namenode_port() self.hdfs_url = "hdfs://%s:%d" % (self.host, self.port) else: self.hdfs_url = "hdfs://" def terminate(self): ''' Terminate the cluster Since the minicluster is started as a subprocess, this method has to be called explicitely when your program ends. ''' self.hdfs.terminate() def put(self, src, dst): '''Upload a file to HDFS This will take a file from the ``testfiles_path`` supplied in the constuctor. ''' src = "%s%s" % (self._testfiles_path, src) return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-put', src, self._full_hdfs_path(dst)], True) def put_subprocess(self, src, dst, block_size=134217728, text=True): # This is used for testing with large files. block_size_flag = "-Ddfs.block.size=%s" % str(block_size) cmd = [self._hadoop_cmd, 'fs', block_size_flag, '-put', src, self._full_hdfs_path(dst)] return subprocess.Popen(cmd, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=text) def exists(self, path): """Return True if <src> exists, False if doesn't""" return self._getReturnCodeCmd([self._hadoop_cmd, 'fs', '-test', '-e', path]) == 0 def is_directory(self, path): """Return True if <path> is a directory, False if it's NOT a directory""" return self._getReturnCodeCmd([self._hadoop_cmd, 'fs', '-test', '-d', self._full_hdfs_path(path)]) == 0 def is_files(self, path): """Return True if <path> is a file, False if it's NOT a file""" return self._getReturnCodeCmd([self._hadoop_cmd, 'fs', '-test', '-f', self._full_hdfs_path(path)]) == 0 def is_greater_then_zero_bytes(self, path): """Return True if file <path> is greater than zero bytes in size, False otherwise""" return self._getReturnCodeCmd([self._hadoop_cmd, 'fs', '-test', '-s', self._full_hdfs_path(path)]) == 0 def is_zero_bytes_file(self, path): """Return True if file <path> is zero bytes in size, else return False""" return self._getReturnCodeCmd([self._hadoop_cmd, 'fs', '-test', '-z', self._full_hdfs_path(path)]) == 0 def ls(self, src, extra_args=[]): '''List files in a directory''' src = [self._full_hdfs_path(x) for x in src] output = self._getStdOutCmd([self._hadoop_cmd, 'fs', '-ls'] + extra_args + src, True) return self._transform_ls_output(output, self.hdfs_url) def mkdir(self, src, extra_args=[]): '''Create a directory''' return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-mkdir'] + extra_args + [self._full_hdfs_path(src)], True) def df(self, src): '''Perform ``df`` on a path''' return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-df', self._full_hdfs_path(src)], True) def du(self, src, extra_args=[]): '''Perform ``du`` on a path''' src = [self._full_hdfs_path(x) for x in src] return self._transform_du_output(self._getStdOutCmd([self._hadoop_cmd, 'fs', '-du'] + extra_args + src, True), self.hdfs_url) def count(self, src): '''Perform ``count`` on a path''' src = [self._full_hdfs_path(x) for x in src] return self._transform_count_output(self._getStdOutCmd([self._hadoop_cmd, 'fs', '-count'] + src, True), self.hdfs_url) def cat(self, src, extra_args=[], text=False): return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-cat'] + extra_args + [self._full_hdfs_path(src)], text) def copyToLocal(self, src, dst, extra_args=[]): return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-copyToLocal'] + extra_args + [self._full_hdfs_path(src), dst], True) def getmerge(self, src, dst, extra_args=[]): return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-getmerge'] + extra_args + [self._full_hdfs_path(src), dst], True) def tail(self, src, extra_args=[], text=False): return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-tail'] + extra_args + [self._full_hdfs_path(src)], text) def text(self, src): return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-text', self._full_hdfs_path(src)], True) def _getReturnCodeCmd(self, cmd): proc = self._getCmdProcess(cmd, True) print(proc.communicate()) return proc.wait() def _getCmdProcess(self, cmd, text=False): return subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=text) def _getStdOutCmd(self, cmd, text=False): return self._getCmdProcess(cmd, text).communicate()[0] def _full_hdfs_path(self, src): return "%s%s" % (self.hdfs_url, src) def _find_mini_cluster_jar(self, path): for dirpath, dirnames, filenames in os.walk(path): for files in filenames: if re.match(".*hadoop-mapreduce-client-jobclient.+-tests.jar", files): return os.path.join(dirpath, files) def _start_mini_cluster(self, nnport=None): if self._jobclient_jar: hadoop_jar = self._jobclient_jar else: hadoop_jar = self._find_mini_cluster_jar(self._hadoop_home) if not hadoop_jar: raise Exception("No hadoop jobclient test jar found") cmd = [self._hadoop_cmd, 'jar', hadoop_jar, 'minicluster', '-nomr', '-format'] if nnport: cmd.extend(['-nnport', "%s" % nnport]) self.hdfs = subprocess.Popen(cmd, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) def _get_namenode_port(self): while self.hdfs.poll() is None: rlist, wlist, xlist = select.select([self.hdfs.stderr, self.hdfs.stdout], [], []) for f in rlist: line = f.readline() print((line,)) m = re.match(".*Started MiniDFSCluster -- namenode on port (\d+).*", line) if m: return int(m.group(1)) def _transform_ls_output(self, i, base_path): result = [] for line in i.split("\n"): if not line or line.startswith("Found"): continue (perms, replication, owner, group, length, date, time, path) = re.split("\s+", line) node = {} if replication == '-': replication = 0 node['permission'] = self._perms_to_int(perms) node['block_replication'] = int(replication) node['owner'] = owner node['group'] = group node['length'] = int(length) dt = "%s %s" % (date, time) node['modification_time'] = long(datetime.datetime.strptime(dt, '%Y-%m-%d %H:%M').strftime('%s')) node['path'] = path.replace(base_path, '') node['file_type'] = self._get_file_type(perms[0]) result.append(node) return result def _transform_du_output(self, i, base_path): result = [] for line in i.split("\n"): if line: fields = re.split("\s+", line) if len(fields) == 3: (length, space_consumed, path) = re.split("\s+", line) elif len(fields) == 2: (length, path) = re.split("\s+", line) else: raise ValueError("Result of du operation should contain 2" " or 3 field, but there's %d fields" % len(fields)) result.append({"path": path.replace(base_path, ""), "length": long(length)}) return result def _transform_count_output(self, i, base_path): result = [] for line in i.split("\n"): if line: (_, dir_count, file_count, length, path) = re.split("\s+", line) result.append({"path": path.replace(base_path, ""), "length": long(length), "directoryCount": long(dir_count), "fileCount": long(file_count)}) return result def _get_file_type(self, i): if i == "-": return "f" else: return i def _perms_to_int(self, perms): s = "" for x in perms[1:]: if x == "-": s += "0" else: s += "1" octal = "%d%d%d" % (int(s[0:3], 2), int(s[3:6], 2), int(s[6:9], 2)) return int(octal, 8)
43.890511
143
0.614585
a902575ca6c390b725d06233d630c874110e7a6c
2,514
py
Python
test/test_unit/test_plugins.py
zlatsic/aimm
166e56178773ea1333c5d842d10ec60df501f121
[ "Apache-2.0" ]
6
2021-06-16T10:57:58.000Z
2022-02-01T13:43:17.000Z
test/test_unit/test_plugins.py
zlatsic/aimm
166e56178773ea1333c5d842d10ec60df501f121
[ "Apache-2.0" ]
null
null
null
test/test_unit/test_plugins.py
zlatsic/aimm
166e56178773ea1333c5d842d10ec60df501f121
[ "Apache-2.0" ]
1
2021-05-30T23:21:57.000Z
2021-05-30T23:21:57.000Z
from aimm import plugins def test_instantiate(plugin_teardown): @plugins.instantiate('test', state_cb_arg_name='state_cb') def instantiate(state_cb): return state_cb assert plugins.exec_instantiate('test', 'state_cb') == 'state_cb' def test_data_access(plugin_teardown): @plugins.data_access('test', state_cb_arg_name='state_cb') def data_access(state_cb): return state_cb assert plugins.exec_data_access('test', 'state_cb') == 'state_cb' def test_fit(plugin_teardown): @plugins.fit(['test'], state_cb_arg_name='state_cb', instance_arg_name='instance') def fit(state_cb, instance): return (state_cb, instance) result = plugins.exec_fit('test', 'instance', 'state_cb') assert result == ('state_cb', 'instance') def test_predict(plugin_teardown): @plugins.predict(['test'], state_cb_arg_name='state_cb', instance_arg_name='instance') def predict(state_cb, instance): return (state_cb, instance) assert (plugins.exec_predict('test', 'instance', 'state_cb') == ('state_cb', 'instance')) def test_serialize(plugin_teardown): @plugins.serialize(['test']) def serialize(instance): return instance assert plugins.exec_serialize('test', 'instance') == 'instance' def test_deserialize(plugin_teardown): @plugins.deserialize(['test']) def deserialize(instance_bytes): return instance_bytes assert (plugins.exec_deserialize('test', 'instance_bytes') == 'instance_bytes') def test_model(plugin_teardown): @plugins.model class Model1(plugins.Model): def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def fit(self, *args, **kwargs): self.fit_args = args self.fit_kwargs = kwargs return self def predict(self, *args, **kwargs): return args, kwargs def serialize(self): return bytes() @classmethod def deserialize(cls): return Model1() model_type = 'test_plugins.Model1' model = plugins.exec_instantiate(model_type, None, 'a1', 'a2', k1='1', k2='2') assert model.args == ('a1', 'a2') assert model.kwargs == {'k1': '1', 'k2': '2'} plugins.exec_fit(model_type, model, None, 'fit_a1', fit_k1='1') assert model.fit_args == ('fit_a1', ) assert model.fit_kwargs == {'fit_k1': '1'}
27.933333
69
0.625298
7a50997d76dfa105f7852cc8c3b8151131394b8e
21,812
py
Python
homeassistant/components/fan/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
1
2017-05-30T22:21:05.000Z
2017-05-30T22:21:05.000Z
homeassistant/components/fan/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
46
2020-12-18T07:15:15.000Z
2022-03-31T06:04:00.000Z
homeassistant/components/fan/__init__.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
2
2021-03-22T21:42:48.000Z
2021-04-12T12:26:39.000Z
"""Provides functionality to interact with fans.""" from datetime import timedelta import functools as ft import logging import math from typing import List, Optional import voluptuous as vol from homeassistant.const import ( SERVICE_TOGGLE, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import ( # noqa: F401 PLATFORM_SCHEMA, PLATFORM_SCHEMA_BASE, ) from homeassistant.helpers.entity import ToggleEntity from homeassistant.helpers.entity_component import EntityComponent from homeassistant.loader import bind_hass from homeassistant.util.percentage import ( ordered_list_item_to_percentage, percentage_to_ordered_list_item, percentage_to_ranged_value, ranged_value_to_percentage, ) _LOGGER = logging.getLogger(__name__) DOMAIN = "fan" SCAN_INTERVAL = timedelta(seconds=30) ENTITY_ID_FORMAT = DOMAIN + ".{}" # Bitfield of features supported by the fan entity SUPPORT_SET_SPEED = 1 SUPPORT_OSCILLATE = 2 SUPPORT_DIRECTION = 4 SUPPORT_PRESET_MODE = 8 SERVICE_SET_SPEED = "set_speed" SERVICE_INCREASE_SPEED = "increase_speed" SERVICE_DECREASE_SPEED = "decrease_speed" SERVICE_OSCILLATE = "oscillate" SERVICE_SET_DIRECTION = "set_direction" SERVICE_SET_PERCENTAGE = "set_percentage" SERVICE_SET_PRESET_MODE = "set_preset_mode" SPEED_OFF = "off" SPEED_LOW = "low" SPEED_MEDIUM = "medium" SPEED_HIGH = "high" DIRECTION_FORWARD = "forward" DIRECTION_REVERSE = "reverse" ATTR_SPEED = "speed" ATTR_PERCENTAGE = "percentage" ATTR_PERCENTAGE_STEP = "percentage_step" ATTR_SPEED_LIST = "speed_list" ATTR_OSCILLATING = "oscillating" ATTR_DIRECTION = "direction" ATTR_PRESET_MODE = "preset_mode" ATTR_PRESET_MODES = "preset_modes" # Invalid speeds do not conform to the entity model, but have crept # into core integrations at some point so we are temporarily # accommodating them in the transition to percentages. _NOT_SPEED_OFF = "off" _NOT_SPEED_ON = "on" _NOT_SPEED_AUTO = "auto" _NOT_SPEED_SMART = "smart" _NOT_SPEED_INTERVAL = "interval" _NOT_SPEED_IDLE = "idle" _NOT_SPEED_FAVORITE = "favorite" _NOT_SPEED_SLEEP = "sleep" _NOT_SPEED_SILENT = "silent" _NOT_SPEEDS_FILTER = { _NOT_SPEED_OFF, _NOT_SPEED_ON, _NOT_SPEED_AUTO, _NOT_SPEED_SMART, _NOT_SPEED_INTERVAL, _NOT_SPEED_IDLE, _NOT_SPEED_SILENT, _NOT_SPEED_SLEEP, _NOT_SPEED_FAVORITE, } _FAN_NATIVE = "_fan_native" OFF_SPEED_VALUES = [SPEED_OFF, None] LEGACY_SPEED_LIST = [SPEED_LOW, SPEED_MEDIUM, SPEED_HIGH] class NoValidSpeedsError(ValueError): """Exception class when there are no valid speeds.""" class NotValidSpeedError(ValueError): """Exception class when the speed in not in the speed list.""" class NotValidPresetModeError(ValueError): """Exception class when the preset_mode in not in the preset_modes list.""" @bind_hass def is_on(hass, entity_id: str) -> bool: """Return if the fans are on based on the statemachine.""" state = hass.states.get(entity_id) if ATTR_SPEED in state.attributes: return state.attributes[ATTR_SPEED] not in OFF_SPEED_VALUES return state.state == STATE_ON async def async_setup(hass, config: dict): """Expose fan control via statemachine and services.""" component = hass.data[DOMAIN] = EntityComponent( _LOGGER, DOMAIN, hass, SCAN_INTERVAL ) await component.async_setup(config) # After the transition to percentage and preset_modes concludes, # switch this back to async_turn_on and remove async_turn_on_compat component.async_register_entity_service( SERVICE_TURN_ON, { vol.Optional(ATTR_SPEED): cv.string, vol.Optional(ATTR_PERCENTAGE): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), vol.Optional(ATTR_PRESET_MODE): cv.string, }, "async_turn_on_compat", ) component.async_register_entity_service(SERVICE_TURN_OFF, {}, "async_turn_off") component.async_register_entity_service(SERVICE_TOGGLE, {}, "async_toggle") # After the transition to percentage and preset_modes concludes, # remove this service component.async_register_entity_service( SERVICE_SET_SPEED, {vol.Required(ATTR_SPEED): cv.string}, "async_set_speed_deprecated", [SUPPORT_SET_SPEED], ) component.async_register_entity_service( SERVICE_INCREASE_SPEED, { vol.Optional(ATTR_PERCENTAGE_STEP): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ) }, "async_increase_speed", [SUPPORT_SET_SPEED], ) component.async_register_entity_service( SERVICE_DECREASE_SPEED, { vol.Optional(ATTR_PERCENTAGE_STEP): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ) }, "async_decrease_speed", [SUPPORT_SET_SPEED], ) component.async_register_entity_service( SERVICE_OSCILLATE, {vol.Required(ATTR_OSCILLATING): cv.boolean}, "async_oscillate", [SUPPORT_OSCILLATE], ) component.async_register_entity_service( SERVICE_SET_DIRECTION, {vol.Optional(ATTR_DIRECTION): cv.string}, "async_set_direction", [SUPPORT_DIRECTION], ) component.async_register_entity_service( SERVICE_SET_PERCENTAGE, { vol.Required(ATTR_PERCENTAGE): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ) }, "async_set_percentage", [SUPPORT_SET_SPEED], ) component.async_register_entity_service( SERVICE_SET_PRESET_MODE, {vol.Required(ATTR_PRESET_MODE): cv.string}, "async_set_preset_mode", [SUPPORT_SET_SPEED, SUPPORT_PRESET_MODE], ) return True async def async_setup_entry(hass, entry): """Set up a config entry.""" return await hass.data[DOMAIN].async_setup_entry(entry) async def async_unload_entry(hass, entry): """Unload a config entry.""" return await hass.data[DOMAIN].async_unload_entry(entry) def _fan_native(method): """Native fan method not overridden.""" setattr(method, _FAN_NATIVE, True) return method class FanEntity(ToggleEntity): """Representation of a fan.""" @_fan_native def set_speed(self, speed: str) -> None: """Set the speed of the fan.""" raise NotImplementedError() async def async_set_speed_deprecated(self, speed: str): """Set the speed of the fan.""" _LOGGER.warning( "fan.set_speed is deprecated, use fan.set_percentage or fan.set_preset_mode instead." ) await self.async_set_speed(speed) @_fan_native async def async_set_speed(self, speed: str): """Set the speed of the fan.""" if speed == SPEED_OFF: await self.async_turn_off() return if speed in self.preset_modes: if not hasattr(self.async_set_preset_mode, _FAN_NATIVE): await self.async_set_preset_mode(speed) return if not hasattr(self.set_preset_mode, _FAN_NATIVE): await self.hass.async_add_executor_job(self.set_preset_mode, speed) return else: if not hasattr(self.async_set_percentage, _FAN_NATIVE): await self.async_set_percentage(self.speed_to_percentage(speed)) return if not hasattr(self.set_percentage, _FAN_NATIVE): await self.hass.async_add_executor_job( self.set_percentage, self.speed_to_percentage(speed) ) return await self.hass.async_add_executor_job(self.set_speed, speed) @_fan_native def set_percentage(self, percentage: int) -> None: """Set the speed of the fan, as a percentage.""" raise NotImplementedError() @_fan_native async def async_set_percentage(self, percentage: int) -> None: """Set the speed of the fan, as a percentage.""" if percentage == 0: await self.async_turn_off() elif not hasattr(self.set_percentage, _FAN_NATIVE): await self.hass.async_add_executor_job(self.set_percentage, percentage) else: await self.async_set_speed(self.percentage_to_speed(percentage)) async def async_increase_speed(self, percentage_step: Optional[int] = None) -> None: """Increase the speed of the fan.""" await self._async_adjust_speed(1, percentage_step) async def async_decrease_speed(self, percentage_step: Optional[int] = None) -> None: """Decrease the speed of the fan.""" await self._async_adjust_speed(-1, percentage_step) async def _async_adjust_speed( self, modifier: int, percentage_step: Optional[int] ) -> None: """Increase or decrease the speed of the fan.""" current_percentage = self.percentage or 0 if percentage_step is not None: new_percentage = current_percentage + (percentage_step * modifier) else: speed_range = (1, self.speed_count) speed_index = math.ceil( percentage_to_ranged_value(speed_range, current_percentage) ) new_percentage = ranged_value_to_percentage( speed_range, speed_index + modifier ) new_percentage = max(0, min(100, new_percentage)) await self.async_set_percentage(new_percentage) @_fan_native def set_preset_mode(self, preset_mode: str) -> None: """Set new preset mode.""" self._valid_preset_mode_or_raise(preset_mode) self.set_speed(preset_mode) @_fan_native async def async_set_preset_mode(self, preset_mode: str) -> None: """Set new preset mode.""" if not hasattr(self.set_preset_mode, _FAN_NATIVE): await self.hass.async_add_executor_job(self.set_preset_mode, preset_mode) return self._valid_preset_mode_or_raise(preset_mode) await self.async_set_speed(preset_mode) def _valid_preset_mode_or_raise(self, preset_mode): """Raise NotValidPresetModeError on invalid preset_mode.""" preset_modes = self.preset_modes if preset_mode not in preset_modes: raise NotValidPresetModeError( f"The preset_mode {preset_mode} is not a valid preset_mode: {preset_modes}" ) def set_direction(self, direction: str) -> None: """Set the direction of the fan.""" raise NotImplementedError() async def async_set_direction(self, direction: str): """Set the direction of the fan.""" await self.hass.async_add_executor_job(self.set_direction, direction) # pylint: disable=arguments-differ def turn_on( self, speed: Optional[str] = None, percentage: Optional[int] = None, preset_mode: Optional[str] = None, **kwargs, ) -> None: """Turn on the fan.""" raise NotImplementedError() async def async_turn_on_compat( self, speed: Optional[str] = None, percentage: Optional[int] = None, preset_mode: Optional[str] = None, **kwargs, ) -> None: """Turn on the fan. This _compat version wraps async_turn_on with backwards and forward compatibility. After the transition to percentage and preset_modes concludes, it should be removed. """ if preset_mode is not None: self._valid_preset_mode_or_raise(preset_mode) speed = preset_mode percentage = None elif speed is not None: _LOGGER.warning( "Calling fan.turn_on with the speed argument is deprecated, use percentage or preset_mode instead." ) if speed in self.preset_modes: preset_mode = speed percentage = None else: percentage = self.speed_to_percentage(speed) elif percentage is not None: speed = self.percentage_to_speed(percentage) await self.async_turn_on( speed=speed, percentage=percentage, preset_mode=preset_mode, **kwargs, ) # pylint: disable=arguments-differ async def async_turn_on( self, speed: Optional[str] = None, percentage: Optional[int] = None, preset_mode: Optional[str] = None, **kwargs, ) -> None: """Turn on the fan.""" if speed == SPEED_OFF: await self.async_turn_off() else: await self.hass.async_add_executor_job( ft.partial( self.turn_on, speed=speed, percentage=percentage, preset_mode=preset_mode, **kwargs, ) ) def oscillate(self, oscillating: bool) -> None: """Oscillate the fan.""" raise NotImplementedError() async def async_oscillate(self, oscillating: bool): """Oscillate the fan.""" await self.hass.async_add_executor_job(self.oscillate, oscillating) @property def is_on(self): """Return true if the entity is on.""" return self.speed not in [SPEED_OFF, None] @property def _implemented_percentage(self): """Return true if percentage has been implemented.""" return not hasattr(self.set_percentage, _FAN_NATIVE) or not hasattr( self.async_set_percentage, _FAN_NATIVE ) @property def _implemented_preset_mode(self): """Return true if preset_mode has been implemented.""" return not hasattr(self.set_preset_mode, _FAN_NATIVE) or not hasattr( self.async_set_preset_mode, _FAN_NATIVE ) @property def _implemented_speed(self): """Return true if speed has been implemented.""" return not hasattr(self.set_speed, _FAN_NATIVE) or not hasattr( self.async_set_speed, _FAN_NATIVE ) @property def speed(self) -> Optional[str]: """Return the current speed.""" if self._implemented_preset_mode: preset_mode = self.preset_mode if preset_mode: return preset_mode if self._implemented_percentage: percentage = self.percentage if percentage is None: return None return self.percentage_to_speed(percentage) return None @property def percentage(self) -> Optional[int]: """Return the current speed as a percentage.""" if not self._implemented_preset_mode: if self.speed in self.preset_modes: return None if not self._implemented_percentage: return self.speed_to_percentage(self.speed) return 0 @property def speed_count(self) -> int: """Return the number of speeds the fan supports.""" speed_list = speed_list_without_preset_modes(self.speed_list) if speed_list: return len(speed_list) return 100 @property def percentage_step(self) -> float: """Return the step size for percentage.""" return 100 / self.speed_count @property def speed_list(self) -> list: """Get the list of available speeds.""" speeds = [] if self._implemented_percentage: speeds += [SPEED_OFF, *LEGACY_SPEED_LIST] if self._implemented_preset_mode: speeds += self.preset_modes return speeds @property def current_direction(self) -> Optional[str]: """Return the current direction of the fan.""" return None @property def oscillating(self): """Return whether or not the fan is currently oscillating.""" return None @property def capability_attributes(self): """Return capability attributes.""" attrs = {} if self.supported_features & SUPPORT_SET_SPEED: attrs[ATTR_SPEED_LIST] = self.speed_list if ( self.supported_features & SUPPORT_SET_SPEED or self.supported_features & SUPPORT_PRESET_MODE ): attrs[ATTR_PRESET_MODES] = self.preset_modes return attrs @property def _speed_list_without_preset_modes(self) -> list: """Return the speed list without preset modes. This property provides forward and backwards compatibility for conversion to percentage speeds. """ if not self._implemented_speed: return LEGACY_SPEED_LIST return speed_list_without_preset_modes(self.speed_list) def speed_to_percentage(self, speed: str) -> int: """ Map a speed to a percentage. Officially this should only have to deal with the 4 pre-defined speeds: return { SPEED_OFF: 0, SPEED_LOW: 33, SPEED_MEDIUM: 66, SPEED_HIGH: 100, }[speed] Unfortunately lots of fans make up their own speeds. So the default mapping is more dynamic. """ if speed in OFF_SPEED_VALUES: return 0 speed_list = self._speed_list_without_preset_modes if speed_list and speed not in speed_list: raise NotValidSpeedError(f"The speed {speed} is not a valid speed.") try: return ordered_list_item_to_percentage(speed_list, speed) except ValueError as ex: raise NoValidSpeedsError( f"The speed_list {speed_list} does not contain any valid speeds." ) from ex def percentage_to_speed(self, percentage: int) -> str: """ Map a percentage onto self.speed_list. Officially, this should only have to deal with 4 pre-defined speeds. if value == 0: return SPEED_OFF elif value <= 33: return SPEED_LOW elif value <= 66: return SPEED_MEDIUM else: return SPEED_HIGH Unfortunately there is currently a high degree of non-conformancy. Until fans have been corrected a more complicated and dynamic mapping is used. """ if percentage == 0: return SPEED_OFF speed_list = self._speed_list_without_preset_modes try: return percentage_to_ordered_list_item(speed_list, percentage) except ValueError as ex: raise NoValidSpeedsError( f"The speed_list {speed_list} does not contain any valid speeds." ) from ex @property def state_attributes(self) -> dict: """Return optional state attributes.""" data = {} supported_features = self.supported_features if supported_features & SUPPORT_DIRECTION: data[ATTR_DIRECTION] = self.current_direction if supported_features & SUPPORT_OSCILLATE: data[ATTR_OSCILLATING] = self.oscillating if supported_features & SUPPORT_SET_SPEED: data[ATTR_SPEED] = self.speed data[ATTR_PERCENTAGE] = self.percentage data[ATTR_PERCENTAGE_STEP] = self.percentage_step if ( supported_features & SUPPORT_PRESET_MODE or supported_features & SUPPORT_SET_SPEED ): data[ATTR_PRESET_MODE] = self.preset_mode return data @property def supported_features(self) -> int: """Flag supported features.""" return 0 @property def preset_mode(self) -> Optional[str]: """Return the current preset mode, e.g., auto, smart, interval, favorite. Requires SUPPORT_SET_SPEED. """ speed = self.speed if speed in self.preset_modes: return speed return None @property def preset_modes(self) -> Optional[List[str]]: """Return a list of available preset modes. Requires SUPPORT_SET_SPEED. """ return preset_modes_from_speed_list(self.speed_list) def speed_list_without_preset_modes(speed_list: List): """Filter out non-speeds from the speed list. The goal is to get the speeds in a list from lowest to highest by removing speeds that are not valid or out of order so we can map them to percentages. Examples: input: ["off", "low", "low-medium", "medium", "medium-high", "high", "auto"] output: ["low", "low-medium", "medium", "medium-high", "high"] input: ["off", "auto", "low", "medium", "high"] output: ["low", "medium", "high"] input: ["off", "1", "2", "3", "4", "5", "6", "7", "smart"] output: ["1", "2", "3", "4", "5", "6", "7"] input: ["Auto", "Silent", "Favorite", "Idle", "Medium", "High", "Strong"] output: ["Medium", "High", "Strong"] """ return [speed for speed in speed_list if speed.lower() not in _NOT_SPEEDS_FILTER] def preset_modes_from_speed_list(speed_list: List): """Filter out non-preset modes from the speed list. The goal is to return only preset modes. Examples: input: ["off", "low", "low-medium", "medium", "medium-high", "high", "auto"] output: ["auto"] input: ["off", "auto", "low", "medium", "high"] output: ["auto"] input: ["off", "1", "2", "3", "4", "5", "6", "7", "smart"] output: ["smart"] input: ["Auto", "Silent", "Favorite", "Idle", "Medium", "High", "Strong"] output: ["Auto", "Silent", "Favorite", "Idle"] """ return [ speed for speed in speed_list if speed.lower() in _NOT_SPEEDS_FILTER and speed.lower() != SPEED_OFF ]
31.795918
115
0.639052
ec7bdaf82920b92a3cdd49c5863a7e7cbd5f1d55
12,673
py
Python
train.py
yzyouzhang/AIR-ASVspoof
b26830d56d4baa6247a72955292ad9d2a336c6f6
[ "MIT" ]
40
2020-10-30T20:41:58.000Z
2022-03-14T05:36:47.000Z
train.py
AirLabUR/AIR-ASVspoof
b26830d56d4baa6247a72955292ad9d2a336c6f6
[ "MIT" ]
13
2020-11-01T16:58:12.000Z
2021-12-29T16:49:36.000Z
train.py
AirLabUR/AIR-ASVspoof
b26830d56d4baa6247a72955292ad9d2a336c6f6
[ "MIT" ]
18
2020-12-23T09:03:12.000Z
2022-03-30T10:20:33.000Z
import argparse import os import json import shutil from resnet import setup_seed, ResNet from loss import * from dataset import ASVspoof2019 from collections import defaultdict from tqdm import tqdm import eval_metrics as em import numpy as np import torch from torch.utils.data import DataLoader torch.set_default_tensor_type(torch.FloatTensor) def initParams(): parser = argparse.ArgumentParser(description=__doc__) # Data folder prepare parser.add_argument("-a", "--access_type", type=str, help="LA or PA", default='LA') parser.add_argument("-f", "--path_to_features", type=str, help="features path", default='/dataNVME/neil/ASVspoof2019LAFeatures/') parser.add_argument("-p", "--path_to_protocol", type=str, help="protocol path", default='/data/neil/DS_10283_3336/LA/ASVspoof2019_LA_cm_protocols/') parser.add_argument("-o", "--out_fold", type=str, help="output folder", required=True, default='./models/try/') # Dataset prepare parser.add_argument("--feat_len", type=int, help="features length", default=750) parser.add_argument('--padding', type=str, default='repeat', choices=['zero', 'repeat'], help="how to pad short utterance") parser.add_argument("--enc_dim", type=int, help="encoding dimension", default=256) # Training hyperparameters parser.add_argument('--num_epochs', type=int, default=100, help="Number of epochs for training") parser.add_argument('--batch_size', type=int, default=64, help="Mini batch size for training") parser.add_argument('--lr', type=float, default=0.0003, help="learning rate") parser.add_argument('--lr_decay', type=float, default=0.5, help="decay learning rate") parser.add_argument('--interval', type=int, default=10, help="interval to decay lr") parser.add_argument('--beta_1', type=float, default=0.9, help="bata_1 for Adam") parser.add_argument('--beta_2', type=float, default=0.999, help="beta_2 for Adam") parser.add_argument('--eps', type=float, default=1e-8, help="epsilon for Adam") parser.add_argument("--gpu", type=str, help="GPU index", default="1") parser.add_argument('--num_workers', type=int, default=0, help="number of workers") parser.add_argument('--seed', type=int, help="random number seed", default=598) parser.add_argument('--add_loss', type=str, default="ocsoftmax", choices=["softmax", 'amsoftmax', 'ocsoftmax'], help="loss for one-class training") parser.add_argument('--weight_loss', type=float, default=1, help="weight for other loss") parser.add_argument('--r_real', type=float, default=0.9, help="r_real for ocsoftmax") parser.add_argument('--r_fake', type=float, default=0.2, help="r_fake for ocsoftmax") parser.add_argument('--alpha', type=float, default=20, help="scale factor for ocsoftmax") parser.add_argument('--continue_training', action='store_true', help="continue training with previously trained model") args = parser.parse_args() # Change this to specify GPU os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # Set seeds setup_seed(args.seed) if args.continue_training: assert os.path.exists(args.out_fold) else: # Path for output data if not os.path.exists(args.out_fold): os.makedirs(args.out_fold) else: shutil.rmtree(args.out_fold) os.mkdir(args.out_fold) # Folder for intermediate results if not os.path.exists(os.path.join(args.out_fold, 'checkpoint')): os.makedirs(os.path.join(args.out_fold, 'checkpoint')) else: shutil.rmtree(os.path.join(args.out_fold, 'checkpoint')) os.mkdir(os.path.join(args.out_fold, 'checkpoint')) # Path for input data assert os.path.exists(args.path_to_features) # Save training arguments with open(os.path.join(args.out_fold, 'args.json'), 'w') as file: file.write(json.dumps(vars(args), sort_keys=True, separators=('\n', ':'))) with open(os.path.join(args.out_fold, 'train_loss.log'), 'w') as file: file.write("Start recording training loss ...\n") with open(os.path.join(args.out_fold, 'dev_loss.log'), 'w') as file: file.write("Start recording validation loss ...\n") # assign device args.cuda = torch.cuda.is_available() print('Cuda device available: ', args.cuda) args.device = torch.device("cuda" if args.cuda else "cpu") return args def adjust_learning_rate(args, optimizer, epoch_num): lr = args.lr * (args.lr_decay ** (epoch_num // args.interval)) for param_group in optimizer.param_groups: param_group['lr'] = lr def train(args): torch.set_default_tensor_type(torch.FloatTensor) # initialize model lfcc_model = ResNet(3, args.enc_dim, resnet_type='18', nclasses=2).to(args.device) if args.continue_training: lfcc_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt')).to(args.device) lfcc_optimizer = torch.optim.Adam(lfcc_model.parameters(), lr=args.lr, betas=(args.beta_1, args.beta_2), eps=args.eps, weight_decay=0.0005) training_set = ASVspoof2019(args.access_type, args.path_to_features, args.path_to_protocol, 'train', 'LFCC', feat_len=args.feat_len, padding=args.padding) validation_set = ASVspoof2019(args.access_type, args.path_to_features, args.path_to_protocol, 'dev', 'LFCC', feat_len=args.feat_len, padding=args.padding) trainDataLoader = DataLoader(training_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=training_set.collate_fn) valDataLoader = DataLoader(validation_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=validation_set.collate_fn) feat, _, _, _ = training_set[29] print("Feature shape", feat.shape) criterion = nn.CrossEntropyLoss() if args.add_loss == "amsoftmax": amsoftmax_loss = AMSoftmax(2, args.enc_dim, s=args.alpha, m=args.r_real).to(args.device) amsoftmax_loss.train() amsoftmax_optimzer = torch.optim.SGD(amsoftmax_loss.parameters(), lr=0.01) if args.add_loss == "ocsoftmax": ocsoftmax = OCSoftmax(args.enc_dim, r_real=args.r_real, r_fake=args.r_fake, alpha=args.alpha).to(args.device) ocsoftmax.train() ocsoftmax_optimzer = torch.optim.SGD(ocsoftmax.parameters(), lr=args.lr) early_stop_cnt = 0 prev_eer = 1e8 monitor_loss = args.add_loss for epoch_num in tqdm(range(args.num_epochs)): lfcc_model.train() trainlossDict = defaultdict(list) devlossDict = defaultdict(list) adjust_learning_rate(args, lfcc_optimizer, epoch_num) if args.add_loss == "ocsoftmax": adjust_learning_rate(args, ocsoftmax_optimzer, epoch_num) elif args.add_loss == "amsoftmax": adjust_learning_rate(args, amsoftmax_optimzer, epoch_num) print('\nEpoch: %d ' % (epoch_num + 1)) for i, (lfcc, audio_fn, tags, labels) in enumerate(tqdm(trainDataLoader)): lfcc = lfcc.unsqueeze(1).float().to(args.device) labels = labels.to(args.device) feats, lfcc_outputs = lfcc_model(lfcc) lfcc_loss = criterion(lfcc_outputs, labels) if args.add_loss == "softmax": lfcc_optimizer.zero_grad() trainlossDict[args.add_loss].append(lfcc_loss.item()) lfcc_loss.backward() lfcc_optimizer.step() if args.add_loss == "ocsoftmax": ocsoftmaxloss, _ = ocsoftmax(feats, labels) lfcc_loss = ocsoftmaxloss * args.weight_loss lfcc_optimizer.zero_grad() ocsoftmax_optimzer.zero_grad() trainlossDict[args.add_loss].append(ocsoftmaxloss.item()) lfcc_loss.backward() lfcc_optimizer.step() ocsoftmax_optimzer.step() if args.add_loss == "amsoftmax": outputs, moutputs = amsoftmax_loss(feats, labels) lfcc_loss = criterion(moutputs, labels) trainlossDict[args.add_loss].append(lfcc_loss.item()) lfcc_optimizer.zero_grad() amsoftmax_optimzer.zero_grad() lfcc_loss.backward() lfcc_optimizer.step() amsoftmax_optimzer.step() with open(os.path.join(args.out_fold, "train_loss.log"), "a") as log: log.write(str(epoch_num) + "\t" + str(i) + "\t" + str(np.nanmean(trainlossDict[monitor_loss])) + "\n") # Val the model lfcc_model.eval() with torch.no_grad(): idx_loader, score_loader = [], [] for i, (lfcc, audio_fn, tags, labels) in enumerate(tqdm(valDataLoader)): lfcc = lfcc.unsqueeze(1).float().to(args.device) labels = labels.to(args.device) feats, lfcc_outputs = lfcc_model(lfcc) lfcc_loss = criterion(lfcc_outputs, labels) score = F.softmax(lfcc_outputs, dim=1)[:, 0] if args.add_loss == "softmax": devlossDict["softmax"].append(lfcc_loss.item()) elif args.add_loss == "amsoftmax": outputs, moutputs = amsoftmax_loss(feats, labels) lfcc_loss = criterion(moutputs, labels) score = F.softmax(outputs, dim=1)[:, 0] devlossDict[args.add_loss].append(lfcc_loss.item()) elif args.add_loss == "ocsoftmax": ocsoftmaxloss, score = ocsoftmax(feats, labels) devlossDict[args.add_loss].append(ocsoftmaxloss.item()) idx_loader.append(labels) score_loader.append(score) scores = torch.cat(score_loader, 0).data.cpu().numpy() labels = torch.cat(idx_loader, 0).data.cpu().numpy() val_eer = em.compute_eer(scores[labels == 0], scores[labels == 1])[0] other_val_eer = em.compute_eer(-scores[labels == 0], -scores[labels == 1])[0] val_eer = min(val_eer, other_val_eer) with open(os.path.join(args.out_fold, "dev_loss.log"), "a") as log: log.write(str(epoch_num) + "\t" + str(np.nanmean(devlossDict[monitor_loss])) + "\t" + str(val_eer) +"\n") print("Val EER: {}".format(val_eer)) torch.save(lfcc_model, os.path.join(args.out_fold, 'checkpoint', 'anti-spoofing_lfcc_model_%d.pt' % (epoch_num + 1))) if args.add_loss == "ocsoftmax": loss_model = ocsoftmax torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint', 'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1))) elif args.add_loss == "amsoftmax": loss_model = amsoftmax_loss torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint', 'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1))) else: loss_model = None if val_eer < prev_eer: # Save the model checkpoint torch.save(lfcc_model, os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt')) if args.add_loss == "ocsoftmax": loss_model = ocsoftmax torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt')) elif args.add_loss == "amsoftmax": loss_model = amsoftmax_loss torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt')) else: loss_model = None prev_eer = val_eer early_stop_cnt = 0 else: early_stop_cnt += 1 if early_stop_cnt == 100: with open(os.path.join(args.out_fold, 'args.json'), 'a') as res_file: res_file.write('\nTrained Epochs: %d\n' % (epoch_num - 19)) break return lfcc_model, loss_model if __name__ == "__main__": args = initParams() _, _ = train(args) model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt')) if args.add_loss == "softmax": loss_model = None else: loss_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
46.421245
123
0.62211
56a01a5bad0bb4df8209525caf7cb74226bc5ee2
1,558
py
Python
nf_common_source/code/services/file_system_service/objects/file_system_objects.py
boro-alpha/nf_common
66d6844d9ae9a86a3e5b461f92e1ba0ec15e85ef
[ "MIT" ]
null
null
null
nf_common_source/code/services/file_system_service/objects/file_system_objects.py
boro-alpha/nf_common
66d6844d9ae9a86a3e5b461f92e1ba0ec15e85ef
[ "MIT" ]
null
null
null
nf_common_source/code/services/file_system_service/objects/file_system_objects.py
boro-alpha/nf_common
66d6844d9ae9a86a3e5b461f92e1ba0ec15e85ef
[ "MIT" ]
null
null
null
from nf_common_source.code.services.file_system_service.objects.wrappers.absolute_path_wrappers import \ AbsolutePathWrappers from nf_common_source.code.services.identification_services.uuid_service.uuid_helpers.uuid_factory import create_new_uuid class FileSystemObjects: def __init__( self, absolute_path_string: str): self.uuid = \ create_new_uuid() self.__path = \ AbsolutePathWrappers( absolute_path_string) @property def base_name( self) \ -> str: return \ self.__path.base_name @property def absolute_path_string( self) \ -> str: return \ self.__path.absolute_path_string @property def absolute_level( self) \ -> int: return \ self.__path.absolute_level @property def parent_absolute_path_string( self) \ -> str: return \ str(self.__path.parent) def extend_path( self, path_extension: str) \ -> str: return \ self.__path.extend_path( path_extension) def exists( self) \ -> bool: return \ self.__path.exists() def list_of_components(self): return \ self.__path.list_of_components() def item_count( self) \ -> int: return \ self.__path.item_count()
22.57971
121
0.539153
ab892bc52494c25bf5b46f92ca862965b4d99e5c
8,367
py
Python
Lib/lib2to3/fixes/fix_urllib.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
52,316
2015-01-01T15:56:25.000Z
2022-03-31T23:19:01.000Z
Lib/lib2to3/fixes/fix_urllib.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
25,286
2015-03-03T23:18:02.000Z
2022-03-31T23:17:27.000Z
Lib/lib2to3/fixes/fix_urllib.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
31,623
2015-01-01T13:29:37.000Z
2022-03-31T19:55:06.000Z
"""Fix changes imports of urllib which are now incompatible. This is rather similar to fix_imports, but because of the more complex nature of the fixing for urllib, it has its own fixer. """ # Author: Nick Edds # Local imports from lib2to3.fixes.fix_imports import alternates, FixImports from lib2to3.fixer_util import (Name, Comma, FromImport, Newline, find_indentation, Node, syms) MAPPING = {"urllib": [ ("urllib.request", ["URLopener", "FancyURLopener", "urlretrieve", "_urlopener", "urlopen", "urlcleanup", "pathname2url", "url2pathname", "getproxies"]), ("urllib.parse", ["quote", "quote_plus", "unquote", "unquote_plus", "urlencode", "splitattr", "splithost", "splitnport", "splitpasswd", "splitport", "splitquery", "splittag", "splittype", "splituser", "splitvalue", ]), ("urllib.error", ["ContentTooShortError"])], "urllib2" : [ ("urllib.request", ["urlopen", "install_opener", "build_opener", "Request", "OpenerDirector", "BaseHandler", "HTTPDefaultErrorHandler", "HTTPRedirectHandler", "HTTPCookieProcessor", "ProxyHandler", "HTTPPasswordMgr", "HTTPPasswordMgrWithDefaultRealm", "AbstractBasicAuthHandler", "HTTPBasicAuthHandler", "ProxyBasicAuthHandler", "AbstractDigestAuthHandler", "HTTPDigestAuthHandler", "ProxyDigestAuthHandler", "HTTPHandler", "HTTPSHandler", "FileHandler", "FTPHandler", "CacheFTPHandler", "UnknownHandler"]), ("urllib.error", ["URLError", "HTTPError"]), ] } # Duplicate the url parsing functions for urllib2. MAPPING["urllib2"].append(MAPPING["urllib"][1]) def build_pattern(): bare = set() for old_module, changes in MAPPING.items(): for change in changes: new_module, members = change members = alternates(members) yield """import_name< 'import' (module=%r | dotted_as_names< any* module=%r any* >) > """ % (old_module, old_module) yield """import_from< 'from' mod_member=%r 'import' ( member=%s | import_as_name< member=%s 'as' any > | import_as_names< members=any* >) > """ % (old_module, members, members) yield """import_from< 'from' module_star=%r 'import' star='*' > """ % old_module yield """import_name< 'import' dotted_as_name< module_as=%r 'as' any > > """ % old_module # bare_with_attr has a special significance for FixImports.match(). yield """power< bare_with_attr=%r trailer< '.' member=%s > any* > """ % (old_module, members) class FixUrllib(FixImports): def build_pattern(self): return "|".join(build_pattern()) def transform_import(self, node, results): """Transform for the basic import case. Replaces the old import name with a comma separated list of its replacements. """ import_mod = results.get("module") pref = import_mod.prefix names = [] # create a Node list of the replacement modules for name in MAPPING[import_mod.value][:-1]: names.extend([Name(name[0], prefix=pref), Comma()]) names.append(Name(MAPPING[import_mod.value][-1][0], prefix=pref)) import_mod.replace(names) def transform_member(self, node, results): """Transform for imports of specific module elements. Replaces the module to be imported from with the appropriate new module. """ mod_member = results.get("mod_member") pref = mod_member.prefix member = results.get("member") # Simple case with only a single member being imported if member: # this may be a list of length one, or just a node if isinstance(member, list): member = member[0] new_name = None for change in MAPPING[mod_member.value]: if member.value in change[1]: new_name = change[0] break if new_name: mod_member.replace(Name(new_name, prefix=pref)) else: self.cannot_convert(node, "This is an invalid module element") # Multiple members being imported else: # a dictionary for replacements, order matters modules = [] mod_dict = {} members = results["members"] for member in members: # we only care about the actual members if member.type == syms.import_as_name: as_name = member.children[2].value member_name = member.children[0].value else: member_name = member.value as_name = None if member_name != ",": for change in MAPPING[mod_member.value]: if member_name in change[1]: if change[0] not in mod_dict: modules.append(change[0]) mod_dict.setdefault(change[0], []).append(member) new_nodes = [] indentation = find_indentation(node) first = True def handle_name(name, prefix): if name.type == syms.import_as_name: kids = [Name(name.children[0].value, prefix=prefix), name.children[1].clone(), name.children[2].clone()] return [Node(syms.import_as_name, kids)] return [Name(name.value, prefix=prefix)] for module in modules: elts = mod_dict[module] names = [] for elt in elts[:-1]: names.extend(handle_name(elt, pref)) names.append(Comma()) names.extend(handle_name(elts[-1], pref)) new = FromImport(module, names) if not first or node.parent.prefix.endswith(indentation): new.prefix = indentation new_nodes.append(new) first = False if new_nodes: nodes = [] for new_node in new_nodes[:-1]: nodes.extend([new_node, Newline()]) nodes.append(new_nodes[-1]) node.replace(nodes) else: self.cannot_convert(node, "All module elements are invalid") def transform_dot(self, node, results): """Transform for calls to module members in code.""" module_dot = results.get("bare_with_attr") member = results.get("member") new_name = None if isinstance(member, list): member = member[0] for change in MAPPING[module_dot.value]: if member.value in change[1]: new_name = change[0] break if new_name: module_dot.replace(Name(new_name, prefix=module_dot.prefix)) else: self.cannot_convert(node, "This is an invalid module element") def transform(self, node, results): if results.get("module"): self.transform_import(node, results) elif results.get("mod_member"): self.transform_member(node, results) elif results.get("bare_with_attr"): self.transform_dot(node, results) # Renaming and star imports are not supported for these modules. elif results.get("module_star"): self.cannot_convert(node, "Cannot handle star imports.") elif results.get("module_as"): self.cannot_convert(node, "This module is now multiple modules")
42.472081
79
0.528385
99a72fa14a3725e55fe0bf7367bf268d879f6653
1,128
py
Python
setup.py
eldrin/aarms
bdd5455ac8dcfc1fe91a12fdd132b74e6c37609d
[ "MIT" ]
null
null
null
setup.py
eldrin/aarms
bdd5455ac8dcfc1fe91a12fdd132b74e6c37609d
[ "MIT" ]
3
2020-11-05T08:44:46.000Z
2020-11-10T17:25:15.000Z
setup.py
eldrin/aarms
bdd5455ac8dcfc1fe91a12fdd132b74e6c37609d
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages def readme(): with open('README.md') as f: return f.read() def requirements(): with open('requirements.txt') as f: return [line.strip() for line in f] setup(name='aarms', version='0.0.1', description='Attribute-Aware Recommender ModelS', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Information Analysis' ], keywords='Attribute-Aware Recommender ModelS', url='http://github.com/eldrin/aarms', author='Jaehun Kim', author_email='j.h.kim@tudelft.nl', license='MIT', # packages=['aarms'], packages=find_packages('.'), install_requires=requirements(), extras_require={ 'dev': [ 'scikit-learn>=0.23.2', ] }, test_suite='tests', zip_safe=False)
28.2
65
0.583333
84b602af98a3c2471e0a0aa1b4d01c65b5ff9883
7,291
py
Python
qa/rpc-tests/walletbackup.py
votcoin/votcoin
f4e594afe2b7b4a04325f5c304329a675decec6a
[ "MIT" ]
null
null
null
qa/rpc-tests/walletbackup.py
votcoin/votcoin
f4e594afe2b7b4a04325f5c304329a675decec6a
[ "MIT" ]
null
null
null
qa/rpc-tests/walletbackup.py
votcoin/votcoin
f4e594afe2b7b4a04325f5c304329a675decec6a
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014 The Bitcoin Core developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Exercise the wallet backup code. Ported from walletbackup.sh. Test case is: 4 nodes. 1 2 and 3 send transactions between each other, fourth node is a miner. 1 2 3 each mine a block to start, then Miner creates 100 blocks so 1 2 3 each have 50 mature coins to spend. Then 5 iterations of 1/2/3 sending coins amongst themselves to get transactions in the wallets, and the miner mining one block. Wallets are backed up using dumpwallet/backupwallet. Then 5 more iterations of transactions and mining a block. Miner then generates 101 more blocks, so any transaction fees paid mature. Sanity check: Sum(1,2,3,4 balances) == 114*50 1/2/3 are shutdown, and their wallets erased. Then restore using wallet.dat backup. And confirm 1/2/3/4 balances are same as before. Shutdown again, restore using importwallet, and confirm again balances are correct. """ from test_framework import VotcoinTestFramework from util import * from random import randint import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) class WalletBackupTest(VotcoinTestFramework): def setup_chain(self): logging.info("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 4) # This mirrors how the network was setup in the bash test def setup_network(self, split=False): # nodes 1, 2,3 are spenders, let's give them a keypool=100 extra_args = [["-keypool=100"], ["-keypool=100"], ["-keypool=100"], []] self.nodes = start_nodes(4, self.options.tmpdir, extra_args) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) self.is_network_split=False self.sync_all() def one_send(self, from_node, to_address): if (randint(1,2) == 1): amount = Decimal(randint(1,10)) / Decimal(10) self.nodes[from_node].sendtoaddress(to_address, amount) def do_one_round(self): a0 = self.nodes[0].getnewaddress() a1 = self.nodes[1].getnewaddress() a2 = self.nodes[2].getnewaddress() self.one_send(0, a1) self.one_send(0, a2) self.one_send(1, a0) self.one_send(1, a2) self.one_send(2, a0) self.one_send(2, a1) # Have the miner (node3) mine a block. # Must sync mempools before mining. sync_mempools(self.nodes) self.nodes[3].setgenerate(True, 1) # As above, this mirrors the original bash test. def start_three(self): self.nodes[0] = start_node(0, self.options.tmpdir) self.nodes[1] = start_node(1, self.options.tmpdir) self.nodes[2] = start_node(2, self.options.tmpdir) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) def stop_three(self): stop_node(self.nodes[0], 0) stop_node(self.nodes[1], 1) stop_node(self.nodes[2], 2) def erase_three(self): os.remove(self.options.tmpdir + "/node0/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node2/regtest/wallet.dat") def run_test(self): logging.info("Generating initial blockchain") self.nodes[0].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[1].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[2].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[3].setgenerate(True, 100) sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 50) assert_equal(self.nodes[3].getbalance(), 0) logging.info("Creating transactions") # Five rounds of sending each other transactions. for i in range(5): self.do_one_round() logging.info("Backing up") tmpdir = self.options.tmpdir self.nodes[0].backupwallet(tmpdir + "/node0/wallet.bak") self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].backupwallet(tmpdir + "/node1/wallet.bak") self.nodes[1].dumpwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].backupwallet(tmpdir + "/node2/wallet.bak") self.nodes[2].dumpwallet(tmpdir + "/node2/wallet.dump") logging.info("More transactions") for i in range(5): self.do_one_round() # Generate 101 more blocks, so any fees paid mature self.nodes[3].setgenerate(True, 101) self.sync_all() balance0 = self.nodes[0].getbalance() balance1 = self.nodes[1].getbalance() balance2 = self.nodes[2].getbalance() balance3 = self.nodes[3].getbalance() total = balance0 + balance1 + balance2 + balance3 # At this point, there are 214 blocks (103 for setup, then 10 rounds, then 101.) # 114 are mature, so the sum of all wallets should be 114 * 50 = 5700. assert_equal(total, 5700) ## # Test restoring spender wallets from backups ## logging.info("Restoring using wallet.dat") self.stop_three() self.erase_three() # Start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") # Restore wallets from backup shutil.copyfile(tmpdir + "/node0/wallet.bak", tmpdir + "/node0/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node1/wallet.bak", tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node2/wallet.bak", tmpdir + "/node2/regtest/wallet.dat") logging.info("Re-starting nodes") self.start_three() sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) logging.info("Restoring using dumped wallet") self.stop_three() self.erase_three() #start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") self.start_three() assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[1].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 0) self.nodes[0].importwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].importwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].importwallet(tmpdir + "/node2/wallet.dump") sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) if __name__ == '__main__': WalletBackupTest().main()
36.273632
91
0.654917
9631b19078e2a3a5d6db3b09073a548b65302888
6,234
py
Python
src/python/grpcio/grpc/framework/interfaces/links/links.py
DiracResearch/grpc
1c6e2b4790aa24d91338c4d8c16e5808cbfe6d2a
[ "BSD-3-Clause" ]
1
2017-09-14T23:59:05.000Z
2017-09-14T23:59:05.000Z
src/python/grpcio/grpc/framework/interfaces/links/links.py
DiracResearch/grpc
1c6e2b4790aa24d91338c4d8c16e5808cbfe6d2a
[ "BSD-3-Clause" ]
1
2016-10-19T02:43:04.000Z
2016-10-31T14:53:06.000Z
src/python/grpcio/grpc/framework/interfaces/links/links.py
DiracResearch/grpc
1c6e2b4790aa24d91338c4d8c16e5808cbfe6d2a
[ "BSD-3-Clause" ]
8
2016-10-23T00:50:02.000Z
2019-04-21T11:11:57.000Z
# Copyright 2015, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """The low-level ticket-exchanging-links interface of RPC Framework.""" import abc import collections import enum import six class Protocol(collections.namedtuple('Protocol', ('kind', 'value',))): """A sum type for handles to a system that transmits tickets. Attributes: kind: A Kind value identifying the kind of value being passed. value: The value being passed between the high-level application and the system affording ticket transport. """ @enum.unique class Kind(enum.Enum): CALL_OPTION = 'call option' SERVICER_CONTEXT = 'servicer context' INVOCATION_CONTEXT = 'invocation context' class Ticket( collections.namedtuple( 'Ticket', ('operation_id', 'sequence_number', 'group', 'method', 'subscription', 'timeout', 'allowance', 'initial_metadata', 'payload', 'terminal_metadata', 'code', 'message', 'termination', 'protocol',))): """A sum type for all values sent from a front to a back. Attributes: operation_id: A unique-with-respect-to-equality hashable object identifying a particular operation. sequence_number: A zero-indexed integer sequence number identifying the ticket's place in the stream of tickets sent in one direction for the particular operation. group: The group to which the method of the operation belongs. Must be present in the first ticket from invocation side to service side. Ignored for all other tickets exchanged during the operation. method: The name of an operation. Must be present in the first ticket from invocation side to service side. Ignored for all other tickets exchanged during the operation. subscription: A Subscription value describing the interest one side has in receiving information from the other side. Must be present in the first ticket from either side. Ignored for all other tickets exchanged during the operation. timeout: A nonzero length of time (measured from the beginning of the operation) to allow for the entire operation. Must be present in the first ticket from invocation side to service side. Optional for all other tickets exchanged during the operation. Receipt of a value from the other side of the operation indicates the value in use by that side. Setting a value on a later ticket allows either side to request time extensions (or even time reductions!) on in-progress operations. allowance: A positive integer granting permission for a number of payloads to be transmitted to the communicating side of the operation, or None if no additional allowance is being granted with this ticket. initial_metadata: An optional metadata value communicated from one side to the other at the beginning of the operation. May be non-None in at most one ticket from each side. Any non-None value must appear no later than the first payload value. payload: A customer payload object. May be None. terminal_metadata: A metadata value comminicated from one side to the other at the end of the operation. May be non-None in the same ticket as the code and message, but must be None for all earlier tickets. code: A value communicated at operation completion. May be None. message: A value communicated at operation completion. May be None. termination: A Termination value describing the end of the operation, or None if the operation has not yet terminated. If set, no further tickets may be sent in the same direction. protocol: A Protocol value or None, with further semantics being a matter between high-level application and underlying ticket transport. """ @enum.unique class Subscription(enum.Enum): """Identifies the level of subscription of a side of an operation.""" NONE = 'none' TERMINATION = 'termination' FULL = 'full' @enum.unique class Termination(enum.Enum): """Identifies the termination of an operation.""" COMPLETION = 'completion' CANCELLATION = 'cancellation' EXPIRATION = 'expiration' SHUTDOWN = 'shutdown' RECEPTION_FAILURE = 'reception failure' TRANSMISSION_FAILURE = 'transmission failure' LOCAL_FAILURE = 'local failure' REMOTE_FAILURE = 'remote failure' class Link(six.with_metaclass(abc.ABCMeta)): """Accepts and emits tickets.""" @abc.abstractmethod def accept_ticket(self, ticket): """Accept a Ticket. Args: ticket: Any Ticket. """ raise NotImplementedError() @abc.abstractmethod def join_link(self, link): """Mates this object with a peer with which it will exchange tickets.""" raise NotImplementedError()
43.291667
80
0.737889
e10e772a5892dcbc36987c6f2c2c452a3cf02b2e
878
py
Python
modeli.py
AnejJereb/Trg_kriptovalut
349d219a52bb1bb5b65007166f542b3b50ea77a8
[ "MIT" ]
null
null
null
modeli.py
AnejJereb/Trg_kriptovalut
349d219a52bb1bb5b65007166f542b3b50ea77a8
[ "MIT" ]
null
null
null
modeli.py
AnejJereb/Trg_kriptovalut
349d219a52bb1bb5b65007166f542b3b50ea77a8
[ "MIT" ]
null
null
null
import sqlite3 conn = sqlite3.connect('kriptovalute.db') conn.execute("PRAGMA foreign_keys = ON") def commit(fun): """ Dekorator, ki ustvari kurzor, ga poda dekorirani funkciji, in nato zapiše spremembe v bazo. Originalna funkcija je na voljo pod atributom nocommit. """ def funkcija(*largs, **kwargs): ret = fun(conn.cursor(), *largs, **kwargs) conn.commit() return ret funkcija.__doc__ = fun.__doc__ funkcija.__name__ = fun.__name__ funkcija.__qualname__ = fun.__qualname__ fun.__qualname__ += '.nocommit' funkcija.nocommit = fun return funkcija def mozne_valute(): """ Funkcija, ki vrne vse možne valute. """ poizvedba = """ SELECT * FROM kriptovaluta """ print(conn.execute(poizvedba).fetchall()) return conn.execute(poizvedba).fetchall() #mozne_valute()
25.823529
62
0.65262
3ddd6f90c8d993b01673b6ece741499b6a678098
10,550
py
Python
trove/tests/util/__init__.py
viettelidc-oss/trove
2d301d0a21863c6c0fbb9e854c7eb8ad8f19bbc1
[ "Apache-2.0" ]
1
2020-04-08T07:42:19.000Z
2020-04-08T07:42:19.000Z
trove/tests/util/__init__.py
phunv-bka/trove
2d301d0a21863c6c0fbb9e854c7eb8ad8f19bbc1
[ "Apache-2.0" ]
null
null
null
trove/tests/util/__init__.py
phunv-bka/trove
2d301d0a21863c6c0fbb9e854c7eb8ad8f19bbc1
[ "Apache-2.0" ]
1
2020-04-08T07:45:25.000Z
2020-04-08T07:45:25.000Z
# Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ :mod:`tests` -- Utility methods for tests. =================================== .. automodule:: utils :platform: Unix :synopsis: Tests for Nova. """ import subprocess try: EVENT_AVAILABLE = True except ImportError: EVENT_AVAILABLE = False import glanceclient from keystoneauth1.identity import v3 from keystoneauth1 import session from neutronclient.v2_0 import client as neutron_client from novaclient import client as nova_client from proboscis.asserts import assert_true from proboscis.asserts import Check from proboscis.asserts import fail from proboscis import SkipTest from six.moves.urllib.parse import unquote from sqlalchemy import create_engine from sqlalchemy.sql.expression import text import tenacity from troveclient.compat import Dbaas from trove.common import cfg from trove.common.utils import import_class from trove.common.utils import import_object from trove.tests.config import CONFIG as test_config from trove.tests.util.client import TestClient from trove.tests.util import mysql from trove.tests.util import test_config as CONFIG from trove.tests.util.users import Requirements WHITE_BOX = test_config.white_box FLUSH = text("FLUSH PRIVILEGES;") CONF = cfg.CONF def create_client(*args, **kwargs): """ Using the User Requirements as arguments, finds a user and grabs a new DBAAS client. """ reqs = Requirements(*args, **kwargs) user = test_config.users.find_user(reqs) return create_dbaas_client(user) def create_dbaas_client(user): """Creates a rich client for the Trove API using the test config.""" auth_strategy = None kwargs = { 'service_type': 'database', 'insecure': test_config.values['trove_client_insecure'], } def set_optional(kwargs_name, test_conf_name): value = test_config.values.get(test_conf_name, None) if value is not None: kwargs[kwargs_name] = value force_url = 'override_trove_api_url' in test_config.values service_url = test_config.get('override_trove_api_url', None) if user.requirements.is_admin: service_url = test_config.get('override_admin_trove_api_url', service_url) if service_url: kwargs['service_url'] = service_url auth_strategy = None if user.requirements.is_admin: auth_strategy = test_config.get('admin_auth_strategy', test_config.auth_strategy) else: auth_strategy = test_config.auth_strategy set_optional('region_name', 'trove_client_region_name') if test_config.values.get('override_trove_api_url_append_tenant', False): kwargs['service_url'] += "/" + user.tenant if auth_strategy == 'fake': from troveclient.compat import auth class FakeAuth(auth.Authenticator): def authenticate(self): class FakeCatalog(object): def __init__(self, auth): self.auth = auth def get_public_url(self): return "%s/%s" % (test_config.dbaas_url, self.auth.tenant) def get_token(self): return self.auth.tenant return FakeCatalog(self) auth_strategy = FakeAuth if auth_strategy: kwargs['auth_strategy'] = auth_strategy if not user.requirements.is_admin: auth_url = test_config.trove_auth_url else: auth_url = test_config.values.get('trove_admin_auth_url', test_config.trove_auth_url) if test_config.values.get('trove_client_cls'): cls_name = test_config.trove_client_cls kwargs['client_cls'] = import_class(cls_name) dbaas = Dbaas(user.auth_user, user.auth_key, tenant=user.tenant, auth_url=auth_url, **kwargs) dbaas.authenticate() with Check() as check: check.is_not_none(dbaas.client.auth_token, "Auth token not set!") if not force_url and user.requirements.is_admin: expected_prefix = test_config.dbaas_url actual = dbaas.client.service_url msg = "Dbaas management url was expected to start with %s, but " \ "was %s." % (expected_prefix, actual) check.true(actual.startswith(expected_prefix), msg) return TestClient(dbaas) def create_keystone_session(user): auth = v3.Password(username=user.auth_user, password=user.auth_key, project_id=user.tenant_id, user_domain_name='Default', project_domain_name='Default', auth_url=test_config.auth_url) return session.Session(auth=auth) def create_nova_client(user, service_type=None): if not service_type: service_type = CONF.nova_compute_service_type openstack = nova_client.Client( CONF.nova_client_version, username=user.auth_user, password=user.auth_key, user_domain_name='Default', project_id=user.tenant_id, auth_url=CONFIG.auth_url, service_type=service_type, os_cache=False, cacert=test_config.values.get('cacert', None) ) return TestClient(openstack) def create_neutron_client(user): sess = create_keystone_session(user) client = neutron_client.Client( session=sess, service_type=CONF.neutron_service_type, region_name=CONFIG.trove_client_region_name, insecure=CONF.neutron_api_insecure, endpoint_type=CONF.neutron_endpoint_type ) return TestClient(client) def create_glance_client(user): sess = create_keystone_session(user) glance = glanceclient.Client(CONF.glance_client_version, session=sess) return TestClient(glance) def dns_checker(mgmt_instance): """Given a MGMT instance, ensures DNS provisioning worked. Uses a helper class which, given a mgmt instance (returned by the mgmt API) can confirm that the DNS record provisioned correctly. """ if CONFIG.values.get('trove_dns_checker') is not None: checker = import_class(CONFIG.trove_dns_checker) checker()(mgmt_instance) else: raise SkipTest("Can't access DNS system to check if DNS provisioned.") def process(cmd): output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT) return output def string_in_list(str, substr_list): """Returns True if the string appears in the list.""" return any([str.find(x) >= 0 for x in substr_list]) def unquote_user_host(user_hostname): unquoted = unquote(user_hostname) if '@' not in unquoted: return unquoted, '%' if unquoted.endswith('@'): return unquoted, '%' splitup = unquoted.split('@') host = splitup[-1] user = '@'.join(splitup[:-1]) return user, host def iso_time(time_string): """Return a iso formated datetime: 2013-04-15T19:50:23Z.""" ts = time_string.replace(' ', 'T') try: micro = ts.rindex('.') ts = ts[:micro] except ValueError: pass return '%sZ' % ts def assert_contains(exception_message, substrings): for substring in substrings: assert_true(substring in exception_message, message="'%s' not in '%s'" % (substring, exception_message)) # TODO(dukhlov): Still required by trove integration # Should be removed after trove integration fix # https://bugs.launchpad.net/trove-integration/+bug/1228306 # TODO(cp16net): DO NOT USE needs to be removed def mysql_connection(): cls = CONFIG.get('mysql_connection', "local.MySqlConnection") if cls == "local.MySqlConnection": return MySqlConnection() return import_object(cls)() class MySqlConnection(object): def assert_fails(self, ip, user_name, password): try: with mysql.create_mysql_connection(ip, user_name, password): pass fail("Should have failed to connect: mysql --host %s -u %s -p%s" % (ip, user_name, password)) except mysql.MySqlPermissionsFailure: return # Good, this is what we wanted. except mysql.MySqlConnectionFailure as mcf: fail("Expected to see permissions failure. Instead got message:" "%s" % mcf.message) @tenacity.retry( wait=tenacity.wait_fixed(3), stop=tenacity.stop_after_attempt(5), reraise=True ) def create(self, ip, user_name, password): print("Connecting mysql, host: %s, user: %s, password: %s" % (ip, user_name, password)) return mysql.create_mysql_connection(ip, user_name, password) class LocalSqlClient(object): """A sqlalchemy wrapper to manage transactions.""" def __init__(self, engine, use_flush=True): self.engine = engine self.use_flush = use_flush def __enter__(self): self.conn = self.engine.connect() self.trans = self.conn.begin() return self.conn def __exit__(self, type, value, traceback): if self.trans: if type is not None: # An error occurred self.trans.rollback() else: if self.use_flush: self.conn.execute(FLUSH) self.trans.commit() self.conn.close() def execute(self, t, **kwargs): try: return self.conn.execute(t, kwargs) except Exception: self.trans.rollback() self.trans = None raise @staticmethod def init_engine(user, password, host): return create_engine("mysql+pymysql://%s:%s@%s:3306" % (user, password, host), pool_recycle=1800, echo=True)
32.461538
79
0.648246
108b5cf6c6a7b64ca7b81974ef52a7004042edf4
14,833
py
Python
applications/cli/util/system.py
nparkstar/nauta
1bda575a01f782d1dc2cd5221122651f184f7167
[ "Apache-2.0" ]
390
2019-01-23T09:07:00.000Z
2022-02-20T04:03:34.000Z
applications/cli/util/system.py
nparkstar/nauta
1bda575a01f782d1dc2cd5221122651f184f7167
[ "Apache-2.0" ]
52
2019-01-31T12:17:30.000Z
2022-02-10T00:01:39.000Z
applications/cli/util/system.py
nparkstar/nauta
1bda575a01f782d1dc2cd5221122651f184f7167
[ "Apache-2.0" ]
66
2019-01-23T18:59:39.000Z
2020-10-18T15:24:00.000Z
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time from enum import Enum import os import subprocess import sys from typing import List, Tuple import errno import socket import dateutil.tz import dateutil.parser from datetime import timedelta import signal import platform from distutils.version import LooseVersion import click import distro from kubernetes.client import V1Pod from tabulate import tabulate from util.config import Config from util.k8s.k8s_info import get_namespaced_pods from util.logger import initialize_logger from cli_text_consts import UtilSystemTexts as Texts, VERBOSE_RERUN_MSG log = initialize_logger('util.system') WINDOWS_EDITIONS = { 0: "undefined", 1: "ultimate", 2: "home_basic", 3: "home_premium", 4: "enterprise", 5: "home_basic_n", 6: "business", 7: "standard_server", 8: "datacenter_server", 9: "small_business_server", 10: "enterprise_server", 11: "starter", 12: "datacenter_server_core", 13: "standard_server_core", 14: "enterprise_server_core", 15: "enterprise_server_for_itanium_based_systems", 16: "business_n", 17: "web_server", 18: "cluster_server", 19: "home_server", 20: "storage_express_server", 21: "storage_standard_server", 22: "storage_workgroup_server", 23: "storage_enterprise_server", 24: "server_for_small_business", 25: "small_business_server_premium", 29: "web_server_server_core", 39: "datacenter_edition_without_hyperv_server_core", 40: "standard_edition_without_hyperv_server_core", 41: "enterprise_edition_without_hyperv_server_core", 42: "hyperv_server", 48: "pro" } class ExternalCliCommand: def __init__(self, cmd: List[str], env: dict = None, cwd: str = None, timeout: int = None): """ :param cmd: List of strings which define a command that will be executed, e.g. ['git', 'clone'] :param env: Dictionary containing environment variables that will be used during command execution :param cwd: Path to working directory :param timeout: Timeout in seconds """ self.cmd = cmd self.env = env self.cwd = cwd self.timeout = timeout def __call__(self, *args, **kwargs) -> Tuple[str, int, str]: """ Call command. :param args: Positional arguments will be passed unchanged to the executed command :param kwargs: Keyword arguments will be passed as long parameters, e.g. passing `foo=bar` will add `--foo`, 'bar' to the executed command. If keyword argument has binary value, it will be treated as a flag, e.g. passing `foo=True` argument will add `--foo` to the executed command and passing `foo=False` will not add anything new to the command. Underscores in keyword argument names will be replaced with hyphens :return: output, exit code and formatted output of called command """ cmd = self.cmd env = kwargs.get('_env') or self.env cwd = kwargs.get('_cwd') or self.cwd for arg in args: cmd.append(arg) for kwarg_name, kwarg_value in kwargs.items(): if not kwarg_name.startswith('_'): # kwargs that have name starting with '_' are reserved option_name = kwarg_name.replace('_', '-') if kwarg_value is False: # Handle flags continue elif kwarg_value is True: cmd.append(f'--{option_name}') else: # Standard options cmd.append(f'--{option_name}') cmd.append(kwarg_value) output, exit_code, log_output = execute_system_command(command=cmd, env=env, cwd=cwd, timeout=self.timeout) if exit_code != 0: log.error(log_output) raise RuntimeError(f'Failed to execute command: {self.cmd}') else: return output, exit_code, log_output class ExternalCliClient: """ This class allows to easily create a wrapper for external CLI. Usage example: git_client = ExternalCliClient('git') git_client.clone('https://repo.git', quiet=True) git_client.add('-u') git_client.commit(message='test') """ def __init__(self, executable: str, env: dict = None, cwd: str = None, timeout: int = None): """ :param executable: Name of external CLI executable e.g. 'git' or 'helm' :param env: Dictionary containing environment variables that will be used by the client :param cwd: Path to working directory :param timeout: Timeout in seconds for commands executed by the client """ self.executable = executable self.env = env self.cwd = cwd self.timeout = timeout def __getattr__(self, item): return self._make_command(item) def _make_command(self, name: str): return ExternalCliCommand(env=self.env, cwd=self.cwd, cmd=[self.executable, name], timeout=self.timeout) def execute_system_command(command: List[str], timeout: int = None, stdin=None, env=None, cwd=None, logs_size: int = 0) -> Tuple[str, int, str]: """ Executes system's command :param command: command to be exeucted :param timeout: timeout of execution, when timeout pass - command is interrupted :param stdin: stream with input data for command :param env: environment within which command is run :param cwd: command working directory :param logs_size: if other than 0 - system sends to logger logs_size last characters :return: output - output of the command exit_code - exit code returned by a command log_output - output that should be passed to logs. If a real output contains special characters that are not present in a current system's encoding, this attribute contains information about a need of changing system's encoding """ try: output = subprocess.check_output( # type: ignore command, timeout=timeout, stderr=subprocess.STDOUT, universal_newlines=True, stdin=stdin, env=env, cwd=cwd, encoding='utf-8') encoded_output = output[-logs_size:].encode('utf-8') log.debug(f'COMMAND: {command} RESULT: {encoded_output}'.replace('\n', '\\n')) except subprocess.CalledProcessError as ex: log.exception(f'COMMAND: {command} RESULT: {ex.output}'.replace('\n', '\\n')) return ex.output, ex.returncode, ex.output else: return output, 0, encoded_output def execute_subprocess_command(command: List[str], stdin=None, env=None, cwd=None, shell=False) -> subprocess.Popen: log.debug(f'executing COMMAND in subprocess: {str(command)}') process = subprocess.Popen( args=command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, stdin=stdin, env=env, cwd=cwd, encoding='utf-8', shell=shell) if process.poll() is not None: log.error(f'{command} execution FAIL: {command}') out, err = process.communicate() log.error(f'{command} stdout: {out}') log.error(f'{command} stderr: {err}') raise RuntimeError( Texts.COMMAND_EXE_FAIL_ERROR_MSG.format(command=command)) return process class OS(Enum): WINDOWS = "win" MACOS = "darwin" LINUX = "linux" @classmethod def all_str(cls): return ''.join([e.value for e in cls]) def get_current_os() -> OS: sys_platform = sys.platform # type: str if sys_platform.startswith(OS.WINDOWS.value): return OS.WINDOWS elif sys_platform.startswith(OS.LINUX.value): return OS.LINUX elif sys_platform.startswith(OS.MACOS.value): return OS.MACOS raise RuntimeError( Texts.UNSUPPORTED_PLATFORM_ERROR_MSG.format( sys_platform=sys_platform, supported_os=OS.all_str())) def check_port_availability(port: int) -> bool: """ Checks whether a port given as a parameter is available for application. :param port: port to be checked :return: True if port is available, False - otherwise In case of any problems it throws an excpetion """ ret_value = True try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("127.0.0.1", port)) except socket.error as e: if e.errno == errno.EADDRINUSE: log.debug(f"Port {port} is occupied.") ret_value = False else: # something else raised the socket.error exception error_msg = Texts.PORT_AVAILABILITY_CHECK_ERROR_MSG log.exception(error_msg) raise RuntimeError(error_msg) from e return ret_value def format_timestamp_for_cli(timestamp: str) -> str: """ Change timestamp from e.g. "2018-10-11T20:20:30Z" to "2018-10-11 9:20:30 PM" (assuming that local timezone is +01:00). :param timestamp: timestamp which will be converted :return: formatted version of the timestamp """ cli_timestamp = dateutil.parser.parse(timestamp).astimezone( dateutil.tz.tzlocal()).strftime("%Y-%m-%d %I:%M:%S %p") return cli_timestamp def format_duration_for_cli(timedelta: timedelta) -> str: days = timedelta.days hours, remainder = divmod(timedelta.seconds, 3600) minutes, seconds = divmod(remainder, 60) return '{}d {}h {}m {}s'.format(days, hours, minutes, seconds) def wait_for_ctrl_c(): """ Waits for pressing Ctrl-C key by a user. If Ctrl-C key has been pressed - finishes execution """ continue_loop = True def signal_handler(signal, frame): nonlocal continue_loop continue_loop = False signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) if get_current_os() in (OS.LINUX, OS.MACOS): os.system("setterm --cursor on") while continue_loop: time.sleep(0.1) def handle_error(logger=None, log_msg: str = None, user_msg: str = None, add_verbosity_msg: bool = False): """ Handle error in cli. Log message may be printed. User message may be printed or not, with or without verbosity usage info. Execution may end with an exit code. Each combination of these 3 possibilities is achievable by specifying correct arguments. Default behaviour is exit with code 1, log nothing and print nothing. :param logger: logger which will handle log message. If None, then no message is logged. :param log_msg: message to be shown in log. If None, then no message is logged. :param user_msg: message to be shown to the user. If None, then no message is shown. :param add_verbosity_msg: whether to add information about -v usage or not. :return: """ if logger is not None and log_msg is not None: logger.exception(log_msg) # Internationalization can be plugged in here. if user_msg is not None: click.echo(user_msg + (" " + VERBOSE_RERUN_MSG if add_verbosity_msg else "")) try: check_nauta_pods() except Exception: logger.exception("Failed to get logs of pods in nauta namespace.") def get_windows_edition(): windows_edition_number, _, _ = execute_system_command([ "powershell.exe", "(Get-WmiObject Win32_OperatingSystem).OperatingSystemSKU" ]) return WINDOWS_EDITIONS[int(windows_edition_number)] def get_os_version() -> Tuple[str, LooseVersion]: system_str = platform.system() if system_str == "Darwin": return "macos", LooseVersion(platform.mac_ver()[0]) elif system_str == "Windows": if LooseVersion(platform.release()) >= LooseVersion("10"): return "windows" + "_" + get_windows_edition(), LooseVersion( platform.release()) else: return "windows", LooseVersion(platform.release()) elif system_str == "Linux": os_info = distro.info() return os_info["id"], LooseVersion(os_info["version"]) return "", LooseVersion("0") def get_pod_logs(pod: V1Pod, namespace: str, tail: int = None): """ Get logs of all the containers of a given pod. :param pod: :param namespace: :param tail: :return: list of container logs of a given pod - List[List[str]] """ outputs: List[str] = [] for container in pod.status.container_statuses: try: command = ['kubectl', 'logs', '-n', namespace, pod.metadata.name, '-c', container.name] if tail: command.append(f'tail={tail}') output, _, _ = execute_system_command(command=command) log.debug(output) outputs.append(output) except Exception: log.exception(f'Failed to get {pod.metadata.name} pod logs.') return outputs def check_nauta_pods(): """ Check if there are failed pods. If there are any, display a list of their names and save logs in logs directory. """ pods = get_namespaced_pods(label_selector=None, namespace='nauta') failed_pods = [pod for pod in pods if pod.status.phase == 'Failed'] if failed_pods: click.echo("Following nauta components have failed:") tabulate([pod.metadata.name for pod in failed_pods], headers=["Pod name"]) conf_path = Config().config_path for pod in failed_pods: logs = get_pod_logs(pod=pod, namespace='nauta', tail=1000) for i, log in enumerate(logs): pod_name = pod.metadata.name container_name = pod.status.container_statuses[i].name with open(f'{conf_path}/logs/{pod_name}_{container_name}.log', mode='w') as log_file: log_file.writelines(log) click.echo('Contact Nauta administrator.') click.echo(f'Check logs folder in your config directory({conf_path}) to get more information.')
37.0825
119
0.644779
6fc842bbf51dfb56aea3dfc6f6d239308e1e4142
9,436
py
Python
src/HTMLgen/JpegImagePluginH.py
marinier/soardoc
be4023c8abd6ca93545d75e7edb4328f236ee82c
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/HTMLgen/JpegImagePluginH.py
marinier/soardoc
be4023c8abd6ca93545d75e7edb4328f236ee82c
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/HTMLgen/JpegImagePluginH.py
marinier/soardoc
be4023c8abd6ca93545d75e7edb4328f236ee82c
[ "BSD-2-Clause-FreeBSD" ]
1
2021-02-03T14:17:42.000Z
2021-02-03T14:17:42.000Z
# # The Python Imaging Library. # $Id: JpegImagePluginH.py 2666 2003-10-23 22:14:14Z rmarinie $ # # JPEG (JFIF) file handling # # See "Digital Compression and Coding of Continous-Tone Still Images, # Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1) # # History: # 95-09-09 fl Created # 95-09-13 fl Added full parser # 96-03-25 fl Added hack to use the IJG command line utilities # 96-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug # 0.1 96-05-28 fl Added draft support, JFIF version # 0.2 96-12-30 fl Added encoder options, added progression property # 0.3 97-08-27 fl Save mode 1 images as BW # # Copyright (c) Secret Labs AB 1997. # Copyright (c) Fredrik Lundh 1995-96. # # See the README file for information on usage and redistribution. # __version__ = "0.3" import array, string import ImageH, ImageFileH def i16(c): return ord(c[1]) + (ord(c[0])<<8) def i32(c): return ord(c[3]) + (ord(c[2])<<8) + (ord(c[1])<<16) + (ord(c[0])<<24) # # Parser def Skip(self, marker): self.fp.read(i16(self.fp.read(2))-2) def APP(self, marker): # # Application marker. Store these in the APP dictionary. # Also look for well-known application markers. s = self.fp.read(i16(self.fp.read(2))-2) self.app["APP%d" % (marker&15)] = s if marker == 0xFFE0 and s[:4] == "JFIF": self.info["jfif"] = i16(s[5:]) if marker == 0xFFEE and s[:5] == "Adobe": self.info["adobe"] = i16(s[5:]) self.info["adobe_transform"] = ord(s[11]) def SOF(self, marker): # # Start of frame marker. Defines the size and mode of the # image. JPEG is colour blind, so we use some simple # heuristics to map the number of layers to an appropriate # mode. Note that this could be made a bit brighter, by # looking for JFIF and Adobe APP markers. s = self.fp.read(i16(self.fp.read(2))-2) self.size = i16(s[3:]), i16(s[1:]) self.bits = ord(s[0]) if self.bits != 8: raise SyntaxError, "cannot handle %d-bit layers" % self.bits self.layers = ord(s[5]) if self.layers == 1: self.mode = "L" elif self.layers == 3: self.mode = "RGB" elif self.layers == 4: self.mode = "CMYK" else: raise SyntaxError, "cannot handle %d-layer images" % self.layers if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]: self.info["progression"] = 1 for i in range(6, len(s), 3): t = s[i:i+3] # 4-tuples: id, vsamp, hsamp, qtable self.layer.append(t[0], ord(t[1])/16, ord(t[1])&15, ord(t[2])) def DQT(self, marker): # # Define quantization table. Support baseline 8-bit tables # only. Note that there might be more than one table in # each marker. # FIXME: The quantization tables can be used to estimate the # compression quality. s = self.fp.read(i16(self.fp.read(2))-2) while len(s): if len(s) < 65: raise SyntaxError, "bad quantization table marker" v = ord(s[0]) if v/16 == 0: self.quantization[v&15] = array.array("b", s[1:65]) s = s[65:] else: pass # raise SyntaxError, "bad quantization table element size" # # JPEG marker table MARKER = { 0xFFC0: ("SOF0", "Baseline DCT", SOF), 0xFFC1: ("SOF1", "Extended Sequential DCT", SOF), 0xFFC2: ("SOF2", "Progressive DCT", SOF), 0xFFC3: ("SOF3", "Spatial lossless", SOF), 0xFFC4: ("DHT", "Define Huffman table", Skip), 0xFFC5: ("SOF5", "Differential sequential DCT", SOF), 0xFFC6: ("SOF6", "Differential progressive DCT", SOF), 0xFFC7: ("SOF7", "Differential spatial", SOF), 0xFFC8: ("JPG", "Extension", None), 0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF), 0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF), 0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF), 0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip), 0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF), 0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF), 0xFFCF: ("SOF15", "Differential spatial (AC)", SOF), 0xFFD0: ("RST0", "Restart 0", None), 0xFFD1: ("RST1", "Restart 1", None), 0xFFD2: ("RST2", "Restart 2", None), 0xFFD3: ("RST3", "Restart 3", None), 0xFFD4: ("RST4", "Restart 4", None), 0xFFD5: ("RST5", "Restart 5", None), 0xFFD6: ("RST6", "Restart 6", None), 0xFFD7: ("RST7", "Restart 7", None), 0xFFD8: ("SOI", "Start of image", None), 0xFFD9: ("EOI", "End of image", None), 0xFFDA: ("SOS", "Start of scan", Skip), 0xFFDB: ("DQT", "Define quantization table", DQT), 0xFFDC: ("DNL", "Define number of lines", Skip), 0xFFDD: ("DRI", "Define restart interval", Skip), 0xFFDE: ("DHP", "Define hierarchical progression", SOF), 0xFFDF: ("EXP", "Expand reference component", Skip), 0xFFE0: ("APP0", "Application segment 0", APP), 0xFFE1: ("APP1", "Application segment 1", APP), 0xFFE2: ("APP2", "Application segment 2", APP), 0xFFE3: ("APP3", "Application segment 3", APP), 0xFFE4: ("APP4", "Application segment 4", APP), 0xFFE5: ("APP5", "Application segment 5", APP), 0xFFE6: ("APP6", "Application segment 6", APP), 0xFFE7: ("APP7", "Application segment 7", APP), 0xFFE8: ("APP8", "Application segment 8", APP), 0xFFE9: ("APP9", "Application segment 9", APP), 0xFFEA: ("APP10", "Application segment 10", APP), 0xFFEB: ("APP11", "Application segment 11", APP), 0xFFEC: ("APP12", "Application segment 12", APP), 0xFFED: ("APP13", "Application segment 13", APP), 0xFFEE: ("APP14", "Application segment 14", APP), 0xFFEF: ("APP15", "Application segment 15", APP), 0xFFF0: ("JPG0", "Extension 0", None), 0xFFF1: ("JPG1", "Extension 1", None), 0xFFF2: ("JPG2", "Extension 2", None), 0xFFF3: ("JPG3", "Extension 3", None), 0xFFF4: ("JPG4", "Extension 4", None), 0xFFF5: ("JPG5", "Extension 5", None), 0xFFF6: ("JPG6", "Extension 6", None), 0xFFF7: ("JPG7", "Extension 7", None), 0xFFF8: ("JPG8", "Extension 8", None), 0xFFF9: ("JPG9", "Extension 9", None), 0xFFFA: ("JPG10", "Extension 10", None), 0xFFFB: ("JPG11", "Extension 11", None), 0xFFFC: ("JPG12", "Extension 12", None), 0xFFFD: ("JPG13", "Extension 13", None), 0xFFFE: ("COM", "Comment", Skip) } def _accept(prefix): return prefix[0] == "\377" class JpegImageFile(ImageFileH.ImageFile): format = "JPEG" format_description = "JPEG (ISO 10918)" def _open(self): s = self.fp.read(1) if ord(s[0]) != 255: raise SyntaxError, "not an JPEG file" # Create attributes self.bits = self.layers = 0 # JPEG specifics (internal) self.layer = [] self.huffman_dc = {} self.huffman_ac = {} self.quantization = {} self.app = {} while 1: s = s + self.fp.read(1) i = i16(s) if MARKER.has_key(i): name, description, handler = MARKER[i] # print hex(i), name, description if handler != None: handler(self, i) if i == 0xFFDA: # start of scan rawmode = self.mode if self.mode == "CMYK" and self.info.has_key("adobe"): rawmode = "CMYK;I" # Photoshop 2.5 is broken! self.tile = [("jpeg", (0,0) + self.size, 0, (rawmode, ""))] # self.offset = self.fp.tell() break s = self.fp.read(1) else: raise SyntaxError, "no marker found" def draft(self, mode, size): if len(self.tile) != 1: return d, e, o, a = self.tile[0] scale = 0 if a == "RGB" and mode in ["L", "YCC"]: self.mode = a = mode if size: scale = max(self.size[0] / size[0], self.size[1] / size[1]) for s in [8, 4, 2, 1]: if scale >= s: break e = e[0], e[1], (e[2]-e[0]+s-1)/s+e[0], (e[3]-e[1]+s-1)/s+e[1] self.size = ((self.size[0]+s-1)/s, (self.size[1]+s-1)/s) scale = s self.tile = [(d, e, o, a)] self.decoderconfig = (scale, 1) return self def load_hack(self): # ALTERNATIVE: handle JPEGs via the IJG command line utilities import tempfile, os file = tempfile.mktemp() os.system("djpeg %s >%s" % (self.filename, file)) try: self.im = ImageH.core.open_ppm(file) finally: try: os.unlink(file) except: pass self.mode = self.im.mode self.size = self.im.size self.tile = [] def _fetch(dict, key, default = 0): try: return dict[key] except KeyError: return default RAWMODE = { "1": "L", "L": "L", "RGB": "RGB", "RGBA": "RGB", "CMYK": "CMYK", } def _save(im, fp, filename): try: rawmode = RAWMODE[im.mode] except KeyError: raise IOError, "cannot write mode %s as JPEG" % im.mode # get keyword arguments im.encoderconfig = (_fetch(im.encoderinfo, "quality", 0), im.encoderinfo.has_key("progressive"), _fetch(im.encoderinfo, "smooth", 0), im.encoderinfo.has_key("optimize"), _fetch(im.encoderinfo, "streamtype", 0)) ImageFileH._save(im, fp, [("jpeg", (0,0)+im.size, 0, rawmode)]) def _save_hack(im, fp, filename): # ALTERNATIVE: handle JPEGs via the IJG command line utilities. import os file = im._dump() os.system("cjpeg %s >%s" % (file, filename)) try: os.unlink(file) except: pass # -------------------------------------------------------------------q- # Registry stuff ImageH.register_open("JPEG", JpegImageFile, _accept) ImageH.register_save("JPEG", _save) ImageH.register_extension("JPEG", ".jfif") ImageH.register_extension("JPEG", ".jpe") ImageH.register_extension("JPEG", ".jpg") ImageH.register_extension("JPEG", ".jpeg") ImageH.register_mime("JPEG", "image/jpeg")
29.395639
73
0.609262
5e695c5f937c34672964f4c256e9a919e9ffc3dc
73,761
py
Python
omtk/modules/rigFaceAvarGrps.py
CDufour909/omtk_unreal
64ae76a7b0a3f73a4b32d3b330f3174d02c54234
[ "MIT" ]
null
null
null
omtk/modules/rigFaceAvarGrps.py
CDufour909/omtk_unreal
64ae76a7b0a3f73a4b32d3b330f3174d02c54234
[ "MIT" ]
null
null
null
omtk/modules/rigFaceAvarGrps.py
CDufour909/omtk_unreal
64ae76a7b0a3f73a4b32d3b330f3174d02c54234
[ "MIT" ]
null
null
null
import copy import itertools import logging import pymel.core as pymel from collections import defaultdict from omtk.core.utils import decorator_uiexpose from omtk.libs import libCtrlShapes from omtk.libs import libPymel from omtk.libs import libPython from omtk.libs import libRigging from omtk.libs.libRigging import get_average_pos_between_nodes from omtk.models import model_ctrl_linear, model_avar_linear from omtk.modules import rigFaceAvar log = logging.getLogger('omtk') def _find_mid_avar(avars): jnts = [avar.jnt for avar in avars] nearest_jnt = get_average_pos_between_nodes(jnts) return avars[jnts.index(nearest_jnt)] if nearest_jnt else None # # Ctrls # class BaseCtrlUpp(rigFaceAvar.BaseCtrlFace): """ Deprecated, defined for backward compatibility (so libSerialization recognize it and we can access the ctrl shapes) """ pass class BaseCtrlLow(rigFaceAvar.BaseCtrlFace): """ Deprecated, defined for backward compatibility (so libSerialization recognize it and we can access the ctrl shapes) """ pass class CtrlFaceUpp(rigFaceAvar.BaseCtrlFace): """ Base controller class for an avar controlling the top portion of an AvarGrp. """ def __createNode__(self, size=1.0, **kwargs): return libCtrlShapes.create_triangle_upp(size=size) class CtrlFaceLow(rigFaceAvar.BaseCtrlFace): """ Base controller class for an avar controlling the bottom portion of an AvarGrp. """ def __createNode__(self, size=1.0, **kwargs): return libCtrlShapes.create_triangle_low(size=size) class CtrlFaceAll(rigFaceAvar.BaseCtrlFace): ATTR_NAME_GLOBAL_SCALE = 'globalScale' """ Base controller class for an avar controlling all the avars of an AvarGrp. """ def __createNode__(self, size=1.0, **kwargs): # todo: find the best shape transform, _ = libCtrlShapes.create_shape_circle(size=size, normal=(0, 0, 1)) return transform class CtrlFaceHorizontal(rigFaceAvar.BaseCtrlFace): """ Base controller class for an avar controlling the left or right porsion of an AvarGrp. """ def __createNode__(self, size=1.0, **kwargs): return libCtrlShapes.create_triangle_left(size=size) class CtrlFaceMacroL(rigFaceAvar.BaseCtrlFace): def __createNode__(self, size=1.0, **kwargs): return libCtrlShapes.create_triangle_left(size=size) class CtrlFaceMacroR(rigFaceAvar.BaseCtrlFace): def __createNode__(self, size=1.0, **kwargs): return libCtrlShapes.create_triangle_right(size=size) # # Models # class ModelMicroAvarCtrl(model_ctrl_linear.ModelCtrlLinear): def connect(self, avar, avar_grp, ud=True, fb=True, lr=True, yw=True, pt=True, rl=True, sx=True, sy=True, sz=True): avar_tweak = avar_grp._get_micro_tweak_avars_dict().get(avar, None) if avar_tweak: super(ModelMicroAvarCtrl, self).connect(avar, avar_grp, ud=ud, fb=fb, lr=lr, yw=False, pt=False, rl=False, sx=False, sy=False, sz=False) super(ModelMicroAvarCtrl, self).connect(avar_tweak, avar_grp, ud=False, fb=False, lr=False, yw=yw, pt=pt, rl=rl, sx=sx, sy=sy, sz=sz) else: super(ModelMicroAvarCtrl, self).connect(avar, avar_grp, ud=ud, fb=fb, lr=lr, yw=yw, pt=pt, rl=rl, sx=sx, sy=sy, sz=sz) class ModelCtrlMacroAll(model_ctrl_linear.ModelCtrlLinear): def connect(self, avar, avar_grp, ud=True, fb=True, lr=True, yw=True, pt=True, rl=True, sx=True, sy=True, sz=True): super(ModelCtrlMacroAll, self).connect(avar, avar_grp, ud=True, fb=True, lr=True, yw=True, pt=True, rl=True, sx=True, sy=True, sz=True) # # # # Compute the calibration automatically # # # # nomenclature_rig = self.get_nomenclature_rig() # # # Compute the calibration automatically # attr_calibration_lr = libRigging.create_utility_node( # 'multiplyDivide', # name=nomenclature_rig.resolve('getCalibrationLr'), # input1X=avar.attr_multiplier_lr, # input2X=avar._attr_length_u # ).outputX # attr_calibration_ud = libRigging.create_utility_node( # 'multiplyDivide', # name=nomenclature_rig.resolve('getCalibrationUd'), # input1X=avar.attr_multiplier_ud, # input2X=avar._attr_length_v # ).outputX # attr_calibration_fb = libRigging.create_utility_node( # 'multiplyDivide', # name=nomenclature_rig.resolve('getCalibrationFb'), # input1X=avar.attr_multiplier_fb, # input2X=avar._attr_length_u # ).outputX # # pymel.connectAttr(attr_calibration_lr, self.attr_sensitivity_tx) # pymel.connectAttr(attr_calibration_ud, self.attr_sensitivity_ty) # pymel.connectAttr(attr_calibration_fb, self.attr_sensitivity_tz) def build(self, avar, parent_pos=None, parent_rot=None, **kwargs): parent_pos = avar._grp_output # parent_rot = avar._grp_output super(ModelCtrlMacroAll, self).build( avar, parent_pos=parent_pos, parent_rot=parent_rot, **kwargs) def calibrate(self, **kwargs): """ Since the avar_all macro follow directly the surface, we don't need to calibrate it. """ pass # # Models # class AvarGrp( rigFaceAvar.AbstractAvar): # todo: why do we inherit from AbstractAvar exactly? Is inheriting from module more logical? """ Base class for a group of 'avars' that share the same properties. """ # Define the class to use for all avars. _CLS_AVAR = rigFaceAvar.AvarSimple _CLS_CTRL_MICRO = rigFaceAvar.CtrlFaceMicro _CLS_CTRL_TWEAK = None # In our case we hide the tweak avars by default since they are controlled using their parent controller. _CLS_MODEL_CTRL_MICRO = ModelMicroAvarCtrl _CLS_MODEL_CTRL_TWEAK = None SHOW_IN_UI = True # Enable this flag if the module contain only one influence. # ex: The FaceJaw module can accept two objects. The jaw and the jaw_end. However we consider the jaw_end as extra information for the positioning. # TODO: Find a generic way to get the InteractiveCtrl follicle position. SINGLE_INFLUENCE = False # Set this flag to false if each avars need to have an individual parent. # Please note that this have not been tested when used with 'tweak' avars. # This flag have been added to diminish the chances of breaking something in production (see Task #70413), # however we should check if it is possible to always have this behavior by default. # todo: Find a generic way. SINGLE_PARENT = True def __init__(self, *args, **kwargs): super(AvarGrp, self).__init__(*args, **kwargs) # This property contain all the MICRO Avars. # Micro Avars directly drive the input influence of the Module. # Macro Avars indirectly drive nothing by themself but are generally connected to Micro Avars. # It is really important that if you implement Macro Avars in other properties than this one. self.avars = [] self.preDeform = False self._grp_anm_avars_macro = None self._grp_anm_avars_micro = None self._grp_rig_avars_macro = None self._grp_rig_avars_micro = None # # Avar properties # Note that theses are only accessible after the avars have been built. # def _iter_all_avars(self): """ Generator that return all avars, macro and micros. Override this method if your module implement new avars. :return: An iterator that yield avars. """ for avar in self.avars: yield avar def get_all_avars(self): """ :return: All macro and micro avars of the module. This is mainly used to automate the handling of avars and remove the need to abuse class inheritance. """ return list(self._iter_all_avars()) def get_avars_upp(self): """ :return: All the upper section avars (micro and macros). """ return self.get_avars_micro_upp() @libPython.memoized_instancemethod def get_avars_micro_upp(self): """ Return all the avars controlling the AvarGrp upper area. ex: For lips, this will return the upper lip influences (without any corners). :return: A list of Avar instances. """ # TODO: Find a better way fnFilter = lambda avar: 'upp' in avar.name.lower() return filter(fnFilter, self.avars) def get_avars_low(self): """ :return: All the lower section avars (micro and macros). """ return self.get_avars_micro_low() @libPython.memoized_instancemethod def get_avars_micro_low(self): """ Return all the avars controlling the AvarGrp lower area. ex: For the lips, this will return the lower lip influences (without any corners). :return: Al list of Avar instrances. """ # TODO: Find a better way fnFilter = lambda avar: 'low' in avar.name.lower() return filter(fnFilter, self.avars) # # Influence properties # @libPython.cached_property() def jnts(self): fn_is_nurbsSurface = lambda obj: libPymel.isinstance_of_transform(obj, pymel.nodetypes.Joint) return filter(fn_is_nurbsSurface, self.input) @libPython.memoized_instancemethod def _get_absolute_parent_level_by_influences(self): result = defaultdict(list) for jnt in self.jnts: level = libPymel.get_num_parents(jnt) result[level].append(jnt) return dict(result) # todo: implement Tree datatype def _get_highest_absolute_parent_level(self): return min(self._get_absolute_parent_level_by_influences().keys()) def _get_hierarchy_depth(self): return max(self._get_relative_parent_level_by_influences().keys()) def _can_create_tweak_avars(self): # If the hierarchy depth is of only 1, the avar_all have priority. # This is because there's a potential for ambiguity between the all_avar and tweak avars. lowest_relative_parent_level = self._get_hierarchy_depth() if lowest_relative_parent_level == 1 and self.get_influence_all(): return False return True @libPython.memoized_instancemethod def _get_relative_parent_level_by_influences(self): result = defaultdict(list) objs_by_absolute_parent_level = self._get_absolute_parent_level_by_influences() top_level = self._get_highest_absolute_parent_level() for parent_level, objs in objs_by_absolute_parent_level.iteritems(): result[parent_level - top_level] = objs return dict(result) @libPython.memoized_instancemethod def get_influence_all(self): """ If the rigger provided a global parent for the influences in the module, it will be considered as an influence for the 'all' macro avar. """ # If there's only one influence, we'll handle it as a simple avar. if len(self.jnts) <= 1: return None objs_by_absolute_parent_level = self._get_absolute_parent_level_by_influences() top_level = self._get_highest_absolute_parent_level() root_objs = objs_by_absolute_parent_level[top_level] if len(root_objs) == 1: return root_objs[0] return None @libPython.memoized_instancemethod def get_influence_micros(self): """ :return: Only the influence used in micro avars. """ result = set() for avar in self.avars: if self._is_tweak_avar(avar): continue result.update(avar.jnts) return list(result) @libPython.memoized_instancemethod def _get_micro_avar_by_influence(self, influence): for avar in self.avars: if influence in avar.input: return avar @libPython.memoized_instancemethod def _get_micro_tweak_avars_dict(self): result = {} influences_by_parent_level = self._get_relative_parent_level_by_influences() top_level = self._get_hierarchy_depth() for influence in influences_by_parent_level[top_level]: parent_influence = influence.getParent() avar = self._get_micro_avar_by_influence(influence) avar_parent = self._get_micro_avar_by_influence(parent_influence) if avar and avar_parent: result[avar_parent] = avar return result def _is_tweak_avar(self, avar): return avar in self._get_micro_tweak_avars_dict().values() # # Avar methods # def get_multiplier_u(self): return 1.0 def get_multiplier_v(self): return 1.0 def _get_default_ctrl_size(self, jnts=None, max_ctrl_size=None, epsilon=0.001): """ Resolve the desired ctrl size One thing we are sure is that ctrls should not overlay, so we'll max out their radius to half of the shortest distances between each. Also the radius cannot be bigger than 3% of the head length. :param epsilon: Prevent ctrl from dissapearing if two influences share the same location """ result = 1 # Resolve maximum ctrl size from head joint head_jnt = self.get_head_jnt() try: head_length = self.rig.get_head_length(head_jnt) except Exception, e: head_length = None self.warning(str(e)) if head_length: max_ctrl_size = head_length * 0.05 if jnts is None: # Use only the micro influence as reference since the distance # between micro and tweak avars can be very small. jnts = self.get_influence_micros() if len(jnts) > 1: distances = [libPymel.distance_between_nodes(jnt_src, jnt_dst) for jnt_src, jnt_dst in itertools.permutations(jnts, 2)] distances = filter(lambda x: x > epsilon, distances) if distances: result = min(distances) / 2.0 if max_ctrl_size is not None and result > max_ctrl_size: self.debug("Limiting ctrl size to {}".format(max_ctrl_size)) result = max_ctrl_size else: self.debug("Not enough ctrls to guess size. Using default {}".format(result)) return result def _get_avars_influences(self): """ Return the influences that need to have avars associated with. Normally for 3 influences, we create 3 avars. However if the SINGLE_INFLUENCE flag is up, only the first influence will be rigged, the others mights be handled upstream. (ex: FaceJaw). """ if self.SINGLE_INFLUENCE: return [self.jnt] else: return copy.copy(self.jnts) # copy to prevent modifying the cache accidentaly by reference. def validate(self): """ Ensure all influences are influencing a geometry. This allow us to prevent the user to find out when building. """ super(AvarGrp, self).validate() # Try to resolve the head joint. # With strict=True, an exception will be raised if nothing is found. if self.get_head_jnt(strict=False) is None: raise Exception("Can't resolve the head. Please create a Head module.") def _create_micro_avars(self): """ For each influence, create it's associated avar instance. """ # For various reason, we may have a mismatch between the stored Avars the number of influences. # The best way to deal with this is to check each existing Avar and see if we need to created it or keep it. avar_influences = self._get_avars_influences() if not avar_influences: raise Exception("Found no avars!") new_avars = [] for avar in self.avars: # Any existing Avar that we don't reconize will be deleted. # Be aware that the .avars property only store MICRO Avars. Macro Avars need to be implemented in their own properties. if avar.jnt not in avar_influences: self.warning("Unexpected Avar {0} will be deleted.".format(avar.name)) # Any existing Avar that don't have the desired datatype will be re-created. # However the old value will be passed by so the factory method can handle specific tricky cases. else: new_avar = self._init_avar( self._CLS_AVAR, avar, ref=avar.jnt ) new_avars.append(new_avar) for influence in avar_influences: if not any(True for avar in new_avars if influence == avar.jnt): new_avar = self._init_avar( self._CLS_AVAR, None, # no previous value ref=influence ) new_avars.append(new_avar) return new_avars def _create_avars(self): """ Create the avars objects if they were never created (generally on first build). """ # Create avars if needed (this will get skipped if the module have already been built once) self.avars = self._create_micro_avars() def _build_avars(self, parent=None, connect_global_scale=None, create_ctrls=True, constraint=True, **kwargs): if parent is None: parent = not self.preDeform if connect_global_scale is None: connect_global_scale = self.preDeform # Resolve the U and V modifiers. # Note that this only applies to avars on a surface. # TODO: Move to AvarGrpOnSurface mult_u = self.get_multiplier_u() if self.surface else None mult_v = self.get_multiplier_v() if self.surface else None # Build avars and connect them to global avars avar_influences = self._get_avars_influences() for jnt, avar in zip(avar_influences, self.avars): self.configure_avar(avar) self._build_avar_micro(avar, create_ctrl=create_ctrls, constraint=constraint, mult_u=mult_u, mult_v=mult_v, connect_global_scale=connect_global_scale, **kwargs ) # Connect 'tweak' avars to their equivalent. for avar_micro, avar_tweak in self._get_micro_tweak_avars_dict().iteritems(): libRigging.connectAttr_withBlendWeighted(avar_micro.attr_lr, avar_tweak.attr_lr) libRigging.connectAttr_withBlendWeighted(avar_micro.attr_ud, avar_tweak.attr_ud) libRigging.connectAttr_withBlendWeighted(avar_micro.attr_fb, avar_tweak.attr_fb) def _build_avar(self, avar, **kwargs): # HACK: Validate avars at runtime try: avar.validate() except Exception, e: self.warning("Can't build avar {0}, failed validation: {1}".format( avar.name, e )) return None avar.build(**kwargs) def _build_avar_micro(self, avar, **kwargs): self._build_avar(avar, **kwargs) if libPymel.is_valid_PyNode(avar.grp_anm): if self._grp_anm_avars_micro: avar.grp_anm.setParent(self._grp_anm_avars_micro) else: avar.grp_anm.setParent(self.grp_anm) if libPymel.is_valid_PyNode(avar.grp_rig): if self._grp_rig_avars_micro: avar.grp_rig.setParent(self._grp_rig_avars_micro) else: avar.grp_rig.setParent(self.grp_rig) # todo: raise warning? def _build_avar_macro(self, cls_ctrl, avar, constraint=False, **kwargs): """ Factory method that create an avar that is not affiliated with any influence and is only used for connections. :param cls_ctrl: The class definition to use for the ctrl. :param avar: The Avar class instance to use. :param constraint: By default, a macro Avar don't affect it's influence (directly). This is False by default. :param kwargs: Any additional keyword arguments will be sent to the avar build method. :return: """ if cls_ctrl: avar._CLS_CTRL = cls_ctrl # Hack, find a more elegant way. self._build_avar(avar, constraint=constraint, **kwargs ) if libPymel.is_valid_PyNode(avar.grp_anm): if self._grp_anm_avars_macro: avar.grp_anm.setParent(self._grp_anm_avars_macro) else: avar.grp_anm.setParent(self.grp_anm) if libPymel.is_valid_PyNode(avar.grp_rig): if self._grp_rig_avars_macro: avar.grp_rig.setParent(self._grp_rig_avars_macro) else: avar.grp_rig.setParent(self.grp_rig) # todo: raise warning? return avar def _get_parent_adjustment_tm(self, avar): """ Return an attribute containing the additional contribution on the parent matrix. """ if not self.avar_all or self._is_tweak_avar(avar): return attr_avar_all_stack_result_tm = self.avar_all._stack.node.worldMatrix return libRigging.create_utility_node( 'multMatrix', matrixIn=( self.avar_all.grp_offset.inverseMatrix, # enter avar_all space attr_avar_all_stack_result_tm, # apply avar_all contribution self.avar_all.grp_offset.matrix, # exit avar_all space ) ).matrixSum def _parent_avar(self, avar, parent_tm): """ Connect the 'parent' group. This allow the avar resulting transform to be affected by something (ex: Head_Jnt). :param avar: :param parent_tm: :return: """ if avar.model_infl: libRigging.connect_matrix_to_node(parent_tm, avar._grp_parent) # avar.model_infl.connect_parent(parent_tm) if avar.model_ctrl: pymel.connectAttr(parent_tm, avar.model_ctrl._attr_inn_parent_tm) # pymel.connectAttr(u.outputTranslate, avar._grp_parent.translate) # pymel.connectAttr(u.outputRotate, avar._grp_parent.rotate) # pymel.connectAttr(u.outputScale, avar._grp_parent.scale) def _get_parent_identity_tm(self, parent): print(parent) # So correctly support non-uniform scaling, we need to rely on something more than scaleConstraint. # For this reason we'll need to store ourself the bindpose of our parent. grp_parent_bind = pymel.createNode( 'transform', name=(parent.name() + '_BindPose') ) grp_parent_bind.setParent(self.grp_rig) grp_parent_bind.setMatrix(parent.getMatrix(worldSpace=True)) attr_get_parent_tm = libRigging.create_utility_node( 'multMatrix', matrixIn=( grp_parent_bind.worldInverseMatrix, parent.worldMatrix, ), ).matrixSum return attr_get_parent_tm def _parent_avars(self): """ Parent each avars to their associated parent. :return: """ # If the deformation order is set to post (aka the deformer is in the final skinCluster) # we will want the offset node to follow it's original parent (ex: the head) nomenclature_rig = self.get_nomenclature_rig() attr_parent_tm_by_parent = {} for avar in self.get_all_avars(): avar_parent = None if self.SINGLE_PARENT: if avar.jnt: avar_parent = avar.jnt.getParent() else: # If we asked for a single parent for each avar but encounter an avar that don't have any influences, fallback to the module parent. avar_parent = self.parent else: avar_parent = self.parent # Hack: If the parent is the 'all' influence, we want to skip it since the 'all' influence is used in the stack. # Otherwise this will result in double-transformation. all_influence = self.get_influence_all() if avar_parent and avar_parent == all_influence: avar_parent = avar_parent.getParent() if avar_parent: attr_parent_tm = attr_parent_tm_by_parent.get(avar_parent) if not attr_parent_tm: attr_parent_tm = attr_parent_tm_by_parent[avar_parent] = self._get_parent_identity_tm(avar_parent) self._parent_avar(avar, attr_parent_tm) def _create_avars_ctrls(self, connect=False, **kwargs): for avar in self.avars: if self._is_tweak_avar(avar): if self._CLS_CTRL_TWEAK: avar._CLS_MODEL_CTRL = self._CLS_MODEL_CTRL_TWEAK avar._CLS_CTRL = self._CLS_CTRL_TWEAK avar.create_ctrl(self, **kwargs) else: if self._CLS_CTRL_MICRO: avar._CLS_MODEL_CTRL = self._CLS_MODEL_CTRL_MICRO avar._CLS_CTRL = self._CLS_CTRL_MICRO avar.create_ctrl(self, **kwargs) def handle_surface(self): """ Create the surface that the follicle will slide on if necessary. :return: """ # Hack: Provide backward compatibility for when surface was provided as an input. if not libPymel.isinstance_of_shape(self.surface, pymel.nodetypes.NurbsSurface): fn_is_nurbsSurface = lambda obj: libPymel.isinstance_of_shape(obj, pymel.nodetypes.NurbsSurface) surface = next(iter(filter(fn_is_nurbsSurface, self.input)), None) if surface: self.input.remove(surface) self.surface = surface return True # Create surface if it doesn't exist. self.warning("Can't find surface for {0}, creating one...".format(self)) self.surface = self.create_surface() def build(self, connect_global_scale=None, create_ctrls=True, parent=True, constraint=True, create_grp_rig_macro=True, create_grp_rig_micro=True, create_grp_anm_macro=True, create_grp_anm_micro=True, calibrate=True, **kwargs): self.handle_surface() super(AvarGrp, self).build(connect_global_scale=connect_global_scale, parent=parent, **kwargs) # We group the avars in 'micro' and 'macro' groups to make it easier for the animator to differentiate them. nomenclature_anm = self.get_nomenclature_anm_grp() if create_grp_anm_macro: name_grp_macro = nomenclature_anm.resolve('macro') self._grp_anm_avars_macro = pymel.createNode('transform', name=name_grp_macro) self._grp_anm_avars_macro.setParent(self.grp_anm) if create_grp_anm_micro: name_grp_micro = nomenclature_anm.resolve('micro') self._grp_anm_avars_micro = pymel.createNode('transform', name=name_grp_micro) self._grp_anm_avars_micro.setParent(self.grp_anm) # We group the avars in 'micro' and 'macro' groups to make it easier for the rigger to differentiate them. nomenclature_rig = self.get_nomenclature_rig_grp() if create_grp_rig_macro: name_grp_macro = nomenclature_rig.resolve('macro') self._grp_rig_avars_macro = pymel.createNode('transform', name=name_grp_macro) self._grp_rig_avars_macro.setParent(self.grp_rig) if create_grp_rig_micro: name_grp_micro = nomenclature_rig.resolve('micro') self._grp_rig_avars_micro = pymel.createNode('transform', name=name_grp_micro) self._grp_rig_avars_micro.setParent(self.grp_rig) self._create_avars() self._build_avars(parent=parent, connect_global_scale=connect_global_scale, constraint=constraint) if create_ctrls: ctrl_size = self._get_default_ctrl_size() self._create_avars_ctrls(ctrl_size=ctrl_size) if parent: self._parent_avars() if calibrate: self.calibrate() def unbuild(self): for avar in self.avars: avar.unbuild() super(AvarGrp, self).unbuild() def iter_ctrls(self): for ctrl in super(AvarGrp, self).iter_ctrls(): yield ctrl for avar in self._iter_all_avars(): for ctrl in avar.iter_ctrls(): yield ctrl @decorator_uiexpose() def calibrate(self): for avar in self.avars: if not self._is_tweak_avar(avar): # tweak avar have no ctrl and should not be calibrated avar.calibrate() def _init_avar(self, cls, inst, ref=None, cls_ctrl=None, cls_ctrl_model=None, cls_infl_model=None, name=None, suffix=None): """ Factory method that initialize an avar instance only if necessary. If the instance already had been initialized in a previous build, it's correct value will be preserved, This also handle the following checks - Preserve ctrl information if we need to re-created the avar because of a type mismatch. - Ensure that the avar always have a surface. # todo: implement this only on AvarGrpOnSurface. :param cls: The desired class. :param inst: The current value. This should always exist since defined in the module constructor. :param ref: :param cls_ctrl: The desired ctrl class. We might want to remove this for simplicity :param cls_ctrl_model: The desired controller model class. :param cls_infl_model: The desired influence model class. :return: The initialized instance. If the instance was already fine, it is returned as is. """ # Hack: Ensure ref is a list. # todo: fix upstream result_inputs = [ref] if ref else [] result_inputs.extend(self.get_meshes()) # ensure avars propage the mesh to their AvarCtrlModel # todo: remove this call when we know it is safe. if cls is None: self.warning("No avar class specified for {0}, using default.".format(self)) cls = rigFaceAvar.AvarSimple result = self.init_module(cls, inst, inputs=result_inputs, suffix=suffix) # It is possible that the old avar type don't match the desired one. # When this happen, we'll try at least to save the ctrl instance so the shapes match. if inst and result != inst: result.ctrl = inst.ctrl result.avar_network = inst.avar_network # Ensure the result instance always have the same surface as it's parent. result.surface = self.surface # Apply cls_ctrl override if specified if cls_ctrl: result._CLS_CTRL = cls_ctrl # Apply cls_ctrl_model override if specified if cls_ctrl_model: result._CLS_MODEL_CTRL = cls_ctrl_model # Apply cls_infl_model override if specified if cls_infl_model: result._CLS_MODEL_INFL = cls_infl_model # Apply name override if specified if name: result.name = name else: ref = result.jnt if ref: result.name = ( self.get_nomenclature() + self.rig.nomenclature(ref.stripNamespace().nodeName())).resolve() # Keep a reference to the module parent. # todo: implement a generic mechanism for all modules? result._parent_module = self return result def configure_avar(self, avar): """ This method is called as soon as we access or create an avar. Use it to configure the avar automatically. """ if avar.surface is None and self.surface: avar.surface = self.surface def _need_to_connect_macro_avar(self, avar): """ Macro avars are made to control micro avars. In the first build, it is necessary to create default connection so the rigger got something that work. However with time it is normal than a rigger remove this connection or replace it with other type of connection. This call check if the avar is connected to at least another avar. If True, no connection is needed. """ def _is_obj_avar(obj): return obj.hasAttr('avar_lr') # ugly but it work attr_holder = avar.grp_rig for hist in attr_holder.listHistory(future=False): if isinstance(hist, pymel.nodetypes.Transform) and hist != attr_holder and _is_obj_avar(hist): return False return True # todo: deprecate this class in favor of composition class AvarGrpOnSurface(AvarGrp): """ Highest-level surface-based AvarGrp module. With additional features like: - Horizontal macro avars (avar_l, avar_r) - Vertical macro avars (avar_upp, avar_low) - Global macro avar (avar_all) - Ability to have 'tweak' avars that follow their parent only in translation. Especially useful to have different falloff on translation than on rotation. Here's examples of the type of hierarchy that the rigger can provide: -------------------------------------------------------------------------------------------------------------------- | NAME | AVAR_ALL | AVAR_L | AVAR_R | AVAR_UPP | AVAR_LOW | NOTES -------------------------------------------------------------------------------------------------------------------- ex #1: | jnt_avar_01 | YES | NO | NO | NO | NO | | jnt_avar_02 | YES | NO | NO | NO | NO | | jnt_avar_03 | YES | NO | NO | NO | NO | ex #2: | jnt_root | YES | NO | NO | NO | NO | Affected by avar_all only. | jnt_avar_01 | YES | NO | NO | NO | NO | | jnt_avar_02 | YES | NO | NO | NO | NO | | jnt_avar_upp | YES | NO | NO | YES | NO | Affected by avar_upp because of the 'upp' token. | jnt_avar_low | YES | NO | NO | NO | YES | Affected by avar_low because of the 'low' token. | l_jnt_avar | YES | YES | NO | NO | NO | Affected by avar_l because of the 'l' token. | r_jnt_avar | YES | NO | YES | NO | NO | Affected by avar_r because of the 'r' token. ex #3: | jnt_root | YES | NO | NO | NO | NO | Affected by avar_all only. | jnt_avar_01 | YES | NO | NO | NO | NO | | jnt_avar_01_tweak | NO | NO | NO | NO | NO | Affected by jnt_avar_01 in translation only. """ _CLS_AVAR = rigFaceAvar.AvarFollicle _CLS_AVAR_MACRO = rigFaceAvar.AvarFollicle # Macro avars are always abstract (except the all macro which can potentially drive something) def __init__(self, *args, **kwargs): super(AvarGrpOnSurface, self).__init__(*args, **kwargs) self.surface = None self.create_macro_horizontal = self.CREATE_MACRO_AVAR_HORIZONTAL self.create_macro_vertical = self.CREATE_MACRO_AVAR_VERTICAL self.create_macro_all = self.CREATE_MACRO_AVAR_ALL self.avar_all = None self.avar_l = None self.avar_r = None self.avar_upp = None self.avar_low = None @decorator_uiexpose() def create_surface(self, *args, **kwargs): """ Expose the function in the ui, using the decorator. """ return super(AvarGrpOnSurface, self).create_surface(*args, **kwargs) _CLS_CTRL_LFT = CtrlFaceMacroL _CLS_CTRL_RGT = CtrlFaceMacroR _CLS_CTRL_UPP = CtrlFaceUpp _CLS_CTRL_LOW = CtrlFaceLow _CLS_CTRL_ALL = CtrlFaceAll _CLS_MODEL_CTRL_ALL = ModelCtrlMacroAll # We always want a linear avar-influence model for the 'all' macro avar. # For example if eyelids are following a round surface, we still want the 'all' macro avar to be linear. # However we might want to define the range from the shared surface. _CLS_MODEL_INFL_ALL = model_avar_linear.AvarLinearModel SHOW_IN_UI = True UI_DISPLAY_NAME = 'AvarGrp' CREATE_MACRO_AVAR_HORIZONTAL = True CREATE_MACRO_AVAR_VERTICAL = True CREATE_MACRO_AVAR_ALL = True def validate(self): super(AvarGrpOnSurface, self).validate() # Ensure that we support the hyerarchy of the influences. influence_hyearchy_deepness = max(self._get_relative_parent_level_by_influences().keys()) if influence_hyearchy_deepness > 2: raise Exception("Unsupported hierarchy depth! Please revise your inputs hierarchy.") # Ensure that we have a mesh to follow. if not self.get_meshes(): raise Exception("Please provide one reference mesh to follow.") # Ensure that if we are building macro avars, we have reference for all of them. # If some are missing we won't be able to build. if self.create_macro_horizontal: if not self.get_jnt_l_mid(): raise Exception("Cannot find a reference input for the lft horizontal macro avar.") if not self.get_jnt_r_mid(): raise Exception("Cannot find a reference input for the rgt horizontal macro avar.") if self.create_macro_vertical: if not self.get_jnt_upp_mid(): raise Exception("Cannot find a reference input for the upp macro avar.") if not self.get_jnt_low_mid(): raise Exception("Cannot find a reference input for the dwn macro avar.") # # Influence getter functions. # @libPython.memoized_instancemethod def get_jnts_upp(self): """ :return: The upper section influences. """ # TODO: Find a better way fnFilter = lambda jnt: 'upp' in jnt.stripNamespace().nodeName().lower() return filter(fnFilter, self.jnts) @libPython.memoized_instancemethod def get_jnt_upp_mid(self): """ :return: The middle influence of the upper section. """ return get_average_pos_between_nodes(self.get_jnts_upp()) @libPython.memoized_instancemethod def get_jnts_low(self): """ :return: The upper side influences. """ # TODO: Find a better way fnFilter = lambda jnt: 'low' in jnt.stripNamespace().nodeName().lower() return filter(fnFilter, self.jnts) @libPython.memoized_instancemethod def get_jnt_low_mid(self): """ :return: The middle influence of the lower section. """ return get_average_pos_between_nodes(self.get_jnts_low()) @libPython.memoized_instancemethod def get_jnts_l(self): """ :return: All the left side influences. # TODO: Use the nomenclature instead of the position? """ middle = self.get_pos_all_middle() jnt_all = self.get_influence_all() # ignore all influence, it have no side def _filter(jnt): if jnt == jnt_all: return False return jnt.getTranslation(space='world').x >= middle.x return filter(_filter, self.jnts) @libPython.memoized_instancemethod def get_jnts_r(self): """ :return: All the right side influences. # TODO: Use the nomenclature instead of the position? """ middle = self.get_pos_all_middle() jnt_all = self.get_influence_all() def _filter(jnt): if jnt == jnt_all: return False return jnt.getTranslation(space='world').x < middle.x return filter(_filter, self.jnts) @libPython.memoized_instancemethod def get_jnt_l_mid(self): """ :return: The left most influence (highest positive distance in x) """ fn_get_pos_x = lambda x: x.getTranslation(space='world').x return next(iter(reversed(sorted(self.get_jnts_l(), key=fn_get_pos_x))), None) @libPython.memoized_instancemethod def get_jnt_r_mid(self): """ :return: The right most influence (highest negative distance in x) """ fn_get_pos_x = lambda x: x.getTranslation(space='world').x return next(iter(sorted(self.get_jnts_r(), key=fn_get_pos_x)), None) # # Avars getter functions # @libPython.memoized_instancemethod def get_avar_mid(self): return _find_mid_avar(self.avars) @libPython.memoized_instancemethod def get_avars_micro_l(self): """ Resolve all micro avars on the left side of the face that would be affected by a left macro avar. Note that we explicitly ignoring any middle avars since no 'side' macro can affect the 'middle' avars. :return: A list of avar instances. """ middle = self.get_pos_all_middle() avar_corner_upp = self.get_avar_upp_corner() avar_corner_low = self.get_avar_low_corner() def fn_filter(avar): # Ignore any vertical corner avars. if avar_corner_upp and avar is avar_corner_upp: return False if avar_corner_low and avar is avar_corner_low: return False # Ignore right-sided avars. pos = avar.jnt.getTranslation(space='world') if pos.x < middle.x: return False return True return [avar for avar in self.avars if avar and fn_filter(avar)] @libPython.memoized_instancemethod def get_avars_micro_r(self): """ Resolve all micro avars on the right side of the face that would be affected by a right macro avar. Note that we explicitly ignoring any middle avars since no 'side' macro can affect the 'middle' avars. :return: A list of avar instances. """ middle = self.get_pos_all_middle() avar_corner_upp = self.get_avar_upp_corner() avar_corner_low = self.get_avar_low_corner() def fn_filter(avar): # Ignore any vertical corner avars. if avar_corner_upp and avar is avar_corner_upp: return False if avar_corner_low and avar is avar_corner_low: return False # Ignore right-sided avars. pos = avar.jnt.getTranslation(space='world') if pos.x > middle.x: return False return True return [avar for avar in self.avars if avar and fn_filter(avar)] @libPython.memoized_instancemethod def get_avar_l_corner(self): """ :return: The farthest avar in the positive X axis. """ fn_get_avar_pos_x = lambda avar: avar.jnt.getTranslation(space='world').x return next(iter(reversed(sorted(self.get_avars_micro_l(), key=fn_get_avar_pos_x))), None) @libPython.memoized_instancemethod def get_avar_r_corner(self): """ :return: The farthest avar in the negative X axis. """ fn_get_avar_pos_x = lambda avar: avar.jnt.getTranslation(space='world').x return next(iter(sorted(self.get_avars_micro_r(), key=fn_get_avar_pos_x)), None) @libPython.memoized_instancemethod def get_avar_upp_corner(self): """ :return: The middle upp micro avar. """ avars = self.get_avars_micro_upp() middle = self.get_pos_upp_middle() def get_distance(avar): return abs(avar.jnt.getTranslation(space='world').x - middle.x) avars = sorted(avars, key=get_distance) return next(iter(avars), None) @libPython.memoized_instancemethod def get_avar_low_corner(self): """ :return: The middle low micro avar. """ avars = self.get_avars_micro_low() middle = self.get_pos_low_middle() def get_distance(avar): return abs(avar.jnt.getTranslation(space='world').x - middle.x) avars = sorted(avars, key=get_distance) return next(iter(avars), None) @libPython.memoized_instancemethod def get_pos_all_middle(self): # type () -> pymel.datatypes.Vector """ :return: The average position using all the influences. """ return libRigging.get_average_pos_between_vectors(self.jnts) @libPython.memoized_instancemethod def get_pos_upp_middle(self): # type () -> pymel.datatypes.Vector """ :return: The average position using all the upper section influences. """ return libRigging.get_average_pos_between_vectors([avar.jnt for avar in self.get_avars_micro_upp()]) @libPython.memoized_instancemethod def get_pos_low_middle(self): # type () -> pymel.datatypes.Vector """ :return: The average position using all the lower section influences. """ return libRigging.get_average_pos_between_vectors([avar.jnt for avar in self.get_avars_micro_low()]) def _iter_all_avars(self): for avar in super(AvarGrpOnSurface, self)._iter_all_avars(): yield avar if self.create_macro_horizontal: if self.avar_l: yield self.avar_l if self.avar_r: yield self.avar_r if self.create_macro_vertical: if self.avar_upp: yield self.avar_upp if self.avar_low: yield self.avar_low if self.create_macro_all: if self.avar_all: yield self.avar_all def add_avars(self, attr_holder): """ An AvarGrp don't create any avar by default. It is the responsibility of the inherited module to implement it if necessary. """ pass def get_multiplier_u(self): """ Since we are using the same plane for the eyebrows, we want to attenget_multiplier_lruate the relation between the LR avar and the plane V coordinates. In the best case scenario, at LR -1, the V coordinates of the BrowInn are 0.5 both. """ base_u, base_v = self.get_base_uv() return abs(base_u - 0.5) * 2.0 def _get_avars_influences(self): """ If the rigger provided an influence for the 'all' Avar, don't create an Avar for it. We will handle it manually. :return: """ influences = super(AvarGrpOnSurface, self)._get_avars_influences() influence_all = self.get_influence_all() if influence_all and influence_all in influences: influences.remove(influence_all) return influences @libPython.memoized_instancemethod def get_influences_tweak(self): return self._get_relative_parent_level_by_influences().get(2, []) def _create_avars(self): super(AvarGrpOnSurface, self)._create_avars() # todo: for horizontal and vertical avars, is ref really necessary? they are always abstract avars middle = self.get_head_jnt().getTranslation(space='world') # Create horizontal macro avars if self.create_macro_horizontal: # Create avar_l if necessary ref_l = self.get_jnt_l_mid() if not ref_l: self.info("Cannot create macro avar 'L', found no matching influence.") else: # Resolve name nomenclature = self.rig.nomenclature(self.get_module_name()) nomenclature.add_tokens('macro') if self.IS_SIDE_SPECIFIC: side = ref_l.getTranslation(space='world').x > middle.x if side: # left nomenclature.side = nomenclature.SIDE_L nomenclature.add_tokens('out') else: nomenclature.side = nomenclature.SIDE_R nomenclature.add_tokens('inn') else: nomenclature.side = nomenclature.SIDE_L avar_macro_l_name = nomenclature.resolve() # avar_macro_l_name = 'L_{0}'.format(self.get_module_name()) self.avar_l = self._init_avar( self._CLS_AVAR_MACRO, self.avar_l, ref=ref_l, cls_ctrl=self._CLS_CTRL_LFT, name=avar_macro_l_name ) # Create avar_r if necessary ref_r = self.get_jnt_r_mid() if not ref_r: self.info("Cannot create macro avar 'L', found no matching influence.") else: # Resolve name nomenclature = self.rig.nomenclature(self.get_module_name()) nomenclature.add_tokens('macro') if self.IS_SIDE_SPECIFIC: side = ref_r.getTranslation(space='world').x > middle.x if side: # left nomenclature.side = nomenclature.SIDE_L nomenclature.add_tokens('inn') else: nomenclature.side = nomenclature.SIDE_R nomenclature.add_tokens('out') else: nomenclature.side = nomenclature.SIDE_R avar_macro_r_name = nomenclature.resolve() # avar_macro_r_name = 'R_{0}'.format(self.get_module_name()) self.avar_r = self._init_avar( self._CLS_AVAR_MACRO, self.avar_r, ref=ref_r, cls_ctrl=self._CLS_CTRL_RGT, name=avar_macro_r_name ) # Create vertical macro avars if self.create_macro_vertical: # Create avar_upp if necessary ref_upp = self.get_jnt_upp_mid() if not ref_upp: self.info( "Cannot create macro avar '{}', found no matching influence.".format(self.rig.AVAR_NAME_UPP)) else: # Resolve avar name avar_upp_name = self.get_nomenclature().resolve('macro', self.rig.AVAR_NAME_UPP) self.avar_upp = self._init_avar( self._CLS_AVAR_MACRO, self.avar_upp, ref=ref_upp, cls_ctrl=self._CLS_CTRL_UPP, name=avar_upp_name ) # Create avar_low if necessary ref_low = self.get_jnt_low_mid() if not ref_low: self.info( "Cannot create macro avar '{}', found no matching influence.".format(self.rig.AVAR_NAME_LOW)) else: # Resolve avar name avar_low_name = self.get_nomenclature().resolve('macro', self.rig.AVAR_NAME_LOW) self.avar_low = self._init_avar( self._CLS_AVAR_MACRO, self.avar_low, ref=ref_low, cls_ctrl=self._CLS_CTRL_LOW, name=avar_low_name ) # Create all macro avar # Note that the all macro avar can drive an influence or not, both are supported. # This allow the rigger to provided an additional falloff in case the whole section is moved. if self.create_macro_all: avar_all_ref = self.get_influence_all() nomenclature = self.get_nomenclature_anm().copy() nomenclature.add_tokens('macro', self.rig.AVAR_NAME_ALL) avar_all_name = nomenclature.resolve() self.avar_all = self._init_avar( self._CLS_AVAR_MACRO, self.avar_all, ref=avar_all_ref, cls_ctrl=self._CLS_CTRL_UPP, cls_ctrl_model=self._CLS_MODEL_CTRL_ALL, cls_infl_model=self._CLS_MODEL_INFL_ALL, name=avar_all_name ) self.avar_all.name = avar_all_name # The avar_all is special since it CAN drive an influence. old_ref_all = self.avar_all.jnt if old_ref_all != avar_all_ref: self.warning( "Unexpected influence for avar {0}, expected {1}, got {2}. Will update the influence.".format( self.avar_all.name, avar_all_ref, old_ref_all )) self.avar_all.input = [avar_all_ref if inf == old_ref_all else inf for inf in self.avar_all.input] # Hack: Delete all cache since it may have used the old inputs. try: del self.avar_all._cache except AttributeError: pass def _build_avar_macro_horizontal(self, avar_parent, avar_middle, avar_children, cls_ctrl, connect_ud=True, connect_lr=True, connect_fb=True, **kwargs): self._build_avar_macro( cls_ctrl, avar_parent, **kwargs ) def _connect_avar_macro_horizontal(self, avar_parent, avar_children, connect_ud=True, connect_lr=True, connect_fb=True): for child_avar in avar_children: if connect_ud: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_ud, child_avar.attr_ud) if connect_lr: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_lr, child_avar.attr_lr) if connect_fb: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_fb, child_avar.attr_fb) def _build_avar_macro_vertical(self, avar_parent, avar_middle, avar_children, cls_ctrl, **kwargs): self._build_avar_macro( cls_ctrl, avar_parent, **kwargs ) def _connect_avar_macro_vertical(self, avar_parent, avar_children, connect_ud=True, connect_lr=True, connect_fb=True): for child_avar in avar_children: if connect_ud: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_ud, child_avar.attr_ud) if connect_lr: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_lr, child_avar.attr_lr) if connect_fb: libRigging.connectAttr_withLinearDrivenKeys(avar_parent.attr_fb, child_avar.attr_fb) def _build_avar_macro_l(self, **kwargs): # Create left avar if necessary ref = self.get_jnt_l_mid() if self.create_macro_horizontal and ref: self._build_avar_macro_horizontal(self.avar_l, self.get_avar_mid(), self.get_avars_micro_l(), self._CLS_CTRL_LFT, **kwargs) def _connect_avar_macro_l(self, avar, child_avars): self._connect_avar_macro_horizontal(avar, child_avars) def _build_avar_macro_r(self, **kwargs): # Create right avar if necessary ref = self.get_jnt_r_mid() if self.create_macro_horizontal and ref: self._build_avar_macro_horizontal(self.avar_r, self.get_avar_mid(), self.get_avars_micro_r(), self._CLS_CTRL_RGT, **kwargs) def _connect_avar_macro_r(self, avar, child_avars): self._connect_avar_macro_horizontal(avar, child_avars) def _build_avar_macro_upp(self, **kwargs): # Create upp avar if necessary ref = self.get_jnt_upp_mid() if self.create_macro_vertical and ref: self._build_avar_macro_vertical(self.avar_upp, self.get_avar_mid(), self.get_avars_micro_upp(), self._CLS_CTRL_UPP, **kwargs) def _connect_avar_macro_upp(self, avar, child_avar): self._connect_avar_macro_vertical(avar, child_avar) def _build_avar_macro_low(self, **kwargs): # Create low avar if necessary ref = self.get_jnt_low_mid() if self.create_macro_vertical and ref: self._build_avar_macro_vertical(self.avar_low, self.get_avar_mid(), self.get_avars_micro_low(), self._CLS_CTRL_LOW, **kwargs) def _connect_avar_macro_low(self, avar, child_avars): self._connect_avar_macro_vertical(avar, child_avars) def _connect_avar_macro_all(self, connect_ud=True, connect_lr=True, connect_fb=True): """ Connect the avar_all to their micro equivalent. The avar_all is special as it support rotation and scale like if the micro avars were parented to it. :param connect_ud: If True, will connect the avar_ud. :param connect_lr: If True, will connect the avar_lr :param connect_fb: If True, will connect the avar_fb. :return: """ influence_all = self.get_influence_all() def _can_connect_avar_scale(avar): """ Note that we don't connect the scale on the all_influence. Since the all_influence contain an additional falloff for (ie) when we move the mouth, it generally give better results if it is not scaled. """ if influence_all and avar.jnt == influence_all: return False return True for avar_child in self.avars: # Hack: Tweak avars are affected by their parent avar which is already affected by the all influence. if self._is_tweak_avar(avar_child): continue # # Connect macro_all ctrl to each avar_child. # # Since the movement is 'absolute', we'll only do a simple transform at the beginning of the stack. # # Using the rotate/scalePivot functionality, we are able to save some nodes. # attr_get_pivot_tm = libRigging.create_utility_node( # 'multMatrix', # matrixIn=( # self.avar_all._stack.node.worldMatrix, # avar_child._grp_offset.worldInverseMatrix # ) # ).matrixSum # # layer_parent = avar_child._stack.prepend_layer(name='globalInfluence') # layer_parent.t.set(0, 0, 0) # Hack: why? # # attr_get_all_stack_tm = libRigging.create_utility_node( # 'multMatrix', # matrixIn=( # self.avar_all._stack.node.worldMatrix, # self.avar_all._grp_offset.inverseMatrix # ) # ).matrixSum # # attr_global_tm = libRigging.create_utility_node( # 'multMatrix', # matrixIn=( # avar_child._grp_offset.matrix, # self.avar_all._grp_offset.inverseMatrix, # attr_get_all_stack_tm, # self.avar_all._grp_offset.matrix, # avar_child._grp_offset.inverseMatrix # ) # ).matrixSum # # util_decompose_global_tm = libRigging.create_utility_node( # 'decomposeMatrix', # inputMatrix=attr_global_tm # ) # # pymel.connectAttr(util_decompose_global_tm.outputTranslateX, layer_parent.tx) # pymel.connectAttr(util_decompose_global_tm.outputTranslateY, layer_parent.ty) # pymel.connectAttr(util_decompose_global_tm.outputTranslateZ, layer_parent.tz) # pymel.connectAttr(util_decompose_global_tm.outputRotateX, layer_parent.rx) # pymel.connectAttr(util_decompose_global_tm.outputRotateY, layer_parent.ry) # pymel.connectAttr(util_decompose_global_tm.outputRotateZ, layer_parent.rz) # pymel.connectAttr(util_decompose_global_tm.outputScaleX, layer_parent.sx) # pymel.connectAttr(util_decompose_global_tm.outputScaleY, layer_parent.sy) # pymel.connectAttr(util_decompose_global_tm.outputScaleZ, layer_parent.sz) @libPython.memoized_instancemethod def _get_avar_macro_all_influence_tm(self): """ Return the pivot matrix of the influence controller by the 'all' macro avar. :return: A pymel.datatypes.Matrix instance. """ influence_all = self.get_influence_all() if influence_all: pos = influence_all.getTranslation(space='world') elif self.surface: # We'll always want to macro avar to be positionned at the center of the plane. pos = libRigging.get_point_on_surface_from_uv(self.surface, 0.5, 0.5) else: # If we are not controlling a specific influence and no surface exist, take our chance and use the first influence. pos = self.jnt.getTranslation(space='world') jnt_tm = pymel.datatypes.Matrix( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, pos.x, pos.y, pos.z, 1 ) # By default, we expect all joint from the right side of the face to be mirrored in 'behavior'. # Since we are creating a new transformation matrix that didn't exist before, we'll need to follow the same rules. if pos.x < 0: jnt_tm = pymel.datatypes.Matrix( 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0) * jnt_tm return jnt_tm def _get_avar_macro_all_ctrl_tm(self): """ :return: The default ctrl matrix for the avar_all ctrl. """ # todo: move this logic in the model tm = self._get_avar_macro_all_influence_tm() pos = tm.translate dir = pymel.datatypes.Point(0, 0, 1) raycast_result = self.rig.raycast_farthest(pos, dir) if raycast_result: pos = raycast_result # Ensure that the ctrl is affar from the head. # Resolve maximum ctrl size from head joint offset_z = 0 head_jnt = self.get_head_jnt() try: head_length = self.rig.get_head_length(head_jnt) except Exception, e: head_length = None self.warning(str(e)) if head_length: offset_z = head_length * 0.05 if pos.x >= 0: jnt_tm = pymel.datatypes.Matrix( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, pos.x, pos.y, pos.z + offset_z, 1 ) else: jnt_tm = pymel.datatypes.Matrix( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, pos.x, pos.y, pos.z + offset_z, 1 ) jnt_tm = pymel.datatypes.Matrix( 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0) * jnt_tm return jnt_tm def _build_avar_macro_all(self, connect_ud=True, connect_lr=True, connect_fb=True, constraint=False): # Create all avar if necessary # Note that the use can provide an influence. # If no influence was found, we'll create an 'abstract' avar that doesn't move anything. if self.create_macro_all: # We'll always want to macro avar to be positionned at the center of the plane. jnt_tm = self._get_avar_macro_all_influence_tm() constraint = True if self.get_influence_all() else False self._build_avar_macro(self._CLS_CTRL_ALL, self.avar_all, jnt_tm=jnt_tm, constraint=constraint) # self._connect_avar_macro_all(connect_ud=connect_ud, connect_lr=connect_lr, connect_fb=connect_fb) def _build_avars(self, **kwargs): # TODO: Some calls might need to be move super(AvarGrpOnSurface, self)._build_avars(**kwargs) self._build_avar_macro_l() self._build_avar_macro_r() self._build_avar_macro_upp() self._build_avar_macro_low() self._build_avar_macro_all() self._patch_avars() def _patch_avars(self): """ After all the avars are created, we might want to add custom logic for them :return: """ # For each avars with an avar logic, add the 'all' macro avar contribution before. # If there's no 'all' macro avar, skip this step. if self.create_macro_all: for avar in self._iter_all_avars(): if avar == self.avar_all: continue # If we are dealing with a 'tweak' avar, it already inherit it's parent transform. if self._is_tweak_avar(avar): continue if avar.model_infl: self._add_macro_all_avar_contribution(avar) def _add_macro_all_avar_contribution(self, avar): attr_avar_all_stack_result_tm = self.avar_all.model_infl._attr_out_tm # attr_avar_all_offset_tm = self.avar_all._grp_offset.matrix # attr_avar_all_offset_tm_inv = self.avar_all._grp_offset.inverseMatrix attr_avar_all_offset_tm = self.avar_all._stack_post.worldMatrix attr_avar_all_offset_tm_inv = self.avar_all._stack_post.worldInverseMatrix new_layer = avar._stack_post.append_layer(name='macroAvarAll') attr_tm = libRigging.create_utility_node( 'multMatrix', matrixIn=( avar.grp_offset.matrix, # enter local space, note that this is a hack, our parent contain the local space already... attr_avar_all_offset_tm_inv, # enter avar_all space attr_avar_all_stack_result_tm, # apply avar_all contribution attr_avar_all_offset_tm, # exit avar_all space avar.grp_offset.inverseMatrix, # exit local space (return to avar space) ) ).matrixSum util_decompose_tm = libRigging.create_utility_node( 'decomposeMatrix', inputMatrix=attr_tm, ) pymel.connectAttr(util_decompose_tm.outputTranslate, new_layer.translate) pymel.connectAttr(util_decompose_tm.outputRotate, new_layer.rotate) pymel.connectAttr(util_decompose_tm.outputScale, new_layer.scale) # u = libRigging.create_utility_node( # 'multMatrix', # matrixIn=( # attr_avar_all_offset_tm, # avar._grp_offset.inverseMatrix # ) # ).matrixSum # u2 = libRigging.create_utility_node( # 'decomposeMatrix', # inputMatrix=u # ) # pymel.connectAttr(u2.outputTranslate, new_layer.rotatePivot) # pymel.connectAttr(u2.outputTranslate, new_layer.scalePivot) def _create_avar_macro_all_ctrls(self, parent_pos=None, parent_rot=None, ctrl_tm=None, **kwargs): # Note: Since the avar_all might not have any influence, we resolve the ctrl_tm outside of the model. # todo: resolve ctrl_tm inside of the model? ctrl_tm = self._get_avar_macro_all_ctrl_tm() parent_pos = self.avar_all._grp_output # parent_rot=self.avar_all._grp_output parent_rot = None self.avar_all.create_ctrl( self, ctrl_tm=ctrl_tm, follow_mesh=False, parent_pos=parent_pos, parent_rot=parent_rot, **kwargs ) def _create_avar_macro_l_ctrls(self, **kwargs): self.avar_l.create_ctrl(self, **kwargs) def _create_avar_macro_r_ctrls(self, **kwargs): self.avar_r.create_ctrl(self, **kwargs) def _create_avar_macro_upp_ctrls(self, **kwargs): self.avar_upp.create_ctrl(self, **kwargs) def create_avar_macro_low_ctrls(self, **kwargs): self.avar_low.create_ctrl(self, **kwargs) def _create_avars_ctrls(self, parent_rot=None, parent_scl=None, **kwargs): parent_rot = self.get_head_jnt() parent_scl = None # Since micro avars ctrls can be constraint to macro avars ctrls, we create the macro first. if self.create_macro_all: self._create_avar_macro_all_ctrls( parent_rot=parent_rot, parent_scl=parent_scl, **kwargs ) self._connect_avar_macro_all() # parent_rot = self.avar_all.model_ctrl._stack.get_stack_end() parent_rot = self.avar_all._grp_output parent_scl = self.avar_all.ctrl unconnected_micro_avars = set(avar for avar in self.avars if self._need_to_connect_macro_avar(avar)) if self.create_macro_horizontal: if self.avar_l: self._create_avar_macro_l_ctrls( parent_rot=parent_rot, parent_scl=parent_scl, **kwargs ) child_avar_l = set(self.get_avars_micro_l()) & unconnected_micro_avars if child_avar_l: self._connect_avar_macro_l(self.avar_l, child_avar_l) if self.avar_r: self._create_avar_macro_r_ctrls( parent_rot=parent_rot, parent_scl=parent_scl, **kwargs ) child_avar_r = set(self.get_avars_micro_r()) & unconnected_micro_avars self._connect_avar_macro_r(self.avar_r, child_avar_r) if self.create_macro_vertical: if self.avar_upp: self._create_avar_macro_upp_ctrls( parent_rot=parent_rot, parent_scl=parent_scl, **kwargs ) child_avar_upp = set(self.get_avars_micro_upp()) & unconnected_micro_avars self._connect_avar_macro_upp(self.avar_upp, child_avar_upp) if self.avar_low: self.create_avar_macro_low_ctrls( parent_rot=parent_rot, parent_scl=parent_scl, **kwargs ) child_avar_low = set(self.get_avars_micro_low()) & unconnected_micro_avars self._connect_avar_macro_low(self.avar_low, child_avar_low) super(AvarGrpOnSurface, self)._create_avars_ctrls(parent_rot=parent_rot, parent_scl=parent_scl, **kwargs) def unbuild(self): if self.avar_l: self.avar_l.unbuild() if self.avar_r: self.avar_r.unbuild() if self.avar_upp: self.avar_upp.unbuild() if self.avar_low: self.avar_low.unbuild() if self.avar_all: self.avar_all.unbuild() super(AvarGrpOnSurface, self).unbuild() @decorator_uiexpose() def calibrate(self): """ Ensure macro avars are correctly calibrated. This override might not be necessary if the design was better. """ super(AvarGrpOnSurface, self).calibrate() if self.avar_l: self.avar_l.calibrate() if self.avar_r: self.avar_r.calibrate() if self.avar_upp: self.avar_upp.calibrate() if self.avar_low: self.avar_low.calibrate() if self.avar_all: self.avar_all.calibrate() def get_avars_upp(self, macro=True): result = super(AvarGrpOnSurface, self).get_avars_upp() if macro and self.avar_upp: result.append(self.avar_upp) return result def get_avars_low(self, macro=True): result = super(AvarGrpOnSurface, self).get_avars_low() if macro and self.avar_low: result.append(self.avar_low) return result def _get_default_ctrl_size(self, jnts=None, max_ctrl_size=None, epsilon=0.001): if self.CREATE_MACRO_AVAR_VERTICAL: jnts_upp = [avar.jnt for avar in self.get_avars_micro_upp()] default_ctrl_size_upp = super(AvarGrpOnSurface, self)._get_default_ctrl_size(jnts=jnts_upp, max_ctrl_size=max_ctrl_size, epsilon=epsilon) jnts_low = [avar.jnt for avar in self.get_avars_micro_low()] default_ctrl_size_low = super(AvarGrpOnSurface, self)._get_default_ctrl_size(jnts=jnts_low, max_ctrl_size=max_ctrl_size, epsilon=epsilon) return max(default_ctrl_size_upp, default_ctrl_size_low) else: return super(AvarGrpOnSurface, self)._get_default_ctrl_size(jnts=None, max_ctrl_size=None, epsilon=epsilon) def register_plugin(): return AvarGrpOnSurface
40.797013
152
0.614634
be8cb842253b64fbe471b433084dd2ba57b54e61
6,256
py
Python
sdk/python/pulumi_aws/gamelift/alias.py
mdop-wh/pulumi-aws
05bb32e9d694dde1c3b76d440fd2cd0344d23376
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/gamelift/alias.py
mdop-wh/pulumi-aws
05bb32e9d694dde1c3b76d440fd2cd0344d23376
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/gamelift/alias.py
mdop-wh/pulumi-aws
05bb32e9d694dde1c3b76d440fd2cd0344d23376
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Alias'] class Alias(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, routing_strategy: Optional[pulumi.Input[pulumi.InputType['AliasRoutingStrategyArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Provides a Gamelift Alias resource. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.gamelift.Alias("example", description="Example Description", routing_strategy=aws.gamelift.AliasRoutingStrategyArgs( message="Example Message", type="TERMINAL", )) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description of the alias. :param pulumi.Input[str] name: Name of the alias. :param pulumi.Input[pulumi.InputType['AliasRoutingStrategyArgs']] routing_strategy: Specifies the fleet and/or routing type to use for the alias. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description __props__['name'] = name if routing_strategy is None: raise TypeError("Missing required property 'routing_strategy'") __props__['routing_strategy'] = routing_strategy __props__['tags'] = tags __props__['arn'] = None super(Alias, __self__).__init__( 'aws:gamelift/alias:Alias', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, routing_strategy: Optional[pulumi.Input[pulumi.InputType['AliasRoutingStrategyArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'Alias': """ Get an existing Alias resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: Alias ARN. :param pulumi.Input[str] description: Description of the alias. :param pulumi.Input[str] name: Name of the alias. :param pulumi.Input[pulumi.InputType['AliasRoutingStrategyArgs']] routing_strategy: Specifies the fleet and/or routing type to use for the alias. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["description"] = description __props__["name"] = name __props__["routing_strategy"] = routing_strategy __props__["tags"] = tags return Alias(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ Alias ARN. """ return pulumi.get(self, "arn") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the alias. """ return pulumi.get(self, "description") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the alias. """ return pulumi.get(self, "name") @property @pulumi.getter(name="routingStrategy") def routing_strategy(self) -> pulumi.Output['outputs.AliasRoutingStrategy']: """ Specifies the fleet and/or routing type to use for the alias. """ return pulumi.get(self, "routing_strategy") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of resource tags """ return pulumi.get(self, "tags") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
39.1
153
0.626119
e520df72cf1a91619b43b65d589f057a0b0a83e8
39,396
py
Python
kiali_qe/tests/test_istio_config_mtls.py
Hawkular-QE/kiali-qe-python
24e058def1efd0a509a2b599901f4179dbf37583
[ "Apache-2.0" ]
null
null
null
kiali_qe/tests/test_istio_config_mtls.py
Hawkular-QE/kiali-qe-python
24e058def1efd0a509a2b599901f4179dbf37583
[ "Apache-2.0" ]
3
2018-03-28T17:11:13.000Z
2018-03-28T17:55:08.000Z
kiali_qe/tests/test_istio_config_mtls.py
Hawkular-QE/kiali-qe-python
24e058def1efd0a509a2b599901f4179dbf37583
[ "Apache-2.0" ]
2
2018-02-13T10:56:03.000Z
2018-03-20T14:07:51.000Z
import pytest from kiali_qe.tests import ValidationsTest, ConfigValidationObject, NamespaceTLSObject from kiali_qe.utils.path import istio_objects_mtls_path from kiali_qe.components.enums import MeshWideTLSType from kiali_qe.components.error_codes import ( KIA0207, KIA0501, KIA0208, KIA0205, KIA0401, KIA0206, KIA0505, KIA0506 ) ''' Tests are divided into groups using different services and namespaces. This way the group of tests can be run in parallel. ''' BOOKINFO = 'bookinfo' ISTIO_SYSTEM = 'istio-system' SCENARIO_1 = "scenario1.yaml" SCENARIO_2 = "scenario2.yaml" SCENARIO_3 = "scenario3.yaml" SCENARIO_4 = "scenario4.yaml" SCENARIO_5 = "scenario5.yaml" SCENARIO_6 = "scenario6.yaml" SCENARIO_7 = "scenario7.yaml" SCENARIO_8 = "scenario8.yaml" SCENARIO_9 = "scenario9.yaml" SCENARIO_10 = "scenario10.yaml" SCENARIO_11 = "scenario11.yaml" SCENARIO_12 = "scenario12.yaml" SCENARIO_13 = "scenario13.yaml" SCENARIO_14 = "scenario14.yaml" SCENARIO_15 = "scenario15.yaml" SCENARIO_16 = "scenario16.yaml" SCENARIO_17 = "scenario17.yaml" SCENARIO_18 = "scenario18.yaml" SCENARIO_19 = "scenario19.yaml" SCENARIO_20 = "scenario20.yaml" SCENARIO_21 = "scenario21.yaml" SCENARIO_22 = "scenario22.yaml" SCENARIO_23 = "scenario23.yaml" SCENARIO_24 = "scenario24.yaml" SCENARIO_25 = "scenario25.yaml" SCENARIO_26 = "scenario26.yaml" SCENARIO_27 = "scenario27.yaml" SCENARIO_28 = "scenario28.yaml" SCENARIO_29 = "scenario29.yaml" @pytest.mark.p_group_last def test_scenario1(kiali_client, openshift_client, browser): """ PeerAuthentication is in permissive mode, it allows mTLS connections """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_1, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED or MeshWideTLSType.PARTLY_ENABLED) ]) @pytest.mark.p_group_last def test_scenario2(kiali_client, openshift_client, browser): """ PeerAuthentication explicitly asks for mTLS connections but DestinationRule disables workload mtls connections """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_2, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[KIA0207]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[KIA0501]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED or MeshWideTLSType.PARTLY_ENABLED) ]) @pytest.mark.p_group_last def test_scenario3(kiali_client, openshift_client, browser): """ PeerAuthentication explicitly ask for mTLS connections """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_3, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[KIA0208]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace='istio-system', error_messages=[]), ConfigValidationObject( 'DestinationRule', 'default', namespace='istio-system', error_messages=[]) ], tls_type=MeshWideTLSType.ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'default', MeshWideTLSType.ENABLED) ]) @pytest.mark.p_group_last def test_scenario4(kiali_client, openshift_client, browser): """ PeerAuthentication allows non-mTLS connections in the service mesh """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_4, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace='istio-system', error_messages=[]), ConfigValidationObject( 'DestinationRule', 'default', namespace='istio-system', error_messages=[]) ], tls_type=MeshWideTLSType.PARTLY_ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario5(kiali_client, openshift_client, browser): """ There aren't any PeerAuthentication defining mTLS settings """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_5, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario6(kiali_client, openshift_client, browser): """ Destination Rule valid: it doesn't define any mTLS setting """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_6, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'reviews', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[KIA0501]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', (MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.ENABLED)), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario7(kiali_client, openshift_client, browser): """ classic ns-wide mTLS config """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_7, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario8(kiali_client, openshift_client, browser): """ DR mesh-wide enables clients start mTLS connections """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_8, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[KIA0205]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=(MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.ENABLED)) @pytest.mark.p_group_last def test_scenario9(kiali_client, openshift_client, browser): """ there isn't any Destination Rule enabling services start mTLS connection """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_9, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[KIA0501]) ]) @pytest.mark.p_group_last def test_scenario10(kiali_client, openshift_client, browser): """ Permissive mode allow mTLS connections to services """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_10, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ]) @pytest.mark.p_group_last def test_scenario11(kiali_client, openshift_client, browser): """ STRICT mode allow only mTLS connections to services """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_11, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ]) @pytest.mark.p_group_last def test_scenario12(kiali_client, openshift_client, browser): """ PERMISSIVE mode allow mTLS connections to services to the whole mesh """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_12, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace='istio-system', error_messages=[]) ]) @pytest.mark.p_group_last def test_scenario13(kiali_client, openshift_client, browser): """ STRICT mode allow only mTLS connections to services to the whole service mesh """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_13, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace='istio-system', error_messages=[KIA0401]) ], tls_type=(MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.ENABLED)) @pytest.mark.p_group_last def test_scenario14(kiali_client, openshift_client, browser): """ there isn't any policy enabling mTLS on service clients """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_14, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[KIA0206]) ]) @pytest.mark.p_group_last def test_scenario15(kiali_client, openshift_client, browser): """ PeerAuthentication in STRICT mode + DestinationRule enabling mTLS mesh-wide (classic scenario) PeerAuthentication ns-level in PERMISSIVE mode + DR disabling mTLS ns-wide. """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_15, namespace=None, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'default', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ]) @pytest.mark.p_group_last def test_scenario16(kiali_client, openshift_client, browser): """ PeerAuthentication OK """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_16, namespace=None, config_validation_objects=[ ], tls_type=MeshWideTLSType.ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'default', MeshWideTLSType.ENABLED) ]) @pytest.mark.p_group_last def test_scenario17(kiali_client, openshift_client, browser): """ Destination Rule valid: it doesn't define any mTLS setting PeerAuth: STRICT """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_17, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'reviews', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[KIA0501]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', (MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.ENABLED)), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario18(kiali_client, openshift_client, browser): """ Destination Rule valid: ISTIO_MUTUAL PeerAuth: PERMISSIVE """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_18, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario19(kiali_client, openshift_client, browser): """ Destination Rule valid: Empty PeerAuth: DISABLE """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_19, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'reviews', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', (MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.DISABLED)), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario20(kiali_client, openshift_client, browser): """ Destination Rule valid: ISTIO_MUTUAL PeerAuth: DISABLE """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects( SCENARIO_20, namespace=ISTIO_SYSTEM, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'default', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=ISTIO_SYSTEM, error_messages=[]) ], tls_type=(MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.DISABLED), namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario21(kiali_client, openshift_client, browser): """ PeerAuthentication is DISABLE DestinationRule is DISABLE """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_21, namespace=BOOKINFO, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario22(kiali_client, openshift_client, browser): """ PeerAuthentication is DISABLE in namespace level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_22, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'bookinfo-enable-mtls', namespace=BOOKINFO, error_messages=[KIA0206]), ConfigValidationObject( 'PeerAuthentication', 'disable-mtls-bookinfo', namespace=BOOKINFO, error_messages=[KIA0505]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.PARTLY_ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario23(kiali_client, openshift_client, browser): """ PeerAuthentication is DISABLE in mesh level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_23, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mesh-mtls', namespace=BOOKINFO, error_messages=[KIA0205]), ConfigValidationObject( 'PeerAuthentication', 'disable-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[KIA0506]) ], tls_type=MeshWideTLSType.PARTLY_ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario24(kiali_client, openshift_client, browser): """ DestinationRule: DISABLED at mesh-level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_24, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'disable-mesh-mtls', namespace=BOOKINFO, error_messages=[KIA0208]), ConfigValidationObject( 'PeerAuthentication', 'disable-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[KIA0401]) ], tls_type=MeshWideTLSType.PARTLY_ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario25(kiali_client, openshift_client, browser): """ PeerAuthentication is STRICT in mesh level but DISABLED in port level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_25, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mesh-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'strict-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'grafana-ports-mtls-disabled', namespace=ISTIO_SYSTEM, error_messages=[]) ], tls_type=MeshWideTLSType.ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.ENABLED), NamespaceTLSObject( 'default', MeshWideTLSType.ENABLED) ]) @pytest.mark.p_group_last def test_scenario26(kiali_client, openshift_client, browser): """ PeerAuthentication is PERMISSIVE in mesh level but STRICT in port level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_26, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mesh-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'permissive-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'grafana-ports-mtls-strict', namespace=ISTIO_SYSTEM, error_messages=[]) ], tls_type=MeshWideTLSType.PARTLY_ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario27(kiali_client, openshift_client, browser): """ PeerAuthentication is PERMISSIVE in mesh level, Grafana UNSET but DISABLE in port level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_27, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mesh-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'permissive-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'grafana-unset-ports-mtls-disabled', namespace=ISTIO_SYSTEM, error_messages=[]) ], tls_type=MeshWideTLSType.PARTLY_ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'default', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario28(kiali_client, openshift_client, browser): """ PeerAuthentication is set to STRICT at the workload level, but set to PERMISSIVE at the mesh and namespace level KIA0105 should not be displayed """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_28, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'details-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'DestinationRule', 'ratings-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'default-policy', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'details-policy', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'ratings-policy', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'AuthorizationPolicy', 'ratings', namespace=BOOKINFO, error_messages=[]) ], tls_type=MeshWideTLSType.DISABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', (MeshWideTLSType.PARTLY_ENABLED if not openshift_client.is_auto_mtls() else MeshWideTLSType.DISABLED)), NamespaceTLSObject( 'istio-system', MeshWideTLSType.DISABLED) ]) @pytest.mark.p_group_last def test_scenario29(kiali_client, openshift_client, browser): """ Enable mtls at mesh-level (PeerAuthn + DR) Disable mtls at ns-level (PA + DR) No validations for DR/PA at NS-level """ tests = ValidationsTest( kiali_client=kiali_client, openshift_client=openshift_client, browser=browser, objects_path=istio_objects_mtls_path.strpath) tests.test_istio_objects(SCENARIO_29, config_validation_objects=[ ConfigValidationObject( 'DestinationRule', 'enable-mesh-mtls', namespace=ISTIO_SYSTEM, error_messages=[]), ConfigValidationObject( 'DestinationRule', 'bookinfo-disable-mtls', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'disable-mtls-bookinfo', namespace=BOOKINFO, error_messages=[]), ConfigValidationObject( 'PeerAuthentication', 'mtls-mesh', namespace=ISTIO_SYSTEM, error_messages=[]) ], tls_type=MeshWideTLSType.ENABLED, namespace_tls_objects=[ NamespaceTLSObject( 'bookinfo', MeshWideTLSType.DISABLED), NamespaceTLSObject( 'istio-system', MeshWideTLSType.ENABLED) ])
40.909657
102
0.533201
abc0fa290cb953e3237f04d5240ffe2a79e49b93
3,883
py
Python
Lib/fontTools/pens/reverseContourPen.py
anntzer/fonttools
726cd67549956b985bbbe83e26fb0af9da59ddf7
[ "MIT", "BSD-3-Clause" ]
2
2021-04-07T16:47:04.000Z
2022-01-15T04:01:01.000Z
Lib/fontTools/pens/reverseContourPen.py
anntzer/fonttools
726cd67549956b985bbbe83e26fb0af9da59ddf7
[ "MIT", "BSD-3-Clause" ]
1
2020-05-22T09:01:31.000Z
2020-05-22T09:47:18.000Z
Lib/fontTools/pens/reverseContourPen.py
anntzer/fonttools
726cd67549956b985bbbe83e26fb0af9da59ddf7
[ "MIT", "BSD-3-Clause" ]
null
null
null
from fontTools.misc.py23 import * from fontTools.misc.arrayTools import pairwise from fontTools.pens.filterPen import ContourFilterPen __all__ = ["reversedContour", "ReverseContourPen"] class ReverseContourPen(ContourFilterPen): """Filter pen that passes outline data to another pen, but reversing the winding direction of all contours. Components are simply passed through unchanged. Closed contours are reversed in such a way that the first point remains the first point. """ def filterContour(self, contour): return reversedContour(contour) def reversedContour(contour): """ Generator that takes a list of pen's (operator, operands) tuples, and yields them with the winding direction reversed. """ if not contour: return # nothing to do, stop iteration # valid contours must have at least a starting and ending command, # can't have one without the other assert len(contour) > 1, "invalid contour" # the type of the last command determines if the contour is closed contourType = contour.pop()[0] assert contourType in ("endPath", "closePath") closed = contourType == "closePath" firstType, firstPts = contour.pop(0) assert firstType in ("moveTo", "qCurveTo"), ( "invalid initial segment type: %r" % firstType) firstOnCurve = firstPts[-1] if firstType == "qCurveTo": # special case for TrueType paths contaning only off-curve points assert firstOnCurve is None, ( "off-curve only paths must end with 'None'") assert not contour, ( "only one qCurveTo allowed per off-curve path") firstPts = ((firstPts[0],) + tuple(reversed(firstPts[1:-1])) + (None,)) if not contour: # contour contains only one segment, nothing to reverse if firstType == "moveTo": closed = False # single-point paths can't be closed else: closed = True # off-curve paths are closed by definition yield firstType, firstPts else: lastType, lastPts = contour[-1] lastOnCurve = lastPts[-1] if closed: # for closed paths, we keep the starting point yield firstType, firstPts if firstOnCurve != lastOnCurve: # emit an implied line between the last and first points yield "lineTo", (lastOnCurve,) contour[-1] = (lastType, tuple(lastPts[:-1]) + (firstOnCurve,)) if len(contour) > 1: secondType, secondPts = contour[0] else: # contour has only two points, the second and last are the same secondType, secondPts = lastType, lastPts # if a lineTo follows the initial moveTo, after reversing it # will be implied by the closePath, so we don't emit one; # unless the lineTo and moveTo overlap, in which case we keep the # duplicate points if secondType == "lineTo" and firstPts != secondPts: del contour[0] if contour: contour[-1] = (lastType, tuple(lastPts[:-1]) + secondPts) else: # for open paths, the last point will become the first yield firstType, (lastOnCurve,) contour[-1] = (lastType, tuple(lastPts[:-1]) + (firstOnCurve,)) # we iterate over all segment pairs in reverse order, and yield # each one with the off-curve points reversed (if any), and # with the on-curve point of the following segment for (curType, curPts), (_, nextPts) in pairwise( contour, reverse=True): yield curType, tuple(reversed(curPts[:-1])) + (nextPts[-1],) yield "closePath" if closed else "endPath", ()
40.030928
79
0.611383
ab4f9c06d53a1b23da73796aa6f140cd7e9cbf4f
688
py
Python
netbox/extras/tests/test_registry.py
sourcery-ai-bot/netbox
454971874004356654c7c6d07ce52b4498468b2d
[ "Apache-2.0" ]
null
null
null
netbox/extras/tests/test_registry.py
sourcery-ai-bot/netbox
454971874004356654c7c6d07ce52b4498468b2d
[ "Apache-2.0" ]
null
null
null
netbox/extras/tests/test_registry.py
sourcery-ai-bot/netbox
454971874004356654c7c6d07ce52b4498468b2d
[ "Apache-2.0" ]
null
null
null
from django.test import TestCase from extras.registry import Registry class RegistryTest(TestCase): def test_add_store(self): reg = Registry() reg['foo'] = 123 self.assertEqual(reg['foo'], 123) def test_manipulate_store(self): reg = Registry() reg['foo'] = [1, 2, 3] self.assertListEqual(reg['foo'], [1, 2, 3]) def test_overwrite_store(self): reg = Registry() reg['foo'] = 123 with self.assertRaises(KeyError): reg['foo'] = 456 def test_delete_store(self): reg = Registry() reg['foo'] = 123 with self.assertRaises(TypeError): del(reg['foo'])
21.5
51
0.569767
16b7938bf4e917bb4b59f3bf7d4bc0201f7f1f56
617
py
Python
tools/dockerize/webportal/usr/lib/python2.7/site-packages/oslo/rootwrap/wrapper.py
foruy/openflow-multiopenstack
74140b041ac25ed83898ff3998e8dcbed35572bb
[ "Apache-2.0" ]
1
2019-09-11T11:56:19.000Z
2019-09-11T11:56:19.000Z
tools/dockerize/webportal/usr/lib/python2.7/site-packages/oslo/rootwrap/wrapper.py
foruy/openflow-multiopenstack
74140b041ac25ed83898ff3998e8dcbed35572bb
[ "Apache-2.0" ]
null
null
null
tools/dockerize/webportal/usr/lib/python2.7/site-packages/oslo/rootwrap/wrapper.py
foruy/openflow-multiopenstack
74140b041ac25ed83898ff3998e8dcbed35572bb
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_rootwrap.wrapper import * # noqa
44.071429
78
0.729335
a0ab285e30f2da90ab3b8491915db1e00e209086
4,466
py
Python
source/python/neuropod/backends/caffe/packager.py
judgeeeeee/neuropod
6a614e2f09abdd9ccb73c46ecce16994c66c9e32
[ "Apache-2.0" ]
null
null
null
source/python/neuropod/backends/caffe/packager.py
judgeeeeee/neuropod
6a614e2f09abdd9ccb73c46ecce16994c66c9e32
[ "Apache-2.0" ]
8
2020-09-07T07:44:59.000Z
2021-01-04T08:22:19.000Z
source/python/neuropod/backends/caffe/packager.py
judgeeeeee/neuropod
6a614e2f09abdd9ccb73c46ecce16994c66c9e32
[ "Apache-2.0" ]
1
2020-09-18T01:42:25.000Z
2020-09-18T01:42:25.000Z
# Copyright (c) 2020 UATC, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import shutil import caffe from neuropod.utils.packaging_utils import packager @packager(platform="caffe") def create_caffe_neuropod(neuropod_path, input_spec, output_spec, node_name_mapping, prototxt, caffemodel=None, code_path_spec=None, **kwargs): """ Packages a caffe model as a neuropod package. {common_doc_pre} :param node_name_mapping: Mapping from a neuropod input/output name to a blob in caffe. !!! note "" ***Example***: ``` { "x": "input0", "y": "input1", "out": "output", } ``` :param code_path_spec: The folder paths of all the code that will be packaged. Note that *.pyc files are ignored. !!! note "" This is specified as follows: ``` [{ "python_root": "/some/path/to/a/python/root", "dirs_to_package": ["relative/path/to/package"] }, ...] ``` :param prototxt deploy.prototxt describes the network architecture for deployment (and not training) time :param caffemodel serialized models as binary protocol buffer (binaryproto) files {common_doc_post} """ # Make sure the inputs are valid # Create a folder to store the model neuropod_data_path = os.path.join(neuropod_path, "0", "data") os.makedirs(neuropod_data_path) # Copy the specified source code while preserving package paths if code_path_spec is not None: neuropod_code_path = os.path.join(neuropod_path, "0", "code") for copy_spec in code_path_spec: python_root = copy_spec["python_root"] for dir_to_package in copy_spec["dirs_to_package"]: if len(dir_to_package) == 0: continue shutil.copytree( os.path.join(python_root, dir_to_package), os.path.join(neuropod_code_path, dir_to_package), ) # Add the model to the neuropod prototxt_path = os.path.join(neuropod_data_path, "model.prototxt") caffemodel_path = os.path.join(neuropod_data_path, "model.caffemodel") shutil.copyfile(prototxt, prototxt_path) if caffemodel is not None: shutil.copyfile(caffemodel, caffemodel_path) # Make sure we have mappings for everything in the spec expected_keys = set() for spec in [input_spec, output_spec]: for tensor in spec: expected_keys.add(tensor["name"]) actual_keys = set(node_name_mapping.keys()) missing_keys = expected_keys - actual_keys if len(missing_keys) > 0: raise ValueError( "Expected an item in `node_name_mapping` for every tensor in input_spec and output_spec. Missing: `{}`" .format(missing_keys)) # We also need to save the node name mapping so we know how to run the model # This is tensorflow specific config so it's not saved in the overall neuropod config with open(os.path.join(neuropod_path, "0", "config.json"), "w") as config_file: json.dump( { "node_name_mapping": node_name_mapping, }, config_file, )
38.17094
121
0.549037
0b57db9baffacd576e110e0b8170e8f56293340f
2,014
py
Python
accounts/forms.py
Gareth-1987/mvp_landing_page
a2bfce0928d15f15f5cc3782848bda54d44903da
[ "MIT" ]
null
null
null
accounts/forms.py
Gareth-1987/mvp_landing_page
a2bfce0928d15f15f5cc3782848bda54d44903da
[ "MIT" ]
null
null
null
accounts/forms.py
Gareth-1987/mvp_landing_page
a2bfce0928d15f15f5cc3782848bda54d44903da
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth import get_user_model User = get_user_model() class LoginForm(forms.Form): username = forms.CharField(label='', widget=forms.TextInput( attrs={'placeholder': 'Your username'})) password = forms.CharField(label='', widget=forms.PasswordInput( attrs={'placeholder': 'Your password'})) # CONIDER DOING A CHECK USING # # def clean_username(self): # username = self.cleaned_data.get("username") # # check username # return username class RegisterForm(forms.ModelForm): username = forms.CharField(widget=forms.TextInput( attrs={'placeholder': 'Your username'})) email = forms.EmailField(widget=forms.EmailInput( attrs={'placeholder': 'Your email'})) password = forms.CharField(widget=forms.PasswordInput( attrs={'placeholder': 'Your password'})) password2 = forms.CharField(label='Confirm Password', widget=forms.PasswordInput( attrs={'placeholder': 'Your password'})) class Meta: model = User fields = [ 'username', 'email' ] def clean(self): data = self.cleaned_data password_1 = data.get("password") password_2 = data.get("password2") if password_1 != password_2: # assign to non_field_error #raise forms.ValidationError("Passwords must match.") self.add_error("password", "Passwords must match.") return data def clean_username(self): username = self.cleaned_data.get("username") qs = User.objects.filter(username__iexact=username) if qs.exists(): raise forms.ValidationError(f"{username} is taken. Try again") return username def clean_email(self): email = self.cleaned_data.get("email") qs = User.objects.filter(email__iexact=email) if qs.exists(): raise forms.ValidationError(f"{email} is taken. Try again") return email
33.566667
85
0.635055
ce0f8b7b9e65687806086113f865b9a50b1a3d65
750
py
Python
foodplanapp/migrations/0020_auto_20220321_1354.py
949027/food-plan
382791059469058614bfd028d674ba1f69b25e2b
[ "MIT" ]
null
null
null
foodplanapp/migrations/0020_auto_20220321_1354.py
949027/food-plan
382791059469058614bfd028d674ba1f69b25e2b
[ "MIT" ]
null
null
null
foodplanapp/migrations/0020_auto_20220321_1354.py
949027/food-plan
382791059469058614bfd028d674ba1f69b25e2b
[ "MIT" ]
1
2022-03-22T02:04:59.000Z
2022-03-22T02:04:59.000Z
# Generated by Django 4.0.3 on 2022-03-21 10:54 import random from django.db import migrations class Migration(migrations.Migration): def set_menutype_for_dishes(apps, schema_editor): menu_types = [ "classic", "low_calorie", "vegan", "keto", ] Dishes = apps.get_model("foodplanapp", "Dish") dishes_set = Dishes.objects.all() for dish in dishes_set.iterator(): dish.menu_type = random.choice(menu_types) dish.save() dependencies = [ ( "foodplanapp", "0019_remove_order_allergy1_remove_order_allergy2_and_more", ), ] operations = [migrations.RunPython(set_menutype_for_dishes)]
25
72
0.598667
dd98d9db322a1fed2abe71697a6f73e3820f0d22
7,306
py
Python
scripts/sequence_clusters/expansion/compare_clusters.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
10
2015-04-28T14:15:04.000Z
2021-03-15T00:07:38.000Z
scripts/sequence_clusters/expansion/compare_clusters.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
null
null
null
scripts/sequence_clusters/expansion/compare_clusters.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
6
2017-03-16T22:38:41.000Z
2021-08-11T00:22:52.000Z
#!/usr/bin/env python __author__ = 'Sergei F. Kliver' import argparse from collections import OrderedDict from RouToolPa.GeneralRoutines import FileRoutines def read_cluster_file(filename, with_counts=False): cluster_dict = OrderedDict() noname_family_index = 1 with open(filename, "r") as in_fd: for line in in_fd: tmp = line.strip().split("\t") if with_counts: cluster_dict[tmp[0]] = (int(tmp[1]), set(tmp[2].split(","))) else: try: tmp[1] = set(tmp[1].split(",")) except IndexError: tmp = ["Noname_fam_%i" % noname_family_index, set(tmp[0].split(","))] noname_family_index += 1 cluster_dict[tmp[0]] = (len(tmp[1]), tmp[1]) return cluster_dict parser = argparse.ArgumentParser() parser.add_argument("-r", "--reference_file", action="store", dest="ref_file", required=True, help="Input file with reference clusters.") parser.add_argument("-c", "--file_to_check", action="store", dest="file_to_check", required=True, help="File with clusters to compare with reference") parser.add_argument("-u", "--ref_file_contains_gene_counts", action="store_true", dest="ref_with_counts", default=False, help="Reference file contains gene counts") parser.add_argument("-n", "--check_file_contains_gene_counts", action="store_true", dest="check_with_counts", default=False, help="File to check contains gene counts") parser.add_argument("-o", "--out_dir", action="store", dest="out_dir", default="compare_dir", help="Output directory") args = parser.parse_args() FileRoutines.safe_mkdir(args.out_dir) ref_clusters_dict = read_cluster_file(args.ref_file, with_counts=args.ref_with_counts) check_clusters_dict = read_cluster_file(args.file_to_check, with_counts=args.check_with_counts) totally_in_ref = len(ref_clusters_dict) totally = len(check_clusters_dict) synonym_file = "synonym.t" contained_fully_in_file = "contained_fully_in.t" contained_in_file = "contained_in.t" include_file = "include.t" all_file = "all.t" synonym_dict = OrderedDict() contained_fully_in_dict = OrderedDict() contained_in_dict = OrderedDict() include_dict = OrderedDict() index = 1 for ref_cluster_id in ref_clusters_dict: for check_cluster_id in check_clusters_dict.keys(): common_clusters = ref_clusters_dict[ref_cluster_id][1] & check_clusters_dict[check_cluster_id][1] common_clusters_len = len(common_clusters) if not common_clusters: continue if (common_clusters_len == ref_clusters_dict[ref_cluster_id][0]) and (common_clusters_len == check_clusters_dict[check_cluster_id][0]): synonym_dict[ref_cluster_id] = [check_cluster_id, ref_clusters_dict[ref_cluster_id][0], check_clusters_dict[check_cluster_id][0]] check_clusters_dict.pop(check_cluster_id, None) # remove check_cluster_id from corresponding dict break if len(common_clusters) == ref_clusters_dict[ref_cluster_id][0]: # reference family is fully contained in checked cluster contained_fully_in_dict[ref_cluster_id] = [check_cluster_id, ref_clusters_dict[ref_cluster_id][0], check_clusters_dict[check_cluster_id][0]] break if len(common_clusters) == check_clusters_dict[check_cluster_id][0]: # reference family includes checked cluster if ref_cluster_id not in include_dict: include_dict[ref_cluster_id] = [check_cluster_id] else: include_dict[ref_cluster_id].append(check_cluster_id) continue # reference family is contained in checked clusters if ref_cluster_id not in contained_in_dict: contained_in_dict[ref_cluster_id] = [check_cluster_id] else: contained_in_dict[ref_cluster_id].append(check_cluster_id) else: if ref_cluster_id in include_dict: # checks in part of genes from reference cluster were not included in analysis if len(include_dict[ref_cluster_id]) == 1 and (ref_cluster_id not in contained_in_dict): #print ref_cluster_id synonym_dict[ref_cluster_id] = include_dict.pop(ref_cluster_id) #print synonym_dict[ref_cluster_id] number_of_common_families = len(synonym_dict) contained_fully_in_number = len(contained_fully_in_dict) contained_in_number = len(contained_in_dict) include_number = len(include_dict) with open("%s/%s" % (args.out_dir, synonym_file), "w") as syn_fd: for fam_id in synonym_dict: #syn_fd.write("%s\t%s\t%i\t%i\n" % (fam_id, synonym_dict[fam_id][0], synonym_dict[fam_id][1], synonym_dict[fam_id][2])) syn_fd.write("%s\t%s\n" % (fam_id, synonym_dict[fam_id][0])) with open("%s/%s" % (args.out_dir, all_file), "w") as syn_fd: for fam_id in ref_clusters_dict: #syn_fd.write("%s\t%s\t%i\t%i\n" % (fam_id, synonym_dict[fam_id][0], synonym_dict[fam_id][1], synonym_dict[fam_id][2])) #value = -1 if fam_id in synonym_dict: value = synonym_dict[fam_id][0] elif fam_id in contained_fully_in_dict: # reference families fully contained in check families value = "C_%s" % contained_fully_in_dict[fam_id][0] elif fam_id in include_dict: # reference families that includes whole several check families and in some cases parts of check families value = "I_%s" % ",".join(include_dict[fam_id]) if fam_id in contained_in_dict: value += ";M_%s" % ",".join(contained_in_dict[fam_id]) elif fam_id in contained_in_dict: value = "M_%s" % ",".join(contained_in_dict[fam_id]) #if value == -1: # value = "NF" syn_fd.write("%s\t%s\n" % (fam_id, value)) with open("%s/%s" % (args.out_dir, contained_fully_in_file), "w") as syn_fd: for fam_id in contained_fully_in_dict: #syn_fd.write("%s\t%s\t%i\t%i\n" % (fam_id, contained_fully_in_dict[fam_id][0], contained_fully_in_dict[fam_id][1], contained_fully_in_dict[fam_id][2])) syn_fd.write("%s\t%s\n" % (fam_id, contained_fully_in_dict[fam_id][0])) with open("%s/%s" % (args.out_dir, contained_in_file), "w") as syn_fd: for fam_id in contained_in_dict: syn_fd.write("%s\t%s\n" % (fam_id, ",".join(contained_in_dict[fam_id]))) with open("%s/%s" % (args.out_dir, include_file), "w") as syn_fd: for fam_id in include_dict: syn_fd.write("%s\t%s\n" % (fam_id, ",".join(include_dict[fam_id]))) with open("%s/%s" % (args.out_dir, "stat.t"), "w") as syn_fd: syn_fd.write("Total_ref\t%i\n" % totally_in_ref) syn_fd.write("Total\t%i\n" % totally) syn_fd.write("Synonyms\t%i\nContains_fully_in\t%i\nContains_in\t%i\nIncludes_fully\t%i\n" % (number_of_common_families, contained_fully_in_number, contained_in_number, include_number))
50.041096
160
0.648782
b69e542b01316f996bce327cc511fa1bd7837beb
2,151
py
Python
app/entity/TrafficLight.py
ia2067/TRAPP
a4a7a6b04fda3c781c10d023e1fc7408ea522194
[ "MIT" ]
null
null
null
app/entity/TrafficLight.py
ia2067/TRAPP
a4a7a6b04fda3c781c10d023e1fc7408ea522194
[ "MIT" ]
null
null
null
app/entity/TrafficLight.py
ia2067/TRAPP
a4a7a6b04fda3c781c10d023e1fc7408ea522194
[ "MIT" ]
null
null
null
import traci from LogicWrapper import LogicWrapper class TrafficLight: """ a class to represent an individual traffic light """ def __init__(self, id, incLanes, intLanes, shape, x, y): # the string id self.id = id self.incLanes = incLanes self.intLanes = intLanes self.shape = shape self.x = x self.y = y def getControlledLanes(self): """ wrapper method to get the lanes controlled by this traffic light""" try: return traci.trafficlight.getControlledLanes(self.id) except: return None def getControlledLinks(self): """ wrapper method to get the links controlled by this traffic light""" try: return traci.trafficlight.getControlledLinks(self.id) except Exception as ex: print(ex) return None def getProgram(self): """ DO NOT USE THIS ONE""" """ wrapper method to get the ID of the program currently running""" try: pID = traci.trafficlight.getProgram(self.id) currPhaseIndex = traci.trafficlight.getPhase(self.id) prog = traci.trafficlight.Logic(pID, None, currPhaseIndex) return prog except: return None def getAllProgramLogic(self): """ wrapper method to get all the programs running on this TL""" try: progs = traci.trafficlight.getAllProgramLogics(self.id) return progs except Exception as ex: print(ex) return None def setProgramLogic(self, logic): """ wrapper method to set the program running on the TL""" try: traci.trafficlight.setProgramLogic(self.id, logic.logic) except Exception as ex: print(ex) return False return True def getProgramLogic(self): """ get just the first 'program' of the TL""" progs = self.getAllProgramLogic() if progs is not None and len(progs) > 0: return LogicWrapper(progs[0], self.getControlledLanes()) else: return None
31.632353
79
0.595072
09e16d656b53c224f6c6292b4f86b1cc9a59314b
632
py
Python
tests/settings.py
dropseedlabs/django-test-recorder
1bde4053a2a35997dd2c86e6c495d0bea35dc2bb
[ "MIT" ]
null
null
null
tests/settings.py
dropseedlabs/django-test-recorder
1bde4053a2a35997dd2c86e6c495d0bea35dc2bb
[ "MIT" ]
null
null
null
tests/settings.py
dropseedlabs/django-test-recorder
1bde4053a2a35997dd2c86e6c495d0bea35dc2bb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 from __future__ import unicode_literals, absolute_import import django DEBUG = True USE_TZ = True # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "77777777777777777777777777777777777777777777777777" DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } } ROOT_URLCONF = "tests.urls" INSTALLED_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sites", # "test_recorder", ] SITE_ID = 1 if django.VERSION >= (1, 10): MIDDLEWARE = () else: MIDDLEWARE_CLASSES = ()
18.588235
66
0.674051
63a0052f65c1422cef6ef1c3816392c4f05a01d0
12,061
py
Python
herald/base.py
jproffitt/django-herald
3a5aaa395c64c71ffff524b29928b835de66debe
[ "MIT" ]
null
null
null
herald/base.py
jproffitt/django-herald
3a5aaa395c64c71ffff524b29928b835de66debe
[ "MIT" ]
null
null
null
herald/base.py
jproffitt/django-herald
3a5aaa395c64c71ffff524b29928b835de66debe
[ "MIT" ]
null
null
null
""" Base notification classes """ import json from email.mime.base import MIMEBase from mimetypes import guess_type import jsonpickle import re import six from django.conf import settings from django.contrib.sites.models import Site from django.core.mail import EmailMultiAlternatives from django.template import TemplateDoesNotExist from django.template.loader import render_to_string from django.utils import timezone from django.core.files import File from .models import SentNotification class NotificationBase(object): """ base class for sending notifications """ render_types = [] template_name = None context = None user = None can_disable = True verbose_name = None def get_context_data(self): """ :return: the context data for rendering the email or text template """ context = self.context or {} site = Site.objects.get_current() context['base_url'] = 'http://' + site.domain return context @classmethod def get_verbose_name(cls): if cls.verbose_name: return cls.verbose_name else: return re.sub( r'((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))', r' \1', cls.__name__ ) @classmethod def get_class_path(cls): return '{}.{}'.format(cls.__module__, cls.__name__) def send(self, raise_exception=False, user=None): """ Handles the preparing the notification for sending. Called to trigger the send from code. If raise_exception is True, it will raise any exceptions rather than simply logging them. returns boolean whether or not the notification was sent successfully """ context = self.get_context_data() recipients = self.get_recipients() if 'text' in self.render_types: text_content = self.render('text', context) else: text_content = None if 'html' in self.render_types: html_content = self.render('html', context) else: html_content = None sent_from = self.get_sent_from() subject = self.get_subject() extra_data = self.get_extra_data() sent_notification = SentNotification( recipients=','.join(recipients), text_content=text_content, html_content=html_content, sent_from=sent_from, subject=subject, extra_data=json.dumps(extra_data) if extra_data else None, notification_class=self.get_class_path(), attachments=self._get_encoded_attachments(), user=user, ) return self.resend(sent_notification, raise_exception=raise_exception) def _get_encoded_attachments(self): attachments = self.get_attachments() new_attachments = [] for attachment in attachments or []: if isinstance(attachment, File): # cannot do with attachment.open() since django 1.11 doesn't support that attachment.open() new_attachments.append((attachment.name, attachment.read(), guess_type(attachment.name)[0])) attachment.close() else: new_attachments.append(attachment) return jsonpickle.dumps(new_attachments) @staticmethod def _delete_expired_notifications(): """ This deletes any notifications that have passed the retention time setting """ retention_time = getattr(settings, 'HERALD_NOTIFICATION_RETENTION_TIME', None) if not retention_time: return cutoff_date = timezone.now() - retention_time notifications = SentNotification.objects.filter(date_sent__lt=cutoff_date) count = notifications.delete() print('Deleted {} expired notifications.'.format(count)) def get_recipients(self): """ Returns a list of recipients. However the subclass defines that. (emails, phone numbers, etc) """ raise NotImplementedError('Must implement get_recipients.') def get_extra_data(self): """ Returns a dictionary of extra data to be stored, and used for sending. MUST BE JSON SERIALIZABLE """ return {} def get_sent_from(self): """ Returns a "sent from" string. However the subclass defines that. (email, phone number, etc) """ raise NotImplementedError('Must implement get_recipients.') def get_subject(self): """ Returns a subject string. Optional. """ return None def get_attachments(self): """ Return a list of attachments or None. This only works with email. """ return None def render(self, render_type, context): """ Renders the template :param render_type: the content type to render :param context: context data dictionary :return: the rendered content """ assert render_type in self.render_types, 'Invalid Render Type' try: content = render_to_string('herald/{}/{}.{}'.format( render_type, self.template_name, 'txt' if render_type == 'text' else render_type ), context) except TemplateDoesNotExist: content = None if settings.DEBUG: raise return content @staticmethod def get_demo_args(): """ Returns iterable of arguments needed to initialize notification for demo purposes Usually you want to generate dummy data here for testing """ return [] @classmethod def resend(cls, sent_notification, raise_exception=False): """ Takes a saved sent_notification and sends it again. returns boolean whether or not the notification was sent successfully """ # handle skipping a notification based on user preference if hasattr(sent_notification.user, 'usernotification'): notifications = sent_notification.user.usernotification if notifications.disabled_notifications.filter(notification_class=cls.get_class_path()).exists(): sent_notification.date_sent = timezone.now() sent_notification.status = sent_notification.STATUS_USER_DISABLED sent_notification.save() return True try: cls._send( sent_notification.get_recipients(), sent_notification.text_content, sent_notification.html_content, sent_notification.sent_from, sent_notification.subject, sent_notification.get_extra_data(), sent_notification.get_attachments(), ) sent_notification.status = sent_notification.STATUS_SUCCESS except Exception as exc: # pylint: disable=W0703 # we want to handle any exception whatsoever sent_notification.status = sent_notification.STATUS_FAILED sent_notification.error_message = six.text_type(exc) if raise_exception: raise exc sent_notification.date_sent = timezone.now() sent_notification.save() cls._delete_expired_notifications() return sent_notification.status == sent_notification.STATUS_SUCCESS @staticmethod def _send(recipients, text_content=None, html_content=None, sent_from=None, subject=None, extra_data=None, attachments=None): """ Handles the actual sending of the notification. Sub classes must override this """ raise NotImplementedError('Must implement send.') class EmailNotification(NotificationBase): """ Base class for email notifications """ render_types = ['text', 'html'] from_email = None subject = None to_emails = None bcc = None cc = None # pylint: disable=C0103 headers = None reply_to = None attachments = None def get_context_data(self): context = super(EmailNotification, self).get_context_data() context['subject'] = self.subject return context def get_recipients(self): return self.to_emails def get_sent_from(self): from_email = self.from_email if not from_email: from_email = settings.DEFAULT_FROM_EMAIL return from_email def get_subject(self): return self.subject def get_extra_data(self): extra_data = {} if self.bcc: extra_data['bcc'] = self.bcc if self.cc: extra_data['cc'] = self.cc if self.headers: extra_data['headers'] = self.headers if self.reply_to: extra_data['reply_to'] = self.reply_to return extra_data def get_attachments(self): """ Return a list of attachments or None. This only works with email. """ return self.attachments @staticmethod def _send(recipients, text_content=None, html_content=None, sent_from=None, subject=None, extra_data=None, attachments=None): extra_data = extra_data or {} mail = EmailMultiAlternatives( subject=subject, body=text_content, from_email=sent_from, to=recipients, bcc=extra_data.get('bcc', None), headers=extra_data.get('headers', None), cc=extra_data.get('cc', None), reply_to=extra_data.get('reply_to', None), ) if html_content: mail.attach_alternative(html_content, 'text/html') for attachment in (attachments or []): # All mimebase attachments must have a Content-ID or Content-Disposition header # or they will show up as unnamed attachments" if isinstance(attachment, MIMEBase): if attachment.get('Content-ID', False): # if you are sending attachment with content id, # subtype must be 'related'. mail.mixed_subtype = 'related' mail.attach(attachment) else: mail.attach(*attachment) mail.send() class TwilioTextNotification(NotificationBase): """ Base class for text notifications. Uses twilio """ render_types = ['text'] from_number = None to_number = None def get_recipients(self): return [self.to_number] def get_sent_from(self): from_number = self.from_number if not from_number: try: from_number = settings.TWILIO_DEFAULT_FROM_NUMBER except AttributeError: raise Exception( 'TWILIO_DEFAULT_FROM_NUMBER setting is required for sending a TwilioTextNotification' ) return from_number @staticmethod def _send(recipients, text_content=None, html_content=None, sent_from=None, subject=None, extra_data=None, attachments=None): try: # twilio version 6 from twilio.rest import Client except ImportError: try: # twillio version < 6 from twilio.rest import TwilioRestClient as Client except ImportError: raise Exception('Twilio is required for sending a TwilioTextNotification.') try: account_sid = settings.TWILIO_ACCOUNT_SID auth_token = settings.TWILIO_AUTH_TOKEN except AttributeError: raise Exception( 'TWILIO_ACCOUNT_SID and TWILIO_AUTH_TOKEN settings are required for sending a TwilioTextNotification' ) client = Client(account_sid, auth_token) client.messages.create( body=text_content, to=recipients[0], from_=sent_from )
29.92804
117
0.613879
a323944f67399fcbe7e1ebb0167183883de0dd6b
219
py
Python
leetCode/algorithms/easy/shuffle_string.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
25
2015-01-21T16:39:18.000Z
2021-05-24T07:01:24.000Z
leetCode/algorithms/easy/shuffle_string.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
2
2020-09-30T19:39:36.000Z
2020-10-01T17:15:16.000Z
leetCode/algorithms/easy/shuffle_string.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
15
2015-01-21T16:39:27.000Z
2020-10-01T17:00:22.000Z
from operator import itemgetter from typing import List class Solution: def restoreString(self, s: str, indices: List[int]) -> str: return "".join(e for e, i in sorted(zip(s, indices), key=itemgetter(1)))
27.375
80
0.689498
9813fb8afddc4fc777c5e503736a44d6d39fb09e
2,014
py
Python
util/util.py
giakou4/MNIST_classification
fdffb36e59a3a90cd06ef3db8feadf6d0d71b03d
[ "MIT" ]
5
2021-11-20T18:40:14.000Z
2022-02-22T19:57:19.000Z
util/util.py
giakou4/MNIST_classification
fdffb36e59a3a90cd06ef3db8feadf6d0d71b03d
[ "MIT" ]
1
2021-11-22T08:35:19.000Z
2021-11-23T11:41:17.000Z
util/util.py
giakou4/MNIST_classification
fdffb36e59a3a90cd06ef3db8feadf6d0d71b03d
[ "MIT" ]
null
null
null
from __future__ import print_function import math import numpy as np import torch import torch.optim as optim class TwoCropTransform: """Create two crops of the same image""" def __init__(self, transform): self.transform = transform def __call__(self, x): return [self.transform(x), self.transform(x)] def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def adjust_learning_rate(args, optimizer, epoch): lr = args.learning_rate if args.cosine: eta_min = lr * (args.lr_decay_rate ** 3) lr = eta_min + (lr - eta_min) * ( 1 + math.cos(math.pi * epoch / args.num_epochs)) / 2 else: steps = np.sum(epoch > np.asarray(args.lr_decay_epochs)) if steps > 0: lr = lr * (args.lr_decay_rate ** steps) for param_group in optimizer.param_groups: param_group['lr'] = lr def warmup_learning_rate(args, epoch, batch_id, total_batches, optimizer): if args.warm and epoch <= args.warm_epochs: p = (batch_id + (epoch - 1) * total_batches) / \ (args.warm_epochs * total_batches) lr = args.warmup_from + p * (args.warmup_to - args.warmup_from) for param_group in optimizer.param_groups: param_group['lr'] = lr def save_model(model, optimizer, epoch, save_file): print('\n==> Saving...') state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, } torch.save(state, save_file) del state
30.059701
88
0.612711
d3e36ce817401f46adccf705ce7e65ca3970a8aa
783
py
Python
hacktheback/forms/managers.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
hacktheback/forms/managers.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
hacktheback/forms/managers.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone class FormManager(models.Manager): def miscellaneous(self): return self.filter(type=self.model.FormType.MISCELLANEOUS) def hacker_application(self): return self.filter(type=self.model.FormType.HACKER_APPLICATION) def viewable_hacker_application(self): """ Hacker application form that is viewable. """ return self.hacker_application().filter( is_draft=False, ) def open_hacker_application(self): """ Hacker application form that is open to submissions. """ return self.viewable_hacker_application().filter( start_at__lte=timezone.now(), end_at__gte=timezone.now(), )
27.964286
71
0.652618
6e726ec5639807f12559a135648343687c408c44
654
py
Python
hw3/wuclient.py
kirk-walker/csc321
6f8b25e68923fc897c0de05d79d8e13ca448822e
[ "MIT" ]
null
null
null
hw3/wuclient.py
kirk-walker/csc321
6f8b25e68923fc897c0de05d79d8e13ca448822e
[ "MIT" ]
null
null
null
hw3/wuclient.py
kirk-walker/csc321
6f8b25e68923fc897c0de05d79d8e13ca448822e
[ "MIT" ]
null
null
null
import sys import zmq # Socket to talk to server context = zmq.Context() socket = context.socket(zmq.SUB) print("Collecting updates from weather server...") socket.connect("tcp://node00:5556") # Subscribe to zipcode, default is NYC, 10001 zip_filter = sys.argv[1] if len(sys.argv) > 1 else "10001" socket.setsockopt_string(zmq.SUBSCRIBE, zip_filter) # Process 5 updates total_temp = 0 for update_nbr in range(5): string = socket.recv_string() zipcode, temperature, relhumidity = string.split() total_temp += int(temperature) print((f"Average temperature for zipcode " f"'{zip_filter}' was {total_temp / (update_nbr+1)} F"))
27.25
62
0.717125
c8b8d37f17cfbbe6116712cc2218fd7bfad0d596
4,401
py
Python
sideboard/lib/_threads.py
EliAndrewC/sideboard
81f0099f4c03e7abb5856e046539aa033ecf04f9
[ "BSD-3-Clause" ]
null
null
null
sideboard/lib/_threads.py
EliAndrewC/sideboard
81f0099f4c03e7abb5856e046539aa033ecf04f9
[ "BSD-3-Clause" ]
null
null
null
sideboard/lib/_threads.py
EliAndrewC/sideboard
81f0099f4c03e7abb5856e046539aa033ecf04f9
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals import time import heapq from warnings import warn from threading import Thread, Timer, Event, Lock from six.moves.queue import Queue, Empty from sideboard.lib import log, on_startup, on_shutdown class DaemonTask(object): def __init__(self, func, interval=0.1, threads=1): self.lock = Lock() self.threads = [] self.stopped = Event() self.func, self.interval, self.thread_count = func, interval, threads on_startup(self.start) on_shutdown(self.stop) @property def running(self): return any(t.is_alive() for t in self.threads) def run(self): while not self.stopped.is_set(): try: self.func() except: log.error('unexpected error', exc_info=True) if self.interval: self.stopped.wait(self.interval) def start(self): with self.lock: if not self.running: self.stopped.clear() del self.threads[:] for i in range(self.thread_count): t = Thread(target = self.run) t.name = '{}-{}'.format(self.func.__name__, i + 1) t.daemon = True t.start() self.threads.append(t) def stop(self): with self.lock: if self.running: self.stopped.set() for i in range(50): self.threads[:] = [t for t in self.threads if t.is_alive()] if self.threads: time.sleep(0.1) else: break else: log.warning('not all daemons have been joined: {}', self.threads) del self.threads[:] class TimeDelayQueue(Queue): def __init__(self, maxsize=0): self.delayed = [] Queue.__init__(self, maxsize) self.task = DaemonTask(self._put_and_notify) def put(self, item, block=True, timeout=None, delay=0): Queue.put(self, (delay, item), block, timeout) def _put(self, item): delay, item = item if delay: if self.task.running: heapq.heappush(self.delayed, (time.time() + delay, item)) else: message = 'TimeDelayQueue.put called with a delay parameter without background task having been started' log.warning(message) warn(message) else: Queue._put(self, item) def _put_and_notify(self): with self.not_empty: while self.delayed: when, item = heapq.heappop(self.delayed) if when <= time.time(): Queue._put(self, item) self.not_empty.notify() else: heapq.heappush(self.delayed, (when, item)) break class Caller(DaemonTask): def __init__(self, func, interval=0, threads=1): self.q = TimeDelayQueue() DaemonTask.__init__(self, self.call, interval=interval, threads=threads) self.callee = func def call(self): try: args, kwargs = self.q.get(timeout = 0.1) self.callee(*args, **kwargs) except Empty: pass def start(self): self.q.task.start() DaemonTask.start(self) def stop(self): self.q.task.stop() DaemonTask.stop(self) def defer(self, *args, **kwargs): self.q.put([args, kwargs]) def delayed(self, delay, *args, **kwargs): self.q.put([args, kwargs], delay=delay) class GenericCaller(DaemonTask): def __init__(self, interval=0, threads=1): DaemonTask.__init__(self, self.call, interval=interval, threads=threads) self.q = TimeDelayQueue() def call(self): try: func, args, kwargs = self.q.get(timeout = 0.1) func(*args, **kwargs) except Empty: pass def start(self): self.q.task.start() DaemonTask.start(self) def stop(self): self.q.task.stop() DaemonTask.stop(self) def defer(self, func, *args, **kwargs): self.q.put([func, args, kwargs]) def delayed(self, delay, func, *args, **kwargs): self.q.put([func, args, kwargs], delay=delay)
29.736486
120
0.540786
e7668a534c69e87ad7e109b382224ba6bcb6277f
1,758
py
Python
Lib/site-packages/graphviz/__init__.py
caiyongji/tf2.3.1-py3.7.9-full-built
ace4efcbf05b2b494388739718a18c13eab83c71
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Lib/site-packages/graphviz/__init__.py
caiyongji/tf2.3.1-py3.7.9-full-built
ace4efcbf05b2b494388739718a18c13eab83c71
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Lib/site-packages/graphviz/__init__.py
caiyongji/tf2.3.1-py3.7.9-full-built
ace4efcbf05b2b494388739718a18c13eab83c71
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
# graphviz - create dot, save, render, view """Assemble DOT source code and render it with Graphviz. >>> dot = Digraph(comment='The Round Table') >>> dot.node('A', 'King Arthur') >>> dot.node('B', 'Sir Bedevere the Wise') >>> dot.node('L', 'Sir Lancelot the Brave') >>> dot.edges(['AB', 'AL']) >>> dot.edge('B', 'L', constraint='false') >>> print(dot) #doctest: +NORMALIZE_WHITESPACE // The Round Table digraph { A [label="King Arthur"] B [label="Sir Bedevere the Wise"] L [label="Sir Lancelot the Brave"] A -> B A -> L B -> L [constraint=false] } """ from .dot import Graph, Digraph from .files import Source from .lang import escape, nohtml from .backend import (render, pipe, version, view, ENGINES, FORMATS, RENDERERS, FORMATTERS, ExecutableNotFound, RequiredArgumentError) __all__ = [ 'Graph', 'Digraph', 'Source', 'escape', 'nohtml', 'render', 'pipe', 'version', 'view', 'ENGINES', 'FORMATS', 'RENDERERS', 'FORMATTERS', 'ExecutableNotFound', 'RequiredArgumentError', ] __title__ = 'graphviz' __version__ = '0.15' __author__ = 'Sebastian Bank <sebastian.bank@uni-leipzig.de>' __license__ = 'MIT, see LICENSE.txt' __copyright__ = 'Copyright (c) 2013-2020 Sebastian Bank' #: Set of known layout commands used for rendering (``'dot'``, ``'neato'``, ...) ENGINES = ENGINES #: Set of known output formats for rendering (``'pdf'``, ``'png'``, ...) FORMATS = FORMATS #: Set of known output formatters for rendering (``'cairo'``, ``'gd'``, ...) FORMATTERS = FORMATTERS #: Set of known output renderers for rendering (``'cairo'``, ``'gd'``, ...) RENDERERS = RENDERERS ExecutableNotFound = ExecutableNotFound RequiredArgumentError = RequiredArgumentError
27.46875
80
0.646758
0255d3720ffb06977a6ab1b927fd479410e3e991
6,805
py
Python
test/continuous/test_sac_with_il.py
edieson/tianshou
679a0ce9ad2f7090b5a642c71dd7d9babf318fb8
[ "MIT" ]
null
null
null
test/continuous/test_sac_with_il.py
edieson/tianshou
679a0ce9ad2f7090b5a642c71dd7d9babf318fb8
[ "MIT" ]
null
null
null
test/continuous/test_sac_with_il.py
edieson/tianshou
679a0ce9ad2f7090b5a642c71dd7d9babf318fb8
[ "MIT" ]
null
null
null
import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.env import VectorEnv, SubprocVectorEnv from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from tianshou.policy import SACPolicy, ImitationPolicy if __name__ == '__main__': from net import Actor, ActorProb, Critic else: # pytest from test.continuous.net import Actor, ActorProb, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Pendulum-v0') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--actor-lr', type=float, default=3e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) parser.add_argument('--il-lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--tau', type=float, default=0.005) parser.add_argument('--alpha', type=float, default=0.2) parser.add_argument('--epoch', type=int, default=2000) parser.add_argument('--step-per-epoch', type=int, default=2400) parser.add_argument('--collect-per-step', type=int, default=10) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--layer-num', type=int, default=1) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=10) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--rew-norm', type=bool, default=True) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args from gym.wrappers import TransformReward class BipedalWrapper(gym.Wrapper): def __init__(self, env, action_repeat=3): super(BipedalWrapper, self).__init__(env) self.action_repeat = action_repeat def step(self, action): act_noise = 0.3 * (np.random.random(action.shape) * 2 - 1) action += act_noise r = 0.0 obs_, reward_, done_, info_ = self.env.step(action) for i in range(self.action_repeat - 1): obs_, reward_, done_, info_ = self.env.step(action) r = r + reward_ if done_: return obs_, 0.0, done_, info_ return obs_, r, done_, info_ def test_sac_with_il(args=get_args()): torch.set_num_threads(1) # we just need only one thread for NN env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = SubprocVectorEnv([ lambda: TransformReward(BipedalWrapper(gym.make(args.task)), lambda reward: 5 * reward) for _ in range(args.training_num) ]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb( args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device ).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic( args.layer_num, args.state_shape, args.action_shape, args.device ).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic( args.layer_num, args.state_shape, args.action_shape, args.device ).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = SACPolicy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, env.action_space, args.tau, args.gamma, args.alpha, reward_normalization=args.rew_norm, ignore_done=True) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) train_collector.collect(10000, sampling=True) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'sac') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) # test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["ep/reward"]}, length: {result["ep/len"]}') collector.close() # here we define an imitation collector with a trivial policy if args.task == 'Pendulum-v0': env.spec.reward_threshold = -300 # lower the goal net = Actor(1, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.il_lr) il_policy = ImitationPolicy(net, optim, mode='continuous') il_test_collector = Collector(il_policy, test_envs) train_collector.reset() result = offpolicy_trainer( il_policy, train_collector, il_test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() il_test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(il_policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["ep/reward"]}, length: {result["ep/len"]}') collector.close() if __name__ == '__main__': test_sac_with_il()
41.493902
95
0.685966
041060360ebbe2030bd62e581bb5abb2c040d1b9
24,426
py
Python
src/hpatterns.py
sahitpj/syntaxnet_triplets
4932247a60228722b61381e95a03e6ce66d102ab
[ "MIT" ]
2
2019-06-06T21:59:14.000Z
2020-03-17T05:35:24.000Z
src/hpatterns.py
sahitpj/SyntaxNet-triplets
4932247a60228722b61381e95a03e6ce66d102ab
[ "MIT" ]
null
null
null
src/hpatterns.py
sahitpj/SyntaxNet-triplets
4932247a60228722b61381e95a03e6ce66d102ab
[ "MIT" ]
null
null
null
import sys sys.path.append("../../..") import re import string import spacy from .conllu.conllu import parse_single, TokenList from .hpatternUtils import create_default, create_greedy, create_semi class HearstPatterns(object): """ Contains two methods. One which uses the .conllu file to develop a tokentree which can then be converted into a tagged sentence to be able to extract hearst pattern, the second one uses Spacy to derive the tagged sentence to be able to extract hearst patterns. For tagged sentences, check out the get_noun_chunks functions. """ def __init__(self, extended = False, greedy = False, same_sentence = False, semi = False): self.__adj_stopwords = ['able', 'available', 'brief', 'certain', 'different', 'due', 'enough', 'especially','few', 'fifth', 'former', 'his', 'howbeit', 'immediate', 'important', 'inc', 'its', 'last', 'latter', 'least', 'less', 'likely', 'little', 'many', 'ml', 'more', 'most', 'much', 'my', 'necessary', 'new', 'next', 'non', 'old', 'other', 'our', 'ours', 'own', 'particular', 'past', 'possible', 'present', 'proud', 'recent', 'same', 'several', 'significant', 'similar', 'such', 'sup', 'sure'] # now define the Hearst patterns # format is <hearst-pattern>, <general-term> # so, what this means is that if you apply the first pattern, the firsr Noun Phrase (NP) # is the general one, and the rest are specific NPs self.__hearst_patterns = [ ('(NP_\\w+ (, )?such as (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(such NP_\\w+ (, )?as (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?other NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?include (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?especially (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), (r'NP_(\w+).*?born.*on.* CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'bornOn', 4), (r'NP_(\w+).*?(died|passed away).*?on.*?CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'diedOn', 4), (r'NP_(\w+).*?(born|developed|made|established|published).*?(in|at).*?CD_(\w+)', 'last', 'madeIn', 4), (r'NP_(\w+).*?(present|found).*?in.*?NP_(\w+)', 'last', 'foundIn', 3), (r'NP_(\w+).*?(member).*?of.*?NP_(\w+)', 'last', 'memberOf', 3), (r'NP_(\w+).*?(developed|made|published|established).*?by.*?NP_(\w+)', 'last', 'madeBy', 3), (r'NP_(\w+).*?(composed).*?of.*?NP_(\w+)', 'last', 'composedOf', 3), (r'NP_(\w+).*?also known as.*?NP_(\w+)', 'last', 'also known as', 2), (r'NP_(\w+).*?located.*?(in|on).*?NP_(\w+)', 'last', 'locatedIn|On', 3), (r'NP_(\w+).*?(was|is) a.*?NP_(\w+)', 'first', 'attribute', 3), (r'NP_(\w+).*?(comparable|related) to.*?NP_(\w+)', 'last', 'comparable to', 3), ('(NP_\\w+ (, )?made of (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'madeOf_multiple', 0), ('(NP_\\w+ (, )?(was|is) a (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'attribute|profession_multiple', 0), (r'NP_(\w+).*?(was|is).*?published.*?(in|on).*?CD_(\w+)', 'first', 'publishedIn', 3), (r'NP_(\w+).*?represent.*?NP_(\w+)', 'first', 'representedBy', 2), (r'NP_(\w+).*?used.*?(by|in|as).*?NP_(\w+)', 'first', 'used_', 3), (r'NP_(\w+).*?made.*?of.*?NP_(\w+)', 'first', 'madeOf', 2), (r'NP_(\w+).*?form.*?of.*?NP_(\w+)', 'first', 'formOf', 2), (r'NP_(\w+).*?(leader|ruler|king|head).*?of.*?NP_(\w+)', 'first', 'leaderOf', 3), (r'NP_(\w+).*?famous.*?for.*?NP_(\w+)', 'first', 'famousFor', 2), ('(NP_\\w+ (, )?famous for (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'FamousFor_multiple', 0), ] + create_default() self.__hearst_patterns_greedy = [ ('(NP_\\w+ (, )?such as (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(such NP_\\w+ (, )?as (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?other NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?include (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?especially (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), (r'.*NP_(\w+).*?born.*on.* CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'bornOn', 4), (r'.*NP_(\w+).*?(died|passed away).*?on.*?CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'diedOn', 4), (r'.*NP_(\w+).*?(born|developed|made|established|published).*?(in|at).*?CD_(\w+)', 'last', 'madeIn', 4), (r'.*NP_(\w+).*?(present|found).*?in.*?NP_(\w+)', 'last', 'foundIn', 3), (r'.*NP_(\w+).*?(member).*?of.*?NP_(\w+)', 'last', 'memberOf', 3), (r'.*NP_(\w+).*?(developed|made|published|established).*?by.*?NP_(\w+)', 'last', 'madeBy', 3), (r'.*NP_(\w+).*?(composed).*?of.*?NP_(\w+)', 'last', 'composedOf', 3), (r'.*NP_(\w+).*?also known as.*?NP_(\w+)', 'last', 'also known as', 2), (r'.*NP_(\w+).*?located.*?(in|on).*?NP_(\w+)', 'last', 'locatedIn|On', 3), (r'.*NP_(\w+).*?(was|is) a.*?NP_(\w+)', 'first', 'attribute', 3), (r'.*NP_(\w+).*?(comparable|related) to.*?NP_(\w+)', 'last', 'comparable to', 3), ('(NP_\\w+ (, )?made of (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'madeOf_multiple', 0), ('(NP_\\w+ (, )?(was|is) a (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'attribute|profession_multiple', 0), (r'.*NP_(\w+) (was|is).*?published.*?(in|on).*?CD_(\w+)', 'first', 'publishedIn', 3), (r'.*NP_(\w+).*?represent.*?NP_(\w+)', 'first', 'representedBy', 2), (r'.*NP_(\w+).*?used.*?(by|in|as).*?NP_(\w+)', 'first', 'used_', 3), (r'.*NP_(\w+).*?made.*?of.*?NP_(\w+)', 'first', 'madeOf', 2), (r'.*NP_(\w+).*?form.*?of.*?NP_(\w+)', 'first', 'formOf', 2), (r'.*NP_(\w+).*?(leader|ruler|king|head) .*?of.*?NP_(\w+)', 'first', 'leaderOf', 3), (r'.*NP_(\w+).*?famous.*?for.*?NP_(\w+)', 'first', 'famousFor', 2), ('(NP_\\w+ (, )?famous for (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'FamousFor_multiple', 0), ] self.__hearst_patterns_semigreedy = [ ('(NP_\\w+ (, )?such as (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(such NP_\\w+ (, )?as (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?other NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?include (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?especially (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), (r'.*?NP_(\w+).*?born.*on.* CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'bornOn', 4), (r'.*?NP_(\w+).*?(died|passed away).*?on.*?CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'diedOn', 4), (r'.*?NP_(\w+).*?(born|developed|made|established|published).*?(in|at).*?CD_(\w+)', 'last', 'madeIn', 4), (r'.*?NP_(\w+).*?(present|found).*?in.*?NP_(\w+)', 'last', 'foundIn', 3), (r'.*?NP_(\w+).*?(member).*?of.*?NP_(\w+)', 'last', 'memberOf', 3), (r'.*?NP_(\w+).*?(developed|made|published|established).*?by.*?NP_(\w+)', 'last', 'madeBy', 3), (r'.*?NP_(\w+).*?(composed).*?of.*?NP_(\w+)', 'last', 'composedOf', 3), (r'.*?NP_(\w+).*?also known as.*?NP_(\w+)', 'last', 'also known as', 2), (r'.*?NP_(\w+).*?located.*?(in|on).*?NP_(\w+)', 'last', 'locatedIn|On', 3), (r'.*?NP_(\w+).*?(was|is) a.*?NP_(\w+)', 'first', 'attribute', 3), (r'.*?NP_(\w+).*?(comparable|related) to.*?NP_(\w+)', 'last', 'comparable to', 3), ('(NP_\\w+ (, )?made of (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'madeOf_multiple', 0), ('(NP_\\w+ (, )?(was|is) a (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'attribute|profession_multiple', 0), (r'.*?NP_(\w+) (was|is).*?published.*?(in|on).*?CD_(\w+)', 'first', 'publishedIn', 3), (r'.*?NP_(\w+).*?represent.*?NP_(\w+)', 'first', 'representedBy', 2), (r'.*?NP_(\w+).*?used.*?(by|in|as).*?NP_(\w+)', 'first', 'used_', 3), (r'.*?NP_(\w+).*?made.*?of.*?NP_(\w+)', 'first', 'madeOf', 2), (r'.*?NP_(\w+).*?form.*?of.*?NP_(\w+)', 'first', 'formOf', 2), (r'.*?NP_(\w+).*?(leader|ruler|king|head).*?of.*?NP_(\w+)', 'first', 'leaderOf', 3), (r'.*?NP_(\w+).*?famous.*?for.*?NP_(\w+)', 'first', 'famousFor', 2), ('(NP_\\w+ (, )?famous for (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'FamousFor_multiple', 0), ] self.__hearst_patterns_ss = [ ('(NP_\\w+ (, )?such as (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(such NP_\\w+ (, )?as (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?other NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?include (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?especially (NP_\\w+ ?(, )?(and |or )?)+)', 'first', 'typeOf', 0), (r'NP_(\w+)[^.]*?born[^.]*on[^.]* CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'bornOn', 4), (r'NP_(\w+)[^.]*?(died|passed away)[^.]*?on[^.]*?CD_(\d+)? (\w+) CD_(\d+)? ', 'last', 'diedOn', 4), (r'NP_(\w+)[^.]*?(born|developed|made|established|published)[^.]*?(in|at)[^.]*?CD_(\w+)', 'last', 'madeIn', 4), (r'NP_(\w+)[^.]*?(present|found)[^.]*?in[^.]*?NP_(\w+)', 'last', 'foundIn', 3), (r'NP_(\w+)[^.]*?(member)[^.]*?of[^.]*?NP_(\w+)', 'last', 'memberOf', 3), (r'NP_(\w+)[^.]*?(developed|made|published|established)[^.]*?by[^.]*?NP_(\w+)', 'last', 'madeBy', 3), (r'NP_(\w+)[^.]*?(composed)[^.]*?of[^.]*?NP_(\w+)', 'last', 'composedOf', 3), (r'NP_(\w+)[^.]*?also known as[^.]*?NP_(\w+)', 'last', 'also known as', 2), (r'NP_(\w+)[^.]*?located[^.]*?(in|on)[^.]*?NP_(\w+)', 'last', 'locatedIn|On', 3), (r'NP_(\w+)[^.]*?(was|is) a[^.]*?NP_(\w+)', 'first', 'attribute', 3), (r'NP_(\w+)[^.]*?(comparable|related) to[^.]*?NP_(\w+)', 'last', 'comparable to', 3), ('(NP_\\w+ (, )?made of (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'madeOf_multiple', 0), ('(NP_\\w+ (, )?(was|is) a (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'attribute|profession_multiple', 0), (r'NP_(\w+) (was|is)[^.]*?published[^.]*?(in|on)[^.]*?CD_(\w+)', 'first', 'publishedIn', 3), (r'NP_(\w+)[^.]*?represent[^.]*?NP_(\w+)', 'first', 'representedBy', 2), (r'NP_(\w+)[^.]*?used[^.]*?(by|in|as)[^.]*?NP_(\w+)', 'first', 'used_', 3), (r'NP_(\w+)[^.]*?made[^.]*?of[^.]*?NP_(\w+)', 'first', 'madeOf', 2), (r'NP_(\w+)[^.]*?form[^.]*?of[^.]*?NP_(\w+)', 'first', 'formOf', 2), (r'NP_(\w+)[^.]*?(leader|ruler|king|head)[^.]*?of[^.]*?NP_(\w+)', 'first', 'leaderOf', 3), (r'NP_(\w+)[^.]*?famous[^.]*?for[^.]*?NP_(\w+)', 'first', 'famousFor', 2), ('(NP_\\w+ (, )?famous for (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'Famousfor_multiple', 0), ] if extended: self.__hearst_patterns.extend([ ('((NP_\\w+ ?(, )?)+(and |or )?any other NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?some other NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?be a NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?like (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('such (NP_\\w+ (, )?as (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?like other NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?one of the NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?one of these NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?one of those NP_\\w+)', 'last', 'typeOf', 0), ('example of (NP_\\w+ (, )?be (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?be example of NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?for example (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?wich be call NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?which be name NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?mainly (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?mostly (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?notably (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?particularly (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?principally (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?in particular (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?except (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?other than (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?e.g. (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?i.e. (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?a kind of NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?kind of NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?form of NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?which look like NP_\\w+)', 'last', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?which sound like NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?which be similar to (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?example of this be (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?type (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )? NP_\\w+ type)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?whether (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(compare (NP_\\w+ ?(, )?)+(and |or )?with NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )?compare to (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('(NP_\\w+ (, )?among -PRON- (NP_\\w+ ? (, )?(and |or )?)+)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?as NP_\\w+)', 'last', 'typeOf', 0), ('(NP_\\w+ (, )? (NP_\\w+ ? (, )?(and |or )?)+ for instance)', 'first', 'typeOf', 0), ('((NP_\\w+ ?(, )?)+(and |or )?sort of NP_\\w+)', 'last', 'typeOf', 0) ]) self.__spacy_nlp = spacy.load('en') if greedy: self.__hearst_patterns = self.__hearst_patterns_greedy + create_greedy() if same_sentence: self.__hearst_patterns = self.__hearst_patterns_ss if semi: self.__hearst_patterns = self.__hearst_patterns_semigreedy + create_semi() def chunk(self, rawtext): STOP_TOKENS = ["the", "a", "an"] doc = self.__spacy_nlp(rawtext) chunks = [] for sentence in doc.sents: sentence_text = sentence.text.lower() for chunk in sentence.noun_chunks: chunk_arr = [] replace_arr = [] for token in chunk: if token.text not in STOP_TOKENS: chunk_arr.append(token.text) # Remove punctuation and stopword adjectives (generally quantifiers of plurals) if token.lemma_.isalnum() and token.lemma_ not in self.__adj_stopwords and token.text not in STOP_TOKENS: replace_arr.append(token.lemma_) elif not token.lemma_.isalnum() and token.text not in STOP_TOKENS: if token.lemma_ != '-PRON-': replace_arr.append(''.join(char for char in token.lemma_ if char.isalnum())) else: replace_arr.append(token.text) chunk_lemma = ' '.join(chunk_arr).lower() replacement_value = 'NP_' + '_'.join(replace_arr).lower() if chunk_lemma: sentence_text = re.sub(r'\b%s\b' % re.escape(chunk_lemma), r'%s' % replacement_value, sentence_text) chunks.append(sentence_text) return chunks def chunk_root(self, rawtext): doc = self.__spacy_nlp(rawtext) chunks = [] for sentence in doc.sents: sentence_text = sentence.lemma_ for chunk in sentence.noun_chunks: chunk_arr = [] replace_arr = [] for token in chunk: chunk_arr.append(token.lemma_) # Remove punctuation and stopword adjectives (generally quantifiers of plurals) if token.lemma_.isalnum() and token.lemma_ not in self.__adj_stopwords: replace_arr.append(token.lemma_) elif not token.lemma_.isalnum(): replace_arr.append(''.join(char for char in token.lemma_ if char.isalnum())) chunk_lemma = ' '.join(chunk_arr) replacement_value = 'NP_' + '_'.join(replace_arr) if chunk_lemma: sentence_text = re.sub(r'\b%s\b' % re.escape(chunk_lemma), r'%s' % replacement_value, sentence_text) chunks.append(sentence_text) return chunks """ This is the main entry point for this code. It takes as input the rawtext to process and returns a list of tuples (specific-term, general-term) where each tuple represents a hypernym pair. """ def find_hearstpatterns(self, filepath_to_conll, subject): data_file = open(filepath_to_conll, "r", encoding="utf-8") tokenList = parse_single(data_file) sentence_tokenList = tokenList[0] hearst_patterns = [] # np_tagged_sentences = self.chunk(rawtext) np_tagged_sentences = sentence_tokenList.get_noun_chunks(subject) # for sentence in np_tagged_sentences: # two or more NPs next to each other should be merged into a single NP, it's a chunk error for (hearst_pattern, parser, hearst_type, process_type) in self.__hearst_patterns: matches = re.search(hearst_pattern, np_tagged_sentences) if matches: match_str = matches.group(0) if process_type == 0: nps = [a for a in match_str.split() if a.startswith("NP_")] if parser == "first": general = nps[0] specifics = nps[1:] else: general = nps[-1] specifics = nps[:-1] for i in range(len(specifics)): #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((self.clean_hyponym_term(specifics[i]), self.clean_hyponym_term(general), hearst_type)) else: if parser == "first": general = matches.group(1) specifics = [matches.group(i) for i in range(2,process_type+1)] else: general = matches.group(process_type) specifics = [matches.group(i) for i in range(1,process_type)] #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((specifics, general, hearst_type)) return hearst_patterns def find_hearstpatterns_spacy(self, rawtext): hearst_patterns = [] np_tagged_sentences = self.chunk(rawtext) for sentence in np_tagged_sentences: # two or more NPs next to each other should be merged into a single NP, it's a chunk error for (hearst_pattern, parser, hearst_type, process_type) in self.__hearst_patterns[:-1]: matches = re.search(hearst_pattern, sentence) if matches: match_str = matches.group(0) if process_type == 0: nps = [a for a in match_str.split() if a.startswith("NP_")] if parser == "first": general = nps[0] specifics = nps[1:] else: general = nps[-1] specifics = nps[:-1] for i in range(len(specifics)): #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((self.clean_hyponym_term(specifics[i]), self.clean_hyponym_term(general), hearst_type)) else: if parser == "first": general = matches.group(1) specifics = [matches.group(i) for i in range(2,process_type+1)] else: general = matches.group(process_type) specifics = [matches.group(i) for i in range(1,process_type)] #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((specifics, general, hearst_type, parser)) return hearst_patterns def find_hearstpatterns_spacy_root(self, rawtext): hearst_patterns = [] np_tagged_sentences = self.chunk_root(rawtext) for sentence in np_tagged_sentences: # two or more NPs next to each other should be merged into a single NP, it's a chunk error for (hearst_pattern, parser, hearst_type, process_type) in self.__hearst_patterns: matches = re.search(hearst_pattern, sentence) if matches: match_str = matches.group(0) if process_type == 0: nps = [a for a in match_str.split() if a.startswith("NP_")] if parser == "first": general = nps[0] specifics = nps[1:] else: general = nps[-1] specifics = nps[:-1] for i in range(len(specifics)): #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((self.clean_hyponym_term(specifics[i]), self.clean_hyponym_term(general), hearst_type)) else: if parser == "first": general = matches.group(1) specifics = [matches.group(i) for i in range(2,process_type+1)] else: general = matches.group(process_type) specifics = [matches.group(i) for i in range(1,process_type)] #print("%s, %s %s" % (specifics[i], general, hearst_type)) hearst_patterns.append((specifics, general, hearst_type, parser)) return hearst_patterns def add_patterns(self, patterns, t): if t == 'Default': self.__hearst_patterns.extend(patterns) elif t == 'Non-greedy': self.__hearst_patterns_greedy.extend(patterns) else: self.__hearst_patterns_semigreedy.extend(patterns) def clean_hyponym_term(self, term): # good point to do the stemming or lemmatization return term.replace("NP_","").replace("_", " ")
62.470588
503
0.456972
c2e0702dd3bb18f64332997c837e7069b65b843d
69
py
Python
abc/128/a.py
wotsushi/competitive-programming
17ec8fd5e1c23aee626aee70b1c0da8d7f8b8c86
[ "MIT" ]
3
2019-06-25T06:17:38.000Z
2019-07-13T15:18:51.000Z
abc/128/a.py
wotsushi/competitive-programming
17ec8fd5e1c23aee626aee70b1c0da8d7f8b8c86
[ "MIT" ]
null
null
null
abc/128/a.py
wotsushi/competitive-programming
17ec8fd5e1c23aee626aee70b1c0da8d7f8b8c86
[ "MIT" ]
null
null
null
A, P = map(int, input().split()) ans = (3 * A + P) // 2 print(ans)
11.5
32
0.478261
6f01fa2283577d1f8b28081df66fd468f8b05b00
15,710
py
Python
main.py
ishine/HTS-Audio-Transformer
356521f5dbb1893082c449a4993977fd624905f0
[ "MIT" ]
24
2022-02-02T10:19:31.000Z
2022-03-23T16:59:19.000Z
main.py
ishine/HTS-Audio-Transformer
356521f5dbb1893082c449a4993977fd624905f0
[ "MIT" ]
3
2022-02-23T02:31:36.000Z
2022-03-11T06:29:25.000Z
main.py
ishine/HTS-Audio-Transformer
356521f5dbb1893082c449a4993977fd624905f0
[ "MIT" ]
9
2022-02-02T17:42:11.000Z
2022-03-25T07:12:13.000Z
# Ke Chen # knutchen@ucsd.edu # HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION # The main code for training and evaluating HTSAT import os from re import A, S import sys import librosa import numpy as np import argparse import h5py import math import time import logging import pickle import random from datetime import datetime import torch import torch.optim as optim from torch.utils.data import DataLoader, sampler from torch.utils.data.distributed import DistributedSampler from utils import create_folder, dump_config, process_idc, prepprocess_audio, init_hier_head import config from sed_model import SEDWrapper, Ensemble_SEDWrapper from models import Cnn14_DecisionLevelMax from data_generator import SEDDataset, DESED_Dataset, ESC_Dataset, SCV2_Dataset from model.htsat import HTSAT_Swin_Transformer import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint import warnings warnings.filterwarnings("ignore") class data_prep(pl.LightningDataModule): def __init__(self, train_dataset, eval_dataset, device_num): super().__init__() self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.device_num = device_num def train_dataloader(self): train_sampler = DistributedSampler(self.train_dataset, shuffle = False) if self.device_num > 1 else None train_loader = DataLoader( dataset = self.train_dataset, num_workers = config.num_workers, batch_size = config.batch_size // self.device_num, shuffle = False, sampler = train_sampler ) return train_loader def val_dataloader(self): eval_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None eval_loader = DataLoader( dataset = self.eval_dataset, num_workers = config.num_workers, batch_size = config.batch_size // self.device_num, shuffle = False, sampler = eval_sampler ) return eval_loader def test_dataloader(self): test_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None test_loader = DataLoader( dataset = self.eval_dataset, num_workers = config.num_workers, batch_size = config.batch_size // self.device_num, shuffle = False, sampler = test_sampler ) return test_loader def save_idc(): train_index_path = os.path.join(config.dataset_path, "hdf5s", "indexes", config.index_type + ".h5") eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5") process_idc(train_index_path, config.classes_num, config.index_type + "_idc.npy") process_idc(eval_index_path, config.classes_num, "eval_idc.npy") def weight_average(): model_ckpt = [] model_files = os.listdir(config.wa_folder) wa_ckpt = { "state_dict": {} } for model_file in model_files: model_file = os.path.join(config.wa_folder, model_file) model_ckpt.append(torch.load(model_file, map_location="cpu")["state_dict"]) keys = model_ckpt[0].keys() for key in keys: model_ckpt_key = torch.cat([d[key].float().unsqueeze(0) for d in model_ckpt]) model_ckpt_key = torch.mean(model_ckpt_key, dim = 0) assert model_ckpt_key.shape == model_ckpt[0][key].shape, "the shape is unmatched " + model_ckpt_key.shape + " " + model_ckpt[0][key].shape wa_ckpt["state_dict"][key] = model_ckpt_key torch.save(wa_ckpt, config.wa_model_path) def esm_test(): device_num = torch.cuda.device_count() print("each batch size:", config.batch_size // device_num) if config.fl_local: fl_npy = np.load(config.fl_dataset, allow_pickle = True) # import dataset SEDDataset eval_dataset = DESED_Dataset( dataset = fl_npy, config = config ) else: # dataset file pathes eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5") eval_idc = np.load("eval_idc.npy", allow_pickle = True) # import dataset SEDDataset eval_dataset = SEDDataset( index_path=eval_index_path, idc = eval_idc, config = config, eval_mode = True ) audioset_data = data_prep(eval_dataset, eval_dataset, device_num) trainer = pl.Trainer( deterministic=True, gpus = device_num, max_epochs = config.max_epoch, auto_lr_find = True, sync_batchnorm = True, checkpoint_callback = False, accelerator = "ddp" if device_num > 1 else None, num_sanity_val_steps = 0, # resume_from_checkpoint = config.resume_checkpoint, replace_sampler_ddp = False, gradient_clip_val=1.0 ) sed_models = [] for esm_model_path in config.esm_model_pathes: sed_model = HTSAT_Swin_Transformer( spec_size=config.htsat_spec_size, patch_size=config.htsat_patch_size, in_chans=1, num_classes=config.classes_num, window_size=config.htsat_window_size, config = config, depths = config.htsat_depth, embed_dim = config.htsat_dim, patch_stride=config.htsat_stride, num_heads=config.htsat_num_head ) sed_wrapper = SEDWrapper( sed_model = sed_model, config = config, dataset = eval_dataset ) ckpt = torch.load(esm_model_path, map_location="cpu") ckpt["state_dict"].pop("sed_model.head.weight") ckpt["state_dict"].pop("sed_model.head.bias") sed_wrapper.load_state_dict(ckpt["state_dict"], strict=False) sed_models.append(sed_wrapper) model = Ensemble_SEDWrapper( sed_models = sed_models, config = config, dataset = eval_dataset ) trainer.test(model, datamodule=audioset_data) def test(): device_num = torch.cuda.device_count() print("each batch size:", config.batch_size // device_num) # dataset file pathes if config.fl_local: fl_npy = np.load(config.fl_dataset, allow_pickle = True) # import dataset SEDDataset eval_dataset = DESED_Dataset( dataset = fl_npy, config = config ) else: if config.dataset_type == "audioset": eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5") eval_idc = np.load("eval_idc.npy", allow_pickle = True) eval_dataset = SEDDataset( index_path=eval_index_path, idc = eval_idc, config = config, eval_mode = True ) elif config.dataset_type == "esc-50": full_dataset = np.load(os.path.join(config.dataset_path, "esc-50-data.npy"), allow_pickle = True) eval_dataset = ESC_Dataset( dataset = full_dataset, config = config, eval_mode = True ) elif config.dataset_type == "scv2": test_set = np.load(os.path.join(config.dataset_path, "scv2_test.npy"), allow_pickle = True) eval_dataset = SCV2_Dataset( dataset = test_set, config = config, eval_mode = True ) # import dataset SEDDataset audioset_data = data_prep(eval_dataset, eval_dataset, device_num) trainer = pl.Trainer( deterministic=True, gpus = device_num, max_epochs = config.max_epoch, auto_lr_find = True, sync_batchnorm = True, checkpoint_callback = False, accelerator = "ddp" if device_num > 1 else None, num_sanity_val_steps = 0, # resume_from_checkpoint = config.resume_checkpoint, replace_sampler_ddp = False, gradient_clip_val=1.0 ) sed_model = HTSAT_Swin_Transformer( spec_size=config.htsat_spec_size, patch_size=config.htsat_patch_size, in_chans=1, num_classes=config.classes_num, window_size=config.htsat_window_size, config = config, depths = config.htsat_depth, embed_dim = config.htsat_dim, patch_stride=config.htsat_stride, num_heads=config.htsat_num_head ) model = SEDWrapper( sed_model = sed_model, config = config, dataset = eval_dataset ) if config.resume_checkpoint is not None: ckpt = torch.load(config.resume_checkpoint, map_location="cpu") ckpt["state_dict"].pop("sed_model.head.weight") ckpt["state_dict"].pop("sed_model.head.bias") model.load_state_dict(ckpt["state_dict"], strict=False) trainer.test(model, datamodule=audioset_data) def train(): device_num = torch.cuda.device_count() print("each batch size:", config.batch_size // device_num) # dataset file pathes if config.dataset_type == "audioset": train_index_path = os.path.join(config.dataset_path, "hdf5s","indexes", config.index_type + ".h5") eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5") train_idc = np.load(config.index_type + "_idc.npy", allow_pickle = True) eval_idc = np.load("eval_idc.npy", allow_pickle = True) elif config.dataset_type == "esc-50": full_dataset = np.load(os.path.join(config.dataset_path, "esc-50-data.npy"), allow_pickle = True) elif config.dataset_type == "scv2": train_set = np.load(os.path.join(config.dataset_path, "scv2_train.npy"), allow_pickle = True) test_set = np.load(os.path.join(config.dataset_path, "scv2_test.npy"), allow_pickle = True) # set exp folder exp_dir = os.path.join(config.workspace, "results", config.exp_name) checkpoint_dir = os.path.join(config.workspace, "results", config.exp_name, "checkpoint") if not config.debug: create_folder(os.path.join(config.workspace, "results")) create_folder(exp_dir) create_folder(checkpoint_dir) dump_config(config, os.path.join(exp_dir, config.exp_name), False) # import dataset SEDDataset if config.dataset_type == "audioset": print("Using Audioset") dataset = SEDDataset( index_path=train_index_path, idc = train_idc, config = config ) eval_dataset = SEDDataset( index_path=eval_index_path, idc = eval_idc, config = config, eval_mode = True ) elif config.dataset_type == "esc-50": print("Using ESC") dataset = ESC_Dataset( dataset = full_dataset, config = config, eval_mode = False ) eval_dataset = ESC_Dataset( dataset = full_dataset, config = config, eval_mode = True ) elif config.dataset_type == "scv2": print("Using SCV2") dataset = SCV2_Dataset( dataset = train_set, config = config, eval_mode = False ) eval_dataset = SCV2_Dataset( dataset = test_set, config = config, eval_mode = True ) audioset_data = data_prep(dataset, eval_dataset, device_num) if config.dataset_type == "audioset": checkpoint_callback = ModelCheckpoint( monitor = "mAP", filename='l-{epoch:d}-{mAP:.3f}-{mAUC:.3f}', save_top_k = 20, mode = "max" ) else: checkpoint_callback = ModelCheckpoint( monitor = "acc", filename='l-{epoch:d}-{acc:.3f}', save_top_k = 20, mode = "max" ) trainer = pl.Trainer( deterministic=True, default_root_dir = checkpoint_dir, gpus = device_num, val_check_interval = 0.1, max_epochs = config.max_epoch, auto_lr_find = True, sync_batchnorm = True, callbacks = [checkpoint_callback], accelerator = "ddp" if device_num > 1 else None, num_sanity_val_steps = 0, resume_from_checkpoint = None, replace_sampler_ddp = False, gradient_clip_val=1.0 ) sed_model = HTSAT_Swin_Transformer( spec_size=config.htsat_spec_size, patch_size=config.htsat_patch_size, in_chans=1, num_classes=config.classes_num, window_size=config.htsat_window_size, config = config, depths = config.htsat_depth, embed_dim = config.htsat_dim, patch_stride=config.htsat_stride, num_heads=config.htsat_num_head ) model = SEDWrapper( sed_model = sed_model, config = config, dataset = dataset ) if config.resume_checkpoint is not None: ckpt = torch.load(config.resume_checkpoint, map_location="cpu") ckpt["state_dict"].pop("sed_model.head.weight") ckpt["state_dict"].pop("sed_model.head.bias") # finetune on the esc and spv2 dataset ckpt["state_dict"].pop("sed_model.tscam_conv.weight") ckpt["state_dict"].pop("sed_model.tscam_conv.bias") model.load_state_dict(ckpt["state_dict"], strict=False) elif config.swin_pretrain_path is not None: # train with pretrained model ckpt = torch.load(config.swin_pretrain_path, map_location="cpu") # load pretrain model ckpt = ckpt["model"] found_parameters = [] unfound_parameters = [] model_params = dict(model.state_dict()) for key in model_params: m_key = key.replace("sed_model.", "") if m_key in ckpt: if m_key == "patch_embed.proj.weight": ckpt[m_key] = torch.mean(ckpt[m_key], dim = 1, keepdim = True) if m_key == "head.weight" or m_key == "head.bias": ckpt.pop(m_key) unfound_parameters.append(key) continue assert model_params[key].shape==ckpt[m_key].shape, "%s is not match, %s vs. %s" %(key, str(model_params[key].shape), str(ckpt[m_key].shape)) found_parameters.append(key) ckpt[key] = ckpt.pop(m_key) else: unfound_parameters.append(key) print("pretrain param num: %d \t wrapper param num: %d"%(len(found_parameters), len(ckpt.keys()))) print("unfound parameters: ", unfound_parameters) model.load_state_dict(ckpt, strict = False) model_params = dict(model.named_parameters()) trainer.fit(model, audioset_data) def main(): parser = argparse.ArgumentParser(description="HTS-AT") subparsers = parser.add_subparsers(dest = "mode") parser_train = subparsers.add_parser("train") parser_test = subparsers.add_parser("test") parser_esm_test = subparsers.add_parser("esm_test") parser_saveidc = subparsers.add_parser("save_idc") parser_wa = subparsers.add_parser("weight_average") args = parser.parse_args() # default settings logging.basicConfig(level=logging.INFO) pl.utilities.seed.seed_everything(seed = config.random_seed) if args.mode == "train": train() elif args.mode == "test": test() elif args.mode == "esm_test": esm_test() elif args.mode == "save_idc": save_idc() elif args.mode == "weight_average": weight_average() else: raise Exception("Error Mode!") if __name__ == '__main__': main()
36.450116
156
0.629408
a149982a6c8f4906806fbff87d44aeb36ed91296
740
py
Python
dbtest/blog/migrations/0002_userinfo.py
marktiu7/demo
07df5d706b17b2d9a6275a96d803914b32ab1630
[ "Apache-2.0" ]
null
null
null
dbtest/blog/migrations/0002_userinfo.py
marktiu7/demo
07df5d706b17b2d9a6275a96d803914b32ab1630
[ "Apache-2.0" ]
null
null
null
dbtest/blog/migrations/0002_userinfo.py
marktiu7/demo
07df5d706b17b2d9a6275a96d803914b32ab1630
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2016-09-28 07:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.CreateModel( name='userinfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('email', models.EmailField(max_length=254)), ('memo', models.TextField()), ], options={ 'indexes': [], }, ), ]
26.428571
114
0.537838
a3f2415e55adc1079228ea945610fe73a36926e2
319
py
Python
2-Medium/numRescueBoats.py
Sma-Das/Leetcode
6f9b8f069e2ef198408abd6780fd0697a8bebada
[ "MIT" ]
null
null
null
2-Medium/numRescueBoats.py
Sma-Das/Leetcode
6f9b8f069e2ef198408abd6780fd0697a8bebada
[ "MIT" ]
null
null
null
2-Medium/numRescueBoats.py
Sma-Das/Leetcode
6f9b8f069e2ef198408abd6780fd0697a8bebada
[ "MIT" ]
null
null
null
class Solution: def numRescueBoats(self, people: list[int], limit: int) -> int: people.sort(reverse=True) l, r = 0, len(people)-1 while l <= r: # Prioritise fatasses if people[l] + people[r] <= limit: r -= 1 # fatty + thinny l += 1 return l
31.9
67
0.501567
7d956410d3e9a54e2db9cee46f9a7fd4935f9735
2,540
py
Python
demo/dirichlet_poisson2D.py
liqihao2000/shenfun
2164596ccf906242779d9ec361168246ee6214d8
[ "BSD-2-Clause" ]
1
2021-10-09T06:48:30.000Z
2021-10-09T06:48:30.000Z
demo/dirichlet_poisson2D.py
liqihao2000/shenfun
2164596ccf906242779d9ec361168246ee6214d8
[ "BSD-2-Clause" ]
null
null
null
demo/dirichlet_poisson2D.py
liqihao2000/shenfun
2164596ccf906242779d9ec361168246ee6214d8
[ "BSD-2-Clause" ]
null
null
null
r""" Solve Poisson equation in 2D with periodic bcs in one direction and homogeneous Dirichlet in the other \nabla^2 u = f, Use Fourier basis for the periodic direction and Shen's Dirichlet basis for the non-periodic direction. The equation to solve is (\nabla^2 u, v) = (f, v) """ import sys import os import importlib from sympy import symbols, cos, sin import numpy as np from shenfun import inner, div, grad, TestFunction, TrialFunction, \ Array, Function, FunctionSpace, TensorProductSpace, comm assert len(sys.argv) == 3, "Call with two command-line arguments" assert sys.argv[-1].lower() in ('legendre', 'chebyshev', 'jacobi') assert isinstance(int(sys.argv[-2]), int) # Collect solver family = sys.argv[-1].lower() base = importlib.import_module('.'.join(('shenfun', family))) Solver = base.la.Helmholtz # Use sympy to compute a rhs, given an analytical solution a = 1 b = -1 if family == 'jacobi': a = 0 b = 0 x, y = symbols("x,y") ue = (cos(4*x) + sin(2*y))*(1 - x**2) + a*(1 - x)/2 + b*(1 + x)/2 fe = ue.diff(x, 2) + ue.diff(y, 2) # Size of discretization N = (int(sys.argv[-2]), int(sys.argv[-2])+1) SD = FunctionSpace(N[0], family=family, scaled=True, bc=(a, b)) K1 = FunctionSpace(N[1], family='F', dtype='d', domain=(-2*np.pi, 2*np.pi)) T = TensorProductSpace(comm, (SD, K1), axes=(0, 1)) u = TrialFunction(T) v = TestFunction(T) # Get f on quad points fj = Array(T, buffer=fe) # Compute right hand side of Poisson equation f_hat = Function(T) f_hat = inner(v, fj, output_array=f_hat) # Get left hand side of Poisson equation matrices = inner(v, div(grad(u))) # Create Helmholtz linear algebra solver H = Solver(*matrices) # Solve and transform to real space u_hat = Function(T) # Solution spectral space u_hat = H(u_hat, f_hat) # Solve uq = u_hat.backward() uh = uq.forward() # Compare with analytical solution uj = Array(T, buffer=ue) assert np.allclose(uj, uq) if 'pytest' not in os.environ: import matplotlib.pyplot as plt plt.figure() X = T.local_mesh(True) plt.contourf(X[0], X[1], uq) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uj) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uq-uj) plt.colorbar() plt.title('Error') plt.figure() X = T.local_mesh() for xj in np.squeeze(X[0]): plt.plot((xj, xj), (np.squeeze(X[1])[0], np.squeeze(X[1])[-1]), 'k') for yj in np.squeeze(X[1]): plt.plot((np.squeeze(X[0])[0], np.squeeze(X[0])[-1]), (yj, yj), 'k') #plt.show()
25.4
79
0.645276
4c85fd3963648e556fc1ffca330ce49808418565
3,835
py
Python
kapsoya/models.py
Chebichii-Lab/Kapsoya-Estate
ce10224f30a6823396a51d3edd017b286e399acd
[ "MIT" ]
null
null
null
kapsoya/models.py
Chebichii-Lab/Kapsoya-Estate
ce10224f30a6823396a51d3edd017b286e399acd
[ "MIT" ]
null
null
null
kapsoya/models.py
Chebichii-Lab/Kapsoya-Estate
ce10224f30a6823396a51d3edd017b286e399acd
[ "MIT" ]
1
2021-09-30T19:35:45.000Z
2021-09-30T19:35:45.000Z
from django.db import models from django.contrib.auth.models import User from cloudinary.models import CloudinaryField from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. #class Neighbourhood class Neighbourhood(models.Model): neighbourhood_name = models.CharField(max_length=200) neighbourhood_location = models.CharField(max_length=200) neighbourhood_description = models.TextField(max_length=500, blank=True) neighbourhood_photo = CloudinaryField('photo', default='photo') admin = models.ForeignKey(User, on_delete=models.CASCADE, related_name='admin') def __str__(self): return self.neighbourhood_name def create_neighbourhood(self): self.save() def save_neighbourhood(self): self.save() def delete_neighbourhood(self): self.delete() @classmethod def find_hood(cls, hood_id): return cls.objects.filter(id=hood_id) def update_hood(self): neighbourhood_name = self.neighbourhood_name self.neighbourhood_name = neighbourhood_name class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) id_number = models.IntegerField(default=0) email = models.CharField(max_length=30, blank=True) profile_picture = CloudinaryField('profile') bio = models.TextField(max_length=500, blank=True) neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, blank=True, null=True) def __str__(self): return self.user.username @receiver(post_save, sender=User) def update_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) instance.profile.save() def save_profile(self): self.save() def delete_profile(self): self.delete() def update_profile(cls, id): Profile.objects.get(user_id=id) #class Business class Business(models.Model): business_name = models.CharField(max_length=100,blank=False) user = models.ForeignKey(Profile, on_delete=models.CASCADE, related_name='business_owner') neighbourhood_id = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, related_name='business', blank=True, null=True) business_email = models.CharField(max_length=150,blank=False) business_description = models.TextField() def __str__(self): return self.business_name def save_business(self): self.save() def create_business(self): self.save() def delete_business(self): self.delete() @classmethod def find_business(cls,business_id): business = cls.objects.get(id = business_id) return business @classmethod def search_by_name(cls,search_term): businesses = cls.objects.filter(business_name__icontains=search_term) return businesses def update_business(self): name = self.business_name self.business_name = name class Post(models.Model): CHOICES = ( ('1', 'Security'), ('2', 'Health Emergency'), ('3', 'Entertainment'), ('4', 'Fire Breakouts'), ('5', 'Playground'), ('6', 'Death'), ('7', 'Gym'), ) category = models.CharField(max_length=120, choices=CHOICES) title = models.CharField(max_length=100, null=True) post = models.TextField() date_posted = models.DateTimeField(auto_now_add=True) user = models.ForeignKey(Profile, on_delete=models.CASCADE, related_name='post_owner') neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, related_name='neighbourhood_post') def __str__(self): return f'{self.title} Post' def save_post(self): self.save() def delete_post(self): self.delete()
31.178862
129
0.695698
9b6934e67fa20a6e188120791e2d052823c1d689
165
py
Python
api_digital_certificate/digital_api/urls.py
slarda/Web-Scrapping-Bots-For-Crawling-Docs
aa8ce3c72bfbe2111d16655ffc3a6759a825946e
[ "Apache-2.0" ]
1
2020-12-17T11:21:01.000Z
2020-12-17T11:21:01.000Z
api_digital_certificate/digital_api/urls.py
soft-super/Web-Scrapping-Bots-For-Crawling-Docs
aa8ce3c72bfbe2111d16655ffc3a6759a825946e
[ "Apache-2.0" ]
5
2021-03-19T01:48:07.000Z
2021-06-09T18:26:31.000Z
api_digital_certificate/digital_api/urls.py
tiny-1996/Web-Scrapping-Bots-For-Crawling-Docs
aa8ce3c72bfbe2111d16655ffc3a6759a825946e
[ "Apache-2.0" ]
null
null
null
from django.urls import path from digital_api.views import DigitalCertificateView urlpatterns = [ path('get_signed_key/', DigitalCertificateView.as_view()), ]
20.625
62
0.787879
21cba58902c7717ee527d9b8aeb59e40ee44792b
6,617
py
Python
InplusTrader/dataEngine/drawDK.py
zhengwsh/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
17
2017-04-20T05:17:25.000Z
2020-09-30T08:58:03.000Z
InplusTrader/dataEngine/drawDK.py
vladhj38/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
1
2017-11-12T01:24:06.000Z
2019-09-19T08:50:38.000Z
InplusTrader/dataEngine/drawDK.py
vladhj38/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
17
2017-04-17T08:17:00.000Z
2020-10-25T01:56:49.000Z
# -*- coding: utf-8 -*- """ Create on 2017/02/18 @author: vinson zheng @group: inpluslab @contact: 1530820222@qq.com """ import sys, os import datetime import numpy as np import pymongo from pymongo import MongoClient import talib as ta import plot as iplot import matplotlib.colors as colors import matplotlib.dates as mdates from matplotlib.dates import date2num import matplotlib.ticker as mticker import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from matplotlib.collections import LineCollection, PolyCollection from matplotlib.lines import Line2D, TICKLEFT, TICKRIGHT from matplotlib.patches import Rectangle from matplotlib.transforms import Affine2D class DrawDailyK(object): """docstring for DrawDailyK""" def __init__(self): self.conn = MongoClient('172.18.181.134', 27017) self.Symbol_Db = self.conn.ifTrader_Symbol_Db self.Daily_Db = self.conn.ifTrader_Daily_Db #self.OneMin_Db = self.conn.ifTrader_1Min_Db #self.Tick_Db = self.conn.ifTrader_Tick_Db def fetch_data(self, ticker, start=None, end=None): self.ticker = ticker self.today = datetime.date.today() self.end = self.today.strftime("%Y-%m-%d") if end is None else end self.start = (self.today-datetime.timedelta(days=180)).strftime("%Y-%m-%d") if start is None else start self.startdate = datetime.datetime.strptime(self.start, "%Y-%m-%d") self.enddate = datetime.datetime.strptime(self.end, "%Y-%m-%d") flt = {'date' : {'$gte':self.start, '$lt':self.end}} self.r = self.Daily_Db[self.ticker].find(flt).sort("date",pymongo.ASCENDING) def draw(self): plt.rc('axes', grid=True) plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5) #fig, (ax2, ax3, ax1) = plt.subplots(3, 1) fig, ax2 = plt.subplots(1, 1) fig.set_facecolor('gray') ax2.set_facecolor('#d5d5d5') ax2t = ax2.twinx() #set(gca, 'Units', 'normalized', 'Position', [0.505 0.505 0.495 0.495]) plt.subplots_adjust(0.05, 0.05, 0.95, 0.95) #----------------------------------- kwidth = 0.4 OFFSET = kwidth / 2.0 alpha = 1.0 lines = [] patches = [] colorup = 'r' colordown = 'g' dateL = [] openL = [] highL = [] lowL = [] closeL = [] volumeL = [] amountL = [] for daybar in self.r: date = datetime.datetime.strptime(daybar['date'], "%Y-%m-%d") t = date2num(date) open = float(daybar['open']) high = float(daybar['high']) low = float(daybar['low']) close = float(daybar['close']) volume = float(daybar['volume']) amount = float(daybar['amount']) dateL.append(t) closeL.append(close) volumeL.append(volume) if close >= open: color = colorup lower = open height = close - open else: color = colordown lower = close height = open - close vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, linewidth=0.5, antialiased=True, ) rect = Rectangle( xy=(t - OFFSET, lower), width=kwidth, height=height, facecolor=color, edgecolor=color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax2.add_line(vline) ax2.add_patch(rect) ax2.autoscale_view() ax2.xaxis_date() ax2.set_title('%s DAILY K-LINE' % self.ticker) dateL = np.array(dateL) openL = np.array(openL) highL = np.array(highL) lowL = np.array(lowL) closeL = np.array(closeL) volumeL = np.array(volumeL) amountL = np.array(amountL) vmax = volumeL.max() poly = ax2t.fill_between(dateL, volumeL, 0, label='Volume', facecolor='darkgoldenrod', edgecolor='darkgoldenrod') ax2t.xaxis_date() ax2t.set_ylim(0, 5*vmax) ax2t.set_yticks([]) ma5 = ta.SMA(closeL, 5) ma30 = ta.SMA(closeL, 30) linema5, = ax2.plot(dateL, ma5, color='blue', lw=2, label='SMA (5)') linema30, = ax2.plot(dateL, ma30, color='red', lw=2, label='SMA (30)') props = font_manager.FontProperties(size=10) leg = ax2.legend(loc='upper right', shadow=True, fancybox=True, prop=props) leg.get_frame().set_alpha(0.5) plt.show() ''' s = '%s O:%1.2f H:%1.2f L:%1.2f C:%1.2f, V:%1.1fM Chg:%+1.2f' % ( dateL[-1], openL[-1], lastL[-1], lowL[-1], closeL[-1], volumeL[-1], closeL[-1] - openL[-1]) t4 = ax2.text(0.3, 0.9, s, transform=ax2.transAxes, fontsize=textsize) ''' ''' #ax3.set_yticks([]) # turn off upper axis tick labels, rotate the lower ones, etc for ax in ax1, ax2, ax2t, ax3: if ax != ax3: for label in ax.get_xticklabels(): label.set_visible(False) else: for label in ax.get_xticklabels(): label.set_rotation(30) label.set_horizontalalignment('right') ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') class MyLocator(mticker.MaxNLocator): def __init__(self, *args, **kwargs): mticker.MaxNLocator.__init__(self, *args, **kwargs) def __call__(self, *args, **kwargs): return mticker.MaxNLocator.__call__(self, *args, **kwargs) # at most 5 ticks, pruning the upper and lower so they don't overlap # with other ticks #ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) #ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) ax2.yaxis.set_major_locator(MyLocator(5, prune='both')) ax3.yaxis.set_major_locator(MyLocator(5, prune='both')) ''' # setup application if __name__ == '__main__': dt = DrawDailyK() if len(sys.argv) > 2: dt.fetch_data(sys.argv[1], sys.argv[2], sys.argv[3]) else: dt.fetch_data(sys.argv[1]) dt.draw() # python drawDK.py 600048 2017-01-01 2017-02-20
31.509524
121
0.552818