hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
68892c68002cfb1c3d106ba2af595041dfbab2f8
4,420
py
Python
bootwrap/components/anchor.py
aitorres/bootwrap
dd03d2790e3abda8f461cc92203225643b6077f7
[ "MIT" ]
null
null
null
bootwrap/components/anchor.py
aitorres/bootwrap
dd03d2790e3abda8f461cc92203225643b6077f7
[ "MIT" ]
null
null
null
bootwrap/components/anchor.py
aitorres/bootwrap
dd03d2790e3abda8f461cc92203225643b6077f7
[ "MIT" ]
null
null
null
""" An anchor. """ import warnings from .base import ( WebComponent, ClassMixin, ActionMixin, AppearanceMixin, Action ) from .panel import Panel from .dialog import Dialog from .utils import attr, inject class Anchor(WebComponent, ClassMixin, ActionMixin, AppearanceMixin): """A web component for an anchor. The `Anchor` component is used for creating a hyperlink to pages, files, email addresses, locations on the same page, or other web-resources defined by a URL address. The <i>Bootwrap</i> also uses the `Anchor` in conjunction with other components, for example, in creating a navigation menu. Args: inner (str|WebComponent): The object wrapped by the anchor. Example: Anchor('Google Search').link('https://www.google.com/') Demo: from bootwrap import Anchor output = Anchor('Google Search').link('https://www.google.com/') """ def __init__(self, inner=None): super().__init__() self._inner = inner self.__role = None def __str__(self): name = None if isinstance(self._inner, WebComponent): name = self._inner.identifier if self._category is not None: self.add_classes(f'text-{self._category}') if self._action == Action.LINK: if isinstance(self._target, WebComponent): href = f'#{self._target.identifier}' else: # type(target) == str href = self._target return f''' <a {attr("id", self.identifier)} {attr("class", self.classes)} {attr("href", href)} {attr("role", self.__role)}> {inject(self._inner)} </a> ''' elif self._action == Action.TOGGLE: if isinstance(self._target, Panel): data_toggle = 'tab' if self._target.classes is not None: if 'collapse' in self._target.classes: data_toggle = 'collapse' return f''' <a {attr('id', self.identifier)} {attr('class', self.classes)} {attr("href", f'#{self._target.identifier}')} {attr("data-toggle", data_toggle)} data-target="#{self._target.identifier}"> {inject(self._inner)} </a> ''' elif isinstance(self._target, Dialog): return f''' <a {attr("id", self.identifier)} {attr("class",self.classes)} {attr("href", f'#{self._target.identifier}')} {attr("data-toggle", "modal")} {attr("role", self.__role or 'modal')}> {inject(self._inner)} </a> ''' raise TypeError( 'The toggle operation cannot be applied to the ' f'{type(self._target)} web component;', ) elif self._action == Action.DISMISS: return f''' <a {attr('id', self.identifier)} {attr('class', self.classes)} {attr("href", f'#')} data-dismiss="modal"> {inject(self._inner)} </a> ''' elif self._action == Action.SUBMIT: warnings.warn( 'Avoid using an anchor for performing submit action and use ' 'a button instead. If you still decided to use anchor, the ' 'rendering script will forcefully replace it with a button.', category=RuntimeWarning ) self.add_classes('btn') return f''' <button {attr('id', self.identifier)} {attr('class', self.classes)} type="submit"> {inject(self._inner)} </button> ''' else: return f''' <a {attr("id", self.identifier)} {attr("name", name)} {attr("class", self.classes)} {attr("role", self.__role)}> {inject(self._inner)} </a> '''
34.263566
77
0.480769
d3c12121735bfb0f15f057b80f245587a102750d
6,762
py
Python
Python/incr.py
Antreasgr/Random-Graphs
b517cd13fd16cf1a28894abde9cdef0398ca0083
[ "MIT" ]
null
null
null
Python/incr.py
Antreasgr/Random-Graphs
b517cd13fd16cf1a28894abde9cdef0398ca0083
[ "MIT" ]
null
null
null
Python/incr.py
Antreasgr/Random-Graphs
b517cd13fd16cf1a28894abde9cdef0398ca0083
[ "MIT" ]
null
null
null
from MVA import * from report_generator import * from math import sqrt, ceil, floor def split_edges_k(m_parameters, upper_bound, rand, k=1): """ INCR Algorithm. Split clique tree edges """ dis_set = UnionFind() [dis_set[i] for i in range(m_parameters.num_maximal_cliques)] loops = 0 while m_parameters.edges_list and m_parameters.num_edges < upper_bound: loops += 1 (x, y, sep, omega), index = rand.next_element(m_parameters.edges_list) i = dis_set[x] j = dis_set[y] x_sep, y_sep = m_parameters.cliques[i] - set(sep), m_parameters.cliques[j] - set(sep) if len(x_sep) == 0 or len(y_sep) == 0: raise Exception("Not valid clique tree") elif len(x_sep) <= k or len(y_sep) <= k: # merge {x,y} edges_added = len(x_sep) * len(y_sep) dis_set.union(x, y) m_parameters.cliques[i].update(m_parameters.cliques[j]) m_parameters.cardinality_array[i] += len(y_sep) m_parameters.cliques[j] = set() m_parameters.cardinality_array[j] = 0 m_parameters.num_edges += edges_added m_parameters.num_maximal_cliques -= 1 # delete old edge del m_parameters.edges_list[index] elif len(x_sep) <= k: # merge {x,z} ylen = rand.next_random(1, len(y_sep)) y_random = list(y_sep)[0:ylen] m_parameters.cliques[i].update(y_random) m_parameters.cardinality_array[i] += ylen # update the edge min-seperator m_parameters.edges_list[index] = (x, y, y_random + sep, omega + ylen) # update num of edges m_parameters.num_edges += ylen * len(x_sep) elif len(y_sep) <= k: # merge {y,z} xlen = rand.next_random(1, len(x_sep)) x_random = list(x_sep)[0:xlen] m_parameters.cliques[j].update(x_random) m_parameters.cardinality_array[j] += xlen # update the edge min-seperator m_parameters.edges_list[index] = (x, y, x_random + sep, omega + xlen) # update num of edges m_parameters.num_edges += xlen * len(y_sep) else: # make new z node xlen = rand.next_random(1, len(x_sep)) ylen = rand.next_random(1, len(y_sep)) x_random = list(x_sep)[0:xlen] y_random = list(y_sep)[0:ylen] z = set(x_random + y_random + sep) edges_added = xlen * ylen # print(str(edges_added) + " / " + str(len(x_sep) * len(y_sep))) # add node to list m_parameters.cliques.append(z) m_parameters.cardinality_array.append(len(z)) # add x-z edge m_parameters.edges_list.append((x, len(m_parameters.cliques) - 1, x_random + sep, omega + edges_added)) # add y-z edge m_parameters.edges_list.append((y, len(m_parameters.cliques) - 1, y_random + sep, omega + edges_added)) m_parameters.num_maximal_cliques += 1 # update num of edges m_parameters.num_edges += edges_added # delete old edge del m_parameters.edges_list[index] return loops def init_k_tree_incr(num_vertices, k, rand): ct_tree = MVAParameters(0, 0, [], [], []) ct_tree.cliques.append(set([i for i in range(k + 1)])) ct_tree.cardinality_array.append(k + 1) ct_tree.num_maximal_cliques = 1 ct_tree.num_edges = int(k * (k + 1) / 2) root = ct_tree.cliques[0] for u in range(1, num_vertices - k): i = rand.next_random(0, len(ct_tree.cliques)) y = rand.next_random(0, len(ct_tree.cliques[i])) sep = [x for ii, x in enumerate(ct_tree.cliques[i]) if ii != y] ct_tree.cliques.append(set(sep + [u + k])) ct_tree.cardinality_array.append(k + 1) ct_tree.num_maximal_cliques += 1 ct_tree.num_edges += k new_node = ct_tree.cliques[-1] ct_tree.edges_list.append((i, len(ct_tree.cliques) - 1, sep, k)) return ct_tree def Run_INCR(num_vertices, edge_density, algorithm_name, k, init_tree=None): """ Initialize and run the MVA algorithm """ edges_bound = int(edge_density * (num_vertices * (num_vertices - 1) / 2)) k = max(1, k * edges_bound) runner = runner_factory(num_vertices, algorithm_name, None, edges_bound=edges_bound, edge_density=edge_density, k=k) randomizer = Randomizer(2 * num_vertices, runner["Parameters"]["seed"]) with Timer("t_expand_cliques", runner["Times"]): if init_tree == "ktree": ktree_k = 1 / 2 * (2 * num_vertices - 1 - sqrt(((2 * num_vertices - 1) * (2 * num_vertices - 1)) - (8 * edges_bound))) ktree_k = int(floor(ktree_k)) k_edges = (num_vertices - ktree_k - 1) * ktree_k + (ktree_k * (ktree_k + 1) / 2) p_mva = init_k_tree_incr(runner["Parameters"]["n"], ktree_k, randomizer) print("- Init with " + str(ktree_k) + "-tree:") elif init_tree == "tree": p_mva = expand_tree(runner["Parameters"]["n"], randomizer) print("- Expand tree:") else: p_mva = expand_cliques(runner["Parameters"]["n"], randomizer) print("- Expand cliques:") print(p_mva) with Timer("t_split_edges", runner["Times"]): loops = split_edges_k(p_mva, runner["Parameters"]["edges_bound"], randomizer, k) print("- Split edges:") runner["Stats"]["total"] = runner["Times"]["t_split_edges"] + runner["Times"]["t_expand_cliques"] runner["Stats"]["loops%"] = loops / edges_bound print(" loops:", runner["Stats"]["loops%"]) print(p_mva) return calculate_mva_statistics(p_mva, runner, randomizer, num_vertices) NUM_VERTICES = [ 50, 100, 500, 1000, 2500, 5000, 10000, # 50000, 100000, 500000, 1000000 ] EDGES_DENSITY = [0.1, 0.33, 0.5, 0.75, 0.99] NAME = "INCR_KTREE_k_1" if __name__ == '__main__': mva_data = [] for num in NUM_VERTICES: for edge_density in EDGES_DENSITY: Runners = [] for _ in range(10): Runners.append(Run_INCR(num, edge_density, NAME, 0, "ktree")) # filename = "Results/" + NAME + "/Run_{}_{}_{}.yml".format(num, edge_density, datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) # if not os.path.isdir(os.path.dirname(filename)): # os.makedirs(os.path.dirname(filename)) # with io.open(filename, 'w') as file: # print_statistics(Runners, file) print("Done") mva_data.append(merge_runners(Runners)) run_reports_data(NAME, mva_data)
36.95082
136
0.587252
4909075b90f779efa0cc283e1cf15a85409c64e5
1,003
py
Python
pycodegen/frontend/frontend_cpp/__init__.py
blejdfist/pycodegen
b7a7fad2c9e0a537893e53df0e07544d047e443d
[ "MIT" ]
5
2019-02-15T16:13:43.000Z
2021-07-22T02:54:57.000Z
pycodegen/frontend/frontend_cpp/__init__.py
blejdfist/pycodegen
b7a7fad2c9e0a537893e53df0e07544d047e443d
[ "MIT" ]
1
2019-12-06T20:24:36.000Z
2020-05-04T18:43:12.000Z
pycodegen/frontend/frontend_cpp/__init__.py
blejdfist/pycodegen
b7a7fad2c9e0a537893e53df0e07544d047e443d
[ "MIT" ]
null
null
null
"""C/C++ parser frontend based on libclang""" import argparse import logging import sys _LOGGER = logging.getLogger(__name__) def register_arguments(argument_parser): argument_parser.add_argument("--args", nargs=argparse.REMAINDER, help="Arguments to pass to clang") argument_parser.add_argument("--print-ast", action="store_true", help="Print AST to console") def run(filename, options=None): try: import clang.cindex except ModuleNotFoundError: _LOGGER.error("To use the C++ frontend you must have clang>=6.0.0 installed.") _LOGGER.error("Try installing it using: pip install 'pycodegen[CPP]'") sys.exit(1) from .parser_libclang import ParserLibClang if options is None: options = {} parser = ParserLibClang() if options.get('print_ast'): print(parser.dump(filename, options.get('args'))) return parser.parse(filename, options.get('args'))
27.861111
86
0.65005
6d5c9fbf5046ce984210e2d15346d3d8601d7b59
827
py
Python
01_fuzzingCrashingProgram.py
F-Masood/ExploitingBufferOverflows
9397dc2bc45255a50379cd105e8b4b6242993a4b
[ "MIT" ]
3
2021-12-09T14:40:49.000Z
2022-02-22T04:21:07.000Z
01_fuzzingCrashingProgram.py
F-Masood/Exploiting_StackBased_BufferOverflows
9397dc2bc45255a50379cd105e8b4b6242993a4b
[ "MIT" ]
null
null
null
01_fuzzingCrashingProgram.py
F-Masood/Exploiting_StackBased_BufferOverflows
9397dc2bc45255a50379cd105e8b4b6242993a4b
[ "MIT" ]
null
null
null
#!/usr/bin/python #once the program crashes in Windows, CLOSE it manually or this PROGRAM may keep running forever import sys,socket from time import sleep buffer = "A"*100 while True: try: print ("Sending buffer of length " + str(len(buffer)) ) s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.settimeout(2) res = s.connect_ex(('192.168.10.51',2371)) if res == 0: print("The Port is open\n") else: print("The Port is closed\n") s.close() sys.exit() res = s.connect(('192.168.10.51',2371)) buffer = buffer + "A"*250 s.send((buffer)) s.close() sleep(2) except: print ("Program crashed at %s bytes" %str(len(buffer))) sys.exit()
22.351351
96
0.540508
249b8e65ac9d671f8c4827e93a09a6afc5524620
1,731
py
Python
driver/util.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
null
null
null
driver/util.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
null
null
null
driver/util.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import re DRIVER_DIR = os.path.abspath(os.path.dirname(__file__)) REPO_ROOT_DIR = os.path.dirname(DRIVER_DIR) BUILDS_DIR = os.path.join(REPO_ROOT_DIR, "builds") def get_elapsed_time(): """ Return the CPU time taken by the python process and its child processes. """ if os.name == "nt": # The child time components of os.times() are 0 on Windows. If # we ever end up using this method on Windows, we need to be # aware of this, so it's prudent to complain loudly. raise NotImplementedError("cannot use get_elapsed_time() on Windows") return sum(os.times()[:4]) def find_domain_filename(task_filename): """ Find domain filename for the given task using automatic naming rules. """ dirname, basename = os.path.split(task_filename) domain_basenames = [ "domain.pddl", basename[:3] + "-domain.pddl", "domain_" + basename, ] for domain_basename in domain_basenames: domain_filename = os.path.join(dirname, domain_basename) if os.path.exists(domain_filename): return domain_filename raise SystemExit( "Error: Could not find domain file using automatic naming rules.") # Shell-escaping code taken from Python's shlex.quote (missing in Python < 3.3). _find_unsafe = re.compile(r'[^\w@%+=:,./-]').search def shell_escape(s): """Return a shell-escaped version of the string *s*.""" if not s: return "''" if _find_unsafe(s) is None: return s # Use single quotes, and put single quotes into double quotes. # The string $'b is then quoted as '$'"'"'b'. return "'" + s.replace("'", "'\"'\"'") + "'"
29.844828
80
0.636626
9890630bc1932c400ebb2a3a7f8829eb14db4351
1,747
py
Python
src/mmxnet/mdropout.py
mumupy/mmdeeplearning
fb10a652197556d76ff025c631afa5645ca2cf24
[ "Apache-2.0" ]
9
2019-10-25T03:50:02.000Z
2022-03-22T13:22:11.000Z
src/mmxnet/mdropout.py
mumupy/mmdeeplearning
fb10a652197556d76ff025c631afa5645ca2cf24
[ "Apache-2.0" ]
11
2019-12-11T14:47:54.000Z
2022-02-10T00:23:57.000Z
src/mmxnet/mdropout.py
mumupy/mmdeeplearning
fb10a652197556d76ff025c631afa5645ca2cf24
[ "Apache-2.0" ]
1
2021-04-20T07:30:42.000Z
2021-04-20T07:30:42.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/26 18:12 # @Author : ganliang # @File : mdropout.py # @Desc : 过拟合解决办法-丢弃发 import d2lzh as d2l from mxnet import nd, gluon, autograd, init from mxnet.gluon import nn, loss as gloss from src.config import logger def dropout(X, drop_rate): """ 丢弃X数据集中的rate比例数据 :param X: 数据集合 :param drop_rate: 丢弃比例 :return: """ assert 0 <= drop_rate <= 1 logger.info("丢弃之前的数据:\n%s" % X) keep_rate = 1 - drop_rate if keep_rate == 0: return nd.zeros_like(X) drop_x = nd.random.uniform(0, 1, shape=X.shape) logger.info("丢弃随机数据:%s" % drop_x) mask = drop_x < keep_rate logger.info("丢弃之后数据:\n%s" % mask) return mask * X def dropout2(X, drop_rate): autograd.set_training(True) Z = nd.zeros_like(X) nd.Dropout(X, p=drop_rate, out=Z) return Z def dropout_gluon(): drop_prob1, drop_prob2, lr, batch_size, num_epochs = 0.2, 0.5, 0.1, 64, 50 net = nn.Sequential() net.add(nn.Dense(256, activation="relu"), nn.Dropout(drop_prob1), # 在第一个全连接层后添加丢弃层 nn.Dense(256, activation="relu"), nn.Dropout(drop_prob2), # 在第二个全连接层后添加丢弃层 nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) loss = gloss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, trainer) if __name__ == "__main__": x = nd.arange(64).reshape(8, 8) logger.info(dropout(x, 0.5)) logger.info(dropout2(x, 0.5) / 2) dropout_gluon()
25.318841
81
0.627361
86c82d6209e78988ca418a2a60f25cc300aff88f
860
py
Python
py-drone-vision/ardupilot.py
Witherlord/quadcopter-matlab
09f922e10919a69fd4751f8b257296b2ab2bdd64
[ "MIT" ]
2
2021-01-14T09:45:43.000Z
2021-10-15T03:30:41.000Z
py-drone-vision/ardupilot.py
Witherlord/quadcopter-matlab
09f922e10919a69fd4751f8b257296b2ab2bdd64
[ "MIT" ]
null
null
null
py-drone-vision/ardupilot.py
Witherlord/quadcopter-matlab
09f922e10919a69fd4751f8b257296b2ab2bdd64
[ "MIT" ]
1
2021-01-14T09:45:40.000Z
2021-01-14T09:45:40.000Z
import cv2 import numpy as np import os import RPi.GPIO as gpio import time import pigpio pi = pigpio.pi() gpio.setmode(gpio.BCM) pin_x_l = 12 pin_x_r = 16 pin_y_up = 20 pin_y_d = 21 freq_y = 50 gpio.setup(pin_x_l, gpio.IN) gpio.setup(pin_x_r, gpio.IN) gpio.setup(pin_y_up, gpio.OUT) gpio.setup(pin_y_d, gpio.OUT) pwmObject_y_up = gpio.PWM(pin_y_up, freq_y) pwmObject_y_d = gpio.PWM(pin_y_d, freq_y) pwmObject_y_up.start(0) pwmObject_y_d.start(0) while True: cb1 = pi.callback(pin_x_l, pigpio.RISING_EDGE) CT = time.time() pi.wait_for_edge(pin_x_l, pigpio.FALLING_EDGE) CT_HIGH = time.time() - CT # pi.wait_for_edge(pin_x_l, pigpio.RISING_EDGE) # CT_LOW = time.time() - CT_HIGH - CT # time.sleep(CT_HIGT) #cb1 = pi.callback(pin_x_l, pigpio.RISING_EDGE) # FULL = CT_HIGH + CT_LOW # # DC = (CT_HIGH/FULL)*100 print("DC=" + str(CT_HIGH))
16.862745
48
0.723256
129b5c767d6f1ac9effb117747784d11c708a595
3,432
py
Python
src/core/uv_edit/data/poly.py
Epihaius/panda3dstudio
f5c62ca49617cae1aa5aa5b695200027da99e242
[ "BSD-3-Clause" ]
63
2016-01-02T16:28:47.000Z
2022-01-19T11:29:51.000Z
src/core/uv_edit/data/poly.py
Epihaius/panda3dstudio
f5c62ca49617cae1aa5aa5b695200027da99e242
[ "BSD-3-Clause" ]
12
2016-06-12T14:14:15.000Z
2020-12-18T16:11:45.000Z
src/core/uv_edit/data/poly.py
Epihaius/panda3dstudio
f5c62ca49617cae1aa5aa5b695200027da99e242
[ "BSD-3-Clause" ]
17
2016-05-23T00:02:27.000Z
2021-04-25T17:48:27.000Z
from ..base import * class Polygon: __slots__ = ("type", "id", "picking_color_id", "vertex_ids", "edge_ids", "uv_data_obj", "_tri_data", "_center_pos") def __init__(self, poly_id, picking_col_id, uv_data_obj=None, triangle_data=None, vert_ids=None, edge_ids=None, data_copy=None): self.type = "poly" self.id = poly_id self.picking_color_id = picking_col_id self.uv_data_obj = uv_data_obj if data_copy: center_pos = data_copy["center_pos"] triangle_data = data_copy["tri_data"] vert_ids = data_copy["vert_ids"] edge_ids = data_copy["edge_ids"] else: center_pos = Point3() self._center_pos = center_pos self._tri_data = triangle_data self.vertex_ids = vert_ids self.edge_ids = edge_ids def copy(self): data_copy = {} data_copy["center_pos"] = self._center_pos data_copy["tri_data"] = self._tri_data[:] data_copy["vert_ids"] = self.vertex_ids[:] data_copy["edge_ids"] = self.edge_ids[:] poly = Polygon(self.id, self.picking_color_id, data_copy=data_copy) return poly def __getitem__(self, index): try: return self._tri_data[index] except IndexError: raise IndexError("Index out of range.") except TypeError: raise TypeError("Index must be an integer value.") def __len__(self): """ Return the size of the polygon corresponding to the number of data rows of the associated GeomTriangles object. """ return len(self._tri_data) * 3 @property def merged_subobj(self): return self @property def neighbor_ids(self): merged_verts = self.uv_data_obj.merged_verts neighbor_ids = set() for vert_id in self.vertex_ids: neighbor_ids.update(merged_verts[vert_id].polygon_ids) neighbor_ids.remove(self.id) return neighbor_ids @property def vertices(self): verts = self.uv_data_obj.get_subobjects("vert") return [verts[vert_id] for vert_id in self.vertex_ids] @property def edges(self): edges = self.uv_data_obj.get_subobjects("edge") return [edges[edge_id] for edge_id in self.edge_ids] @property def vertex_count(self): return len(self.vertex_ids) @property def row_indices(self): verts = self.uv_data_obj.get_subobjects("vert") return [verts[vert_id].row_index for vert_id in self.vertex_ids] @property def special_selection(self): polys = [self] if GD["uv_edit_options"]["sel_polys_by_cluster"]: polys = self.uv_data_obj.get_polygon_cluster(self.id) return polys def get_center_pos(self, ref_node=None): if ref_node: origin = self.uv_data_obj.origin return ref_node.get_relative_point(origin, self._center_pos) return self._center_pos @property def center_pos(self): return self.get_center_pos() @center_pos.setter def center_pos(self, center_pos): self._center_pos = center_pos def update_center_pos(self): verts = self.vertices positions = [vert.get_pos() for vert in verts] self._center_pos = sum(positions, Point3()) / len(positions)
25.235294
85
0.624126
1e4c732567fb6381aca4916c6ab6f32d44ff63a1
27
py
Python
ven2/lib/python2.7/site-packages/zope/i18n/locales/tests/__init__.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
1
2021-09-15T20:22:39.000Z
2021-09-15T20:22:39.000Z
ven2/lib/python2.7/site-packages/zope/i18n/locales/tests/__init__.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
43
2015-01-28T21:04:24.000Z
2021-12-09T07:33:35.000Z
ven2/lib/python2.7/site-packages/zope/i18n/locales/tests/__init__.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
7
2015-04-03T09:00:54.000Z
2020-05-14T14:16:25.000Z
# Test package for locales
13.5
26
0.777778
d78c845fe8798f4e959a7e55e23c1b9d3a7e6eef
7,575
py
Python
lists.py
alexhalme/signover
c2f65a046d54a419187a99c7d4b6faaaa38caec8
[ "MIT" ]
null
null
null
lists.py
alexhalme/signover
c2f65a046d54a419187a99c7d4b6faaaa38caec8
[ "MIT" ]
null
null
null
lists.py
alexhalme/signover
c2f65a046d54a419187a99c7d4b6faaaa38caec8
[ "MIT" ]
null
null
null
import _clibash import locaf as af from locaf import En import wsql import gv import re import tf from cryptoAES import CryW from crypto25519 import Crypt25519 import time import json import zlib # 0 - disabled, 1 - superuser, 2 - admin, 3 - regular, 4 - view only PRIVS = { 0: {0:[], 1:[], 2:[], 3:[], 4:[]}, 1: {0:[0, 1, 2, 3, 4], 1:[], 2:[0, 1, 2, 3, 4], 3:[0, 1, 2, 3, 4], 4:[0, 1, 2, 3, 4]}, 2: {0:[0, 2, 3, 4], 1:[], 2:[], 3:[0, 2, 3, 4], 4:[0, 2, 3, 4]}, 3: {0:[], 1:[], 2:[], 3:[], 4:[]}, 4: {0:[], 1:[], 2:[], 3:[], 4:[]} } class SOList: def __init__(self, auth, luid): self.auth, self.luid = auth, luid if not luid: self.createList() self.auth.sql.reconnect() self.reload() def reload(self): self.auth.sql.reconnect() rights = self.auth.sql.getDataDicts('rights', where = f"luid = '{self.luid}' AND uuid = '{self.auth.userDict['uuid']}'") self.rights = rights[0] if rights else None solst = self.auth.sql.getOneDataDict('lists', 'luid', self.luid) self.active = solst['active'] if not solst: self.active = self.rights = self.dat = self.aes = None return None self.aes = self.auth.keyring.decrypt(self.rights['aes']) if not self.aes: self.active = self.rights = self.dat = self.aes = None return None self.dat = tf.bj(solst['dat'], self.aes) if not self.dat: self.active = self.rights = self.dat = self.aes = None return None def selection(self, select = True): self.auth.sql.wesc('UPDATE rights SET disp* WHERE uuid* AND luid*', v = [(select, self.auth.userDict['uuid'], self.luid)]) return True def vueList(self, summary = False): retval = { 'admin': self.rights['priv'], 'list': { 'luid': self.luid, 'dat': self.dat, 'active': self.active } } if summary: return retval return {**retval, 'patients': self.vuePatients(), 'rights': self.vueRights() } def vueRights(self): if not self.rights['priv'] in [1, 2]: return [] query = self.auth.sql.fetch( f"SELECT uuid, email, dat, (" f" SELECT priv FROM rights WHERE luid = '{self.luid}' AND rights.uuid = users.uuid" f") FROM users WHERE uuid in (" f" SELECT uuid FROM rights WHERE luid = '{self.luid}' AND priv != 0" f") AND !ISNULL(priv)" ) retval = [dict(zip(['uuid', 'email', 'dat', 'priv'], x)) for x in query] return [{**x, 'dat': tf.bj(x['dat'])} for x in retval] def vuePatients(self): return [] def updateList(self, newDat = None, newActive = None): if newDat: # remove if requested newDat['cols'] = [col for col in newDat['cols'] if (True if not 'wipe' in col else not col['wipe'])] # inactive at the end newDat['cols'] = af.flst( [[colA for colA in newDat['cols'] if colA['active']], [colI for colI in newDat['cols'] if not colI['active']]]) self.auth.sql.replaceRows('lists', { 'luid': self.luid, 'dat': tf.jb(newDat if newDat else self.dat, self.aes), 'active': newActive if newActive else self.active }) self.reload() def createList(self): self.luid = tf.getUUID() self.aes = En()._rnd(32) self.shareList(1, uuids = [self.auth.userDict['uuid']], first = True) self.updateList( newDat = { 'name': f"(nameless list)", 'cols': [] }, newActive = 1 ) # add empty col self.updateCol() # check if one list displayed else display this one if not self.auth.sql.fetch(f"SELECT luid FROM lists WHERE luid IN (SELECT luid FROM rights WHERE uuid = '{self.auth.userDict['uuid']}' AND disp = 1) AND active = 1"): self.auth.sql.wesc('UPDATE rights SET disp* WHERE uuid* AND luid*', v = [(True, self.auth.userDict['uuid'], self.luid)]) def updateCol(self, dat = None): # new col requested newDat = {k: v for k, v in self.dat.items()} if not dat: newDat['cols'].append({'type': 0, 'title': '(none)', 'active': True, 'width': 200, 'cuid': tf.getUUID()}) else: newDat['cols'][af.kmap(newDat['cols'], 'cuid').index(dat['cuid'])].update(dat) self.updateList(newDat = newDat) return True def unitAction(self, action, dat): what = action.split('-')[1] newDat = {k: v for k, v in self.dat.items()} colIndex = af.kmap(newDat['cols'], 'cuid').index(dat['cuid']) if what in ['keyboard_arrow_up', 'keyboard_arrow_down']: colCopy = newDat['cols'][colIndex] newDat['cols'].pop(colIndex) newIndex = colIndex + {'keyboard_arrow_up': -1, 'keyboard_arrow_down': 1}.get(what) if not len(newDat['cols']) >= newIndex > -1: return False newDat['cols'].insert(newIndex, colCopy) if what in ['visibility', 'visibility_off']: newDat['cols'][colIndex]['active'] = {'visibility_off': True, 'visibility': False}.get(what) self.updateList(newDat = newDat) def deleteRights(self, uluids): self.auth.sql.deleteCond('rights', condition = ' OR '.join([f"(uuid = '{uuid}' AND luid = '{luid}')" for uuid, luid in af.iwList(uluids)])) def shareList(self, priv, emails = None, uuids = None, first = False): if False if first else not self.rights.get('priv'): return False if not priv in [0, 1, 2, 3, 4]: return False if emails: wheres = ' OR '.join([f"email = '{email}'" for email in af.iwList(emails)]) if not wheres: return False query = self.auth.sql.fetch(f"SELECT uuid FROM users WHERE {wheres}") if not query: return False uuids = [x[0] for x in query] else: if not uuids: return False uuids = af.iwList(uuids) if self.auth.userDict['uuid'] in uuids and (True if first else priv <= self.rights.get('priv')): self.auth.sql.wesc( f"DELETE FROM rights WHERE uuid* AND luid*", v = (self.auth.userDict['uuid'], self.luid) ) rightsDict = { 'luid': self.luid, 'uuid': self.auth.userDict['uuid'], 'priv': priv, 'aes': self.auth.keyring.encrypt(self.aes, forceSealedBox = True) } # TODO: this? self.auth.sql.wesc(f"INSERT INTO rights **", d = rightsDict) if first: return uuids # possible uuids ie where emails match and not self user's uuid uuidsPossible = list(set(uuids) - {self.auth.userDict['uuid']}) allowedPrivs = PRIVS.get(self.rights.get('priv')) # where statement for privileges when priv would be allowed uuidsAllowedWheres = ' OR '.join([f"priv = {k}" for k, v in allowedPrivs.items() if priv in v]) # uuids in rights table for this list where priv prevents Δ uuidsProhibited = self.auth.sql.getOneCol('rights', 'uuid', where = f"luid = '{self.luid}' AND NOT ({uuidsAllowedWheres})") # to-do list ie possible minus prohibited uuidsToDo = list(set(uuidsPossible) - set(uuidsProhibited)) if not uuidsToDo: return [] self.deleteRights([(uuid, self.luid) for uuid in uuidsToDo]) self.auth.sql.replaceRows('rights', [{ 'uuid': uuid, 'luid': self.luid, 'priv': priv, 'aes': self.asymEncrypt(uuid, self.aes) } for uuid in uuidsToDo]) return uuidsToDo def asymEncrypt(self, uuid, blob): return self._asymEncrypt(self.auth.sql, uuid, blob) @classmethod def _asymEncrypt(cls, sql, uuid, blob): query = sql.fetch(f"SELECT pub FROM users WHERE uuid = '{uuid}'") if not query: return False return Crypt25519(publicBytes = query[0][0]).encrypt(blob)
27.95203
170
0.598812
60559b05417d1ed416f0716d2eec604928c6e65d
6,641
py
Python
tips/tips.py
flaree/flare-cogs
b6053d9db9e456a30d48e0b90dd05f229299a8f6
[ "MIT" ]
38
2021-03-07T17:13:10.000Z
2022-02-28T19:50:00.000Z
tips/tips.py
Ghalban/flare-cogs
aa535d3c898e67a52a1fa43b98d943cc7c0bcf51
[ "MIT" ]
44
2021-03-12T19:13:32.000Z
2022-03-18T10:20:52.000Z
tips/tips.py
Ghalban/flare-cogs
aa535d3c898e67a52a1fa43b98d943cc7c0bcf51
[ "MIT" ]
33
2021-03-08T18:59:59.000Z
2022-03-23T10:57:46.000Z
import functools import random import discord from redbot.core import commands from redbot.core.config import Config from redbot.core.utils.menus import DEFAULT_CONTROLS, menu real_send = commands.Context.send def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i : i + n] # from: https://docs.python.org/3/library/stdtypes.html#str.format_map class Default(dict): """Used with str.format_map to avoid KeyErrors on bad tips.""" def __missing__(self, key): # returns missing keys as '{key}' return f"{{{key}}}" # Thanks Jack for smileysend @functools.wraps(real_send) async def send(self, content=None, **kwargs): content = str(content) if content is not None else None cog = self.bot.get_cog("Tips") if (cog).usercache.get(self.author.id, {}).get("toggle", True) and random.randint( 1, cog.chance ) == 1: tips = cog.message_cache or ["No tips configured."] tip_msg = random.choice(tips).replace("{prefix}", self.clean_prefix) new_content = cog.tip_format.format_map( Default( content=content or "", tip_msg=tip_msg, prefix=self.clean_prefix, ) ) if len(new_content) <= 2000: content = new_content return await real_send(self, content, **kwargs) class Tips(commands.Cog): """Tips - Credit to Jackenmen""" __version__ = "0.0.2" def format_help_for_context(self, ctx): pre_processed = super().format_help_for_context(ctx) return f"{pre_processed}\nCog Version: {self.__version__}" def __init__(self, bot) -> None: self.bot = bot self.config = Config.get_conf(self, 176070082584248320, force_registration=True) self.config.register_global( tips=["Add tips by using `{prefix}tips add-tip`."], chance=50, tip_format="{tip_msg}\nYou can turn these tips off by typing `{prefix}tips off`\n\n{content}", ) self.config.register_user(toggle=True) async def initialize(self) -> None: setattr(commands.Context, "send", send) await self.generate_cache() async def generate_cache(self): self.usercache = await self.config.all_users() self.message_cache = await self.config.tips() self.chance = await self.config.chance() self.tip_format = await self.config.tip_format() def cog_unload(self) -> None: setattr(commands.Context, "send", real_send) @commands.group(invoke_without_command=True) async def tips(self, ctx: commands.Context, toggle: bool) -> None: """ Toggle and setup tips. Run `[p]tips off` to disable tips. """ await self.config.user(ctx.author).toggle.set(toggle) await ctx.tick() await self.generate_cache() @commands.is_owner() @tips.command() async def chance(self, ctx, chance: int): """ Chance for a tip to show. Default is 50 """ if chance <= 1: return await ctx.send("Chance must be greater than 1") await self.config.chance.set(chance) await self.generate_cache() await ctx.tick() @commands.is_owner() @tips.command(name="add-tip", aliases=["add", "addtip", "create"]) async def add_tip(self, ctx, *, tip: str): """ Add a tip message. Append `{prefix}` to have it formatted with prefix on send. """ async with self.config.tips() as replies: if tip in replies: return await ctx.send("That is already a response.") replies.append(tip) ind = replies.index(tip) await ctx.send("Your tip has been added and is tip ID #{}".format(ind)) await self.generate_cache() @commands.is_owner() @tips.command(name="del-tip", aliases=["del", "deltip", "delete"]) async def del_tips(self, ctx, *, id: int): """Delete a custom tip.""" async with self.config.tips() as replies: if not replies: return await ctx.send("No custom tips are configured.") if id > len(replies): return await ctx.send("Invalid ID.") replies.pop(id) await ctx.send("Your tip has been removed") await self.generate_cache() @commands.is_owner() @tips.command(name="list-tips", aliases=["list", "listtips"]) async def list_tips( self, ctx, ): """List custom tips.""" async with self.config.tips() as replies: if not replies: return await ctx.send("No tips have been configured.") a = chunks(replies, 10) embeds = [] i = 0 for item in a: items = [] for strings in item: items.append(f"**Reply {i}**: {strings}") i += 1 embed = discord.Embed( colour=await self.bot.get_embed_colour(ctx.channel), description="\n".join(items), ) embeds.append(embed) if len(embeds) == 1: await ctx.send(embed=embeds[0]) else: await menu(ctx, embeds, DEFAULT_CONTROLS) @commands.is_owner() @tips.command(name="format") async def format( self, ctx: commands.Context, *, formatting=None, ): """ Set the format for tip messages. Variables: `tip_msg` - the tip `content` - the original message content `prefix` - the invocation prefix Default value: `{tip_msg}\\nYou can turn these tips off by typing `{prefix}tips off`\\n\\n{content}` """ if formatting: await self.config.tip_format.set(formatting) await ctx.channel.send( f"The tip format has been set to:\n{formatting}" ) # intentionally uses ctx.channel to avoid tips being triggered else: await self.config.tip_format.clear() await ctx.channel.send("The tip format has been reset to the default.") await self.generate_cache() content = "This is example content of a message with a tip." tips = self.message_cache or ["No tips configured."] tip_msg = random.choice(tips).format(prefix=ctx.clean_prefix) await ctx.channel.send( self.tip_format.format(content=content, tip_msg=tip_msg, prefix=ctx.clean_prefix) )
33.540404
106
0.584249
e192e2b546e587bd8e511db094a896636c111882
506
py
Python
tests/test_fixtures.py
NuGrid/NuGridPy
35cab0e7fa5565fbb2f99917715a51e3658dd701
[ "BSD-3-Clause" ]
16
2016-08-05T18:37:11.000Z
2021-08-06T20:01:34.000Z
tests/test_fixtures.py
NuGrid/NuGridPy
35cab0e7fa5565fbb2f99917715a51e3658dd701
[ "BSD-3-Clause" ]
59
2016-05-19T19:17:41.000Z
2019-12-12T22:54:05.000Z
tests/test_fixtures.py
NuGrid/NuGridPy
35cab0e7fa5565fbb2f99917715a51e3658dd701
[ "BSD-3-Clause" ]
11
2016-05-16T22:37:36.000Z
2019-07-28T07:33:25.000Z
import unittest from .fixtures import random_string class TestFixtures(unittest.TestCase): """Class testing the implemented fixtures.""" def test_random_string(self): """Test the random_string function.""" num_strings = 1000 string_collection = [ random_string() for _ in range(num_strings) ] # Make a set to remove duplicates string_collection = set(string_collection) self.assertEqual(len(string_collection), num_strings)
25.3
61
0.673913
7e6795d5e962f556b9f8ecb269f6d9908190a13a
9,759
py
Python
implementation/server/cms/models.py
Aincient/cleo
933ef372fa7847d943206d72bfb03c201dbafbd6
[ "Apache-2.0" ]
null
null
null
implementation/server/cms/models.py
Aincient/cleo
933ef372fa7847d943206d72bfb03c201dbafbd6
[ "Apache-2.0" ]
null
null
null
implementation/server/cms/models.py
Aincient/cleo
933ef372fa7847d943206d72bfb03c201dbafbd6
[ "Apache-2.0" ]
3
2018-10-01T12:04:36.000Z
2021-01-07T09:30:50.000Z
from django.db import models from wagtail.admin.edit_handlers import ( FieldPanel, FieldRowPanel, InlinePanel, MultiFieldPanel, PageChooserPanel, StreamFieldPanel ) from wagtail.core.models import Orderable, Page from wagtail.core.fields import RichTextField from modelcluster.fields import ParentalKey from modelcluster.models import ClusterableModel from wagtail.core.fields import RichTextField, StreamField from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.snippets.edit_handlers import SnippetChooserPanel from wagtail.snippets.models import register_snippet from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField from wagtailtrans.models import TranslatablePage from wagtail.search import index from .blocks import BaseStreamBlock class TranslatablePageMixin(models.Model): # One link for each alternative language # These should only be used on the main language page (english) dutch_link = models.ForeignKey(Page, null=True, on_delete=models.SET_NULL, blank=True, related_name='+') def get_language(self): """ This returns the language code for this page. """ # Look through ancestors of this page for its language homepage # The language homepage is located at depth 3 language_homepage = self.get_ancestors(inclusive=True).get(depth=3) # The slug of language homepages should always be set to the language code return language_homepage.slug # Method to find the main language version of this page # This works by reversing the above links def english_page(self): """ This finds the english version of this page """ language = self.get_language() if language == 'en': return self elif language == 'nl': return type(self).objects.filter(dutch_link=self).first().specific # We need a method to find a version of this page for each alternative language. # These all work the same way. They firstly find the main version of the page # (english), then from there they can just follow the link to the correct page. def dutch_page(self): """ This finds the french version of this page """ dutch_page = self.dutch_page() if dutch_page and dutch_page.dutch_link: return dutch_page.dutch_link.specific class Meta: abstract = True class HomePageBlock(models.Model): background_color = models.CharField(max_length=255) title = models.CharField(max_length=255) body = models.CharField(max_length=255) panels = [ FieldPanel('background_color'), FieldPanel('title'), FieldPanel('body'), ] class Meta: abstract = True class HomePageBlockLink(Orderable, HomePageBlock): page = ParentalKey('cms.HomePage', on_delete=models.CASCADE, related_name='homepage_blocks') class HomePage(TranslatablePage, Page): template="cms/base/home_page.html" image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', help_text='Homepage image' ) hero_text = RichTextField() hero_cta = models.CharField( verbose_name='Hero CTA', max_length=255, help_text='Text to display on Call to Action', blank=True ) hero_cta_link = models.CharField( verbose_name='Hero Link', max_length=255, help_text='Hero Link', blank=True ) sub_hero_block = RichTextField(blank=True) body = StreamField( BaseStreamBlock(), verbose_name="Home content block", blank=True ) content_panels = Page.content_panels + [ MultiFieldPanel([ ImageChooserPanel('image'), FieldPanel('hero_text', classname="full"), MultiFieldPanel([ FieldPanel('hero_cta'), FieldPanel('hero_cta_link'), FieldPanel('sub_hero_block'), ]) ], heading="Hero section"), StreamFieldPanel('body'), ] def __str__(self): return self.title class Meta: verbose_name_plural = 'Home' class ContentPage(TranslatablePage, Page): body = RichTextField(blank=True) template="cms/base/content_page.html" image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', help_text='Header image' ) body = StreamField( BaseStreamBlock(), verbose_name="Page body", blank=True ) content_panels = Page.content_panels + [ ImageChooserPanel('image'), StreamFieldPanel('body'), ] @register_snippet class FooterText(models.Model): """ This provides editable text for the site footer. Again it uses the decorator `register_snippet` to allow it to be accessible via the admin. It is made accessible on the template via a template tag defined in base/templatetags/ navigation_tags.py """ body = RichTextField() panels = [ FieldPanel('body'), ] def __str__(self): return "Footer text" class Meta: verbose_name_plural = 'Footer Text' @register_snippet class CookieTextEN(models.Model): """ This provides editable text for the site footer. Again it uses the decorator `register_snippet` to allow it to be accessible via the admin. It is made accessible on the template via a template tag defined in base/templatetags/ navigation_tags.py """ body = RichTextField() panels = [ FieldPanel('body'), ] def __str__(self): return "Cookie text EN" class Meta: verbose_name_plural = 'Cookie text EN' @register_snippet class CookieTextNL(models.Model): """ This provides editable text for the site footer. Again it uses the decorator `register_snippet` to allow it to be accessible via the admin. It is made accessible on the template via a template tag defined in base/templatetags/ navigation_tags.py """ body = RichTextField() panels = [ FieldPanel('body'), ] def __str__(self): return "Cookie text NL" class Meta: verbose_name_plural = 'Cookie text NL' class FormField(AbstractFormField): """ Wagtailforms is a module to introduce simple forms on a Wagtail site. It isn't intended as a replacement to Django's form support but as a quick way to generate a general purpose data-collection form or contact form without having to write code. We use it on the site for a contact form. You can read more about Wagtail forms at: http://docs.wagtail.io/en/latest/reference/contrib/forms/index.html """ page = ParentalKey('FormPage', related_name='form_fields', on_delete=models.CASCADE) class FormPage(TranslatablePage, AbstractEmailForm): image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) template="cms/base/form_page.html" body = StreamField(BaseStreamBlock()) thank_you_text = RichTextField(blank=True) # Note how we include the FormField object via an InlinePanel using the # related_name value content_panels = AbstractEmailForm.content_panels + [ ImageChooserPanel('image'), StreamFieldPanel('body'), InlinePanel('form_fields', label="Form fields"), FieldPanel('thank_you_text', classname="full"), MultiFieldPanel([ FieldRowPanel([ FieldPanel('from_address', classname="col6"), FieldPanel('to_address', classname="col6"), ]), FieldPanel('subject'), ], "Email"), ] class ExplorePage(Page): """ Detail view for a specific Explore options """ image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', help_text='Header image' ) desciption = RichTextField(blank=True) content_panels = Page.content_panels + [ ImageChooserPanel('image'), FieldPanel('desciption'), ] parent_page_types = ['ExploreIndexPage'] class ExploreIndexPage(Page): """ Index page for explore options. This is more complex than other index pages on the bakery demo site as we've included pagination. We've separated the different aspects of the index page to be discrete functions to make it easier to follow """ # Can only have BreadPage children subpage_types = ['ExplorePage'] def children(self): return self.get_children().specific().live() class PaymenOptionPage(Page): """ Detail view for a specific Explore options """ options = RichTextField(blank=True) content_panels = Page.content_panels + [ FieldPanel('options'), ] parent_page_types = ['PaymenOptionIndexPage'] class PaymenOptionIndexPage(Page): """ Index page for payment options. This is more complex than other index pages on the bakery demo site as we've included pagination. We've separated the different aspects of the index page to be discrete functions to make it easier to follow """ classname = models.CharField( max_length=255, help_text='classname', blank=True ) # Can only have BreadPage children subpage_types = ['PaymenOptionPage'] def children(self): return self.get_children().specific().live()
28.286957
108
0.66226
1fb119595024bda953ec3d32cfcc527dc55a10b9
550
py
Python
units/length/nautical_miles.py
putridparrot/PyUnits
4f1095c6fc0bee6ba936921c391913dbefd9307c
[ "MIT" ]
null
null
null
units/length/nautical_miles.py
putridparrot/PyUnits
4f1095c6fc0bee6ba936921c391913dbefd9307c
[ "MIT" ]
null
null
null
units/length/nautical_miles.py
putridparrot/PyUnits
4f1095c6fc0bee6ba936921c391913dbefd9307c
[ "MIT" ]
null
null
null
# <auto-generated> # This code was generated by the UnitCodeGenerator tool # # Changes to this file will be lost if the code is regenerated # </auto-generated> def to_millimetres(value): return value * 1852000.0 def to_centimetres(value): return value * 185200.0 def to_metres(value): return value * 1852.0 def to_kilometres(value): return value * 1.85200 def to_inches(value): return value * 72913.4 def to_feet(value): return value * 6076.12 def to_yards(value): return value * 2025.37 def to_miles(value): return value * 1.15078
22.916667
62
0.736364
aca20ed6034889ce0409f5bbcdbd01ba21cb6765
925
py
Python
test/test_response_error_type.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
1
2019-01-12T18:10:24.000Z
2019-01-12T18:10:24.000Z
test/test_response_error_type.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
null
null
null
test/test_response_error_type.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
null
null
null
# coding: utf-8 """ AVACloud API 1.17.3 AVACloud API specification # noqa: E501 OpenAPI spec version: 1.17.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import avacloud_client_python from avacloud_client_python.models.response_error_type import ResponseErrorType # noqa: E501 from avacloud_client_python.rest import ApiException class TestResponseErrorType(unittest.TestCase): """ResponseErrorType unit test stubs""" def setUp(self): pass def tearDown(self): pass def testResponseErrorType(self): """Test ResponseErrorType""" # FIXME: construct object with mandatory attributes with example values # model = avacloud_client_python.models.response_error_type.ResponseErrorType() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.560976
101
0.718919
78d5b2c099da7fafe635a52676f7d07006d96bf5
1,697
py
Python
lec2-2[p102, LL].py
cutz-j/Statistics-for-ML
ef01d52ab82dc00effbc72a87d75ae41745435e9
[ "MIT" ]
null
null
null
lec2-2[p102, LL].py
cutz-j/Statistics-for-ML
ef01d52ab82dc00effbc72a87d75ae41745435e9
[ "MIT" ]
null
null
null
lec2-2[p102, LL].py
cutz-j/Statistics-for-ML
ef01d52ab82dc00effbc72a87d75ae41745435e9
[ "MIT" ]
null
null
null
from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split import pandas as pd import numpy as np wine_quality = pd.read_csv("d:/data/wine/winequality-red.csv", sep=';') wine_quality.rename(columns=lambda x: x.replace(" ", "_"), inplace=True) columns = ['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar', 'chlorides', 'free_sulfur_dioxide', 'total_sulfur_dioxide', 'density', 'pH','sulphates', 'alcohol'] pdx = wine_quality[columns] pdy = wine_quality['quality'] x_train, x_test, y_train, y_test = train_test_split(pdx, pdy, train_size=0.7, random_state=77) alphas = [1e-4, 1e-3, 1e-2, 0.1, 0.5, 1.0, 5.0, 10.0] initrsq = 0 for alph in alphas: ridge_reg = Ridge(alpha=alph) ridge_reg.fit(x_train, y_train) tr_rsqrd = ridge_reg.score(x_train,y_train) ts_rsqrd = ridge_reg.score(x_test, y_test) if ts_rsqrd > initrsq: print("lambda: ", alph, "train r-sq: ", round(tr_rsqrd, 5), "test r-sq :", round(ts_rsqrd, 5)) initrsq = ts_rsqrd initrsq = 0 for alph in alphas: lasso_reg = Lasso(alpha=alph) lasso_reg.fit(x_train, y_train) tr_rsqrd = lasso_reg.score(x_train, y_train) ts_rsqrd = lasso_reg.score(x_test, y_test) if ts_rsqrd > initrsq: print("lambda: ", alph, "R-sq ", round(tr_rsqrd, 5), "r-sq ", round(ts_rsqrd, 5)) initrsq = ts_rsqrd ridge_reg = Ridge(alpha=0.01) ridge_reg.fit(x_train, y_train) lasso_reg = Lasso(alpha=0.001) lasso_reg.fit(x_train, y_train) for i in range(11): print(columns[i], "ridge:", ridge_reg.coef_[i]) print(columns[i], "lasso:", lasso_reg.coef_[i])
36.106383
102
0.68297
f8d230c2c1056c3fe82c9c88bad9893c6f73ad22
997
py
Python
plugin.video.2x2/addon.py
raitonoberu/plugin.video.2x2
b400348a9f02830b4255944a356ab358ffd89148
[ "MIT" ]
1
2022-01-22T14:27:54.000Z
2022-01-22T14:27:54.000Z
plugin.video.2x2/addon.py
raitonoberu/plugin.video.2x2
b400348a9f02830b4255944a356ab358ffd89148
[ "MIT" ]
null
null
null
plugin.video.2x2/addon.py
raitonoberu/plugin.video.2x2
b400348a9f02830b4255944a356ab358ffd89148
[ "MIT" ]
null
null
null
import xbmcgui import xbmcplugin import xbmcaddon import requests api_url = "https://uma.media/api/play/options/dcab9b90a33239837c0f71682d6606da/?format=json" resolutions = ["1280x720", "1024x576", "640x360"] addon = xbmcaddon.Addon() response = requests.get(api_url, headers={"Referer": "https://online.2x2tv.ru/"}) if response: hls_url = response.json()["live_streams"]["hls"][0]["url"] playlist = requests.get(hls_url).text streams = list(filter(lambda i: i.startswith("http"), playlist.split("\n"))) number_of_servers = len(streams) / len(resolutions) for i in range(len(streams)): item = xbmcgui.ListItem("2x2 " + resolutions[int(i / number_of_servers)]) xbmcplugin.addDirectoryItem(int(sys.argv[1]), streams[i], item, isFolder=0) xbmcplugin.endOfDirectory(int(sys.argv[1])) else: dialog = xbmcgui.Dialog() ok = dialog.ok("Error", "{0}: {1}".format(response.status_code, response.json()['detail']['languages'][-1]['title'].encode('utf-8')))
41.541667
137
0.695085
759878a70edbf5adbe428450e79879045c3e7c15
4,797
py
Python
saveScreenShot/cropImage.py
guncys-inc/saveSnapShot
1912fe49ebe945cd9490326c0a803ed479263a92
[ "MIT" ]
8
2017-12-04T01:10:44.000Z
2019-12-22T05:10:06.000Z
saveScreenShot/cropImage.py
guncys-inc/saveSnapShot
1912fe49ebe945cd9490326c0a803ed479263a92
[ "MIT" ]
null
null
null
saveScreenShot/cropImage.py
guncys-inc/saveSnapShot
1912fe49ebe945cd9490326c0a803ed479263a92
[ "MIT" ]
null
null
null
from .Qt import QtWidgets, QtGui, QtCore import os class CropImage(QtWidgets.QDialog): def __init__(self, imgPath="", outPath="", parent=None): super(CropImage, self).__init__(parent=parent) self.__image = None self.__img_path = None self.__out_path = None self.__rect_start = QtCore.QPoint(0, 0) self.__rect_end = QtCore.QPoint(0, 0) self.__draw_rect = False self.__show_desc = True self.__qt_trns_color = QtGui.QColor(0, 0, 0, 125) self.__qt_rect_pen = QtGui.QPen(QtCore.Qt.gray) self.__qt_rect_pen.setStyle(QtCore.Qt.DashLine) self.__qt_rect_pen.setWidth(3) self.__qt_white_pen = QtGui.QPen(QtCore.Qt.white) self.__qt_font = QtGui.QFont("Arial", 16) self.setImage(imgPath) self.setOutPath(outPath) @staticmethod def RunCropImage(imgPath, outPath, parent=None): dial = CropImage(imgPath, outPath, parent=parent) return dial.exec_() def setOutPath(self, path): self.__out_path = path def setImage(self, path): self.__img_path = path self.__image = QtGui.QImage(self.__img_path) self.__resetWidget() def __resetWidget(self): size = self.__image.size() if size.width() < 1 or size.height() < 1: size = QtCore.QSize(10, 10) self.setFixedSize(size) def __saveImage(self): if self.__out_path: if self.__draw_rect: cropped = self.__image.copy(*self.__getDrawRectTuple()) cropped.save(self.__out_path) else: self.__image.save(self.__out_path) def __getDrawRectTuple(self): i_size = self.__image.size() iw = i_size.width() ih = i_size.height() if self.__rect_start.x() <= self.__rect_end.x(): x1 = self.__rect_start.x() x2 = self.__rect_end.x() else: x1 = self.__rect_end.x() x2 = self.__rect_start.x() if self.__rect_start.y() <= self.__rect_end.y(): y1 = self.__rect_start.y() y2 = self.__rect_end.y() else: y1 = self.__rect_end.y() y2 = self.__rect_start.y() rx = x1 if x1 >= 0 else 0 rw = (x2 if x2 <= iw else iw) - rx ry = y1 if y1 >= 0 else 0 rh = (y2 if y2 <= ih else ih) - ry return (rx, ry, rw, rh) def keyPressEvent(self, event): key = event.key() if key == QtCore.Qt.Key_Escape: self.reject() elif key == QtCore.Qt.Key_Return or key == QtCore.Qt.Key_Enter: self.__saveImage() self.accept() def mousePressEvent(self, event): if event.button() is QtCore.Qt.LeftButton: self.__draw_rect = True self.__show_desc = False self.__rect_start = event.pos() self.__rect_end = event.pos() def mouseReleaseEvent(self, event): if event.button() is QtCore.Qt.LeftButton: self.__rect_end = event.pos() if (self.__rect_end - self.__rect_start).manhattanLength() < 10: self.__draw_rect = False self.update() def mouseMoveEvent(self, event): self.__rect_end = event.pos() self.update() def paintEvent(self, event): super(CropImage, self).paintEvent(event) if self.__image is not None: p = QtGui.QPainter(self) i_size = self.__image.size() p.drawImage(QtCore.QRect(0, 0, i_size.width(), i_size.height()), self.__image) iw = i_size.width() ih = i_size.height() if self.__show_desc: p.setPen(self.__qt_rect_pen) p.setFont(self.__qt_font) p.fillRect(0, 0, iw, ih, self.__qt_trns_color) p.drawRect(iw * 0.1, ih * 0.1, iw * 0.8, ih * 0.8) p.setPen(self.__qt_white_pen) p.drawText(QtCore.QRect(0, 0, iw, ih), QtCore.Qt.AlignCenter, "Select Capture Area\nPress Enter to save\nPress Escape to cancel") elif self.__draw_rect: p.setPen(self.__qt_rect_pen) rx, ry, rw, rh = self.__getDrawRectTuple() dx = rx + rw dy = ry + rh if rx > 1: p.fillRect(0, 0, rx, ih, self.__qt_trns_color) if dx < (iw - 1): p.fillRect(dx, 0, iw, ih, self.__qt_trns_color) if ry > 1: p.fillRect(rx, 0, rw, ry - 1, self.__qt_trns_color) if dy < (ih - 1): p.fillRect(rx, dy, rw, ih, self.__qt_trns_color) p.drawRect(QtCore.QRect(rx, ry, rw, rh))
33.082759
145
0.549719
6df00b031e5ab00ef6a2695c9fc4f2a18a91daec
602
py
Python
1010_pairs_of_songs.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
1
2020-07-15T14:16:23.000Z
2020-07-15T14:16:23.000Z
1010_pairs_of_songs.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
null
null
null
1010_pairs_of_songs.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
null
null
null
# # 1010. Pairs of Songs With Total Durations Divisible by 60 # # Q: https://leetcode.com/problems/pairs-of-songs-with-total-durations-divisible-by-60/ # A: https://leetcode.com/problems/pairs-of-songs-with-total-durations-divisible-by-60/discuss/256716/Kt-Js-Py3-Cpp-Map-of-Buckets # from typing import List class Solution: def numPairsDivisibleBy60(self, A: List[int], pairs = 0) -> int: m = {} A = [x % 60 for x in A] for x in A: y = (60 - x) % 60 pairs += m[y] if y in m else 0 m[x] = 1 + m[x] if x in m else 1 return pairs
31.684211
130
0.607973
cc804e89c7de170e48736f7f0141f3abe57e9952
12,305
py
Python
seoperator2_tests.py
180254/scheduled-events-operator-2
9c0720017eac46d97b28e28ac34d63d4768e31dd
[ "MIT" ]
null
null
null
seoperator2_tests.py
180254/scheduled-events-operator-2
9c0720017eac46d97b28e28ac34d63d4768e31dd
[ "MIT" ]
null
null
null
seoperator2_tests.py
180254/scheduled-events-operator-2
9c0720017eac46d97b28e28ac34d63d4768e31dd
[ "MIT" ]
null
null
null
#!/usr/bin/python3 -u import unittest from seoperator2 import ThisHostnames, ScheduledEvent, ProcessingRule, ProcessingRuleProcessor class ThisHostnamesMock(ThisHostnames): # noinspection PyMissingConstructor def __init__(self, compute_name: str, node_name: str) -> None: self.compute_name: str = compute_name self.node_name: str = node_name class ScheduledEventMock(ScheduledEvent): # noinspection PyMissingConstructor def __init__(self, eventtype: str, durationinseconds: int) -> None: self.eventtype: str = eventtype self.durationinseconds: int = durationinseconds class ProcessingRuleProcessorGeneralTests(unittest.TestCase): def test_eventype_not_matched(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"] }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Reboot", -1) ) self.assertEqual(res, True) def test_stop_on_first_matched_rule(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], "and-node-name-matches": "*-nodepool_1-*" }), ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], "and-node-name-matches": "*-nodepool_2-*" }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"] }) ], ThisHostnamesMock("aks-nodepool_2-36328368-vmss_18", "aks-nodepool_2-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, True) def test_no_rules_matches(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], "and-node-name-matches": "*-nodepool_1-*" }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-node-name-matches": "*-nodepool_2-*" }) ], ThisHostnamesMock("aks-nodepool_3-36328368-vmss_18", "aks-nodepool_3-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, True) def test_no_rules_at_all(self): res = ProcessingRuleProcessor( [], ThisHostnamesMock("aks-nodepool_3-36328368-vmss_18", "aks-nodepool_3-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 5) ) self.assertEqual(res, True) class ProcessingRuleProcessorDurationLessEqualToTests(unittest.TestCase): def test_ignore_if_duration_less_equal_to_unknown_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, True) def test_handle_if_duration_less_equal_to_unknown_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, False) def test_ignore_if_duration_less_equal_to_short_duration(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 10) ) self.assertEqual(res, False) def test_handle_if_duration_less_equal_to_short_duration(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 10) ) self.assertEqual(res, True) def test_ignore_if_duration_less_equal_to_long_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 30) ) self.assertEqual(res, True) def test_handle_if_duration_less_equal_to_long_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-less-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 30) ) self.assertEqual(res, False) class ProcessingRuleProcessorDurationGreaterEqualToTests(unittest.TestCase): def test_ignore_if_duration_greater_equal_to_unknown_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, False) def test_handle_if_duration_greater_equal_to_unknown_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", -1) ) self.assertEqual(res, True) def test_ignore_if_duration_greater_equal_to_short_duration(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 10) ) self.assertEqual(res, False) def test_handle_if_duration_greater_equal_to_short_duration(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 10) ) self.assertEqual(res, True) def test_ignore_if_duration_greater_equal_to_long_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }) ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 30) ) self.assertEqual(res, False) def test_handle_if_duration_greater_equal_to_long_duration_case(self): res = ProcessingRuleProcessor( [ ProcessingRule({ "rule-type": "handle-event-if", "event-type-is": ["Freeze"], "and-duration-in-seconds-greater-equal-to": 10 }), ProcessingRule({ "rule-type": "ignore-event-if", "event-type-is": ["Reboot", "Redeploy", "Freeze", "Preempt", "Terminate"], }), ], ThisHostnamesMock("aks-default-36328368-vmss_18", "aks-default-36328368-vmss00000i") ).all_considered_should_handle( ScheduledEventMock("Freeze", 30) ) self.assertEqual(res, True) if __name__ == "__main__": unittest.main()
38.333333
94
0.520114
5897e9e1f2509b93d6122c2bd00543b0d4eabb17
2,183
py
Python
test-framework/test-suites/integration/tests/remove/test_remove_cart.py
sammeidinger/stack
a8085dce179dbe903f65f136f4b63bcc076cc057
[ "BSD-3-Clause" ]
123
2015-05-12T23:36:45.000Z
2017-07-05T23:26:57.000Z
test-framework/test-suites/integration/tests/remove/test_remove_cart.py
sammeidinger/stack
a8085dce179dbe903f65f136f4b63bcc076cc057
[ "BSD-3-Clause" ]
177
2015-06-05T19:17:47.000Z
2017-07-07T17:57:24.000Z
test-framework/test-suites/integration/tests/remove/test_remove_cart.py
sammeidinger/stack
a8085dce179dbe903f65f136f4b63bcc076cc057
[ "BSD-3-Clause" ]
32
2015-06-07T02:25:03.000Z
2017-06-23T07:35:35.000Z
import json from textwrap import dedent class TestRemoveCart: def test_no_args(self, host): result = host.run('stack remove cart') assert result.rc == 255 assert result.stderr == dedent('''\ error - "cart" argument is required {cart ...} ''') def test_invalid(self, host): result = host.run('stack remove cart test') assert result.rc == 255 assert result.stderr == dedent('''\ error - "test" argument is not a valid cart {cart ...} ''') def test_single_arg(self, host, add_cart, revert_etc, revert_export_stack_carts): # Confirm the test cart is there result = host.run('stack list cart test output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { 'name': 'test', 'boxes': '' } ] # And it has a cart directory assert host.file('/export/stack/carts/test').is_directory # Now remove it result = host.run('stack remove cart test') assert result.rc == 0 # And confirm it is gone result = host.run('stack list cart test') assert result.rc == 255 assert result.stderr.startswith('error - "test" argument is not a valid cart') # Files should be gone too assert not host.file('/export/stack/carts/test').exists def test_multiple_args(self, host, add_cart, revert_etc, revert_export_stack_carts): # Create a second cart add_cart('foo') # Confirm both carts are there result = host.run('stack list cart test foo output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { 'name': 'test', 'boxes': '' }, { 'name': 'foo', 'boxes': '' } ] # Now remove our carts result = host.run('stack remove cart test foo') assert result.rc == 0 # And confirm they are gone result = host.run('stack list cart test') assert result.rc == 255 assert result.stderr.startswith('error - "test" argument is not a valid cart') result = host.run('stack list cart foo') assert result.rc == 255 assert result.stderr.startswith('error - "foo" argument is not a valid cart') # Files should be gone too assert not host.file('/export/stack/carts/test').exists assert not host.file('/export/stack/carts/foo').exists
26.621951
85
0.669721
5c3ad6276b5642f3386b0bab1ac43a7bd8de55d4
430
py
Python
venv/Scripts/pip3.7-script.py
MarcusJBell/PyGameOfLife
625c3cc0ca543d5b4403e003ee1d981de90358b4
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3.7-script.py
MarcusJBell/PyGameOfLife
625c3cc0ca543d5b4403e003ee1d981de90358b4
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3.7-script.py
MarcusJBell/PyGameOfLife
625c3cc0ca543d5b4403e003ee1d981de90358b4
[ "Apache-2.0" ]
null
null
null
#!E:\Users\sinti\Documents\Projects\Python\gameoflife\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.7' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.7')() )
33.076923
77
0.674419
890c6b739c0097be91cd0cbd6ff7dadfff6e9812
8,899
py
Python
test/shed_functional/functional/test_1170_prior_installation_required.py
ramezrawas/galaxy-1
c03748dd49c060a68d07bce56eae33e0ba154414
[ "CC-BY-3.0" ]
6
2018-11-03T22:43:35.000Z
2022-02-15T17:51:33.000Z
test/shed_functional/functional/test_1170_prior_installation_required.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
7
2016-12-07T22:19:37.000Z
2019-01-30T15:04:26.000Z
test/shed_functional/functional/test_1170_prior_installation_required.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
10
2017-04-10T21:40:22.000Z
2022-02-21T16:50:10.000Z
import logging from shed_functional.base.twilltestcase import common, ShedTwillTestCase log = logging.getLogger( __name__ ) column_repository_name = 'column_maker_0150' column_repository_description = "Add column" column_repository_long_description = "Compute an expression on every row" convert_repository_name = 'convert_chars_0150' convert_repository_description = "Convert delimiters" convert_repository_long_description = "Convert delimiters to tab" category_name = 'Test 0150 Simple Prior Installation' category_description = 'Test 0150 Simple Prior Installation' ''' Create column_maker and convert_chars. Column maker repository dependency: <repository toolshed="self.url" name="convert_chars" owner="test" changeset_revision="c3041382815c" prior_installation_required="True" /> Verify display. Galaxy side: Install column_maker. Verify that convert_chars was installed first, contrary to the ordering that would be present without prior_installation_required. ''' running_standalone = False class TestSimplePriorInstallation( ShedTwillTestCase ): '''Test features related to datatype converters.''' def test_0000_initiate_users( self ): """Create necessary user accounts.""" self.galaxy_login( email=common.admin_email, username=common.admin_username ) galaxy_admin_user = self.test_db_util.get_galaxy_user( common.admin_email ) assert galaxy_admin_user is not None, 'Problem retrieving user with email %s from the database' % common.admin_email self.test_db_util.get_galaxy_private_role( galaxy_admin_user ) self.login( email=common.test_user_1_email, username=common.test_user_1_name ) test_user_1 = self.test_db_util.get_user( common.test_user_1_email ) assert test_user_1 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_1_email self.test_db_util.get_private_role( test_user_1 ) self.login( email=common.admin_email, username=common.admin_username ) admin_user = self.test_db_util.get_user( common.admin_email ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % common.admin_email self.test_db_util.get_private_role( admin_user ) def test_0005_create_convert_repository( self ): '''Create and populate convert_chars_0150.''' global running_standalone category = self.create_category( name=category_name, description=category_description ) self.login( email=common.test_user_1_email, username=common.test_user_1_name ) repository = self.get_or_create_repository( name=convert_repository_name, description=convert_repository_description, long_description=convert_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): running_standalone = True self.upload_file( repository, filename='convert_chars/convert_chars.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded convert_chars tarball.', strings_displayed=[], strings_not_displayed=[] ) def test_0010_create_column_repository( self ): '''Create and populate convert_chars_0150.''' global running_standalone category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=column_repository_name, description=column_repository_description, long_description=column_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if running_standalone: self.upload_file( repository, filename='column_maker/column_maker.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded column_maker tarball.', strings_displayed=[], strings_not_displayed=[] ) def test_0015_create_repository_dependency( self ): '''Create a repository dependency specifying convert_chars.''' ''' Column maker repository dependency: <repository toolshed="self.url" name="convert_chars" owner="test" changeset_revision="<tip>" prior_installation_required="True" /> ''' global running_standalone column_repository = self.test_db_util.get_repository_by_name_and_owner( column_repository_name, common.test_user_1_name ) convert_repository = self.test_db_util.get_repository_by_name_and_owner( convert_repository_name, common.test_user_1_name ) if running_standalone: dependency_xml_path = self.generate_temp_path( 'test_1150', additional_paths=[ 'column' ] ) convert_tuple = ( self.url, convert_repository.name, convert_repository.user.username, self.get_repository_tip( convert_repository ) ) self.create_repository_dependency( repository=column_repository, repository_tuples=[ convert_tuple ], filepath=dependency_xml_path, prior_installation_required=True ) def test_0020_verify_repository_dependency( self ): '''Verify that the previously generated repositiory dependency displays correctly.''' column_repository = self.test_db_util.get_repository_by_name_and_owner( column_repository_name, common.test_user_1_name ) convert_repository = self.test_db_util.get_repository_by_name_and_owner( convert_repository_name, common.test_user_1_name ) self.check_repository_dependency( repository=column_repository, depends_on_repository=convert_repository, depends_on_changeset_revision=None, changeset_revision=None ) def test_0025_install_column_repository( self ): '''Install column_maker_0150.''' self.galaxy_login( email=common.admin_email, username=common.admin_username ) column_repository = self.test_db_util.get_repository_by_name_and_owner( column_repository_name, common.test_user_1_name ) preview_strings_displayed = [ 'column_maker_0150', self.get_repository_tip( column_repository ) ] strings_displayed = [ 'Choose the tool panel section' ] self.install_repository( column_repository_name, common.test_user_1_name, category_name, install_tool_dependencies=False, install_repository_dependencies=True, preview_strings_displayed=preview_strings_displayed, strings_displayed=strings_displayed, strings_not_displayed=[], post_submit_strings_displayed=[ 'column_maker_0150', 'New' ], includes_tools_for_display_in_tool_panel=True ) def test_0030_verify_installation_order( self ): '''Verify that convert_chars_0150 was installed before column_maker_0150.''' column_repository = self.test_db_util.get_installed_repository_by_name_owner( column_repository_name, common.test_user_1_name ) convert_repository = self.test_db_util.get_installed_repository_by_name_owner( convert_repository_name, common.test_user_1_name ) # Column maker was selected for installation, so convert chars should have been installed first, as reflected by the update_time field. assert column_repository.update_time > convert_repository.update_time, 'Error: column_maker_0150 shows an earlier update time than convert_chars_0150'
60.952055
158
0.65086
a6ae869965e5c72329692f315bb2d4c82229cbc7
170
py
Python
urls_local.py
chrislombaard/cryptopuppet
fcfb6311550ae9846dc116ed36f37406f6aabef1
[ "MIT" ]
6
2017-06-30T15:52:05.000Z
2017-12-09T16:43:08.000Z
urls_local.py
webclinic017/cryptopuppet
fcfb6311550ae9846dc116ed36f37406f6aabef1
[ "MIT" ]
3
2017-06-02T05:54:25.000Z
2021-05-06T16:02:20.000Z
urls_local.py
webclinic017/cryptopuppet
fcfb6311550ae9846dc116ed36f37406f6aabef1
[ "MIT" ]
2
2017-07-03T23:44:56.000Z
2021-11-10T23:36:46.000Z
from project.urls import * if project.settings.DEBUG: import debug_toolbar urlpatterns += [ url(r"^django-toolbar/", include(debug_toolbar.urls)), ]
21.25
62
0.670588
2851031c5436a10f3436a7c4dcfca907145f6507
3,324
py
Python
exam/migrations/0001_initial.py
Lukmanhakim112/ppdb
c6179478b4c1f0b6cec77a8a059a6e418f6263f1
[ "MIT" ]
null
null
null
exam/migrations/0001_initial.py
Lukmanhakim112/ppdb
c6179478b4c1f0b6cec77a8a059a6e418f6263f1
[ "MIT" ]
null
null
null
exam/migrations/0001_initial.py
Lukmanhakim112/ppdb
c6179478b4c1f0b6cec77a8a059a6e418f6263f1
[ "MIT" ]
null
null
null
# Generated by Django 3.1.4 on 2021-01-09 06:31 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import exam.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Answer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer_text', models.CharField(max_length=120, verbose_name='Jawaban')), ('answer_image', models.ImageField(blank=True, null=True, upload_to=exam.models.answer_directory_path, verbose_name='Gambar Jawaban')), ('is_right', models.BooleanField(default=False, verbose_name='Benar')), ], ), migrations.CreateModel( name='Exam', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('passcode', models.CharField(max_length=20, verbose_name='Passcode')), ('exam_title', models.CharField(max_length=100, verbose_name='Judul Ujian')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=120, verbose_name='Pertanyaan')), ('question_image', models.ImageField(blank=True, null=True, upload_to=exam.models.question_directory_path, verbose_name='Gambar Pertanyaan')), ('exam', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.exam')), ], ), migrations.CreateModel( name='Score', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('score', models.IntegerField(null=True, verbose_name='Score')), ('student', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Record', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='exam.answer')), ('exam', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='exam.exam')), ('question', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='exam.question')), ('student', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='answer', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.question'), ), ]
48.173913
158
0.619134
df54e74d8a8c5800d8c89ef5c053c6de6d7e6674
367
py
Python
django_app/frontend/urls.py
tmunzer/mist_installer_web_ui
cfc1c28084997956fc2ff8c4cc065171cb97f16d
[ "MIT" ]
null
null
null
django_app/frontend/urls.py
tmunzer/mist_installer_web_ui
cfc1c28084997956fc2ff8c4cc065171cb97f16d
[ "MIT" ]
null
null
null
django_app/frontend/urls.py
tmunzer/mist_installer_web_ui
cfc1c28084997956fc2ff8c4cc065171cb97f16d
[ "MIT" ]
1
2021-07-15T17:00:25.000Z
2021-07-15T17:00:25.000Z
from django.urls import path from django.conf.urls import handler404 from . import views urlpatterns = [ path(r'', views.index.as_view(), name='index'), path(r'login', views.index.as_view(), name='index'), path(r'select', views.index.as_view(), name='index'), path(r'dashboard', views.index.as_view(), name='index'), ] handler404 = views.handler404
28.230769
60
0.689373
b405b5aff731daa40d3c037ef3e89f3a7f28f69e
5,319
py
Python
src/ekpmeasure/control/moke/main.py
marwahaha/ekpmeasure
8a0e52f0393849b496d9df13d84fcef11b733f59
[ "MIT" ]
null
null
null
src/ekpmeasure/control/moke/main.py
marwahaha/ekpmeasure
8a0e52f0393849b496d9df13d84fcef11b733f59
[ "MIT" ]
null
null
null
src/ekpmeasure/control/moke/main.py
marwahaha/ekpmeasure
8a0e52f0393849b496d9df13d84fcef11b733f59
[ "MIT" ]
null
null
null
from mcculw import ul from mcculw.enums import ULRange, InfoType, AnalogInputMode from mcculw.enums import ScanOptions, BoardInfo, TriggerEvent, TrigType, FunctionType from mcculw.ul import ULError import ctypes import numpy as np import matplotlib.pyplot as plt import pandas as pd from warnings import warn import os from ..instruments.USB_1208HS_4AO import * __all__ = ('RUN',) class RUN(): def __init__(self, daq): self.daq = daq.configure() self.board_num = daq.board_num self.ul_range = daq.ul_range return def load_waveform(self,wvfrm_vstack): """load a waveform for daq ---- wvfrm_stack: numpy.vstack """ wf_1d, nzeros_front, nzeros_back = waveforms_to_1d_array(wvfrm_vstack) self.wf_1d = wf_1d self.nzeros_front = nzeros_front self.nzeros_back = nzeros_back self.input_wfm_df = pd.DataFrame({i:wvfrm_vstack[i,:] for i in range(wvfrm_vstack.shape[0])}) def config(self, out_channel_start,out_channel_end,in_channel_start,in_channel_end,nave,quiet = False): """configure run ---- out_channel_start: int, specify which start channel to output waveform out_channel_end: int in_channel_start: int in_channel_end: int """ self.out_channel_end = out_channel_end self.out_channel_start = out_channel_start self.in_channel_end = in_channel_end self.in_channel_start = in_channel_start self.nave = nave self.quiet = quiet def go(self): """start the run""" to_average = [] #stop old processes in case ul.stop_background(self.board_num, FunctionType.AOFUNCTION) ul.stop_background(self.board_num, FunctionType.AIFUNCTION) nchannels_out = self.out_channel_end - self.out_channel_start + 1 for i in range(self.nave): returned = apply_and_listen(self.wf_1d, self.nzeros_front, self.nzeros_back, in_channel_start=self.in_channel_start, in_channel_end=self.in_channel_end, out_channel_start=self.out_channel_start, out_channel_end=self.out_channel_end, board_num=self.board_num, quiet=self.quiet) memhandle_in, memhandle_out, data_array_in, data_array_out, count_in, time = returned # Free the buffer and set the data_array to None ul.win_buf_free(memhandle_out) data_array_out = None #now that it is done convert from data_array back to numpy data: out = [] for i in range(0, count_in): out.append(ul.to_eng_units(self.board_num, self.ul_range, data_array_in[i])) out = np.array(out) #clear memory ul.win_buf_free(memhandle_in) data_array_in = None #append data to_average.append(out) data = np.array(to_average) means = np.mean(data, axis = 0) out = waveform_1d_to_array(means, nchannels_in=nchannels_out) self.waveform_collected = out self.time = time return def plot(self,**kwargs): """plot waveform_collected""" if not hasattr(self, 'time'): raise AttributeError('no data has been collected, suggest self.go()') return fig, ax = plt.subplots(**kwargs) for i in range(self.waveform_collected.shape[0]): ax.plot(self.time*1e6, self.waveform_collected[i,:]) ax.set_xlabel('time (us)') return fig, ax def get_df(self): """return pandas dataframe of waveform_collected""" if not hasattr(self, 'waveform_collected'): raise AttributeError('no data has been collected, suggest self.go()') nchannels_in = self.in_channel_end - self.in_channel_start + 1 #for time so divide by how many channels in nzeros_front_for_time = int(self.nzeros_front/nchannels_in) nzeros_back_for_time = int(self.nzeros_back/nchannels_in) time = self.time[nzeros_front_for_time:-nzeros_back_for_time] data = pd.DataFrame({ 'time':time, }) warn("You are getting the input wfm data (which is perfect), not measured current input to the coil") for i in self.input_wfm_df: data['AOUT_{}'.format(i)] = 10*(self.input_wfm_df[i]-2047)/2047 for i, x in enumerate(self.waveform_collected): x_for_data = x[nzeros_front_for_time:-nzeros_back_for_time] data['AIN_{}'.format(i)] = x_for_data self.data = data return def save(self, path, name): """save waveform_collected too file""" if not hasattr(self, 'data'): self.get_df(self) #check if file name exists: file_set = set(os.listdir(path)) if name in file_set: yn = input('file already exists. Overwrite? (y/n)') if yn == 'y': self.data.to_csv(path+name, index = False) else: print('Ok. Skipping.') else: self.data.to_csv(path+name, index = False) return
35.697987
119
0.613461
a79aac840ee10f7c5cfac57ee7a5954bdb374dcb
4,718
py
Python
oxdashboard/settings.py
beta-nu-theta-chi/ox-dashboard
842d86a381f26159b2c5bad39a95169496832023
[ "MIT" ]
null
null
null
oxdashboard/settings.py
beta-nu-theta-chi/ox-dashboard
842d86a381f26159b2c5bad39a95169496832023
[ "MIT" ]
70
2016-11-16T18:49:02.000Z
2021-04-26T00:47:18.000Z
oxdashboard/settings.py
beta-nu-theta-chi/ox-dashboard
842d86a381f26159b2c5bad39a95169496832023
[ "MIT" ]
null
null
null
""" Django settings for oxdashboard project. Generated by 'django-admin startproject' using Django 1.8.7. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import yaml BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! if os.environ.get('SECRET_KEY'): SECRET_KEY = os.environ.get('SECRET_KEY') else: SECRET_KEY = "841dp9w*!q+o19&k28!r9-u^sc0mw0vc(qt_x#v*svs^e*_0*!i" # SECURITY WARNING: don't run with debug turned on in production! if os.environ.get('DEBUG'): DEBUG = os.environ.get('DEBUG') != 'False' else: DEBUG = True if os.environ.get('_DEBUG'): _DEBUG = False else: _DEBUG = True if os.environ.get('DJANGO_ALLOWED_HOSTS'): ALLOWED_HOSTS = os.environ.get("DJANGO_ALLOWED_HOSTS").split(" ") else: ALLOWED_HOSTS = [ '*', ] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'dashboard', 'cas', ) MIDDLEWARE = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', #'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'cas.middleware.CASMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'oxdashboard.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'oxdashboard.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases if DEBUG and _DEBUG: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } else: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join('/db/db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/New_York' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static-root/' STATIC_ROOT = os.path.join(BASE_DIR, 'static-root') STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) # EMAIL EMAIL_HOST = 'smtp.case.edu' EMAIL_PORT = 25 # CAS CAS_SERVER_URL = "https://login.case.edu/cas/" # So after migrating to python 3, the following needed to be commented out # not really sure why, so Im leaving this here as a note to future maintainers - jcassarly # also the new versions of CAS I think require the CAS_AUTO_CREATE_USERS to be true # CAS_VERSION = '1' CAS_AUTO_CREATE_USERS = True AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'cas.backends.CASBackend', ) LOGGING = { 'version': 1, 'handlers': { 'console': { 'class': 'logging.StreamHandler', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'WARNING', }, 'cas.backends': { 'handlers': ['console'], 'level': 'WARNING', }, }, } THURSDAY_DETAILS = [] SUNDAY_DETAILS = [] MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' with open(os.path.join(BASE_DIR, 'oxdashboard/sunday_details.yaml')) as f: SUNDAY_DETAILS = yaml.full_load(f) with open(os.path.join(BASE_DIR, 'oxdashboard/thursday_details.yaml')) as f: THURSDAY_DETAILS = yaml.full_load(f)
25.502703
90
0.664476
be085d5c6e4eeda253477cedf60c543cfbf59d09
2,411
py
Python
bulbs/promotion/operations.py
TAPP-TV/django-bulbs
eafe2237702d63d70f668adf45af20245b1b28e9
[ "MIT" ]
null
null
null
bulbs/promotion/operations.py
TAPP-TV/django-bulbs
eafe2237702d63d70f668adf45af20245b1b28e9
[ "MIT" ]
null
null
null
bulbs/promotion/operations.py
TAPP-TV/django-bulbs
eafe2237702d63d70f668adf45af20245b1b28e9
[ "MIT" ]
null
null
null
from django.db import models from polymorphic import PolymorphicModel class ContentListOperation(PolymorphicModel): class Meta: ordering = ["-when"] content_list = models.ForeignKey("promotion.ContentList", related_name="operations") when = models.DateTimeField() applied = models.BooleanField(default=False) def apply(self, data): raise NotImplemented() class InsertOperation(ContentListOperation): index = models.IntegerField(default=0) content = models.ForeignKey("content.Content", related_name="+") lock = models.BooleanField(default=False) def apply(self, data): next = { "id": self.content.pk, "lock": self.lock } for i in range(self.index, min(len(data), 100)): if data[i].get("lock", False): continue next, data[i] = data[i], next # Swap them data.append(next) return data class ReplaceOperation(ContentListOperation): content = models.ForeignKey("content.Content", related_name="+") target = models.ForeignKey("content.Content", related_name="+") lock = models.BooleanField(default=False) def apply(self, data): replace = { "id": self.content.pk, "lock": self.lock } for index, item in enumerate(data): if item["id"] == self.target.pk: if item.get("lock", False): raise Exception("That item is locked!") data[index] = replace break else: raise Exception("No content in list!") return data class LockOperation(ContentListOperation): target = models.ForeignKey("content.Content", related_name="+") def apply(self, data): for index, item in enumerate(data): if item["id"] == self.target.pk: data[index]["lock"] = True break else: raise Exception("No content in list!") return data class UnlockOperation(ContentListOperation): target = models.ForeignKey("content.Content", related_name="+") def apply(self, data): for index, item in enumerate(data): if item["id"] == self.target.pk: data[index]["lock"] = False break else: raise Exception("No content in list!") return data
28.034884
88
0.585234
ecc70fcb366946aae17781b47add46bb9f22dbf9
1,814
py
Python
blog/urls.py
miguelgfierro/sciblog
f43b3b5b514ad5407cb7c73f5f57caea6acb6fc6
[ "BSD-3-Clause" ]
110
2016-11-25T14:25:10.000Z
2022-02-16T08:25:57.000Z
blog/urls.py
Pandinosaurus/sciblog
f43b3b5b514ad5407cb7c73f5f57caea6acb6fc6
[ "BSD-3-Clause" ]
86
2016-11-13T10:04:07.000Z
2022-03-11T23:14:01.000Z
blog/urls.py
Pandinosaurus/sciblog
f43b3b5b514ad5407cb7c73f5f57caea6acb6fc6
[ "BSD-3-Clause" ]
21
2016-12-06T15:03:44.000Z
2021-12-30T11:38:19.000Z
from blog.models import Post from django.conf import settings from django.conf.urls import patterns, url from django.conf.urls.static import static from django.http import HttpResponse from django.contrib.sitemaps.views import sitemap from django.contrib.sites.models import Site from blog.sitemap import PostSitemap, FlatpageSitemap from blog.views import ( PostsFeed, get_search_results, IndexListView, PostDetailView, responsive_flatpage, ) # Define sitemaps sitemaps = {"posts": PostSitemap, "pages": FlatpageSitemap} # Define robots.txt content current_site = Site.objects.get_current() robots_content = "User-agent: *\nDisallow: /admin/\nSitemap: https://{}/sitemap.xml".format( current_site.domain ) # Define pages urlpatterns = patterns( "", # Index url(r"^(?P<page>\d+)?/?$", IndexListView.as_view(), name="index",), # Individual posts url( r"^blog/(?P<pub_date__year>\d{4})/(?P<slug>[a-zA-Z0-9-]+)/?$", PostDetailView.as_view(), name="post", ), # Post RSS feed url(r"^feed/posts/$", PostsFeed()), # Search posts url(r"^search", get_search_results, name="search"), # robots.txt url( r"^robots.txt$", lambda r: HttpResponse(robots_content, content_type="text/plain"), ), # sitemap url( r"^sitemap\.xml$", sitemap, {"sitemaps": sitemaps}, name="django.contrib.sitemaps.views.sitemap", ), ) # Add flat pages urlpatterns += patterns( "django.contrib.flatpages.views", url(r"^about/$", responsive_flatpage, {"url": "/about/"}, name="about"), url(r"^privacy/$", responsive_flatpage, {"url": "/privacy/"}, name="privacy"), ) # Debug if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
27.074627
92
0.664278
67ed08d0c69a3a25f48d6a30f6a3e7cf631dac5d
1,742
py
Python
sources/python/scripts/tools.py
eddwang/apso-modified
c1a8343930bc72c2d9a979df7972e846d1ac0a91
[ "Apache-2.0" ]
null
null
null
sources/python/scripts/tools.py
eddwang/apso-modified
c1a8343930bc72c2d9a979df7972e846d1ac0a91
[ "Apache-2.0" ]
null
null
null
sources/python/scripts/tools.py
eddwang/apso-modified
c1a8343930bc72c2d9a979df7972e846d1ac0a91
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- def console(*args, **kwargs): ''' Launch the "python interpreter" gui. Positional arguments are only intended for arguments automatically passed by the program gui. Keyword arguments are: - 'loc': for passing caller's locales and/or globals to the console context - any constructor constant (BACKGROUND, FOREGROUND...) to tweak the console aspect. Examples: - console() # defaut constructor) - console(loc=locals()) - console(BACKGROUND=0x0, FOREGROUND=0xFFFFFF) More infos: https://extensions.libreoffice.org/en/extensions/show/apso-alternative-script-organizer-for-python. ''' # we need to load apso before import statement ctx = XSCRIPTCONTEXT.getComponentContext() ctx.ServiceManager.createInstance("apso.python.script.organizer.impl") # now we can use apso_utils library from apso_utils import console from pathlib import Path from uno import fileUrlToSystemPath import sys import os desktop = XSCRIPTCONTEXT.getDesktop() doc = desktop.getCurrentComponent() __file__ = os.path.join(str(Path.home()),"python") if doc.Location == "" else doc.Location try: os.chdir(fileUrlToSystemPath(os.path.dirname(__file__))) except: os.chdir(os.path.dirname(__file__)) sys.path.append(".") kwargs.setdefault('loc', {}) kwargs['loc'].setdefault('XSCRIPTCONTEXT', XSCRIPTCONTEXT) kwargs['loc'].setdefault('__file__', __file__) kwargs['loc'].setdefault('os', os) kwargs['loc'].setdefault('sys', sys) kwargs.setdefault('BACKGROUND',0x0) kwargs.setdefault('FOREGROUND',0xFFFFFF) kwargs.setdefault('WIDTH',1000) console(**kwargs) g_exportedScripts = console,
33.5
115
0.695752
f9e96e1388b20e90ff1642c7b55c2c3509fc90de
1,557
py
Python
empower/apps/pingpong/__init__.py
herlesupreeth/5G-Controller
65a84fc4ad5c04764b12244809c7c4c758d6d352
[ "Apache-2.0" ]
null
null
null
empower/apps/pingpong/__init__.py
herlesupreeth/5G-Controller
65a84fc4ad5c04764b12244809c7c4c758d6d352
[ "Apache-2.0" ]
null
null
null
empower/apps/pingpong/__init__.py
herlesupreeth/5G-Controller
65a84fc4ad5c04764b12244809c7c4c758d6d352
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2015, Roberto Riggio # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the CREATE-NET nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY CREATE-NET ''AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL CREATE-NET BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Ping-pong handover App."""
53.689655
79
0.765575
7021485bfdcca96d88059dc00fad92feb68320b5
67,338
py
Python
wflow/wflow/wflow_hbv.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
wflow/wflow/wflow_hbv.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
wflow/wflow/wflow_hbv.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
#!/usr/bin/python # Wflow is Free software, see below: # # Copyright (c) J. Schellekens/Deltares 2005-2013 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # TODO: split off routing """ Run the wflow_hbv hydrological model.. usage: wflow_hbv:: [-h][-v level][-F runinfofile][-L logfile][-C casename][-R runId] [-c configfile][-T timesteps][-s seconds][-W][-E][-N][-U discharge] [-P parameter multiplication][-X][-l loglevel] -F: if set wflow is expected to be run by FEWS. It will determine the timesteps from the runinfo.xml file and save the output initial conditions to an alternate location. Also set fewsrun=1 in the .ini file! -f: Force overwrite of existing results -T: Set end time of the run: yyyy-mm-dd hh:mm:ss -S: Set start time of the run: yyyy-mm-dd hh:mm:ss -N: No lateral flow, use runoff response function to generate fast runoff -s: Set the model timesteps in seconds -I: re-initialize the initial model conditions with default -i: Set input table directory (default is intbl) -x: run for subcatchment only (e.g. -x 1) -C: set the name of the case (directory) to run -R: set the name runId within the current case -L: set the logfile -c: name of wflow the configuration file (default: Casename/wflow_hbv.ini). -h: print usage information -U: The argument to this option should be a .tss file with measured discharge in [m^3/s] which the program will use to update the internal state to match the measured flow. The number of columns in this file should match the number of gauges in the wflow_gauges.map file. -u: list of gauges/columns to use in update. Format: -u [1 , 4 ,13] The above example uses column 1, 4 and 13 -P: set parameter change string (e.g: -P "self.FC = self.FC * 1.6") for non-dynamic variables -p: set parameter change string (e.g: -P "self.Precipitation = self.Precipitation * 1.11") for dynamic variables -l: loglevel (most be one of DEBUG, WARNING, ERROR) -X overwrites the initial values at the end of each timestep """ import os.path import pcraster.framework from wflow.wf_DynamicFramework import * from wflow.wflow_adapt import * wflow = "wflow_hbv" #: columns used in updating updateCols = [] #: columns used in updating """ Column used in updating """ def usage(*args): """ Print usage information - *args: command line arguments given """ sys.stdout = sys.stderr for msg in args: print(msg) print(__doc__) sys.exit(0) class WflowModel(pcraster.framework.DynamicModel): """ The user defined model class. """ def __init__(self, cloneMap, Dir, RunDir, configfile): pcraster.framework.DynamicModel.__init__(self) self.caseName = os.path.abspath(Dir) self.clonemappath = os.path.join(os.path.abspath(Dir), "staticmaps", cloneMap) pcr.setclone(self.clonemappath) self.runId = RunDir self.Dir = os.path.abspath(Dir) self.configfile = configfile self.SaveDir = os.path.join(self.Dir, self.runId) def updateRunOff(self): """ Updates the kinematic wave reservoir """ self.WaterLevel = (self.Alpha * pow(self.SurfaceRunoff, self.Beta)) / self.Bw # wetted perimeter (m) P = self.Bw + (2 * self.WaterLevel) # Alpha self.Alpha = self.AlpTerm * pow(P, self.AlpPow) self.OldKinWaveVolume = self.KinWaveVolume self.KinWaveVolume = self.WaterLevel * self.Bw * self.DCL def stateVariables(self): """ returns a list of state variables that are essential to the model. This list is essential for the resume and suspend functions to work. This function is specific for each model and **must** be present. :var self.SurfaceRunoff: Surface runoff in the kin-wave resrvoir [m^3/s] :var self.WaterLevel: Water level in the kin-wave resrvoir [m] :var self.DrySnow: Snow pack [mm] :var self.FreeWater: Available free water [mm] :var self.UpperZoneStorage: Water in the upper zone [mm] :var self.LowerZoneStorage: Water in the lower zone [mm] :var self.SoilMoisture: Soil moisture [mm] :var self.InterceptionStorage: Amount of water on the Canopy [mm] """ states = [ "FreeWater", "SoilMoisture", "UpperZoneStorage", "LowerZoneStorage", "InterceptionStorage", "SurfaceRunoff", "WaterLevel", "DrySnow", ] if hasattr(self, "ReserVoirSimpleLocs"): states.append("ReservoirVolume") if hasattr(self, "ReserVoirComplexLocs"): states.append("ReservoirWaterLevel") if hasattr(self, "GlacierFrac"): states.append("GlacierStore") return states # The following are made to better connect to deltashell/openmi def supplyCurrentTime(self): """ gets the current time in seconds after the start of the run Ouput: - time in seconds since the start of the model run """ return self.currentTimeStep() * int( configget(self.config, "model", "timestepsecs", "86400") ) def parameters(self): """ Define all model parameters here that the framework should handle for the model See wf_updateparameters and the parameters section of the ini file If you use this make sure to all wf_updateparameters at the start of the dynamic section and at the start/end of the initial section """ modelparameters = [] # Static model parameters e.g. # modelparameters.append(self.ParamType(name="RunoffGeneratingGWPerc",stack="intbl/RunoffGeneratingGWPerc.tbl",type="static",default=0.1)) # Meteo and other forcing self.P_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Precipitation", "/inmaps/P" ) # timeseries for rainfall self.PET_mapstack = self.Dir + configget( self.config, "inputmapstacks", "EvapoTranspiration", "/inmaps/PET" ) # timeseries for rainfall"/inmaps/PET" # potential evapotranspiration self.TEMP_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Temperature", "/inmaps/TEMP" ) # timeseries for rainfall "/inmaps/TEMP" # global radiation self.Inflow_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Inflow", "/inmaps/IF" ) # timeseries for rainfall "/inmaps/IF" # in/outflow locations (abstractions) self.Seepage_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Seepage", "/inmaps/SE" ) # timeseries for rainfall "/inmaps/SE" # in/outflow locations (abstractions # Meteo and other forcing modelparameters.append( self.ParamType( name="Precipitation", stack=self.P_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="PotEvaporation", stack=self.PET_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Temperature", stack=self.TEMP_mapstack, type="timeseries", default=10.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Inflow", stack=self.Inflow_mapstack, type="timeseries", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Seepage", stack=self.Seepage_mapstack, type="timeseries", default=0.0, verbose=False, lookupmaps=[], ) ) return modelparameters def suspend(self): """ Suspends the model to disk. All variables needed to restart the model are saved to disk as pcraster maps. Use resume() to re-read them """ self.logger.info("Saving initial conditions...") self.wf_suspend(os.path.join(self.SaveDir, "outstate")) if self.OverWriteInit: self.logger.info("Saving initial conditions over start conditions...") self.wf_suspend(os.path.join(self.SaveDir, "instate")) if self.fewsrun: self.logger.info("Saving initial conditions for FEWS...") self.wf_suspend(os.path.join(self.Dir, "outstate")) def initial(self): """ Initial part of the model, executed only once. Reads all static model information (parameters) and sets-up the variables used in modelling. *HBV Soil* :var FC.tbl: Field Capacity (260.0) [mm] :var BetaSeepage.tbl: exponent in soil runoff generation equation (1.8) [-] :var LP.tbl: fraction of Fieldcapacity below which actual evaporation=potential evaporation (0.53000) :var K4.tbl: Recession constant baseflow (0.02307) *If SetKquickFlow is set to 1* :var KQuickFlow.tbl: (0.09880) :var SUZ.tbl: Level over which K0 is used (100.0) :var K0.tbl: (0.3) *If SetKquickFlow is set to 0* :var KHQ.tbl: recession rate at flow HQ (0.09880) :var HQ.tbl: high flow rate HQ for which recession rate of upper reservoir is known (3.27000) :var AlphaNL.tbl: measure of non-linearity of upper reservoir (1.1) :var PERC.tbl: Percolation from Upper to Lowerzone (0.4000) [mm/day] :var CFR.tbl: Refreezing efficiency constant in refreezing of freewater in snow (0.05000) :var Pcorr.tbl: Correction factor for precipitation (1.0) :var RFCF.tbl: Correction factor for rainfall (1.0) :var SFCF.tbl: Correction factor for snowfall(1.0) :var Cflux.tbl: Maximum capillary rise from runoff response routine to soil moisture routine (2.0) :var ICF.tbl: Maximum interception storage (in forested AND non-forested areas) (2.0) :var CEVPF.tbl: Correction factor for potential evaporation (1.0) :var EPF.tbl: Exponent of correction factor for evaporation on days with precipitation(0.0) :var ECORR.tbl: Evap correction (1.0) *Snow modelling parameters* :var TTI.tbl: critical temperature for snowmelt and refreezing (1.000) [oC] :var TT.tbl: defines interval in which precipitation falls as rainfall and snowfall (-1.41934) [oC] :var Cfmax.tbl: meltconstant in temperature-index ( 3.75653) [-] :var WHC.tbl: fraction of Snowvolume that can store water (0.1) [-] """ global statistics global multpars global updateCols pcr.setglobaloption("unittrue") self.thestep = pcr.scalar(0) self.basetimestep = 86400 #: files to be used in case of timesries (scalar) input to the model #: name of the tss file with precipitation data ("../intss/P.tss") self.precipTss = "../intss/P.tss" self.evapTss = ( "../intss/PET.tss" ) #: name of the tss file with potential evap data ("../intss/PET.tss") self.tempTss = ( "../intss/T.tss" ) #: name of the tss file with temperature data ("../intss/T.tss") self.inflowTss = ( "../intss/Inflow.tss" ) #: NOT TESTED name of the tss file with inflow data ("../intss/Inflow.tss") self.SeepageTss = ( "../intss/Seepage.tss" ) #: NOT TESTED name of the tss file with seepage data ("../intss/Seepage.tss")" self.logger.info("running for " + str(self.nrTimeSteps()) + " timesteps") # Set and get defaults from ConfigFile here ################################### self.scalarInput = int(configget(self.config, "model", "ScalarInput", "0")) self.Tslice = int(configget(self.config, "model", "Tslice", "1")) self.interpolMethod = configget( self.config, "model", "InterpolationMethod", "inv" ) self.reinit = int(configget(self.config, "run", "reinit", "0")) self.fewsrun = int(configget(self.config, "run", "fewsrun", "0")) self.OverWriteInit = int(configget(self.config, "model", "OverWriteInit", "0")) self.updating = int(configget(self.config, "model", "updating", "0")) self.updateFile = configget(self.config, "model", "updateFile", "no_set") self.sCatch = int(configget(self.config, "model", "sCatch", "0")) self.intbl = configget(self.config, "model", "intbl", "intbl") self.P_style = int(configget(self.config, "model", "P_style", "1")) self.PET_style = int(configget(self.config, "model", "PET_style", "1")) self.TEMP_style = int(configget(self.config, "model", "TEMP_style", "1")) self.modelSnow = int(configget(self.config, "model", "ModelSnow", "1")) sizeinmetres = int(configget(self.config, "layout", "sizeinmetres", "0")) alf = float(configget(self.config, "model", "Alpha", "60")) Qmax = float(configget(self.config, "model", "AnnualDischarge", "300")) self.UpdMaxDist = float(configget(self.config, "model", "UpdMaxDist", "100")) self.MaxUpdMult = float(configget(self.config, "model", "MaxUpdMult", "1.3")) self.MinUpdMult = float(configget(self.config, "model", "MinUpdMult", "0.7")) self.UpFrac = float(configget(self.config, "model", "UpFrac", "0.8")) self.ExternalQbase = int(configget(self.config, "model", "ExternalQbase", "0")) self.SetKquickFlow = int(configget(self.config, "model", "SetKquickFlow", "0")) self.MassWasting = int(configget(self.config, "model", "MassWasting", "0")) self.SubCatchFlowOnly = int( configget(self.config, "model", "SubCatchFlowOnly", "0") ) # static maps to use (normally default) wflow_subcatch = configget( self.config, "model", "wflow_subcatch", "staticmaps/wflow_subcatch.map" ) wflow_dem = configget( self.config, "model", "wflow_dem", "staticmaps/wflow_dem.map" ) wflow_ldd = configget( self.config, "model", "wflow_ldd", "staticmaps/wflow_ldd.map" ) wflow_river = configget( self.config, "model", "wflow_river", "staticmaps/wflow_river.map" ) wflow_riverlength = configget( self.config, "model", "wflow_riverlength", "staticmaps/wflow_riverlength.map", ) wflow_riverlength_fact = configget( self.config, "model", "wflow_riverlength_fact", "staticmaps/wflow_riverlength_fact.map", ) wflow_landuse = configget( self.config, "model", "wflow_landuse", "staticmaps/wflow_landuse.map" ) wflow_soil = configget( self.config, "model", "wflow_soil", "staticmaps/wflow_soil.map" ) wflow_gauges = configget( self.config, "model", "wflow_gauges", "staticmaps/wflow_gauges.map" ) wflow_inflow = configget( self.config, "model", "wflow_inflow", "staticmaps/wflow_inflow.map" ) wflow_mgauges = configget( self.config, "model", "wflow_mgauges", "staticmaps/wflow_mgauges.map" ) wflow_riverwidth = configget( self.config, "model", "wflow_riverwidth", "staticmaps/wflow_riverwidth.map" ) # 2: Input base maps ######################################################## subcatch = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # Determines the area of calculations (all cells > 0) subcatch = pcr.ifthen(subcatch > 0, subcatch) if self.sCatch > 0: subcatch = pcr.ifthen(subcatch == sCatch, subcatch) self.Altitude = self.wf_readmap( os.path.join(self.Dir, wflow_dem), 0.0, fail=True ) * pcr.scalar( pcr.defined(subcatch) ) #: The digital elevation map (DEM) self.TopoLdd = self.wf_readmap( os.path.join(self.Dir, wflow_ldd), 0.0, fail=True ) #: The local drinage definition map (ldd) self.TopoId = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) #: Map define the area over which the calculations are done (mask) self.River = pcr.cover( pcr.boolean( self.wf_readmap(os.path.join(self.Dir, wflow_river), 0.0, fail=True) ), 0, ) #: river network map. Fro those cell that belong to a river a specific width is used in the kinematic wave caulations self.RiverLength = self.wf_readmap( os.path.join(self.Dir, wflow_riverlength), 0.0 ) # Factor to multiply riverlength with (defaults to 1.0) self.RiverLengthFac = self.wf_readmap( os.path.join(self.Dir, wflow_riverlength_fact), 1.0 ) # read landuse and soilmap and make sure there are no missing points related to the # subcatchment map. Currently sets the lu and soil type type to 1 self.LandUse = self.wf_readmap( os.path.join(self.Dir, wflow_landuse), 0.0, fail=True ) #: Map with lan-use/cover classes self.LandUse = pcr.cover(self.LandUse, pcr.nominal(pcr.ordinal(subcatch) > 0)) self.Soil = self.wf_readmap( os.path.join(self.Dir, wflow_soil), 0.0, fail=True ) #: Map with soil classes self.Soil = pcr.cover(self.Soil, pcr.nominal(pcr.ordinal(subcatch) > 0)) self.OutputLoc = self.wf_readmap( os.path.join(self.Dir, wflow_gauges), 0.0, fail=True ) #: Map with locations of output gauge(s) self.InflowLoc = pcr.nominal( self.wf_readmap(os.path.join(self.Dir, wflow_inflow), 0.0) ) #: Map with location of abstractions/inflows. self.SeepageLoc = self.wf_readmap( os.path.join(self.Dir, wflow_inflow), 0.0 ) #: Seapage from external model (if configured) RiverWidth = self.wf_readmap(os.path.join(self.Dir, wflow_riverwidth), 0.0) # Temperature correction per cell to add self.TempCor = self.wf_readmap( os.path.join( self.Dir, configget( self.config, "model", "TemperatureCorrectionMap", "staticmap/swflow_tempcor.map", ), ), 0.0, ) if self.scalarInput: self.gaugesMap = self.wf_readmap( os.path.join(self.Dir, wflow_mgauges), 0.0, fail=True ) #: Map with locations of rainfall/evap/temp gauge(s). Only needed if the input to the model is not in maps self.OutputId = self.wf_readmap( os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True ) # location of subcatchment self.ZeroMap = 0.0 * pcr.scalar( pcr.defined(self.Altitude) ) # map with only zero's # 3: Input time series ################################################### self.P_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Precipitation", "/inmaps/P" ) # timeseries for rainfall self.PET_mapstack = self.Dir + configget( self.config, "inputmapstacks", "EvapoTranspiration", "/inmaps/PET" ) # timeseries for rainfall"/inmaps/PET" # potential evapotranspiration self.TEMP_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Temperature", "/inmaps/TEMP" ) # timeseries for rainfall "/inmaps/TEMP" # global radiation self.Inflow_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Inflow", "/inmaps/IF" ) # timeseries for rainfall "/inmaps/IF" # in/outflow locations (abstractions) self.Seepage_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Seepage", "/inmaps/SE" ) # timeseries for rainfall "/inmaps/SE" # in/outflow locations (abstractions) # For in memory override: self.P = self.ZeroMap self.PET = self.ZeroMap self.TEMP = self.ZeroMap # Set static initial values here ######################################### self.Latitude = pcr.ycoordinate(pcr.boolean(self.Altitude)) self.Longitude = pcr.xcoordinate(pcr.boolean(self.Altitude)) self.logger.info("Linking parameters to landuse, catchment and soil...") self.Beta = pcr.scalar(0.6) # For sheetflow # self.M=pcr.lookupscalar(self.Dir + "/" + modelEnv['intbl'] + "/M.tbl" ,self.LandUse,subcatch,self.Soil) # Decay parameter in Topog_sbm self.N = pcr.lookupscalar( self.Dir + "/" + self.intbl + "/N.tbl", self.LandUse, subcatch, self.Soil ) # Manning overland flow """ *Parameter:* Manning's N for all non-river cells """ self.NRiver = pcr.lookupscalar( self.Dir + "/" + self.intbl + "/N_River.tbl", self.LandUse, subcatch, self.Soil, ) # Manning river """ Manning's N for all cells that are marked as a river """ self.wf_updateparameters() self.ReserVoirLocs = self.ZeroMap if hasattr(self, "ReserVoirSimpleLocs"): # Check if we have simple and or complex reservoirs tt_simple = pcr.pcr2numpy(self.ReserVoirSimpleLocs, 0.0) self.nrresSimple = tt_simple.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirSimpleLocs) ) else: self.nrresSimple = 0 if hasattr(self, "ReserVoirComplexLocs"): tt_complex = pcr.pcr2numpy(self.ReserVoirComplexLocs, 0.0) self.nrresComplex = tt_complex.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirComplexLocs) ) res_area = pcr.cover(pcr.scalar(self.ReservoirComplexAreas), 0.0) self.filter_P_PET = pcr.ifthenelse( res_area > 0, res_area * 0.0, res_area * 0.0 + 1.0 ) # read files self.sh = {} res_ids = pcr.ifthen(self.ResStorFunc == 2, self.ReserVoirComplexLocs) np_res_ids = pcr.pcr2numpy(res_ids, 0) np_res_ids_u = np.unique(np_res_ids[np.nonzero(np_res_ids)]) if np.size(np_res_ids_u) > 0: for item in np.nditer(np_res_ids_u): self.sh[int(item)] = np.loadtxt( self.Dir + "/" + self.intbl + "/Reservoir_SH_" + str(item) + ".tbl" ) self.hq = {} res_ids = pcr.ifthen(self.ResOutflowFunc == 1, self.ReserVoirComplexLocs) np_res_ids = pcr.pcr2numpy(res_ids, 0) np_res_ids_u = np.unique(np_res_ids[np.nonzero(np_res_ids)]) if np.size(np_res_ids_u) > 0: for item in np.nditer(np_res_ids_u): self.hq[int(item)] = np.loadtxt( self.Dir + "/" + self.intbl + "/Reservoir_HQ_" + str(item) + ".tbl", skiprows=3, ) else: self.nrresComplex = 0 if (self.nrresSimple + self.nrresComplex) > 0: self.ReserVoirLocs = pcr.ordinal(self.ReserVoirLocs) self.logger.info( "A total of " + str(self.nrresSimple) + " simple reservoirs and " + str(self.nrresComplex) + " complex reservoirs found." ) self.ReserVoirDownstreamLocs = pcr.downstream( self.TopoLdd, self.ReserVoirLocs ) self.TopoLddOrg = self.TopoLdd self.TopoLdd = pcr.lddrepair( pcr.cover( pcr.ifthen(pcr.boolean(self.ReserVoirLocs), pcr.ldd(5)), self.TopoLdd, ) ) # HBV Soil params self.FC = self.readtblDefault( self.Dir + "/" + self.intbl + "/FC.tbl", self.LandUse, subcatch, self.Soil, 260.0, ) self.BetaSeepage = self.readtblDefault( self.Dir + "/" + self.intbl + "/BetaSeepage.tbl", self.LandUse, subcatch, self.Soil, 1.8, ) # exponent in soil runoff generation equation self.LP = self.readtblDefault( self.Dir + "/" + self.intbl + "/LP.tbl", self.LandUse, subcatch, self.Soil, 0.53000, ) # fraction of Fieldcapacity below which actual evaporation=potential evaporation (LP) self.K4 = self.readtblDefault( self.Dir + "/" + self.intbl + "/K4.tbl", self.LandUse, subcatch, self.Soil, 0.02307, ) # Recession constant baseflow #K4=0.07; BASEFLOW:LINEARRESERVOIR if self.SetKquickFlow: self.KQuickFlow = self.readtblDefault( self.Dir + "/" + self.intbl + "/KQuickFlow.tbl", self.LandUse, subcatch, self.Soil, 0.09880, ) # recession rate at flow HQ #KHQ=0.2; OUTFLOWUPPERZONE_NONLINEARRESERVOIR self.SUZ = self.readtblDefault( self.Dir + "/" + self.intbl + "/SUZ.tbl", self.LandUse, subcatch, self.Soil, 100.0, ) # Level over wich K0 is used self.K0 = self.readtblDefault( self.Dir + "/" + self.intbl + "/K0.tbl", self.LandUse, subcatch, self.Soil, 0.3, ) # K0 else: self.KHQ = self.readtblDefault( self.Dir + "/" + self.intbl + "/KHQ.tbl", self.LandUse, subcatch, self.Soil, 0.09880, ) # recession rate at flow HQ #KHQ=0.2; OUTFLOWUPPERZONE_NONLINEARRESERVOIR self.HQ = self.readtblDefault( self.Dir + "/" + self.intbl + "/HQ.tbl", self.LandUse, subcatch, self.Soil, 3.27000, ) # high flow rate HQ for which recession rate of upper reservoir is known #HQ=3.76; self.AlphaNL = self.readtblDefault( self.Dir + "/" + self.intbl + "/AlphaNL.tbl", self.LandUse, subcatch, self.Soil, 1.1, ) # measure of non-linearity of upper reservoir #Alpha=1.6; self.PERC = self.readtblDefault( self.Dir + "/" + self.intbl + "/PERC.tbl", self.LandUse, subcatch, self.Soil, 0.4000, ) # percolation from Upper to Lowerzone (mm/day) self.CFR = self.readtblDefault( self.Dir + "/" + self.intbl + "/CFR.tbl", self.LandUse, subcatch, self.Soil, 0.05000, ) # refreezing efficiency constant in refreezing of freewater in snow # self.FoCfmax=self.readtblDefault(self.Dir + "/" + modelEnv['intbl'] + "/FoCfmax.tbl",self.LandUse,subcatch,self.Soil, 0.6000) # correcton factor for snow melt/refreezing in forested and non-forested areas self.Pcorr = self.readtblDefault( self.Dir + "/" + self.intbl + "/Pcorr.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # correction factor for precipitation self.RFCF = self.readtblDefault( self.Dir + "/" + self.intbl + "/RFCF.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # correction factor for rainfall self.SFCF = self.readtblDefault( self.Dir + "/" + self.intbl + "/SFCF.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # correction factor for snowfall self.Cflux = self.readtblDefault( self.Dir + "/" + self.intbl + "/Cflux.tbl", self.LandUse, subcatch, self.Soil, 2.0, ) # maximum capillary rise from runoff response routine to soil moisture routine self.ICF = self.readtblDefault( self.Dir + "/" + self.intbl + "/ICF.tbl", self.LandUse, subcatch, self.Soil, 2.0, ) # maximum interception storage (in forested AND non-forested areas) self.CEVPF = self.readtblDefault( self.Dir + "/" + self.intbl + "/CEVPF.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # correction factor for potential evaporation (1.15 in in forested areas ) self.EPF = self.readtblDefault( self.Dir + "/" + self.intbl + "/EPF.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) # exponent of correction factor for evaporation on days with precipitation self.ECORR = self.readtblDefault( self.Dir + "/" + self.intbl + "/ECORR.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # evap correction # Soil Moisture parameters self.ECALT = self.ZeroMap + 0.00000 # evaporation lapse per 100m # self.Ecorr=self.ZeroMap+1 # correction factor for evaporation # HBV Snow parameters # critical temperature for snowmelt and refreezing: TTI= 1.000 self.TTI = self.readtblDefault( self.Dir + "/" + self.intbl + "/TTI.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # TT = -1.41934 # defines interval in which precipitation falls as rainfall and snowfall self.TT = self.readtblDefault( self.Dir + "/" + self.intbl + "/TT.tbl", self.LandUse, subcatch, self.Soil, -1.41934, ) # Cfmax = 3.75653 # meltconstant in temperature-index self.Cfmax = self.readtblDefault( self.Dir + "/" + self.intbl + "/Cfmax.tbl", self.LandUse, subcatch, self.Soil, 3.75653, ) # WHC= 0.10000 # fraction of Snowvolume that can store water self.WHC = self.readtblDefault( self.Dir + "/" + self.intbl + "/WHC.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) # Determine real slope and cell length self.xl, self.yl, self.reallength = pcrut.detRealCellLength( self.ZeroMap, sizeinmetres ) self.Slope = pcr.slope(self.Altitude) self.Slope = pcr.ifthen( pcr.boolean(self.TopoId), pcr.max(0.001, self.Slope * pcr.celllength() / self.reallength), ) Terrain_angle = pcr.scalar(pcr.atan(self.Slope)) temp = ( pcr.catchmenttotal(pcr.cover(1.0), self.TopoLdd) * self.reallength * 0.001 * 0.001 * self.reallength ) self.QMMConvUp = pcr.cover(self.timestepsecs * 0.001) / temp # Multiply parameters with a factor (for calibration etc) -P option in command line self.wf_multparameters() self.N = pcr.ifthenelse(self.River, self.NRiver, self.N) # Determine river width from DEM, upstream area and yearly average discharge # Scale yearly average Q at outlet with upstream are to get Q over whole catchment # Alf ranges from 5 to > 60. 5 for hardrock. large values for sediments # "Noah J. Finnegan et al 2005 Controls on the channel width of rivers: # Implications for modeling fluvial incision of bedrock" upstr = pcr.catchmenttotal(1, self.TopoLdd) Qscale = upstr / pcr.mapmaximum(upstr) * Qmax W = ( (alf * (alf + 2.0) ** (0.6666666667)) ** (0.375) * Qscale ** (0.375) * (pcr.max(0.0001, pcr.windowaverage(self.Slope, pcr.celllength() * 4.0))) ** (-0.1875) * self.N ** (0.375) ) # Use supplied riverwidth if possible, else calulate RiverWidth = pcr.ifthenelse(RiverWidth <= 0.0, W, RiverWidth) self.SnowWater = self.ZeroMap # Which columns/gauges to use/ignore in kinematic wave updating self.UpdateMap = self.ZeroMap if self.updating: _tmp = pcr.pcr2numpy(self.OutputLoc, 0.0) gaugear = _tmp touse = numpy.zeros(gaugear.shape, dtype="int") for thecol in updateCols: idx = (gaugear == thecol).nonzero() touse[idx] = thecol self.UpdateMap = pcr.numpy2pcr(pcr.Nominal, touse, 0.0) # Calculate distance to updating points (upstream) annd use to scale the correction # ldddist returns zero for cell at the gauges so add 1.0 tp result self.DistToUpdPt = pcr.cover( pcr.min( ldddist(self.TopoLdd, pcr.boolean(pcr.cover(self.UpdateMap, 0)), 1) * self.reallength / pcr.celllength(), self.UpdMaxDist, ), self.UpdMaxDist, ) # self.DistToUpdPt = ldddist(self.TopoLdd,pcr.boolean(pcr.cover(self.OutputId,0.0)),1) # * self.reallength/celllength() # Initializing of variables self.logger.info("Initializing of model variables..") self.TopoLdd = pcr.lddmask(self.TopoLdd, pcr.boolean(self.TopoId)) catchmentcells = pcr.maptotal(pcr.scalar(self.TopoId)) # Limit lateral flow per subcatchment (make pits at all subcatch boundaries) # This is very handy for Ribasim etc... if self.SubCatchFlowOnly > 0: self.logger.info("Creating subcatchment-only drainage network (ldd)") ds = pcr.downstream(self.TopoLdd, self.TopoId) usid = pcr.ifthenelse(ds != self.TopoId, self.TopoId, 0) self.TopoLdd = pcr.lddrepair( pcr.ifthenelse(pcr.boolean(usid), pcr.ldd(5), self.TopoLdd) ) # Used to seperate output per LandUse/management classes # OutZones = self.LandUse # pcr.report(self.reallength,"rl.map") # pcr.report(catchmentcells,"kk.map") self.QMMConv = self.timestepsecs / ( self.reallength * self.reallength * 0.001 ) # m3/s --> mm self.ToCubic = ( self.reallength * self.reallength * 0.001 ) / self.timestepsecs # m3/s self.sumprecip = self.ZeroMap #: accumulated rainfall for water balance self.sumevap = self.ZeroMap #: accumulated evaporation for water balance self.sumrunoff = ( self.ZeroMap ) #: accumulated runoff for water balance (weigthted for upstream area) self.sumlevel = self.ZeroMap #: accumulated level for water balance self.sumpotevap = self.ZeroMap # accumulated runoff for water balance self.sumsoilevap = self.ZeroMap self.sumtemp = self.ZeroMap # accumulated runoff for water balance self.ForecQ_qmec = ( self.ZeroMap ) # Extra inflow to kinematic wave reservoir for forcing in m^/sec self.KinWaveVolume = self.ZeroMap self.OldKinWaveVolume = self.ZeroMap self.Qvolume = self.ZeroMap self.Q = self.ZeroMap self.suminflow = self.ZeroMap # cntd self.FieldCapacity = self.FC #: total water holding capacity of the soil self.Treshold = ( self.LP * self.FieldCapacity ) # Threshold soilwaterstorage above which AE=PE # CatSurface=pcr.maptotal(pcr.scalar(pcr.ifthen(pcr.scalar(self.TopoId)>scalar(0.0),pcr.scalar(1.0)))) # catchment surface (in km2) self.Aspect = pcr.scalar(pcr.aspect(self.Altitude)) # aspect [deg] self.Aspect = pcr.ifthenelse(self.Aspect <= 0.0, pcr.scalar(0.001), self.Aspect) # On Flat areas the Aspect function fails, fill in with average... self.Aspect = pcr.ifthenelse( pcr.defined(self.Aspect), self.Aspect, pcr.areaaverage(self.Aspect, self.TopoId), ) # Set DCL to riverlength if that is longer that the basic length calculated from grid drainlength = detdrainlength(self.TopoLdd, self.xl, self.yl) self.DCL = pcr.max(drainlength, self.RiverLength) # m # Multiply with Factor (taken from upscaling operation, defaults to 1.0 if no map is supplied self.DCL = self.DCL * pcr.max(1.0, self.RiverLengthFac) # water depth (m) # set width for kinematic wave to cell width for all cells self.Bw = detdrainwidth(self.TopoLdd, self.xl, self.yl) # However, in the main river we have real flow so set the width to the # width of the river self.Bw = pcr.ifthenelse(self.River, RiverWidth, self.Bw) # term for Alpha self.AlpTerm = pow((self.N / (pcr.sqrt(self.Slope))), self.Beta) # power for Alpha self.AlpPow = (2.0 / 3.0) * self.Beta # initial approximation for Alpha # calculate catchmentsize self.upsize = pcr.catchmenttotal(self.xl * self.yl, self.TopoLdd) self.csize = pcr.areamaximum(self.upsize, self.TopoId) self.logger.info("End of initial section.") def default_summarymaps(self): """ Returns a list of default summary-maps at the end of a run. This is model specific. You can also add them to the [summary]section of the ini file but stuff you think is crucial to the model should be listed here Example: """ lst = [ "self.Cfmax", "self.csize", "self.upsize", "self.TTI", "self.TT", "self.WHC", "self.Slope", "self.N", "self.xl", "self.yl", "self.reallength", "self.DCL", "self.Bw", ] return lst def resume(self): """ read initial state maps (they are output of a previous call to suspend()) """ if self.reinit == 1: self.logger.info("Setting initial conditions to default (zero!)") self.FreeWater = pcr.cover(0.0) #: Water on surface (state variable [mm]) self.SoilMoisture = self.FC #: Soil moisture (state variable [mm]) self.UpperZoneStorage = ( 0.2 * self.FC ) #: Storage in Upper Zone (state variable [mm]) self.LowerZoneStorage = 1.0 / ( 3.0 * self.K4 ) #: Storage in Uppe Zone (state variable [mm]) self.InterceptionStorage = pcr.cover( 0.0 ) #: Interception Storage (state variable [mm]) self.SurfaceRunoff = pcr.cover( 0.0 ) #: Discharge in kinimatic wave (state variable [m^3/s]) self.WaterLevel = pcr.cover( 0.0 ) #: Water level in kinimatic wave (state variable [m]) self.DrySnow = pcr.cover(0.0) #: Snow amount (state variable [mm]) if hasattr(self, "ReserVoirSimpleLocs"): self.ReservoirVolume = self.ResMaxVolume * self.ResTargetFullFrac if hasattr(self, "ReserVoirComplexLocs"): self.ReservoirWaterLevel = pcr.cover(0.0) if hasattr(self, "GlacierFrac"): self.GlacierStore = self.wf_readmap( os.path.join(self.Dir, "staticmaps", "GlacierStore.map"), 55.0 * 1000, ) else: self.wf_resume(os.path.join(self.Dir, "instate")) P = self.Bw + (2.0 * self.WaterLevel) self.Alpha = self.AlpTerm * pow(P, self.AlpPow) self.OldSurfaceRunoff = self.SurfaceRunoff self.SurfaceRunoffMM = self.SurfaceRunoff * self.QMMConv # Determine initial kinematic wave volume self.KinWaveVolume = self.WaterLevel * self.Bw * self.DCL self.OldKinWaveVolume = self.KinWaveVolume self.initstorage = ( self.FreeWater + self.DrySnow + self.SoilMoisture + self.UpperZoneStorage + self.LowerZoneStorage + self.InterceptionStorage ) if not self.SetKquickFlow: self.KQuickFlow = (self.KHQ ** (1.0 + self.AlphaNL)) * ( self.HQ ** -self.AlphaNL ) # recession rate of the upper reservoir, KHQ*UHQ=HQ=kquickflow*(UHQ**alpha) def dynamic(self): """ Below a list of variables that can be save to disk as maps or as timeseries (see ini file for syntax): *Dynamic variables* :var self.SurfaceRunoff: Surface runoff in the kinematic wave [m^3/s] :var self.WaterLevel: Water level in the kinematic wave [m] (above the bottom) :var self.InterceptionStorage: actual interception storage [mm] :var self.Snow: Snow depth [mm] :var self.SnowWater: water content of the snow [mm] :var self.LowerZoneStorage: water content of the lower zone [mm] :var self.UpperZoneStorage: water content of the Upper zone [mm] :var self.InUpperZone: water inflow into Upper zone [mm] :var self.HBVSeepage: recharge to Upper zone [mm] :var self.DirectRunoff: direct runoff to Upper Zone [mm] :var self.BaseFlow: Specific runoff (baseflow part) per cell [mm] :var self.Percolation: actual percolation to the lower zone [mm] :var self.SoilMoisture: actual soil moisture [mm] :var se lf.QuickFlow: specific runoff (quickflow part) [mm] :var self.RealQuickFlow: specific runoff (quickflow), If K upper zone is precalculated [mm] :var self.CapFlux: capilary rise [mm] :var self.SurfaceRunoffMM: SurfaceRunoff in mm :var self.KinWaveVolume: Volume in the kinematic wave reservoir :var self.SurfaceWaterSupply: the negative Inflow (water demand) that could be met from the surfacewater [m^3/s] *Static variables* :var self.Altitude: The altitude of each cell [m] :var self.Bw: Width of the river [m] :var self.River: booolean map indicating the presence of a river [-] :var self.DLC: length of the river within a cell [m] :var self.ToCubic: Mutiplier to convert mm to m^3/s for fluxes """ self.wf_updateparameters() # read forcing an dynamic parameters self.Precipitation = pcr.max(0.0, self.Precipitation) * self.Pcorr # self.Precipitation=pcr.cover(self.wf_readmap(self.P_mapstack,0.0),0.0) * self.Pcorr # self.PotEvaporation=pcr.cover(self.wf_readmap(self.PET_mapstack,0.0),0.0) # self.Inflow=pcr.cover(self.wf_readmap(self.Inflow_mapstack,0.0,verbose=False),0.0) # These ar ALWAYS 0 at present!!! # self.Inflow=pcrut.readmapSave(self.Inflow_mapstack,0.0) if self.ExternalQbase: self.Seepage = pcr.cover(self.wf_readmap(self.Seepage_mapstack, 0.0), 0.0) else: self.Seepage = pcr.cover(0.0) self.Temperature = pcr.cover(self.wf_readmap(self.TEMP_mapstack, 10.0), 10.0) self.Temperature = self.Temperature + self.TempCor # Multiply input parameters with a factor (for calibration etc) -p option in command line (no also in ini) self.wf_multparameters() RainFrac = pcr.ifthenelse( 1.0 * self.TTI == 0.0, pcr.ifthenelse( self.Temperature <= self.TT, pcr.scalar(0.0), pcr.scalar(1.0) ), pcr.min( (self.Temperature - (self.TT - self.TTI / 2.0)) / self.TTI, pcr.scalar(1.0), ), ) RainFrac = pcr.max( RainFrac, pcr.scalar(0.0) ) # fraction of precipitation which falls as rain SnowFrac = 1.0 - RainFrac # fraction of self.Precipitation which falls as snow self.Precipitation = ( self.SFCF * SnowFrac * self.Precipitation + self.RFCF * RainFrac * self.Precipitation ) # different correction for rainfall and snowfall # Water onto the canopy Interception = pcr.min( self.Precipitation, self.ICF - self.InterceptionStorage ) #: Interception in mm/timestep self.InterceptionStorage = ( self.InterceptionStorage + Interception ) #: Current interception storage self.Precipitation = self.Precipitation - Interception self.PotEvaporation = ( pcr.exp(-self.EPF * self.Precipitation) * self.ECORR * self.PotEvaporation ) # correction for potential evaporation on wet days self.PotEvaporation = self.CEVPF * self.PotEvaporation # Correct per landuse self.IntEvap = pcr.min( self.InterceptionStorage, self.PotEvaporation ) #: Evaporation from interception storage self.InterceptionStorage = self.InterceptionStorage - self.IntEvap # I nthe origal HBV code RestEvap = pcr.max(0.0, self.PotEvaporation - self.IntEvap) if hasattr(self, "ReserVoirComplexLocs"): self.ReserVoirPotEvap = self.PotEvaporation self.ReserVoirPrecip = self.Precipitation self.PotEvaporation = self.filter_P_PET * self.PotEvaporation self.Precipitation = self.filter_P_PET * self.Precipitation SnowFall = SnowFrac * self.Precipitation #: snowfall depth RainFall = RainFrac * self.Precipitation #: rainfall depth PotSnowMelt = pcr.ifthenelse( self.Temperature > self.TT, self.Cfmax * (self.Temperature - self.TT), pcr.scalar(0.0), ) # Potential snow melt, based on temperature PotRefreezing = pcr.ifthenelse( self.Temperature < self.TT, self.Cfmax * self.CFR * (self.TT - self.Temperature), 0.0, ) # Potential refreezing, based on temperature Refreezing = pcr.ifthenelse( self.Temperature < self.TT, pcr.min(PotRefreezing, self.FreeWater), 0.0 ) # actual refreezing self.SnowMelt = pcr.min(PotSnowMelt, self.DrySnow) # actual snow melt self.DrySnow = ( self.DrySnow + SnowFall + Refreezing - self.SnowMelt ) # dry snow content self.FreeWater = self.FreeWater - Refreezing # free water content in snow MaxFreeWater = self.DrySnow * self.WHC self.FreeWater = self.FreeWater + self.SnowMelt + RainFall InSoil = pcr.max( self.FreeWater - MaxFreeWater, 0.0 ) # abundant water in snow pack which goes into soil self.FreeWater = self.FreeWater - InSoil RainAndSnowmelt = RainFall + self.SnowMelt self.SnowCover = pcr.ifthenelse(self.DrySnow > 0, pcr.scalar(1), pcr.scalar(0)) self.NrCell = pcr.areatotal(self.SnowCover, self.TopoId) # first part of precipitation is intercepted # Interception=pcr.min(InSoil,self.ICF-self.InterceptionStorage)#: Interception in mm/timestep # self.InterceptionStorage=self.InterceptionStorage+Interception #: Current interception storage # NetInSoil=InSoil-Interception NetInSoil = InSoil self.SoilMoisture = self.SoilMoisture + NetInSoil DirectRunoff = pcr.max( self.SoilMoisture - self.FieldCapacity, 0.0 ) # if soil is filled to capacity: abundant water runs of directly self.SoilMoisture = self.SoilMoisture - DirectRunoff NetInSoil = NetInSoil - DirectRunoff # net water which infiltrates into soil MaxSnowPack = 10000.0 if self.MassWasting: # Masswasting of snow # 5.67 = tan 80 graden SnowFluxFrac = pcr.min(0.5, self.Slope / 5.67) * pcr.min( 1.0, self.DrySnow / MaxSnowPack ) MaxFlux = SnowFluxFrac * self.DrySnow self.DrySnow = accucapacitystate(self.TopoLdd, self.DrySnow, MaxFlux) self.FreeWater = accucapacitystate( self.TopoLdd, self.FreeWater, SnowFluxFrac * self.FreeWater ) else: SnowFluxFrac = self.ZeroMap MaxFlux = self.ZeroMap if hasattr(self, "GlacierFrac"): """ Run Glacier module and add the snowpack on-top of it. Estimate the fraction of snow turned into ice (HBV-light). Estimate glacier melt. glacierHBV function in wflow_lib.py """ self.DrySnow, self.Snow2Glacier, self.GlacierStore, self.GlacierMelt = glacierHBV( self.GlacierFrac, self.GlacierStore, self.DrySnow, self.Temperature, self.G_TT, self.G_Cfmax, self.G_SIfrac, self.timestepsecs, self.basetimestep ) # Convert to mm per grid cell and add to snowmelt self.GlacierMelt = self.GlacierMelt * self.GlacierFrac self.FreeWater = ( self.FreeWater + self.GlacierMelt ) # IntEvap=pcr.min(self.InterceptionStorage,self.PotEvaporation) #: Evaporation from interception storage # self.InterceptionStorage=self.InterceptionStorage-IntEvap # I nthe origal HBV code # RestEvap = pcr.max(0.0,self.PotEvaporation-IntEvap) self.SoilEvap = pcr.ifthenelse( self.SoilMoisture > self.Treshold, pcr.min(self.SoilMoisture, RestEvap), pcr.min( self.SoilMoisture, pcr.min( RestEvap, self.PotEvaporation * (self.SoilMoisture / self.Treshold) ), ), ) #: soil evapotranspiration self.SoilMoisture = ( self.SoilMoisture - self.SoilEvap ) # evaporation from soil moisture storage self.ActEvap = ( self.IntEvap + self.SoilEvap ) #: Sum of evaporation components (IntEvap+SoilEvap) self.HBVSeepage = ( (pcr.min(self.SoilMoisture / self.FieldCapacity, 1)) ** self.BetaSeepage ) * NetInSoil # runoff water from soil self.SoilMoisture = self.SoilMoisture - self.HBVSeepage Backtosoil = pcr.min( self.FieldCapacity - self.SoilMoisture, DirectRunoff ) # correction for extremely wet periods: soil is filled to capacity self.DirectRunoff = DirectRunoff - Backtosoil self.SoilMoisture = self.SoilMoisture + Backtosoil self.InUpperZone = ( self.DirectRunoff + self.HBVSeepage ) # total water available for runoff # Steps is always 1 at the moment # calculations for Upper zone self.UpperZoneStorage = ( self.UpperZoneStorage + self.InUpperZone ) # incoming water from soil self.Percolation = pcr.min( self.PERC, self.UpperZoneStorage - self.InUpperZone / 2 ) # Percolation self.UpperZoneStorage = self.UpperZoneStorage - self.Percolation self.CapFlux = self.Cflux * ( ((self.FieldCapacity - self.SoilMoisture) / self.FieldCapacity) ) #: Capillary flux flowing back to soil self.CapFlux = pcr.min(self.UpperZoneStorage, self.CapFlux) self.CapFlux = pcr.min(self.FieldCapacity - self.SoilMoisture, self.CapFlux) self.UpperZoneStorage = self.UpperZoneStorage - self.CapFlux self.SoilMoisture = self.SoilMoisture + self.CapFlux if not self.SetKquickFlow: self.QuickFlow = pcr.min( pcr.ifthenelse( self.Percolation < self.PERC, 0, self.KQuickFlow * ( ( self.UpperZoneStorage - pcr.min(self.InUpperZone / 2, self.UpperZoneStorage) ) ** (1.0 + self.AlphaNL) ), ), self.UpperZoneStorage, ) self.UpperZoneStorage = pcr.max( pcr.ifthenelse( self.Percolation < self.PERC, self.UpperZoneStorage, self.UpperZoneStorage - self.QuickFlow, ), 0, ) # QuickFlow_temp = pcr.max(0,self.KQuickFlow*(self.UpperZoneStorage**(1.0+self.AlphaNL))) # self.QuickFlow = pcr.min(QuickFlow_temp,self.UpperZoneStorage) self.RealQuickFlow = self.ZeroMap else: self.QuickFlow = self.KQuickFlow * self.UpperZoneStorage self.RealQuickFlow = pcr.max( 0, self.K0 * (self.UpperZoneStorage - self.SUZ) ) self.UpperZoneStorage = ( self.UpperZoneStorage - self.QuickFlow - self.RealQuickFlow ) """Quickflow volume in mm/timestep""" # self.UpperZoneStorage=self.UpperZoneStorage-self.QuickFlow-self.RealQuickFlow # calculations for Lower zone self.LowerZoneStorage = self.LowerZoneStorage + self.Percolation self.BaseFlow = pcr.min( self.LowerZoneStorage, self.K4 * self.LowerZoneStorage ) #: Baseflow in mm/timestep self.LowerZoneStorage = self.LowerZoneStorage - self.BaseFlow # Direct runoff generation if self.ExternalQbase: DirectRunoffStorage = self.QuickFlow + self.Seepage + self.RealQuickFlow else: DirectRunoffStorage = self.QuickFlow + self.BaseFlow + self.RealQuickFlow self.InSoil = InSoil self.RainAndSnowmelt = RainAndSnowmelt self.NetInSoil = NetInSoil self.InwaterMM = pcr.max(0.0, DirectRunoffStorage) self.Inwater = self.InwaterMM * self.ToCubic # only run the reservoir module if needed if self.nrresSimple > 0: self.ReservoirVolume, self.Outflow, self.ResPercFull, self.DemandRelease = simplereservoir( self.ReservoirVolume, self.SurfaceRunoff, self.ResMaxVolume, self.ResTargetFullFrac, self.ResMaxRelease, self.ResDemand, self.ResTargetMinFrac, self.ReserVoirSimpleLocs, timestepsecs=self.timestepsecs, ) self.OutflowDwn = pcr.upstream( self.TopoLddOrg, pcr.cover(self.Outflow, pcr.scalar(0.0)) ) self.Inflow = self.OutflowDwn + pcr.cover(self.Inflow, self.ZeroMap) # else: # self.Inflow= pcr.cover(self.Inflow,self.ZeroMap) elif self.nrresComplex > 0: self.ReservoirWaterLevel, self.Outflow, self.ReservoirPrecipitation, self.ReservoirEvaporation, self.ReservoirVolume = complexreservoir( self.ReservoirWaterLevel, self.ReserVoirComplexLocs, self.LinkedReservoirLocs, self.ResArea, self.ResThreshold, self.ResStorFunc, self.ResOutflowFunc, self.sh, self.hq, self.Res_b, self.Res_e, self.SurfaceRunoff, self.ReserVoirPrecip, self.ReserVoirPotEvap, self.ReservoirComplexAreas, self.wf_supplyJulianDOY(), timestepsecs=self.timestepsecs, ) self.OutflowDwn = pcr.upstream( self.TopoLddOrg, pcr.cover(self.Outflow, pcr.scalar(0.0)) ) self.Inflow = self.OutflowDwn + pcr.cover(self.Inflow, self.ZeroMap) else: self.Inflow = pcr.cover(self.Inflow, self.ZeroMap) self.QuickFlowCubic = (self.QuickFlow + self.RealQuickFlow) * self.ToCubic self.BaseFlowCubic = self.BaseFlow * self.ToCubic self.SurfaceWaterSupply = pcr.ifthenelse( self.Inflow < 0.0, pcr.max(-1.0 * self.Inwater, self.SurfaceRunoff), self.ZeroMap, ) self.Inwater = self.Inwater + pcr.ifthenelse( self.SurfaceWaterSupply > 0, -1.0 * self.SurfaceWaterSupply, self.Inflow ) ########################################################################## # Runoff calculation via Kinematic wave ################################## ########################################################################## # per distance along stream q = self.Inwater / self.DCL + self.ForecQ_qmec / self.DCL self.OldSurfaceRunoff = self.SurfaceRunoff self.SurfaceRunoff = pcr.kinematic( self.TopoLdd, self.SurfaceRunoff, q, self.Alpha, self.Beta, self.Tslice, self.timestepsecs, self.DCL, ) # m3/s self.SurfaceRunoffMM = ( self.SurfaceRunoff * self.QMMConv ) # SurfaceRunoffMM (mm) from SurfaceRunoff (m3/s) self.updateRunOff() InflowKinWaveCell = pcr.upstream(self.TopoLdd, self.SurfaceRunoff) self.MassBalKinWave = ( (self.KinWaveVolume - self.OldKinWaveVolume) / self.timestepsecs + InflowKinWaveCell + self.Inwater - self.SurfaceRunoff ) Runoff = self.SurfaceRunoff # Updating # -------- # Assume a tss file with as many columns as outpulocs. Start updating for each non-missing value and start with the # first column (nr 1). Assumes that outputloc and columns match! if self.updating: QM = pcr.timeinputscalar(self.updateFile, self.UpdateMap) * self.QMMConv # Now update the state. Just add to the Ustore # self.UStoreDepth = result # No determine multiplication ratio for each gauge influence area. # For missing gauges 1.0 is assumed (no change). # UpDiff = pcr.areamaximum(QM, self.UpdateMap) - pcr.areamaximum(self.SurfaceRunoffMM, self.UpdateMap) UpRatio = pcr.areamaximum(QM, self.UpdateMap) / pcr.areamaximum( self.SurfaceRunoffMM, self.UpdateMap ) UpRatio = pcr.cover(pcr.areaaverage(UpRatio, self.TopoId), 1.0) # Now split between Soil and Kyn wave self.UpRatioKyn = pcr.min( self.MaxUpdMult, pcr.max(self.MinUpdMult, (UpRatio - 1.0) * self.UpFrac + 1.0), ) UpRatioSoil = pcr.min( self.MaxUpdMult, pcr.max(self.MinUpdMult, (UpRatio - 1.0) * (1.0 - self.UpFrac) + 1.0), ) # update/nudge self.UStoreDepth for the whole upstream area, # not sure how much this helps or worsens things UpdSoil = True if UpdSoil: toadd = (self.UpperZoneStorage * UpRatioSoil) - self.UpperZoneStorage self.UpperZoneStorage = self.UpperZoneStorage + toadd # Update the kinematic wave reservoir up to a maximum upstream distance # TODO: add (much smaller) downstream updating also? MM = (1.0 - self.UpRatioKyn) / self.UpdMaxDist self.UpRatioKyn = MM * self.DistToUpdPt + self.UpRatioKyn self.SurfaceRunoff = self.SurfaceRunoff * self.UpRatioKyn self.SurfaceRunoffMM = ( self.SurfaceRunoff * self.QMMConv ) # SurfaceRunoffMM (mm) from SurfaceRunoff (m3/s) self.updateRunOff() Runoff = self.SurfaceRunoff self.QCatchmentMM = self.SurfaceRunoff * self.QMMConvUp # self.RunoffCoeff = self.QCatchmentMM/catchmenttotal(self.Precipitation, self.TopoLdd)/catchmenttotal(pcr.cover(1.0), self.TopoLdd) self.sumprecip = ( self.sumprecip + self.Precipitation ) # accumulated rainfall for water balance self.sumevap = ( self.sumevap + self.ActEvap ) # accumulated evaporation for water balance self.sumsoilevap = self.sumsoilevap + self.SoilEvap self.sumpotevap = self.sumpotevap + self.PotEvaporation self.sumtemp = self.sumtemp + self.Temperature self.sumrunoff = ( self.sumrunoff + self.InwaterMM ) # accumulated Cell runoff for water balance self.sumlevel = self.sumlevel + self.WaterLevel self.suminflow = self.suminflow + self.Inflow self.storage = ( self.FreeWater + self.DrySnow + self.SoilMoisture + self.UpperZoneStorage + self.LowerZoneStorage ) # + self.InterceptionStorage self.watbal = ( (self.initstorage - self.storage) + self.sumprecip - self.sumsoilevap - self.sumrunoff ) # The main function is used to run the program from the command line def main(argv=None): """ Perform command line execution of the model. """ global multpars global updateCols caseName = "default_hbv" runId = "run_default" configfile = "wflow_hbv.ini" LogFileName = "wflow.log" _lastTimeStep = 0 _firstTimeStep = 0 fewsrun = False runinfoFile = "runinfo.xml" timestepsecs = 86400 wflow_cloneMap = "wflow_subcatch.map" NoOverWrite = 1 loglevel = logging.DEBUG if argv is None: argv = sys.argv[1:] if len(argv) == 0: usage() return ## Main model starts here ######################################################################## try: opts, args = getopt.getopt(argv, "c:QXS:F:hC:Ii:T:R:u:s:P:p:Xx:U:fl:L:") except getopt.error as msg: pcrut.usage(msg) for o, a in opts: if o == "-F": runinfoFile = a fewsrun = True if o == "-C": caseName = a if o == "-R": runId = a if o == "-L": LogFileName = a if o == "-l": exec("loglevel = logging." + a) if o == "-c": configfile = a if o == "-s": timestepsecs = int(a) if o == "-h": usage() if o == "-f": NoOverWrite = 0 if fewsrun: ts = getTimeStepsfromRuninfo(runinfoFile, timestepsecs) starttime = getStartTimefromRuninfo(runinfoFile) if ts: _lastTimeStep = ts # * 86400/timestepsecs _firstTimeStep = 1 else: print("Failed to get timesteps from runinfo file: " + runinfoFile) sys.exit(2) else: starttime = dt.datetime(1990, 1, 1) if _lastTimeStep < _firstTimeStep: print( "The starttimestep (" + str(_firstTimeStep) + ") is smaller than the last timestep (" + str(_lastTimeStep) + ")" ) usage() myModel = WflowModel(wflow_cloneMap, caseName, runId, configfile) dynModelFw = wf_DynamicFramework( myModel, _lastTimeStep, firstTimestep=_firstTimeStep, datetimestart=starttime ) dynModelFw.createRunId( NoOverWrite=NoOverWrite, logfname=LogFileName, level=loglevel, doSetupFramework=False, ) for o, a in opts: if o == "-P": left = a.split("=")[0] right = a.split("=")[1] configset( myModel.config, "variable_change_once", left, right, overwrite=True ) if o == "-p": left = a.split("=")[0] right = a.split("=")[1] configset( myModel.config, "variable_change_timestep", left, right, overwrite=True ) if o == "-X": configset(myModel.config, "model", "OverWriteInit", "1", overwrite=True) if o == "-I": configset(myModel.config, "run", "reinit", "1", overwrite=True) if o == "-i": configset(myModel.config, "model", "intbl", a, overwrite=True) if o == "-s": configset(myModel.config, "model", "timestepsecs", a, overwrite=True) if o == "-x": configset(myModel.config, "model", "sCatch", a, overwrite=True) if o == "-c": configset(myModel.config, "model", "configfile", a, overwrite=True) if o == "-M": configset(myModel.config, "model", "MassWasting", "0", overwrite=True) if o == "-Q": configset(myModel.config, "model", "ExternalQbase", "1", overwrite=True) if o == "-U": configset(myModel.config, "model", "updateFile", a, overwrite=True) configset(myModel.config, "model", "updating", "1", overwrite=True) if o == "-u": exec("zz =" + a) updateCols = zz if o == "-T": configset(myModel.config, "run", "endtime", a, overwrite=True) if o == "-S": configset(myModel.config, "run", "starttime", a, overwrite=True) dynModelFw.setupFramework() dynModelFw.logger.info("Command line: " + str(argv)) dynModelFw._runInitial() dynModelFw._runResume() # dynModelFw._runDynamic(0,0) dynModelFw._runDynamic(_firstTimeStep, _lastTimeStep) dynModelFw._runSuspend() dynModelFw._wf_shutdown() os.chdir("../../") if __name__ == "__main__": main()
39.939502
215
0.576435
5a43206562b9b74bd7a66db1792484962fd94473
6,097
py
Python
parsers/test/mocks/quality_check.py
Macquaria/electricitymap-contrib
86ad87a07e6b1ba38ebf697f9a4710dbc5688754
[ "MIT" ]
1,582
2018-07-16T10:52:36.000Z
2021-12-06T06:03:32.000Z
parsers/test/mocks/quality_check.py
aphansal123/electricitymap-contrib
cac8e3abfdebe2d66a832925e6f66d7283ba67b6
[ "MIT" ]
1,463
2018-07-09T12:23:35.000Z
2021-12-06T08:11:37.000Z
parsers/test/mocks/quality_check.py
aphansal123/electricitymap-contrib
cac8e3abfdebe2d66a832925e6f66d7283ba67b6
[ "MIT" ]
650
2018-07-10T02:07:17.000Z
2021-12-03T11:05:45.000Z
#!/usr/bin/python """ Test datapoints for quality.py Each one is designed to test some part of the validation functions. """ import datetime dt = datetime.datetime.utcnow() prod = { 'biomass': 15.0, 'coal': 130.0, 'gas': 890.0, 'hydro': 500.0, 'nuclear': 345.7, 'oil': 0.0, 'solar': 60.0, 'wind': 75.0, 'geothermal': None, 'unknown': 3.0 } c1 = { 'consumption': 1374.0, 'zoneKey': 'FR', 'datetime': dt, 'production': prod, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } c2 = { 'consumption': -1081.0, 'zoneKey': 'FR', 'datetime': dt, 'production': prod, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } c3 = { 'consumption': None, 'zoneKey': 'FR', 'datetime': dt, 'production': prod, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } e1 = { 'sortedZoneKeys': 'DK->NO', 'datetime': dt, 'netFlow': 73.0, 'source': 'mysource.com' } e2 = { 'sortedZoneKeys': 'DK->NO', 'netFlow': 73.0, 'source': 'mysource.com' } e3 = { 'sortedZoneKeys': 'DK->NO', 'datetime': 'At the 3rd beep the time will be......', 'netFlow': 73.0, 'source': 'mysource.com' } future = datetime.datetime.utcnow() + datetime.timedelta(seconds=5*60) e4 = { 'sortedZoneKeys': 'DK->NO', 'datetime': future, 'netFlow': 73.0, 'source': 'mysource.com' } p1 = { 'zoneKey': 'FR', 'production': prod, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p2 = { 'production': prod, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p3 = { 'zoneKey': 'FR', 'production': prod, 'datetime': '13th May 2017', 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p4 = { 'zoneKey': 'BR', 'production': prod, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p5 = { 'zoneKey': 'BR', 'production': prod, 'datetime': future, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p6 = { 'zoneKey': 'FR', 'production': { 'biomass': 10.0, 'coal': None, 'gas': None, 'hydro': 340.2, 'nuclear': 2390.0, 'oil': None, 'solar': 49.0, 'wind': 0.0, 'geothermal': 453.8, 'unknown': None }, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p7 = { 'zoneKey': 'CH', 'production': { 'biomass': 10.0, 'coal': None, 'gas': 780.0, 'hydro': 340.2, 'nuclear': 2390.0, 'oil': None, 'solar': 49.0, 'wind': 0.0, 'geothermal': 453.8, 'unknown': None }, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p8 = { 'zoneKey': 'FR', 'production': { 'biomass': 10.0, 'coal': 230.6, 'gas': 780.0, 'hydro': 340.2, 'nuclear': 2390.0, 'oil': 0.0, 'solar': 49.0, 'wind': 0.0, 'geothermal': -453.8, 'unknown': 0.0 }, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p9 = { 'zoneKey': 'FR', 'production': { 'biomass': 10.0, 'coal': 230.6, 'gas': 780.0, 'hydro': 340.2, 'nuclear': 2390.0, 'oil': 0.0, 'solar': 49.0, 'wind': 0.0, 'geothermal': 453.8, 'unknown': 10.0 }, 'datetime': dt, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } p10 = { 'zoneKey': 'DE', 'production': { 'coal': 230.6, 'gas': 780.0, 'hydro': 340.2, 'nuclear': 2390.0, 'oil': 0.0, 'solar': 49.0, 'wind': 0.0, 'geothermal': 453.8, 'unknown': 10.0 }, 'datetime': dt, 'source': 'mysource.com' } p11 = { 'zoneKey': 'PL', 'production': { 'coal': 230.6, 'gas': 780.0 }, 'datetime': dt, 'source': 'mysource.com' } p12 = { 'zoneKey': 'SI', 'production': { 'biomass': 15, 'coal': 4000, 'gas': 14, 'geothermal': None, 'hydro': 856, 'nuclear': 692, 'oil': 0, 'solar': 94, 'unknown': None, 'wind': 1 }, 'datetime': dt, 'source': 'mysource.com' } p13 = { 'zoneKey': 'DK-DK1', 'production': { 'oil': 1, 'unknown': 79, 'coal': 534, 'wind': 2000, 'biomass': 583, 'gas': 215 }, 'datetime': dt, 'source': 'entsoe.eu', } p14 = { 'zoneKey': 'FI', 'production': { 'nuclear': 2565, 'oil': 1, 'unknown': 79, 'coal': 534, 'hydro': 2176, 'wind': 42, 'biomass': 583, 'gas': 215, 'geothermal': None, 'solar': None }, 'datetime': dt, 'source': 'entsoe.eu', }
20.667797
70
0.37051
b6c51671d563be4a6c7995daaf02f33f84217fd9
2,729
py
Python
tools/cryptoloop2hashcat.py
Masha/hashcat
178003d692ab72abfd9588fdce9e4f569d2b1aa7
[ "MIT" ]
13,663
2015-12-04T16:08:29.000Z
2022-03-31T23:43:17.000Z
tools/cryptoloop2hashcat.py
Masha/hashcat
178003d692ab72abfd9588fdce9e4f569d2b1aa7
[ "MIT" ]
2,014
2015-12-04T16:45:36.000Z
2022-03-31T21:02:58.000Z
tools/cryptoloop2hashcat.py
Masha/hashcat
178003d692ab72abfd9588fdce9e4f569d2b1aa7
[ "MIT" ]
2,555
2015-12-04T16:09:31.000Z
2022-03-31T11:34:38.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Gabriele 'matrix' Gristina # Version: 1.0 # Date: Fri May 7 01:02:56 CEST 2021 # License: MIT import argparse import os.path import sys kern_type = -1 hash_mode = -1 hash_modes = [ 14511, 14512, 14513, 14521, 14522, 14523, 14531, 14532, 14533, 14541, 14542, 14543, 14551, 14552, 14553 ] def validate_source(parser, arg): if not os.path.exists(arg): parser.error("! Invalid source argument: does not exist") else: return open(arg, 'rb') def validate_keysize(parser, ks): if ks == '128': return 0 elif ks == '192': return 1 elif ks == '256': return 2 else: parser.error("! Invalid key size selected ...") def valid_hash_cipher(hash, cipher): if hash != 'sha1' and hash != 'sha256' and hash != 'sha512' and hash != 'ripemd160' and hash != 'whirlpool': print("! Invalid or not supported hash type") exit(1) if cipher != 'aes' and cipher != 'serpent' and cipher != 'twofish': print("! Invalid or not supported cipher") exit(1) if hash == 'sha1': if cipher == 'aes': return 0 elif cipher == 'serpent': return 1 else: return 2 elif hash == 'sha256': if cipher == 'aes': return 3 elif args.cipher == 'serpent': return 4 else: return 5 elif hash == 'sha512': if cipher == 'aes': return 6 elif cipher == 'serpent': return 7 else: return 8 elif hash == 'ripemd160': if cipher == 'aes': return 9 elif cipher == 'serpent': return 10 else: return 11 else: # whirlpool if cipher == 'aes': return 12 elif cipher == 'serpent': return 13 else: return 14 parser = argparse.ArgumentParser(description='cryptoloop2hashcat extraction tool') parser.add_argument('--source', required=True, help='set cryptoloop disk/image from path', type=lambda src: validate_source(parser, src)) parser.add_argument('--hash', required=True, help='set hash type. Supported: sha1, sha256, sha512, ripemd160 or whirlpool.') parser.add_argument('--cipher', required=True, help='set cipher type. Supported: aes, serpent or twofish.') parser.add_argument('--keysize', required=True, help='set key size. Supported: 128, 192 or 256.', type=lambda ks: validate_keysize(parser, ks)) args = parser.parse_args() kern_type = valid_hash_cipher(args.hash, args.cipher) hash_mode = hash_modes[kern_type] key_size = args.keysize f = args.source f.seek(1536) if sys.version_info[0] == 3: ct = f.read(16).hex() else: ct = f.read(16).encode('hex') f.close() print('$cryptoapi$' + str(kern_type) + '$' + str(key_size) + '$03000000000000000000000000000000$00000000000000000000000000000000$' + ct)
26.754902
143
0.648223
c8201e26211b2eab4d0c998d38fb57c4a4af9fef
5,179
py
Python
invenio_records_resources/resources/files/resource.py
inveniosoftware/invenio-resources
f1fb9a849d03af1d6ec4cddfc4e140a06788783b
[ "MIT" ]
null
null
null
invenio_records_resources/resources/files/resource.py
inveniosoftware/invenio-resources
f1fb9a849d03af1d6ec4cddfc4e140a06788783b
[ "MIT" ]
19
2020-05-18T12:04:54.000Z
2020-07-13T06:19:27.000Z
invenio_records_resources/resources/files/resource.py
inveniosoftware/invenio-resources
f1fb9a849d03af1d6ec4cddfc4e140a06788783b
[ "MIT" ]
5
2020-04-28T09:07:43.000Z
2020-07-01T14:43:01.000Z
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # Copyright (C) 2020 Northwestern University. # # Invenio-Records-Resources is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """Invenio Record File Resources.""" import marshmallow as ma from flask import g from flask_resources import ( JSONDeserializer, RequestBodyParser, Resource, request_body_parser, request_parser, resource_requestctx, response_handler, route, ) from ..errors import ErrorHandlersMixin from .parser import RequestStreamParser # # Decorator helpers # request_view_args = request_parser( {"pid_value": ma.fields.Str(required=True), "key": ma.fields.Str()}, location="view_args", ) request_data = request_body_parser( parsers={"application/json": RequestBodyParser(JSONDeserializer())}, default_content_type="application/json", ) request_stream = request_body_parser( parsers={"application/octet-stream": RequestStreamParser()}, default_content_type="application/octet-stream", ) # # Resource # class FileResource(ErrorHandlersMixin, Resource): """File resource.""" def __init__(self, config, service): """Constructor.""" super(FileResource, self).__init__(config) self.service = service def create_url_rules(self): """Routing for the views.""" routes = self.config.routes url_rules = [ route("GET", routes["list"], self.search), route("GET", routes["item"], self.read), route("GET", routes["item-content"], self.read_content), ] if self.config.allow_upload: url_rules += [ route("POST", routes["list"], self.create), route("DELETE", routes["list"], self.delete_all), route("PUT", routes["item"], self.update), route("DELETE", routes["item"], self.delete), route("POST", routes["item-commit"], self.create_commit), route("PUT", routes["item-content"], self.update_content), ] return url_rules @request_view_args @response_handler(many=True) def search(self): """List files.""" files = self.service.list_files( g.identity, resource_requestctx.view_args["pid_value"], ) return files.to_dict(), 200 @request_view_args def delete_all(self): """Delete all files.""" self.service.delete_all_files( g.identity, resource_requestctx.view_args["pid_value"], ) return "", 204 @request_view_args @request_data @response_handler() def create(self): """Initialize an upload on a record.""" item = self.service.init_files( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.data or [], ) return item.to_dict(), 201 @request_view_args @response_handler() def read(self): """Read a single file.""" item = self.service.read_file_metadata( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], ) return item.to_dict(), 200 @request_view_args @request_data @response_handler() def update(self): """Update the metadata a single file.""" item = self.service.update_file_metadata( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], resource_requestctx.data or {}, ) return item.to_dict(), 200 @request_view_args def delete(self): """Delete a file.""" self.service.delete_file( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], ) return "", 204 @request_view_args @response_handler() def create_commit(self): """Commit a file.""" item = self.service.commit_file( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], ) return item.to_dict(), 200 @request_view_args def read_content(self): """Read file content.""" item = self.service.get_file_content( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], ) return item.send_file(), 200 @request_view_args @request_stream @response_handler() def update_content(self): """Upload file content.""" # TODO: Parse in `resource_requestctx` item = self.service.set_file_content( g.identity, resource_requestctx.view_args["pid_value"], resource_requestctx.view_args["key"], resource_requestctx.data["request_stream"], content_length=resource_requestctx.data["request_content_length"], ) return item.to_dict(), 200
28.932961
78
0.611701
fb08cdc0e4da2276295a3e110aa1c6adec19343e
2,062
py
Python
pyecca/estimators/attitude/launch.py
Mohit-Pathak/pyecca
d47d16aae646d8cab633a6d792233f676ed6c61c
[ "BSD-3-Clause" ]
null
null
null
pyecca/estimators/attitude/launch.py
Mohit-Pathak/pyecca
d47d16aae646d8cab633a6d792233f676ed6c61c
[ "BSD-3-Clause" ]
null
null
null
pyecca/estimators/attitude/launch.py
Mohit-Pathak/pyecca
d47d16aae646d8cab633a6d792233f676ed6c61c
[ "BSD-3-Clause" ]
2
2019-09-25T03:20:15.000Z
2019-10-05T02:11:40.000Z
import multiprocessing as mp import numpy as np from pyecca import replay from pyecca import uros from pyecca.estimators.attitude import algorithms from pyecca.estimators.attitude.estimator import AttitudeEstimator from pyecca.estimators.attitude.simulator import Simulator default_params = { 't0': 0, 'tf': 1, 'n_monte_carlo': 1, 'replay_log_file': None, 'name': 'default', 'initialize': True, 'estimators': [], 'x0': [0, 0, 0, 0, 0, 0], 'params': {} } eqs = algorithms.eqs() def init_params(params): p = dict(default_params) for k, v in params.items(): if k not in p.keys(): raise KeyError(k) p[k] = v return p def launch_sim(params): p = init_params(params) core = uros.Core() Simulator(core, eqs, p['x0']) for name in p['estimators']: AttitudeEstimator(core, name, eqs[name], p['initialize']) logger = uros.Logger(core) core.init_params() for k, v in p['params'].items(): core.set_param(k, v) core.run(until=p['tf']) print(p['name'], 'done') return logger.get_log_as_array() def launch_monte_carlo_sim(params): p = init_params(params) if p['n_monte_carlo'] == 1: d = dict(p) d.pop('n_monte_carlo') data = [launch_sim(d)] else: new_params = [] for i in range(p['n_monte_carlo']): d = dict(p) d.pop('n_monte_carlo') d['name'] = i new_params.append(d) with mp.Pool(mp.cpu_count()) as pool: data = np.array(pool.map(launch_sim, new_params)) return data def launch_replay(params): p = init_params(params) core = uros.Core() replay.ULogReplay(core, p['replay_log_file']) for name in p['estimators']: AttitudeEstimator(core, name, eqs[name], p['initialize']) logger = uros.Logger(core) core.init_params() for k, v in p['params'].items(): core.set_param(k, v) core.run(until=p['tf']) print(p['name'], 'done') return logger.get_log_as_array()
25.45679
66
0.605238
6065bb07c704e332a5222a70eb24f4405dd3e5b4
28,674
py
Python
nltk/parse/nonprojectivedependencyparser.py
sgkasselau/nltk
6f18915d88f9bcaff74f5578633c81ef3b73e7f4
[ "Apache-2.0" ]
null
null
null
nltk/parse/nonprojectivedependencyparser.py
sgkasselau/nltk
6f18915d88f9bcaff74f5578633c81ef3b73e7f4
[ "Apache-2.0" ]
null
null
null
nltk/parse/nonprojectivedependencyparser.py
sgkasselau/nltk
6f18915d88f9bcaff74f5578633c81ef3b73e7f4
[ "Apache-2.0" ]
null
null
null
# Natural Language Toolkit: Dependency Grammars # # Copyright (C) 2001-2022 NLTK Project # Author: Jason Narad <jason.narad@gmail.com> # # URL: <https://www.nltk.org/> # For license information, see LICENSE.TXT # import logging import math from nltk.parse.dependencygraph import DependencyGraph logger = logging.getLogger(__name__) ################################################################# # DependencyScorerI - Interface for Graph-Edge Weight Calculation ################################################################# class DependencyScorerI: """ A scorer for calculated the weights on the edges of a weighted dependency graph. This is used by a ``ProbabilisticNonprojectiveParser`` to initialize the edge weights of a ``DependencyGraph``. While typically this would be done by training a binary classifier, any class that can return a multidimensional list representation of the edge weights can implement this interface. As such, it has no necessary fields. """ def __init__(self): if self.__class__ == DependencyScorerI: raise TypeError("DependencyScorerI is an abstract interface") def train(self, graphs): """ :type graphs: list(DependencyGraph) :param graphs: A list of dependency graphs to train the scorer. Typically the edges present in the graphs can be used as positive training examples, and the edges not present as negative examples. """ raise NotImplementedError() def score(self, graph): """ :type graph: DependencyGraph :param graph: A dependency graph whose set of edges need to be scored. :rtype: A three-dimensional list of numbers. :return: The score is returned in a multidimensional(3) list, such that the outer-dimension refers to the head, and the inner-dimension refers to the dependencies. For instance, scores[0][1] would reference the list of scores corresponding to arcs from node 0 to node 1. The node's 'address' field can be used to determine its number identification. For further illustration, a score list corresponding to Fig.2 of Keith Hall's 'K-best Spanning Tree Parsing' paper:: scores = [[[], [5], [1], [1]], [[], [], [11], [4]], [[], [10], [], [5]], [[], [8], [8], []]] When used in conjunction with a MaxEntClassifier, each score would correspond to the confidence of a particular edge being classified with the positive training examples. """ raise NotImplementedError() ################################################################# # NaiveBayesDependencyScorer ################################################################# class NaiveBayesDependencyScorer(DependencyScorerI): """ A dependency scorer built around a MaxEnt classifier. In this particular class that classifier is a ``NaiveBayesClassifier``. It uses head-word, head-tag, child-word, and child-tag features for classification. >>> from nltk.parse.dependencygraph import DependencyGraph, conll_data2 >>> graphs = [DependencyGraph(entry) for entry in conll_data2.split('\\n\\n') if entry] >>> npp = ProbabilisticNonprojectiveParser() >>> npp.train(graphs, NaiveBayesDependencyScorer()) >>> parses = npp.parse(['Cathy', 'zag', 'hen', 'zwaaien', '.'], ['N', 'V', 'Pron', 'Adj', 'N', 'Punc']) >>> len(list(parses)) 1 """ def __init__(self): pass # Do nothing without throwing error def train(self, graphs): """ Trains a ``NaiveBayesClassifier`` using the edges present in graphs list as positive examples, the edges not present as negative examples. Uses a feature vector of head-word, head-tag, child-word, and child-tag. :type graphs: list(DependencyGraph) :param graphs: A list of dependency graphs to train the scorer. """ from nltk.classify import NaiveBayesClassifier # Create training labeled training examples labeled_examples = [] for graph in graphs: for head_node in graph.nodes.values(): for child_index, child_node in graph.nodes.items(): if child_index in head_node["deps"]: label = "T" else: label = "F" labeled_examples.append( ( dict( a=head_node["word"], b=head_node["tag"], c=child_node["word"], d=child_node["tag"], ), label, ) ) self.classifier = NaiveBayesClassifier.train(labeled_examples) def score(self, graph): """ Converts the graph into a feature-based representation of each edge, and then assigns a score to each based on the confidence of the classifier in assigning it to the positive label. Scores are returned in a multidimensional list. :type graph: DependencyGraph :param graph: A dependency graph to score. :rtype: 3 dimensional list :return: Edge scores for the graph parameter. """ # Convert graph to feature representation edges = [] for head_node in graph.nodes.values(): for child_node in graph.nodes.values(): edges.append( dict( a=head_node["word"], b=head_node["tag"], c=child_node["word"], d=child_node["tag"], ) ) # Score edges edge_scores = [] row = [] count = 0 for pdist in self.classifier.prob_classify_many(edges): logger.debug("%.4f %.4f", pdist.prob("T"), pdist.prob("F")) # smoothing in case the probability = 0 row.append([math.log(pdist.prob("T") + 0.00000000001)]) count += 1 if count == len(graph.nodes): edge_scores.append(row) row = [] count = 0 return edge_scores ################################################################# # A Scorer for Demo Purposes ################################################################# # A short class necessary to show parsing example from paper class DemoScorer(DependencyScorerI): def train(self, graphs): print("Training...") def score(self, graph): # scores for Keith Hall 'K-best Spanning Tree Parsing' paper return [ [[], [5], [1], [1]], [[], [], [11], [4]], [[], [10], [], [5]], [[], [8], [8], []], ] ################################################################# # Non-Projective Probabilistic Parsing ################################################################# class ProbabilisticNonprojectiveParser: """A probabilistic non-projective dependency parser. Nonprojective dependencies allows for "crossing branches" in the parse tree which is necessary for representing particular linguistic phenomena, or even typical parses in some languages. This parser follows the MST parsing algorithm, outlined in McDonald(2005), which likens the search for the best non-projective parse to finding the maximum spanning tree in a weighted directed graph. >>> class Scorer(DependencyScorerI): ... def train(self, graphs): ... pass ... ... def score(self, graph): ... return [ ... [[], [5], [1], [1]], ... [[], [], [11], [4]], ... [[], [10], [], [5]], ... [[], [8], [8], []], ... ] >>> npp = ProbabilisticNonprojectiveParser() >>> npp.train([], Scorer()) >>> parses = npp.parse(['v1', 'v2', 'v3'], [None, None, None]) >>> len(list(parses)) 1 Rule based example >>> from nltk.grammar import DependencyGrammar >>> grammar = DependencyGrammar.fromstring(''' ... 'taught' -> 'play' | 'man' ... 'man' -> 'the' | 'in' ... 'in' -> 'corner' ... 'corner' -> 'the' ... 'play' -> 'golf' | 'dachshund' | 'to' ... 'dachshund' -> 'his' ... ''') >>> ndp = NonprojectiveDependencyParser(grammar) >>> parses = ndp.parse(['the', 'man', 'in', 'the', 'corner', 'taught', 'his', 'dachshund', 'to', 'play', 'golf']) >>> len(list(parses)) 4 """ def __init__(self): """ Creates a new non-projective parser. """ logging.debug("initializing prob. nonprojective...") def train(self, graphs, dependency_scorer): """ Trains a ``DependencyScorerI`` from a set of ``DependencyGraph`` objects, and establishes this as the parser's scorer. This is used to initialize the scores on a ``DependencyGraph`` during the parsing procedure. :type graphs: list(DependencyGraph) :param graphs: A list of dependency graphs to train the scorer. :type dependency_scorer: DependencyScorerI :param dependency_scorer: A scorer which implements the ``DependencyScorerI`` interface. """ self._scorer = dependency_scorer self._scorer.train(graphs) def initialize_edge_scores(self, graph): """ Assigns a score to every edge in the ``DependencyGraph`` graph. These scores are generated via the parser's scorer which was assigned during the training process. :type graph: DependencyGraph :param graph: A dependency graph to assign scores to. """ self.scores = self._scorer.score(graph) def collapse_nodes(self, new_node, cycle_path, g_graph, b_graph, c_graph): """ Takes a list of nodes that have been identified to belong to a cycle, and collapses them into on larger node. The arcs of all nodes in the graph must be updated to account for this. :type new_node: Node. :param new_node: A Node (Dictionary) to collapse the cycle nodes into. :type cycle_path: A list of integers. :param cycle_path: A list of node addresses, each of which is in the cycle. :type g_graph, b_graph, c_graph: DependencyGraph :param g_graph, b_graph, c_graph: Graphs which need to be updated. """ logger.debug("Collapsing nodes...") # Collapse all cycle nodes into v_n+1 in G_Graph for cycle_node_index in cycle_path: g_graph.remove_by_address(cycle_node_index) g_graph.add_node(new_node) g_graph.redirect_arcs(cycle_path, new_node["address"]) def update_edge_scores(self, new_node, cycle_path): """ Updates the edge scores to reflect a collapse operation into new_node. :type new_node: A Node. :param new_node: The node which cycle nodes are collapsed into. :type cycle_path: A list of integers. :param cycle_path: A list of node addresses that belong to the cycle. """ logger.debug("cycle %s", cycle_path) cycle_path = self.compute_original_indexes(cycle_path) logger.debug("old cycle %s", cycle_path) logger.debug("Prior to update: %s", self.scores) for i, row in enumerate(self.scores): for j, column in enumerate(self.scores[i]): logger.debug(self.scores[i][j]) if j in cycle_path and i not in cycle_path and self.scores[i][j]: subtract_val = self.compute_max_subtract_score(j, cycle_path) logger.debug("%s - %s", self.scores[i][j], subtract_val) new_vals = [] for cur_val in self.scores[i][j]: new_vals.append(cur_val - subtract_val) self.scores[i][j] = new_vals for i, row in enumerate(self.scores): for j, cell in enumerate(self.scores[i]): if i in cycle_path and j in cycle_path: self.scores[i][j] = [] logger.debug("After update: %s", self.scores) def compute_original_indexes(self, new_indexes): """ As nodes are collapsed into others, they are replaced by the new node in the graph, but it's still necessary to keep track of what these original nodes were. This takes a list of node addresses and replaces any collapsed node addresses with their original addresses. :type new_indexes: A list of integers. :param new_indexes: A list of node addresses to check for subsumed nodes. """ swapped = True while swapped: originals = [] swapped = False for new_index in new_indexes: if new_index in self.inner_nodes: for old_val in self.inner_nodes[new_index]: if old_val not in originals: originals.append(old_val) swapped = True else: originals.append(new_index) new_indexes = originals return new_indexes def compute_max_subtract_score(self, column_index, cycle_indexes): """ When updating scores the score of the highest-weighted incoming arc is subtracted upon collapse. This returns the correct amount to subtract from that edge. :type column_index: integer. :param column_index: A index representing the column of incoming arcs to a particular node being updated :type cycle_indexes: A list of integers. :param cycle_indexes: Only arcs from cycle nodes are considered. This is a list of such nodes addresses. """ max_score = -100000 for row_index in cycle_indexes: for subtract_val in self.scores[row_index][column_index]: if subtract_val > max_score: max_score = subtract_val return max_score def best_incoming_arc(self, node_index): """ Returns the source of the best incoming arc to the node with address: node_index :type node_index: integer. :param node_index: The address of the 'destination' node, the node that is arced to. """ originals = self.compute_original_indexes([node_index]) logger.debug("originals: %s", originals) max_arc = None max_score = None for row_index in range(len(self.scores)): for col_index in range(len(self.scores[row_index])): if col_index in originals and ( max_score is None or self.scores[row_index][col_index] > max_score ): max_score = self.scores[row_index][col_index] max_arc = row_index logger.debug("%s, %s", row_index, col_index) logger.debug(max_score) for key in self.inner_nodes: replaced_nodes = self.inner_nodes[key] if max_arc in replaced_nodes: return key return max_arc def original_best_arc(self, node_index): originals = self.compute_original_indexes([node_index]) max_arc = None max_score = None max_orig = None for row_index in range(len(self.scores)): for col_index in range(len(self.scores[row_index])): if col_index in originals and ( max_score is None or self.scores[row_index][col_index] > max_score ): max_score = self.scores[row_index][col_index] max_arc = row_index max_orig = col_index return [max_arc, max_orig] def parse(self, tokens, tags): """ Parses a list of tokens in accordance to the MST parsing algorithm for non-projective dependency parses. Assumes that the tokens to be parsed have already been tagged and those tags are provided. Various scoring methods can be used by implementing the ``DependencyScorerI`` interface and passing it to the training algorithm. :type tokens: list(str) :param tokens: A list of words or punctuation to be parsed. :type tags: list(str) :param tags: A list of tags corresponding by index to the words in the tokens list. :return: An iterator of non-projective parses. :rtype: iter(DependencyGraph) """ self.inner_nodes = {} # Initialize g_graph g_graph = DependencyGraph() for index, token in enumerate(tokens): g_graph.nodes[index + 1].update( {"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1} ) # Fully connect non-root nodes in g_graph g_graph.connect_graph() original_graph = DependencyGraph() for index, token in enumerate(tokens): original_graph.nodes[index + 1].update( {"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1} ) b_graph = DependencyGraph() c_graph = DependencyGraph() for index, token in enumerate(tokens): c_graph.nodes[index + 1].update( {"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1} ) # Assign initial scores to g_graph edges self.initialize_edge_scores(g_graph) logger.debug(self.scores) # Initialize a list of unvisited vertices (by node address) unvisited_vertices = [vertex["address"] for vertex in c_graph.nodes.values()] # Iterate over unvisited vertices nr_vertices = len(tokens) betas = {} while unvisited_vertices: # Mark current node as visited current_vertex = unvisited_vertices.pop(0) logger.debug("current_vertex: %s", current_vertex) # Get corresponding node n_i to vertex v_i current_node = g_graph.get_by_address(current_vertex) logger.debug("current_node: %s", current_node) # Get best in-edge node b for current node best_in_edge = self.best_incoming_arc(current_vertex) betas[current_vertex] = self.original_best_arc(current_vertex) logger.debug("best in arc: %s --> %s", best_in_edge, current_vertex) # b_graph = Union(b_graph, b) for new_vertex in [current_vertex, best_in_edge]: b_graph.nodes[new_vertex].update( {"word": "TEMP", "rel": "NTOP", "address": new_vertex} ) b_graph.add_arc(best_in_edge, current_vertex) # Beta(current node) = b - stored for parse recovery # If b_graph contains a cycle, collapse it cycle_path = b_graph.contains_cycle() if cycle_path: # Create a new node v_n+1 with address = len(nodes) + 1 new_node = {"word": "NONE", "rel": "NTOP", "address": nr_vertices + 1} # c_graph = Union(c_graph, v_n+1) c_graph.add_node(new_node) # Collapse all nodes in cycle C into v_n+1 self.update_edge_scores(new_node, cycle_path) self.collapse_nodes(new_node, cycle_path, g_graph, b_graph, c_graph) for cycle_index in cycle_path: c_graph.add_arc(new_node["address"], cycle_index) # self.replaced_by[cycle_index] = new_node['address'] self.inner_nodes[new_node["address"]] = cycle_path # Add v_n+1 to list of unvisited vertices unvisited_vertices.insert(0, nr_vertices + 1) # increment # of nodes counter nr_vertices += 1 # Remove cycle nodes from b_graph; B = B - cycle c for cycle_node_address in cycle_path: b_graph.remove_by_address(cycle_node_address) logger.debug("g_graph: %s", g_graph) logger.debug("b_graph: %s", b_graph) logger.debug("c_graph: %s", c_graph) logger.debug("Betas: %s", betas) logger.debug("replaced nodes %s", self.inner_nodes) # Recover parse tree logger.debug("Final scores: %s", self.scores) logger.debug("Recovering parse...") for i in range(len(tokens) + 1, nr_vertices + 1): betas[betas[i][1]] = betas[i] logger.debug("Betas: %s", betas) for node in original_graph.nodes.values(): # TODO: It's dangerous to assume that deps it a dictionary # because it's a default dictionary. Ideally, here we should not # be concerned how dependencies are stored inside of a dependency # graph. node["deps"] = {} for i in range(1, len(tokens) + 1): original_graph.add_arc(betas[i][0], betas[i][1]) logger.debug("Done.") yield original_graph ################################################################# # Rule-based Non-Projective Parser ################################################################# class NonprojectiveDependencyParser: """ A non-projective, rule-based, dependency parser. This parser will return the set of all possible non-projective parses based on the word-to-word relations defined in the parser's dependency grammar, and will allow the branches of the parse tree to cross in order to capture a variety of linguistic phenomena that a projective parser will not. """ def __init__(self, dependency_grammar): """ Creates a new ``NonprojectiveDependencyParser``. :param dependency_grammar: a grammar of word-to-word relations. :type dependency_grammar: DependencyGrammar """ self._grammar = dependency_grammar def parse(self, tokens): """ Parses the input tokens with respect to the parser's grammar. Parsing is accomplished by representing the search-space of possible parses as a fully-connected directed graph. Arcs that would lead to ungrammatical parses are removed and a lattice is constructed of length n, where n is the number of input tokens, to represent all possible grammatical traversals. All possible paths through the lattice are then enumerated to produce the set of non-projective parses. param tokens: A list of tokens to parse. type tokens: list(str) return: An iterator of non-projective parses. rtype: iter(DependencyGraph) """ # Create graph representation of tokens self._graph = DependencyGraph() for index, token in enumerate(tokens): self._graph.nodes[index] = { "word": token, "deps": [], "rel": "NTOP", "address": index, } for head_node in self._graph.nodes.values(): deps = [] for dep_node in self._graph.nodes.values(): if ( self._grammar.contains(head_node["word"], dep_node["word"]) and head_node["word"] != dep_node["word"] ): deps.append(dep_node["address"]) head_node["deps"] = deps # Create lattice of possible heads roots = [] possible_heads = [] for i, word in enumerate(tokens): heads = [] for j, head in enumerate(tokens): if (i != j) and self._grammar.contains(head, word): heads.append(j) if len(heads) == 0: roots.append(i) possible_heads.append(heads) # Set roots to attempt if len(roots) < 2: if len(roots) == 0: for i in range(len(tokens)): roots.append(i) # Traverse lattice analyses = [] for _ in roots: stack = [] analysis = [[] for i in range(len(possible_heads))] i = 0 forward = True while i >= 0: if forward: if len(possible_heads[i]) == 1: analysis[i] = possible_heads[i][0] elif len(possible_heads[i]) == 0: analysis[i] = -1 else: head = possible_heads[i].pop() analysis[i] = head stack.append([i, head]) if not forward: index_on_stack = False for stack_item in stack: if stack_item[0] == i: index_on_stack = True orig_length = len(possible_heads[i]) if index_on_stack and orig_length == 0: for j in range(len(stack) - 1, -1, -1): stack_item = stack[j] if stack_item[0] == i: possible_heads[i].append(stack.pop(j)[1]) elif index_on_stack and orig_length > 0: head = possible_heads[i].pop() analysis[i] = head stack.append([i, head]) forward = True if i + 1 == len(possible_heads): analyses.append(analysis[:]) forward = False if forward: i += 1 else: i -= 1 # Filter parses # ensure 1 root, every thing has 1 head for analysis in analyses: if analysis.count(-1) > 1: # there are several root elements! continue graph = DependencyGraph() graph.root = graph.nodes[analysis.index(-1) + 1] for address, (token, head_index) in enumerate( zip(tokens, analysis), start=1 ): head_address = head_index + 1 node = graph.nodes[address] node.update({"word": token, "address": address}) if head_address == 0: rel = "ROOT" else: rel = "" graph.nodes[head_index + 1]["deps"][rel].append(address) # TODO: check for cycles yield graph ################################################################# # Demos ################################################################# def demo(): # hall_demo() nonprojective_conll_parse_demo() rule_based_demo() def hall_demo(): npp = ProbabilisticNonprojectiveParser() npp.train([], DemoScorer()) for parse_graph in npp.parse(["v1", "v2", "v3"], [None, None, None]): print(parse_graph) def nonprojective_conll_parse_demo(): from nltk.parse.dependencygraph import conll_data2 graphs = [DependencyGraph(entry) for entry in conll_data2.split("\n\n") if entry] npp = ProbabilisticNonprojectiveParser() npp.train(graphs, NaiveBayesDependencyScorer()) for parse_graph in npp.parse( ["Cathy", "zag", "hen", "zwaaien", "."], ["N", "V", "Pron", "Adj", "N", "Punc"] ): print(parse_graph) def rule_based_demo(): from nltk.grammar import DependencyGrammar grammar = DependencyGrammar.fromstring( """ 'taught' -> 'play' | 'man' 'man' -> 'the' | 'in' 'in' -> 'corner' 'corner' -> 'the' 'play' -> 'golf' | 'dachshund' | 'to' 'dachshund' -> 'his' """ ) print(grammar) ndp = NonprojectiveDependencyParser(grammar) graphs = ndp.parse( [ "the", "man", "in", "the", "corner", "taught", "his", "dachshund", "to", "play", "golf", ] ) print("Graphs:") for graph in graphs: print(graph) if __name__ == "__main__": demo()
37.094437
117
0.54879
30eb012ea52fc2fb19cd778404a233edf5425f7b
396
py
Python
employees/migrations/0002_employee_featured_image.py
mwororokevin/django-property-site
a477d80cbac04fde33920d9b5e5f9de783d55fbd
[ "MIT" ]
null
null
null
employees/migrations/0002_employee_featured_image.py
mwororokevin/django-property-site
a477d80cbac04fde33920d9b5e5f9de783d55fbd
[ "MIT" ]
null
null
null
employees/migrations/0002_employee_featured_image.py
mwororokevin/django-property-site
a477d80cbac04fde33920d9b5e5f9de783d55fbd
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-04-01 09:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('employees', '0001_initial'), ] operations = [ migrations.AddField( model_name='employee', name='featured_image', field=models.ImageField(null=True, upload_to=''), ), ]
20.842105
61
0.59596
95b49901db6d16f85a38b1b2c648e1369a95da31
1,040
py
Python
main/entities/wall.py
ouriquegustavo/fightyourstreamer
a9bd3bd7b34817842b0bf0714bd8dc0d3b51b8ba
[ "MIT" ]
null
null
null
main/entities/wall.py
ouriquegustavo/fightyourstreamer
a9bd3bd7b34817842b0bf0714bd8dc0d3b51b8ba
[ "MIT" ]
null
null
null
main/entities/wall.py
ouriquegustavo/fightyourstreamer
a9bd3bd7b34817842b0bf0714bd8dc0d3b51b8ba
[ "MIT" ]
null
null
null
from main.entities.entity import Entity import pygame class Wall(Entity): @property def x(self): return (self.xi + self.xf) / 2 @property def y(self): return (self.yi + self.yf) / 2 @property def dx(self): return self.xf - self.xi @property def dy(self): return self.yf - self.yi def __init__(self, game, gid, xi, xf, yi, yf): super().__init__(game, gid) self.kind = 'wall' self.xi = xi self.yi = yi self.xf = xf self.yf = yf self.collision_mask.add(1) self.collision_mask.add(2) self.zorder = 1 self.colour = (0, 0, 0, 255) self.sprite = pygame.Surface((self.dx, self.dy), flags=pygame.SRCALPHA) self.sprite.fill(self.colour) self.is_drawing = True def draw(self): x = self.xi - self.game.camera.x + self.game.display.w / 2 y = self.yi - self.game.camera.y + self.game.display.h / 2 self.game.display.blit(self.sprite, (x, y))
22.608696
79
0.559615
9699cf08765c1189b0c9f59597ec525dfa9f8d71
10,891
py
Python
h5sparse/h5sparse.py
tvandera/h5sparse
aba5694ced25953fb5474d2395a03498e22b0db6
[ "MIT" ]
1
2021-12-18T18:41:43.000Z
2021-12-18T18:41:43.000Z
h5sparse/h5sparse.py
tvandera/h5sparse
aba5694ced25953fb5474d2395a03498e22b0db6
[ "MIT" ]
null
null
null
h5sparse/h5sparse.py
tvandera/h5sparse
aba5694ced25953fb5474d2395a03498e22b0db6
[ "MIT" ]
null
null
null
import six import h5py import numpy as np import scipy.sparse as ss FORMAT_DICT = { 'csr': ss.csr_matrix, 'csc': ss.csc_matrix, 'coo': ss.coo_matrix, } indptr_dtype = np.int64 indices_dtype = np.int64 row_dtype = np.int64 col_dtype = np.int64 def get_format_str(data): for format_str, format_class in six.viewitems(FORMAT_DICT): if isinstance(data, format_class): return format_str raise ValueError("Data type {} is not supported.".format(type(data))) def get_format_class(format_str): try: format_class = FORMAT_DICT[format_str] except KeyError: raise ValueError("Format {} is not supported." .format(format_str)) return format_class def is_compressed_format(format_str): return format_str in ('csc', 'csr') class Group(h5py.Group): """The HDF5 group that can detect and create sparse matrix. """ def __getitem__(self, key): h5py_item = super(Group, self).__getitem__(key) if isinstance(h5py_item, h5py.Group): if 'h5sparse_format' in h5py_item.attrs: # detect the sparse matrix return Dataset(h5py_item) else: return Group(h5py_item.id) elif isinstance(h5py_item, h5py.Dataset): return h5py_item else: raise ValueError("Unexpected item type.") def create_dataset_compressed(self, name, sparse_format, shape, data, indices, indptr, dtype, **kwargs): """Create a dataset in csc or csr format""" assert sparse_format in ("csc", "csr") group = self.create_group(name) group.attrs['h5sparse_format'] = sparse_format group.attrs['h5sparse_shape'] = shape group.create_dataset('data', data=data, dtype=dtype, **kwargs) group.create_dataset('indices', data=indices, dtype=indices_dtype, **kwargs) group.create_dataset('indptr', data=indptr, dtype=indptr_dtype, **kwargs) return group def create_dataset_coo(self, name, sparse_format, shape, data, row, col, dtype, **kwargs): """Create a dataset in csc or csr format""" assert sparse_format == "coo" group = self.create_group(name) group.attrs['h5sparse_format'] = sparse_format group.attrs['h5sparse_shape'] = shape group.create_dataset('data', data=data, dtype=dtype, **kwargs) group.create_dataset('row', data=row, dtype=row_dtype, **kwargs) group.create_dataset('col', data=col, dtype=col_dtype, **kwargs) return group def create_dataset_from_dataset(self, name, data, dtype, **kwargs): sparse_format = data.attrs['h5sparse_format'] if (is_compressed_format(sparse_format)): group = self.create_dataset_compressed(name, data.attrs['h5sparse_format'], data.attrs['h5sparse_shape'], data.h5py_group['data'], data.h5py_group['indices'], data.h5py_group['indptr'], dtype, **kwargs) else: group = self.create_dataset_coo(name, data.attrs['h5sparse_format'], data.attrs['h5sparse_shape'], data.h5py_group['data'], data.h5py_group['row'], data.h5py_group['col'], dtype, **kwargs) return group def create_dataset_from_scipy(self, name, data, dtype, **kwargs): sparse_format = get_format_str(data) if (is_compressed_format(sparse_format)): group = self.create_dataset_compressed(name, sparse_format, data.shape, data.data, data.indices, data.indptr, dtype, **kwargs) else: group = self.create_dataset_coo(name, sparse_format, data.shape, data.data, data.row, data.col, dtype, **kwargs) return group def create_dataset(self, name, shape=None, dtype=None, data=None, sparse_format=None, **kwargs): """Create 3 datasets in a group to represent the sparse array. Parameters ---------- sparse_format: """ if isinstance(data, Dataset): assert sparse_format is None group = self.create_dataset_from_dataset(name, data, dtype, **kwargs) elif ss.issparse(data): if sparse_format is not None: format_class = get_format_class(sparse_format) data = format_class(data) group = self.create_dataset_from_scipy(name, data, dtype, **kwargs) elif data is None and sparse_format is not None: format_class = get_format_class(sparse_format) if dtype is None: dtype = np.float64 if shape is None: shape = (0, 0) data = format_class(shape, dtype=dtype) group = self.create_dataset_from_scipy(name, data, dtype, **kwargs) else: # forward the arguments to h5py assert sparse_format is None return super(Group, self).create_dataset( name, data=data, shape=shape, dtype=dtype, **kwargs) return Dataset(group) class File(h5py.File, Group): """The HDF5 file object that can detect and create sparse matrix. """ pass class Dataset(h5py.Group): """The HDF5 sparse matrix dataset. Parameters ---------- h5py_group : h5py.Dataset """ def __init__(self, h5py_group): super(Dataset, self).__init__(h5py_group.id) self.h5py_group = h5py_group self.shape = tuple(self.attrs['h5sparse_shape']) self.format_str = self.attrs['h5sparse_format'] self.dtype = h5py_group['data'].dtype def __getitem__(self, key): if isinstance(key, slice): if key.step is not None: raise NotImplementedError("Index step is not supported.") start = key.start stop = key.stop if stop is not None and stop > 0: stop += 1 if start is not None and start < 0: start -= 1 indptr_slice = slice(start, stop) indptr = self.h5py_group['indptr'][indptr_slice] data = self.h5py_group['data'][indptr[0]:indptr[-1]] indices = self.h5py_group['indices'][indptr[0]:indptr[-1]] indptr -= indptr[0] if self.format_str == 'csr': shape = (indptr.size - 1, self.shape[1]) elif self.format_str == 'csc': shape = (self.shape[0], indptr.size - 1) else: raise NotImplementedError("Slicing for format {} is not implemented." .format(self.format_str)) format_class = get_format_class(self.attrs['h5sparse_format']) return format_class((data, indices, indptr), shape=shape) elif isinstance(key, tuple) and key == (): if (is_compressed_format(self.format_str)): data = self.h5py_group['data'][()] indices = self.h5py_group['indices'][()] indptr = self.h5py_group['indptr'][()] shape = self.shape format_class = get_format_class(self.attrs['h5sparse_format']) return format_class((data, indices, indptr), shape=shape) else: data = self.h5py_group['data'][()] row = self.h5py_group['row'][()] col = self.h5py_group['col'][()] shape = self.shape format_class = get_format_class(self.attrs['h5sparse_format']) return format_class((data, (row, col)), shape=shape) else: raise NotImplementedError("Only support one slice as index.") @property def value(self): return self[()] def append(self, sparse_matrix): if self.format_str != get_format_str(sparse_matrix): raise ValueError("Format not the same.") if self.format_str == 'csr': # data data = self.h5py_group['data'] orig_data_size = data.shape[0] new_shape = (orig_data_size + sparse_matrix.data.shape[0],) data.resize(new_shape) data[orig_data_size:] = sparse_matrix.data # indptr indptr = self.h5py_group['indptr'] orig_data_size = indptr.shape[0] append_offset = indptr[-1] new_shape = (orig_data_size + sparse_matrix.indptr.shape[0] - 1,) indptr.resize(new_shape) indptr[orig_data_size:] = (sparse_matrix.indptr[1:].astype(np.int64) + append_offset) # indices indices = self.h5py_group['indices'] orig_data_size = indices.shape[0] new_shape = (orig_data_size + sparse_matrix.indices.shape[0],) indices.resize(new_shape) indices[orig_data_size:] = sparse_matrix.indices # shape self.shape = ( self.shape[0] + sparse_matrix.shape[0], max(self.shape[1], sparse_matrix.shape[1])) self.attrs['h5sparse_shape'] = self.shape else: raise NotImplementedError("The append method for format {} is not implemented." .format(self.format_str))
40.790262
91
0.504637
453d0c7386ef4b5ccb7b6e695c794ad1d2ffb0e9
4,384
py
Python
vancouver_film_school/vfs_r2_user_interfaces.py
TrevisanGMW/maya-scripts
80840520924c8e6087cd6e3e1be6e4c5d663297b
[ "MIT" ]
8
2020-01-03T03:13:32.000Z
2021-11-06T05:09:44.000Z
vancouver_film_school/vfs_r2_user_interfaces.py
TrevisanGMW/maya-scripts
80840520924c8e6087cd6e3e1be6e4c5d663297b
[ "MIT" ]
3
2020-11-09T06:10:54.000Z
2021-01-08T02:57:25.000Z
vancouver_film_school/vfs_r2_user_interfaces.py
TrevisanGMW/maya-scripts
80840520924c8e6087cd6e3e1be6e4c5d663297b
[ "MIT" ]
1
2020-09-18T00:06:40.000Z
2020-09-18T00:06:40.000Z
''' An example of how to generate a user interface using Python and Maya commands (cmds) For more documentation go to "Maya > Help > Maya Scripting Reference > Python Command Reference" or visit the link below: https://help.autodesk.com/view/MAYAUL/2020/ENU/index.html?contextId=COMMANDSPYTHON-INDEX ''' import maya.cmds as cmds # Import Maya API def window_name(): # Define a function for the window if cmds.window("window_name", exists =True): # Check if the window exists cmds.deleteUI("window_name")# if it does, delete it (so you don't have multiple windows with the same content) # main dialog start here ================================================================================= window_name = cmds.window("window_name", title="My Window",\ titleBar=True,minimizeButton=False,maximizeButton=False, sizeable =True)# Create a window object (Unsure what the parameters do? Search for the documentation for cmds.window) content_main = cmds.columnLayout(adj = True) # Create a column to populate with elements cmds.separator(h=5, st="none" ) # Empty Space # Create a text (these elements are all children of the columnLayout we created above, unless otherwise declared) # How do you change the parent of a UI element? Use the "parent" parameter. For example cmds.text(parent='content_main_02') my_text = cmds.text("This is an example of a text!") # Notice that the text is stored in a variable so we can reference it later cmds.separator(h=10, st="none" ) # Empty Space my_textfield = cmds.textField(placeholderText='This is a textfield') # Creates a textfield, and store it in a variable so we can reference it later cmds.separator(h=10, st="none" ) # Empty Space # Create a rowColumnLayout so we can have multiple elements in a row (this element is super helpful when adjusting your UI) # columnWidth needs a list of tuples describing every column. For example [(1, 10)(2, 15)] would make change columns of the size 10 and 15 cmds.rowColumnLayout(numberOfColumns=3, columnWidth=[(1, 100), (2, 100),(3,10)], cs=[(1,10),(2,5),(3,5)]) cmds.button(l ="Create Cube", c=lambda x:create_standard_cube(), w=100, bgc=(.3,.7,.3)) # Create a button - (The lambda part of it is to make the button capable of calling other functions) cmds.button(l ="Create Sphere", c=lambda x:create_standard_sphere(), w=100, bgc=(.3,.7,.3)) # Another button cmds.separator(h=5, st="none" ) # Empty Space cmds.rowColumnLayout( p=content_main, numberOfColumns=1, columnWidth=[(1, 205), (2, 100),(3,10)], cs=[(1,10),(2,5),(3,5)]) # Another rowColumnLayout, this time with only one Column cmds.separator(h=5, st="none" ) # Empty Space cmds.button(l ="Replace Text with Textfield", c=lambda x:replace_textfield(), w=100, bgc=(.3,.7,.3)) # Another button to update the text cmds.separator(h=10, st="none" )# Empty Space # Functions for the buttons (They have been declared inside of the main function so the have access to the button variables) def create_standard_sphere(): # A function to create a sphere (used by one of the buttons) cmds.polySphere(name='mySphere') # Function to create a simple sphere named "mySphere" def create_standard_cube(): # Same thing for a cube cmds.polyCube(name='myCube') # Function to create a simple cube named "myCube" def replace_textfield(): # Function to replace the text element with the provided text # Query the the information from the text field, dump it into a variable. The "q=True" means query, "text=True" tells the function what to query. text_from_textfield = cmds.textField(my_textfield, q=True, text=True) # Update the text with the information that what extracted from the variable # Instead of using "q=True", this time we used "e=True" which means "edit". "label=text_from_textfield" determines what is being edited. cmds.text(my_text, e=True, label=text_from_textfield) cmds.showWindow(window_name) # Finally show the window element we created at the beginning # main dialog ends here ================================================================================= window_name() # Call the main function
71.868852
201
0.668568
ff9f554655ea93347f3600a77607791d8ef9c24d
4,049
py
Python
Demo/GenerateData2DConstantDensity.py
zfang-slim/PysitForPython3
dc60537b26018e28d92b7a956a2cf96775f0bdf9
[ "BSD-3-Clause" ]
null
null
null
Demo/GenerateData2DConstantDensity.py
zfang-slim/PysitForPython3
dc60537b26018e28d92b7a956a2cf96775f0bdf9
[ "BSD-3-Clause" ]
null
null
null
Demo/GenerateData2DConstantDensity.py
zfang-slim/PysitForPython3
dc60537b26018e28d92b7a956a2cf96775f0bdf9
[ "BSD-3-Clause" ]
1
2020-06-13T07:13:07.000Z
2020-06-13T07:13:07.000Z
import time import copy import numpy as np import matplotlib.pyplot as plt import math import os from shutil import copy2 from mpl_toolkits.axes_grid1 import make_axes_locatable import sys import scipy.io as sio from pysit import * from pysit.gallery import horizontal_reflector from pysit.util.io import * from pysit.util.parallel import * if __name__ == '__main__': # Set up domain, mesh and velocity model pmlx = PML(0.1, 1000) pmlz = PML(0.1, 1000) x_config = (0.0, 2.0, pmlx, pmlx) z_config = (0.0, 1.0, pmlz, pmlz) d = RectangularDomain(x_config, z_config) m = CartesianMesh(d, 201, 101) C, C0, m, d = horizontal_reflector(m) # Set up shots zmin = d.z.lbound zmax = d.z.rbound zpos = zmin + (1./10.)*zmax Nshots = 1 shots = equispaced_acquisition(m, RickerWavelet(10.0), sources=Nshots, source_depth=zpos, source_kwargs={}, receivers='max', receiver_depth=zpos, receiver_kwargs={} ) shots_freq = copy.deepcopy(shots) # Define and configure the wave solver trange = (0.0,2.0) # Define the time-domain wave-equation solver and generate the time-domain data solver = ConstantDensityAcousticWave(m, spatial_accuracy_order=2, trange=trange, kernel_implementation='cpp') base_model = solver.ModelParameters(m,{'C': C}) print('Generating time-domain data...') tt = time.time() generate_seismic_data(shots, solver, base_model) print('Time-domain data generation: {0}s'.format(time.time()-tt)) # Check the result and plot the result clim = C.min(),C.max() plt.figure(figsize=(20,4)) plt.subplot(1,2,1) vis.plot(C0, m, clim=clim) plt.title(r'Initial Model of $v$') plt.colorbar() plt.xlabel('X [km]') plt.ylabel('Z [km]') plt.subplot(1,2,2) vis.plot(C, m, clim=clim) plt.title(r"True Model of $v$") plt.colorbar() plt.xlabel('X [km]') plt.ylabel('Z [km]') plt.show() data = shots[0].receivers.data t_smp = np.linspace(trange[0], trange[1], data.shape[0]) fig=plt.figure() im1=plt.imshow(data, interpolation='nearest', aspect='auto', cmap='seismic', clim =[-.1,.1], extent=[0.0, 2.0, t_smp[-1], 0.0]) plt.xlabel('Receivers [km]') plt.ylabel('Time [s]') plt.colorbar() plt.show() # Define the frequency-domain wave-equation solver and generate the frequency-domain data solver = ConstantDensityHelmholtz(m, spatial_accuracy_order=4) frequencies = [2.0,3.0] print('Generating frequency-domain data...') tt = time.time() generate_seismic_data(shots_freq, solver, base_model, frequencies=frequencies, petsc='mumps') print('Frequency-domain data generation: {0}s'.format(time.time()-tt)) # Check the result and plot the result xrec = np.linspace(0.0,2.0,201) data1 = shots_freq[0].receivers.data_dft[2.0] data2 = shots_freq[0].receivers.data_dft[3.0] plt.figure(figsize=(12,12)) plt.subplot(2,2,1) plt.plot(xrec, np.real(data1.flatten())) plt.xlabel('Receivers [km]') plt.title('Real part of data at f = 2.0Hz') plt.subplot(2,2,2) plt.plot(xrec, np.real(data2.flatten())) plt.xlabel('Receivers [km]') plt.title('Real part of data at f = 3.0Hz') plt.subplot(2,2,3) plt.plot(xrec, np.imag(data1.flatten())) plt.xlabel('Receivers [km]') plt.title('Imaginary part of data at f = 2.0Hz') plt.subplot(2,2,4) plt.plot(xrec, np.imag(data2.flatten())) plt.xlabel('Receivers [km]') plt.title('Imaginary part of data at f = 3.0Hz') plt.show()
28.514085
97
0.579649
b9a4dec286ffd140855776b932524d69d666d26e
269
py
Python
terrascript/cronitor/__init__.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
terrascript/cronitor/__init__.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
terrascript/cronitor/__init__.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# terrascript/cronitor/__init__.py # Automatically generated by tools/makecode.py () import warnings warnings.warn( "using the 'legacy layout' is deprecated", DeprecationWarning, stacklevel=2 ) import terrascript class cronitor(terrascript.Provider): pass
17.933333
79
0.773234
47132749e80b236baacfe51b6d27021d34274b9e
597
py
Python
setup.py
aktur/kodi-voice
90a9c91a619ce4676eb919a2664a2150a38a407b
[ "MIT" ]
null
null
null
setup.py
aktur/kodi-voice
90a9c91a619ce4676eb919a2664a2150a38a407b
[ "MIT" ]
null
null
null
setup.py
aktur/kodi-voice
90a9c91a619ce4676eb919a2664a2150a38a407b
[ "MIT" ]
null
null
null
from setuptools import setup from pip.req import parse_requirements setup( name = 'Kodi-Voice', packages = ['kodi_voice'], version = '1.1.0', description = 'A library for interfacing with Kodi with VUI platforms like Amazon Alexa, Google Home, and Cortana.', author = 'Joe Ipson', author_email = 'joe@ipson.me', url = 'https://github.com/m0ngr31/kodi-voice', zip_safe = False, include_package_data = True, keywords = ['kodi', 'voice', 'alexa'], classifiers = [], install_requires = ['requests', 'boto3', 'pyocclient', 'ConfigParser', 'num2words', 'roman', 'fuzzywuzzy'] )
33.166667
118
0.688442
de8c357819964944175cf0c8eb2ff3e6d48ea947
3,436
py
Python
Trakttv.bundle/Contents/Libraries/Shared/plex_metadata/agents/agent.py
disrupted/Trakttv.bundle
24712216c71f3b22fd58cb5dd89dad5bb798ed60
[ "RSA-MD" ]
1,346
2015-01-01T14:52:24.000Z
2022-03-28T12:50:48.000Z
Trakttv.bundle/Contents/Libraries/Shared/plex_metadata/agents/agent.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
474
2015-01-01T10:27:46.000Z
2022-03-21T12:26:16.000Z
Trakttv.bundle/Contents/Libraries/Shared/plex_metadata/agents/agent.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
191
2015-01-02T18:27:22.000Z
2022-03-29T10:49:48.000Z
from plex_metadata.core.helpers import try_convert import plex.lib.six.moves.urllib_parse as urlparse import logging import re DEFAULT_MEDIA = ['movie', 'show', 'season', 'episode'] log = logging.getLogger(__name__) class Agent(object): def __init__(self, media, service, regex=None, type=None, children=None, season=None): self.media = media self.service = service self.regex = regex self.type = type self.children = children self.season = season # # Compile # @classmethod def compile(cls, entry, media=None): # Construct `Agent` return cls( media=cls.get_media(entry, media), service=entry.get('service'), type=entry.get('type'), # Compile regular expression regex=cls.compile_pattern(entry.get('pattern')), # Compile children children=[ cls.compile(child, media) for child in (entry.get('children') or []) ], # Overrides season=entry.get('season') ) @staticmethod def compile_pattern(pattern): if pattern is None: return None try: return re.compile(pattern, re.IGNORECASE) except Exception as ex: log.warn('Unable to compile regular expression: %r - %s', pattern, ex, exc_info=True) return None @staticmethod def get_media(entry, media=None): if entry.get('media') is None: return DEFAULT_MEDIA return entry.get('media') + (media or []) # # Fill # def fill(self, guid, uri, media=None): # Validate media matches agent if media is not None and media not in self.media: return False # Search children for match if self.children: # Iterate over children, checking if `guid` can be filled for child in self.children: if child.fill(guid, uri, media): return True # Parse netloc (media id) if self.regex: # Match `uri.netloc` against pattern match = self.regex.match(uri.netloc) if not match: return False id = ''.join(match.groups()) else: id = uri.netloc # Cast `id` to defined type if self.type: id = try_convert(id, self.type, id) # Update `guid` guid.service = self.service or guid.agent_id guid.id = id # Fill `guid` with extra details from URI self.fill_path(guid, uri.path) self.fill_query(guid, uri.query) # Process overrides if self.season is not None: guid.season = self.season return True def fill_path(self, guid, path): # Split path into fragments fragments = path.strip('/').split('/') # Retrieve TV parameters if 'season' in self.media and len(fragments) >= 1: guid.season = try_convert(fragments[0], int) if 'episode' in self.media and len(fragments) >= 2: guid.episode = try_convert(fragments[1], int) @staticmethod def fill_query(guid, query): # Parse query parameters parameters = dict(urlparse.parse_qsl(query)) # Update `guid` with parameters guid.language = parameters.get('lang')
26.030303
97
0.565192
dcaa95d7695fa997064618e116a728f0da188596
2,956
py
Python
src/bandersnatch/tests/test_utils.py
sukhbeersingh/bandersnatch
5dfab28c5e965ccaab9cebc5bd090185ff28f8ad
[ "AFL-3.0" ]
2
2020-04-22T15:00:30.000Z
2020-04-22T17:21:50.000Z
src/bandersnatch/tests/test_utils.py
DalavanCloud/bandersnatch
88f4d574f8bf55e75c01895aca41d32666ec9f54
[ "AFL-3.0" ]
1
2021-06-02T02:47:02.000Z
2021-06-02T02:47:02.000Z
src/bandersnatch/tests/test_utils.py
DalavanCloud/bandersnatch
88f4d574f8bf55e75c01895aca41d32666ec9f54
[ "AFL-3.0" ]
null
null
null
import os import os.path import re from pathlib import Path from tempfile import TemporaryDirectory, gettempdir import pytest from bandersnatch.utils import ( # isort:skip convert_url_to_path, hash, recursive_find_files, rewrite, unlink_parent_dir, user_agent, ) def test_convert_url_to_path(): assert ( "packages/8f/1a/1aa000db9c5a799b676227e845d2b64fe725328e05e3d3b30036f" + "50eb316/peerme-1.0.0-py36-none-any.whl" == convert_url_to_path( "https://files.pythonhosted.org/packages/8f/1a/1aa000db9c5a799b67" + "6227e845d2b64fe725328e05e3d3b30036f50eb316/" + "peerme-1.0.0-py36-none-any.whl" ) ) def test_hash(): sample = os.path.join(os.path.dirname(__file__), "sample") assert hash(sample, function="md5") == "125765989403df246cecb48fa3e87ff8" assert hash(sample, function="sha256") == ( "95c07c174663ebff531eed59b326ebb3fa95f418f680349fc33b07dfbcf29f18" ) assert hash(sample) == ( "95c07c174663ebff531eed59b326ebb3fa95f418f680349fc33b07dfbcf29f18" ) def test_find_files(): with TemporaryDirectory() as td: td_path = Path(td) td_sub_path = td_path / "aDir" td_sub_path.mkdir() expected_found_files = {td_path / "file1", td_sub_path / "file2"} for afile in expected_found_files: with afile.open("w") as afp: afp.write("PyPA ftw!") found_files = set() recursive_find_files(found_files, td_path) assert found_files == expected_found_files def test_rewrite(tmpdir, monkeypatch): monkeypatch.chdir(tmpdir) with open("sample", "w") as f: f.write("bsdf") with rewrite("sample") as f: f.write("csdf") assert open("sample").read() == "csdf" mode = os.stat("sample").st_mode assert oct(mode) == "0o100644" def test_rewrite_fails(tmpdir, monkeypatch): monkeypatch.chdir(tmpdir) with open("sample", "w") as f: f.write("bsdf") with pytest.raises(Exception): with rewrite("sample") as f: f.write("csdf") raise Exception() assert open("sample").read() == "bsdf" def test_rewrite_nonexisting_file(tmpdir, monkeypatch): monkeypatch.chdir(tmpdir) with rewrite("sample", "w") as f: f.write("csdf") with open("sample", "r") as f: assert f.read() == "csdf" def test_unlink_parent_dir(): adir = Path(gettempdir()) / f"tb.{os.getpid()}" adir.mkdir() afile = adir / "file1" afile.touch() unlink_parent_dir(afile) assert not adir.exists() def test_user_agent(): assert re.match( r"bandersnatch/[0-9]\.[0-9]\.[0-9]\.?d?e?v?[0-9]? \(.*\)", user_agent() ) def test_user_agent_async(): async_ver = "aiohttp 0.6.9" assert re.match( fr"bandersnatch/[0-9]\.[0-9]\.[0-9]\.?d?e?v?[0-9]? \(.*\) \({async_ver}\)", user_agent(async_ver), )
27.119266
83
0.632273
e316b2016f22a50570b7e0f05f9705acd74c792d
2,817
py
Python
backend/api/main.py
jeano-star/Yacht
0aed12e1dca5ef34c3526d5170063558a691ee92
[ "MIT" ]
1
2020-10-23T18:52:17.000Z
2020-10-23T18:52:17.000Z
backend/api/main.py
ptTrR/Yacht
396a59f7a1b25e96c52c33cc7b0986f2d8dedb1c
[ "MIT" ]
null
null
null
backend/api/main.py
ptTrR/Yacht
396a59f7a1b25e96c52c33cc7b0986f2d8dedb1c
[ "MIT" ]
null
null
null
import uvicorn from fastapi import Depends, FastAPI, Header, HTTPException from .routers import apps, templates, app_settings import uuid from .db import models from .db.database import SessionLocal, engine from .routers.app_settings import read_template_variables, set_template_variables, SessionLocal from sqlalchemy.orm import Session from .settings import Settings from .utils import get_db from .auth import fastapi_users, cookie_authentication, database, users, user_create, UserDB, get_password_hash app = FastAPI(root_path="/api") models.Base.metadata.create_all(bind=engine) settings = Settings() app.include_router( apps.router, prefix="/apps", tags=["apps"], # dependencies=[Depends(get_token_header)], responses={404: {"description": "Not found"}}, ) app.include_router( fastapi_users.get_auth_router(cookie_authentication), prefix="/auth", tags=["auth"] ) app.include_router( fastapi_users.get_users_router(), prefix="/users", tags=["users"] ) app.include_router( templates.router, prefix="/templates", tags=["templates"], # dependencies=[Depends(get_token_header)], responses={404: {"description": "Not found"}}, ) app.include_router( app_settings.router, prefix="/settings", tags=["settings"] ) @app.on_event("startup") async def startup(): await database.connect() # Clear old db migrations delete_alembic = "DROP TABLE IF EXISTS alembic_version;" await database.execute(delete_alembic) users_exist = await database.fetch_all(query=users.select()) if users_exist: print("Users Exist") else: print("No Users. Creating the default user.") # This is where I'm having trouble hashed_password = get_password_hash(settings.ADMIN_PASSWORD) base_user = UserDB( id=uuid.uuid4(), email=settings.ADMIN_EMAIL, hashed_password=hashed_password, is_active=True, is_superuser=True ) user_created = await user_create(base_user) template_variables_exist = read_template_variables(SessionLocal()) if template_variables_exist: print("Template Variables Exist") else: print("No Variables yet!") t_vars = settings.BASE_TEMPLATE_VARIABLES t_var_list = [] for t in t_vars: template_variables = models.TemplateVariables( variable=t.get("variable"), replacement=t.get("replacement") ) t_var_list.append(template_variables) set_template_variables(new_variables=t_var_list, db=SessionLocal()) @app.on_event("shutdown") async def shutdown(): await database.disconnect() if __name__ == "__main__": uvicorn.run("main:app", host='0.0.0.0', port=8000, reload=True)
29.041237
111
0.688676
e42d467516b6b158a0c184f4bc065d3a91dd36d1
1,288
py
Python
blendergltf/exporters/camera.py
iamthad/blendergltf
a7d162b0db9b2a5a7bd5399badca7a43def8c7ab
[ "Apache-2.0" ]
343
2016-03-09T22:39:15.000Z
2022-01-31T03:13:28.000Z
blendergltf/exporters/camera.py
theirishduck/blendergltf
9943d9afce10285396688a7359efea6032054fb3
[ "Apache-2.0" ]
149
2016-02-15T06:15:51.000Z
2019-04-25T18:59:46.000Z
blendergltf/exporters/camera.py
theirishduck/blendergltf
9943d9afce10285396688a7359efea6032054fb3
[ "Apache-2.0" ]
56
2016-02-13T06:24:10.000Z
2021-02-07T01:49:43.000Z
from .base import BaseExporter class CameraExporter(BaseExporter): gltf_key = 'cameras' blender_key = 'cameras' @classmethod def export(cls, state, blender_data): camera_gltf = {} if blender_data.type == 'ORTHO': xmag = 0.5 * blender_data.ortho_scale ymag = xmag * state['aspect_ratio'] camera_gltf = { 'orthographic': { 'xmag': ymag, 'ymag': xmag, 'zfar': blender_data.clip_end, 'znear': blender_data.clip_start, }, 'type': 'orthographic', } else: angle_y = blender_data.angle_y if blender_data.angle_y != 0.0 else 1e-6 camera_gltf = { 'perspective': { 'aspectRatio': blender_data.angle_x / angle_y, 'yfov': angle_y, 'zfar': blender_data.clip_end, 'znear': blender_data.clip_start, }, 'type': 'perspective', } camera_gltf['name'] = blender_data.name extras = cls.get_custom_properties(blender_data) if extras: camera_gltf['extras'] = extras return camera_gltf
33.025641
83
0.497671
42dee4865cbda7616f3eaff73caf6f0ea36dba30
1,288
py
Python
tests/test_wrapper.py
kurusugawa-computer/annowork-api-python-client-draft
40ee4481f763bbff15f28a93f7e028f25a744dab
[ "MIT" ]
null
null
null
tests/test_wrapper.py
kurusugawa-computer/annowork-api-python-client-draft
40ee4481f763bbff15f28a93f7e028f25a744dab
[ "MIT" ]
null
null
null
tests/test_wrapper.py
kurusugawa-computer/annowork-api-python-client-draft
40ee4481f763bbff15f28a93f7e028f25a744dab
[ "MIT" ]
null
null
null
import configparser import datetime import os import annoworkapi os.chdir(os.path.dirname(os.path.abspath(__file__)) + "/../") inifile = configparser.ConfigParser() inifile.read("./pytest.ini", "UTF-8") workspace_id = inifile["annowork"]["workspace_id"] service = annoworkapi.build() class TestActualWorkingTime: jtc_tzinfo = datetime.timezone(datetime.timedelta(hours=9)) def test_get_actual_working_times_daily(self): tmp = service.wrapper.get_actual_working_times_daily( workspace_id, term_start_date="2021-11-15", term_end_date="2021-11-15", tzinfo=self.jtc_tzinfo ) def test_get_actual_working_times_by_workspace_member_daily(self): print(f"{workspace_id=}") tmp = service.wrapper.get_actual_working_times_by_workspace_member_daily( workspace_id, "c566151e-f8bb-4f73-9c78-af40da1814ef", term_start_date="2021-11-15", term_end_date="2021-11-16", tzinfo=self.jtc_tzinfo, ) class TestSchedule: def test_get_schedules_daily(self): tmp = service.wrapper.get_schedules_daily( workspace_id, term_start="2021-11-15", term_end="2021-11-15", job_id="4ec6c1cf-84ed-4e28-8074-491dbce64599", )
29.953488
106
0.681677
c85bea4abce7bdcaf9452585699167a1000c9317
5,083
py
Python
openmdao.lib/src/openmdao/lib/drivers/doedriver.py
swryan/OpenMDAO-Framework
f50d60e1a8cadac7fe03d26ffad5fb660b2a15ec
[ "Apache-2.0" ]
null
null
null
openmdao.lib/src/openmdao/lib/drivers/doedriver.py
swryan/OpenMDAO-Framework
f50d60e1a8cadac7fe03d26ffad5fb660b2a15ec
[ "Apache-2.0" ]
null
null
null
openmdao.lib/src/openmdao/lib/drivers/doedriver.py
swryan/OpenMDAO-Framework
f50d60e1a8cadac7fe03d26ffad5fb660b2a15ec
[ "Apache-2.0" ]
null
null
null
""" .. _`DOEdriver.py`: ``doedriver.py`` -- Driver that executes a Design of Experiments. """ import csv # pylint: disable-msg=E0611,F0401 from openmdao.lib.datatypes.api import Bool, List, Slot, Float, Str from openmdao.main.case import Case from openmdao.main.interfaces import IDOEgenerator, ICaseFilter, implements, \ IHasParameters from openmdao.lib.drivers.caseiterdriver import CaseIterDriverBase from openmdao.util.decorators import add_delegate from openmdao.main.hasparameters import HasParameters @add_delegate(HasParameters) class DOEdriver(CaseIterDriverBase): """ Driver for Design of Experiments. """ implements(IHasParameters) # pylint: disable-msg=E1101 DOEgenerator = Slot(IDOEgenerator, iotype='in', required=True, desc='Iterator supplying normalized DOE values.') record_doe = Bool(True, iotype='in', desc='Record normalized DOE values to CSV file.') doe_filename = Str('', iotype='in', desc='Name of CSV file to record to' ' (default is <driver-name>.csv).') case_outputs = List(Str, iotype='in', desc='A list of outputs to be saved with each case.') case_filter = Slot(ICaseFilter, iotype='in', desc='Selects cases to be run.') def execute(self): """Generate and evaluate cases.""" self._csv_file = None try: super(DOEdriver, self).execute() finally: if self._csv_file is not None: self._csv_file.close() def get_case_iterator(self): """Returns a new iterator over the Case set.""" return self._get_cases() def _get_cases(self): """Generate each case.""" params = self.get_parameters().values() self.DOEgenerator.num_parameters = len(params) record_doe = self.record_doe events = self.get_events() outputs = self.case_outputs case_filter = self.case_filter if record_doe: if not self.doe_filename: self.doe_filename = '%s.csv' % self.name self._csv_file = open(self.doe_filename, 'wb') csv_writer = csv.writer(self._csv_file) for i, row in enumerate(self.DOEgenerator): if record_doe: csv_writer.writerow(['%.16g' % val for val in row]) vals = [p.low+(p.high-p.low)*val for p,val in zip(params,row)] case = self.set_parameters(vals, Case(parent_uuid=self._case_id)) # now add events for varname in events: case.add_input(varname, True) case.add_outputs(outputs) if case_filter is None or case_filter.select(i, case): yield case if record_doe: self._csv_file.close() self._csv_file = None @add_delegate(HasParameters) class NeighborhoodDOEdriver(CaseIterDriverBase): """Driver for Design of Experiments within a specified neighborhood around a point.""" # pylint: disable-msg=E1101 DOEgenerator = Slot(IDOEgenerator, iotype='in', required=True, desc='Iterator supplying normalized DOE values.') case_outputs = List(Str, iotype='in', desc='A list of outputs to be saved with each case.') alpha = Float(.3, low=.01, high =1.0, iotype='in', desc='Multiplicative factor for neighborhood DOE Driver.') beta = Float(.01, low=.001, high=1.0, iotype='in', desc='Another factor for neighborhood DOE Driver.') def get_case_iterator(self): """Returns a new iterator over the Case set.""" return self._get_cases() def _get_cases(self): params = self.get_parameters().values() self.DOEgenerator.num_parameters = len(params) M = [] P = [] for p in params: temp = p.evaluate() P.append(temp) M.append((temp-p.low)/(p.high-p.low)) for row in list(self.DOEgenerator)+[tuple(M)]: vals = [] for p,val,curval in zip(params, row, P): delta_low = curval-p.low k_low = 1.0/(1.0+(1-self.beta)*delta_low) new_low = curval - self.alpha*k_low*delta_low#/(self.exec_count+1) delta_high = p.high-curval k_high = 1.0/(1.0+(1-self.beta)*delta_high) new_high = curval + self.alpha*k_high*delta_high#/(self.exec_count+1) newval = new_low+(new_high-new_low)*val vals.append(newval) case = self.set_parameters(vals, Case(parent_uuid=self._case_id)) # now add events for varname in self.get_events(): case.add_input(varname, True) case.add_outputs(self.case_outputs) yield case
34.578231
85
0.576038
1f89124a6b57ffe50ca88744506a3d3c701ee400
422
py
Python
packages/python/plotly/plotly/validators/scatter3d/error_z/_visible.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/scatter3d/error_z/_visible.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/scatter3d/error_z/_visible.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class VisibleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="visible", parent_name="scatter3d.error_z", **kwargs ): super(VisibleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs, )
30.142857
78
0.656398
2ad327a0dc6b5044e76002c49ee07bcfd94635ae
2,386
py
Python
scripts/artifacts/knowCusage.py
mastenp/iLEAPP
ee40ef7505b36d0b9b04131f284a9d4d036514a5
[ "MIT" ]
1
2020-10-06T20:28:03.000Z
2020-10-06T20:28:03.000Z
scripts/artifacts/knowCusage.py
mastenp/iLEAPP
ee40ef7505b36d0b9b04131f284a9d4d036514a5
[ "MIT" ]
null
null
null
scripts/artifacts/knowCusage.py
mastenp/iLEAPP
ee40ef7505b36d0b9b04131f284a9d4d036514a5
[ "MIT" ]
null
null
null
import glob import os import pathlib import plistlib import sqlite3 import json from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows def get_knowCusage(files_found, report_folder, seeker): file_found = str(files_found[0]) db = sqlite3.connect(file_found) cursor = db.cursor() cursor.execute( """ SELECT DATETIME(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH') AS "START", DATETIME(ZOBJECT.ZENDDATE+978307200,'UNIXEPOCH') AS "END", ZOBJECT.ZVALUESTRING AS "BUNDLE ID", (ZOBJECT.ZENDDATE - ZOBJECT.ZSTARTDATE) AS "USAGE IN SECONDS", (ZOBJECT.ZENDDATE - ZOBJECT.ZSTARTDATE)/60.00 AS "USAGE IN MINUTES", ZSOURCE.ZDEVICEID AS "DEVICE ID (HARDWARE UUID)", CASE ZOBJECT.ZSTARTDAYOFWEEK WHEN "1" THEN "Sunday" WHEN "2" THEN "Monday" WHEN "3" THEN "Tuesday" WHEN "4" THEN "Wednesday" WHEN "5" THEN "Thursday" WHEN "6" THEN "Friday" WHEN "7" THEN "Saturday" END "DAY OF WEEK", ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET", DATETIME(ZOBJECT.ZCREATIONDATE+978307200,'UNIXEPOCH') AS "ENTRY CREATION", ZOBJECT.ZUUID AS "UUID", ZOBJECT.Z_PK AS "ZOBJECT TABLE ID" FROM ZOBJECT LEFT JOIN ZSTRUCTUREDMETADATA ON ZOBJECT.ZSTRUCTUREDMETADATA = ZSTRUCTUREDMETADATA.Z_PK LEFT JOIN ZSOURCE ON ZOBJECT.ZSOURCE = ZSOURCE.Z_PK WHERE ZSTREAMNAME = "/app/usage" ) """) all_rows = cursor.fetchall() usageentries = len(all_rows) data_list = [] if usageentries > 0: for row in all_rows: data_list.append((row[0], row[1], row[2], row[3], row[4], row[5], row[6], row[7], row[8], row[9], row[10])) description = '' report = ArtifactHtmlReport('KnowledgeC App Usage') report.start_artifact_report(report_folder, 'KnowledgeC App Usage', description) report.add_script() data_headers = ('Start','End','Bundle ID','Usage in Seconds','Usage in Minutes','Device ID','Day of the Week','GMT Offset','Entry Creation','UUID','Zobject Table ID' ) report.write_artifact_data_table(data_headers, data_list, file_found, html_escape=False) report.end_artifact_report() tsvname = 'KnowledgeC App Usage' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = 'KnowledgeC App Usage' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc('No data available in table')
33.138889
174
0.715842
2925722b95da3e926b189c9672a5a9dac59b698d
5,468
py
Python
test/functional/wallet_listdescriptors.py
republic-productions/finalcoin
7c0f335ded1e5c662034c822ca2c474b8e62778f
[ "MIT" ]
null
null
null
test/functional/wallet_listdescriptors.py
republic-productions/finalcoin
7c0f335ded1e5c662034c822ca2c474b8e62778f
[ "MIT" ]
null
null
null
test/functional/wallet_listdescriptors.py
republic-productions/finalcoin
7c0f335ded1e5c662034c822ca2c474b8e62778f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2021 The Finalcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the listdescriptors RPC.""" from test_framework.descriptors import ( descsum_create ) from test_framework.test_framework import FinalcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class ListDescriptorsTest(FinalcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() self.skip_if_no_sqlite() # do not create any wallet by default def init_wallet(self, i): return def run_test(self): node = self.nodes[0] assert_raises_rpc_error(-18, 'No wallet is loaded.', node.listdescriptors) if self.is_bdb_compiled(): self.log.info('Test that the command is not available for legacy wallets.') node.createwallet(wallet_name='w1', descriptors=False) assert_raises_rpc_error(-4, 'listdescriptors is not available for non-descriptor wallets', node.listdescriptors) self.log.info('Test the command for empty descriptors wallet.') node.createwallet(wallet_name='w2', blank=True, descriptors=True) assert_equal(0, len(node.get_wallet_rpc('w2').listdescriptors()['descriptors'])) self.log.info('Test the command for a default descriptors wallet.') node.createwallet(wallet_name='w3', descriptors=True) result = node.get_wallet_rpc('w3').listdescriptors() assert_equal("w3", result['wallet_name']) assert_equal(6, len(result['descriptors'])) assert_equal(6, len([d for d in result['descriptors'] if d['active']])) assert_equal(3, len([d for d in result['descriptors'] if d['internal']])) for item in result['descriptors']: assert item['desc'] != '' assert item['next'] == 0 assert item['range'] == [0, 0] assert item['timestamp'] is not None self.log.info('Test descriptors with hardened derivations are listed in importable form.') xprv = 'tprv8ZgxMBicQKsPeuVhWwi6wuMQGfPKi9Li5GtX35jVNknACgqe3CY4g5xgkfDDJcmtF7o1QnxWDRYw4H5P26PXq7sbcUkEqeR4fg3Kxp2tigg' xpub_acc = 'tpubDCMVLhErorrAGfApiJSJzEKwqeaf2z3NrkVMxgYQjZLzMjXMBeRw2muGNYbvaekAE8rUFLftyEar4LdrG2wXyyTJQZ26zptmeTEjPTaATts' hardened_path = '/84\'/1\'/0\'' wallet = node.get_wallet_rpc('w2') wallet.importdescriptors([{ 'desc': descsum_create('wpkh(' + xprv + hardened_path + '/0/*)'), 'timestamp': 1296688602, }]) expected = { 'wallet_name': 'w2', 'descriptors': [ {'desc': descsum_create('wpkh([80002067' + hardened_path + ']' + xpub_acc + '/0/*)'), 'timestamp': 1296688602, 'active': False, 'range': [0, 0], 'next': 0}, ], } assert_equal(expected, wallet.listdescriptors()) assert_equal(expected, wallet.listdescriptors(False)) self.log.info('Test list private descriptors') expected_private = { 'wallet_name': 'w2', 'descriptors': [ {'desc': descsum_create('wpkh(' + xprv + hardened_path + '/0/*)'), 'timestamp': 1296688602, 'active': False, 'range': [0, 0], 'next': 0}, ], } assert_equal(expected_private, wallet.listdescriptors(True)) self.log.info("Test listdescriptors with encrypted wallet") wallet.encryptwallet("pass") assert_equal(expected, wallet.listdescriptors()) self.log.info('Test list private descriptors with encrypted wallet') assert_raises_rpc_error(-13, 'Please enter the wallet passphrase with walletpassphrase first.', wallet.listdescriptors, True) wallet.walletpassphrase(passphrase="pass", timeout=1000000) assert_equal(expected_private, wallet.listdescriptors(True)) self.log.info('Test list private descriptors with watch-only wallet') node.createwallet(wallet_name='watch-only', descriptors=True, disable_private_keys=True) watch_only_wallet = node.get_wallet_rpc('watch-only') watch_only_wallet.importdescriptors([{ 'desc': descsum_create('wpkh(' + xpub_acc + ')'), 'timestamp': 1296688602, }]) assert_raises_rpc_error(-4, 'Can\'t get descriptor string', watch_only_wallet.listdescriptors, True) self.log.info('Test non-active non-range combo descriptor') node.createwallet(wallet_name='w4', blank=True, descriptors=True) wallet = node.get_wallet_rpc('w4') wallet.importdescriptors([{ 'desc': descsum_create('combo(' + node.get_deterministic_priv_key().key + ')'), 'timestamp': 1296688602, }]) expected = { 'wallet_name': 'w4', 'descriptors': [ {'active': False, 'desc': 'combo(0227d85ba011276cf25b51df6a188b75e604b38770a462b2d0e9fb2fc839ef5d3f)#np574htj', 'timestamp': 1296688602}, ] } assert_equal(expected, wallet.listdescriptors()) if __name__ == '__main__': ListDescriptorsTest().main()
42.71875
133
0.636613
6b9628f0a49ee9a98dbcc5d4010c5b3063134bfb
2,071
py
Python
rlpyt/ul/experiments/rl_from_ul/configs/dmlab_ppo_from_ul.py
traffic-lights/rlpyt
ec4689cddd55d98c037194685cfd6ca8e6785014
[ "MIT" ]
2,122
2019-07-02T13:19:10.000Z
2022-03-22T09:59:42.000Z
rlpyt/ul/experiments/rl_from_ul/configs/dmlab_ppo_from_ul.py
traffic-lights/rlpyt
ec4689cddd55d98c037194685cfd6ca8e6785014
[ "MIT" ]
206
2019-07-02T14:19:42.000Z
2022-02-15T02:34:28.000Z
rlpyt/ul/experiments/rl_from_ul/configs/dmlab_ppo_from_ul.py
traffic-lights/rlpyt
ec4689cddd55d98c037194685cfd6ca8e6785014
[ "MIT" ]
369
2019-07-02T13:38:28.000Z
2022-03-28T11:16:39.000Z
import copy configs = dict() config = dict( agent=dict( state_dict_filename=None, load_conv=True, load_all=False, # Just for replay saving. ), algo=dict( discount=0.99, learning_rate=2.5e-4, value_loss_coeff=0.5, entropy_loss_coeff=0.01, # LEVEL-SPECIFIC clip_grad_norm=100., initial_optim_state_dict=None, gae_lambda=0.97, minibatches=2, epochs=1, ratio_clip=0.1, linear_lr_schedule=False, normalize_advantage=False, ), env=dict( level="lasertag_one_opponent_small", frame_history=1, fps=None, ), # Will use same args for eval env. model=dict( # use_fourth_layer=True, skip_connections=True, lstm_size=256, hidden_sizes=None, kiaming_init=True, skip_lstm=True, stop_conv_grad=False, ), optim=dict(), runner=dict( n_steps=25e6, log_interval_steps=1e5, ), sampler=dict( batch_T=128, batch_B=16, max_decorrelation_steps=3000, ), pretrain=dict( # Just for logging purposes. name=None, algo=None, n_updates=None, log_interval_updates=None, learning_rate=None, target_update_tau=None, batch_B=None, batch_T=None, warmup_T=None, delta_T=None, hidden_sizes=None, latent_size=None, batch_size=None, validation_batch_size=None, activation_loss_coefficient=None, replay=None, model_dir=None, learning_rate_anneal=None, learning_rate_warmup=None, weight_decay=None, anchor_hidden_sizes=None, action_condition=False, transform_hidden_sizes=None, kiaming_init=True, data_aug=None, random_shift_prob=None, use_global_global=None, use_global_local=None, use_local_local=None, local_conv_layer=None, ), ) configs["ppo_16env"] = config
23.804598
50
0.593433
c231bbef0ae99322dd562abf1707ed2f406258b5
2,541
py
Python
src/lgr_advanced/lgr_editor/forms/importer.py
icann/lgr-django
1d0e272e0273ea2f0fda07396e86450e95dfe255
[ "BSD-3-Clause" ]
1
2018-09-19T11:03:11.000Z
2018-09-19T11:03:11.000Z
src/lgr_advanced/lgr_editor/forms/importer.py
icann/lgr-django
1d0e272e0273ea2f0fda07396e86450e95dfe255
[ "BSD-3-Clause" ]
15
2017-06-29T14:05:01.000Z
2021-09-22T19:56:23.000Z
src/lgr_advanced/lgr_editor/forms/importer.py
icann/lgr-django
1d0e272e0273ea2f0fda07396e86450e95dfe255
[ "BSD-3-Clause" ]
7
2017-06-14T17:59:19.000Z
2019-08-09T03:16:03.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django import forms from django.core import validators from django.utils.translation import ugettext_lazy as _ from .fields import (DEFAULT_UNICODE_VERSION, VALIDATING_REPERTOIRES, DEFAULT_VALIDATING_REPERTOIRE, FILE_FIELD_ENCODING_HELP) class CreateLGRForm(forms.Form): name = forms.CharField(label=_("Name")) validating_repertoire = forms.ChoiceField(label=_("Validating repertoire"), help_text=_('Code points will be limited to the selected repertoire'), required=False, choices=(('', ''),) + VALIDATING_REPERTOIRES, initial=DEFAULT_VALIDATING_REPERTOIRE) unicode_version = forms.CharField(widget=forms.HiddenInput(), initial=DEFAULT_UNICODE_VERSION) class ImportLGRForm(forms.Form): file = forms.FileField(label=_("Select file(s)"), required=True, help_text=f"{_('If you select more than one file, this will create a LGR set.')} " f"{FILE_FIELD_ENCODING_HELP}", widget=forms.ClearableFileInput(attrs={'multiple': True})) validating_repertoire = forms.ChoiceField(label=_("Validating repertoire"), help_text=_('Code points will be limited to the selected repertoire'), required=False, choices=(('', ''),) + VALIDATING_REPERTOIRES, initial=DEFAULT_VALIDATING_REPERTOIRE) set_name = forms.CharField(label=_("LGR set name"), required=False, # TODO should catch that to get a valid LGR name validators=[ validators.RegexValidator(r'^[\w\_\-\.]+$', _('Enter a valid LGR set name. ' 'This value may contain only letters, numbers ' 'and ./-/_ characters.'), 'invalid'), ], help_text=_('The name of the set'))
56.466667
116
0.480913
25ff0b5310a13ad25a95860fdcc47496b5b4365d
2,575
py
Python
opencv_tutorial/opencv_python_tutorials/Image_Processing/fourier_transfom.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
opencv_tutorial/opencv_python_tutorials/Image_Processing/fourier_transfom.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
opencv_tutorial/opencv_python_tutorials/Image_Processing/fourier_transfom.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Apr 4 11:31:42 2019 @author: jone """ #%% Fourier Transform in Numpy import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('img/messi.jpg', 0) f = np.fft.fft2(img) # 좌상단에 있는 저주파 영역을 중앙으로 옮김 fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) plt.figure(figsize=(8,6)) plt.subplot(121), plt.imshow(img, cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show() """ 주파수로 연산하기 """ rows, cols = img.shape crow, ccol = int(rows/2), int(cols/2) # 이미지의 중심 좌표 d = 30 fshift[crow-d:crow+d, ccol-d:ccol+d] = 0 # 푸리에 변환결과를 다시 이미지로 변환 f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) plt.figure(figsize=(12, 6)) plt.subplot(131), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.axis('off') plt.subplot(132), plt.imshow(img_back, cmap='gray'), plt.title('Image after HPF'), plt.axis('off') plt.subplot(133), plt.imshow(img_back), plt.title('Result in JET'), plt.axis('off') plt.show() #%% Fourier Transform in OpenCV import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('img/messi.jpg', 0) dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1])) plt.figure(figsize=(8,6)) plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.axis('off') plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum'), plt.axis('off') plt.show() """ 고주파 영역 제거 -> blur 효과 """ rows, cols = img.shape crow, ccol = int(rows/2), int(cols/2) # create a mask first, center square is 1, remaining all zeros # 아래는 d 사이즈의 사각형을 생성한 후, 사각형 바깥을 제거하는 형태 # 즉, 고주파 영역을 제거하게 됨 # d 값이 작을수록 사각형이 작고, 바깥영역(고주파 영역)이 많이 제거되기 때문에 이미지가 뭉개지고 # d 값이 클수록 사각형이 크고, 바깥영역(고주파 영역)이 적게 제거되기 떄문에 원래 이미지와 가까워 d = 30 mask = np.zeros((rows, cols, 2), np.uint8) mask[crow-d:crow+d, ccol-d:ccol+d] = 1 # apply mask and inverse DFT fshift = dft_shift*mask f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1]) plt.figure(figsize=(12, 6)) plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.axis('off') plt.subplot(122), plt.imshow(img_back, cmap='gray'), plt.title('Magnitude Spectrum'), plt.axis('off') plt.show()
29.597701
111
0.690874
10127e10d2bf41b6cae2085f36c474d77e6e9fb3
136,431
py
Python
google/cloud/bigquery/client.py
taz002dev/googleapis-python-bigquery
f95f415d3441b3928f6cc705cb8a75603d790fd6
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/client.py
taz002dev/googleapis-python-bigquery
f95f415d3441b3928f6cc705cb8a75603d790fd6
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/client.py
taz002dev/googleapis-python-bigquery
f95f415d3441b3928f6cc705cb8a75603d790fd6
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google BigQuery API.""" from __future__ import absolute_import from __future__ import division from collections import abc as collections_abc import copy import functools import gzip import io import itertools import json import math import os import tempfile import uuid import warnings try: import pyarrow except ImportError: # pragma: NO COVER pyarrow = None from google import resumable_media from google.resumable_media.requests import MultipartUpload from google.resumable_media.requests import ResumableUpload import google.api_core.client_options import google.api_core.exceptions from google.api_core.iam import Policy from google.api_core import page_iterator import google.cloud._helpers from google.cloud import exceptions from google.cloud.client import ClientWithProject from google.cloud.bigquery._helpers import _del_sub_prop from google.cloud.bigquery._helpers import _get_sub_prop from google.cloud.bigquery._helpers import _record_field_to_json from google.cloud.bigquery._helpers import _str_or_none from google.cloud.bigquery._helpers import _verify_job_config_type from google.cloud.bigquery._http import Connection from google.cloud.bigquery import _pandas_helpers from google.cloud.bigquery.dataset import Dataset from google.cloud.bigquery.dataset import DatasetListItem from google.cloud.bigquery.dataset import DatasetReference from google.cloud.bigquery.opentelemetry_tracing import create_span from google.cloud.bigquery import job from google.cloud.bigquery.model import Model from google.cloud.bigquery.model import ModelReference from google.cloud.bigquery.model import _model_arg_to_model_ref from google.cloud.bigquery.query import _QueryResults from google.cloud.bigquery.retry import DEFAULT_RETRY from google.cloud.bigquery.routine import Routine from google.cloud.bigquery.routine import RoutineReference from google.cloud.bigquery.schema import SchemaField from google.cloud.bigquery.table import _table_arg_to_table from google.cloud.bigquery.table import _table_arg_to_table_ref from google.cloud.bigquery.table import Table from google.cloud.bigquery.table import TableListItem from google.cloud.bigquery.table import TableReference from google.cloud.bigquery.table import RowIterator _DEFAULT_CHUNKSIZE = 1048576 # 1024 * 1024 B = 1 MB _MAX_MULTIPART_SIZE = 5 * 1024 * 1024 _DEFAULT_NUM_RETRIES = 6 _BASE_UPLOAD_TEMPLATE = "{host}/upload/bigquery/v2/projects/{project}/jobs?uploadType=" _MULTIPART_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + "multipart" _RESUMABLE_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + "resumable" _GENERIC_CONTENT_TYPE = "*/*" _READ_LESS_THAN_SIZE = ( "Size {:d} was specified but the file-like object only had " "{:d} bytes remaining." ) _NEED_TABLE_ARGUMENT = ( "The table argument should be a table ID string, Table, or TableReference" ) _LIST_ROWS_FROM_QUERY_RESULTS_FIELDS = "jobReference,totalRows,pageToken,rows" # In microbenchmarks, it's been shown that even in ideal conditions (query # finished, local data), requests to getQueryResults can take 10+ seconds. # In less-than-ideal situations, the response can take even longer, as it must # be able to download a full 100+ MB row in that time. Don't let the # connection timeout before data can be downloaded. # https://github.com/googleapis/python-bigquery/issues/438 _MIN_GET_QUERY_RESULTS_TIMEOUT = 120 class Project(object): """Wrapper for resource describing a BigQuery project. Args: project_id (str): Opaque ID of the project numeric_id (int): Numeric ID of the project friendly_name (str): Display name of the project """ def __init__(self, project_id, numeric_id, friendly_name): self.project_id = project_id self.numeric_id = numeric_id self.friendly_name = friendly_name @classmethod def from_api_repr(cls, resource): """Factory: construct an instance from a resource dict.""" return cls(resource["id"], resource["numericId"], resource["friendlyName"]) class Client(ClientWithProject): """Client to bundle configuration needed for API requests. Args: project (Optional[str]): Project ID for the project which the client acts on behalf of. Will be passed when creating a dataset / job. If not passed, falls back to the default inferred from the environment. credentials (Optional[google.auth.credentials.Credentials]): The OAuth2 Credentials to use for this client. If not passed (and if no ``_http`` object is passed), falls back to the default inferred from the environment. _http (Optional[requests.Session]): HTTP object to make requests. Can be any object that defines ``request()`` with the same interface as :meth:`requests.Session.request`. If not passed, an ``_http`` object is created that is bound to the ``credentials`` for the current object. This parameter should be considered private, and could change in the future. location (Optional[str]): Default location for jobs / datasets / tables. default_query_job_config (Optional[google.cloud.bigquery.job.QueryJobConfig]): Default ``QueryJobConfig``. Will be merged into job configs passed into the ``query`` method. client_info (Optional[google.api_core.client_info.ClientInfo]): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own library or partner tool. client_options (Optional[Union[google.api_core.client_options.ClientOptions, Dict]]): Client options used to set user options on the client. API Endpoint should be set through client_options. Raises: google.auth.exceptions.DefaultCredentialsError: Raised if ``credentials`` is not specified and the library fails to acquire default credentials. """ SCOPE = ( "https://www.googleapis.com/auth/bigquery", "https://www.googleapis.com/auth/cloud-platform", ) """The scopes required for authenticating as a BigQuery consumer.""" def __init__( self, project=None, credentials=None, _http=None, location=None, default_query_job_config=None, client_info=None, client_options=None, ): super(Client, self).__init__( project=project, credentials=credentials, client_options=client_options, _http=_http, ) kw_args = {"client_info": client_info} if client_options: if type(client_options) == dict: client_options = google.api_core.client_options.from_dict( client_options ) if client_options.api_endpoint: api_endpoint = client_options.api_endpoint kw_args["api_endpoint"] = api_endpoint self._connection = Connection(self, **kw_args) self._location = location self._default_query_job_config = copy.deepcopy(default_query_job_config) @property def location(self): """Default location for jobs / datasets / tables.""" return self._location def close(self): """Close the underlying transport objects, releasing system resources. .. note:: The client instance can be used for making additional requests even after closing, in which case the underlying connections are automatically re-created. """ self._http._auth_request.session.close() self._http.close() def get_service_account_email( self, project=None, retry=DEFAULT_RETRY, timeout=None ): """Get the email address of the project's BigQuery service account Note: This is the service account that BigQuery uses to manage tables encrypted by a key in KMS. Args: project (Optional[str]): Project ID to use for retreiving service account email. Defaults to the client's project. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: str: service account email address Example: >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> client.get_service_account_email() my_service_account@my-project.iam.gserviceaccount.com """ if project is None: project = self.project path = "/projects/%s/serviceAccount" % (project,) span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.getServiceAccountEmail", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, ) return api_response["email"] def list_projects( self, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None ): """List projects for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/projects/list Args: max_results (Optional[int]): Maximum number of projects to return, If not passed, defaults to a value set by the API. page_token (Optional[str]): Token representing a cursor into the projects. If not passed, the API will return the first page of projects. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.client.Project` accessible to the current client. """ span_attributes = {"path": "/projects"} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listProjects", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) return page_iterator.HTTPIterator( client=self, api_request=api_request, path="/projects", item_to_value=_item_to_project, items_key="projects", page_token=page_token, max_results=max_results, ) def list_datasets( self, project=None, include_all=False, filter=None, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None, ): """List datasets for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list Args: project (Optional[str]): Project ID to use for retreiving datasets. Defaults to the client's project. include_all (Optional[bool]): True if results include hidden datasets. Defaults to False. filter (Optional[str]): An expression for filtering the results by label. For syntax, see https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list#body.QUERY_PARAMETERS.filter max_results (Optional[int]): Maximum number of datasets to return. page_token (Optional[str]): Token representing a cursor into the datasets. If not passed, the API will return the first page of datasets. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.dataset.DatasetListItem`. associated with the project. """ extra_params = {} if project is None: project = self.project if include_all: extra_params["all"] = True if filter: # TODO: consider supporting a dict of label -> value for filter, # and converting it into a string here. extra_params["filter"] = filter path = "/projects/%s/datasets" % (project,) span_attributes = {"path": path} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listDatasets", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) return page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_dataset, items_key="datasets", page_token=page_token, max_results=max_results, extra_params=extra_params, ) def dataset(self, dataset_id, project=None): """Deprecated: Construct a reference to a dataset. .. deprecated:: 1.24.0 Construct a :class:`~google.cloud.bigquery.dataset.DatasetReference` using its constructor or use a string where previously a reference object was used. As of ``google-cloud-bigquery`` version 1.7.0, all client methods that take a :class:`~google.cloud.bigquery.dataset.DatasetReference` or :class:`~google.cloud.bigquery.table.TableReference` also take a string in standard SQL format, e.g. ``project.dataset_id`` or ``project.dataset_id.table_id``. Args: dataset_id (str): ID of the dataset. project (Optional[str]): Project ID for the dataset (defaults to the project of the client). Returns: google.cloud.bigquery.dataset.DatasetReference: a new ``DatasetReference`` instance. """ if project is None: project = self.project warnings.warn( "Client.dataset is deprecated and will be removed in a future version. " "Use a string like 'my_project.my_dataset' or a " "cloud.google.bigquery.DatasetReference object, instead.", PendingDeprecationWarning, stacklevel=2, ) return DatasetReference(project, dataset_id) def _create_bqstorage_client(self): """Create a BigQuery Storage API client using this client's credentials. If a client cannot be created due to missing dependencies, raise a warning and return ``None``. Returns: Optional[google.cloud.bigquery_storage.BigQueryReadClient]: A BigQuery Storage API client. """ try: from google.cloud import bigquery_storage except ImportError: warnings.warn( "Cannot create BigQuery Storage client, the dependency " "google-cloud-bigquery-storage is not installed." ) return None return bigquery_storage.BigQueryReadClient(credentials=self._credentials) def _dataset_from_arg(self, dataset): if isinstance(dataset, str): dataset = DatasetReference.from_string( dataset, default_project=self.project ) if not isinstance(dataset, (Dataset, DatasetReference)): if isinstance(dataset, DatasetListItem): dataset = dataset.reference else: raise TypeError( "dataset must be a Dataset, DatasetReference, DatasetListItem," " or string" ) return dataset def create_dataset( self, dataset, exists_ok=False, retry=DEFAULT_RETRY, timeout=None ): """API call: create the dataset via a POST request. See https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/insert Args: dataset (Union[ \ google.cloud.bigquery.dataset.Dataset, \ google.cloud.bigquery.dataset.DatasetReference, \ google.cloud.bigquery.dataset.DatasetListItem, \ str, \ ]): A :class:`~google.cloud.bigquery.dataset.Dataset` to create. If ``dataset`` is a reference, an empty dataset is created with the specified ID and client's default location. exists_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the dataset. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.dataset.Dataset: A new ``Dataset`` returned from the API. Raises: google.cloud.exceptions.Conflict: If the dataset already exists. Example: >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> dataset = bigquery.Dataset('my_project.my_dataset') >>> dataset = client.create_dataset(dataset) """ dataset = self._dataset_from_arg(dataset) if isinstance(dataset, DatasetReference): dataset = Dataset(dataset) path = "/projects/%s/datasets" % (dataset.project,) data = dataset.to_api_repr() if data.get("location") is None and self.location is not None: data["location"] = self.location try: span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.createDataset", span_attributes=span_attributes, method="POST", path=path, data=data, timeout=timeout, ) return Dataset.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_dataset(dataset.reference, retry=retry) def create_routine( self, routine, exists_ok=False, retry=DEFAULT_RETRY, timeout=None ): """[Beta] Create a routine via a POST request. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/insert Args: routine (google.cloud.bigquery.routine.Routine): A :class:`~google.cloud.bigquery.routine.Routine` to create. The dataset that the routine belongs to must already exist. exists_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the routine. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.routine.Routine: A new ``Routine`` returned from the service. Raises: google.cloud.exceptions.Conflict: If the routine already exists. """ reference = routine.reference path = "/projects/{}/datasets/{}/routines".format( reference.project, reference.dataset_id ) resource = routine.to_api_repr() try: span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.createRoutine", span_attributes=span_attributes, method="POST", path=path, data=resource, timeout=timeout, ) return Routine.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_routine(routine.reference, retry=retry) def create_table(self, table, exists_ok=False, retry=DEFAULT_RETRY, timeout=None): """API call: create a table via a PUT request See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): A :class:`~google.cloud.bigquery.table.Table` to create. If ``table`` is a reference, an empty table is created with the specified ID. The dataset that the table belongs to must already exist. exists_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "already exists" errors when creating the table. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.table.Table: A new ``Table`` returned from the service. Raises: google.cloud.exceptions.Conflict: If the table already exists. """ table = _table_arg_to_table(table, default_project=self.project) dataset_id = table.dataset_id path = "/projects/%s/datasets/%s/tables" % (table.project, dataset_id) data = table.to_api_repr() try: span_attributes = {"path": path, "dataset_id": dataset_id} api_response = self._call_api( retry, span_name="BigQuery.createTable", span_attributes=span_attributes, method="POST", path=path, data=data, timeout=timeout, ) return Table.from_api_repr(api_response) except google.api_core.exceptions.Conflict: if not exists_ok: raise return self.get_table(table.reference, retry=retry) def _call_api( self, retry, span_name=None, span_attributes=None, job_ref=None, **kwargs ): call = functools.partial(self._connection.api_request, **kwargs) if retry: call = retry(call) if span_name is not None: with create_span( name=span_name, attributes=span_attributes, client=self, job_ref=job_ref ): return call() return call() def get_dataset(self, dataset_ref, retry=DEFAULT_RETRY, timeout=None): """Fetch the dataset referenced by ``dataset_ref`` Args: dataset_ref (Union[ \ google.cloud.bigquery.dataset.DatasetReference, \ str, \ ]): A reference to the dataset to fetch from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`~google.cloud.bigquery.dataset.DatasetReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.dataset.Dataset: A ``Dataset`` instance. """ if isinstance(dataset_ref, str): dataset_ref = DatasetReference.from_string( dataset_ref, default_project=self.project ) path = dataset_ref.path span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.getDataset", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, ) return Dataset.from_api_repr(api_response) def get_iam_policy( self, table, requested_policy_version=1, retry=DEFAULT_RETRY, timeout=None, ): if not isinstance(table, (Table, TableReference)): raise TypeError("table must be a Table or TableReference") if requested_policy_version != 1: raise ValueError("only IAM policy version 1 is supported") body = {"options": {"requestedPolicyVersion": 1}} path = "{}:getIamPolicy".format(table.path) span_attributes = {"path": path} response = self._call_api( retry, span_name="BigQuery.getIamPolicy", span_attributes=span_attributes, method="POST", path=path, data=body, timeout=timeout, ) return Policy.from_api_repr(response) def set_iam_policy( self, table, policy, updateMask=None, retry=DEFAULT_RETRY, timeout=None, ): if not isinstance(table, (Table, TableReference)): raise TypeError("table must be a Table or TableReference") if not isinstance(policy, (Policy)): raise TypeError("policy must be a Policy") body = {"policy": policy.to_api_repr()} if updateMask is not None: body["updateMask"] = updateMask path = "{}:setIamPolicy".format(table.path) span_attributes = {"path": path} response = self._call_api( retry, span_name="BigQuery.setIamPolicy", span_attributes=span_attributes, method="POST", path=path, data=body, timeout=timeout, ) return Policy.from_api_repr(response) def test_iam_permissions( self, table, permissions, retry=DEFAULT_RETRY, timeout=None, ): if not isinstance(table, (Table, TableReference)): raise TypeError("table must be a Table or TableReference") body = {"permissions": permissions} path = "{}:testIamPermissions".format(table.path) span_attributes = {"path": path} response = self._call_api( retry, span_name="BigQuery.testIamPermissions", span_attributes=span_attributes, method="POST", path=path, data=body, timeout=timeout, ) return response def get_model(self, model_ref, retry=DEFAULT_RETRY, timeout=None): """[Beta] Fetch the model referenced by ``model_ref``. Args: model_ref (Union[ \ google.cloud.bigquery.model.ModelReference, \ str, \ ]): A reference to the model to fetch from the BigQuery API. If a string is passed in, this method attempts to create a model reference from a string using :func:`google.cloud.bigquery.model.ModelReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.model.Model: A ``Model`` instance. """ if isinstance(model_ref, str): model_ref = ModelReference.from_string( model_ref, default_project=self.project ) path = model_ref.path span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.getModel", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, ) return Model.from_api_repr(api_response) def get_routine(self, routine_ref, retry=DEFAULT_RETRY, timeout=None): """[Beta] Get the routine referenced by ``routine_ref``. Args: routine_ref (Union[ \ google.cloud.bigquery.routine.Routine, \ google.cloud.bigquery.routine.RoutineReference, \ str, \ ]): A reference to the routine to fetch from the BigQuery API. If a string is passed in, this method attempts to create a reference from a string using :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the API call. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.routine.Routine: A ``Routine`` instance. """ if isinstance(routine_ref, str): routine_ref = RoutineReference.from_string( routine_ref, default_project=self.project ) path = routine_ref.path span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.getRoutine", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, ) return Routine.from_api_repr(api_response) def get_table(self, table, retry=DEFAULT_RETRY, timeout=None): """Fetch the table referenced by ``table``. Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): A reference to the table to fetch from the BigQuery API. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.table.Table: A ``Table`` instance. """ table_ref = _table_arg_to_table_ref(table, default_project=self.project) path = table_ref.path span_attributes = {"path": path} api_response = self._call_api( retry, span_name="BigQuery.getTable", span_attributes=span_attributes, method="GET", path=path, timeout=timeout, ) return Table.from_api_repr(api_response) def update_dataset(self, dataset, fields, retry=DEFAULT_RETRY, timeout=None): """Change some fields of a dataset. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``dataset``, it will be deleted. If ``dataset.etag`` is not ``None``, the update will only succeed if the dataset on the server has the same ETag. Thus reading a dataset with ``get_dataset``, changing its fields, and then passing it to ``update_dataset`` will ensure that the changes will only be saved if no modifications to the dataset occurred since the read. Args: dataset (google.cloud.bigquery.dataset.Dataset): The dataset to update. fields (Sequence[str]): The properties of ``dataset`` to change. These are strings corresponding to the properties of :class:`~google.cloud.bigquery.dataset.Dataset`. For example, to update the default expiration times, specify both properties in the ``fields`` argument: .. code-block:: python bigquery_client.update_dataset( dataset, [ "default_partition_expiration_ms", "default_table_expiration_ms", ] ) retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.dataset.Dataset: The modified ``Dataset`` instance. """ partial = dataset._build_resource(fields) if dataset.etag is not None: headers = {"If-Match": dataset.etag} else: headers = None path = dataset.path span_attributes = {"path": path, "fields": fields} api_response = self._call_api( retry, span_name="BigQuery.updateDataset", span_attributes=span_attributes, method="PATCH", path=path, data=partial, headers=headers, timeout=timeout, ) return Dataset.from_api_repr(api_response) def update_model(self, model, fields, retry=DEFAULT_RETRY, timeout=None): """[Beta] Change some fields of a model. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``model``, the field value will be deleted. If ``model.etag`` is not ``None``, the update will only succeed if the model on the server has the same ETag. Thus reading a model with ``get_model``, changing its fields, and then passing it to ``update_model`` will ensure that the changes will only be saved if no modifications to the model occurred since the read. Args: model (google.cloud.bigquery.model.Model): The model to update. fields (Sequence[str]): The properties of ``model`` to change. These are strings corresponding to the properties of :class:`~google.cloud.bigquery.model.Model`. For example, to update the descriptive properties of the model, specify them in the ``fields`` argument: .. code-block:: python bigquery_client.update_model( model, ["description", "friendly_name"] ) retry (Optional[google.api_core.retry.Retry]): A description of how to retry the API call. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.model.Model: The model resource returned from the API call. """ partial = model._build_resource(fields) if model.etag: headers = {"If-Match": model.etag} else: headers = None path = model.path span_attributes = {"path": path, "fields": fields} api_response = self._call_api( retry, span_name="BigQuery.updateModel", span_attributes=span_attributes, method="PATCH", path=path, data=partial, headers=headers, timeout=timeout, ) return Model.from_api_repr(api_response) def update_routine(self, routine, fields, retry=DEFAULT_RETRY, timeout=None): """[Beta] Change some fields of a routine. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``routine``, the field value will be deleted. .. warning:: During beta, partial updates are not supported. You must provide all fields in the resource. If :attr:`~google.cloud.bigquery.routine.Routine.etag` is not ``None``, the update will only succeed if the resource on the server has the same ETag. Thus reading a routine with :func:`~google.cloud.bigquery.client.Client.get_routine`, changing its fields, and then passing it to this method will ensure that the changes will only be saved if no modifications to the resource occurred since the read. Args: routine (google.cloud.bigquery.routine.Routine): The routine to update. fields (Sequence[str]): The fields of ``routine`` to change, spelled as the :class:`~google.cloud.bigquery.routine.Routine` properties. For example, to update the description property of the routine, specify it in the ``fields`` argument: .. code-block:: python bigquery_client.update_routine( routine, ["description"] ) retry (Optional[google.api_core.retry.Retry]): A description of how to retry the API call. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.routine.Routine: The routine resource returned from the API call. """ partial = routine._build_resource(fields) if routine.etag: headers = {"If-Match": routine.etag} else: headers = None # TODO: remove when routines update supports partial requests. partial["routineReference"] = routine.reference.to_api_repr() path = routine.path span_attributes = {"path": path, "fields": fields} api_response = self._call_api( retry, span_name="BigQuery.updateRoutine", span_attributes=span_attributes, method="PUT", path=path, data=partial, headers=headers, timeout=timeout, ) return Routine.from_api_repr(api_response) def update_table(self, table, fields, retry=DEFAULT_RETRY, timeout=None): """Change some fields of a table. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``table``, the field value will be deleted. If ``table.etag`` is not ``None``, the update will only succeed if the table on the server has the same ETag. Thus reading a table with ``get_table``, changing its fields, and then passing it to ``update_table`` will ensure that the changes will only be saved if no modifications to the table occurred since the read. Args: table (google.cloud.bigquery.table.Table): The table to update. fields (Sequence[str]): The fields of ``table`` to change, spelled as the :class:`~google.cloud.bigquery.table.Table` properties. For example, to update the descriptive properties of the table, specify them in the ``fields`` argument: .. code-block:: python bigquery_client.update_table( table, ["description", "friendly_name"] ) retry (Optional[google.api_core.retry.Retry]): A description of how to retry the API call. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.table.Table: The table resource returned from the API call. """ partial = table._build_resource(fields) if table.etag is not None: headers = {"If-Match": table.etag} else: headers = None path = table.path span_attributes = {"path": path, "fields": fields} api_response = self._call_api( retry, span_name="BigQuery.updateTable", span_attributes=span_attributes, method="PATCH", path=path, data=partial, headers=headers, timeout=timeout, ) return Table.from_api_repr(api_response) def list_models( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None, ): """[Beta] List models in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/models/list Args: dataset (Union[ \ google.cloud.bigquery.dataset.Dataset, \ google.cloud.bigquery.dataset.DatasetReference, \ google.cloud.bigquery.dataset.DatasetListItem, \ str, \ ]): A reference to the dataset whose models to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (Optional[int]): Maximum number of models to return. If not passed, defaults to a value set by the API. page_token (Optional[str]): Token representing a cursor into the models. If not passed, the API will return the first page of models. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.model.Model` contained within the requested dataset. """ dataset = self._dataset_from_arg(dataset) path = "%s/models" % dataset.path span_attributes = {"path": path} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listModels", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) result = page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_model, items_key="models", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def list_routines( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None, ): """[Beta] List routines in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/list Args: dataset (Union[ \ google.cloud.bigquery.dataset.Dataset, \ google.cloud.bigquery.dataset.DatasetReference, \ google.cloud.bigquery.dataset.DatasetListItem, \ str, \ ]): A reference to the dataset whose routines to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (Optional[int]): Maximum number of routines to return. If not passed, defaults to a value set by the API. page_token (Optional[str]): Token representing a cursor into the routines. If not passed, the API will return the first page of routines. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.api_core.page_iterator.Iterator: Iterator of all :class:`~google.cloud.bigquery.routine.Routine`s contained within the requested dataset, limited by ``max_results``. """ dataset = self._dataset_from_arg(dataset) path = "{}/routines".format(dataset.path) span_attributes = {"path": path} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listRoutines", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) result = page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_routine, items_key="routines", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def list_tables( self, dataset, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None, ): """List tables in the dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list Args: dataset (Union[ \ google.cloud.bigquery.dataset.Dataset, \ google.cloud.bigquery.dataset.DatasetReference, \ google.cloud.bigquery.dataset.DatasetListItem, \ str, \ ]): A reference to the dataset whose tables to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. max_results (Optional[int]): Maximum number of tables to return. If not passed, defaults to a value set by the API. page_token (Optional[str]): Token representing a cursor into the tables. If not passed, the API will return the first page of tables. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.api_core.page_iterator.Iterator: Iterator of :class:`~google.cloud.bigquery.table.TableListItem` contained within the requested dataset. """ dataset = self._dataset_from_arg(dataset) path = "%s/tables" % dataset.path span_attributes = {"path": path} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listTables", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) result = page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_table, items_key="tables", page_token=page_token, max_results=max_results, ) result.dataset = dataset return result def delete_dataset( self, dataset, delete_contents=False, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False, ): """Delete a dataset. See https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete Args: dataset (Union[ \ google.cloud.bigquery.dataset.Dataset, \ google.cloud.bigquery.dataset.DatasetReference, \ google.cloud.bigquery.dataset.DatasetListItem, \ str, \ ]): A reference to the dataset to delete. If a string is passed in, this method attempts to create a dataset reference from a string using :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. delete_contents (Optional[bool]): If True, delete all the tables in the dataset. If False and the dataset contains tables, the request will fail. Default is False. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. not_found_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the dataset. """ dataset = self._dataset_from_arg(dataset) params = {} path = dataset.path if delete_contents: params["deleteContents"] = "true" span_attributes = {"path": path, "deleteContents": delete_contents} else: span_attributes = {"path": path} try: self._call_api( retry, span_name="BigQuery.deleteDataset", span_attributes=span_attributes, method="DELETE", path=path, query_params=params, timeout=timeout, ) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_model( self, model, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False ): """[Beta] Delete a model See https://cloud.google.com/bigquery/docs/reference/rest/v2/models/delete Args: model (Union[ \ google.cloud.bigquery.model.Model, \ google.cloud.bigquery.model.ModelReference, \ str, \ ]): A reference to the model to delete. If a string is passed in, this method attempts to create a model reference from a string using :func:`google.cloud.bigquery.model.ModelReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. not_found_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the model. """ if isinstance(model, str): model = ModelReference.from_string(model, default_project=self.project) if not isinstance(model, (Model, ModelReference)): raise TypeError("model must be a Model or a ModelReference") path = model.path try: span_attributes = {"path": path} self._call_api( retry, span_name="BigQuery.deleteModel", span_attributes=span_attributes, method="DELETE", path=path, timeout=timeout, ) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_routine( self, routine, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False ): """[Beta] Delete a routine. See https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/delete Args: routine (Union[ \ google.cloud.bigquery.routine.Routine, \ google.cloud.bigquery.routine.RoutineReference, \ str, \ ]): A reference to the routine to delete. If a string is passed in, this method attempts to create a routine reference from a string using :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. not_found_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the routine. """ if isinstance(routine, str): routine = RoutineReference.from_string( routine, default_project=self.project ) path = routine.path if not isinstance(routine, (Routine, RoutineReference)): raise TypeError("routine must be a Routine or a RoutineReference") try: span_attributes = {"path": path} self._call_api( retry, span_name="BigQuery.deleteRoutine", span_attributes=span_attributes, method="DELETE", path=path, timeout=timeout, ) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def delete_table( self, table, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False ): """Delete a table See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/delete Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): A reference to the table to delete. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. not_found_ok (Optional[bool]): Defaults to ``False``. If ``True``, ignore "not found" errors when deleting the table. """ table = _table_arg_to_table_ref(table, default_project=self.project) if not isinstance(table, TableReference): raise TypeError("Unable to get TableReference for table '{}'".format(table)) try: path = table.path span_attributes = {"path": path} self._call_api( retry, span_name="BigQuery.deleteTable", span_attributes=span_attributes, method="DELETE", path=path, timeout=timeout, ) except google.api_core.exceptions.NotFound: if not not_found_ok: raise def _get_query_results( self, job_id, retry, project=None, timeout_ms=None, location=None, timeout=None, ): """Get the query results object for a query job. Args: job_id (str): Name of the query job. retry (google.api_core.retry.Retry): How to retry the RPC. project (Optional[str]): Project ID for the query job (defaults to the project of the client). timeout_ms (Optional[int]): Number of milliseconds the the API call should wait for the query to complete before the request times out. location (Optional[str]): Location of the query job. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. If set, this connection timeout may be increased to a minimum value. This prevents retries on what would otherwise be a successful response. Returns: google.cloud.bigquery.query._QueryResults: A new ``_QueryResults`` instance. """ extra_params = {"maxResults": 0} if timeout is not None: timeout = max(timeout, _MIN_GET_QUERY_RESULTS_TIMEOUT) if project is None: project = self.project if timeout_ms is not None: extra_params["timeoutMs"] = timeout_ms if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/queries/{}".format(project, job_id) # This call is typically made in a polling loop that checks whether the # job is complete (from QueryJob.done(), called ultimately from # QueryJob.result()). So we don't need to poll here. span_attributes = {"path": path} resource = self._call_api( retry, span_name="BigQuery.getQueryResults", span_attributes=span_attributes, method="GET", path=path, query_params=extra_params, timeout=timeout, ) return _QueryResults.from_api_repr(resource) def job_from_resource(self, resource): """Detect correct job type from resource and instantiate. Args: resource (Dict): one job resource from API response Returns: Union[ \ google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob \ ]: The job instance, constructed via the resource. """ config = resource.get("configuration", {}) if "load" in config: return job.LoadJob.from_api_repr(resource, self) elif "copy" in config: return job.CopyJob.from_api_repr(resource, self) elif "extract" in config: return job.ExtractJob.from_api_repr(resource, self) elif "query" in config: return job.QueryJob.from_api_repr(resource, self) return job.UnknownJob.from_api_repr(resource, self) def create_job(self, job_config, retry=DEFAULT_RETRY, timeout=None): """Create a new job. Args: job_config (dict): configuration job representation returned from the API. Keyword Arguments: retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: Union[ \ google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob \ ]: A new job instance. """ if "load" in job_config: load_job_config = google.cloud.bigquery.job.LoadJobConfig.from_api_repr( job_config ) destination = _get_sub_prop(job_config, ["load", "destinationTable"]) source_uris = _get_sub_prop(job_config, ["load", "sourceUris"]) destination = TableReference.from_api_repr(destination) return self.load_table_from_uri( source_uris, destination, job_config=load_job_config, retry=retry, timeout=timeout, ) elif "copy" in job_config: copy_job_config = google.cloud.bigquery.job.CopyJobConfig.from_api_repr( job_config ) destination = _get_sub_prop(job_config, ["copy", "destinationTable"]) destination = TableReference.from_api_repr(destination) sources = [] source_configs = _get_sub_prop(job_config, ["copy", "sourceTables"]) if source_configs is None: source_configs = [_get_sub_prop(job_config, ["copy", "sourceTable"])] for source_config in source_configs: table_ref = TableReference.from_api_repr(source_config) sources.append(table_ref) return self.copy_table( sources, destination, job_config=copy_job_config, retry=retry, timeout=timeout, ) elif "extract" in job_config: extract_job_config = google.cloud.bigquery.job.ExtractJobConfig.from_api_repr( job_config ) source = _get_sub_prop(job_config, ["extract", "sourceTable"]) if source: source_type = "Table" source = TableReference.from_api_repr(source) else: source = _get_sub_prop(job_config, ["extract", "sourceModel"]) source_type = "Model" source = ModelReference.from_api_repr(source) destination_uris = _get_sub_prop(job_config, ["extract", "destinationUris"]) return self.extract_table( source, destination_uris, job_config=extract_job_config, retry=retry, timeout=timeout, source_type=source_type, ) elif "query" in job_config: copy_config = copy.deepcopy(job_config) _del_sub_prop(copy_config, ["query", "destinationTable"]) query_job_config = google.cloud.bigquery.job.QueryJobConfig.from_api_repr( copy_config ) query = _get_sub_prop(copy_config, ["query", "query"]) return self.query( query, job_config=query_job_config, retry=retry, timeout=timeout ) else: raise TypeError("Invalid job configuration received.") def get_job( self, job_id, project=None, location=None, retry=DEFAULT_RETRY, timeout=None ): """Fetch a job for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/get Args: job_id (str): Unique job identifier. Keyword Arguments: project (Optional[str]): ID of the project which owns the job (defaults to the client's project). location (Optional[str]): Location where the job was run. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: Union[ \ google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob \ ]: Job instance, based on the resource returned by the API. """ extra_params = {"projection": "full"} if project is None: project = self.project if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/jobs/{}".format(project, job_id) span_attributes = {"path": path, "job_id": job_id, "location": location} resource = self._call_api( retry, span_name="BigQuery.getJob", span_attributes=span_attributes, method="GET", path=path, query_params=extra_params, timeout=timeout, ) return self.job_from_resource(resource) def cancel_job( self, job_id, project=None, location=None, retry=DEFAULT_RETRY, timeout=None ): """Attempt to cancel a job from a job ID. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/cancel Args: job_id (str): Unique job identifier. Keyword Arguments: project (Optional[str]): ID of the project which owns the job (defaults to the client's project). location (Optional[str]): Location where the job was run. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: Union[ \ google.cloud.bigquery.job.LoadJob, \ google.cloud.bigquery.job.CopyJob, \ google.cloud.bigquery.job.ExtractJob, \ google.cloud.bigquery.job.QueryJob, \ ]: Job instance, based on the resource returned by the API. """ extra_params = {"projection": "full"} if project is None: project = self.project if location is None: location = self.location if location is not None: extra_params["location"] = location path = "/projects/{}/jobs/{}/cancel".format(project, job_id) span_attributes = {"path": path, "job_id": job_id, "location": location} resource = self._call_api( retry, span_name="BigQuery.cancelJob", span_attributes=span_attributes, method="POST", path=path, query_params=extra_params, timeout=timeout, ) return self.job_from_resource(resource["job"]) def list_jobs( self, project=None, parent_job=None, max_results=None, page_token=None, all_users=None, state_filter=None, retry=DEFAULT_RETRY, timeout=None, min_creation_time=None, max_creation_time=None, ): """List jobs for the project associated with this client. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/list Args: project (Optional[str]): Project ID to use for retreiving datasets. Defaults to the client's project. parent_job (Optional[Union[ \ google.cloud.bigquery.job._AsyncJob, \ str, \ ]]): If set, retrieve only child jobs of the specified parent. max_results (Optional[int]): Maximum number of jobs to return. page_token (Optional[str]): Opaque marker for the next "page" of jobs. If not passed, the API will return the first page of jobs. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of :class:`~google.api_core.page_iterator.HTTPIterator`. all_users (Optional[bool]): If true, include jobs owned by all users in the project. Defaults to :data:`False`. state_filter (Optional[str]): If set, include only jobs matching the given state. One of: * ``"done"`` * ``"pending"`` * ``"running"`` retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. min_creation_time (Optional[datetime.datetime]): Min value for job creation time. If set, only jobs created after or at this timestamp are returned. If the datetime has no time zone assumes UTC time. max_creation_time (Optional[datetime.datetime]): Max value for job creation time. If set, only jobs created before or at this timestamp are returned. If the datetime has no time zone assumes UTC time. Returns: google.api_core.page_iterator.Iterator: Iterable of job instances. """ if isinstance(parent_job, job._AsyncJob): parent_job = parent_job.job_id extra_params = { "allUsers": all_users, "stateFilter": state_filter, "minCreationTime": _str_or_none( google.cloud._helpers._millis_from_datetime(min_creation_time) ), "maxCreationTime": _str_or_none( google.cloud._helpers._millis_from_datetime(max_creation_time) ), "projection": "full", "parentJobId": parent_job, } extra_params = { param: value for param, value in extra_params.items() if value is not None } if project is None: project = self.project path = "/projects/%s/jobs" % (project,) span_attributes = {"path": path} def api_request(*args, **kwargs): return self._call_api( retry, span_name="BigQuery.listJobs", span_attributes=span_attributes, *args, timeout=timeout, **kwargs, ) return page_iterator.HTTPIterator( client=self, api_request=api_request, path=path, item_to_value=_item_to_job, items_key="jobs", page_token=page_token, max_results=max_results, extra_params=extra_params, ) def load_table_from_uri( self, source_uris, destination, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, timeout=None, ): """Starts a job for loading data into a table from CloudStorage. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationload Args: source_uris (Union[str, Sequence[str]]): URIs of data files to be loaded; in format ``gs://<bucket_name>/<object_name_or_glob>``. destination (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: job_id (Optional[str]): Name of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.LoadJobConfig]): Extra configuration options for the job. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) if isinstance(source_uris, str): source_uris = [source_uris] destination = _table_arg_to_table_ref(destination, default_project=self.project) if job_config: job_config = copy.deepcopy(job_config) _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) load_job = job.LoadJob(job_ref, source_uris, destination, self, job_config) load_job._begin(retry=retry, timeout=timeout) return load_job def load_table_from_file( self, file_obj, destination, rewind=False, size=None, num_retries=_DEFAULT_NUM_RETRIES, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, timeout=None, ): """Upload the contents of this table from a file-like object. Similar to :meth:`load_table_from_uri`, this method creates, starts and returns a :class:`~google.cloud.bigquery.job.LoadJob`. Args: file_obj (file): A file handle opened in binary mode for reading. destination (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: rewind (Optional[bool]): If True, seek to the beginning of the file handle before reading the file. size (Optional[int]): The number of bytes to read from the file handle. If size is ``None`` or large, resumable upload will be used. Otherwise, multipart upload will be used. num_retries (Optional[int]): Number of upload retries. Defaults to 6. job_id (Optional[str]): Name of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.LoadJobConfig]): Extra configuration options for the job. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: ValueError: If ``size`` is not passed in and can not be determined, or if the ``file_obj`` can be detected to be a file opened in text mode. TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location destination = _table_arg_to_table_ref(destination, default_project=self.project) job_ref = job._JobReference(job_id, project=project, location=location) if job_config: job_config = copy.deepcopy(job_config) _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) load_job = job.LoadJob(job_ref, None, destination, self, job_config) job_resource = load_job.to_api_repr() if rewind: file_obj.seek(0, os.SEEK_SET) _check_mode(file_obj) try: if size is None or size >= _MAX_MULTIPART_SIZE: response = self._do_resumable_upload( file_obj, job_resource, num_retries, timeout, project=project ) else: response = self._do_multipart_upload( file_obj, job_resource, size, num_retries, timeout, project=project ) except resumable_media.InvalidResponse as exc: raise exceptions.from_http_response(exc.response) return self.job_from_resource(response.json()) def load_table_from_dataframe( self, dataframe, destination, num_retries=_DEFAULT_NUM_RETRIES, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, parquet_compression="snappy", timeout=None, ): """Upload the contents of a table from a pandas DataFrame. Similar to :meth:`load_table_from_uri`, this method creates, starts and returns a :class:`~google.cloud.bigquery.job.LoadJob`. .. note:: REPEATED fields are NOT supported when using the CSV source format. They are supported when using the PARQUET source format, but due to the way they are encoded in the ``parquet`` file, a mismatch with the existing table schema can occur, so 100% compatibility cannot be guaranteed for REPEATED fields when using the parquet format. https://github.com/googleapis/python-bigquery/issues/17 Args: dataframe (pandas.DataFrame): A :class:`~pandas.DataFrame` containing the data to load. destination (google.cloud.bigquery.table.TableReference): The destination table to use for loading the data. If it is an existing table, the schema of the :class:`~pandas.DataFrame` must match the schema of the destination table. If the table does not yet exist, the schema is inferred from the :class:`~pandas.DataFrame`. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: num_retries (Optional[int]): Number of upload retries. job_id (Optional[str]): Name of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.LoadJobConfig]): Extra configuration options for the job. To override the default pandas data type conversions, supply a value for :attr:`~google.cloud.bigquery.job.LoadJobConfig.schema` with column names matching those of the dataframe. The BigQuery schema is used to determine the correct data type conversion. Indexes are not loaded. Requires the :mod:`pyarrow` library. By default, this method uses the parquet source format. To override this, supply a value for :attr:`~google.cloud.bigquery.job.LoadJobConfig.source_format` with the format name. Currently only :attr:`~google.cloud.bigquery.job.SourceFormat.CSV` and :attr:`~google.cloud.bigquery.job.SourceFormat.PARQUET` are supported. parquet_compression (Optional[str]): [Beta] The compression method to use if intermittently serializing ``dataframe`` to a parquet file. The argument is directly passed as the ``compression`` argument to the underlying ``pyarrow.parquet.write_table()`` method (the default value "snappy" gets converted to uppercase). https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_table.html#pyarrow-parquet-write-table If the job config schema is missing, the argument is directly passed as the ``compression`` argument to the underlying ``DataFrame.to_parquet()`` method. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: ValueError: If a usable parquet engine cannot be found. This method requires :mod:`pyarrow` to be installed. TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if job_config: _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) # Make a copy so that the job config isn't modified in-place. job_config_properties = copy.deepcopy(job_config._properties) job_config = job.LoadJobConfig() job_config._properties = job_config_properties else: job_config = job.LoadJobConfig() supported_formats = {job.SourceFormat.CSV, job.SourceFormat.PARQUET} if job_config.source_format is None: # default value job_config.source_format = job.SourceFormat.PARQUET if job_config.source_format not in supported_formats: raise ValueError( "Got unexpected source_format: '{}'. Currently, only PARQUET and CSV are supported".format( job_config.source_format ) ) if pyarrow is None and job_config.source_format == job.SourceFormat.PARQUET: # pyarrow is now the only supported parquet engine. raise ValueError("This method requires pyarrow to be installed") if location is None: location = self.location # If table schema is not provided, we try to fetch the existing table # schema, and check if dataframe schema is compatible with it - except # for WRITE_TRUNCATE jobs, the existing schema does not matter then. if ( not job_config.schema and job_config.write_disposition != job.WriteDisposition.WRITE_TRUNCATE ): try: table = self.get_table(destination) except google.api_core.exceptions.NotFound: table = None else: columns_and_indexes = frozenset( name for name, _ in _pandas_helpers.list_columns_and_indexes(dataframe) ) job_config.schema = [ # Field description and policy tags are not needed to # serialize a data frame. SchemaField( field.name, field.field_type, mode=field.mode, fields=field.fields, ) # schema fields not present in the dataframe are not needed for field in table.schema if field.name in columns_and_indexes ] job_config.schema = _pandas_helpers.dataframe_to_bq_schema( dataframe, job_config.schema ) if not job_config.schema: # the schema could not be fully detected warnings.warn( "Schema could not be detected for all columns. Loading from a " "dataframe without a schema will be deprecated in the future, " "please provide a schema.", PendingDeprecationWarning, stacklevel=2, ) tmpfd, tmppath = tempfile.mkstemp( suffix="_job_{}.{}".format(job_id[:8], job_config.source_format.lower()) ) os.close(tmpfd) try: if job_config.source_format == job.SourceFormat.PARQUET: if job_config.schema: if parquet_compression == "snappy": # adjust the default value parquet_compression = parquet_compression.upper() _pandas_helpers.dataframe_to_parquet( dataframe, job_config.schema, tmppath, parquet_compression=parquet_compression, ) else: dataframe.to_parquet(tmppath, compression=parquet_compression) else: dataframe.to_csv( tmppath, index=False, header=False, encoding="utf-8", float_format="%.17g", date_format="%Y-%m-%d %H:%M:%S.%f", ) with open(tmppath, "rb") as tmpfile: file_size = os.path.getsize(tmppath) return self.load_table_from_file( tmpfile, destination, num_retries=num_retries, rewind=True, size=file_size, job_id=job_id, job_id_prefix=job_id_prefix, location=location, project=project, job_config=job_config, timeout=timeout, ) finally: os.remove(tmppath) def load_table_from_json( self, json_rows, destination, num_retries=_DEFAULT_NUM_RETRIES, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, timeout=None, ): """Upload the contents of a table from a JSON string or dict. Args: json_rows (Iterable[Dict[str, Any]]): Row data to be inserted. Keys must match the table schema fields and values must be JSON-compatible representations. .. note:: If your data is already a newline-delimited JSON string, it is best to wrap it into a file-like object and pass it to :meth:`~google.cloud.bigquery.client.Client.load_table_from_file`:: import io from google.cloud import bigquery data = u'{"foo": "bar"}' data_as_file = io.StringIO(data) client = bigquery.Client() client.load_table_from_file(data_as_file, ...) destination (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using :func:`google.cloud.bigquery.table.TableReference.from_string`. Keyword Arguments: num_retries (Optional[int]): Number of upload retries. job_id (Optional[str]): Name of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.LoadJobConfig]): Extra configuration options for the job. The ``source_format`` setting is always set to :attr:`~google.cloud.bigquery.job.SourceFormat.NEWLINE_DELIMITED_JSON`. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.LoadJob: A new load job. Raises: TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if job_config: _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) # Make a copy so that the job config isn't modified in-place. job_config = copy.deepcopy(job_config) else: job_config = job.LoadJobConfig() job_config.source_format = job.SourceFormat.NEWLINE_DELIMITED_JSON if job_config.schema is None: job_config.autodetect = True if project is None: project = self.project if location is None: location = self.location destination = _table_arg_to_table_ref(destination, default_project=self.project) data_str = "\n".join(json.dumps(item) for item in json_rows) encoded_str = data_str.encode() data_file = io.BytesIO(encoded_str) return self.load_table_from_file( data_file, destination, size=len(encoded_str), num_retries=num_retries, job_id=job_id, job_id_prefix=job_id_prefix, location=location, project=project, job_config=job_config, timeout=timeout, ) def _do_resumable_upload( self, stream, metadata, num_retries, timeout, project=None ): """Perform a resumable upload. Args: stream (IO[bytes]): A bytes IO object open for reading. metadata (Dict): The metadata associated with the upload. num_retries (int): Number of upload retries. (Deprecated: This argument will be removed in a future release.) timeout (float): The number of seconds to wait for the underlying HTTP transport before using ``retry``. project (Optional[str]): Project ID of the project of where to run the upload. Defaults to the client's project. Returns: requests.Response: The "200 OK" response object returned after the final chunk is uploaded. """ upload, transport = self._initiate_resumable_upload( stream, metadata, num_retries, timeout, project=project ) while not upload.finished: response = upload.transmit_next_chunk(transport) return response def _initiate_resumable_upload( self, stream, metadata, num_retries, timeout, project=None ): """Initiate a resumable upload. Args: stream (IO[bytes]): A bytes IO object open for reading. metadata (Dict): The metadata associated with the upload. num_retries (int): Number of upload retries. (Deprecated: This argument will be removed in a future release.) timeout (float): The number of seconds to wait for the underlying HTTP transport before using ``retry``. project (Optional[str]): Project ID of the project of where to run the upload. Defaults to the client's project. Returns: Tuple: Pair of * The :class:`~google.resumable_media.requests.ResumableUpload` that was created * The ``transport`` used to initiate the upload. """ chunk_size = _DEFAULT_CHUNKSIZE transport = self._http headers = _get_upload_headers(self._connection.user_agent) if project is None: project = self.project # TODO: Increase the minimum version of google-cloud-core to 1.6.0 # and remove this logic. See: # https://github.com/googleapis/python-bigquery/issues/509 hostname = ( self._connection.API_BASE_URL if not hasattr(self._connection, "get_api_base_url_for_mtls") else self._connection.get_api_base_url_for_mtls() ) upload_url = _RESUMABLE_URL_TEMPLATE.format(host=hostname, project=project) # TODO: modify ResumableUpload to take a retry.Retry object # that it can use for the initial RPC. upload = ResumableUpload(upload_url, chunk_size, headers=headers) if num_retries is not None: upload._retry_strategy = resumable_media.RetryStrategy( max_retries=num_retries ) upload.initiate( transport, stream, metadata, _GENERIC_CONTENT_TYPE, stream_final=False, timeout=timeout, ) return upload, transport def _do_multipart_upload( self, stream, metadata, size, num_retries, timeout, project=None ): """Perform a multipart upload. Args: stream (IO[bytes]): A bytes IO object open for reading. metadata (Dict): The metadata associated with the upload. size (int): The number of bytes to be uploaded (which will be read from ``stream``). If not provided, the upload will be concluded once ``stream`` is exhausted (or :data:`None`). num_retries (int): Number of upload retries. (Deprecated: This argument will be removed in a future release.) timeout (float): The number of seconds to wait for the underlying HTTP transport before using ``retry``. project (Optional[str]): Project ID of the project of where to run the upload. Defaults to the client's project. Returns: requests.Response: The "200 OK" response object returned after the multipart upload request. Raises: ValueError: if the ``stream`` has fewer than ``size`` bytes remaining. """ data = stream.read(size) if len(data) < size: msg = _READ_LESS_THAN_SIZE.format(size, len(data)) raise ValueError(msg) headers = _get_upload_headers(self._connection.user_agent) if project is None: project = self.project # TODO: Increase the minimum version of google-cloud-core to 1.6.0 # and remove this logic. See: # https://github.com/googleapis/python-bigquery/issues/509 hostname = ( self._connection.API_BASE_URL if not hasattr(self._connection, "get_api_base_url_for_mtls") else self._connection.get_api_base_url_for_mtls() ) upload_url = _MULTIPART_URL_TEMPLATE.format(host=hostname, project=project) upload = MultipartUpload(upload_url, headers=headers) if num_retries is not None: upload._retry_strategy = resumable_media.RetryStrategy( max_retries=num_retries ) response = upload.transmit( self._http, data, metadata, _GENERIC_CONTENT_TYPE, timeout=timeout ) return response def copy_table( self, sources, destination, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, timeout=None, ): """Copy one or more tables to another table. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationtablecopy Args: sources (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ Sequence[ \ Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ] \ ], \ ]): Table or tables to be copied. destination (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): Table into which data is to be copied. Keyword Arguments: job_id (Optional[str]): The ID of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of any source table as well as the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.CopyJobConfig]): Extra configuration options for the job. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.CopyJob: A new copy job instance. Raises: TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.CopyJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) # sources can be one of many different input types. (string, Table, # TableReference, or a sequence of any of those.) Convert them all to a # list of TableReferences. # # _table_arg_to_table_ref leaves lists unmodified. sources = _table_arg_to_table_ref(sources, default_project=self.project) if not isinstance(sources, collections_abc.Sequence): sources = [sources] sources = [ _table_arg_to_table_ref(source, default_project=self.project) for source in sources ] destination = _table_arg_to_table_ref(destination, default_project=self.project) if job_config: _verify_job_config_type(job_config, google.cloud.bigquery.job.CopyJobConfig) job_config = copy.deepcopy(job_config) copy_job = job.CopyJob( job_ref, sources, destination, client=self, job_config=job_config ) copy_job._begin(retry=retry, timeout=timeout) return copy_job def extract_table( self, source, destination_uris, job_id=None, job_id_prefix=None, location=None, project=None, job_config=None, retry=DEFAULT_RETRY, timeout=None, source_type="Table", ): """Start a job to extract a table into Cloud Storage files. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationextract Args: source (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ google.cloud.bigquery.model.Model, \ google.cloud.bigquery.model.ModelReference, \ src, \ ]): Table or Model to be extracted. destination_uris (Union[str, Sequence[str]]): URIs of Cloud Storage file(s) into which table data is to be extracted; in format ``gs://<bucket_name>/<object_name_or_glob>``. Keyword Arguments: job_id (Optional[str]): The ID of the job. job_id_prefix (Optional[str]): The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the source table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. job_config (Optional[google.cloud.bigquery.job.ExtractJobConfig]): Extra configuration options for the job. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. source_type (Optional[str]): Type of source to be extracted.``Table`` or ``Model``. Defaults to ``Table``. Returns: google.cloud.bigquery.job.ExtractJob: A new extract job instance. Raises: TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.ExtractJobConfig` class. ValueError: If ``source_type`` is not among ``Table``,``Model``. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_ref = job._JobReference(job_id, project=project, location=location) src = source_type.lower() if src == "table": source = _table_arg_to_table_ref(source, default_project=self.project) elif src == "model": source = _model_arg_to_model_ref(source, default_project=self.project) else: raise ValueError( "Cannot pass `{}` as a ``source_type``, pass Table or Model".format( source_type ) ) if isinstance(destination_uris, str): destination_uris = [destination_uris] if job_config: _verify_job_config_type( job_config, google.cloud.bigquery.job.ExtractJobConfig ) job_config = copy.deepcopy(job_config) extract_job = job.ExtractJob( job_ref, source, destination_uris, client=self, job_config=job_config ) extract_job._begin(retry=retry, timeout=timeout) return extract_job def query( self, query, job_config=None, job_id=None, job_id_prefix=None, location=None, project=None, retry=DEFAULT_RETRY, timeout=None, ): """Run a SQL query. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationquery Args: query (str): SQL query to be executed. Defaults to the standard SQL dialect. Use the ``job_config`` parameter to change dialects. Keyword Arguments: job_config (Optional[google.cloud.bigquery.job.QueryJobConfig]): Extra configuration options for the job. To override any options that were previously set in the ``default_query_job_config`` given to the ``Client`` constructor, manually set those options to ``None``, or whatever value is preferred. job_id (Optional[str]): ID to use for the query job. job_id_prefix (Optional[str]): The prefix to use for a randomly generated job ID. This parameter will be ignored if a ``job_id`` is also given. location (Optional[str]): Location where to run the job. Must match the location of the any table used in the query as well as the destination table. project (Optional[str]): Project ID of the project of where to run the job. Defaults to the client's project. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: google.cloud.bigquery.job.QueryJob: A new query job instance. Raises: TypeError: If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.QueryJobConfig` class. """ job_id = _make_job_id(job_id, job_id_prefix) if project is None: project = self.project if location is None: location = self.location job_config = copy.deepcopy(job_config) if self._default_query_job_config: if job_config: _verify_job_config_type( job_config, google.cloud.bigquery.job.QueryJobConfig ) # anything that's not defined on the incoming # that is in the default, # should be filled in with the default # the incoming therefore has precedence job_config = job_config._fill_from_default( self._default_query_job_config ) else: _verify_job_config_type( self._default_query_job_config, google.cloud.bigquery.job.QueryJobConfig, ) job_config = copy.deepcopy(self._default_query_job_config) job_ref = job._JobReference(job_id, project=project, location=location) query_job = job.QueryJob(job_ref, query, client=self, job_config=job_config) query_job._begin(retry=retry, timeout=timeout) return query_job def insert_rows(self, table, rows, selected_fields=None, **kwargs): """Insert rows into a table via the streaming API. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): The destination table for the row data, or a reference to it. rows (Union[Sequence[Tuple], Sequence[Dict]]): Row data to be inserted. If a list of tuples is given, each tuple should contain data for each schema field on the current table and in the same order as the schema fields. If a list of dictionaries is given, the keys must include all required fields in the schema. Keys which do not correspond to a field in the schema are ignored. selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): The fields to return. Required if ``table`` is a :class:`~google.cloud.bigquery.table.TableReference`. kwargs (Dict): Keyword arguments to :meth:`~google.cloud.bigquery.client.Client.insert_rows_json`. Returns: Sequence[Mappings]: One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. Raises: ValueError: if table's schema is not set or `rows` is not a `Sequence`. """ if not isinstance(rows, (collections_abc.Sequence, collections_abc.Iterator)): raise TypeError("rows argument should be a sequence of dicts or tuples") table = _table_arg_to_table(table, default_project=self.project) if not isinstance(table, Table): raise TypeError(_NEED_TABLE_ARGUMENT) schema = table.schema # selected_fields can override the table schema. if selected_fields is not None: schema = selected_fields if len(schema) == 0: raise ValueError( ( "Could not determine schema for table '{}'. Call client.get_table() " "or pass in a list of schema fields to the selected_fields argument." ).format(table) ) json_rows = [_record_field_to_json(schema, row) for row in rows] return self.insert_rows_json(table, json_rows, **kwargs) def insert_rows_from_dataframe( self, table, dataframe, selected_fields=None, chunk_size=500, **kwargs ): """Insert rows into a table from a dataframe via the streaming API. Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): The destination table for the row data, or a reference to it. dataframe (pandas.DataFrame): A :class:`~pandas.DataFrame` containing the data to load. Any ``NaN`` values present in the dataframe are omitted from the streaming API request(s). selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): The fields to return. Required if ``table`` is a :class:`~google.cloud.bigquery.table.TableReference`. chunk_size (int): The number of rows to stream in a single chunk. Must be positive. kwargs (Dict): Keyword arguments to :meth:`~google.cloud.bigquery.client.Client.insert_rows_json`. Returns: Sequence[Sequence[Mappings]]: A list with insert errors for each insert chunk. Each element is a list containing one mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. Raises: ValueError: if table's schema is not set """ insert_results = [] chunk_count = int(math.ceil(len(dataframe) / chunk_size)) rows_iter = _pandas_helpers.dataframe_to_json_generator(dataframe) for _ in range(chunk_count): rows_chunk = itertools.islice(rows_iter, chunk_size) result = self.insert_rows(table, rows_chunk, selected_fields, **kwargs) insert_results.append(result) return insert_results def insert_rows_json( self, table, json_rows, row_ids=None, skip_invalid_rows=None, ignore_unknown_values=None, template_suffix=None, retry=DEFAULT_RETRY, timeout=None, ): """Insert rows into a table without applying local type conversions. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll Args: table (Union[ \ google.cloud.bigquery.table.Table \ google.cloud.bigquery.table.TableReference, \ str \ ]): The destination table for the row data, or a reference to it. json_rows (Sequence[Dict]): Row data to be inserted. Keys must match the table schema fields and values must be JSON-compatible representations. row_ids (Optional[Sequence[Optional[str]]]): Unique IDs, one per row being inserted. An ID can also be ``None``, indicating that an explicit insert ID should **not** be used for that row. If the argument is omitted altogether, unique IDs are created automatically. skip_invalid_rows (Optional[bool]): Insert all valid rows of a request, even if invalid rows exist. The default value is ``False``, which causes the entire request to fail if any invalid rows exist. ignore_unknown_values (Optional[bool]): Accept rows that contain values that do not match the schema. The unknown values are ignored. Default is ``False``, which treats unknown values as errors. template_suffix (Optional[str]): Treat ``name`` as a template table and provide a suffix. BigQuery will create the table ``<name> + <template_suffix>`` based on the schema of the template table. See https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Returns: Sequence[Mappings]: One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. Raises: TypeError: if `json_rows` is not a `Sequence`. """ if not isinstance( json_rows, (collections_abc.Sequence, collections_abc.Iterator) ): raise TypeError("json_rows argument should be a sequence of dicts") # Convert table to just a reference because unlike insert_rows, # insert_rows_json doesn't need the table schema. It's not doing any # type conversions. table = _table_arg_to_table_ref(table, default_project=self.project) rows_info = [] data = {"rows": rows_info} for index, row in enumerate(json_rows): info = {"json": row} if row_ids is not None: info["insertId"] = row_ids[index] else: info["insertId"] = str(uuid.uuid4()) rows_info.append(info) if skip_invalid_rows is not None: data["skipInvalidRows"] = skip_invalid_rows if ignore_unknown_values is not None: data["ignoreUnknownValues"] = ignore_unknown_values if template_suffix is not None: data["templateSuffix"] = template_suffix path = "%s/insertAll" % table.path # We can always retry, because every row has an insert ID. span_attributes = {"path": path} response = self._call_api( retry, span_name="BigQuery.insertRowsJson", span_attributes=span_attributes, method="POST", path=path, data=data, timeout=timeout, ) errors = [] for error in response.get("insertErrors", ()): errors.append({"index": int(error["index"]), "errors": error["errors"]}) return errors def list_partitions(self, table, retry=DEFAULT_RETRY, timeout=None): """List the partitions in a table. Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): The table or reference from which to get partition info retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. If multiple requests are made under the hood, ``timeout`` applies to each individual request. Returns: List[str]: A list of the partition ids present in the partitioned table """ table = _table_arg_to_table_ref(table, default_project=self.project) meta_table = self.get_table( TableReference( DatasetReference(table.project, table.dataset_id), "%s$__PARTITIONS_SUMMARY__" % table.table_id, ), retry=retry, timeout=timeout, ) subset = [col for col in meta_table.schema if col.name == "partition_id"] return [ row[0] for row in self.list_rows( meta_table, selected_fields=subset, retry=retry, timeout=timeout ) ] def list_rows( self, table, selected_fields=None, max_results=None, page_token=None, start_index=None, page_size=None, retry=DEFAULT_RETRY, timeout=None, ): """List the rows of the table. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/list .. note:: This method assumes that the provided schema is up-to-date with the schema as defined on the back-end: if the two schemas are not identical, the values returned may be incomplete. To ensure that the local copy of the schema is up-to-date, call ``client.get_table``. Args: table (Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableListItem, \ google.cloud.bigquery.table.TableReference, \ str, \ ]): The table to list, or a reference to it. When the table object does not contain a schema and ``selected_fields`` is not supplied, this method calls ``get_table`` to fetch the table schema. selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): The fields to return. If not supplied, data for all columns are downloaded. max_results (Optional[int]): Maximum number of rows to return. page_token (Optional[str]): Token representing a cursor into the table's rows. If not passed, the API will return the first page of the rows. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.cloud.bigquery.table.RowIterator`. start_index (Optional[int]): The zero-based index of the starting row to read. page_size (Optional[int]): The maximum number of rows in each page of results from this request. Non-positive values are ignored. Defaults to a sensible value set by the API. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. If multiple requests are made under the hood, ``timeout`` applies to each individual request. Returns: google.cloud.bigquery.table.RowIterator: Iterator of row data :class:`~google.cloud.bigquery.table.Row`-s. During each page, the iterator will have the ``total_rows`` attribute set, which counts the total number of rows **in the table** (this is distinct from the total number of rows in the current page: ``iterator.page.num_items``). """ table = _table_arg_to_table(table, default_project=self.project) if not isinstance(table, Table): raise TypeError(_NEED_TABLE_ARGUMENT) schema = table.schema # selected_fields can override the table schema. if selected_fields is not None: schema = selected_fields # No schema, but no selected_fields. Assume the developer wants all # columns, so get the table resource for them rather than failing. elif len(schema) == 0: table = self.get_table(table.reference, retry=retry, timeout=timeout) schema = table.schema params = {} if selected_fields is not None: params["selectedFields"] = ",".join(field.name for field in selected_fields) if start_index is not None: params["startIndex"] = start_index params["formatOptions.useInt64Timestamp"] = True row_iterator = RowIterator( client=self, api_request=functools.partial(self._call_api, retry, timeout=timeout), path="%s/data" % (table.path,), schema=schema, page_token=page_token, max_results=max_results, page_size=page_size, extra_params=params, table=table, # Pass in selected_fields separately from schema so that full # tables can be fetched without a column filter. selected_fields=selected_fields, total_rows=getattr(table, "num_rows", None), ) return row_iterator def _list_rows_from_query_results( self, job_id, location, project, schema, total_rows=None, destination=None, max_results=None, start_index=None, page_size=None, retry=DEFAULT_RETRY, timeout=None, ): """List the rows of a completed query. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/getQueryResults Args: job_id (str): ID of a query job. location (str): Location of the query job. project (str): ID of the project where the query job was run. schema (Sequence[google.cloud.bigquery.schema.SchemaField]): The fields expected in these query results. Used to convert from JSON to expected Python types. total_rows (Optional[int]): Total number of rows in the query results. destination (Optional[Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableListItem, \ google.cloud.bigquery.table.TableReference, \ str, \ ]]): Destination table reference. Used to fetch the query results with the BigQuery Storage API. max_results (Optional[int]): Maximum number of rows to return across the whole iterator. start_index (Optional[int]): The zero-based index of the starting row to read. page_size (Optional[int]): The maximum number of rows in each page of results from this request. Non-positive values are ignored. Defaults to a sensible value set by the API. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. If set, this connection timeout may be increased to a minimum value. This prevents retries on what would otherwise be a successful response. If multiple requests are made under the hood, ``timeout`` applies to each individual request. Returns: google.cloud.bigquery.table.RowIterator: Iterator of row data :class:`~google.cloud.bigquery.table.Row`-s. """ params = { "fields": _LIST_ROWS_FROM_QUERY_RESULTS_FIELDS, "location": location, } if timeout is not None: timeout = max(timeout, _MIN_GET_QUERY_RESULTS_TIMEOUT) if start_index is not None: params["startIndex"] = start_index params["formatOptions.useInt64Timestamp"] = True row_iterator = RowIterator( client=self, api_request=functools.partial(self._call_api, retry, timeout=timeout), path=f"/projects/{project}/queries/{job_id}", schema=schema, max_results=max_results, page_size=page_size, table=destination, extra_params=params, total_rows=total_rows, ) return row_iterator def _schema_from_json_file_object(self, file_obj): """Helper function for schema_from_json that takes a file object that describes a table schema. Returns: List of schema field objects. """ json_data = json.load(file_obj) return [SchemaField.from_api_repr(field) for field in json_data] def _schema_to_json_file_object(self, schema_list, file_obj): """Helper function for schema_to_json that takes a schema list and file object and writes the schema list to the file object with json.dump """ json.dump(schema_list, file_obj, indent=2, sort_keys=True) def schema_from_json(self, file_or_path): """Takes a file object or file path that contains json that describes a table schema. Returns: List of schema field objects. """ if isinstance(file_or_path, io.IOBase): return self._schema_from_json_file_object(file_or_path) with open(file_or_path) as file_obj: return self._schema_from_json_file_object(file_obj) def schema_to_json(self, schema_list, destination): """Takes a list of schema field objects. Serializes the list of schema field objects as json to a file. Destination is a file path or a file object. """ json_schema_list = [f.to_api_repr() for f in schema_list] if isinstance(destination, io.IOBase): return self._schema_to_json_file_object(json_schema_list, destination) with open(destination, mode="w") as file_obj: return self._schema_to_json_file_object(json_schema_list, file_obj) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() # pylint: disable=unused-argument def _item_to_project(iterator, resource): """Convert a JSON project to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a project. Returns: google.cloud.bigquery.client.Project: The next project in the page. """ return Project.from_api_repr(resource) # pylint: enable=unused-argument def _item_to_dataset(iterator, resource): """Convert a JSON dataset to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a dataset. Returns: google.cloud.bigquery.dataset.DatasetListItem: The next dataset in the page. """ return DatasetListItem(resource) def _item_to_job(iterator, resource): """Convert a JSON job to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a job. Returns: job instance: The next job in the page. """ return iterator.client.job_from_resource(resource) def _item_to_model(iterator, resource): """Convert a JSON model to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a model. Returns: google.cloud.bigquery.model.Model: The next model in the page. """ return Model.from_api_repr(resource) def _item_to_routine(iterator, resource): """Convert a JSON model to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a routine. Returns: google.cloud.bigquery.routine.Routine: The next routine in the page. """ return Routine.from_api_repr(resource) def _item_to_table(iterator, resource): """Convert a JSON table to the native object. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a table. Returns: google.cloud.bigquery.table.Table: The next table in the page. """ return TableListItem(resource) def _make_job_id(job_id, prefix=None): """Construct an ID for a new job. Args: job_id (Optional[str]): the user-provided job ID. prefix (Optional[str]): the user-provided prefix for a job ID. Returns: str: A job ID """ if job_id is not None: return job_id elif prefix is not None: return str(prefix) + str(uuid.uuid4()) else: return str(uuid.uuid4()) def _check_mode(stream): """Check that a stream was opened in read-binary mode. Args: stream (IO[bytes]): A bytes IO object open for reading. Raises: ValueError: if the ``stream.mode`` is a valid attribute and is not among ``rb``, ``r+b`` or ``rb+``. """ mode = getattr(stream, "mode", None) if isinstance(stream, gzip.GzipFile): if mode != gzip.READ: raise ValueError( "Cannot upload gzip files opened in write mode: use " "gzip.GzipFile(filename, mode='rb')" ) else: if mode is not None and mode not in ("rb", "r+b", "rb+"): raise ValueError( "Cannot upload files opened in text mode: use " "open(filename, mode='rb') or open(filename, mode='r+b')" ) def _get_upload_headers(user_agent): """Get the headers for an upload request. Args: user_agent (str): The user-agent for requests. Returns: Dict: The headers to be used for the request. """ return { "Accept": "application/json", "Accept-Encoding": "gzip, deflate", "User-Agent": user_agent, "content-type": "application/json", }
38.08794
136
0.583005
5f46d38f3da6709b29d5c1e40be2f89402106e75
1,921
py
Python
mindspore/ops/_op_impl/tbe/tensor_scatter_update.py
GuoSuiming/mindspore
48afc4cfa53d970c0b20eedfb46e039db2a133d5
[ "Apache-2.0" ]
3,200
2020-02-17T12:45:41.000Z
2022-03-31T20:21:16.000Z
mindspore/ops/_op_impl/tbe/tensor_scatter_update.py
forwhat461/mindspore
59a277756eb4faad9ac9afcc7fd526e8277d4994
[ "Apache-2.0" ]
176
2020-02-12T02:52:11.000Z
2022-03-28T22:15:55.000Z
mindspore/ops/_op_impl/tbe/tensor_scatter_update.py
forwhat461/mindspore
59a277756eb4faad9ac9afcc7fd526e8277d4994
[ "Apache-2.0" ]
621
2020-03-09T01:31:41.000Z
2022-03-30T03:43:19.000Z
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """TensorScatterUpdate op""" from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType tensor_scatter_update_op_info = TBERegOp("TensorScatterUpdate") \ .fusion_type("ELEMWISE") \ .async_flag(False) \ .binfile_name("scatter_update.so") \ .compute_cost(10) \ .kernel_name("scatter_update") \ .partial_flag(True) \ .input(0, "x", False, "required", "all") \ .input(1, "indices", False, "required", "all") \ .input(1, "updates", False, "required", "all") \ .output(0, "y", False, "required", "all") \ .dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.F16_Default, DataType.F16_Default) \ .dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \ .dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default, DataType.I8_Default) \ .dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default, DataType.U8_Default) \ .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ .get_op_info() @op_info_register(tensor_scatter_update_op_info) def _tensor_scatter_update_tbe(): """TensorScatterUpdate TBE register""" return
45.738095
107
0.716294
0e7f59c52e088fd8d5ad71af9da7c06a97bfaecb
88,190
py
Python
budgetportal/models.py
TomaszKolek/datamanager
d46dbab00e30a14fc26eb9368c32dcdbbda7309d
[ "MIT" ]
null
null
null
budgetportal/models.py
TomaszKolek/datamanager
d46dbab00e30a14fc26eb9368c32dcdbbda7309d
[ "MIT" ]
null
null
null
budgetportal/models.py
TomaszKolek/datamanager
d46dbab00e30a14fc26eb9368c32dcdbbda7309d
[ "MIT" ]
null
null
null
import logging import re import uuid from datetime import datetime from decimal import Decimal from pprint import pformat from urllib.parse import quote import requests from slugify import slugify from adminsortable.models import SortableMixin from autoslug import AutoSlugField from budgetportal.datasets import Dataset, get_expenditure_time_series_dataset from django.conf import settings from django.core.exceptions import MultipleObjectsReturned from django.core.cache import cache from django.urls import reverse from partial_index import PartialIndex from blocks import SectionBlock from budgetportal import nav_bar from collections import OrderedDict from django.core.exceptions import ValidationError from django.db import models from wagtail.admin.edit_handlers import FieldPanel, StreamFieldPanel from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.core import blocks as wagtail_blocks from wagtail.core.fields import RichTextField, StreamField from wagtail.core.models import Page logger = logging.getLogger(__name__) ckan = settings.CKAN URL_LENGTH_LIMIT = 2000 CKAN_DATASTORE_URL = settings.CKAN_URL + "/api/3/action" "/datastore_search_sql" MAPIT_POINT_API_URL = "https://mapit.code4sa.org/point/4326/{},{}" DIRECT_CHARGE_NRF = "Direct charge against the National Revenue Fund" prov_abbrev = { "Eastern Cape": "EC", "Free State": "FS", "Gauteng": "GT", "KwaZulu-Natal": "NL", "Limpopo": "LP", "Mpumalanga": "MP", "Northern Cape": "NC", "North West": "NW", "Western Cape": "WC", } # Budget Phase IDs for the 7-year overview period TRENDS_AND_ESTIMATES_PHASES = [ "Audited Outcome", "Audited Outcome", "Audited Outcome", "Adjusted appropriation", "Main appropriation", "Medium Term Estimates", "Medium Term Estimates", ] EXPENDITURE_TIME_SERIES_PHASES = ( "Main appropriation", "Adjusted appropriation", "Final Appropriation", "Audit Outcome", ) EXPENDITURE_TIME_SERIES_PHASE_MAPPING = { "original": "Main appropriation", "adjusted": "Adjusted appropriation", "actual": "Audit Outcome", } class Homepage(models.Model): main_heading = models.CharField(max_length=1000, blank=True) sub_heading = models.CharField(max_length=1000, blank=True) primary_button_label = models.CharField(max_length=1000, blank=True) primary_button_url = models.CharField(max_length=1000, blank=True) primary_button_target = models.CharField(max_length=1000, blank=True) secondary_button_label = models.CharField(max_length=1000, blank=True) secondary_button_url = models.CharField(max_length=1000, blank=True) secondary_button_target = models.CharField(max_length=1000, blank=True) call_to_action_sub_heading = models.CharField(max_length=1000, blank=True) call_to_action_heading = models.CharField(max_length=1000, blank=True) call_to_action_link_label = models.CharField(max_length=1000, blank=True) call_to_action_link_url = models.CharField(max_length=1000, blank=True) call_to_action_link_target = models.CharField(max_length=1000, blank=True) class FinancialYear(models.Model): organisational_unit = "financial_year" slug = models.SlugField(max_length=7, unique=True) published = models.BooleanField(default=False) _consolidated_expenditure_budget_dataset = None class Meta: ordering = ["-slug"] @property def national(self): return self.spheres.filter(slug="national")[0] @property def provincial(self): return self.spheres.filter(slug="provincial")[0] def get_url_path(self): return "/%s" % self.slug def get_starting_year(self): return self.slug[:4] @staticmethod def slug_from_year_start(year): return year + "-" + str(int(year[2:]) + 1) @staticmethod def start_from_year_slug(slug): return slug[:4] def get_sphere(self, name): return getattr(self, name) def get_closest_match(self, department): sphere = self.spheres.filter(slug=department.government.sphere.slug).first() government = sphere.governments.filter(slug=department.government.slug).first() department = government.departments.filter(slug=department.slug).first() if not department: return government, False return department, True @classmethod def get_available_years(cls): years = list(cls.objects.filter(published=True).order_by("-slug")[:4]) years.reverse() return years @classmethod def get_latest_year(cls): return cls.objects.filter(published=True).order_by("-slug")[0] def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.get_url_path()) class Sphere(models.Model): organisational_unit = "sphere" name = models.CharField(max_length=200) slug = AutoSlugField(populate_from="name", max_length=200, always_update=True) financial_year = models.ForeignKey( FinancialYear, on_delete=models.CASCADE, related_name="spheres" ) class Meta: unique_together = (("financial_year", "slug"), ("financial_year", "name")) ordering = ["-financial_year__slug", "name"] def get_url_path(self): return "%s/%s" % (self.financial_year.get_url_path(), self.slug) def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.get_url_path()) class Government(models.Model): organisational_unit = "government" sphere = models.ForeignKey( Sphere, on_delete=models.CASCADE, related_name="governments" ) name = models.CharField(max_length=200) slug = AutoSlugField(populate_from="name", max_length=200, always_update=True) _function_budgets = None class Meta: unique_together = (("sphere", "slug"), ("sphere", "name")) def get_url_path(self): if self.sphere.slug == "national": return self.sphere.get_url_path() else: return "%s/%s" % (self.sphere.get_url_path(), self.slug) def get_department_by_slug(self, slug): departments = self.departments.objects.filter(slug=slug) if departments.count() == 0: return None elif departments.count() == 1: return departments.first() else: raise Exception("More matching slugs than expected") def get_vote_primary_departments(self): return Department.objects.filter(government=self, is_vote_primary=True).all() def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.get_url_path()) class Department(models.Model): organisational_unit = "department" government = models.ForeignKey( Government, on_delete=models.CASCADE, related_name="departments" ) name = models.CharField( max_length=200, help_text="The department name must precisely match the text used in the Appropriation " "Bill. All datasets must be normalised to match this name. Beware that changing " "this name might cause a mismatch with already-published datasets which might " "need to be update to match this.", ) slug = AutoSlugField( populate_from="name", max_length=200, always_update=True, editable=True ) vote_number = models.IntegerField() is_vote_primary = models.BooleanField(default=True) intro = models.TextField() website_url = models.URLField(default=None, null=True, blank=True) def __init__(self, *args, **kwargs): self._programme_budgets = None self._econ_by_programme_budgets = None self._prog_by_econ_budgets = None self._adjusted_estimates_of_expenditure_dataset = None self._estimates_of_econ_classes_expenditure_dataset = {} self._estimates_of_subprogramme_expenditure_dataset = None self._expenditure_time_series_dataset = None super(Department, self).__init__(*args, **kwargs) class Meta: unique_together = (("government", "slug"), ("government", "name")) indexes = [ PartialIndex( fields=["government", "vote_number"], unique=True, where="is_vote_primary", ) ] ordering = ["vote_number", "name"] def clean(self): # This is only for user feedback in admin. # The constraint must be enforced elsewhere. existing_vote_primary = Department.objects.filter( government=self.government, vote_number=self.vote_number ) if ( self.is_vote_primary and existing_vote_primary and existing_vote_primary.first() != self ): raise ValidationError( "There is already a primary department for " "vote %d" % self.vote_number ) @classmethod def get_in_latest_government(cls, name, government_name): """ Get a department instance whose slug matches the provided name slugified, in the government with the provided name in the latest financial year. Returns None if a matching department is not found. """ try: return cls.objects.filter( slug=slugify(name), government__name=government_name ).order_by("-government__sphere__financial_year__slug")[0] except IndexError: return None def create_dataset(self, name, title, group_name): vocab_map = get_vocab_map() tags = [ { "vocabulary_id": vocab_map["spheres"], "name": self.government.sphere.slug, }, { "vocabulary_id": vocab_map["financial_years"], "name": self.get_financial_year().slug, }, ] if self.government.sphere.slug == "provincial": tags.append( {"vocabulary_id": vocab_map["provinces"], "name": self.government.name} ) dataset_fields = { "title": title, "name": name, "groups": [{"name": group_name}], "extras": [ {"key": "department_name", "value": self.name}, {"key": "Department Name", "value": self.name}, {"key": "department_name_slug", "value": self.slug}, {"key": "Vote Number", "value": self.vote_number}, {"key": "vote_number", "value": self.vote_number}, {"key": "geographic_region_slug", "value": self.government.slug}, {"key": "organisational_unit", "value": "department"}, ], "owner_org": "national-treasury", "license_id": "other-pd", "tags": tags, } logger.info("Creating package with %r", dataset_fields) return Dataset.from_package(ckan.action.package_create(**dataset_fields)) def get_latest_website_url(self): """ Always return the latest available non-null URL, even for old departments. """ newer_departments = Department.objects.filter( government__slug=self.government.slug, government__sphere__slug=self.government.sphere.slug, slug=self.slug, website_url__isnull=False, ).order_by("-government__sphere__financial_year__slug") return newer_departments.first().website_url if newer_departments else None def get_url_path(self): """ e.g. 2018-19/national/departments/military-veterans """ return "%s/departments/%s" % (self.government.get_url_path(), self.slug) def get_preview_url_path(self): """ e.g. 2018-19/previews/national/south-africa/agriculture-and-fisheries """ return "%s/previews/%s/%s/%s" % ( self.government.sphere.financial_year.slug, self.government.sphere.slug, self.government.slug, self.slug, ) def get_govt_functions(self): return GovtFunction.objects.filter(programme__department=self).distinct() def get_financial_year(self): return self.government.sphere.financial_year def get_latest_department_instance(self): """ Try to find the department in the most recent year with the same slug. Continue traversing backwards in time until found, or until the original year has been reached. """ newer_departments = Department.objects.filter( government__slug=self.government.slug, government__sphere__slug=self.government.sphere.slug, slug=self.slug, ).order_by("-government__sphere__financial_year__slug") return newer_departments.first() if newer_departments else None def _get_financial_year_query(self): return '+vocab_financial_years:"%s"' % self.get_financial_year().slug def _get_government_query(self): if self.government.sphere.slug == "provincial": return '+vocab_provinces:"%s"' % self.government.name else: return none_selected_query("vocab_provinces") def get_primary_department(self): """ Check if department is primary """ if not self.is_vote_primary: try: dept = Department.objects.get( vote_number=self.vote_number, is_vote_primary=True, government=self.government, ) except MultipleObjectsReturned: logger.exception( "Department %s has multiple primary " "departments" % self.slug ) raise else: return dept return self def get_dataset(self, group_name, name=None): """ Get a dataset correctly annotated to match this department. If name isn't provided, still assume there's just one dataset in the specified group categorised to match this department. """ query = { "q": "", "fq": ( '+organization:"national-treasury"' '+vocab_financial_years:"%s"' '+vocab_spheres:"%s"' '+extras_s_geographic_region_slug:"%s"' '+extras_s_department_name_slug:"%s"' '+groups:"%s"' ) % ( self.government.sphere.financial_year.slug, self.government.sphere.slug, self.government.slug, self.get_primary_department().slug, group_name, ), "rows": 1, } if name: query["fq"] += '+name:"%s"' % name response = ckan.action.package_search(**query) logger.info( "query %s\nreturned %d results", pformat(query), len(response["results"]) ) if response["results"]: assert len(response["results"]) == 1 return Dataset.from_package(response["results"][0]) def _get_functions_query(self): function_names = [f.name for f in self.get_govt_functions()] ckan_tag_names = [re.sub("[^\w -]", "", n) for n in function_names] if len(ckan_tag_names) == 0: # We select datasets with no functions rather than datasets # with any function (e.g. a blank query) because this query # is intended to restrict datasets to matching functions. return none_selected_query("vocab_functions") else: options = ['+vocab_functions:"%s"' % n for n in ckan_tag_names] return "+(%s)" % " OR ".join(options) def get_contributed_datasets(self): # We use an OrderedDict like an Ordered Set to ensure we include each # match just once, and at the highest rank it came up in. datasets = OrderedDict() fq_org = '-organization:"national-treasury"' fq_group = '+(*:* NOT groups:["" TO *])' fq_year = self._get_financial_year_query() fq_sphere = '+vocab_spheres:"%s"' % self.government.sphere.slug fq_government = self._get_government_query() fq_functions = self._get_functions_query() fq_no_functions = none_selected_query("vocab_functions") queries = [ (fq_org, fq_group, fq_year, fq_sphere, fq_government, fq_functions), (fq_org, fq_group, fq_sphere, fq_government, fq_functions), (fq_org, fq_group, fq_year, fq_sphere, fq_functions), (fq_org, fq_group, fq_sphere, fq_functions), (fq_org, fq_group, fq_functions), (fq_org, fq_group, fq_no_functions), ] for query in queries: params = {"q": "", "fq": "".join(query), "rows": 1000} response = ckan.action.package_search(**params) logger.info( "query %s\nto ckan returned %d results", pformat(params), len(response["results"]), ) for package in response["results"]: if package["name"] not in datasets: dataset = Dataset.from_package(package) datasets[package["name"]] = dataset return datasets.values() def get_estimates_of_econ_classes_expenditure_dataset(self, level=3): if ( self._estimates_of_econ_classes_expenditure_dataset.get(level, None) is not None ): return self._estimates_of_econ_classes_expenditure_dataset[level] query = { "q": "", "fq": "".join( [ '+organization:"national-treasury"', '+groups:"estimates-of-%s-expenditure"' % self.government.sphere.slug, '+vocab_financial_years:"%s"' % self.get_financial_year().slug, '+vocab_dimensions:"Economic classification %d"' % level, ] ), "rows": 1000, "rows": 1000, } response = ckan.action.package_search(**query) logger.info( "query %s\nreturned %d results", pformat(query), len(response["results"]) ) if response["results"]: package = response["results"][0] self._estimates_of_econ_classes_expenditure_dataset[ level ] = Dataset.from_package(package) return self._estimates_of_econ_classes_expenditure_dataset[level] else: return None def get_adjusted_estimates_expenditure_dataset(self): if self._adjusted_estimates_of_expenditure_dataset is not None: return self._adjusted_estimates_of_expenditure_dataset query = { "q": "", "fq": "".join( [ '+organization:"national-treasury"', '+groups:"adjusted-estimates-of-%s-expenditure"' % self.government.sphere.slug, '+vocab_financial_years:"%s"' % self.get_financial_year().slug, ] ), "rows": 1000, } response = ckan.action.package_search(**query) logger.info( "query %s\nreturned %d results", pformat(query), len(response["results"]) ) if response["results"]: package = response["results"][0] self._adjusted_estimates_of_expenditure_dataset = Dataset.from_package( package ) return self._adjusted_estimates_of_expenditure_dataset else: return None def get_estimates_of_subprogramme_expenditure_dataset(self): """ Gets the dataset that should have this department's budget data for this year down to sub-programme level """ if self._estimates_of_subprogramme_expenditure_dataset is not None: return self._estimates_of_subprogramme_expenditure_dataset query = { "q": "", "fq": "".join( [ '+organization:"national-treasury"', '+groups:"estimates-of-%s-expenditure"' % self.government.sphere.slug, '+vocab_financial_years:"%s"' % self.get_financial_year().slug, '+vocab_dimensions:"Sub-programme"', ] ), "rows": 1000, } response = ckan.action.package_search(**query) if response["results"]: package = response["results"][0] self._estimates_of_subprogramme_expenditure_dataset = Dataset.from_package( package ) return self._estimates_of_subprogramme_expenditure_dataset else: return None def get_expenditure_over_time(self): cpi_year_slug, cpi_resource_id = Dataset.get_latest_cpi_resource() base_year = get_base_year(cpi_year_slug) financial_year_start = self.get_financial_year().get_starting_year() financial_year_start_int = int(financial_year_start) financial_year_starts = [ str(y) for y in range(financial_year_start_int - 4, financial_year_start_int + 3) ] expenditure = { "base_financial_year": FinancialYear.slug_from_year_start(str(base_year)), "nominal": [], "real": [], } dataset = self.get_estimates_of_econ_classes_expenditure_dataset() if not dataset: return None openspending_api = dataset.get_openspending_api() cuts = [] if self.government.sphere.slug == "provincial": cuts.append(openspending_api.get_geo_ref() + ':"%s"' % self.government.name) drilldowns = [ openspending_api.get_financial_year_ref(), openspending_api.get_phase_ref(), openspending_api.get_department_name_ref(), ] budget_results = openspending_api.aggregate(cuts=cuts, drilldowns=drilldowns) result = openspending_api.filter_dept(budget_results, self.name) if result["cells"]: cpi = get_cpi() for idx, financial_year_start in enumerate(financial_year_starts): phase = TRENDS_AND_ESTIMATES_PHASES[idx] cell = [ c for c in result["cells"] if c[openspending_api.get_financial_year_ref()] == int(financial_year_start) and c[openspending_api.get_phase_ref()] == phase ][0] nominal = cell["value.sum"] expenditure["nominal"].append( { "financial_year": FinancialYear.slug_from_year_start( financial_year_start ), "amount": nominal, "phase": phase, } ) expenditure["real"].append( { "financial_year": FinancialYear.slug_from_year_start( financial_year_start ), "amount": int( (Decimal(nominal) / cpi[financial_year_start]["index"]) * 100 ), "phase": phase, } ) return { "expenditure": expenditure, "dataset_detail_page": dataset.get_url_path(), } else: logger.warning( "Missing expenditure data for %r budget year %s", cuts, self.get_financial_year().slug, ) return None def get_adjusted_budget_summary(self): dataset = self.get_adjusted_estimates_expenditure_dataset() if not dataset: return None openspending_api = dataset.get_openspending_api() if not openspending_api: return None result_for_type_and_total = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year() ], drilldowns=[ openspending_api.get_adjustment_kind_ref(), openspending_api.get_phase_ref(), openspending_api.get_programme_name_ref(), openspending_api.get_department_name_ref(), ], order=[openspending_api.get_adjustment_kind_ref()], ) result_for_type_and_total = openspending_api.filter_dept( result_for_type_and_total, self.name ) filtered_cells = openspending_api.filter_by_ref_exclusion( result_for_type_and_total["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) cells_for_type_and_total = openspending_api.aggregate_by_refs( [ openspending_api.get_adjustment_kind_ref(), openspending_api.get_phase_ref(), ], filtered_cells, ) if not cells_for_type_and_total: return None total_voted, total_adjusted = self._get_total_budget_adjustment( openspending_api, cells_for_type_and_total ) dept_aggregate_url = openspending_api.aggregate_url( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_department_name_ref() + ":" + self.name, ], drilldowns=openspending_api.get_all_drilldowns(), ) return { "by_type": self._get_adjustments_by_type( openspending_api, cells_for_type_and_total ), "total_change": { "amount": total_adjusted, "percentage": (float(total_adjusted) / float(total_voted)) * 100, }, "econ_classes": self._get_adjustments_by_econ_class(openspending_api), "programmes": self._get_adjustments_by_programme(openspending_api), "virements": self._get_budget_virements( openspending_api, dataset, total_voted ), "special_appropriation": self._get_budget_special_appropriations( openspending_api, total_voted ), "direct_charges": self._get_budget_direct_charges(openspending_api), "department_data_csv": csv_url(dept_aggregate_url), "dataset_detail_page": dataset.get_url_path(), } def _get_adjustments_by_type(self, openspending_api, cells): budget_phase_ref = openspending_api.get_phase_ref() adjustment_kind_ref = openspending_api.get_adjustment_kind_ref() def filter_by_type(cell): types = [ "Adjustments - Announced in the budget speech", "Adjustments - Declared unspent funds", "Adjustments - Emergency funding", "Adjustments - Roll-overs", "Adjustments - Self-financing", "Adjustments - Shifting of functions between votes", "Adjustments - Shifting of functions within the vote", "Adjustments - Significant and unforeseeable economic and financial events", "Adjustments - Unforeseeable/unavoidable", "Adjustments - Virements and shifts due to savings", ] whitelist = {"Adjusted appropriation": types} whitelist_keys = whitelist.keys() phase = cell[budget_phase_ref] descript = cell[adjustment_kind_ref] if phase in whitelist_keys: if descript in whitelist[phase]: return True return False cells_by_type = [c for c in cells if filter_by_type(c)] by_type = [] for cell in cells_by_type: name = cell[adjustment_kind_ref] name = name.replace("Adjustments - ", "") if cell["value.sum"]: by_type.append( {"name": name, "amount": cell["value.sum"], "type": "kind"} ) return by_type if by_type else None def _get_adjustments_by_programme(self, openspending_api): result_for_programmes = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_department_name_ref() + ':"' + self.name + '"', openspending_api.get_adjustment_kind_ref() + ":" + '"Adjustments - Total adjustments"', ], drilldowns=[ openspending_api.get_programme_name_ref(), openspending_api.get_phase_ref(), openspending_api.get_department_name_ref(), ], order=[openspending_api.get_programme_name_ref()], ) result_for_programmes = openspending_api.filter_dept( result_for_programmes, self.name ) programme_name_ref = openspending_api.get_programme_name_ref() cells_for_programmes = openspending_api.filter_by_ref_exclusion( result_for_programmes["cells"], programme_name_ref, DIRECT_CHARGE_NRF ) programmes = [ {"name": cell[programme_name_ref], "amount": cell["value.sum"]} for cell in cells_for_programmes if cell["value.sum"] ] return programmes if programmes else None def _get_adjustments_by_econ_class(self, openspending_api): result_for_econ_classes = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_adjustment_kind_ref() + ":" + '"Adjustments - Total adjustments"', ], drilldowns=[ openspending_api.get_econ_class_2_ref(), openspending_api.get_econ_class_3_ref(), openspending_api.get_programme_name_ref(), openspending_api.get_department_name_ref(), ], order=[ openspending_api.get_econ_class_2_ref(), openspending_api.get_econ_class_3_ref(), ], ) result_for_econ_classes = openspending_api.filter_dept( result_for_econ_classes, self.name ) econ_classes = dict() econ_class_2_ref = openspending_api.get_econ_class_2_ref() econ_class_3_ref = openspending_api.get_econ_class_3_ref() filtered_cells = openspending_api.filter_by_ref_exclusion( result_for_econ_classes["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) cells_for_econ_classes = openspending_api.aggregate_by_refs( [ openspending_api.get_econ_class_2_ref(), openspending_api.get_econ_class_3_ref(), ], filtered_cells, ) for cell in cells_for_econ_classes: new_econ_2_object = { "type": "economic_classification_3", "name": cell[econ_class_3_ref], "amount": cell["value.sum"], } if cell["value.sum"] != 0: if cell[econ_class_2_ref] not in econ_classes.keys(): econ_classes[cell[econ_class_2_ref]] = { "type": "economic_classification_2", "name": cell[econ_class_2_ref], "items": [], } econ_classes[cell[econ_class_2_ref]]["items"].append(new_econ_2_object) # sort by name name_func = lambda x: x["name"] for econ_2_name in list( econ_classes.keys() ): # Copy keys because we're updating dict econ_classes[econ_2_name]["items"] = sorted( econ_classes[econ_2_name]["items"], key=name_func ) econ_classes_list = sorted(econ_classes.values(), key=name_func) return econ_classes_list if econ_classes_list else None @staticmethod def _get_total_budget_adjustment(openspending_api, cells): if not cells: return None phase_ref = openspending_api.get_phase_ref() descript_ref = openspending_api.get_adjustment_kind_ref() total_adjusted, total_voted = None, None for cell in cells: if ( cell[phase_ref] == "Adjusted appropriation" and cell[descript_ref] == "Adjustments - Total adjustments" ): total_adjusted = cell["value.sum"] if ( cell[phase_ref] == "Voted (Main appropriation)" and cell[descript_ref] == "Total" ): total_voted = cell["value.sum"] if total_voted and not total_adjusted: total_adjusted = 0 elif not (total_voted or total_adjusted): raise Exception("Could not calculate total change for department budget") return total_voted, total_adjusted def _get_budget_virements(self, openspending_api, dataset, total_voted): virements_resource = dataset.get_resource("CSV", name="Value of Virements") if virements_resource: sql = """ SELECT "Value of Virements" FROM "{}" WHERE "department_name"='{}' """.format( virements_resource["id"], self.name ) params = {"sql": sql} result = requests.get(CKAN_DATASTORE_URL, params=params) result.raise_for_status() records = result.json()["result"]["records"] value = records[0]["Value of Virements"] virements = { "label": "Value of virements", "amount": int(value), "percentage": 100 * (float(value) / float(total_voted)), } else: result_for_virements = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_adjustment_kind_ref() + ":" + '"Adjustments - Virements and shifts due to savings"', ], drilldowns=openspending_api.get_all_drilldowns(), ) result_for_virements = openspending_api.filter_dept( result_for_virements, self.name ) cells_for_virements = openspending_api.filter_by_ref_exclusion( result_for_virements["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) total_positive_virement_change = 0 for c in cells_for_virements: if c["value.sum"] > 0: total_positive_virement_change += c["value.sum"] virements = { "label": "Value of virements and shifts due to savings", "amount": int(total_positive_virement_change), "percentage": 100 * float(total_positive_virement_change) / float(total_voted), } return virements if virements else None def _get_budget_special_appropriations(self, openspending_api, total_voted): result_for_special_appropriations = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_adjustment_kind_ref() + ":" + '"Special appropriation"', ], drilldowns=[openspending_api.get_department_name_ref()], ) result_for_special_appropriations = openspending_api.filter_dept( result_for_special_appropriations, self.name ) total_special_appropriations = 0 for cell in result_for_special_appropriations["cells"]: if cell["value.sum"]: total_special_appropriations += cell["value.sum"] if total_special_appropriations: return { "amount": total_special_appropriations, "percentage": (float(total_special_appropriations) / float(total_voted)) * 100, } else: return None def _get_budget_direct_charges(self, openspending_api): result_for_direct_charges = openspending_api.aggregate( cuts=[ openspending_api.get_financial_year_ref() + ":" + self.get_financial_year().get_starting_year(), openspending_api.get_programme_name_ref() + ":" + DIRECT_CHARGE_NRF, ], drilldowns=[ openspending_api.get_phase_ref(), openspending_api.get_subprogramme_name_ref(), openspending_api.get_department_name_ref(), openspending_api.get_adjustment_kind_ref(), ], order=[openspending_api.get_subprogramme_name_ref()], ) result_for_direct_charges = openspending_api.filter_dept( result_for_direct_charges, self.name ) subprog_ref = openspending_api.get_subprogramme_name_ref() phase_ref = openspending_api.get_phase_ref() kind_ref = openspending_api.get_adjustment_kind_ref() subprog_dict = OrderedDict() for cell in result_for_direct_charges["cells"]: if cell[kind_ref] == "Adjustments - Total adjustments": subprog_dict[cell[subprog_ref]] = { "amount": cell["value.sum"], "label": cell[subprog_ref], } for subprog in subprog_dict.keys(): for cell in result_for_direct_charges["cells"]: if cell[subprog_ref] == subprog: if cell[phase_ref] == "Voted (Main appropriation)": subprog_dict[subprog]["percentage"] = ( float(subprog_dict[subprog]["amount"]) / float(cell["value.sum"]) ) * 100 return subprog_dict.values() if subprog_dict else None def get_all_budget_totals_by_year_and_phase(self): """ Returns the total for each year:phase combination from the expenditure time series dataset. """ dataset = get_expenditure_time_series_dataset(self.government.sphere.slug) if not dataset: return None openspending_api = dataset.get_openspending_api() phase_ref = openspending_api.get_phase_ref() year_ref = openspending_api.get_financial_year_ref() total_budget_cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"' ] total_budget_drilldowns = [ year_ref, phase_ref, openspending_api.get_programme_name_ref(), ] total_budget_results = openspending_api.aggregate( cuts=total_budget_cuts, drilldowns=total_budget_drilldowns ) total_budget_filtered = openspending_api.filter_by_ref_exclusion( total_budget_results["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) total_budget_aggregated = openspending_api.aggregate_by_refs( [year_ref, phase_ref], total_budget_filtered ) total_budgets = {} for cell in total_budget_aggregated: if cell[phase_ref] not in total_budgets.keys(): total_budgets[cell[phase_ref]] = { cell[year_ref]: float(cell["value.sum"]) } else: total_budgets[cell[phase_ref]][cell[year_ref]] = float( cell["value.sum"] ) return total_budgets def get_national_expenditure_treemap(self, financial_year_id, budget_phase): """ Returns a data object for each department, year and phase. Adds additional data required for the Treemap. From the Expenditure Time Series dataset. """ # Take budget sphere, year and phase as positional arguments from URL # Output expenditure specific to sphere:year:phase scope, simple list of objects try: selected_phase = EXPENDITURE_TIME_SERIES_PHASE_MAPPING[budget_phase] except KeyError: raise Exception("An invalid phase was provided: {}".format(budget_phase)) expenditure = [] dataset = get_expenditure_time_series_dataset(self.government.sphere.slug) if not dataset: return None openspending_api = dataset.get_openspending_api() phase_ref = openspending_api.get_phase_ref() year_ref = openspending_api.get_financial_year_ref() # Add cuts: year and phase expenditure_cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', year_ref + ":" + "{}".format(FinancialYear.start_from_year_slug(financial_year_id)), phase_ref + ":" + '"{}"'.format(selected_phase), ] expenditure_drilldowns = [ year_ref, phase_ref, openspending_api.get_department_name_ref(), openspending_api.get_programme_name_ref(), ] expenditure_results = openspending_api.aggregate( cuts=expenditure_cuts, drilldowns=expenditure_drilldowns ) # Disaggregate and filter out any direct charge NRF programmes filtered_cells = openspending_api.filter_by_ref_exclusion( expenditure_results["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) # Re-aggregate by year:phase result_cells = openspending_api.aggregate_by_refs( [openspending_api.get_department_name_ref(), year_ref, phase_ref], filtered_cells, ) total_budget = 0 filtered_result_cells = [] national_depts = Department.objects.filter( government__sphere__slug="national", is_vote_primary=True ) dept = None for cell in result_cells: try: if year_ref in cell: dept = national_depts.get( government__sphere__financial_year__slug=FinancialYear.slug_from_year_start( str(cell[year_ref]) ), slug=slugify(cell[openspending_api.get_department_name_ref()]), ) except Department.DoesNotExist: logger.warning( "Excluding: national {} {}".format( cell[year_ref], cell[openspending_api.get_department_name_ref()] ) ) continue total_budget += float(cell["value.sum"]) cell["url"] = dept.get_preview_url_path() if dept else None filtered_result_cells.append(cell) for cell in filtered_result_cells: percentage_of_total = ( float(cell["value.sum"]) / total_budget * 100 if cell["value.sum"] else 0 ) name = ( cell[openspending_api.get_department_name_ref()] if openspending_api.get_department_name_ref() in cell else "" ) expenditure.append( { "name": name, "slug": slugify(name), "amount": float(cell["value.sum"]), "percentage_of_total": percentage_of_total, "province": None, # to keep a consistent schema "url": cell["url"], } ) return ( {"data": {"items": expenditure, "total": total_budget}} if expenditure else None ) def get_provincial_expenditure_treemap(self, financial_year_id, budget_phase): """ Returns a list of department objects nested in provinces. """ # Take budget sphere, year and phase as positional arguments from URL # Output expenditure specific to sphere:year:phase scope, simple list of objects try: selected_phase = EXPENDITURE_TIME_SERIES_PHASE_MAPPING[budget_phase] except KeyError: raise Exception("An invalid phase was provided: {}".format(budget_phase)) expenditure = [] dataset = get_expenditure_time_series_dataset(self.government.sphere.slug) if not dataset: return None openspending_api = dataset.get_openspending_api() # Add cuts: year and phase expenditure_cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', openspending_api.get_financial_year_ref() + ":" + "{}".format(FinancialYear.start_from_year_slug(financial_year_id)), openspending_api.get_phase_ref() + ":" + '"{}"'.format(selected_phase), ] expenditure_drilldowns = [ openspending_api.get_department_name_ref(), openspending_api.get_geo_ref(), ] expenditure_results = openspending_api.aggregate( cuts=expenditure_cuts, drilldowns=expenditure_drilldowns ) total_budget = 0 filtered_result_cells = [] provincial_depts = Department.objects.filter( government__sphere__financial_year__slug=financial_year_id, government__sphere__slug="provincial", is_vote_primary=True, ) for cell in expenditure_results["cells"]: try: dept = provincial_depts.get( slug=slugify(cell[openspending_api.get_department_name_ref()]), government__slug=slugify(cell[openspending_api.get_geo_ref()]), ) except Department.DoesNotExist: logger.warning( "Excluding: provincial {} {} {}".format( financial_year_id, cell[openspending_api.get_geo_ref()], cell[openspending_api.get_department_name_ref()], ) ) continue total_budget += float(cell["value.sum"]) cell["url"] = dept.get_preview_url_path() if dept else None filtered_result_cells.append(cell) for cell in filtered_result_cells: expenditure.append( { "name": cell[openspending_api.get_department_name_ref()], "slug": slugify(cell[openspending_api.get_department_name_ref()]), "amount": float(cell["value.sum"]), "province": cell[openspending_api.get_geo_ref()], "url": cell["url"], } ) return ( {"data": {"items": expenditure, "total": total_budget}} if expenditure else None ) def get_expenditure_time_series_summary(self): cpi_year_slug, cpi_resource_id = Dataset.get_latest_cpi_resource() base_year = get_base_year(cpi_year_slug) financial_year_start = self.get_financial_year().get_starting_year() financial_year_start_int = int(financial_year_start) financial_year_starts = [ str(y) for y in range(financial_year_start_int - 3, financial_year_start_int + 1) ] expenditure = {"nominal": [], "real": []} dataset = get_expenditure_time_series_dataset(self.government.sphere.slug) if not dataset: return None openspending_api = dataset.get_openspending_api() cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', openspending_api.get_geo_ref() + ":" + '"%s"' % self.government.name, ] drilldowns = [ openspending_api.get_financial_year_ref(), openspending_api.get_phase_ref(), openspending_api.get_department_name_ref(), openspending_api.get_programme_name_ref(), ] budget_results = openspending_api.aggregate(cuts=cuts, drilldowns=drilldowns) result = openspending_api.filter_dept(budget_results, self.name) filtered_cells = openspending_api.filter_by_ref_exclusion( result["cells"], openspending_api.get_programme_name_ref(), DIRECT_CHARGE_NRF, ) result_cells = openspending_api.aggregate_by_refs( [ openspending_api.get_department_name_ref(), openspending_api.get_financial_year_ref(), openspending_api.get_phase_ref(), ], filtered_cells, ) if result_cells: cpi = get_cpi() for financial_year_start in financial_year_starts: for phase in EXPENDITURE_TIME_SERIES_PHASES: cells = [ c for c in result_cells if c[openspending_api.get_financial_year_ref()] == int(financial_year_start) and c[openspending_api.get_phase_ref()] == phase ] if cells: cell = cells[0] nominal = cell["value.sum"] expenditure["nominal"].append( { "financial_year": FinancialYear.slug_from_year_start( financial_year_start ), "amount": nominal, "phase": phase, } ) expenditure["real"].append( { "financial_year": FinancialYear.slug_from_year_start( financial_year_start ), "amount": int( ( Decimal(nominal) / cpi[financial_year_start]["index"] ) * 100 ), "phase": phase, } ) missing_phases_count = {} found = False for fiscal_year in financial_year_starts: for fiscal_phase in EXPENDITURE_TIME_SERIES_PHASES: for fiscal_type in expenditure: for item in expenditure[fiscal_type]: found = False if ( item["financial_year"] == FinancialYear.slug_from_year_start(fiscal_year) and item["phase"] == fiscal_phase ): found = True break if not found: expenditure[fiscal_type].append( { "financial_year": FinancialYear.slug_from_year_start( fiscal_year ), "phase": fiscal_phase, "amount": None, } ) if fiscal_year not in missing_phases_count: missing_phases_count[fiscal_year] = 1 else: missing_phases_count[fiscal_year] += 1 expenditure["base_financial_year"] = FinancialYear.slug_from_year_start( str(base_year) ) # Generate notices if applicable no_data_for_years = [] no_dept_for_years = [] notices = [] for year, count in missing_phases_count.items(): # 8 because 4 phases real and nominal if count != 8: # All phases for a given year must be missing before starting any checks continue single_year_cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', openspending_api.get_financial_year_ref() + ":" + year, ] single_year_budget_results = openspending_api.aggregate( cuts=single_year_cuts ) if single_year_budget_results["cells"]: value_sum = single_year_budget_results["cells"][0]["value.sum"] if value_sum is not None and value_sum > 0: # dept did not exist, since there is data for other departments no_dept_for_years.append(year) else: # no data for this fiscal year, so data hasn't been published yet no_data_for_years.append(year) else: # no data for this fiscal year, so data hasn't been published yet no_data_for_years.append(year) if no_data_for_years: notice_string = "Please note that the data for" no_data_for_years.sort() if len(no_data_for_years) == 1: notice_string += " {}".format(no_data_for_years[0]) elif len(no_data_for_years) == 2: notice_string += " {}".format(" and ".join(no_data_for_years)) else: notice_string += " {}".format(", ".join(no_data_for_years[:-1])) notice_string += " and {}".format(no_data_for_years[-1]) notice_string += " has not been published on vulekamali." notices.append(notice_string) if no_dept_for_years: notices.append( "This department did not exist for some years displayed." ) return { "notices": notices, "expenditure": expenditure, "dataset_detail_page": dataset.get_url_path(), } else: logger.warning( "Missing expenditure time series data for %r budget year %s", cuts, self.get_financial_year().slug, ) return None def get_expenditure_time_series_by_programme(self): financial_year_start = self.get_financial_year().get_starting_year() financial_year_start_int = int(financial_year_start) year_ints = range(financial_year_start_int - 3, financial_year_start_int + 1) financial_year_starts = [str(y) for y in year_ints] programmes = {} dataset = get_expenditure_time_series_dataset(self.government.sphere.slug) if not dataset: return None openspending_api = dataset.get_openspending_api() cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', openspending_api.get_geo_ref() + ":" + '"%s"' % self.government.name, ] drilldowns = [ openspending_api.get_financial_year_ref(), openspending_api.get_phase_ref(), openspending_api.get_department_name_ref(), openspending_api.get_programme_name_ref(), ] budget_results = openspending_api.aggregate(cuts=cuts, drilldowns=drilldowns) result = openspending_api.filter_dept(budget_results, self.name) if result["cells"]: prog_names = [ cell[openspending_api.get_programme_name_ref()] for cell in result["cells"] ] prog_names = set(prog_names) for financial_year_start in financial_year_starts: for phase in EXPENDITURE_TIME_SERIES_PHASES: for prog_name in prog_names: cells = [ c for c in result["cells"] if c[openspending_api.get_financial_year_ref()] == int(financial_year_start) and c[openspending_api.get_phase_ref()] == phase and c[openspending_api.get_programme_name_ref()] == prog_name ] if cells: cell = cells[0] nominal = cell["value.sum"] try: programmes[prog_name] except KeyError: programmes[prog_name] = {"name": prog_name, "items": []} programmes[prog_name]["items"].append( { "financial_year": FinancialYear.slug_from_year_start( financial_year_start ), "amount": nominal, "phase": phase, } ) found = False missing_phases_count = {} for fiscal_year in financial_year_starts: for fiscal_phase in EXPENDITURE_TIME_SERIES_PHASES: for program in programmes: for item in programmes[program]["items"]: found = False if ( item["financial_year"] == FinancialYear.slug_from_year_start(fiscal_year) and item["phase"] == fiscal_phase ): found = True break if not found: programmes[program]["items"].append( { "financial_year": FinancialYear.slug_from_year_start( fiscal_year ), "phase": fiscal_phase, "amount": None, } ) if fiscal_year not in missing_phases_count: missing_phases_count[fiscal_year] = {program: 1} else: if ( program not in missing_phases_count[fiscal_year].keys() ): missing_phases_count[fiscal_year][program] = 1 else: missing_phases_count[fiscal_year][program] += 1 no_prog_for_years = False notices = [] for year, progs in missing_phases_count.items(): if no_prog_for_years: break for p, count in progs.items(): if no_prog_for_years: break if count == 4: single_year_cuts = [ openspending_api.get_adjustment_kind_ref() + ":" + '"Total"', openspending_api.get_financial_year_ref() + ":" + year, ] single_year_budget_results = openspending_api.aggregate( cuts=single_year_cuts ) if single_year_budget_results["cells"]: value_sum = single_year_budget_results["cells"][0][ "value.sum" ] if value_sum is not None and value_sum > 0: # prog did not exist, since there is data for other programmes no_prog_for_years = True if no_prog_for_years: notices.append( "One or more programmes did not exist for some years displayed." ) return { "notices": notices, "programmes": programmes.values(), # FIXME need to add sorting with python3 "dataset_detail_page": dataset.get_url_path(), } else: logger.warning( "Missing expenditure time series data for %r budget year %s", cuts, self.get_financial_year().slug, ) return None def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.get_url_path()) class GovtFunction(models.Model): name = models.CharField(max_length=200, unique=True) slug = AutoSlugField( populate_from="name", max_length=200, always_update=True, unique=True ) def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.slug) class Programme(models.Model): organisational_unit = "programme" department = models.ForeignKey( Department, on_delete=models.CASCADE, related_name="programmes" ) name = models.CharField(max_length=200) slug = AutoSlugField(populate_from="name", max_length=200, always_update=True) programme_number = models.IntegerField() govt_functions = models.ManyToManyField(GovtFunction) class Meta: unique_together = ( ("department", "slug"), ("department", "name"), ("department", "programme_number"), ) ordering = ["programme_number"] def get_url_path(self): return "%s/programmes/%s" % (self.department.get_url_path(), self.slug) def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.get_url_path()) class InfrastructureProjectPart(models.Model): administration_type = models.CharField(max_length=255) government_institution = models.CharField(max_length=255) sector = models.CharField(max_length=255) project_name = models.CharField(max_length=255) project_description = models.TextField() nature_of_investment = models.CharField(max_length=255) infrastructure_type = models.CharField(max_length=255) current_project_stage = models.CharField(max_length=255) sip_category = models.CharField(max_length=255) br_featured = models.CharField(max_length=255) featured = models.BooleanField() budget_phase = models.CharField(max_length=255) project_slug = models.CharField(max_length=255) amount_rands = models.BigIntegerField(blank=True, null=True, default=None) financial_year = models.CharField(max_length=4) project_value_rands = models.BigIntegerField(default=0) provinces = models.CharField(max_length=510, default="") gps_code = models.CharField(max_length=255, default="") # PPP fields partnership_type = models.CharField(max_length=255, null=True, blank=True) date_of_close = models.CharField(max_length=255, null=True, blank=True) duration = models.CharField(max_length=255, null=True, blank=True) financing_structure = models.CharField(max_length=255, null=True, blank=True) project_value_rand_million = models.CharField(max_length=255, null=True, blank=True) form_of_payment = models.CharField(max_length=255, null=True, blank=True) class Meta: verbose_name = "National infrastructure project part" def __str__(self): return "{} ({} {})".format( self.project_slug, self.budget_phase, self.financial_year ) def get_url_path(self): return "/infrastructure-projects/{}".format(self.project_slug) def get_absolute_url(self): return reverse("infrastructure-projects", args=[self.project_slug]) def calculate_projected_expenditure(self): """ Calculate sum of predicted amounts from a list of records """ projected_records_for_project = InfrastructureProjectPart.objects.filter( budget_phase="MTEF", project_slug=self.project_slug ) projected_expenditure = 0 for project in projected_records_for_project: projected_expenditure += float(project.amount_rands or 0.0) return projected_expenditure @staticmethod def _parse_coordinate(coordinate): """ Expects a single set of coordinates (lat, long) split by a comma """ if not isinstance(coordinate, str): raise TypeError("Invalid type for coordinate parsing") lat_long = [float(x) for x in coordinate.split(",")] cleaned_coordinate = {"latitude": lat_long[0], "longitude": lat_long[1]} return cleaned_coordinate @classmethod def clean_coordinates(cls, raw_coordinate_string): cleaned_coordinates = [] try: if "and" in raw_coordinate_string: list_of_coordinates = raw_coordinate_string.split("and") for coordinate in list_of_coordinates: cleaned_coordinates.append(cls._parse_coordinate(coordinate)) elif "," in raw_coordinate_string: cleaned_coordinates.append(cls._parse_coordinate(raw_coordinate_string)) else: logger.warning("Invalid co-ordinates: {}".format(raw_coordinate_string)) except Exception as e: logger.warning( "Caught Exception '{}' for co-ordinates {}".format( e, raw_coordinate_string ) ) return cleaned_coordinates @staticmethod def _get_province_from_coord(coordinate): """ Expects a cleaned coordinate """ key = f"coordinate province {coordinate['latitude']}, {coordinate['longitude']}" province_name = cache.get(key, default="cache-miss") if province_name == "cache-miss": logger.info(f"Coordinate Province Cache MISS for coordinate {key}") params = {"type": "PR"} province_result = requests.get( MAPIT_POINT_API_URL.format( coordinate["longitude"], coordinate["latitude"] ), params=params, ) province_result.raise_for_status() r = province_result.json() list_of_objects_returned = list(r.values()) if len(list_of_objects_returned) > 0: province_name = list_of_objects_returned[0]["name"] else: province_name = None cache.set(key, province_name) else: logger.info(f"Coordinate Province Cache HIT for coordinate {key}") return province_name @staticmethod def _get_province_from_project_name(project_name): """ Searches name of project for province name or abbreviation """ project_name_slug = slugify(project_name) new_dict = {} for prov_name in prov_abbrev.keys(): new_dict[prov_name] = slugify(prov_name) for name, slug in new_dict.items(): if slug in project_name_slug: return name return None @classmethod def get_provinces(cls, cleaned_coordinates=None, project_name=""): """ Returns a list of provinces based on values in self.coordinates """ provinces = set() if cleaned_coordinates: for c in cleaned_coordinates: province = cls._get_province_from_coord(c) if province: provinces.add(province) else: logger.warning( "Couldn't find GPS co-ordinates for infrastructure project '{}' on MapIt: {}".format( project_name, c ) ) else: province = cls._get_province_from_project_name(project_name) if province: logger.info("Found province {} in project name".format(province)) provinces.add(province) return list(provinces) @staticmethod def _build_expenditure_item(project): return { "year": project.financial_year, "amount": project.amount_rands, "budget_phase": project.budget_phase, } def build_complete_expenditure(self): complete_expenditure = [] projects = InfrastructureProjectPart.objects.filter( project_slug=self.project_slug ) for project in projects: complete_expenditure.append(self._build_expenditure_item(project)) return complete_expenditure prov_keys = prov_abbrev.keys() prov_choices = tuple([(prov_key, prov_key) for prov_key in prov_keys]) class Event(models.Model): start_date = models.DateField(default=datetime.now) date = models.CharField(max_length=255) type = models.CharField( max_length=255, choices=( ("hackathon", "hackathon"), ("dataquest", "dataquest"), ("cid", "cid"), ("gift-dataquest", "gift-dataquest"), ), ) province = models.CharField(max_length=255, choices=prov_choices) where = models.CharField(max_length=255) url = models.URLField(blank=True, null=True) notes_url = models.URLField(blank=True, null=True) video_url = models.URLField(blank=True, null=True) rsvp_url = models.URLField(blank=True, null=True) presentation_url = models.URLField(blank=True, null=True) status = models.CharField( max_length=255, default="upcoming", choices=(("upcoming", "upcoming"), ("past", "past")), ) class Meta: ordering = ["-start_date"] def __str__(self): return "{} {} ({} {})".format(self.type, self.date, self.where, self.province) def get_absolute_url(self): return reverse("events") class VideoLanguage(SortableMixin): label = models.CharField(max_length=255) youtube_id = models.CharField(max_length=255, null=True, blank=True) video = models.ForeignKey("Video", null=True, blank=True, on_delete=models.SET_NULL) video_language_order = models.PositiveIntegerField( default=0, editable=False, db_index=True ) class Meta: ordering = ["video_language_order"] def __str__(self): return self.label class Video(SortableMixin): title_id = models.CharField(max_length=255) title = models.CharField(max_length=255) description = models.TextField(max_length=510) video_order = models.PositiveIntegerField(default=0, editable=False, db_index=True) class Meta: ordering = ["video_order"] def __str__(self): return self.title def get_absolute_url(self): return reverse("videos") class FAQ(SortableMixin): title = models.CharField(max_length=1024) content = RichTextField() the_order = models.PositiveIntegerField(default=0, editable=False, db_index=True) def __str__(self): return self.title class Meta: verbose_name = "FAQ" verbose_name_plural = "FAQs" ordering = ["the_order"] class Quarter(models.Model): number = models.IntegerField(unique=True) class Meta: ordering = ["number"] def __str__(self): return "Quarter %d" % self.number def irm_snapshot_file_path(instance, filename): extension = filename.split(".")[-1] return ( f"irm-snapshots/{uuid.uuid4()}/" f"{instance.sphere.financial_year.slug}-Q{instance.quarter.number}-" f"{instance.sphere.slug}-taken-{instance.date_taken.isoformat()[:18]}.{extension}" ) class IRMSnapshot(models.Model): """ This represents a particular snapshot from the Infrastructure Reporting Model (IRM) database """ sphere = models.ForeignKey(Sphere, on_delete=models.CASCADE) quarter = models.ForeignKey(Quarter, on_delete=models.CASCADE) date_taken = models.DateTimeField() file = models.FileField(upload_to=irm_snapshot_file_path) created_at = models.DateTimeField(auto_now_add=True, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, blank=True, null=True) class Meta: ordering = ["sphere__financial_year__slug", "quarter__number"] verbose_name = "IRM Snapshot" unique_together = ["sphere", "quarter"] def __str__(self): return ( f"{self.sphere.name} " f"{self.sphere.financial_year.slug} Q{self.quarter.number} " f"taken {self.date_taken.isoformat()[:18]}" ) class InfraProject(models.Model): """ This represents a project, grouping its snapshots by project's ID in IRM. This assumes the same project will have the same ID in IRM across financial years. The internal ID of these instances is used as the ID in the URL, since we don't want to expose IRM IDs publicly but we want to have a consistent URL for projects. We don't delete these even when there's no snapshots associated with them so that the URL based on this id remains consistent in case projects with this IRM ID are uploaded after snapshots are deleted. """ IRM_project_id = models.IntegerField() sphere_slug = models.CharField(max_length=100) created_at = models.DateTimeField(auto_now_add=True, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, blank=True, null=True) class Meta: verbose_name = "Infrastructure project" unique_together = ["sphere_slug", "IRM_project_id"] def __str__(self): if self.project_snapshots.count(): return self.project_snapshots.latest().name else: return f"{self.sphere_slug} IRM project ID {self.IRM_project_id} (no snapshots loaded)" def get_slug(self): return slugify( "{0} {1}".format( self.project_snapshots.latest().name, self.project_snapshots.latest().province, ) ) def get_absolute_url(self): args = [self.pk, self.get_slug()] return reverse("infra-project-detail", args=args) @property def csv_download_url(self): return reverse( "infra-project-detail-csv-download", args=(self.id, self.get_slug()), ) class InfraProjectSnapshot(models.Model): """This represents a snapshot of a project, as it occurred in an IRM snapshot""" irm_snapshot = models.ForeignKey( IRMSnapshot, on_delete=models.CASCADE, related_name="project_snapshots" ) project = models.ForeignKey( InfraProject, on_delete=models.CASCADE, related_name="project_snapshots" ) project_number = models.CharField(max_length=1024, blank=True, null=True) name = models.CharField(max_length=1024, blank=True, null=True) department = models.CharField(max_length=1024, blank=True, null=True) sector = models.CharField(max_length=1024, blank=True, null=True) province = models.CharField(max_length=1024, blank=True, null=True) local_municipality = models.CharField(max_length=1024, blank=True, null=True) district_municipality = models.CharField(max_length=1024, blank=True, null=True) latitude = models.CharField(max_length=20, blank=True, null=True) longitude = models.CharField(max_length=20, blank=True, null=True) status = models.CharField(max_length=1024, blank=True, null=True) budget_programme = models.CharField(max_length=1024, blank=True, null=True) primary_funding_source = models.CharField(max_length=1024, blank=True, null=True) nature_of_investment = models.CharField(max_length=1024, blank=True, null=True) funding_status = models.CharField(max_length=1024, blank=True, null=True) program_implementing_agent = models.CharField( max_length=1024, blank=True, null=True ) principle_agent = models.CharField(max_length=1024, blank=True, null=True) main_contractor = models.CharField(max_length=1024, blank=True, null=True) other_parties = models.TextField(blank=True, null=True) # Dates start_date = models.DateField(blank=True, null=True) estimated_construction_start_date = models.DateField(blank=True, null=True) estimated_completion_date = models.DateField(blank=True, null=True) contracted_construction_end_date = models.DateField(blank=True, null=True) estimated_construction_end_date = models.DateField(blank=True, null=True) # Budgets and spending total_professional_fees = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) total_construction_costs = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) variation_orders = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) estimated_total_project_cost = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) expenditure_from_previous_years_professional_fees = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) expenditure_from_previous_years_construction_costs = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) expenditure_from_previous_years_total = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) project_expenditure_total = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) main_appropriation_professional_fees = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) adjusted_appropriation_professional_fees = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) main_appropriation_construction_costs = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) adjusted_appropriation_construction_costs = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) main_appropriation_total = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) adjusted_appropriation_total = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) actual_expenditure_q1 = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) actual_expenditure_q2 = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) actual_expenditure_q3 = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) actual_expenditure_q4 = models.DecimalField( max_digits=20, decimal_places=2, blank=True, null=True ) # Metadata created_at = models.DateTimeField(auto_now_add=True, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, blank=True, null=True) class Meta: ordering = [ "irm_snapshot__sphere__financial_year__slug", "irm_snapshot__quarter__number", ] get_latest_by = "irm_snapshot" verbose_name = "Infrastructure project snapshot" unique_together = ["irm_snapshot", "project"] @property def government(self): if self.irm_snapshot.sphere.slug == "national": return "South Africa" elif self.irm_snapshot.sphere.slug == "provincial": return self.province else: raise Exception(f"Unexpected sphere {self.irm_snapshot.sphere}") @property def government_label(self): if self.irm_snapshot.sphere.slug == "national": return "National" elif self.irm_snapshot.sphere.slug == "provincial": return self.province else: raise Exception(f"Unexpected sphere {self.irm_snapshot.sphere}") def __str__(self): return self.name # https://stackoverflow.com/questions/35633037/search-for-document-in-solr-where-a-multivalue-field-is-either-empty # -or-has-a-sp def none_selected_query(vocab_name): """Match items where none of the options in a custom vocab tag is selected""" return '+(*:* NOT %s:["" TO *])' % vocab_name def extras_set(extras, key, value): for extra in extras: if extra["key"] == key: extra["value"] = value break def resource_name(department): return "Vote %d - %s" % (department.vote_number, department.name) def get_base_year(cpi_year_slug): return int(cpi_year_slug[:4]) - 1 def get_cpi(): cpi_year_slug, cpi_resource_id = Dataset.get_latest_cpi_resource() base_year = get_base_year(cpi_year_slug) sql = """ SELECT "Year", "CPI" FROM "{}" ORDER BY "Year" """.format( cpi_resource_id ) params = {"sql": sql} result = requests.get(CKAN_DATASTORE_URL, params=params) result.raise_for_status() cpi = result.json()["result"]["records"] base_year_index = None for idx, cell in enumerate(cpi): financial_year_start = cell["Year"][:4] cell["financial_year_start"] = financial_year_start if financial_year_start == str(base_year): base_year_index = idx cell["index"] = 100 for idx in range(base_year_index - 1, -1, -1): cpi[idx]["index"] = cpi[idx + 1]["index"] / (1 + Decimal(cpi[idx + 1]["CPI"])) for idx in range(base_year_index + 1, len(cpi)): cpi[idx]["index"] = cpi[idx - 1]["index"] * (1 + Decimal(cpi[idx]["CPI"])) cpi_dict = {} for cell in cpi: cpi_dict[cell["financial_year_start"]] = cell return cpi_dict def get_vocab_map(): vocab_map = {} for vocab in ckan.action.vocabulary_list(): vocab_map[vocab["name"]] = vocab["id"] return vocab_map def csv_url(aggregate_url): querystring = "?api_url=" + quote(aggregate_url) csv_url = reverse("openspending_csv") + querystring if len(csv_url) > URL_LENGTH_LIMIT: raise Exception( "Generated URL exceeds max length of %s. " "Some browsers may no longer be able to interpret the URL." % URL_LENGTH_LIMIT ) return csv_url class WagtailHomePage(Page): parent_page_types = [] subpage_types = ["budgetportal.LearningIndexPage", "budgetportal.PostIndexPage"] class Meta: app_label = "budgetportal" class LearningIndexPage(Page): subpage_types = ["budgetportal.GuideIndexPage"] max_count = 1 class PostIndexPage(Page): subpage_types = ["budgetportal.PostPage"] max_count = 1 intro = RichTextField(blank=True) content_panels = Page.content_panels + [FieldPanel("intro", classname="full")] class GuideIndexPage(Page): max_count = 1 parent_page_types = ["budgetportal.LearningIndexPage"] subpage_types = ["budgetportal.GuidePage"] intro = RichTextField(blank=True) content_panels = Page.content_panels + [FieldPanel("intro", classname="full")] def get_context(self, request, *args, **kwargs): context = super().get_context(request, *args, **kwargs) guides_ordering = OrderedDict([(p.title, p) for p in self.get_children()]) for external in CategoryGuide.objects.filter(external_url__isnull=False): guides_ordering[external.external_url_title] = external context["guides"] = guides_ordering.values() return context class GuidePage(Page): parent_page_types = ["budgetportal.GuideIndexPage"] body = StreamField( [("section", SectionBlock()), ("html", wagtail_blocks.RawHTMLBlock()),] ) created_at = models.DateTimeField(auto_now_add=True, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, blank=True, null=True) image = models.ForeignKey( "wagtailimages.Image", null=True, blank=True, on_delete=models.SET_NULL, related_name="+", ) content_panels = Page.content_panels + [ StreamFieldPanel("body"), ImageChooserPanel("image"), ] class CategoryGuide(models.Model): """Link GuidePages or external URLs to dataset category slugs""" category_slug = models.SlugField(max_length=200, unique=True) guide_page = models.ForeignKey( GuidePage, null=True, blank=True, on_delete=models.CASCADE ) external_url = models.URLField(null=True, blank=True) external_url_title = models.CharField( max_length=200, null=True, blank=True, help_text=( "Only shown if External URL is used. This may be truncated so " "use a short description that will also be seen on the external page." ), ) external_url_description = models.TextField( null=True, blank=True, help_text=( "Only shown if External URL is used. This may be truncated so " "use a short description that will also be seen on the external page." ), ) def __str__(self): return "{} - {}".format( self.category_slug, self.guide_page or self.external_url ) def clean(self): if self.external_url is None and self.guide_page is None: raise ValidationError("Either Guide Page or External URL must be set.") if self.external_url is not None and self.guide_page is not None: raise ValidationError("Only one of Guide Page or External URL may be set.") if self.external_url is not None and self.external_url_title is None: raise ValidationError("Title is required when using External URL.") return super().clean() class NavContextMixin: def get_context(self, request): context = super().get_context(request) nav = nav_bar.get_items(FinancialYear.get_latest_year().slug) context["navbar"] = nav for item in nav: if item["url"] and request.path.startswith(item["url"]): context["selected_tab"] = item["id"] return context class PostPage(Page): parent_page_types = ["budgetportal.PostIndexPage"] body = StreamField( [("section", SectionBlock()), ("html", wagtail_blocks.RawHTMLBlock()),] ) created_at = models.DateTimeField(auto_now_add=True, blank=True, null=True) updated_at = models.DateTimeField(auto_now=True, blank=True, null=True) image = models.ForeignKey( "wagtailimages.Image", null=True, blank=True, on_delete=models.SET_NULL, related_name="+", ) content_panels = Page.content_panels + [ StreamFieldPanel("body"), ]
39.073992
117
0.591133
b62a527fdc22bbb824e68862136b20c89f56baf0
19,098
py
Python
tap_snowflake/__init__.py
lab49/pipelinewise-tap-snowflake
fad7264054e7b4b094162124db695115e9f96091
[ "Apache-2.0" ]
null
null
null
tap_snowflake/__init__.py
lab49/pipelinewise-tap-snowflake
fad7264054e7b4b094162124db695115e9f96091
[ "Apache-2.0" ]
null
null
null
tap_snowflake/__init__.py
lab49/pipelinewise-tap-snowflake
fad7264054e7b4b094162124db695115e9f96091
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # pylint: disable=missing-docstring,not-an-iterable,too-many-locals,too-many-arguments,too-many-branches,invalid-name,duplicate-code,too-many-statements import collections import copy import itertools import re import sys import logging import singer import singer.metrics as metrics import singer.schema import snowflake.connector from singer import metadata from singer import utils from singer.catalog import Catalog, CatalogEntry from singer.schema import Schema import tap_snowflake.sync_strategies.common as common import tap_snowflake.sync_strategies.full_table as full_table import tap_snowflake.sync_strategies.incremental as incremental from tap_snowflake.connection import SnowflakeConnection LOGGER = singer.get_logger('tap_snowflake') # Max number of rows that a SHOW SCHEMAS|TABLES|COLUMNS can return. # If more than this number of rows returned then tap-snowflake will raise TooManyRecordsException SHOW_COMMAND_MAX_ROWS = 9999 # Tone down snowflake connector logs noise logging.getLogger('snowflake.connector').setLevel(logging.WARNING) Column = collections.namedtuple('Column', [ 'table_catalog', 'table_schema', 'table_name', 'column_name', 'data_type', 'character_maximum_length', 'numeric_precision', 'numeric_scale']) REQUIRED_CONFIG_KEYS = [ 'account', 'dbname', 'user', 'password', 'warehouse', 'tables' ] # Snowflake data types STRING_TYPES = set(['varchar', 'char', 'character', 'string', 'text']) NUMBER_TYPES = set(['number', 'decimal', 'numeric']) INTEGER_TYPES = set(['int', 'integer', 'bigint', 'smallint']) FLOAT_TYPES = set(['float', 'float4', 'float8', 'real', 'double', 'double precision']) DATETIME_TYPES = set(['datetime', 'timestamp', 'date', 'timestamp_ltz', 'timestamp_ntz', 'timestamp_tz']) ARRAY_TYPE = set(['array']) BINARY_TYPE = set(['binary', 'varbinary']) def schema_for_column(c): '''Returns the Schema object for the given Column.''' data_type = c.data_type.lower() inclusion = 'available' result = Schema(inclusion=inclusion) if data_type == 'boolean': result.type = ['null', 'boolean'] elif data_type in INTEGER_TYPES: result.type = ['null', 'number'] elif data_type in FLOAT_TYPES: result.type = ['null', 'number'] elif data_type in NUMBER_TYPES: result.type = ['null', 'number'] elif data_type in STRING_TYPES: result.type = ['null', 'string'] result.maxLength = c.character_maximum_length elif data_type in DATETIME_TYPES: result.type = ['null', 'string'] result.format = 'date-time' elif data_type == 'time': result.type = ['null', 'string'] result.format = 'time' elif data_type in BINARY_TYPE: result.type = ['null', 'string'] result.format = 'binary' elif data_type in ARRAY_TYPE: result.type = ['null', 'string'] else: result = Schema(None, inclusion='unsupported', description='Unsupported data type {}'.format(data_type)) return result def create_column_metadata(cols): mdata = {} mdata = metadata.write(mdata, (), 'selected-by-default', False) for c in cols: schema = schema_for_column(c) mdata = metadata.write(mdata, ('properties', c.column_name), 'selected-by-default', schema.inclusion != 'unsupported') mdata = metadata.write(mdata, ('properties', c.column_name), 'sql-datatype', c.data_type.lower()) return metadata.to_list(mdata) def get_table_columns(snowflake_conn, tables): """Get column definitions of a list of tables It's using SHOW commands instead of INFORMATION_SCHEMA views because information_schemas views are slow and can cause unexpected exception of: Information schema query returned too much data. Please repeat query with more selective predicates. """ table_columns = [] for table in tables: queries = [] LOGGER.info('Getting column information for %s...', table) # Get column data types by SHOW commands show_columns = f'SHOW COLUMNS IN TABLE {table}' # Convert output of SHOW commands to tables and use SQL joins to get every required information select = """ WITH show_columns AS (SELECT * FROM TABLE(RESULT_SCAN(%(LAST_QID)s))) SELECT show_columns."database_name" AS table_catalog ,show_columns."schema_name" AS table_schema ,show_columns."table_name" AS table_name ,show_columns."column_name" AS column_name -- ---------------------------------------------------------------------------------------- -- Character and numeric columns display their generic data type rather than their defined -- data type (i.e. TEXT for all character types, FIXED for all fixed-point numeric types, -- and REAL for all floating-point numeric types). -- -- Further info at https://docs.snowflake.net/manuals/sql-reference/sql/show-columns.html -- ---------------------------------------------------------------------------------------- ,CASE PARSE_JSON(show_columns."data_type"):type::varchar WHEN 'FIXED' THEN 'NUMBER' WHEN 'REAL' THEN 'FLOAT' ELSE PARSE_JSON("data_type"):type::varchar END data_type ,PARSE_JSON(show_columns."data_type"):length::number AS character_maximum_length ,PARSE_JSON(show_columns."data_type"):precision::number AS numeric_precision ,PARSE_JSON(show_columns."data_type"):scale::number AS numeric_scale FROM show_columns """ queries.extend([show_columns, select]) # Run everything in one transaction columns = snowflake_conn.query(queries, max_records=SHOW_COMMAND_MAX_ROWS) table_columns.extend(columns) return table_columns def discover_catalog(snowflake_conn, config): """Returns a Catalog describing the structure of the database.""" tables = config.get('tables').split(',') sql_columns = get_table_columns(snowflake_conn, tables) table_info = {} columns = [] for sql_col in sql_columns: catalog = sql_col['TABLE_CATALOG'] schema = sql_col['TABLE_SCHEMA'] table_name = sql_col['TABLE_NAME'] if catalog not in table_info: table_info[catalog] = {} if schema not in table_info[catalog]: table_info[catalog][schema] = {} table_info[catalog][schema][table_name] = { 'row_count': sql_col.get('ROW_COUNT'), 'is_view': sql_col.get('TABLE_TYPE') == 'VIEW' } columns.append(Column( table_catalog=catalog, table_schema=schema, table_name=table_name, column_name=sql_col['COLUMN_NAME'], data_type=sql_col['DATA_TYPE'], character_maximum_length=sql_col['CHARACTER_MAXIMUM_LENGTH'], numeric_precision=sql_col['NUMERIC_PRECISION'], numeric_scale=sql_col['NUMERIC_SCALE'] )) entries = [] for (k, cols) in itertools.groupby(columns, lambda c: (c.table_catalog, c.table_schema, c.table_name)): cols = list(cols) (table_catalog, table_schema, table_name) = k schema = Schema(type='object', properties={c.column_name: schema_for_column(c) for c in cols}) md = create_column_metadata(cols) md_map = metadata.to_map(md) md_map = metadata.write(md_map, (), 'database-name', table_catalog) md_map = metadata.write(md_map, (), 'schema-name', table_schema) if ( table_catalog in table_info and table_schema in table_info[table_catalog] and table_name in table_info[table_catalog][table_schema] ): # Row Count of views returns NULL - Transform it to not null integer by defaults to 0 row_count = table_info[table_catalog][table_schema][table_name].get('row_count', 0) or 0 is_view = table_info[table_catalog][table_schema][table_name]['is_view'] md_map = metadata.write(md_map, (), 'row-count', row_count) md_map = metadata.write(md_map, (), 'is-view', is_view) entry = CatalogEntry( table=table_name, stream=table_name, metadata=metadata.to_list(md_map), tap_stream_id=common.generate_tap_stream_id(table_catalog, table_schema, table_name), schema=schema) entries.append(entry) return Catalog(entries) def do_discover(snowflake_conn, config): discover_catalog(snowflake_conn, config).dump() # pylint: disable=fixme # TODO: Maybe put in a singer-db-utils library. def desired_columns(selected, table_schema): """Return the set of column names we need to include in the SELECT. selected - set of column names marked as selected in the input catalog table_schema - the most recently discovered Schema for the table """ all_columns = set() available = set() automatic = set() unsupported = set() for column, column_schema in table_schema.properties.items(): all_columns.add(column) inclusion = column_schema.inclusion if inclusion == 'automatic': automatic.add(column) elif inclusion == 'available': available.add(column) elif inclusion == 'unsupported': unsupported.add(column) else: raise Exception('Unknown inclusion ' + inclusion) selected_but_unsupported = selected.intersection(unsupported) if selected_but_unsupported: LOGGER.warning( 'Columns %s were selected but are not supported. Skipping them.', selected_but_unsupported) selected_but_nonexistent = selected.difference(all_columns) if selected_but_nonexistent: LOGGER.warning( 'Columns %s were selected but do not exist.', selected_but_nonexistent) not_selected_but_automatic = automatic.difference(selected) if not_selected_but_automatic: LOGGER.warning( 'Columns %s are primary keys but were not selected. Adding them.', not_selected_but_automatic) return selected.intersection(available).union(automatic) def resolve_catalog(discovered_catalog, streams_to_sync): result = Catalog(streams=[]) # Iterate over the streams in the input catalog and match each one up # with the same stream in the discovered catalog. for catalog_entry in streams_to_sync: catalog_metadata = metadata.to_map(catalog_entry.metadata) replication_key = catalog_metadata.get((), {}).get('replication-key') discovered_table = discovered_catalog.get_stream(catalog_entry.tap_stream_id) database_name = common.get_database_name(catalog_entry) if not discovered_table: LOGGER.warning('Database %s table %s was selected but does not exist', database_name, catalog_entry.table) continue selected = {k for k, v in catalog_entry.schema.properties.items() if common.property_is_selected(catalog_entry, k) or k == replication_key} # These are the columns we need to select columns = desired_columns(selected, discovered_table.schema) result.streams.append(CatalogEntry( tap_stream_id=catalog_entry.tap_stream_id, metadata=catalog_entry.metadata, stream=catalog_entry.tap_stream_id, table=catalog_entry.table, schema=Schema( type='object', properties={col: discovered_table.schema.properties[col] for col in columns} ) )) return result def get_streams(snowflake_conn, catalog, config, state): """Returns the Catalog of data we're going to sync for all SELECT-based streams (i.e. INCREMENTAL and FULL_TABLE that require a historical sync). Using the Catalog provided from the input file, this function will return a Catalog representing exactly which tables and columns that will be emitted by SELECT-based syncs. This is achieved by comparing the input Catalog to a freshly discovered Catalog to determine the resulting Catalog. The resulting Catalog will include the following any streams marked as "selected" that currently exist in the database. Columns marked as "selected" and those labled "automatic" (e.g. primary keys and replication keys) will be included. Streams will be prioritized in the following order: 1. currently_syncing if it is SELECT-based 2. any streams that do not have state 3. any streams that do not have a replication method of LOG_BASED """ discovered = discover_catalog(snowflake_conn, config) # Filter catalog to include only selected streams # pylint: disable=unnecessary-lambda selected_streams = list(filter(lambda s: common.stream_is_selected(s), catalog.streams)) streams_with_state = [] streams_without_state = [] for stream in selected_streams: stream_state = state.get('bookmarks', {}).get(stream.tap_stream_id) if not stream_state: streams_without_state.append(stream) else: streams_with_state.append(stream) # If the state says we were in the middle of processing a stream, skip # to that stream. Then process streams without prior state and finally # move onto streams with state (i.e. have been synced in the past) currently_syncing = singer.get_currently_syncing(state) # prioritize streams that have not been processed ordered_streams = streams_without_state + streams_with_state if currently_syncing: currently_syncing_stream = list(filter( lambda s: s.tap_stream_id == currently_syncing, streams_with_state)) non_currently_syncing_streams = list(filter(lambda s: s.tap_stream_id != currently_syncing, ordered_streams)) streams_to_sync = currently_syncing_stream + non_currently_syncing_streams else: # prioritize streams that have not been processed streams_to_sync = ordered_streams return resolve_catalog(discovered, streams_to_sync) def write_schema_message(catalog_entry, bookmark_properties=None): key_properties = common.get_key_properties(catalog_entry) singer.write_message(singer.SchemaMessage( stream=catalog_entry.stream, schema=catalog_entry.schema.to_dict(), key_properties=key_properties, bookmark_properties=bookmark_properties )) def do_sync_incremental(snowflake_conn, catalog_entry, state, columns): LOGGER.info('Stream %s is using incremental replication', catalog_entry.stream) md_map = metadata.to_map(catalog_entry.metadata) replication_key = md_map.get((), {}).get('replication-key') if not replication_key: raise Exception(f'Cannot use INCREMENTAL replication for table ({catalog_entry.stream}) without a replication ' f'key.') write_schema_message(catalog_entry=catalog_entry, bookmark_properties=[replication_key]) incremental.sync_table(snowflake_conn, catalog_entry, state, columns) singer.write_message(singer.StateMessage(value=copy.deepcopy(state))) def do_sync_full_table(snowflake_conn, catalog_entry, state, columns): LOGGER.info('Stream %s is using full table replication', catalog_entry.stream) write_schema_message(catalog_entry) stream_version = common.get_stream_version(catalog_entry.tap_stream_id, state) full_table.sync_table(snowflake_conn, catalog_entry, state, columns, stream_version) # Prefer initial_full_table_complete going forward singer.clear_bookmark(state, catalog_entry.tap_stream_id, 'version') state = singer.write_bookmark(state, catalog_entry.tap_stream_id, 'initial_full_table_complete', True) singer.write_message(singer.StateMessage(value=copy.deepcopy(state))) def sync_streams(snowflake_conn, catalog, state): for catalog_entry in catalog.streams: columns = list(catalog_entry.schema.properties.keys()) if not columns: LOGGER.warning('There are no columns selected for stream %s, skipping it.', catalog_entry.stream) continue state = singer.set_currently_syncing(state, catalog_entry.tap_stream_id) # Emit a state message to indicate that we've started this stream singer.write_message(singer.StateMessage(value=copy.deepcopy(state))) md_map = metadata.to_map(catalog_entry.metadata) replication_method = md_map.get((), {}).get('replication-method') database_name = common.get_database_name(catalog_entry) schema_name = common.get_schema_name(catalog_entry) with metrics.job_timer('sync_table') as timer: timer.tags['database'] = database_name timer.tags['table'] = catalog_entry.table LOGGER.info('Beginning to sync %s.%s.%s', database_name, schema_name, catalog_entry.table) if replication_method == 'INCREMENTAL': do_sync_incremental(snowflake_conn, catalog_entry, state, columns) elif replication_method == 'FULL_TABLE': do_sync_full_table(snowflake_conn, catalog_entry, state, columns) else: raise Exception('Only INCREMENTAL and FULL TABLE replication methods are supported') state = singer.set_currently_syncing(state, None) singer.write_message(singer.StateMessage(value=copy.deepcopy(state))) def do_sync(snowflake_conn, config, catalog, state): catalog = get_streams(snowflake_conn, catalog, config, state) sync_streams(snowflake_conn, catalog, state) def main_impl(): args = utils.parse_args(REQUIRED_CONFIG_KEYS) snowflake_conn = SnowflakeConnection(args.config) if args.discover: do_discover(snowflake_conn, args.config) elif args.catalog: state = args.state or {} do_sync(snowflake_conn, args.config, args.catalog, state) elif args.properties: catalog = Catalog.from_dict(args.properties) state = args.state or {} do_sync(snowflake_conn, args.config, catalog, state) else: LOGGER.info('No properties were selected') def main(): try: main_impl() except Exception as exc: LOGGER.critical(exc) raise exc
37.817822
152
0.659807
466f9e7a695627b40475eadbff69030fac7a1fa1
58
py
Python
src/agent/docker-rest-agent/gunicorn.conf.py
tianxuanhong/cello
62aff7bf3038491d5ecacdd9a57946a9ae8a958d
[ "Apache-2.0" ]
865
2017-01-12T21:51:37.000Z
2022-03-26T16:39:16.000Z
src/agent/docker-rest-agent/gunicorn.conf.py
tianxuanhong/cello
62aff7bf3038491d5ecacdd9a57946a9ae8a958d
[ "Apache-2.0" ]
226
2017-02-06T08:36:24.000Z
2022-03-30T06:13:46.000Z
src/agent/docker-rest-agent/gunicorn.conf.py
tianxuanhong/cello
62aff7bf3038491d5ecacdd9a57946a9ae8a958d
[ "Apache-2.0" ]
506
2017-02-08T06:11:18.000Z
2022-03-10T04:25:25.000Z
workers = 1 worker_class = "gevent" bind = "0.0.0.0:5001"
14.5
23
0.655172
d68c8871028ecc7f02a38a9bb075d8dbaeb3a4a1
2,380
py
Python
setup.py
sjin09/alleleCounter
a5edd7bd98675ac4e0d85f7f7d2de1b71470da92
[ "MIT" ]
null
null
null
setup.py
sjin09/alleleCounter
a5edd7bd98675ac4e0d85f7f7d2de1b71470da92
[ "MIT" ]
51
2021-08-10T04:27:44.000Z
2022-03-31T04:19:30.000Z
setup.py
sjin09/alleleCounter
a5edd7bd98675ac4e0d85f7f7d2de1b71470da92
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # DO NOT EDIT THIS FILE! # This file has been autogenerated by dephell <3 # https://github.com/dephell/dephell try: from setuptools import setup except ImportError: from distutils.core import setup import os.path readme = '' here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.rst') if os.path.exists(readme_path): with open(readme_path, 'rb') as stream: readme = stream.read().decode('utf8') setup( long_description=readme, name='alleleCounter', version='0.0.1', description='alleleCounter', python_requires='==3.*,>=3.6.1', project_urls={ "documentation": "https://alleleCounter.readthedocs.io", "homepage": "https://github.com/sjin09/alleleCounter", "repository": "https://github.com/sjin09/alleleCounter" }, author='Sangjin Lee', author_email='sl17@sanger.ac.uk', license='MIT', classifiers=[ 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9' ], entry_points={ "console_scripts": ["alleleCounter = alleleCounter.__main__:main"] }, packages=['alleleCounter'], package_dir={"": "src"}, package_data={"alleleCounter": ["*.typed"]}, install_requires=[ 'argparse==1.*,>=1.4.0', 'biopython==1.*,>=1.79.0', 'click==7.*,>=7.0.0', 'natsort==7.*,>=7.1.1', 'pysam==0.*,>=0.16.0' ], extras_require={ "dev": [ "black==20.*,>=20.8.0.b1", "coverage[toml]==5.*,>=5.3.0", "darglint==1.*,>=1.5.8", "flake8==3.*,>=3.8.4", "flake8-bandit==2.*,>=2.1.2", "flake8-bugbear==20.*,>=20.1.4", "flake8-docstrings==1.*,>=1.5.0", "flake8-rst-docstrings==0.*,>=0.0.14", "mypy==0.*,>=0.790.0", "pep8-naming==0.*,>=0.11.1", "pre-commit==2.*,>=2.8.2", "pre-commit-hooks==3.*,>=3.3.0", "pygments==2.*,>=2.7.2", "pytest==6.*,>=6.1.2", "reorder-python-imports==2.*,>=2.3.6", "safety==1.*,>=1.9.0", "sphinx==3.*,>=3.3.1", "sphinx-autobuild==2020.*,>=2020.9.1", "sphinx-click==2.*,>=2.5.0", "sphinx-rtd-theme==0.*,>=0.5.0", "typeguard==2.*,>=2.9.1", "xdoctest[colors]==0.*,>=0.15.0" ] }, )
35
79
0.548319
2d5a819d756ccdd9937e7d5ebc018ab360c496da
20,036
py
Python
im2col_funcs.py
Mxbonn/zigzag_fork
250ee5e22904ba846dfb106983d46b83bd9ee230
[ "BSD-3-Clause" ]
34
2020-08-11T14:38:29.000Z
2022-03-30T10:32:34.000Z
im2col_funcs.py
Mxbonn/zigzag_fork
250ee5e22904ba846dfb106983d46b83bd9ee230
[ "BSD-3-Clause" ]
9
2020-11-16T19:19:48.000Z
2022-03-31T18:29:24.000Z
im2col_funcs.py
Mxbonn/zigzag_fork
250ee5e22904ba846dfb106983d46b83bd9ee230
[ "BSD-3-Clause" ]
18
2020-08-24T07:26:51.000Z
2022-01-06T00:59:11.000Z
from copy import deepcopy from numpy import prod from math import ceil def im2col_layer_transform(layer_info): im2col_layer_info = {} for layer_index, layer in layer_info.items(): # TODO support stride under im2col mode im2col_layer_info[layer_index] = {'B': 1, 'K': 1, 'C': 1, 'OY': 1, 'OX': 1, 'FY': 1, 'FX': 1, 'SY': 1, 'SX': 1, 'SFY': 1, 'SFX': 1, 'PY': 0, 'PX': 0} im2col_layer_info[layer_index]['B'] = layer['B'] * layer['OY'] * layer['OX'] im2col_layer_info[layer_index]['K'] = layer['K'] im2col_layer_info[layer_index]['C'] = layer['C'] * layer['FY'] * layer['FX'] return im2col_layer_info def im2col_mem_access_correction(layer_origin, layer_im2col, mem_total_access, temporal_loop, spatial_loop, im2col_top_mem_level): # TODO This is just a temporary solution for a constraint architecture (FB-similar), # in which only the top memory level for I may not do im2col, thus may need to be corrected) & stride = 1. C_pre_unrolled = 2 I_mem_level = len(temporal_loop.B['I']) B_tot = deepcopy(spatial_loop.Bu['I']) K_tot = deepcopy(spatial_loop.Ku['I']) C_tot = deepcopy(spatial_loop.Cu['I']) for level in range(I_mem_level): B_tot[level + 1] *= temporal_loop.B['I'][level] K_tot[level + 1] *= temporal_loop.K['I'][level] C_tot[level + 1] *= temporal_loop.C['I'][level] B_below = prod(B_tot[0:im2col_top_mem_level + 1]).item() K_below = prod(K_tot[0:im2col_top_mem_level + 1]).item() C_below = prod(C_tot[0:im2col_top_mem_level + 1]).item() B_L, OY_L, OX_L = B_col2im_decouple(B_below, layer_origin) K_L = K_below C_below /= C_pre_unrolled C_L, FY_L, FX_L = C_col2im_decouple(C_below, layer_origin) C_L *= C_pre_unrolled B_H = layer_origin.B / B_L K_H = layer_origin.K / K_L C_H = layer_origin.C / C_L OY_H = layer_origin.OY / OY_L OX_H = layer_origin.OX / OX_L FY_H = layer_origin.FY / FY_L FX_H = layer_origin.FX / FX_L cycle_L = B_L * K_L * C_L * OY_L * OX_L * FY_L * FX_L I_data_size_L = B_L* C_L * (OY_L + FY_L - 1) * (OX_L + FX_L - 1) I_data_reuse_L = cycle_L / I_data_size_L I_data_reuse_tot = layer_origin.total_data_reuse['I'] I_data_reuse_H = I_data_reuse_tot/I_data_reuse_L a=1 def B_col2im_decouple(B_below, layer_origin): B = 1 OY = 1 OX = 1 B_below_origin = B_below if B_below == 1: return B, OY, OX else: if B_below <= layer_origin.OX: OX = B_below return B, OY, OX else: OX = layer_origin.OX B_below /= OX if B_below <= layer_origin.OY: OY = ceil(B_below) OX = B_below_origin / OY return B, OY, OX else: OY = layer_origin.OY B_below /= OY if B_below <= layer_origin.B: B = ceil(B_below) OX = B_below_origin / B / OY return B, OY, OX def C_col2im_decouple(C_below, layer_origin): C = 1 FY = 1 FX = 1 C_below_origin = C_below if C_below == 1: return C, FY, FX else: if C_below <= layer_origin.FX: FX = C_below return C, FY, FX else: FX = layer_origin.FX C_below /= FX if C_below <= layer_origin.FY: FY = ceil(C_below) FX = C_below_origin / FY return C, FY, FX else: FY = layer_origin.FY C_below /= FY if C_below <= layer_origin.C: C = ceil(C_below) FX = C_below_origin / C / FY return C, FY, FX # def su_col2im(mem_scheme, layer_7D_origin, layer_3D_origin, layer_3D_rounded): # """ # This function updates col2im parameters in mem_scheme, namely, # col2im_flooring, col2im_fraction_spatial_unrolling, col2im_spatial_unrolling. # These parameters will later be used to calculate accurate Input access count for # those Input memory levels above the im2col_top_mem_level (defined in setting file), # which can get benefit from Input FIFO effect. # """ # # ideal_su = mem_scheme.spatial_unrolling # fraction_su = mem_scheme.fraction_spatial_unrolling # flooring = mem_scheme.flooring # # col2im_ideal_su = {'W': [], 'I': [], 'O': []} # col2im_fraction_su = {'W': [], 'I': [], 'O': []} # col2im_flooring = {'W': [], 'I': [], 'O': []} # # for ii_su in range(len(ideal_su)): # for op in ['W', 'I', 'O']: # for su_per_level in ideal_su[ii_su][op]: # col2im_ideal_su[op].append([]) # if su_per_level: # for su_single in su_per_level: # su_type = su_single[0] # if su_type == 6: # col2im_ideal_su[op][-1].append(su_single) # else: # su_single_update = su_single_decouple(su_single, layer_7D_origin) # col2im_ideal_su[op][-1].append(su_single_update) # # a = 1 def pw_layer_col2im(spatial_scheme, flooring, temporal_scheme, original_layer): """ This function change a pointwise layer, which has been auto-transferred (im2col), back to its original shape. Recover 3D (B, K, C) back to 5D (B, K, C, OY, OX) in spatial_scheme, flooring, temporal_scheme. """ OX = {'W': original_layer[3], 'I': original_layer[3], 'O': original_layer[3]} OY = {'W': original_layer[4], 'I': original_layer[4], 'O': original_layer[4]} B = {'W': original_layer[7], 'I': original_layer[7], 'O': original_layer[7]} # su_transfer_count is used to convert flooring, 7 -> 3 or 3,4 or 3,4,7 su_transfer_op = {'W': [], 'I': [], 'O': []} spatial_scheme_saved = deepcopy(spatial_scheme) for op in ['W', 'I', 'O']: for level, su_list in enumerate(spatial_scheme_saved[op]): su_transfer_op[op].append([]) if su_list: for idx, su_single in enumerate(su_list): if su_single[0] == 7: su_transfer_op[op][-1].append([]) if su_single[1] <= OX[op]: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) OX_position_value = spatial_scheme_saved[op][level][idx][1] spatial_scheme[op][level].insert(find_7_idx, [3, OX_position_value]) su_transfer_op[op][-1][-1] = [3] # B -> OX try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) OX[op] = round(OX[op] / OX_position_value) elif OX[op] < su_single[1] < OX[op] * OY[op]: if OX[op] > 1: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) spatial_scheme[op][level].insert(find_7_idx, [3, OX[op]]) OY_posision_value = round(spatial_scheme_saved[op][level][idx][1] / OX[op]) spatial_scheme[op][level].insert(find_7_idx + 1, [4, OY_posision_value]) su_transfer_op[op][-1][-1] = [3, 4] # B -> OX, OY try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) else: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) OY_posision_value = spatial_scheme_saved[op][level][idx][1] spatial_scheme[op][level].insert(find_7_idx, [4, OY_posision_value]) su_transfer_op[op][-1][-1] = [4] # B -> OY try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) OX[op] = 1 OY[op] = round(OY[op] / OY_posision_value) elif su_single[1] == OX[op] * OY[op]: if OX[op] > 1: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) spatial_scheme[op][level].insert(find_7_idx, [3, OX[op]]) spatial_scheme[op][level].insert(find_7_idx + 1, [4, OY[op]]) su_transfer_op[op][-1][-1] = [3, 4] # B -> OX, OY try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) else: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) spatial_scheme[op][level].insert(find_7_idx, [4, OY[op]]) su_transfer_op[op][-1][-1] = [4] # B -> OY try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) OX[op] = 1 OY[op] = 1 elif su_single[1] > OX[op] * OY[op]: if OX[op] > 1 and OY[op] > 1: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) spatial_scheme[op][level].insert(find_7_idx, [3, OX[op]]) spatial_scheme[op][level].insert(find_7_idx + 1, [4, OY[op]]) B_posision_value = round(spatial_scheme_saved[op][level][idx][1] / OX[op] / OY[op]) spatial_scheme[op][level].insert(find_7_idx + 2, [7, B_posision_value]) su_transfer_op[op][-1][-1] = [3, 4, 7] # B -> OX, OY, B try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) elif OX[op] == 1 and OY[op] > 1: find_7_item = next((x for x in spatial_scheme[op][level] if x[0] == 7), None) find_7_idx = spatial_scheme[op][level].index(find_7_item) spatial_scheme[op][level].insert(find_7_idx, [4, OY[op]]) B_posision_value = round(spatial_scheme_saved[op][level][idx][1] / OY[op]) spatial_scheme[op][level].insert(find_7_idx + 1, [7, B_posision_value]) su_transfer_op[op][-1][-1] = [4, 7] # B -> OY, B try: spatial_scheme[op][level].remove((7, su_single[1])) except: spatial_scheme[op][level].remove([7, su_single[1]]) elif OX[op] == 1 and OY[op] == 1: B_posision_value = spatial_scheme_saved[op][level][idx][1] su_transfer_op[op][-1][-1] = [7] # B -> B else: raise ValueError('ERROR 1 (su)') OX[op] = 1 OY[op] = 1 B[op] = round(B[op] / B_posision_value) else: raise ValueError('ERROR 2 (su)') if B['W'] != B['I'] != B['O'] or OY['W'] != OY['I'] != OY['O'] or OX['W'] != OX['I'] != OX['O']: raise ValueError('ERROR 3') flooring_saved = deepcopy(flooring) for op in ['W', 'I', 'O']: for level, floor_list in enumerate(flooring_saved[op]): i = 0 for XY, floor_XY in enumerate(floor_list): for floor_single in floor_XY: if floor_single == 7: find_7_idx = flooring[op][level][XY].index(7) for x in reversed(su_transfer_op[op][level][i]): flooring[op][level][XY].insert(find_7_idx, x) i += 1 flooring[op][level][XY].remove(7) temporal_scheme_saved = deepcopy(temporal_scheme) for op in ['W', 'I', 'O']: for level, loop_list in enumerate(temporal_scheme_saved[op]): # su_transfer_op[op].append([]) if loop_list: for idx, loop_single in enumerate(loop_list): if loop_single[0] == 7: # su_transfer_op[op][-1].append([]) if loop_single[1] <= OX[op]: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) OX_position_value = temporal_scheme_saved[op][level][idx][1] temporal_scheme[op][level].insert(find_7_idx, (3, OX_position_value)) # su_transfer_op[op][-1][-1] = [3] # B -> OX temporal_scheme[op][level].remove((7, loop_single[1])) OX[op] = round(OX[op] / OX_position_value) elif OX[op] < loop_single[1] < OX[op] * OY[op]: if OX[op] > 1: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) temporal_scheme[op][level].insert(find_7_idx, (3, OX[op])) OY_posision_value = round(temporal_scheme_saved[op][level][idx][1] / OX[op]) temporal_scheme[op][level].insert(find_7_idx + 1, (4, OY_posision_value)) # su_transfer_op[op][-1][-1] = [3, 4] # B -> OX, OY temporal_scheme[op][level].remove((7, loop_single[1])) else: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) OY_posision_value = temporal_scheme_saved[op][level][idx][1] temporal_scheme[op][level].insert(find_7_idx, (4, OY_posision_value)) # su_transfer_op[op][-1][-1] = [4] # B -> OY temporal_scheme[op][level].remove((7, loop_single[1])) OX[op] = 1 OY[op] = round(OY[op] / OY_posision_value) elif loop_single[1] == OX[op] * OY[op]: if OX[op] > 1: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) temporal_scheme[op][level].insert(find_7_idx, (3, OX[op])) temporal_scheme[op][level].insert(find_7_idx + 1, (4, OY[op])) # su_transfer_op[op][-1][-1] = [3, 4] # B -> OX, OY temporal_scheme[op][level].remove((7, loop_single[1])) else: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) temporal_scheme[op][level].insert(find_7_idx, (4, OY[op])) # su_transfer_op[op][-1][-1] = [4] # B -> OY temporal_scheme[op][level].remove((7, loop_single[1])) OX[op] = 1 OY[op] = 1 elif loop_single[1] > OX[op] * OY[op]: if OX[op] > 1 and OY[op] > 1: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) temporal_scheme[op][level].insert(find_7_idx, (3, OX[op])) temporal_scheme[op][level].insert(find_7_idx + 1, (4, OY[op])) B_posision_value = round(temporal_scheme_saved[op][level][idx][1] / OX[op] / OY[op]) temporal_scheme[op][level].insert(find_7_idx + 2, (7, B_posision_value)) # su_transfer_op[op][-1][-1] = [3, 4, 7] # B -> OX, OY, B temporal_scheme[op][level].remove((7, loop_single[1])) elif OX[op] == 1 and OY[op] > 1: find_7_item = next((x for x in temporal_scheme[op][level] if x[0] == 7), None) find_7_idx = temporal_scheme[op][level].index(find_7_item) temporal_scheme[op][level].insert(find_7_idx, (4, OY[op])) B_posision_value = round(temporal_scheme_saved[op][level][idx][1] / OY[op]) temporal_scheme[op][level].insert(find_7_idx + 1, (7, B_posision_value)) # su_transfer_op[op][-1][-1] = [4, 7] # B -> OY, B temporal_scheme[op][level].remove((7, loop_single[1])) elif OX[op] == 1 and OY[op] == 1: B_posision_value = temporal_scheme_saved[op][level][idx][1] # su_transfer_op[op][-1][-1] = [7] # B -> B else: raise ValueError('ERROR 1 (tm)') OX[op] = 1 OY[op] = 1 B[op] = round(B[op] / B_posision_value) else: raise ValueError('ERROR 2 (tm)') if not (B['W'] == B['I'] == B['O'] == 1 and OY['W'] == OY['I'] == OY['O'] == 1 and OX['W'] == OX['I'] == OX['O'] == 1): raise ValueError('ERROR 4') return spatial_scheme, flooring, temporal_scheme
53.715818
123
0.468706
26155edda96c4d8dd3d9585f39f9237e1b458c1d
1,915
py
Python
mlprodict/npy/onnx_version.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
32
2018-03-04T23:33:30.000Z
2022-03-10T19:15:06.000Z
mlprodict/npy/onnx_version.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
184
2017-11-30T14:10:35.000Z
2022-02-21T08:29:31.000Z
mlprodict/npy/onnx_version.py
sdpython/mlprodic
9367dacc91d35ec670c8a8a76708300a75bbc993
[ "MIT" ]
9
2019-07-24T13:18:00.000Z
2022-03-07T04:08:07.000Z
""" @file @brief Identifies a version of a function. .. versionadded:: 0.6 """ from collections import namedtuple class FctVersion(namedtuple("_version_", ['args', 'kwargs'])): """ Identifies a version of a function based on its arguments and its parameters. """ __slots__ = () def _check_(self): if self.args is not None and not isinstance(self.args, tuple): raise TypeError("args must be None or a tuple.") if self.kwargs is not None and not isinstance(self.kwargs, tuple): raise TypeError("kwargs must None or be a tuple.") def __repr__(self): "usual" def cl(s): return str(s).replace("<class '", "").replace("'>", "") if self.args is None: sa = "None" else: sa = ",".join(map(cl, self.args)) sa = ("(%s)" % sa) if len(self.args) > 1 else ("(%s,)" % sa) return "%s(%s, %s)" % ( self.__class__.__name__, sa, self.kwargs) def __len__(self): "Returns the sum of lengths." return ((0 if self.args is None else len(self.args)) + (0 if self.kwargs is None else len(self.kwargs))) def as_tuple(self): "Returns a single tuple for the version." return ((tuple() if self.args is None else self.args) + (tuple() if self.kwargs is None else self.kwargs)) def as_tuple_with_sep(self, sep): "Returns a single tuple for the version." return ((tuple() if self.args is None else self.args) + (sep, ) + (tuple() if self.kwargs is None else self.kwargs)) def as_string(self): "Returns a single stirng identifier." val = "_".join(map(str, self.as_tuple_with_sep("_"))) val = val.replace("<class 'numpy.", "").replace( '.', "_").replace("'>", "").replace(" ", "") return val.lower()
33.017241
74
0.557702
7118ff77f124a682db3c8f468cf3c343ed70d8ce
10,058
py
Python
dragoman/client.py
sumitkhamar22/dragoman
d03e896b71a2f3a8ced56afdba875d76a3fd321e
[ "MIT" ]
null
null
null
dragoman/client.py
sumitkhamar22/dragoman
d03e896b71a2f3a8ced56afdba875d76a3fd321e
[ "MIT" ]
null
null
null
dragoman/client.py
sumitkhamar22/dragoman
d03e896b71a2f3a8ced56afdba875d76a3fd321e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ A Translation module. You can translate text using this module. """ import random import typing import httpcore import httpx from httpx import Timeout from dragoman import urls, utils from dragoman.gtoken import TokenAcquirer from dragoman.constants import ( DEFAULT_USER_AGENT, LANGCODES, LANGUAGES, SPECIAL_CASES, DEFAULT_RAISE_EXCEPTION, DUMMY_DATA ) from dragoman.models import Translated, Detected EXCLUDES = ('en', 'ca', 'fr') class Translator: """Google Translate ajax API implementation class You have to create an instance of Translator to use this API :param service_urls: google translate url list. URLs will be used randomly. For example ``['translate.google.com', 'translate.google.co.kr']`` :type service_urls: a sequence of strings :param user_agent: the User-Agent header to send when making requests. :type user_agent: :class:`str` :param proxies: proxies configuration. Dictionary mapping protocol or protocol and host to the URL of the proxy For example ``{'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}`` :type proxies: dictionary :param timeout: Definition of timeout for httpx library. Will be used for every request. :type timeout: number or a double of numbers ||||||| constructed merge base :param proxies: proxies configuration. Dictionary mapping protocol or protocol and host to the URL of the proxy For example ``{'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}`` :param raise_exception: if `True` then raise exception if smth will go wrong :type raise_exception: boolean """ def __init__(self, service_urls=None, user_agent=DEFAULT_USER_AGENT, raise_exception=DEFAULT_RAISE_EXCEPTION, proxies: typing.Dict[str, httpcore.SyncHTTPTransport] = None, timeout: Timeout = None): self.client = httpx.Client() if proxies is not None: # pragma: nocover self.client.proxies = proxies self.client.headers.update({ 'User-Agent': user_agent, }) if timeout is not None: self.client.timeout = timeout self.service_urls = service_urls or ['translate.google.com'] self.token_acquirer = TokenAcquirer(client=self.client, host=self.service_urls[0]) self.raise_exception = raise_exception def _pick_service_url(self): if len(self.service_urls) == 1: return self.service_urls[0] return random.choice(self.service_urls) def _translate(self, text, dest, src, override): token = self.token_acquirer.do(text) params = utils.build_params(query=text, src=src, dest=dest, token=token, override=override) url = urls.TRANSLATE.format(host=self._pick_service_url()) r = self.client.get(url, params=params) if r.status_code == 200: data = utils.format_json(r.text) return data else: if self.raise_exception: raise Exception('Unexpected status code "{}" from {}'.format(r.status_code, self.service_urls)) DUMMY_DATA[0][0][0] = text return DUMMY_DATA def _parse_extra_data(self, data): response_parts_name_mapping = { 0: 'translation', 1: 'all-translations', 2: 'original-language', 5: 'possible-translations', 6: 'confidence', 7: 'possible-mistakes', 8: 'language', 11: 'synonyms', 12: 'definitions', 13: 'examples', 14: 'see-also', } extra = {} for index, category in response_parts_name_mapping.items(): extra[category] = data[index] if (index < len(data) and data[index]) else None return extra def translate(self, text, dest='en', src='auto', **kwargs): """Translate text from source language to destination language :param text: The source text(s) to be translated. Batch translation is supported via sequence input. :type text: UTF-8 :class:`str`; :class:`unicode`; string sequence (list, tuple, iterator, generator) :param dest: The language to translate the source text into. The value should be one of the language codes listed in :const:`googletrans.LANGUAGES` or one of the language names listed in :const:`googletrans.LANGCODES`. :param dest: :class:`str`; :class:`unicode` :param src: The language of the source text. The value should be one of the language codes listed in :const:`googletrans.LANGUAGES` or one of the language names listed in :const:`googletrans.LANGCODES`. If a language is not specified, the system will attempt to identify the source language automatically. :param src: :class:`str`; :class:`unicode` :rtype: Translated :rtype: :class:`list` (when a list is passed) Basic usage: >>> from googletrans import Translator >>> translator = Translator() >>> translator.translate('안녕하세요.') <Translated src=ko dest=en text=Good evening. pronunciation=Good evening.> >>> translator.translate('안녕하세요.', dest='ja') <Translated src=ko dest=ja text=こんにちは。 pronunciation=Kon'nichiwa.> >>> translator.translate('veritas lux mea', src='la') <Translated src=la dest=en text=The truth is my light pronunciation=The truth is my light> Advanced usage: >>> translations = translator.translate(['The quick brown fox', 'jumps over', 'the lazy dog'], dest='ko') >>> for translation in translations: ... print(translation.origin, ' -> ', translation.text) The quick brown fox -> 빠른 갈색 여우 jumps over -> 이상 점프 the lazy dog -> 게으른 개 """ dest = dest.lower().split('_', 1)[0] src = src.lower().split('_', 1)[0] if src != 'auto' and src not in LANGUAGES: if src in SPECIAL_CASES: src = SPECIAL_CASES[src] elif src in LANGCODES: src = LANGCODES[src] else: raise ValueError('invalid source language') if dest not in LANGUAGES: if dest in SPECIAL_CASES: dest = SPECIAL_CASES[dest] elif dest in LANGCODES: dest = LANGCODES[dest] else: raise ValueError('invalid destination language') if isinstance(text, list): result = [] for item in text: translated = self.translate(item, dest=dest, src=src, **kwargs) result.append(translated) return result origin = text data = self._translate(text, dest, src, kwargs) # this code will be updated when the format is changed. translated = ''.join([d[0] if d[0] else '' for d in data[0]]) extra_data = self._parse_extra_data(data) # actual source language that will be recognized by Google Translator when the # src passed is equal to auto. try: src = data[2] except Exception: # pragma: nocover pass pron = origin try: pron = data[0][1][-2] except Exception: # pragma: nocover pass if pron is None: try: pron = data[0][1][2] except: # pragma: nocover pass if dest in EXCLUDES and pron == origin: pron = translated # put final values into a new Translated object result = Translated(src=src, dest=dest, origin=origin, text=translated, pronunciation=pron, extra_data=extra_data) return result def detect(self, text, **kwargs): """Detect language of the input text :param text: The source text(s) whose language you want to identify. Batch detection is supported via sequence input. :type text: UTF-8 :class:`str`; :class:`unicode`; string sequence (list, tuple, iterator, generator) :rtype: Detected :rtype: :class:`list` (when a list is passed) Basic usage: >>> from googletrans import Translator >>> translator = Translator() >>> translator.detect('이 문장은 한글로 쓰여졌습니다.') <Detected lang=ko confidence=0.27041003> >>> translator.detect('この文章は日本語で書かれました。') <Detected lang=ja confidence=0.64889508> >>> translator.detect('This sentence is written in English.') <Detected lang=en confidence=0.22348526> >>> translator.detect('Tiu frazo estas skribita en Esperanto.') <Detected lang=eo confidence=0.10538048> Advanced usage: >>> langs = translator.detect(['한국어', '日本語', 'English', 'le français']) >>> for lang in langs: ... print(lang.lang, lang.confidence) ko 1 ja 0.92929292 en 0.96954316 fr 0.043500196 """ if isinstance(text, list): result = [] for item in text: lang = self.detect(item) result.append(lang) return result data = self._translate(text, 'en', 'auto', kwargs) # actual source language that will be recognized by Google Translator when the # src passed is equal to auto. src = '' confidence = 0.0 try: src = ''.join(data[8][0]) confidence = data[8][-2][0] except Exception: # pragma: nocover pass result = Detected(lang=src, confidence=confidence) return result
37.390335
117
0.586399
9dbe585053a44bcf69990c1c0b9f03fd6e8c5438
196
py
Python
Episode #16 - Multiple Inheritance/Main.py
Giyar33/OOP
3845b11124dbfb43b249c40c045cf784c6881497
[ "MIT" ]
45
2018-07-25T00:43:46.000Z
2022-02-18T16:57:19.000Z
Episode #16 - Multiple Inheritance/Main.py
Giyar33/OOP
3845b11124dbfb43b249c40c045cf784c6881497
[ "MIT" ]
null
null
null
Episode #16 - Multiple Inheritance/Main.py
Giyar33/OOP
3845b11124dbfb43b249c40c045cf784c6881497
[ "MIT" ]
60
2018-09-28T03:42:06.000Z
2022-03-28T15:03:45.000Z
class A: def method_A(self): print("ini adalah method A") class B: def method_B(self): print("ini adalah method B") class C(A,B): pass objek = C() objek.method_A() objek.method_B()
9.8
30
0.653061
f9fa24f0caf22974cfc3a9ac941f4f1f36a1c1a5
747
py
Python
examples/example_callproc.py
adadaptedinc/aiomysql
f2927fd7b1f767d1e2562532682cb810a0a64de5
[ "MIT" ]
1,535
2015-02-01T23:38:42.000Z
2022-03-31T11:53:37.000Z
examples/example_callproc.py
adadaptedinc/aiomysql
f2927fd7b1f767d1e2562532682cb810a0a64de5
[ "MIT" ]
668
2015-02-02T22:04:10.000Z
2022-03-31T01:44:46.000Z
examples/example_callproc.py
adadaptedinc/aiomysql
f2927fd7b1f767d1e2562532682cb810a0a64de5
[ "MIT" ]
299
2015-02-17T22:26:44.000Z
2022-03-17T12:25:55.000Z
import asyncio import aiomysql async def test_example(loop): conn = await aiomysql.connect(host='127.0.0.1', port=3306, user='root', password='', db='test_pymysql', loop=loop) async with conn.cursor() as cur: await cur.execute('DROP PROCEDURE IF EXISTS myinc;') await cur.execute("""CREATE PROCEDURE myinc(p1 INT) BEGIN SELECT p1 + 1; END""") await cur.callproc('myinc', [1]) (ret, ) = await cur.fetchone() assert 2, ret print(ret) conn.close() loop = asyncio.get_event_loop() loop.run_until_complete(test_example(loop))
27.666667
63
0.514056
a569dd73bf4c737b5da9b60bab3083b5192099d3
5,151
py
Python
weakest_link/game.py
jmattfong/weakest-link
c4dba2b51a7271b83d3cc14b1329836805019671
[ "Apache-2.0" ]
null
null
null
weakest_link/game.py
jmattfong/weakest-link
c4dba2b51a7271b83d3cc14b1329836805019671
[ "Apache-2.0" ]
null
null
null
weakest_link/game.py
jmattfong/weakest-link
c4dba2b51a7271b83d3cc14b1329836805019671
[ "Apache-2.0" ]
null
null
null
from weakest_link.util import wait_for_choice, green, red, dollars, get_random_mean_word, starts_with_vowel, format_time class WeakestLinkGame : def __init__(self, players, rounds, final_round) : self.players = players self.rounds = rounds self.final_round = final_round self.total_bank = 0 self.maximum_bank = 0 self.current_round = 0 # For the API def get_current_round(self) : return self.rounds[self.current_round] if self.current_round < len(self.rounds) else self.final_round def get_current_round_name(self) : return self.get_current_round().get_name() def get_players(self) : return self.players def get_current_bank(self, color=True) : if self.current_round >= len(self.rounds) : return 0 return dollars(self.get_current_round().round_bank, color=color) def get_total_bank(self, color=True) : return dollars(self.total_bank, color=False) def get_bank_links(self) : if self.current_round >= len(self.rounds) : return [] return [dollars(link, color=False) for link in self.get_current_round().bank_links] def get_current_link(self) : if self.current_round >= len(self.rounds) : return 0 return self.get_current_round().current_link def get_current_player_num(self) : if self.current_round >= len(self.rounds) : return 0 return self.get_current_round().get_current_player_num() def get_time_remaining(self) : if self.current_round >= len(self.rounds) : return 0 time = self.get_current_round().seconds_remaining time = time if time > 0 else 0 return format_time(time) # For the CLI def run(self) : first_player = self.players[0] for i in range(len(self.rounds)) : self.current_round = i if len(self.players) == 2 : print("Not running all rounds since we don't have enough players") print() break if i != 0 : print('As the strongest link last round,', green(first_player), 'will go first') print() round = self.rounds[i] self.try_to_start_round(i+1, round, first_player) first_player = self.handle_finished_round_results(round) if self.current_round < 2 : print('Not voting off weakest link since we are on round', self.current_round+1) weakest_link = None elif self.current_round == 2 : print(red('Time to vote off multiple players!')) weakest_link = self.vote_for_weakest_link() weakest_link = self.vote_for_weakest_link() weakest_link = self.vote_for_weakest_link() else : weakest_link = self.vote_for_weakest_link() if first_player == weakest_link : first_player = round.get_strongest_link(first_player) self.current_round = len(self.rounds) while len(self.players) > 2 : weakest_link = self.vote_for_weakest_link() if first_player == weakest_link : first_player = round.get_strongest_link(first_player) first_player = wait_for_choice('As the strongest link last round, ' + green(first_player) + ' chooses who will go first in the ' +\ red('final round') + '. Choices: ' + ", ".join(self.players) + ' > ', self.players) self.try_to_start_round('Final', self.final_round, first_player) print(green(str(self.final_round.winner) + ' is the winner! They win ' + dollars(self.total_bank))) print() print("Game over, goodnight!") # Helpers def try_to_start_round(self, round_num, round, first_player) : wait_for_choice("Enter 'S' to start round " + str(round_num) + " > ", 'S') print('Starting round', round_num) print() round.start_round(self.players, first_player) print('Finished round', round_num) print() def handle_finished_round_results(self, round) : # TODO determine next first player and total bank self.total_bank += round.round_bank self.maximum_bank += round.bank_links[-1] strongest_link = round.get_strongest_link() print('That round the team banked', dollars(round.round_bank)) adjective = get_random_mean_word() print('Out of a possible', dollars(self.maximum_bank), "the team banked", 'an' if starts_with_vowel(adjective) else 'a', adjective, dollars(self.total_bank)) print('Statistically, the', green('strongest link'), 'was', green(strongest_link)) print('Statistically, the', red('weakest link'), 'was', red(round.get_weakest_link())) print() return strongest_link def vote_for_weakest_link(self) : weakest_link = wait_for_choice("Who is the weakest link? Choices: " + ', '.join(self.players) + " > ", self.players) self.players.remove(weakest_link) return weakest_link
40.559055
165
0.628422
eaf3731855b74e20b8dcfe4969f2876ca251cfc8
4,281
py
Python
wagtail/wagtailtenant/apps.py
caputomarcos/wagtail
a75b47ccb6f5a2a4023aa7400792fc1278dfa107
[ "BSD-3-Clause" ]
1
2019-11-06T10:51:42.000Z
2019-11-06T10:51:42.000Z
wagtail/wagtailtenant/apps.py
caputomarcos/wagtail
a75b47ccb6f5a2a4023aa7400792fc1278dfa107
[ "BSD-3-Clause" ]
null
null
null
wagtail/wagtailtenant/apps.py
caputomarcos/wagtail
a75b47ccb6f5a2a4023aa7400792fc1278dfa107
[ "BSD-3-Clause" ]
2
2017-08-08T01:39:02.000Z
2018-05-06T06:16:10.000Z
from django.apps import AppConfig, apps from django.conf import settings from django.core.checks import Critical, Error, Warning, register from django.core.files.storage import default_storage from wagtail.wagtailtenant.storage import TenantStorageMixin from wagtail.wagtailtenant.utils import get_public_schema_name, get_tenant_model class WagtailTenantConfig(AppConfig): name = 'wagtail.wagtailtenant' label = 'wagtailtenant' verbose_name = "Wagtail tenant" @register('config') def best_practice(app_configs, **kwargs): """ Test for configuration recommendations. These are best practices, they avoid hard to find bugs and unexpected behaviour. """ if app_configs is None: app_configs = apps.get_app_configs() # Take the app_configs and turn them into *old style* application names. # This is what we expect in the SHARED_APPS and TENANT_APPS settings. INSTALLED_APPS = [ config.name for config in app_configs ] if not hasattr(settings, 'TENANT_APPS'): return [Critical('TENANT_APPS setting not set')] if not hasattr(settings, 'TENANT_MODEL'): return [Critical('TENANT_MODEL setting not set')] if not hasattr(settings, 'SHARED_APPS'): return [Critical('SHARED_APPS setting not set')] if 'wagtail.wagtailtenant.routers.TenantSyncRouter' not in settings.DATABASE_ROUTERS: return [ Critical("DATABASE_ROUTERS setting must contain " "'wagtail.wagtailtenant.routers.TenantSyncRouter'.") ] errors = [] django_index = next(i for i, s in enumerate(INSTALLED_APPS) if s.startswith('django.')) if INSTALLED_APPS.index('wagtail.wagtailtenant') > django_index: errors.append( Warning("You should put 'wagtail.wagtailtenant' before any django " "core applications in INSTALLED_APPS.", obj="django.conf.settings", hint="This is necessary to overwrite built-in django " "management commands with their schema-aware " "implementations.", id="wagtailtenant.W001")) if not settings.TENANT_APPS: errors.append( Error("TENANT_APPS is empty.", hint="Maybe you don't need this app?", id="wagtailtenant.E001")) if hasattr(settings, 'PG_EXTRA_SEARCH_PATHS'): if get_public_schema_name() in settings.PG_EXTRA_SEARCH_PATHS: errors.append(Critical( "%s can not be included on PG_EXTRA_SEARCH_PATHS." % get_public_schema_name())) # make sure no tenant schema is in settings.PG_EXTRA_SEARCH_PATHS invalid_schemas = set(settings.PG_EXTRA_SEARCH_PATHS).intersection( get_tenant_model().objects.all().values_list('schema_name', flat=True)) if invalid_schemas: errors.append(Critical( "Do not include tenant schemas (%s) on PG_EXTRA_SEARCH_PATHS." % ", ".join(sorted(invalid_schemas)))) if not settings.SHARED_APPS: errors.append( Warning("SHARED_APPS is empty.", id="wagtailtenant.W002")) if not set(settings.TENANT_APPS).issubset(INSTALLED_APPS): delta = set(settings.TENANT_APPS).difference(INSTALLED_APPS) errors.append( Error("You have TENANT_APPS that are not in INSTALLED_APPS", hint=[a for a in settings.TENANT_APPS if a in delta], id="wagtailtenant.E002")) if not set(settings.SHARED_APPS).issubset(INSTALLED_APPS): delta = set(settings.SHARED_APPS).difference(INSTALLED_APPS) errors.append( Error("You have SHARED_APPS that are not in INSTALLED_APPS", hint=[a for a in settings.SHARED_APPS if a in delta], id="wagtailtenant.E003")) if not isinstance(default_storage, TenantStorageMixin): errors.append(Warning( "Your default storage engine is not tenant aware.", hint="Set settings.DEFAULT_FILE_STORAGE to " "'wagtail.wagtailtenant.storage.TenantFileSystemStorage'", id="wagtailtenant.W003" )) return errors
40.386792
91
0.650549
2c504756fcafb211e322a233d188d322542d6cd7
284
py
Python
resource/NeverLAN-CTF_2019/Binary4/ex.py
JisoonPark/writeup
f0a7457e9693271e0ca69f123e4bd417b3043261
[ "MIT" ]
1
2019-05-14T02:18:11.000Z
2019-05-14T02:18:11.000Z
resource/NeverLAN-CTF_2019/Binary4/ex.py
JisoonPark/writeup
f0a7457e9693271e0ca69f123e4bd417b3043261
[ "MIT" ]
null
null
null
resource/NeverLAN-CTF_2019/Binary4/ex.py
JisoonPark/writeup
f0a7457e9693271e0ca69f123e4bd417b3043261
[ "MIT" ]
1
2021-09-24T13:25:35.000Z
2021-09-24T13:25:35.000Z
#:100F4000982F9F7D9554933028F40C5F1F4FFFE33B data = open("embedded_db.hex", "r").read().split('\r\n')[:-2] totLen = 0 f = open("bin", "w") for l in data: assert(l[0] == ":") dataLen = int(l[1: 3], 16) totLen += dataLen f.write(l[9: 9 + dataLen * 2].decode("hex")) print totLen
20.285714
61
0.619718
67155c7485c1bd874750212c654c80ec028250a8
583
py
Python
thirdparty/netmiko/paloauto/gspackage/paloauto.py
gwaysoft/python
a74a0b553dfca9606083a41ab6d03801e67d2467
[ "Apache-2.0" ]
null
null
null
thirdparty/netmiko/paloauto/gspackage/paloauto.py
gwaysoft/python
a74a0b553dfca9606083a41ab6d03801e67d2467
[ "Apache-2.0" ]
null
null
null
thirdparty/netmiko/paloauto/gspackage/paloauto.py
gwaysoft/python
a74a0b553dfca9606083a41ab6d03801e67d2467
[ "Apache-2.0" ]
null
null
null
from netmiko.paloalto import PaloAltoPanosSSH connectConfig = { 'device_type': 'paloalto_panos', 'host': '172.16.8.81', 'username': 'python-api', 'password': 'python' } def executeCommand(command): net_connect = PaloAltoPanosSSH(**connectConfig) return net_connect.send_command(command) def executeConfigCommand(config_commands): print(config_commands) if len(config_commands) == 0: return config_commands.append("commit") net_connect = PaloAltoPanosSSH(**connectConfig) return net_connect.send_config_set(config_commands)
22.423077
55
0.722127
aa3a91f508714fa8f36ed3eac3f57ba6fb6da77d
62
py
Python
spotcli/utils/__init__.py
SupersonicAds/spot-cli
d3b53307e1389614320c9938d7e0dbb2222b203a
[ "MIT" ]
2
2021-07-05T12:54:07.000Z
2022-03-11T10:19:50.000Z
spotcli/utils/__init__.py
SupersonicAds/spot-cli
d3b53307e1389614320c9938d7e0dbb2222b203a
[ "MIT" ]
14
2020-11-04T20:52:45.000Z
2021-01-27T08:45:07.000Z
spotcli/utils/__init__.py
SupersonicAds/spot-cli
d3b53307e1389614320c9938d7e0dbb2222b203a
[ "MIT" ]
1
2020-12-03T12:14:16.000Z
2020-12-03T12:14:16.000Z
from spotcli.utils.filter import filter __all__ = ["filter"]
15.5
39
0.758065
527ce5831f8dab5b6c19d205a2eb6284945c0ee7
9,449
py
Python
src/RMLtoShacl.py
RMLio/RML2SHACL
72f8ae0cfd91eb4a3ddd02b9e5a3fad1e174460a
[ "MIT" ]
2
2021-12-07T03:31:21.000Z
2021-12-21T03:31:13.000Z
src/RMLtoShacl.py
RMLio/RML2SHACL
72f8ae0cfd91eb4a3ddd02b9e5a3fad1e174460a
[ "MIT" ]
null
null
null
src/RMLtoShacl.py
RMLio/RML2SHACL
72f8ae0cfd91eb4a3ddd02b9e5a3fad1e174460a
[ "MIT" ]
1
2021-12-07T03:31:25.000Z
2021-12-07T03:31:25.000Z
import argparse import csv import logging import os from pathlib import Path import string import time import timeit from typing import Any, List import rdflib from rdflib import RDF from requests.exceptions import HTTPError from .RML import * from .SHACL import * class RMLtoSHACL: def __init__(self): self.RML = RML() self.shaclNS = rdflib.Namespace('http://www.w3.org/ns/shacl#') self.rdfSyntax = rdflib.Namespace( 'http://www.w3.org/1999/02/22-rdf-syntax-ns#') self.SHACL = SHACL() def helpAddTriples(self, shacl_graph: Graph, sub: Identifier, pred: Identifier, obj_arr: Optional[List[Identifier]]) -> None: """ This method takes an array of object terms (obj_arr) associated with the given predicate (pred) and add them to the subject node (sub) as triples. """ if obj_arr is None: return for el in obj_arr: shacl_graph.add( (sub, pred, el)) def transformIRI(self, node: Identifier, shacl_graph: Graph) -> None: shacl_graph.add((node, self.shaclNS.nodeKind, self.shaclNS.IRI)) def transformBlankNode(self, node: Identifier, shacl_graph: Graph) -> None: shacl_graph.add((node, self.shaclNS.nodeKind, self.shaclNS.BlankNode)) def transformList(self, node: Identifier, arr: List[Any], shacl_graph: Graph) -> None: """ Transform the given array objects into RDF compliant array list. The transformation is done in the manner of a functional list. """ current_node = node next_node = rdflib.BNode() size = len(arr) for i, obj in enumerate(arr): shacl_graph.add( (current_node, self.rdfSyntax.first, rdflib.Literal(obj))) if i != size - 1: shacl_graph.add( (current_node, self.rdfSyntax.rest, next_node)) else: shacl_graph.add( (current_node, self.rdfSyntax.rest, self.rdfSyntax.nil)) current_node = next_node next_node = rdflib.BNode() def transformLiteral(self, node: Identifier, termMap: TermMap, shacl_graph: Graph) -> None: shacl_graph.add((node, self.shaclNS.nodeKind, self.shaclNS.Literal)) # Transform rr:language # it can be a list of languages language_iri = self.RML.LANGUAGE if language_iri in termMap.po_dict: languages_arr = termMap.po_dict[language_iri] for language in languages_arr: languageBlank = rdflib.BNode() shacl_graph.add( (node, self.shaclNS.languageIn, languageBlank)) self.transformList(languageBlank, language.split('-'), shacl_graph) # Transform rr:datatype datatype_iri = self.RML.DATATYPE if datatype_iri in termMap.po_dict: self.helpAddTriples(shacl_graph, node, self.shaclNS.datatype, termMap.po_dict[datatype_iri]) def serializeTemplate(self, templateString: Identifier) -> Identifier: # we want to replace this {word} into a wildcard ='.' # and '*' means zero or unlimited amount of characters parts = templateString.split('{') parts2 = [] for part in parts: if '}' in part: parts2 = parts2 + part.split('}') else: parts2 = parts2 + [part] string = '' tel = 1 for part in parts2: if tel % 2 != 0: string = string + part else: string = string + '.*' # wildcard = '.' + '*' tel += 1 resultaat = rdflib.Literal(string) return resultaat def createNodeShape(self, triples_map: TriplesMap, shacl_graph: Graph) -> Identifier: # start of SHACL shape subjectShape = rdflib.URIRef(triples_map.iri + "/shape") shacl_graph.add((subjectShape, rdflib.RDF.type, self.shaclNS.NodeShape)) self.transformSubjectMap(subjectShape, triples_map.sm, shacl_graph) return subjectShape def transformSubjectMap(self, node: Identifier, subjectmap: SubjectMap, shacl_graph: Graph) -> None: """ Transform the given SubjectMap into the corresponding SHACL shapes and store them in the self.SHACL's rdflib graph. """ po_dict = subjectmap.po_dict # Start of class and targetNode shacl mapping self.helpAddTriples(shacl_graph, node, self.shaclNS.targetNode, po_dict.get(self.RML.CONSTANT, [])) self.helpAddTriples(shacl_graph, node, self.shaclNS.targetClass, po_dict.get(self.RML.CLASS, [])) self.helpAddTriples(shacl_graph, node, self.shaclNS["class"], po_dict.get(self.RML.CLASS, [])) # End of class and targetNode shacl mapping # Shacl shl:pattern parsing template_strings = [self.serializeTemplate(x) for x in po_dict.get(self.RML.TEMPLATE, [])] self.helpAddTriples(shacl_graph, node, self.shaclNS.pattern, template_strings) # Uri or Literal parsing self.transformIRIorLiteralorBlankNode(po_dict, node, subjectmap, shacl_graph) def transformIRIorLiteralorBlankNode(self, po_dict: Dict[URIRef, List[Any]], node: Identifier, termMap: TermMap, shacl_graph: Graph) -> None: # Uri or Literal parsing type_arr = po_dict.get(self.RML.TERMTYPE) if type_arr: term_type = type_arr[0] if term_type == self.RML.r2rmlNS.Literal: self.transformLiteral(node, termMap, shacl_graph) elif term_type == self.RML.r2rmlNS.IRI: self.transformIRI(node, shacl_graph) elif term_type == self.RML.r2rmlNS.BlankNode: self.transformBlankNode(node, shacl_graph) else: print(f"WARNING: {term_type} is not a valid term type for {self}, defaulting to IRI") self.transformIRI(node, shacl_graph) # default behaviour if no termType is defined elif po_dict.get(self.RML.REFERENCE): self.transformLiteral(node, termMap, shacl_graph) else: self.transformIRI(node, shacl_graph) def transformPOM(self, node: Identifier, pom: PredicateObjectMap, shacl_graph: Graph) -> None: pm = pom.PM om = pom.OM # Find the subject's class in # Check if it defines the class of the subject node (node) and # return immediately since the pom is parsed pred_constant_objs = pm.po_dict.get(self.RML.CONSTANT) if pred_constant_objs and pred_constant_objs[0] == rdflib.RDF.type: om_constant_objs = om.po_dict.get(self.RML.CONSTANT) self.helpAddTriples(shacl_graph, node, self.shaclNS.targetClass, om_constant_objs) return # Fill in the sh:property node of the given subject (@param node) sh_property = rdflib.BNode() shacl_graph.add( (node, self.shaclNS.property, sh_property)) self.transformIRIorLiteralorBlankNode(om.po_dict, sh_property, om, shacl_graph) ptm = om.po_dict.get(self.RML.r2rmlNS.parentTriplesMap) if ptm: ptm = ptm[0] + "/shape" shacl_graph.add( (sh_property, self.shaclNS.node, ptm)) self.helpAddTriples(shacl_graph, sh_property, self.shaclNS.path, pm.po_dict.get(self.RML.CONSTANT)) def writeShapeToFile(self, file_name, shape_dir="shapes/"): for prefix, ns in self.RML.graph.namespaces(): self.SHACL.graph.bind(prefix, ns) # @base is used for <> in the RML ttl graph self.SHACL.graph.bind('sh', 'http://www.w3.org/ns/shacl#', False) self.SHACL.graph.bind( 'rdfs', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#') parent_folder = os.path.dirname(file_name) Path(f"%s%s" % (shape_dir, parent_folder)).mkdir( parents=True, exist_ok=True) filenNameShape = "%s%s" % (shape_dir, file_name) self.SHACL.graph.serialize(destination=filenNameShape, format='turtle') return filenNameShape def evaluate_file(self, rml_mapping_file): self.RML.parseFile(rml_mapping_file) for _, triples_map in self.RML.tm_model_dict.items(): subject_shape_node = self.createNodeShape(triples_map, self.SHACL.graph) for pom in triples_map.poms: self.transformPOM(subject_shape_node, pom, self.SHACL.graph) outputfileName = f"{rml_mapping_file}-output-shape.ttl" self.writeShapeToFile(outputfileName) validation_shape_graph = rdflib.Graph() validation_shape_graph.parse("shacl-shacl.ttl", format="turtle") self.SHACL.Validation(validation_shape_graph, self.SHACL.graph) logging.debug("*" * 100) logging.debug("RESULTS") logging.debug("=" * 100) logging.debug(self.SHACL.results_text) return None
37.645418
104
0.601333
433235306f53ad7f89b5769f65c969cf3858fd2a
1,482
py
Python
libraries/botbuilder-testing/setup.py
suhyangbae1234/botbuilder-python
01fcbe9e4d60bfe1bd314e4481834e453284ca41
[ "MIT" ]
1
2020-02-19T15:50:10.000Z
2020-02-19T15:50:10.000Z
libraries/botbuilder-testing/setup.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
null
null
null
libraries/botbuilder-testing/setup.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os from setuptools import setup REQUIRES = [ "botbuilder-schema>=4.7.1", "botbuilder-core>=4.7.1", "botbuilder-dialogs>=4.7.1", ] TESTS_REQUIRES = ["aiounittest==1.3.0"] root = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(root, "botbuilder", "testing", "about.py")) as f: package_info = {} info = f.read() exec(info, package_info) with open(os.path.join(root, "README.rst"), encoding="utf-8") as f: long_description = f.read() setup( name=package_info["__title__"], version=package_info["__version__"], url=package_info["__uri__"], author=package_info["__author__"], description=package_info["__description__"], keywords="botbuilder-testing bots ai testing botframework botbuilder", long_description=long_description, long_description_content_type="text/x-rst", license=package_info["__license__"], packages=["botbuilder.testing"], install_requires=REQUIRES + TESTS_REQUIRES, tests_require=TESTS_REQUIRES, include_package_data=True, classifiers=[ "Programming Language :: Python :: 3.7", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 5 - Production/Stable", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
30.875
74
0.68556
b717fbac590d4840b6a79d910a698babc007a817
5,175
py
Python
bot.py
otobraz/LLKEventsBot
68e1ba3e5d64abe6e28e478a0631900d3962100f
[ "MIT" ]
null
null
null
bot.py
otobraz/LLKEventsBot
68e1ba3e5d64abe6e28e478a0631900d3962100f
[ "MIT" ]
null
null
null
bot.py
otobraz/LLKEventsBot
68e1ba3e5d64abe6e28e478a0631900d3962100f
[ "MIT" ]
null
null
null
# bot.py import os import sqlite3 import json import datetime from dotenv import load_dotenv import discord from discord.ext import commands from discord.ext.commands import Bot from cogs.utils import helper as h intents = discord.Intents.default() intents.members = True load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') GUILD = os.getenv('DISCORD_GUILD') PREFIX = os.getenv('BOT_PREFIX') dir_path = os.path.dirname(os.path.realpath(__file__)) extensions = ['cogs.general', 'cogs.events', 'cogs.moderation'] class LLKEventsBot(Bot): def __init__(self): super().__init__( description="Bot created by Oto#2494", command_prefix=PREFIX, owner_id=271992863175344130, intents=intents, help_command=None ) print('\nLoading embed data...') try: with open(f'{dir_path}/db/embed_id.json', 'r+') as f: try: self.embed_data = json.load(f) if self.embed_data: self.embed_id = self.embed_data['eventEmbed']['id'] except: self.embed_data = {"eventEmbed":{ "id": None }} self.embed_id = self.embed_data['eventEmbed']['id'] json.dump(self.embed_data, f, indent=4) except: with open(f'{dir_path}/db/embed_id.json', 'w+'): self.embed_data = {"eventEmbed":{ "id": self.bot.embed_id }} self.embed_id = self.embed_data['eventEmbed']['id'] json.dump(self.embed_data, f, indent=4) print('Loading permissions data...') try: with open('db/roles.json', 'r+') as f: try: self.perms_data = json.load(f) if self.perms_data: self.perms = self.perms_data['permissions'] except Exception as e: print(f'{e}') except: with open(f'{dir_path}/db/roles.json', 'w+') as f: self.perms_data = {"permissions":{ "admins": [], "mods": [], "hosts": [] }} self.perms = self.perms_data['permissions'] json.dump(self.perms_data, f, indent=4) print('Loading roles DB...') self.conn = sqlite3.connect(f'{dir_path}/db/events.db') self.cursor = self.conn.cursor() self.cursor.execute(""" CREATE TABLE IF NOT EXISTS events ( event_id STRING NOT NULL, user_id STRING NOT NULL, description STRING NOT NULL, target STRING NOT NULL ) """) # print('Loading embed data...') # try: # with open('db/embed_id.json', 'r+') as f: # try: # self.embed_data = json.load(f) # if self.embed_data: # self.embed_id = self.embed_data['eventEmbed']['id'] # except Exception as e: # print(f'{e}') # except: # open('db/embed_id.json', 'w+') async def on_ready(self): if not os.path.exists('db'): os.makedirs('db') if not os.path.exists('logs'): os.makedirs('logs') print('\nLoading extensions...') for extension in extensions: print(f'Loading {extension}') bot.load_extension(extension) await bot.change_presence(activity=discord.Game(f'{PREFIX}help')) print(f'\nLogged in as: {bot.user.name} - {bot.user.id}\nVersion: {discord.__version__}\n') # async def on_message(self, msg): # if msg.author.bot: # return async def on_command_error(self, ctx, error): if isinstance(error, commands.BotMissingPermissions): await ctx.send(f'I have no permission to do that') return elif isinstance(error, commands.CheckFailure): await ctx.send(f'You have no permission to use this command') return elif isinstance(error, commands.MissingRequiredArgument): await ctx.send(f'You forgot to inform the following parameter: {error.param}') else: d = datetime.datetime.now() with open(f'logs/{d.year}-{d.month}-{d.day}.log', 'a', encoding='utf8') as f: # f.write(f'''-------------\n{d.hour}:{d.minute}:{d.second}.{d.microsecond}\n{type(error)}\n{error}\n-------------\n\n'''') f.write( '-------------\n' f'{d.hour}:{d.minute}:{d.second}.{d.microsecond}\n' f'Command: {ctx.message.content}\n' f'Author: {ctx.author}\n' f'Exception: {type(error)}\n' f'Description: {error}\n' '-------------\n\n' ) await ctx.send(f'It seems something went wrong:```{error}```') return bot = LLKEventsBot() bot.run(TOKEN)
34.966216
139
0.508599
2d0ab933a7fc72ef74e24c1902a98429ff1fbca4
1,242
py
Python
setup.py
elyashiv3839/openapi-schema-generator
2bb05f88529c9d1f269896d254222ae2bf871b3c
[ "MIT" ]
null
null
null
setup.py
elyashiv3839/openapi-schema-generator
2bb05f88529c9d1f269896d254222ae2bf871b3c
[ "MIT" ]
null
null
null
setup.py
elyashiv3839/openapi-schema-generator
2bb05f88529c9d1f269896d254222ae2bf871b3c
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="openapi-schema-generator", version="1.0.1", author="Elyashiv Danino", author_email="elyashiv3839@gmail.com", description="Resolve schema and deploy to single schema", long_description="file: README.md", long_description_content_type="text/markdown", url="https://github.com/elyashiv3839/openapi-schema-generator.git", download_url="https://github.com/elyashiv3839/openapi-schema-generator/archive/refs/tags/1.0.1.tar.gz", project_urls={"Bug Tracker": "https://github.com/elyashiv3839/openapi-schema-generator.git/issues"}, classifier=[ "Programming Language :: Python :: 3", "Licence :: MIT", "Operating System :: Multi-platform", ], packages=setuptools.find_packages(), python_requires=">=3.6", install_requires=["attrs==21.2.0", "importlib-metadata==4.8.1", "isodate==0.6.0", "jsonschema==3.2.0", "openapi-schema-validator==0.1.5", "pyrsistent==0.18.0", "PyYAML==5.4.1", "six==1.16.0", "typing-extensions==3.10.0.2", "zipp==3.5.0", "compare_objects==1.0.0"] )
42.827586
110
0.641707
672c4ff1e07643a695463be4a592c33e40789ea1
6,669
py
Python
autocertkit/storage_tests.py
TalonsLee/auto-cert-kit
5f18de4136be8994d3ee26cf9b53a95cb8d608bc
[ "BSD-2-Clause" ]
null
null
null
autocertkit/storage_tests.py
TalonsLee/auto-cert-kit
5f18de4136be8994d3ee26cf9b53a95cb8d608bc
[ "BSD-2-Clause" ]
null
null
null
autocertkit/storage_tests.py
TalonsLee/auto-cert-kit
5f18de4136be8994d3ee26cf9b53a95cb8d608bc
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) Citrix Systems Inc. # All rights reserved. # # Redistribution and use in source and binary forms, # with or without modification, are permitted provided # that the following conditions are met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """A module for storage specific test cases""" import testbase from utils import * class PerfTestClass(testbase.LocalStorageTestClass): """A somewhat generic test class for local storage performance tests that could be expanded to include additional plugin-based tasks""" # Deine the test timeout in seconds and the number of test VMs timeout = 3600 vm_count = 3 # SSH command variables username = 'root' password = DEFAULT_PASSWORD # Class variables test = '' cmd_str = '' def _setup_vms(self, session): """Creates vm_count VMs on the master host's local SR""" host_ref = get_pool_master(session) net_ref = get_management_network(session) if 'device_config' in self.config and 'sr' in self.config['device_config']: sr_ref = self.config['device_config']['sr'] else: log.debug("Local SR info is not available from device tag.") log.debug("Choosing first local SR.") sr_ref = get_local_sr(session, host_ref) log.debug("%s is chosen for local storage test." % sr_ref) return deploy_common_droid_vms_on_hosts(session, [host_ref], [net_ref], self.vm_count, {net_ref: self.get_static_manager( net_ref)}, sr_ref)[host_ref] def _call_plugin(self, session, vm_ref_list, call): """Util function to call ACK plugin method""" res = [] for vm_ref in vm_ref_list: res.append(call_ack_plugin(self.session, call, {'vm_ref': vm_ref, 'mip': get_context_vm_mip(vm_ref), 'username': self.username, 'password': self.password})) return res def _create_test_threads(self, session, vm_ref_list): """Spawns a new test thread using the cmd_strin a timeout function over SSH to every VM in vm_ref_list""" threads = [] for vm_ref in vm_ref_list: threads.append(create_test_thread(lambda vm=vm_ref: TimeoutFunction(ssh_command(get_context_vm_mip(vm), self.username, self.password, self.cmd_str), self.timeout, '%s test timed out %d' % (self.test, self.timeout)))) return threads def _run_test(self, session): """Run test function""" # setup vms vm_ref_list = self._setup_vms(session) # Make certain the VMs are available for vm_ref in vm_ref_list: check_vm_ping_response(session, vm_ref, get_context_vm_mip(vm_ref)) # deploy test rpms self._call_plugin(session, vm_ref_list, 'deploy_' + self.test) # create, start test threads, wait until complete log.debug("About to run %s test..." % self.test) threads = self._create_test_threads(session, vm_ref_list) # Wait for the threads to finish running or timeout start = time.time() while check_test_thread_status(threads): time.sleep(1) if should_timeout(start, self.timeout): raise Exception("%s test timed out %s" % (self.test, self.timeout)) # retrieve the logs log.debug("%s test is complete, retrieving logs" % self.test) res = self._call_plugin(session, vm_ref_list, 'retrieve_' + self.test + '_logs') return {'info': 'Test ran successfully'} def test_iozone(self, session): """Perform the IOZone Local Storage benchmark""" self.test = 'iozone' self.cmd_str = '/usr/bin/iozone -r 4k -r 128k -r 1m -s 128m >> /root/localhost.log' return self._run_test(session) def test_bonnie(self, session): """Perform the Bonnie++ local storage benchmark""" config = {'scratch_dir': '/root/bonnie', 'file_size': '2000', 'count': '1', 'user': 'citrix', 'log': '2>&1 | tee /root/localhost.log'} self.test = 'bonnie' self.cmd_str = 'bonnie++ -d %s -s %s -x %s -u %s %s' % (config['scratch_dir'], config[ 'file_size'], config[ 'count'], config['user'], config['log']) return self._run_test(session)
44.165563
147
0.540561
3f82ca6f98282a9974ea5cbab7dae1b91cb7ca33
4,213
py
Python
deepcell/datasets/phase.py
esgomezm/deepcell-tf
6693c9ed7e76793561e6c2281437acaf3e4fa441
[ "Apache-2.0" ]
null
null
null
deepcell/datasets/phase.py
esgomezm/deepcell-tf
6693c9ed7e76793561e6c2281437acaf3e4fa441
[ "Apache-2.0" ]
null
null
null
deepcell/datasets/phase.py
esgomezm/deepcell-tf
6693c9ed7e76793561e6c2281437acaf3e4fa441
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2019 The Van Valen Lab at the California Institute of # Technology (Caltech), with support from the Paul Allen Family Foundation, # Google, & National Institutes of Health (NIH) under Grant U24CA224309-01. # All rights reserved. # # Licensed under a modified Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.github.com/vanvalenlab/deepcell-tf/LICENSE # # The Work provided may be used for non-commercial academic purposes only. # For any other use of the Work, including commercial use, please contact: # vanvalenlab@gmail.com # # Neither the name of Caltech nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Phase datasets including the raw images and ground truth segmentation masks""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from deepcell.datasets import Dataset # pylint: disable=line-too-long methods = { 'Cell culture': 'For our cytoplasmic data, NIH3t3 and Raw263.7 cell lines were ' 'cultured in DMEM media supplemented with 10% FBS and 1x ' 'penicillin-streptomycin antibiotic. Cells were incubated at 37C in a ' 'humidified 5% CO2 atmosphere. When 70-80% confluent, cells were ' 'passaged and seeded onto fibronectin coated glass bottom 96-well ' 'plates at 10,000-20,000 cells/well. The seeded cells were then ' 'incubated for 1-2 hours to allow for cell adhesion to the bottom of ' 'the well plate before imaging.', 'Imaging': 'Cells were imaged on a Nikon Eclipse Ti-2 fluorescence microscope at ' '20x and 40x for NIH3t3 and Raw293.6 cells respectively. The well ' 'plate was placed in a Nikon incubated stage with an Oko labs ' 'environment controller set to 37C and 5% CO2. Each data set was ' 'generated using the Nikon jobs function to collect a z-stack of phase ' 'images.' } #: all_cells = Dataset( path='20190813_all_phase_512_contrast_adjusted_curated.npz', url='https://deepcell-data.s3-us-west-1.amazonaws.com/cytoplasm/brightfield/20190813_all_phase_512_contrast_adjusted_curated.npz', file_hash='20d6a99216e7c966182e79eef4eaf937', metadata={'methods': methods} ) #: nih_3t3 = Dataset( path='nih_3t3-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/nih_3t3-phase_fixed.npz', file_hash='d1a3b5a548300ef8389cee8021f53957', metadata={'methods': methods} ) #: a549 = Dataset( path='A549-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/A549-phase_fixed.npz', file_hash='d1820a7057079a774a9def8ae4634e74', metadata={'methods': methods} ) #: cho = Dataset( path='CHO-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/CHO-phase_fixed.npz', file_hash='0d059506a9500e155d0fbfee64c43e21', metadata={'methods': methods} ) #: hela_s3 = Dataset( path='HeLa_S3-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/HeLa_S3-phase_fixed.npz', file_hash='8ee318c32e41c9ff0fccf40bcd9d993d', metadata={'methods': methods} ) #: hela = Dataset( path='HeLa-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/HeLa-phase_fixed.npz', file_hash='f16c22201d63d1ab856f066811b3dcfa', metadata={'methods': methods} ) #: pc3 = Dataset( path='PC3-phase.npz', url='https://deepcell-data.s3.amazonaws.com/cytoplasm/brightfield/PC3-phase_fixed.npz', file_hash='1be17d9f6dbb009eed542f56f8282edd', metadata={'methods': methods} )
37.616071
134
0.721339
6aa8e32560d43404acb9adaa765f15e4f43db709
14,423
py
Python
addons/hr_attendance/models/hr_employee.py
shdkej/odoo_gvm
15b797e60a329f5d2fddb817a2b30a926b5873fa
[ "MIT" ]
null
null
null
addons/hr_attendance/models/hr_employee.py
shdkej/odoo_gvm
15b797e60a329f5d2fddb817a2b30a926b5873fa
[ "MIT" ]
3
2020-12-06T11:10:32.000Z
2020-12-06T11:16:48.000Z
addons/hr_attendance/models/hr_employee.py
shdkej/odoo_gvm
15b797e60a329f5d2fddb817a2b30a926b5873fa
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from random import choice from string import digits from dateutil.relativedelta import relativedelta from odoo.exceptions import UserError from odoo import models, fields, api, exceptions, _, SUPERUSER_ID from datetime import datetime,timedelta from odoo.http import content_disposition, dispatch_rpc, request import requests import logging import sys _logger = logging.getLogger(__name__) class HrEmployee(models.Model): _inherit = "hr.employee" _description = "Employee" def _default_random_pin(self): return ("".join(choice(digits) for i in range(4))) def _default_random_barcode(self): barcode = None while not barcode or self.env['hr.employee'].search([('barcode', '=', barcode)]): barcode = "".join(choice(digits) for i in range(8)) return barcode barcode = fields.Char(string="Badge ID", help="ID used for employee identification.", default=_default_random_barcode, copy=False) pin = fields.Char(string="PIN", default=_default_random_pin, help="PIN used to Check In/Out in Kiosk Mode (if enabled in Configuration).", copy=False) attendance_ids = fields.One2many('hr.attendance', 'employee_id', help='list of attendances for the employee') last_attendance_id = fields.Many2one('hr.attendance', compute='_compute_last_attendance_id') attendance_state = fields.Selection(string="Attendance", selection=[('checked_out', "Checked out"), ('checked_in', "Checked in")],defalut ='cheked_out') outing_state = fields.Selection(string="Attendance", selection=[('outing_out', "outing out"), ('outing_in', "outing in")]) manual_attendance = fields.Boolean(string='Manual Attendance', compute='_compute_manual_attendance', inverse='_inverse_manual_attendance', help='The employee will have access to the "My Attendances" menu to check in and out from his session') check_today_attendance = fields.Boolean() location = fields.Char() _sql_constraints = [('barcode_uniq', 'unique (barcode)', "The Badge ID must be unique, this one is already assigned to another employee.")] @api.multi def _compute_manual_attendance(self): for employee in self: employee.manual_attendance = employee.user_id.has_group('hr.group_hr_attendance') if employee.user_id else False @api.multi def _inverse_manual_attendance(self): manual_attendance_group = self.env.ref('hr.group_hr_attendance') for employee in self: if employee.user_id: if employee.manual_attendance: manual_attendance_group.users = [(4, employee.user_id.id, 0)] else: manual_attendance_group.users = [(3, employee.user_id.id, 0)] @api.depends('attendance_ids') def _compute_last_attendance_id(self): for employee in self: employee.last_attendance_id = employee.attendance_ids and employee.attendance_ids[0] or False @api.depends('last_attendance_id.check_in', 'last_attendance_id.check_out', 'last_attendance_id') def _compute_attendance_state(self): for employee in self: #employee.attendance_state = employee.last_attendance_id and not employee.last_attendance_id.check_out and 'checked_in' or 'checked_out' employee.attendance_state = employee.last_attendance_id and not employee.last_attendance_id.check_out and 'checked_in' or 'checked_out' @api.constrains('pin') def _verify_pin(self): for employee in self: if employee.pin and not employee.pin.isdigit(): raise exceptions.ValidationError(_("The PIN must be a sequence of digits.")) @api.model def attendance_scan(self, barcode): """ Receive a barcode scanned from the Kiosk Mode and change the attendances of corresponding employee. Returns either an action or a warning. """ employee = self.search([('barcode', '=', barcode)], limit=1) return employee and employee.attendance_action('hr_attendance.hr_attendance_action_kiosk_mode') or \ {'warning': _('No employee corresponding to barcode %(barcode)s') % {'barcode': barcode}} @api.multi def attendance_manual(self, next_action, address, entered_pin=None): self.ensure_one() if not (entered_pin is None) or self.env['res.users'].browse(SUPERUSER_ID).has_group('hr_attendance.group_hr_attendance_use_pin') and (self.user_id and self.user_id.id != self._uid or not self.user_id): if entered_pin != self.pin: return {'warning': _('Wrong PIN')} return self.attendance_action(next_action, address) @api.multi def attendance_action(self, next_action, location): """ Changes the attendance of the employee. Returns an action to the check in/out message, next_action defines which menu the check in/out message should return to. ("My Attendances" or "Kiosk Mode") """ self.ensure_one() action_message = self.env.ref('hr_attendance.hr_attendance_action_greeting_message').read()[0] action_message['previous_attendance_change_date'] = self.last_attendance_id and (self.last_attendance_id.check_out or self.last_attendance_id.check_in) or False action_message['employee_name'] = self.name action_message['next_action'] = next_action if self.user_id: modified_attendance = self.sudo(self.user_id.id).attendance_action_change(location) else: modified_attendance = self.sudo().attendance_action_change() action_message['attendance'] = modified_attendance.read()[0] return {'action': action_message} def write_outing_list(ids,destination,reason,date_to,date_from,location): hr_employee = request.env['hr.employee'].search([('user_id','=',request.env.uid)]) #외근 if hr_employee.outing_state == 'outing_out': date_to = str(date_to) date_form = str(date_from) date = date_to + " ~ " + date_from if reason == '': raise UserError (_('구체적인사유를 입력하세요')) elif destination == '': raise UserError (_('외근 목적지를 입력하세요')) else: hr_attendance = request.env['hr.attendance'] hr_attendance.create({'employee_id':hr_employee.id, 'reason':reason, 'destination':destination, 'outing_start':datetime.today(), 'date':date, }) hr_employee.write({'outing_state':'outing_in', 'attendance_state':'checked_out', }) #복귀/퇴근 else: _logger.warning('test') attendance = request.env['hr.attendance'].search([('employee_id', '=', hr_employee.id), ('outing_end', '=', False), ('outing_start', '!=', False)], limit=1) attendance.write({'outing_end':datetime.today(), 'outing_place':location }) hr_employee.write({'outing_state':'outing_out', 'attendance_state':'checked_out', }) def _Check_out_time(self): """ 퇴근을 하지 않았을경우, 다음날 00시 00분 00초에 자동으로 퇴근이 된다.""" #현재시간 check_out_time = datetime.now() #00시 00분 00초 #한국과의 시차는9 시간 out_time = check_out_time.replace(hour=15, minute=0,second=0) #체크아웃 정보 가져오기 hr_attendance = self.env['hr.attendance'].search([('check_out', '=', False), ('check_in', '!=', False)]) attendance = request.env['hr.attendance'].search([('outing_end', '=', False), ('outing_start', '!=', False)]) hr_employee = request.env['hr.employee'].search([('user_id','=',request.env.uid)]) #출장을 작성 for att in hr_attendance: att.write({ 'check_out':out_time, }) #외근을 작성 for att in attendance: att.write({ 'outing_end':out_time, }) hr_employee.write({'outing_state':'outing_out', }) @api.multi def attendance_action_change(self, location): """ Check In/Check Out action Check In: create a new attendance record Check Out: modify check_out field of appropriate attendance record """ if len(self) > 1: raise exceptions.UserError(_('Cannot perform check in or check out on multiple employees.')) #현재시간 present_date = datetime.now() #해당 유저의 처음 출근 시간 파악 hr_attendance = self.env['hr.attendance'].search([('employee_id', '=', self.id)], limit=1) check_in_date = hr_attendance.check_in #출퇴근 기준 시간의 초기화 check_in_cut_line = "" check_out_cut_line = "" find_1 = "China" find_2 = "Vietnam" location = "6X4Q+22 Trần Xá, Yên Phong, Bắc Ninh, Vietnam" China = location.find(find_1) Vietnam = location.find(find_2) if China != -1: present_date = present_date - timedelta(hours=1) _logger.warning("date%s"%present_date) elif Vietnam != -1: present_date = present_date - timedelta(hours=2) _logger.warning("date2%s"%present_date) #해당 유저의 처음 출근시간이 존재할 경우 if check_in_date != False: #해당 유저의 첫 체크인시간을 년,월,일,시간,분,초로 변경 check_in_last_time = datetime.strptime(check_in_date, '%Y-%m-%d %H:%M:%S') #체크인 기준시간(다음날 00시 00분 00초) #15시간을 더해준 이유: 서버의 시간은 미국시간이므로 한국과 9시간의 차이가 발생함 check_in_cut_line = check_in_last_time check_in_cut_line = check_in_cut_line.replace(hour=15, minute=0,second=0) #체크아웃 기준시간(1시간뒤) check_out_cut_line = check_in_last_time + relativedelta(hours=1) #체크인상태일 경우 _logger.warning(self.attendance_state) if self.attendance_state != 'checked_in': #해당 유저의 출근시간이 존재하지 않을경우 if check_in_date != False: #출퇴근 기준시간보다 현재의 시간이 클 경우 if present_date > check_in_cut_line: #서버에 입력 vals = { 'employee_id': self.id, 'check_in': present_date, 'check_in_place': location, } self.attendance_state = 'checked_in' return self.env['hr.attendance'].create(vals) #출퇴근 기준시간보다 현재의 시간이 작을 경우 else: raise UserError(_('출근시간이 아닙니다.')) #해당 유저의 출퇴근시간이 존재하지 않을경우 else: #서버에 생성 vals = { 'employee_id': self.id, 'check_in': present_date, 'check_in_place': location, } self.attendance_state = 'checked_in' return self.env['hr.attendance'].create(vals) #체크아웃상태일 경우 else: hr_attendance = self.env['hr.attendance'] #해당 유저의 체크아웃 파악 attendance = self.env['hr.attendance'].search([('employee_id', '=', self.id), ('check_out', '=', False), ('check_in', '!=', False)], limit=1) _logger.warning(attendance) if attendance: #출퇴근 기준시간 보다 현재의 시간이 클경우 if present_date > check_out_cut_line: #서버에 생성 attendance.check_out = present_date attendance.check_out_place = location self.attendance_state = 'checked_out' #출퇴근 기준시간 보다 현쟈시간이 작을경우 else: raise UserError(_('퇴근시간이 아닙니다.')) return attendance @api.model_cr_context def _init_column(self, column_name): """ Initialize the value of the given column for existing rows. Overridden here because we need to have different default values for barcode and pin for every employee. """ if column_name not in ["barcode", "pin"]: super(HrEmployee, self)._init_column(column_name) else: default_compute = self._fields[column_name].default query = 'SELECT id FROM "%s" WHERE "%s" is NULL' % ( self._table, column_name) self.env.cr.execute(query) employee_ids = self.env.cr.fetchall() for employee_id in employee_ids: default_value = default_compute(self) query = 'UPDATE "%s" SET "%s"=%%s WHERE id = %s' % ( self._table, column_name, employee_id[0]) self.env.cr.execute(query, (default_value,)) def google_geocode(self, location): url = 'https://maps.googleapis.com/maps/api/geocode/json?key=AIzaSyB99SRIPe6V5HCvbhf9rzaEbi8E2jP_1Zg&latlng=' + str(location[0]) + ',' + str(location[1]) r = requests.get(url).json() address = r['plus_code']['compound_code'] global_address = address return address def naver_geocode(self, location): reload(sys) sys.setdefaultencoding('utf-8') url = 'https://naveropenapi.apigw.ntruss.com/map-reversegeocode/v2/gc?coords=' + str(location[1]) + ',' + str(location[0]) + '&output=json&orders=legalcode,roadaddr' headers = { 'X-NCP-APIGW-API-KEY-ID':'39295gvivi', 'X-NCP-APIGW-API-KEY':'vmc51DB35kxwYIW8BivXpZwMhJTKMKzYm9VUcHoP' } r = requests.get(url, headers=headers).json() address = r full_address = '' address = r status = address['status']['name'] if status == 'ok': name4 = str(address['results'][0]['region']['area4']['name']) name3 = str(address['results'][0]['region']['area3']['name']) name2 = str(address['results'][0]['region']['area2']['name']) name1 = str(address['results'][0]['region']['area1']['name']) name0 = str(address['results'][0]['region']['area0']['name']) roadaddr0, roadaddr1 = '','' if len(address['results']) > 1: roadaddr0 = str(address['results'][1]['land']['name']) roadaddr1 = str(address['results'][1]['land']['number1']) full_address = name1 + name2 + name3 + name4 + roadaddr0 + roadaddr1 else: full_address = self.google_geocode(location) return full_address def geolocation(self): url = 'https://www.googleapis.com/geolocation/v1/geolocate?key=AIzaSyB99SRIPe6V5HCvbhf9rzaEbi8E2jP_1Zg' r = requests.post(url).json() lat = str(r['location']['lat']) lng = str(r['location']['lng']) latlng = [lat,lng] return latlng
38.156085
210
0.622201
57de09fce0c12327766afd21495f5c6bbe34c79d
1,635
py
Python
setup.py
vladsaveliev/ovirage
fb5582101c7698f30145f1a810228df012055eab
[ "MIT" ]
5
2019-03-05T03:40:00.000Z
2020-04-08T05:22:45.000Z
setup.py
vladsaveliev/ovirage
fb5582101c7698f30145f1a810228df012055eab
[ "MIT" ]
2
2020-11-23T09:57:31.000Z
2020-11-23T10:56:48.000Z
setup.py
vladsaveliev/ovirage
fb5582101c7698f30145f1a810228df012055eab
[ "MIT" ]
1
2018-09-20T21:10:01.000Z
2018-09-20T21:10:01.000Z
#!/usr/bin/env python import os from os.path import join from setuptools import setup pkg = 'oviraptor' try: import versionpy except ImportError: res = input('Installation requires versionpy. Install it now? [Y/n]') if res.lower().startswith('n'): raise os.system('pip install versionpy') import versionpy version = versionpy.get_version(pkg) package_data = { pkg: versionpy.find_package_files('', pkg) } setup( name=pkg, script_name=pkg, version=version, author='Vlad Savelyev', author_email='vladislav.sav@gmail.com', description='Oncoviral integration in cancer whole genome data', long_description=open('README.md').read(), long_description_content_type="text/markdown", url=f'https://github.com/umccr/{pkg}', license='GPLv3', packages=[pkg], package_data=package_data, include_package_data=True, zip_safe=False, install_requires=[ 'versionpy', 'click', 'ngs_utils', 'numpy' # for lumpy extractSplitReads_BwaMem ], scripts=[ join('scripts', 'oviraptor'), ], keywords='bioinformatics', classifiers=[ 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Natural Language :: English', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics', ], )
27.25
75
0.640367
b40aa563ee7a201dc7b81d2741d0f1549c957cfc
13,022
py
Python
test/unit/test_contracts_graph_compiled.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
test/unit/test_contracts_graph_compiled.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
test/unit/test_contracts_graph_compiled.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
import pickle from dbt.contracts.graph.compiled import ( CompiledModelNode, InjectedCTE, CompiledSchemaTestNode ) from dbt.contracts.graph.parsed import ( DependsOn, NodeConfig, TestConfig, TestMetadata ) from dbt.node_types import NodeType from .utils import ContractTestCase class TestCompiledModelNode(ContractTestCase): ContractType = CompiledModelNode def _minimum(self): return { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Model), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from wherever', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'database': 'test_db', 'schema': 'test_schema', 'alias': 'bar', 'compiled': False, } def test_basic_uncompiled(self): node_dict = { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Model), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from wherever', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'refs': [], 'sources': [], 'depends_on': {'macros': [], 'nodes': []}, 'database': 'test_db', 'deferred': False, 'description': '', 'schema': 'test_schema', 'alias': 'bar', 'tags': [], 'config': { 'column_types': {}, 'enabled': True, 'materialized': 'view', 'persist_docs': {}, 'post-hook': [], 'pre-hook': [], 'quoting': {}, 'tags': [], 'vars': {}, }, 'docs': {'show': True}, 'columns': {}, 'meta': {}, 'compiled': False, 'extra_ctes': [], 'extra_ctes_injected': False, } node = self.ContractType( package_name='test', root_path='/root/', path='/root/x/path.sql', original_file_path='/root/path.sql', raw_sql='select * from wherever', name='foo', resource_type=NodeType.Model, unique_id='model.test.foo', fqn=['test', 'models', 'foo'], refs=[], sources=[], depends_on=DependsOn(), deferred=False, description='', database='test_db', schema='test_schema', alias='bar', tags=[], config=NodeConfig(), meta={}, compiled=False, extra_ctes=[], extra_ctes_injected=False, ) self.assert_symmetric(node, node_dict) self.assertFalse(node.empty) self.assertTrue(node.is_refable) self.assertFalse(node.is_ephemeral) self.assertEqual(node.local_vars(), {}) minimum = self._minimum() self.assert_from_dict(node, minimum) pickle.loads(pickle.dumps(node)) def test_basic_compiled(self): node_dict = { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Model), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from {{ ref("other") }}', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'refs': [], 'sources': [], 'depends_on': {'macros': [], 'nodes': []}, 'database': 'test_db', 'deferred': True, 'description': '', 'schema': 'test_schema', 'alias': 'bar', 'tags': [], 'config': { 'column_types': {}, 'enabled': True, 'materialized': 'view', 'persist_docs': {}, 'post-hook': [], 'pre-hook': [], 'quoting': {}, 'tags': [], 'vars': {}, }, 'docs': {'show': True}, 'columns': {}, 'meta': {}, 'compiled': True, 'compiled_sql': 'select * from whatever', 'extra_ctes': [{'id': 'whatever', 'sql': 'select * from other'}], 'extra_ctes_injected': True, 'injected_sql': 'with whatever as (select * from other) select * from whatever', } node = self.ContractType( package_name='test', root_path='/root/', path='/root/x/path.sql', original_file_path='/root/path.sql', raw_sql='select * from {{ ref("other") }}', name='foo', resource_type=NodeType.Model, unique_id='model.test.foo', fqn=['test', 'models', 'foo'], refs=[], sources=[], depends_on=DependsOn(), deferred=True, description='', database='test_db', schema='test_schema', alias='bar', tags=[], config=NodeConfig(), meta={}, compiled=True, compiled_sql='select * from whatever', extra_ctes=[InjectedCTE('whatever', 'select * from other')], extra_ctes_injected=True, injected_sql='with whatever as (select * from other) select * from whatever', ) self.assert_symmetric(node, node_dict) self.assertFalse(node.empty) self.assertTrue(node.is_refable) self.assertFalse(node.is_ephemeral) self.assertEqual(node.local_vars(), {}) def test_invalid_extra_fields(self): bad_extra = self._minimum() bad_extra['notvalid'] = 'nope' self.assert_fails_validation(bad_extra) def test_invalid_bad_type(self): bad_type = self._minimum() bad_type['resource_type'] = str(NodeType.Macro) self.assert_fails_validation(bad_type) class TestCompiledSchemaTestNode(ContractTestCase): ContractType = CompiledSchemaTestNode def _minimum(self): return { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Test), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from wherever', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'database': 'test_db', 'schema': 'test_schema', 'alias': 'bar', 'test_metadata': { 'name': 'foo', 'kwargs': {}, }, 'compiled': False, } def test_basic_uncompiled(self): node_dict = { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Test), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from wherever', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'refs': [], 'sources': [], 'depends_on': {'macros': [], 'nodes': []}, 'database': 'test_db', 'description': '', 'schema': 'test_schema', 'alias': 'bar', 'tags': [], 'config': { 'column_types': {}, 'enabled': True, 'materialized': 'view', 'persist_docs': {}, 'post-hook': [], 'pre-hook': [], 'quoting': {}, 'tags': [], 'vars': {}, 'severity': 'ERROR', }, 'deferred': False, 'docs': {'show': True}, 'columns': {}, 'meta': {}, 'compiled': False, 'extra_ctes': [], 'extra_ctes_injected': False, 'test_metadata': { 'name': 'foo', 'kwargs': {}, }, } node = self.ContractType( package_name='test', root_path='/root/', path='/root/x/path.sql', original_file_path='/root/path.sql', raw_sql='select * from wherever', name='foo', resource_type=NodeType.Test, unique_id='model.test.foo', fqn=['test', 'models', 'foo'], refs=[], sources=[], deferred=False, depends_on=DependsOn(), description='', database='test_db', schema='test_schema', alias='bar', tags=[], config=TestConfig(), meta={}, compiled=False, extra_ctes=[], extra_ctes_injected=False, test_metadata=TestMetadata(namespace=None, name='foo', kwargs={}), ) self.assert_symmetric(node, node_dict) self.assertFalse(node.empty) self.assertFalse(node.is_refable) self.assertFalse(node.is_ephemeral) self.assertEqual(node.local_vars(), {}) minimum = self._minimum() self.assert_from_dict(node, minimum) pickle.loads(pickle.dumps(node)) def test_basic_compiled(self): node_dict = { 'name': 'foo', 'root_path': '/root/', 'resource_type': str(NodeType.Test), 'path': '/root/x/path.sql', 'original_file_path': '/root/path.sql', 'package_name': 'test', 'raw_sql': 'select * from {{ ref("other") }}', 'unique_id': 'model.test.foo', 'fqn': ['test', 'models', 'foo'], 'refs': [], 'sources': [], 'depends_on': {'macros': [], 'nodes': []}, 'deferred': False, 'database': 'test_db', 'description': '', 'schema': 'test_schema', 'alias': 'bar', 'tags': [], 'config': { 'column_types': {}, 'enabled': True, 'materialized': 'view', 'persist_docs': {}, 'post-hook': [], 'pre-hook': [], 'quoting': {}, 'tags': [], 'vars': {}, 'severity': 'warn', }, 'docs': {'show': True}, 'columns': {}, 'meta': {}, 'compiled': True, 'compiled_sql': 'select * from whatever', 'extra_ctes': [{'id': 'whatever', 'sql': 'select * from other'}], 'extra_ctes_injected': True, 'injected_sql': 'with whatever as (select * from other) select * from whatever', 'column_name': 'id', 'test_metadata': { 'name': 'foo', 'kwargs': {}, }, } node = self.ContractType( package_name='test', root_path='/root/', path='/root/x/path.sql', original_file_path='/root/path.sql', raw_sql='select * from {{ ref("other") }}', name='foo', resource_type=NodeType.Test, unique_id='model.test.foo', fqn=['test', 'models', 'foo'], refs=[], sources=[], depends_on=DependsOn(), deferred=False, description='', database='test_db', schema='test_schema', alias='bar', tags=[], config=TestConfig(severity='warn'), meta={}, compiled=True, compiled_sql='select * from whatever', extra_ctes=[InjectedCTE('whatever', 'select * from other')], extra_ctes_injected=True, injected_sql='with whatever as (select * from other) select * from whatever', column_name='id', test_metadata=TestMetadata(namespace=None, name='foo', kwargs={}), ) self.assert_symmetric(node, node_dict) self.assertFalse(node.empty) self.assertFalse(node.is_refable) self.assertFalse(node.is_ephemeral) self.assertEqual(node.local_vars(), {}) def test_invalid_extra_fields(self): bad_extra = self._minimum() bad_extra['extra'] = 'extra value' self.assert_fails_validation(bad_extra) def test_invalid_resource_type(self): bad_type = self._minimum() bad_type['resource_type'] = str(NodeType.Model) self.assert_fails_validation(bad_type)
33.823377
92
0.465597
d4cb6558eb6a5a755f25991d1dfdb3d5500bb0ad
2,890
py
Python
punctuation/parser/gutenberg_parser.py
alex-darmon/punctuation-stylometry
8e7c60b6175f6f0ef44f77836bb9f4f43241e205
[ "MIT" ]
1
2022-01-30T13:15:10.000Z
2022-01-30T13:15:10.000Z
punctuation/parser/gutenberg_parser.py
alex-darmon/punctuation-stylometry
8e7c60b6175f6f0ef44f77836bb9f4f43241e205
[ "MIT" ]
null
null
null
punctuation/parser/gutenberg_parser.py
alex-darmon/punctuation-stylometry
8e7c60b6175f6f0ef44f77836bb9f4f43241e205
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 10 15:46:46 2019 @author: alexandradarmon """ import logging import numpy as np from gutenberg.acquire import load_etext from gutenberg.cleanup import strip_headers from punctuation.utils.utils import chunks from punctuation.parser.punctuation_parser import get_textinfo import spacy from multiprocessing import Pool, cpu_count #from threading import Thread import timeout_decorator spacy.load('en_core_web_sm') logger = logging.getLogger(__name__) #@logging_function(logger) def ranks_of_freq(freq): return np.array(freq).argsort()[::-1].tolist() #@logging_function(logger) @timeout_decorator.timeout(40, use_signals=False) def get_gutenberg_text(book_id): """ This function gets the text corresponding to the book_id from Gutenberg database. """ try: x = strip_headers(load_etext(int(book_id), prefer_ascii=False)).strip() except: x = None return x def get_gutenberg_texts(book_ids): """ This function gets the texts corresponding to the list of book_ids from Gutenberg database. """ list_texts = [] for book_id in book_ids: list_texts.append(get_gutenberg_text(book_id)) return list_texts def get_gutenberg_texts_tokens(list_book_ids): """ This function gets the texts corresponding to the list of book_ids from Gutenberg database. """ list_texts = [] list_tokens = [] for book_id in list_book_ids: try: text = get_gutenberg_text(book_id) except: text = None print('Timed out. Could not find: {}'.format(book_id)) list_texts.append(text) tokens = get_textinfo(text) list_tokens.append(tokens) return list_texts, list_tokens #@logging_function(logger) def get_gutenberg_texts_pool(list_book_ids): total_threads = cpu_count() chunk_size = int(len(list_book_ids) / total_threads) + 1 sets_to_be_computed = chunks(list_book_ids, chunk_size) pool = Pool(total_threads) results = pool.map(get_gutenberg_texts, sets_to_be_computed) # results = Thread(get_gutenberg_texts, sets_to_be_computed) l = [] for l_res in results: l = l+l_res pool.close() pool.join() return l def get_gutenberg_text_tokens_pool(list_book_ids, save_text=False): total_threads = cpu_count() chunk_size = int(len(list_book_ids) / total_threads) + 1 sets_to_be_computed = chunks(list_book_ids, chunk_size) pool = Pool(total_threads) results = pool.map(get_gutenberg_texts_tokens, sets_to_be_computed) # results = Thread(get_gutenberg_texts_tokens, sets_to_be_computed) l_tokens = [] l_text = [] for l_res in results: if save_text: l_text = l_text+l_res[0] l_tokens = l_tokens+l_res[1] pool.close() pool.join() return l_text, l_tokens
29.191919
79
0.707612
716785574bf590d161bb51e60b2f8e160118a7b8
5,926
py
Python
question_generation/generate_0hop_question.py
FangxiangFeng/clevr-dataset-gen
80bbcadeba7ed8d0e626a3d20ef949a0bb00e4f5
[ "BSD-3-Clause" ]
null
null
null
question_generation/generate_0hop_question.py
FangxiangFeng/clevr-dataset-gen
80bbcadeba7ed8d0e626a3d20ef949a0bb00e4f5
[ "BSD-3-Clause" ]
null
null
null
question_generation/generate_0hop_question.py
FangxiangFeng/clevr-dataset-gen
80bbcadeba7ed8d0e626a3d20ef949a0bb00e4f5
[ "BSD-3-Clause" ]
null
null
null
#coding:utf-8 from __future__ import print_function import argparse, json, os, itertools, random, shutil parser = argparse.ArgumentParser() # Inputs parser.add_argument('--input_scene_1hop_dir', default='../output/test/moformat_scenes_1hop', help="") parser.add_argument('--output_scene_0hop_dir', default='../output/test/moformat_scenes_0hop', help="JSON file containing metadata about functions") parser.add_argument('--output_scene_01hop_dir', default='../output/test/moformat_scenes_01hop', help="JSON file containing metadata about functions") def update_qa(input_scene_1hop_file, output_scene_0hop_file, output_scene_01hop_file, question_template, synonyms): scene = json.load(open(input_scene_1hop_file)) # query_param_types # type: Color # name: <C> questions_1hop = scene['questions'] answers_1hop = scene['answer'] questions_0hop = [] answers_0hop = [] for obj in scene['objects']: # generate questions for each object for template in question_template: param_type_to_name = {p['type']:p['name'] for p in template['params']} # random choose question: question_text question_text = random.choice(template['text']) # determine the query_param_types query_param_names = set([template['constraints'][0]['params'][0]]) # determine the color|shape|: replaceable_param_types # for param_type,name in param_type_to_name_list: replaceable_param_names = set(['<Z>', '<C>', '<M>', '<S>']) - query_param_names replaceable_param_names = list(replaceable_param_names) random.shuffle(replaceable_param_names) replaceable_param_names = set(replaceable_param_names[:2]) for param_type in ['Size', 'Color', 'Material', 'Shape']: name = param_type_to_name[param_type] # print (replaceable_param_names) if name in replaceable_param_names: question_text = question_text.replace(name, obj[param_type.lower()]) else: if name == '<S>': question_text = question_text.replace(name, 'thing') else: question_text = question_text.replace(name, '') if name in query_param_names: answer = obj[param_type.lower()] question_text = ' '.join(question_text.split()) for synk in synonyms.keys(): synv = random.choice(synonyms[synk]) question_text = question_text.replace(synk, synv) questions_0hop.append(question_text) answers_0hop.append(answer) scene['questions'] = questions_0hop scene['answer'] = answers_0hop with open(output_scene_0hop_file, 'w') as fw: json.dump(scene, fw, indent=2) scene['questions'] = questions_0hop + questions_1hop scene['answer'] = answers_0hop + answers_1hop with open(output_scene_01hop_file, 'w') as fw: json.dump(scene, fw, indent=2) def update_qa4(scene_file, output_scene_file, question_template, synonyms): scene = json.load(open(scene_file)) # query_param_types # type: Color # name: <C> questions = scene['questions'] answers = scene['answer'] for obj in scene['objects']: # generate questions for each object template = random.choice(question_template) param_type_to_name = {p['type']:p['name'] for p in template['params']} # random choose question: question_text question_text = random.choice(template['text']) # determine the query_param_types query_param_names = set([template['constraints'][0]['params'][0]]) # determine the color|shape|: replaceable_param_types # for param_type,name in param_type_to_name_list: replaceable_param_names = set(['<Z>', '<C>', '<M>', '<S>']) - query_param_names for param_type in ['Size', 'Color', 'Material', 'Shape']: name = param_type_to_name[param_type] # print (replaceable_param_names) if name in replaceable_param_names: question_text = question_text.replace(name, obj[param_type.lower()]) else: if name == '<S>': question_text = question_text.replace(name, 'thing') else: question_text = question_text.replace(name, '') if name in query_param_names: answer = obj[param_type.lower()] question_text = ' '.join(question_text.split()) for synk in synonyms.keys(): synv = random.choice(synonyms[synk]) question_text = question_text.replace(synk, synv) questions.append(question_text) answers.append(answer) scene['questions'] = questions scene['answer'] = answers with open(output_scene_file, 'w') as fw: json.dump(scene, fw, indent=2) if __name__ == '__main__': args = parser.parse_args() synonyms_json = 'synonyms.json' with open(synonyms_json, 'r') as f: synonyms = json.load(f) question_template_file = 'zerohop_templates/zero_hop.json' with open(question_template_file, 'r') as f: question_template = json.load(f) scene_dir = args.input_scene_1hop_dir os.system('mkdir -p ' + args.output_scene_0hop_dir) os.system('mkdir -p ' + args.output_scene_01hop_dir) for filename in os.listdir(scene_dir): input_scene_1hop_file = os.path.join(scene_dir, filename) output_scene_0hop_file = os.path.join(args.output_scene_0hop_dir, filename) output_scene_01hop_file = os.path.join(args.output_scene_01hop_dir, filename) update_qa(input_scene_1hop_file, output_scene_0hop_file, output_scene_01hop_file, question_template, synonyms)
44.556391
122
0.640061
af230336d6d2a0ac487ca190b1b0f4b8fb642496
2,554
bzl
Python
proto/repositories.bzl
yesudeep/rules_rust
cdca6ed5eb9609cbc3f6b5d8f760e46e3b0596a2
[ "Apache-2.0" ]
349
2016-03-15T20:38:00.000Z
2022-03-28T07:03:02.000Z
proto/repositories.bzl
yesudeep/rules_rust
cdca6ed5eb9609cbc3f6b5d8f760e46e3b0596a2
[ "Apache-2.0" ]
872
2016-03-18T06:40:26.000Z
2022-03-31T16:04:04.000Z
proto/repositories.bzl
yesudeep/rules_rust
cdca6ed5eb9609cbc3f6b5d8f760e46e3b0596a2
[ "Apache-2.0" ]
231
2016-03-16T11:34:47.000Z
2022-03-25T23:01:35.000Z
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # buildifier: disable=module-docstring load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") load("//proto/raze:crates.bzl", "rules_rust_proto_fetch_remote_crates") # buildifier: disable=unnamed-macro def rust_proto_repositories(register_default_toolchain = True): """Declare dependencies needed for proto compilation. Args: register_default_toolchain (bool, optional): If True, the default [rust_proto_toolchain](#rust_proto_toolchain) (`@rules_rust//proto:default-proto-toolchain`) is registered. This toolchain requires a set of dependencies that were generated using [cargo raze](https://github.com/google/cargo-raze). These will also be loaded. """ maybe( http_archive, name = "rules_proto", sha256 = "66bfdf8782796239d3875d37e7de19b1d94301e8972b3cbd2446b332429b4df1", strip_prefix = "rules_proto-4.0.0", urls = [ "https://mirror.bazel.build/github.com/bazelbuild/rules_proto/archive/refs/tags/4.0.0.tar.gz", "https://github.com/bazelbuild/rules_proto/archive/refs/tags/4.0.0.tar.gz", ], ) maybe( http_archive, name = "com_google_protobuf", sha256 = "758249b537abba2f21ebc2d02555bf080917f0f2f88f4cbe2903e0e28c4187ed", strip_prefix = "protobuf-3.10.0", urls = [ "https://mirror.bazel.build/github.com/protocolbuffers/protobuf/archive/v3.10.0.tar.gz", "https://github.com/protocolbuffers/protobuf/archive/v3.10.0.tar.gz", ], patch_args = ["-p1"], patches = [ Label("//proto/patches:com_google_protobuf-v3.10.0-bzl_visibility.patch"), ], ) rules_rust_proto_fetch_remote_crates() # Register toolchains if register_default_toolchain: native.register_toolchains(str(Label("//proto:default-proto-toolchain")))
42.566667
119
0.701644
c76291a947fcd801ad51eb32ddb47272c630d9d8
1,006
py
Python
app/serializers.py
xyx-smu/MIS_server
066a3df061bdf7aa5d771530666eff3eb9824d1b
[ "Apache-2.0" ]
null
null
null
app/serializers.py
xyx-smu/MIS_server
066a3df061bdf7aa5d771530666eff3eb9824d1b
[ "Apache-2.0" ]
null
null
null
app/serializers.py
xyx-smu/MIS_server
066a3df061bdf7aa5d771530666eff3eb9824d1b
[ "Apache-2.0" ]
null
null
null
from jwt import decode from rest_framework import serializers from rest_framework_simplejwt.serializers import TokenObtainPairSerializer, TokenVerifySerializer from MIS_server import settings from app.models import EmailVerifyRecord class MyTokenObtainPairSerializer(TokenObtainPairSerializer): def validate(self, attrs): data = super().validate(attrs) refresh = self.get_token(self.user) data['refresh'] = str(refresh) data['access'] = str(refresh.access_token) data['username'] = self.user.username data['real_name'] = self.user.real_name data['user_id'] = self.user.id return data class MyTokenVerifySerializer(TokenVerifySerializer): def validate(self, attrs): """ attrs['token']: 是请求的token settings.SECRET_KEY: setting.py默认的key 除非在配置文件中修改了 algorithms: 加密的方法 """ decoded_data = decode(attrs['token'], settings.SECRET_KEY, algorithms=["HS256"]) return decoded_data
28.742857
97
0.699801
e94670d0b417b0487a68259cd9ce1910cf1e5680
3,018
py
Python
azure-mgmt-monitor/azure/mgmt/monitor/models/threshold_rule_condition.py
azuresdkci1x/azure-sdk-for-python-1722
e08fa6606543ce0f35b93133dbb78490f8e6bcc9
[ "MIT" ]
1
2018-11-09T06:16:34.000Z
2018-11-09T06:16:34.000Z
azure-mgmt-monitor/azure/mgmt/monitor/models/threshold_rule_condition.py
azuresdkci1x/azure-sdk-for-python-1722
e08fa6606543ce0f35b93133dbb78490f8e6bcc9
[ "MIT" ]
null
null
null
azure-mgmt-monitor/azure/mgmt/monitor/models/threshold_rule_condition.py
azuresdkci1x/azure-sdk-for-python-1722
e08fa6606543ce0f35b93133dbb78490f8e6bcc9
[ "MIT" ]
1
2018-11-09T06:17:41.000Z
2018-11-09T06:17:41.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .rule_condition import RuleCondition class ThresholdRuleCondition(RuleCondition): """A rule condition based on a metric crossing a threshold. :param odatatype: Polymorphic Discriminator :type odatatype: str :param data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. :type data_source: :class:`RuleDataSource <azure.mgmt.monitor.models.RuleDataSource>` :param operator: the operator used to compare the data and the threshold. Possible values include: 'GreaterThan', 'GreaterThanOrEqual', 'LessThan', 'LessThanOrEqual' :type operator: str or :class:`ConditionOperator <azure.mgmt.monitor.models.ConditionOperator>` :param threshold: the threshold value that activates the alert. :type threshold: float :param window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. :type window_size: timedelta :param time_aggregation: the time aggregation operator. How the data that are collected should be combined over time. The default value is the PrimaryAggregationType of the Metric. Possible values include: 'Average', 'Minimum', 'Maximum', 'Total', 'Last' :type time_aggregation: str or :class:`TimeAggregationOperator <azure.mgmt.monitor.models.TimeAggregationOperator>` """ _validation = { 'odatatype': {'required': True}, 'operator': {'required': True}, 'threshold': {'required': True}, } _attribute_map = { 'odatatype': {'key': 'odata\\.type', 'type': 'str'}, 'data_source': {'key': 'dataSource', 'type': 'RuleDataSource'}, 'operator': {'key': 'operator', 'type': 'ConditionOperator'}, 'threshold': {'key': 'threshold', 'type': 'float'}, 'window_size': {'key': 'windowSize', 'type': 'duration'}, 'time_aggregation': {'key': 'timeAggregation', 'type': 'TimeAggregationOperator'}, } def __init__(self, operator, threshold, data_source=None, window_size=None, time_aggregation=None): super(ThresholdRuleCondition, self).__init__() self.data_source = data_source self.operator = operator self.threshold = threshold self.window_size = window_size self.time_aggregation = time_aggregation self.odatatype = 'Microsoft.Azure.Management.Insights.Models.ThresholdRuleCondition'
45.727273
103
0.666335
7f88ceba7742d59b66cc9aa02206b7f9ccf8a5f4
8,047
py
Python
custom_layers.py
Arsey/Progressive-Growing-of-GANs
dccbd3b14887a311241f5dc6c1a9d55d56aeed7a
[ "MIT" ]
2
2018-10-31T12:32:14.000Z
2021-03-15T09:11:38.000Z
custom_layers.py
Arsey/Progressive-Growing-of-GANs
dccbd3b14887a311241f5dc6c1a9d55d56aeed7a
[ "MIT" ]
null
null
null
custom_layers.py
Arsey/Progressive-Growing-of-GANs
dccbd3b14887a311241f5dc6c1a9d55d56aeed7a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.nn.init import kaiming_normal, calculate_gain from PIL import Image import numpy as np import copy __author__ = 'Rahul Bhalley' class ConcatTable(nn.Module): '''Concatination of two layers into vector ''' def __init__(self, layer1, layer2): super(ConcatTable, self).__init__() self.layer1 = layer1 self.layer2 = layer2 def forward(self, x): return [self.layer1(x), self.layer2(x)] class Flatten(nn.Module): '''Flattens the convolution layer ''' def __init__(self): super(Flatten, self).__init__() def forward(self, x): return x.view(x.size(0), -1) class FadeInLayer(nn.Module): '''The layer fades in to the network with `alpha` value slowing entering in to existence ''' def __init__(self, config): super(FadeInLayer, self).__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) # input `x` to `forward()` is output from `ConcatTable()` def forward(self, x): # `x[0]` is `prev_block` output faded out of existence with 1.0 - `alpha` # `x[1]` is `next_block` output faded in to existence with `alpha` # This is becasue `alpha` increases linearly # Both `x[0]` and `x[1]` outputs 3-dim tensor (last block is `to_rgb_block`) # So `add()` can work effectively and produce one weighted output return torch.add(x[0].mul(1.0 - self.alpha), x[1].mul(self.alpha)) # outputs one value class MinibatchSTDConcatLayer(nn.Module): ''' ''' def __init__(self, averaging='all'): super(MinibatchSTDConcatLayer, self).__init__() self.averaging = averaging.lower() if 'group' in self.averaging: self.n = int(self.averaging[5:]) else: assert self.averaging in ['all', 'flat', 'spatial', 'none', 'gpool'], 'Invalid averaging mode'%self.averaging self.adjusted_std = lambda x, **kwargs: torch.sqrt(torch.mean((x - torch.mean(x, **kwargs)) ** 2, **kwargs) + 1e-8) def forward(self, x): shape = list(x.size()) target_shape = copy.deepcopy(shape) vals = self.adjusted_std(x, dim=0, keepdim=True) if self.averaging == 'all': target_shape[1] = 1 vals = torch.mean(vals, dim=1, keepdim=True) elif self.averaging == 'spatial': if len(shape) == 4: vals = mean(vals, axis=[2,3], keepdim=True) # torch.mean(torch.mean(vals, 2, keepdim=True), 3, keepdim=True) elif self.averaging == 'none': target_shape = [target_shape[0]] + [s for s in target_shape[1:]] elif self.averaging == 'gpool': if len(shape) == 4: vals = mean(x, [0,2,3], keepdim=True) # torch.mean(torch.mean(torch.mean(x, 2, keepdim=True), 3, keepdim=True), 0, keepdim=True) elif self.averaging == 'flat': target_shape[1] = 1 vals = torch.FloatTensor([self.adjusted_std(x)]) else: # self.averaging == 'group' target_shape[1] = self.n vals = vals.view(self.n, self.shape[1]/self.n, self.shape[2], self.shape[3]) vals = mean(vals, axis=0, keepdim=True).view(1, self.n, 1, 1) vals = vals.expand(*target_shape) return torch.cat([x, vals], 1) def __repr__(self): return self.__class__.__name__ + '(averaging = {})'.format(self.averaging) class PixelwiseNormLayer(nn.Module): ''' ''' def __init__(self): super(PixelwiseNormLayer, self).__init__() self.eps = 1e-8 def forward(self, x): return x / (torch.mean(x ** 2, dim=1, keepdim=True) + self.eps) ** 0.5 class EqualizedConv2d(nn.Module): '''Equalize the learning rate for convolotional layer ''' def __init__(self, c_in, c_out, k_size, stride, pad, bias=False): super(EqualizedConv2d, self).__init__() self.conv = nn.Conv2d(c_in, c_out, k_size, stride, pad, bias=False) kaiming_normal(self.conv.weight, a=calculate_gain('conv2d')) # Scaling the weights for equalized learning conv_w = self.conv.weight.data.clone() self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.scale = (torch.mean(self.conv.weight.data ** 2)) ** 0.5 self.conv.weight.data.copy_(self.conv.weight.data / self.scale) # for equalized learning rate def forward(self, x): x = self.conv(x.mul(self.scale.type(torch.cuda.FloatTensor))) return x + self.bias.view(1, -1, 1, 1).expand_as(x) class EqualizedDeconv2d(nn.Module): '''Equalize the learning rate for transpose convolotional layer ''' def __init__(self, c_in, c_out, k_size, stride, pad): super(EqualizedDeconv2d, self).__init__() self.deconv = nn.ConvTranspose2d(c_in, c_out, k_size, stride, pad, bias=False) kaiming_normal(self.deconv.weight, a=calculate_gain('conv2d')) # Scaling the weights for equalized learning deconv_w = self.deconv.weight.data.clone() self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.scale = (torch.mean(self.deconv.weight.data ** 2)) ** 0.5 self.deconv.weight.data.copy_(self.deconv.weight.data / self.scale) def forward(self, x): x = self.deconv(x.mul(self.scale)) return x + self.bias.view(1, -1, 1, 1).expand_as(x) class EqualizedLinear(nn.Module): '''Equalize the learning rate for linear layer ''' def __init__(self, c_in, c_out): super(EqualizedLinear, self).__init__() self.linear = nn.Linear(c_in, c_out, bias=False) kaiming_normal(self.linear.weight, a=calculate_gain('linear')) # Scaling the weights for equalized learning linear_w = self.linear.weight.data.clone() self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.scale = (torch.mean(self.linear.weight.data ** 2)) ** 0.5 self.linear.weight.data.copy_(self.linear.weight.data / self.scale) def forward(self, x): x = self.linear(x.mul(self.scale.type(torch.cuda.FloatTensor))) return x + self.bias.view(1, -1).expand_as(x) class GeneralizedDropout(nn.Module): ''' ''' def __init__(self, mode='mul', strength=0.4, axes=(0, 1), normalize=False): super(GeneralizedDropout, self).__init__() self.mode = mode.lower() assert self.mode in ['out', 'drop', 'prop'], 'Invalid GeneralizedDropout mode' % mode self.strength = strength self.axes = [axes] if isinstance(axes, int) else list(axes) self.normalize = normalize self.gain = None def forward(self, x, deterministic=False): if deterministic or not self.strength: return x rnd_shape = [s if axis in self.axes else 1 for axis, s in enumerate(x.size())] if self.mode == 'drop': p = 1 - self.strength rnd = np.random.binomial(1, p=0, size=rnd_shape) / p elif self.mode == 'mul': rnd = (1 + self.strength) ** np.random.normal(size=rnd_shape) else: coef = self.strength * x.size(1) ** 0.5 rnd - np.random.normal(size=rnd_shape) * coef + 1 if self.normalize: rnd = rnd / np.linalg.norm(rnd, keepdim=True) rnd = Variable(torch.from_nunpy(rnd).type(x.data.type())) if x.is_cuda: rnd = rnd.cuda() return x * rnd def __repr__(self): param_str = '(mode = {0}, strength = {1}, axes = {2}, normalize = {3})'.format(self.mode, self.strength, self.axes, self.normalize) return self.__class__.__name__ + param_str
41.266667
162
0.615136
ff12193c4fc78f685a62e48d5f9f3a15dddd930e
355
py
Python
ignition/dsl/flame/tensors/constants.py
IgnitionProject/ignition
0eeb3a7878d828bc3c06d2cb2dd781e17776a8a6
[ "BSD-2-Clause-FreeBSD" ]
7
2015-01-25T18:15:48.000Z
2022-03-09T17:39:12.000Z
ignition/dsl/flame/tensors/constants.py
IgnitionProject/ignition
0eeb3a7878d828bc3c06d2cb2dd781e17776a8a6
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
ignition/dsl/flame/tensors/constants.py
IgnitionProject/ignition
0eeb3a7878d828bc3c06d2cb2dd781e17776a8a6
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" Some useful constants """ from .tensor import Tensor ZERO = Tensor('0', 2) Zero = Tensor('0', 1) zero = Tensor('0', 0) I = Tensor('1', 2) One = Tensor('1', 1) one = Tensor('1', 0) e = Tensor('e', 1) CONSTANTS = set([ZERO, Zero, zero, I, One, one, e]) # Not constants but putting here anyways A = Tensor("A", rank=2) P_0 = Tensor("P_0", rank=2)
16.904762
51
0.597183
62ad687c06f25f9f76613fce22a14515e22d370c
553
py
Python
setup.py
OmenApps/django-fullclean
1bc720728bf75b3dbdffcf1d12ada609944043e5
[ "MIT" ]
15
2016-09-21T22:40:30.000Z
2021-12-22T21:47:08.000Z
setup.py
OmenApps/django-fullclean
1bc720728bf75b3dbdffcf1d12ada609944043e5
[ "MIT" ]
5
2020-04-02T17:09:33.000Z
2022-03-14T19:36:33.000Z
setup.py
OmenApps/django-fullclean
1bc720728bf75b3dbdffcf1d12ada609944043e5
[ "MIT" ]
3
2018-01-07T15:52:44.000Z
2021-05-30T14:53:45.000Z
from setuptools import setup setup( name='django-fullclean', packages=['django_fullclean'], version='0.0.5', description='Force django model call full_clean before save.', author='Alfred Huang', author_email='57082212@qq.com', url='https://github.com/fish-ball/django-fullclean', download_url='https://github.com/fish-ball/django-fullclean/tarball/0.0.4', keywords=['django', 'model', 'validator', 'full_clean'], classifiers=[], license='MIT License', install_requires=['django'], platforms='any', )
30.722222
79
0.678119
2c6265432a4db4ba1a783c2f1cb7d86529c856db
1,561
py
Python
mhtportal/urls.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
null
null
null
mhtportal/urls.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
5
2019-10-20T06:17:36.000Z
2021-06-10T18:13:29.000Z
mhtportal/urls.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
2
2019-05-11T17:25:25.000Z
2019-10-12T17:59:47.000Z
"""mhtportal URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import (url, include) from django.contrib import admin from rest_framework.schemas import get_schema_view from rest_framework_jwt.views import (obtain_jwt_token, refresh_jwt_token, verify_jwt_token) from base.views import MeView schema_view = get_schema_view(title='Mht Portal APIs') urlpatterns = [ url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', admin.site.urls), url(r'^me/', MeView.as_view(), name="me"), url(r'^base/', include('base.urls', namespace='base')), url(r'^events/', include('events.urls', namespace='events')), url(r'^api-info/$', schema_view, name='api-info'), url(r'^api-token-auth/', obtain_jwt_token), url(r'^api-token-refresh/', refresh_jwt_token), url(r'^api-token-verify/', verify_jwt_token), ]
40.025641
79
0.657912
cb9cb57d18db53cffd46ab34effa680c80c81039
1,083
py
Python
feature_extraction.py
vkriznar/su-seminar
d89ea9639638a8bf4ae916606cc132950be6138c
[ "MIT" ]
null
null
null
feature_extraction.py
vkriznar/su-seminar
d89ea9639638a8bf4ae916606cc132950be6138c
[ "MIT" ]
null
null
null
feature_extraction.py
vkriznar/su-seminar
d89ea9639638a8bf4ae916606cc132950be6138c
[ "MIT" ]
null
null
null
import numpy as np import cv2 def DCT_features(img_path): img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) imgcv = cv2.split(img)[0] cv2.boxFilter(imgcv, 0, (7,7), imgcv, (-1,-1), False, cv2.BORDER_DEFAULT) cv2.resize(imgcv, (32, 32), imgcv) imf = np.float32(imgcv) / 255.0 dct = cv2.dct(imf) return np.uint8(dct * 255.0) def compute_first_digits(img): dct = cv2.dct(np.float32(img) / 255.0) dct = np.abs(dct) dct[dct == 0] = 1e-10 min_val = dct.min() if min_val < 1: dct = np.power(10, -np.floor(np.log10(min_val)) + 1) * dct if not (dct >= 1.0).all(): raise ValueError("Error") digits = np.log10(dct).astype(int).astype('float32') first_digits = dct / np.power(10, digits) first_digits[(first_digits < 1.0) & (first_digits > 0.9)] = 1 first_digits = first_digits.astype(int) if not (first_digits >= 1).all() and (first_digits <= 9).all(): raise ValueError("Error") return first_digits def compute_first_digits_counts(img): first_digits = compute_first_digits(img) unq, counts = np.unique(first_digits, return_counts=True) return unq, counts
25.186047
74
0.686057
4f346caa63c596339bb2a8173257ac6fc6ce85fe
5,382
py
Python
tests/test_report.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
8
2021-05-18T02:22:03.000Z
2021-09-11T02:49:04.000Z
tests/test_report.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-04-26T04:38:35.000Z
2021-04-26T04:38:35.000Z
tests/test_report.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-11-10T02:28:47.000Z
2021-11-10T02:28:47.000Z
# Copyright 2015-2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from c7n.reports.csvout import Formatter from .common import BaseTest, load_data class TestEC2Report(BaseTest): def setUp(self): data = load_data("report.json") self.records = data["ec2"]["records"] self.headers = data["ec2"]["headers"] self.rows = data["ec2"]["rows"] self.p = self.load_policy({"name": "report-test-ec2", "resource": "ec2"}) def test_default_csv(self): self.patch(self.p.resource_manager.resource_type, 'default_report_fields', ()) formatter = Formatter(self.p.resource_manager.resource_type) self.assertEqual( formatter.to_csv([self.records['full']]), [['InstanceId-1', '', 'LaunchTime-1']]) def test_csv(self): p = self.load_policy({"name": "report-test-ec2", "resource": "ec2"}) formatter = Formatter(p.resource_manager.resource_type) tests = [ (["full"], ["full"]), (["minimal"], ["minimal"]), (["full", "minimal"], ["full", "minimal"]), (["full", "duplicate", "minimal"], ["full", "minimal"]), ] for rec_ids, row_ids in tests: recs = list(map(lambda x: self.records[x], rec_ids)) rows = list(map(lambda x: self.rows[x], row_ids)) self.assertEqual(formatter.to_csv(recs), rows) def test_custom_fields(self): # Test the ability to include custom fields. extra_fields = [ "custom_field=CustomField", "missing_field=MissingField", "custom_tag=tag:CustomTag", ] # First do a test with adding custom fields to the normal ones formatter = Formatter( self.p.resource_manager.resource_type, extra_fields=extra_fields ) recs = [self.records["full"]] rows = [self.rows["full_custom"]] self.assertEqual(formatter.to_csv(recs), rows) # Then do a test with only having custom fields formatter = Formatter( self.p.resource_manager.resource_type, extra_fields=extra_fields, include_default_fields=False, ) recs = [self.records["full"]] rows = [self.rows["minimal_custom"]] self.assertEqual(formatter.to_csv(recs), rows) class TestASGReport(BaseTest): def setUp(self): data = load_data("report.json") self.records = data["asg"]["records"] self.headers = data["asg"]["headers"] self.rows = data["asg"]["rows"] def test_csv(self): p = self.load_policy({"name": "report-test-asg", "resource": "asg"}) formatter = Formatter(p.resource_manager.resource_type) tests = [ (["full"], ["full"]), (["minimal"], ["minimal"]), (["full", "minimal"], ["full", "minimal"]), (["full", "duplicate", "minimal"], ["full", "minimal"]), ] for rec_ids, row_ids in tests: recs = list(map(lambda x: self.records[x], rec_ids)) rows = list(map(lambda x: self.rows[x], row_ids)) self.assertEqual(formatter.to_csv(recs), rows) class TestELBReport(BaseTest): def setUp(self): data = load_data("report.json") self.records = data["elb"]["records"] self.headers = data["elb"]["headers"] self.rows = data["elb"]["rows"] def test_csv(self): p = self.load_policy({"name": "report-test-elb", "resource": "elb"}) formatter = Formatter(p.resource_manager.resource_type) tests = [ (["full"], ["full"]), (["minimal"], ["minimal"]), (["full", "minimal"], ["full", "minimal"]), (["full", "duplicate", "minimal"], ["full", "minimal"]), ] for rec_ids, row_ids in tests: recs = list(map(lambda x: self.records[x], rec_ids)) rows = list(map(lambda x: self.rows[x], row_ids)) self.assertEqual(formatter.to_csv(recs), rows) class TestMultiReport(BaseTest): def setUp(self): data = load_data("report.json") self.records = data["ec2"]["records"] self.headers = data["ec2"]["headers"] self.rows = data["ec2"]["rows"] def test_csv(self): # Test the extra headers for multi-policy p = self.load_policy({"name": "report-test-ec2", "resource": "ec2"}) formatter = Formatter( p.resource_manager.resource_type, include_region=True, include_policy=True, ) tests = [(["minimal"], ["minimal_multipolicy"])] for rec_ids, row_ids in tests: recs = list(map(lambda x: self.records[x], rec_ids)) rows = list(map(lambda x: self.rows[x], row_ids)) self.assertEqual(formatter.to_csv(recs), rows)
37.636364
81
0.588629
622351bb6d145f3f72656fcdcb87e8329bdc7a92
13,464
py
Python
oauth2/test/functional/test_authorization_code.py
darkanthey/oauth2-stateless
fea3c0a3eca4bf4874f16dcabf2a1b3e9c80cfb0
[ "MIT" ]
19
2018-01-19T10:45:57.000Z
2021-12-28T11:15:46.000Z
oauth2/test/functional/test_authorization_code.py
darkanthey/oauth2-stateless
fea3c0a3eca4bf4874f16dcabf2a1b3e9c80cfb0
[ "MIT" ]
2
2019-04-07T09:55:36.000Z
2020-11-24T09:30:08.000Z
oauth2/test/functional/test_authorization_code.py
darkanthey/oauth2-stateless
fea3c0a3eca4bf4874f16dcabf2a1b3e9c80cfb0
[ "MIT" ]
null
null
null
from __future__ import absolute_import import sys from multiprocessing import Queue from wsgiref.simple_server import make_server from flask import Flask from oauth2 import Provider from oauth2.compatibility import json, parse_qs, urlencode from oauth2.grant import AuthorizationCodeGrant, RefreshToken from oauth2.test import unittest from oauth2.test.functional import NoLoggingHandler, store_factory from oauth2.tokengenerator import Uuid4TokenGenerator from oauth2.web import AuthorizationCodeGrantSiteAdapter from oauth2.web.flask import oauth_request_hook from oauth2.web.tornado import OAuth2Handler from oauth2.web.wsgi import Application from tornado.ioloop import IOLoop from tornado.web import Application as TornadoApplication from tornado.web import url from multiprocessing import Process from urllib.request import urlopen from urllib.error import HTTPError def create_provider(site_adapter): redirect_uri = "http://127.0.0.1:15487/callback" stores = store_factory(client_identifier="abc", client_secret="xyz", redirect_uris=[redirect_uri]) provider = Provider(access_token_store=stores["access_token_store"], auth_code_store=stores["auth_code_store"], client_store=stores["client_store"], token_generator=Uuid4TokenGenerator()) provider.add_grant(AuthorizationCodeGrant(expires_in=120, site_adapter=site_adapter)) provider.add_grant(RefreshToken(expires_in=60)) return provider def run_client(queue): try: app = ClientApplication( callback_url="http://127.0.0.1:15487/callback", client_id="abc", client_secret="xyz", provider_url="http://127.0.0.1:15486") httpd = make_server('', 15487, app, handler_class=NoLoggingHandler) queue.put({"result": 0}) httpd.serve_forever() access_token_result = urlopen("http://127.0.0.1:15487/app").read() except Exception as e: queue.put({"result": 1, "error_message": str(e)}) class AuthorizationCodeTestCase(unittest.TestCase): def setUp(self): self.client = None self.server = None def test_tornado(self): def run_provider(queue): try: provider = create_provider(TestSiteAdapter()) app = TornadoApplication([ url(r"/authorize", OAuth2Handler, dict(provider=provider)), url(r"/token", OAuth2Handler, dict(provider=provider)) ], debug=True) app.listen(15486) queue.put({"result": 0}) IOLoop.current().start() except Exception as e: queue.put({"result": 1, "error_message": str(e)}) ready_queue = Queue() self.server = Process(target=run_provider, args=(ready_queue,)) self.server.start() provider_started = ready_queue.get() if provider_started["result"] != 0: raise Exception("Error starting Provider process with message" "'{0}'".format(provider_started["error_message"])) self.client = Process(target=run_client, args=(ready_queue,)) self.client.start() client_started = ready_queue.get() if client_started["result"] != 0: raise Exception("Error starting Client Application process with " "message '{0}'".format(client_started["error_message"])) self.access_token() def test_flask(self): def run_provider(queue): try: site_adapter = TestSiteAdapter() provider = create_provider(site_adapter) app = Flask(__name__) flask_hook = oauth_request_hook(provider) app.add_url_rule('/authorize', 'authorize', view_func=flask_hook(site_adapter.authenticate), methods=['GET', 'POST']) app.add_url_rule('/token', 'token', view_func=flask_hook(site_adapter.token), methods=['POST']) queue.put({"result": 0}) app.run(host='0.0.0.0', port=15486) except Exception as e: queue.put({"result": 1, "error_message": str(e)}) ready_queue = Queue() self.server = Process(target=run_provider, args=(ready_queue,)) self.server.start() provider_started = ready_queue.get() if provider_started["result"] != 0: raise Exception("Error starting Provider process with " "message '{0}'".format(provider_started["error_message"])) self.client = Process(target=run_client, args=(ready_queue,)) self.client.start() client_started = ready_queue.get() if client_started["result"] != 0: raise Exception("Error starting Client Application process with " "message '{0}'".format(client_started["error_message"])) self.access_token() def test_aiohttp(self): # Minimal versian for aiohttp Python 3.5.3+ # otherwise skip this test if sys.version_info < (3, 5, 3): return import aiohttp.web from oauth2.web.aiohttp import OAuth2Handler def run_provider(queue): try: site_adapter = TestSiteAdapter() provider = create_provider(site_adapter) app = aiohttp.web.Application() handler = OAuth2Handler(provider) app.router.add_get(provider.authorize_path, handler.dispatch_request) app.router.add_post(provider.authorize_path, handler.post_dispatch_request) app.router.add_post(provider.token_path, handler.post_dispatch_request) queue.put({"result": 0}) aiohttp.web.run_app(app, host='127.0.0.1', port=15486) except Exception as e: queue.put({"result": 1, "error_message": str(e)}) ready_queue = Queue() self.server = Process(target=run_provider, args=(ready_queue,)) self.server.start() provider_started = ready_queue.get() if provider_started["result"] != 0: raise Exception("Error starting Provider process with " "message '{0}'".format(provider_started["error_message"])) self.client = Process(target=run_client, args=(ready_queue,)) self.client.start() client_started = ready_queue.get() if client_started["result"] != 0: raise Exception("Error starting Client Application process with " "message '{0}'".format(client_started["error_message"])) self.access_token() def test_wsgi(self): def run_provider(queue): try: provider = create_provider(TestSiteAdapter()) app = Application(provider=provider) httpd = make_server('', 15486, app, handler_class=NoLoggingHandler) queue.put({"result": 0}) httpd.serve_forever() except Exception as e: queue.put({"result": 1, "error_message": str(e)}) ready_queue = Queue() self.server = Process(target=run_provider, args=(ready_queue,)) self.server.start() provider_started = ready_queue.get() if provider_started["result"] != 0: raise Exception("Error starting Provider process with message" "'{0}'".format(provider_started["error_message"])) self.client = Process(target=run_client, args=(ready_queue,)) self.client.start() client_started = ready_queue.get() if client_started["result"] != 0: raise Exception("Error starting Client Application process with " "message '{0}'".format(client_started["error_message"])) self.access_token() def test_wsgi_404(self): def run_provider(queue): try: provider = create_provider(TestSiteAdapter()) app = Application(provider=provider) httpd = make_server('', 15486, app, handler_class=NoLoggingHandler) queue.put({"result": 0}) httpd.serve_forever() except Exception as e: queue.put({"result": 1, "error_message": str(e)}) ready_queue = Queue() self.server = Process(target=run_provider, args=(ready_queue,)) self.server.start() provider_started = ready_queue.get() if provider_started["result"] != 0: raise Exception("Error starting Provider process with message" "'{0}'".format(provider_started["error_message"])) try: urlopen("http://127.0.0.1:15486/invalid-path").read() except HTTPError as e: self.assertEqual(404, e.code) def access_token(self): uuid_regex = "^[a-z0-9]{8}\-[a-z0-9]{4}\-[a-z0-9]{4}\-[a-z0-9]{4}-[a-z0-9]{12}$" try: access_token_result = urlopen("http://127.0.0.1:15487/app").read() except HTTPError as e: print(e.read()) exit(1) access_token_data = json.loads(access_token_result.decode('utf-8')) self.assertEqual(access_token_data["token_type"], "Bearer") self.assertEqual(access_token_data["expires_in"], 120) self.assertRegex(access_token_data["access_token"], uuid_regex) self.assertRegex(access_token_data["refresh_token"], uuid_regex) request_data = {"grant_type": "refresh_token", "refresh_token": access_token_data["refresh_token"], "client_id": "abc", "client_secret": "xyz"} refresh_token_result = urlopen("http://127.0.0.1:15486/token", urlencode(request_data).encode('utf-8')) refresh_token_data = json.loads(refresh_token_result.read().decode('utf-8')) self.assertEqual(refresh_token_data["token_type"], "Bearer") self.assertEqual(refresh_token_data["expires_in"], 120) self.assertRegex(refresh_token_data["access_token"], uuid_regex) def tearDown(self): if self.client is not None: self.client.terminate() self.client.join() if self.server is not None: self.server.terminate() self.server.join() class TestSiteAdapter(AuthorizationCodeGrantSiteAdapter): def authenticate(self, request, environ, scopes, client): return {"additional": "data"}, 1 def token(self): pass def user_has_denied_access(self, request): return False class ClientApplication(object): def __init__(self, callback_url, client_id, client_secret, provider_url): self.callback_url = callback_url self.client_id = client_id self.client_secret = client_secret self.api_server_url = provider_url self.access_token_result = None self.auth_token = None self.token_type = "" def __call__(self, env, start_response): try: if env["PATH_INFO"] == "/app": status, body, headers = self._serve_application() elif env["PATH_INFO"] == "/callback": status, body, headers = self._read_auth_token(env) else: status = "301 Moved" body = "" headers = {"Location": "/app"} except HTTPError as http_error: print("HTTPError occured:") print(http_error.read()) raise start_response(status, [(header, val) for header, val in headers.items()]) # Be careful with body in PY2 that can be str but in PY3 that should be binary return [body.encode('utf-8')] def _request_access_token(self): post_params = {"client_id": self.client_id, "client_secret": self.client_secret, "code": self.auth_token, "grant_type": "authorization_code", "redirect_uri": self.callback_url} token_endpoint = self.api_server_url + "/token" token_result = urlopen(token_endpoint, urlencode(post_params).encode('utf-8')) result = json.loads(token_result.read().decode('utf-8')) self.access_token_result = result return "302 Found", "", {"Location": "/app"} def _read_auth_token(self, env): query_params = parse_qs(env["QUERY_STRING"]) self.auth_token = query_params["code"][0] return "302 Found", "", {"Location": "/app"} def _request_auth_token(self): auth_endpoint = self.api_server_url + "/authorize" query = urlencode({"client_id": "abc", "redirect_uri": self.callback_url, "response_type": "code"}) location = "%s?%s" % (auth_endpoint, query) return "302 Found", "", {"Location": location} def _serve_application(self): if self.access_token_result is None: if self.auth_token is None: return self._request_auth_token() return self._request_access_token() # We encode body to binary in ClientApplication return "200 OK", json.dumps(self.access_token_result), {}
35.525066
111
0.603832
4af37cb655427d95fa698da6b8a7a8b0c2b1c2dc
6,306
py
Python
modules/simulation/individual/demand.py
kfoerderer/ANN-based-surrogates
aef0eca9e969858e47babfc73a15c04262285e6b
[ "MIT" ]
null
null
null
modules/simulation/individual/demand.py
kfoerderer/ANN-based-surrogates
aef0eca9e969858e47babfc73a15c04262285e6b
[ "MIT" ]
null
null
null
modules/simulation/individual/demand.py
kfoerderer/ANN-based-surrogates
aef0eca9e969858e47babfc73a15c04262285e6b
[ "MIT" ]
null
null
null
from modules.simulation.simulationmodel import SimulationModel from typing import List, Tuple import numpy as np class Demand(SimulationModel): """ Demand (passive, no actions). Please note: The HWT does NOT enforce the min and max temp boundaries. State = Forecast - demand ``float`` demand for current time step in W Note that transition() outputs the demand of the next period, remove this value by using the state normalization scalar Arguments - dt ``int`` delta time in seconds - demand_series ``np.ndaray`` an array holding one or multiple demand series in W. Shape [number of series, series length] - window_width ``int`` specifies the length of the range from which the values are sampled - demand_type ``np.ndarray`` vector to map demand onto the interaction - seconds_per_value ``int`` length of a time slot of the demand_series """ def __init__(self, dt: int, demand_series: np.ndarray, demand_type: np.ndarray=np.array([0,1]), seconds_per_value: int=60): # passive system, do not call the constructor of super() super().__init__(dt, None, False) self.demand_series = demand_series self.window_width = int(dt / seconds_per_value) assert self.window_width > 0 self.demand_type = demand_type self.state = np.array([0]) self.hidden_state = np.array([0, 0, np.empty([0,1])]) self.possible_window_positions = np.arange(demand_series.shape[1] / self.window_width, dtype=int) * self.window_width def __repr__(self): return 'demand(state={}, hidden_state={})'.format(self.state, self.hidden_state) @property def demand(self): return self.state[0] @demand.setter def demand(self, v: int): self.state[0] = v @property def series_idx(self) -> int: return self.hidden_state[0] @series_idx.setter def series_idx(self, v: int): self.hidden_state[0] = v @property def window_position(self) -> int: return self.hidden_state[1] @window_position.setter def window_position(self, v: int): self.hidden_state[1] = v @property def forecast_series(self) -> np.ndarray: return self.hidden_state[2] @forecast_series.setter def forecast_series(self, v: np.ndarray): self.hidden_state[2] = v def determine_feasible_actions(self) -> np.ndarray: """ Passive element, thus no actions. """ return None def sample_state(self, window_position: int=-1, demand_interval: Tuple[int,int]=None, **kwargs) -> np.ndarray: """ Sample the current demand Arguments - window_position ``int`` defines the position of the sampling window. The parameters specifies the lower end of the sampling range. Use a value lesser than 0 use a random window position. - demand_interval ``(int,int)`` during training this interval can be used to draw values from """ # 1. sample a state & 2. update the state to the newly sampled state if window_position < 0: window_position = np.random.choice(self.possible_window_positions) self.window_position = window_position self.series_idx = np.random.choice(self.demand_series.shape[0]) # pick a random series if self._training and (demand_interval is not None): self.state = np.array([np.random.uniform(demand_interval[0], demand_interval[1])]) elif self._training: max_demand = np.max(self.demand_series) self.state = np.array([np.random.choice([0, max_demand, np.random.uniform(0, max_demand)], p=[0.1,0.01,0.89])]) else: self.state = np.array([np.random.choice(self.demand_series[self.series_idx][window_position:(window_position+self.window_width)])]) self.forecast_series = np.empty([0,1]) # 4. return the newly sampled state return self.state def forecast(self, time_step_count: int=1, **kwargs) -> np.ndarray: forecast = self.forecast_series if forecast.shape[0] < time_step_count-1: # more data is needed window_position = self.window_position window_width = self.window_width demand_series = self.demand_series series_idx = self.series_idx for step in range(forecast.shape[0], time_step_count-1): # move window window_position += window_width window_position %= demand_series.shape[1] # create forecast new_state = np.random.choice(demand_series[series_idx][window_position:(window_position+window_width)]) forecast = np.append(forecast, [[new_state]], axis=0) self.window_position = window_position self.forecast_series = forecast return np.concatenate((self.state, self.forecast_series[:time_step_count-1,0]), axis=0).reshape(-1,1), np.ones(time_step_count, dtype=bool).reshape(-1,1) def transition(self, action=0, interaction: np.ndarray=np.array([0,0])) -> Tuple[np.ndarray, np.ndarray]: """ Updates the systems state according to the provided parameters and returns the new state. Arguments - action ``float``: action to take. May be ``None`` for passive systems. - interaction ``np.ndarray``: possible interactions """ demand = self.state forecast = self.forecast_series if forecast.shape[0] > 0: # there are forecasted values # set next state according to forecast self.state = np.copy(forecast[0]) # remove the old element self.forecast_series = np.delete(forecast, 0).reshape(-1,1) else: # move window window_position = (self.window_position + self.window_width) % self.demand_series.shape[1] self.window_position = window_position self.state = np.array([np.random.choice(self.demand_series[self.series_idx][window_position:(window_position+self.window_width)])]) return self.state, (interaction - demand * self.demand_type)
40.683871
196
0.641611
7df4b597c4873f59ed71c3e8b6a167c2847a380a
1,272
py
Python
aquavalet/app.py
Johnetordoff/aquavalet
31af9321180191cb46d44da5df0d8580c0044df2
[ "Apache-2.0" ]
1
2018-03-26T19:20:28.000Z
2018-03-26T19:20:28.000Z
aquavalet/app.py
Johnetordoff/aquavalet
31af9321180191cb46d44da5df0d8580c0044df2
[ "Apache-2.0" ]
null
null
null
aquavalet/app.py
Johnetordoff/aquavalet
31af9321180191cb46d44da5df0d8580c0044df2
[ "Apache-2.0" ]
null
null
null
import json from aiohttp import web import logging from aquavalet.server.routes import routes logger = logging.getLogger(__name__) def json_error(status_code: int, exception: Exception) -> web.Response: """ Returns a Response from an exception. Used for error middleware. :param status_code: :param exception: :return: """ json_body = json.dumps( {"error": exception.__class__.__name__, "message": exception.message} ) return web.json_response(status=status_code, body=json_body) async def error_middleware(app: web.Application, handler): """ This middleware handles with exceptions received from views or previous middleware. :param app: :param handler: :return: """ async def middleware_handler(request): try: return await handler(request) except web.HTTPException as ex: return json_error(ex.status, ex) except Exception as e: logger.warning( "Request {} has failed with exception: {}".format(request, repr(e)) ) return json_error(500, e) return middleware_handler def app(): app = web.Application(middlewares=[error_middleware]) app.add_routes(routes) return app
24
87
0.658805
9004ea8fd9be2e91fa212db3ceaf5b31d6d32dd1
265
py
Python
tests/conftest.py
trulede/mashumaro
cdcd8c0f212124eaf58873300e45fed6c8683935
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
trulede/mashumaro
cdcd8c0f212124eaf58873300e45fed6c8683935
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
trulede/mashumaro
cdcd8c0f212124eaf58873300e45fed6c8683935
[ "Apache-2.0" ]
null
null
null
from unittest.mock import patch from mashumaro.core.const import PY_37_MIN if not PY_37_MIN: collect_ignore = ["test_pep_563.py"] fake_add_from_dict = patch( "mashumaro.core.meta.builder." "CodeBuilder.add_from_dict", lambda *args, **kwargs: ..., )
20.384615
63
0.728302
327ec8f5ab0f29b684e6f08f28bf574bad502167
11,794
py
Python
isi_sdk/models/reports_rid_subreports_subreport_policy.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
isi_sdk/models/reports_rid_subreports_subreport_policy.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
isi_sdk/models/reports_rid_subreports_subreport_policy.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
# coding: utf-8 """ Copyright 2015 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems class ReportsRidSubreportsSubreportPolicy(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ ReportsRidSubreportsSubreportPolicy - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'action': 'str', 'file_matching_pattern': 'ReportsRidSubreportsSubreportPolicyFileMatchingPattern', 'name': 'str', 'source_exclude_directories': 'list[str]', 'source_include_directories': 'list[str]', 'source_root_path': 'str', 'target_host': 'str', 'target_path': 'str' } self.attribute_map = { 'action': 'action', 'file_matching_pattern': 'file_matching_pattern', 'name': 'name', 'source_exclude_directories': 'source_exclude_directories', 'source_include_directories': 'source_include_directories', 'source_root_path': 'source_root_path', 'target_host': 'target_host', 'target_path': 'target_path' } self._action = None self._file_matching_pattern = None self._name = None self._source_exclude_directories = None self._source_include_directories = None self._source_root_path = None self._target_host = None self._target_path = None @property def action(self): """ Gets the action of this ReportsRidSubreportsSubreportPolicy. If 'copy', source files will be copied to the target cluster. If 'sync', the target directory will be made an image of the source directory: Files and directories that have been deleted on the source, have been moved within the target directory, or no longer match the selection criteria will be deleted from the target directory. :return: The action of this ReportsRidSubreportsSubreportPolicy. :rtype: str """ return self._action @action.setter def action(self, action): """ Sets the action of this ReportsRidSubreportsSubreportPolicy. If 'copy', source files will be copied to the target cluster. If 'sync', the target directory will be made an image of the source directory: Files and directories that have been deleted on the source, have been moved within the target directory, or no longer match the selection criteria will be deleted from the target directory. :param action: The action of this ReportsRidSubreportsSubreportPolicy. :type: str """ allowed_values = ["copy", "sync"] if action not in allowed_values: raise ValueError( "Invalid value for `action`, must be one of {0}" .format(allowed_values) ) self._action = action @property def file_matching_pattern(self): """ Gets the file_matching_pattern of this ReportsRidSubreportsSubreportPolicy. A file matching pattern, organized as an OR'ed set of AND'ed file criteria, for example ((a AND b) OR (x AND y)) used to define a set of files with specific properties. Policies of type 'sync' cannot use 'path' or time criteria in their matching patterns, but policies of type 'copy' can use all listed criteria. :return: The file_matching_pattern of this ReportsRidSubreportsSubreportPolicy. :rtype: ReportsRidSubreportsSubreportPolicyFileMatchingPattern """ return self._file_matching_pattern @file_matching_pattern.setter def file_matching_pattern(self, file_matching_pattern): """ Sets the file_matching_pattern of this ReportsRidSubreportsSubreportPolicy. A file matching pattern, organized as an OR'ed set of AND'ed file criteria, for example ((a AND b) OR (x AND y)) used to define a set of files with specific properties. Policies of type 'sync' cannot use 'path' or time criteria in their matching patterns, but policies of type 'copy' can use all listed criteria. :param file_matching_pattern: The file_matching_pattern of this ReportsRidSubreportsSubreportPolicy. :type: ReportsRidSubreportsSubreportPolicyFileMatchingPattern """ self._file_matching_pattern = file_matching_pattern @property def name(self): """ Gets the name of this ReportsRidSubreportsSubreportPolicy. User-assigned name of this sync policy. :return: The name of this ReportsRidSubreportsSubreportPolicy. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this ReportsRidSubreportsSubreportPolicy. User-assigned name of this sync policy. :param name: The name of this ReportsRidSubreportsSubreportPolicy. :type: str """ self._name = name @property def source_exclude_directories(self): """ Gets the source_exclude_directories of this ReportsRidSubreportsSubreportPolicy. Directories that will be excluded from the sync. Modifying this field will result in a full synchronization of all data. :return: The source_exclude_directories of this ReportsRidSubreportsSubreportPolicy. :rtype: list[str] """ return self._source_exclude_directories @source_exclude_directories.setter def source_exclude_directories(self, source_exclude_directories): """ Sets the source_exclude_directories of this ReportsRidSubreportsSubreportPolicy. Directories that will be excluded from the sync. Modifying this field will result in a full synchronization of all data. :param source_exclude_directories: The source_exclude_directories of this ReportsRidSubreportsSubreportPolicy. :type: list[str] """ self._source_exclude_directories = source_exclude_directories @property def source_include_directories(self): """ Gets the source_include_directories of this ReportsRidSubreportsSubreportPolicy. Directories that will be included in the sync. Modifying this field will result in a full synchronization of all data. :return: The source_include_directories of this ReportsRidSubreportsSubreportPolicy. :rtype: list[str] """ return self._source_include_directories @source_include_directories.setter def source_include_directories(self, source_include_directories): """ Sets the source_include_directories of this ReportsRidSubreportsSubreportPolicy. Directories that will be included in the sync. Modifying this field will result in a full synchronization of all data. :param source_include_directories: The source_include_directories of this ReportsRidSubreportsSubreportPolicy. :type: list[str] """ self._source_include_directories = source_include_directories @property def source_root_path(self): """ Gets the source_root_path of this ReportsRidSubreportsSubreportPolicy. The root directory on the source cluster the files will be synced from. Modifying this field will result in a full synchronization of all data. :return: The source_root_path of this ReportsRidSubreportsSubreportPolicy. :rtype: str """ return self._source_root_path @source_root_path.setter def source_root_path(self, source_root_path): """ Sets the source_root_path of this ReportsRidSubreportsSubreportPolicy. The root directory on the source cluster the files will be synced from. Modifying this field will result in a full synchronization of all data. :param source_root_path: The source_root_path of this ReportsRidSubreportsSubreportPolicy. :type: str """ self._source_root_path = source_root_path @property def target_host(self): """ Gets the target_host of this ReportsRidSubreportsSubreportPolicy. Hostname or IP address of sync target cluster. Modifying the target cluster host can result in the policy being unrunnable if the new target does not match the current target association. :return: The target_host of this ReportsRidSubreportsSubreportPolicy. :rtype: str """ return self._target_host @target_host.setter def target_host(self, target_host): """ Sets the target_host of this ReportsRidSubreportsSubreportPolicy. Hostname or IP address of sync target cluster. Modifying the target cluster host can result in the policy being unrunnable if the new target does not match the current target association. :param target_host: The target_host of this ReportsRidSubreportsSubreportPolicy. :type: str """ self._target_host = target_host @property def target_path(self): """ Gets the target_path of this ReportsRidSubreportsSubreportPolicy. Absolute filesystem path on the target cluster for the sync destination. :return: The target_path of this ReportsRidSubreportsSubreportPolicy. :rtype: str """ return self._target_path @target_path.setter def target_path(self, target_path): """ Sets the target_path of this ReportsRidSubreportsSubreportPolicy. Absolute filesystem path on the target cluster for the sync destination. :param target_path: The target_path of this ReportsRidSubreportsSubreportPolicy. :type: str """ self._target_path = target_path def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
39.844595
340
0.673732
b35e2b659dd1d277b6e61cbedd357759e01fd599
449
py
Python
examples/animation/old_animation/gtk_timeout.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
3
2015-11-16T07:22:28.000Z
2016-11-11T17:55:14.000Z
examples/animation/old_animation/gtk_timeout.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
null
null
null
examples/animation/old_animation/gtk_timeout.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
3
2017-05-31T01:42:22.000Z
2020-06-23T13:57:49.000Z
import gobject import numpy as np import matplotlib matplotlib.use('GTKAgg') import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) line, = ax.plot(np.random.rand(10)) ax.set_ylim(0, 1) def update(): line.set_ydata(np.random.rand(10)) fig.canvas.draw_idle() return True # return False to terminate the updates gobject.timeout_add(100, update) # you can also use idle_add to update when gtk is idle plt.show()
22.45
88
0.732739
837d2b4e17afff45ed9e4751f7407389e0c86235
1,329
py
Python
src/executeScript.py
pannxe/ogogi
f1cd7d5c4d0eb0db13d2a71f4c1fc41bf1c6ee66
[ "MIT" ]
null
null
null
src/executeScript.py
pannxe/ogogi
f1cd7d5c4d0eb0db13d2a71f4c1fc41bf1c6ee66
[ "MIT" ]
null
null
null
src/executeScript.py
pannxe/ogogi
f1cd7d5c4d0eb0db13d2a71f4c1fc41bf1c6ee66
[ "MIT" ]
null
null
null
import subprocess import os import signal import config import time import abb import fileIO # Execute the subject def execute( language, userID, probName, probID, atCase, timeLimit, memLimit, uploadTime ): exeName = probID + "_" + uploadTime IORedirect = ( "<source/" + probName + "/" + atCase + ".in 1>env/output.txt 2>env/error.txt" ) cmd = ( "ulimit -v " + str(memLimit) + ";" + config.lang[language]["execute"] + "; exit;" ) _replaces = [("[binName]", exeName), ("[IORedirect]", IORedirect)] for ph, rep in _replaces: cmd = cmd.replace(ph, rep) # Why do we have to chmod this? # os.system('chmod 777 .') if os.path.exists("env/error.txt"): os.system("chmod 777 env/error.txt") if os.path.exists("env/output.txt"): os.system("chmod 777 env/output.txt") startTime = time.time() proc = subprocess.Popen([cmd], shell=True, preexec_fn=os.setsid) try: proc.communicate(timeout=timeLimit) t = proc.returncode except subprocess.TimeoutExpired: t = abb.ESC["TLE"] elapsedTime = time.time() - startTime os.system("chmod 777 .") if os.path.exists("/proc/" + str(proc.pid)): os.killpg(os.getpgid(proc.pid), signal.SIGTERM) return t, elapsedTime
26.058824
85
0.604966