hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
89bda989e539c7632adc7d04344b9f91d361ac15
24,644
py
Python
psx/_dump_/10/_dump_ida_/overlay_b/make_psx.py
maoa3/scalpel
2e7381b516cded28996d290438acc618d00b2aa7
[ "Unlicense" ]
15
2018-06-28T01:11:25.000Z
2021-09-27T15:57:18.000Z
psx/_dump_/10/_dump_ida_/overlay_b/make_psx.py
maoa3/scalpel
2e7381b516cded28996d290438acc618d00b2aa7
[ "Unlicense" ]
7
2018-06-29T04:08:23.000Z
2019-10-17T13:57:22.000Z
psx/_dump_/10/_dump_ida_/overlay_b/make_psx.py
maoa3/scalpel
2e7381b516cded28996d290438acc618d00b2aa7
[ "Unlicense" ]
7
2018-06-28T01:11:34.000Z
2020-05-23T09:21:48.000Z
set_name(0x80122CDC, "PreGameOnlyTestRoutine__Fv", SN_NOWARN) set_name(0x80124DA0, "DRLG_PlaceDoor__Fii", SN_NOWARN) set_name(0x80125274, "DRLG_L1Shadows__Fv", SN_NOWARN) set_name(0x8012568C, "DRLG_PlaceMiniSet__FPCUciiiiiii", SN_NOWARN) set_name(0x80125AF8, "DRLG_L1Floor__Fv", SN_NOWARN) set_name(0x80125BE4, "StoreBlock__FPiii", SN_NOWARN) set_name(0x80125C90, "DRLG_L1Pass3__Fv", SN_NOWARN) set_name(0x80125E44, "DRLG_LoadL1SP__Fv", SN_NOWARN) set_name(0x80125F20, "DRLG_FreeL1SP__Fv", SN_NOWARN) set_name(0x80125F50, "DRLG_Init_Globals__Fv", SN_NOWARN) set_name(0x80125FF4, "set_restore_lighting__Fv", SN_NOWARN) set_name(0x80126084, "DRLG_InitL1Vals__Fv", SN_NOWARN) set_name(0x8012608C, "LoadL1Dungeon__FPcii", SN_NOWARN) set_name(0x80126258, "LoadPreL1Dungeon__FPcii", SN_NOWARN) set_name(0x80126410, "InitL5Dungeon__Fv", SN_NOWARN) set_name(0x80126470, "L5ClearFlags__Fv", SN_NOWARN) set_name(0x801264BC, "L5drawRoom__Fiiii", SN_NOWARN) set_name(0x80126528, "L5checkRoom__Fiiii", SN_NOWARN) set_name(0x801265BC, "L5roomGen__Fiiiii", SN_NOWARN) set_name(0x801268B8, "L5firstRoom__Fv", SN_NOWARN) set_name(0x80126C74, "L5GetArea__Fv", SN_NOWARN) set_name(0x80126CD4, "L5makeDungeon__Fv", SN_NOWARN) set_name(0x80126D60, "L5makeDmt__Fv", SN_NOWARN) set_name(0x80126E48, "L5HWallOk__Fii", SN_NOWARN) set_name(0x80126F84, "L5VWallOk__Fii", SN_NOWARN) set_name(0x801270D0, "L5HorizWall__Fiici", SN_NOWARN) set_name(0x80127310, "L5VertWall__Fiici", SN_NOWARN) set_name(0x80127544, "L5AddWall__Fv", SN_NOWARN) set_name(0x801277B4, "DRLG_L5GChamber__Fiiiiii", SN_NOWARN) set_name(0x80127A74, "DRLG_L5GHall__Fiiii", SN_NOWARN) set_name(0x80127B28, "L5tileFix__Fv", SN_NOWARN) set_name(0x801283EC, "DRLG_L5Subs__Fv", SN_NOWARN) set_name(0x801285E4, "DRLG_L5SetRoom__Fii", SN_NOWARN) set_name(0x801286E4, "L5FillChambers__Fv", SN_NOWARN) set_name(0x80128DD0, "DRLG_L5FTVR__Fiiiii", SN_NOWARN) set_name(0x80129320, "DRLG_L5FloodTVal__Fv", SN_NOWARN) set_name(0x80129424, "DRLG_L5TransFix__Fv", SN_NOWARN) set_name(0x80129634, "DRLG_L5DirtFix__Fv", SN_NOWARN) set_name(0x80129790, "DRLG_L5CornerFix__Fv", SN_NOWARN) set_name(0x801298A0, "DRLG_L5__Fi", SN_NOWARN) set_name(0x80129DC0, "CreateL5Dungeon__FUii", SN_NOWARN) set_name(0x8012C364, "DRLG_L2PlaceMiniSet__FPUciiiiii", SN_NOWARN) set_name(0x8012C758, "DRLG_L2PlaceRndSet__FPUci", SN_NOWARN) set_name(0x8012CA58, "DRLG_L2Subs__Fv", SN_NOWARN) set_name(0x8012CC4C, "DRLG_L2Shadows__Fv", SN_NOWARN) set_name(0x8012CE10, "InitDungeon__Fv", SN_NOWARN) set_name(0x8012CE70, "DRLG_LoadL2SP__Fv", SN_NOWARN) set_name(0x8012CF10, "DRLG_FreeL2SP__Fv", SN_NOWARN) set_name(0x8012CF40, "DRLG_L2SetRoom__Fii", SN_NOWARN) set_name(0x8012D040, "DefineRoom__Fiiiii", SN_NOWARN) set_name(0x8012D24C, "CreateDoorType__Fii", SN_NOWARN) set_name(0x8012D330, "PlaceHallExt__Fii", SN_NOWARN) set_name(0x8012D368, "AddHall__Fiiiii", SN_NOWARN) set_name(0x8012D440, "CreateRoom__Fiiiiiiiii", SN_NOWARN) set_name(0x8012DAC8, "GetHall__FPiN40", SN_NOWARN) set_name(0x8012DB60, "ConnectHall__Fiiiii", SN_NOWARN) set_name(0x8012E1C8, "DoPatternCheck__Fii", SN_NOWARN) set_name(0x8012E47C, "L2TileFix__Fv", SN_NOWARN) set_name(0x8012E5A0, "DL2_Cont__FUcUcUcUc", SN_NOWARN) set_name(0x8012E620, "DL2_NumNoChar__Fv", SN_NOWARN) set_name(0x8012E67C, "DL2_DrawRoom__Fiiii", SN_NOWARN) set_name(0x8012E780, "DL2_KnockWalls__Fiiii", SN_NOWARN) set_name(0x8012E950, "DL2_FillVoids__Fv", SN_NOWARN) set_name(0x8012F2D4, "CreateDungeon__Fv", SN_NOWARN) set_name(0x8012F5E0, "DRLG_L2Pass3__Fv", SN_NOWARN) set_name(0x8012F778, "DRLG_L2FTVR__Fiiiii", SN_NOWARN) set_name(0x8012FCC0, "DRLG_L2FloodTVal__Fv", SN_NOWARN) set_name(0x8012FDC4, "DRLG_L2TransFix__Fv", SN_NOWARN) set_name(0x8012FFD4, "L2DirtFix__Fv", SN_NOWARN) set_name(0x80130134, "L2LockoutFix__Fv", SN_NOWARN) set_name(0x801304C0, "L2DoorFix__Fv", SN_NOWARN) set_name(0x80130570, "DRLG_L2__Fi", SN_NOWARN) set_name(0x80130FBC, "DRLG_InitL2Vals__Fv", SN_NOWARN) set_name(0x80130FC4, "LoadL2Dungeon__FPcii", SN_NOWARN) set_name(0x801311B4, "LoadPreL2Dungeon__FPcii", SN_NOWARN) set_name(0x801313A0, "CreateL2Dungeon__FUii", SN_NOWARN) set_name(0x80131D58, "InitL3Dungeon__Fv", SN_NOWARN) set_name(0x80131DE0, "DRLG_L3FillRoom__Fiiii", SN_NOWARN) set_name(0x8013203C, "DRLG_L3CreateBlock__Fiiii", SN_NOWARN) set_name(0x801322D8, "DRLG_L3FloorArea__Fiiii", SN_NOWARN) set_name(0x80132340, "DRLG_L3FillDiags__Fv", SN_NOWARN) set_name(0x80132470, "DRLG_L3FillSingles__Fv", SN_NOWARN) set_name(0x8013253C, "DRLG_L3FillStraights__Fv", SN_NOWARN) set_name(0x80132900, "DRLG_L3Edges__Fv", SN_NOWARN) set_name(0x80132940, "DRLG_L3GetFloorArea__Fv", SN_NOWARN) set_name(0x80132990, "DRLG_L3MakeMegas__Fv", SN_NOWARN) set_name(0x80132AD4, "DRLG_L3River__Fv", SN_NOWARN) set_name(0x80133514, "DRLG_L3SpawnEdge__FiiPi", SN_NOWARN) set_name(0x801337A0, "DRLG_L3Spawn__FiiPi", SN_NOWARN) set_name(0x801339B4, "DRLG_L3Pool__Fv", SN_NOWARN) set_name(0x80133C08, "DRLG_L3PoolFix__Fv", SN_NOWARN) set_name(0x80133D3C, "DRLG_L3PlaceMiniSet__FPCUciiiiii", SN_NOWARN) set_name(0x801340BC, "DRLG_L3PlaceRndSet__FPCUci", SN_NOWARN) set_name(0x80134404, "WoodVertU__Fii", SN_NOWARN) set_name(0x801344B0, "WoodVertD__Fii", SN_NOWARN) set_name(0x8013454C, "WoodHorizL__Fii", SN_NOWARN) set_name(0x801345E0, "WoodHorizR__Fii", SN_NOWARN) set_name(0x80134664, "AddFenceDoors__Fv", SN_NOWARN) set_name(0x80134748, "FenceDoorFix__Fv", SN_NOWARN) set_name(0x8013493C, "DRLG_L3Wood__Fv", SN_NOWARN) set_name(0x8013512C, "DRLG_L3Anvil__Fv", SN_NOWARN) set_name(0x80135388, "FixL3Warp__Fv", SN_NOWARN) set_name(0x80135470, "FixL3HallofHeroes__Fv", SN_NOWARN) set_name(0x801355C4, "DRLG_L3LockRec__Fii", SN_NOWARN) set_name(0x80135660, "DRLG_L3Lockout__Fv", SN_NOWARN) set_name(0x80135720, "DRLG_L3__Fi", SN_NOWARN) set_name(0x80135E40, "DRLG_L3Pass3__Fv", SN_NOWARN) set_name(0x80135FE4, "CreateL3Dungeon__FUii", SN_NOWARN) set_name(0x801360F8, "LoadL3Dungeon__FPcii", SN_NOWARN) set_name(0x8013631C, "LoadPreL3Dungeon__FPcii", SN_NOWARN) set_name(0x80138168, "DRLG_L4Shadows__Fv", SN_NOWARN) set_name(0x8013822C, "InitL4Dungeon__Fv", SN_NOWARN) set_name(0x801382C8, "DRLG_LoadL4SP__Fv", SN_NOWARN) set_name(0x8013836C, "DRLG_FreeL4SP__Fv", SN_NOWARN) set_name(0x80138394, "DRLG_L4SetSPRoom__Fii", SN_NOWARN) set_name(0x80138494, "L4makeDmt__Fv", SN_NOWARN) set_name(0x80138538, "L4HWallOk__Fii", SN_NOWARN) set_name(0x80138688, "L4VWallOk__Fii", SN_NOWARN) set_name(0x80138804, "L4HorizWall__Fiii", SN_NOWARN) set_name(0x801389D4, "L4VertWall__Fiii", SN_NOWARN) set_name(0x80138B9C, "L4AddWall__Fv", SN_NOWARN) set_name(0x8013907C, "L4tileFix__Fv", SN_NOWARN) set_name(0x8013B264, "DRLG_L4Subs__Fv", SN_NOWARN) set_name(0x8013B43C, "L4makeDungeon__Fv", SN_NOWARN) set_name(0x8013B674, "uShape__Fv", SN_NOWARN) set_name(0x8013B918, "GetArea__Fv", SN_NOWARN) set_name(0x8013B974, "L4drawRoom__Fiiii", SN_NOWARN) set_name(0x8013B9DC, "L4checkRoom__Fiiii", SN_NOWARN) set_name(0x8013BA78, "L4roomGen__Fiiiii", SN_NOWARN) set_name(0x8013BD74, "L4firstRoom__Fv", SN_NOWARN) set_name(0x8013BF90, "L4SaveQuads__Fv", SN_NOWARN) set_name(0x8013C030, "DRLG_L4SetRoom__FPUcii", SN_NOWARN) set_name(0x8013C104, "DRLG_LoadDiabQuads__FUc", SN_NOWARN) set_name(0x8013C268, "DRLG_L4PlaceMiniSet__FPCUciiiiii", SN_NOWARN) set_name(0x8013C680, "DRLG_L4FTVR__Fiiiii", SN_NOWARN) set_name(0x8013CBC8, "DRLG_L4FloodTVal__Fv", SN_NOWARN) set_name(0x8013CCCC, "IsDURWall__Fc", SN_NOWARN) set_name(0x8013CCFC, "IsDLLWall__Fc", SN_NOWARN) set_name(0x8013CD2C, "DRLG_L4TransFix__Fv", SN_NOWARN) set_name(0x8013D084, "DRLG_L4Corners__Fv", SN_NOWARN) set_name(0x8013D118, "L4FixRim__Fv", SN_NOWARN) set_name(0x8013D154, "DRLG_L4GeneralFix__Fv", SN_NOWARN) set_name(0x8013D1F8, "DRLG_L4__Fi", SN_NOWARN) set_name(0x8013DAF4, "DRLG_L4Pass3__Fv", SN_NOWARN) set_name(0x8013DC98, "CreateL4Dungeon__FUii", SN_NOWARN) set_name(0x8013DD28, "ObjIndex__Fii", SN_NOWARN) set_name(0x8013DDDC, "AddSKingObjs__Fv", SN_NOWARN) set_name(0x8013DF0C, "AddSChamObjs__Fv", SN_NOWARN) set_name(0x8013DF88, "AddVileObjs__Fv", SN_NOWARN) set_name(0x8013E034, "DRLG_SetMapTrans__FPc", SN_NOWARN) set_name(0x8013E0F8, "LoadSetMap__Fv", SN_NOWARN) set_name(0x8013E400, "CM_QuestToBitPattern__Fi", SN_NOWARN) set_name(0x8013E4D0, "CM_ShowMonsterList__Fii", SN_NOWARN) set_name(0x8013E548, "CM_ChooseMonsterList__FiUl", SN_NOWARN) set_name(0x8013E5E8, "NoUiListChoose__FiUl", SN_NOWARN) set_name(0x8013E5F0, "ChooseTask__FP4TASK", SN_NOWARN) set_name(0x8013E6F8, "ShowTask__FP4TASK", SN_NOWARN) set_name(0x8013E914, "GetListsAvailable__FiUlPUc", SN_NOWARN) set_name(0x8013EA38, "GetDown__C4CPad", SN_NOWARN) set_name(0x8013EA60, "AddL1Door__Fiiii", SN_NOWARN) set_name(0x8013EB98, "AddSCambBook__Fi", SN_NOWARN) set_name(0x8013EC38, "AddChest__Fii", SN_NOWARN) set_name(0x8013EE18, "AddL2Door__Fiiii", SN_NOWARN) set_name(0x8013EF64, "AddL3Door__Fiiii", SN_NOWARN) set_name(0x8013EFF8, "AddSarc__Fi", SN_NOWARN) set_name(0x8013F0D4, "AddFlameTrap__Fi", SN_NOWARN) set_name(0x8013F130, "AddTrap__Fii", SN_NOWARN) set_name(0x8013F228, "AddObjLight__Fii", SN_NOWARN) set_name(0x8013F2D0, "AddBarrel__Fii", SN_NOWARN) set_name(0x8013F380, "AddShrine__Fi", SN_NOWARN) set_name(0x8013F4D0, "AddBookcase__Fi", SN_NOWARN) set_name(0x8013F528, "AddBookstand__Fi", SN_NOWARN) set_name(0x8013F570, "AddBloodFtn__Fi", SN_NOWARN) set_name(0x8013F5B8, "AddPurifyingFountain__Fi", SN_NOWARN) set_name(0x8013F694, "AddArmorStand__Fi", SN_NOWARN) set_name(0x8013F71C, "AddGoatShrine__Fi", SN_NOWARN) set_name(0x8013F764, "AddCauldron__Fi", SN_NOWARN) set_name(0x8013F7AC, "AddMurkyFountain__Fi", SN_NOWARN) set_name(0x8013F888, "AddTearFountain__Fi", SN_NOWARN) set_name(0x8013F8D0, "AddDecap__Fi", SN_NOWARN) set_name(0x8013F94C, "AddVilebook__Fi", SN_NOWARN) set_name(0x8013F99C, "AddMagicCircle__Fi", SN_NOWARN) set_name(0x8013FA10, "AddBrnCross__Fi", SN_NOWARN) set_name(0x8013FA58, "AddPedistal__Fi", SN_NOWARN) set_name(0x8013FACC, "AddStoryBook__Fi", SN_NOWARN) set_name(0x8013FC9C, "AddWeaponRack__Fi", SN_NOWARN) set_name(0x8013FD24, "AddTorturedBody__Fi", SN_NOWARN) set_name(0x8013FDA0, "AddFlameLvr__Fi", SN_NOWARN) set_name(0x8013FDE0, "GetRndObjLoc__FiRiT1", SN_NOWARN) set_name(0x8013FEEC, "AddMushPatch__Fv", SN_NOWARN) set_name(0x80140010, "AddSlainHero__Fv", SN_NOWARN) set_name(0x80140050, "RndLocOk__Fii", SN_NOWARN) set_name(0x80140134, "TrapLocOk__Fii", SN_NOWARN) set_name(0x8014019C, "RoomLocOk__Fii", SN_NOWARN) set_name(0x80140234, "InitRndLocObj__Fiii", SN_NOWARN) set_name(0x801403E0, "InitRndLocBigObj__Fiii", SN_NOWARN) set_name(0x801405D8, "InitRndLocObj5x5__Fiii", SN_NOWARN) set_name(0x80140700, "SetMapObjects__FPUcii", SN_NOWARN) set_name(0x801409A0, "ClrAllObjects__Fv", SN_NOWARN) set_name(0x80140A90, "AddTortures__Fv", SN_NOWARN) set_name(0x80140C1C, "AddCandles__Fv", SN_NOWARN) set_name(0x80140CA4, "AddTrapLine__Fiiii", SN_NOWARN) set_name(0x80141040, "AddLeverObj__Fiiiiiiii", SN_NOWARN) set_name(0x80141048, "AddBookLever__Fiiiiiiiii", SN_NOWARN) set_name(0x8014125C, "InitRndBarrels__Fv", SN_NOWARN) set_name(0x801413F8, "AddL1Objs__Fiiii", SN_NOWARN) set_name(0x80141530, "AddL2Objs__Fiiii", SN_NOWARN) set_name(0x80141644, "AddL3Objs__Fiiii", SN_NOWARN) set_name(0x80141744, "TorchLocOK__Fii", SN_NOWARN) set_name(0x80141784, "AddL2Torches__Fv", SN_NOWARN) set_name(0x80141938, "WallTrapLocOk__Fii", SN_NOWARN) set_name(0x801419A0, "AddObjTraps__Fv", SN_NOWARN) set_name(0x80141D18, "AddChestTraps__Fv", SN_NOWARN) set_name(0x80141E68, "LoadMapObjects__FPUciiiiiii", SN_NOWARN) set_name(0x80141FD4, "AddDiabObjs__Fv", SN_NOWARN) set_name(0x80142128, "AddStoryBooks__Fv", SN_NOWARN) set_name(0x80142278, "AddHookedBodies__Fi", SN_NOWARN) set_name(0x80142470, "AddL4Goodies__Fv", SN_NOWARN) set_name(0x80142520, "AddLazStand__Fv", SN_NOWARN) set_name(0x801426B4, "InitObjects__Fv", SN_NOWARN) set_name(0x80142D18, "PreObjObjAddSwitch__Fiiii", SN_NOWARN) set_name(0x80143020, "FillSolidBlockTbls__Fv", SN_NOWARN) set_name(0x801431CC, "SetDungeonMicros__Fv", SN_NOWARN) set_name(0x801431D4, "DRLG_InitTrans__Fv", SN_NOWARN) set_name(0x80143248, "DRLG_MRectTrans__Fiiii", SN_NOWARN) set_name(0x801432E8, "DRLG_RectTrans__Fiiii", SN_NOWARN) set_name(0x80143368, "DRLG_CopyTrans__Fiiii", SN_NOWARN) set_name(0x801433D0, "DRLG_ListTrans__FiPUc", SN_NOWARN) set_name(0x80143444, "DRLG_AreaTrans__FiPUc", SN_NOWARN) set_name(0x801434D4, "DRLG_InitSetPC__Fv", SN_NOWARN) set_name(0x801434EC, "DRLG_SetPC__Fv", SN_NOWARN) set_name(0x8014359C, "Make_SetPC__Fiiii", SN_NOWARN) set_name(0x8014363C, "DRLG_WillThemeRoomFit__FiiiiiPiT5", SN_NOWARN) set_name(0x80143904, "DRLG_CreateThemeRoom__Fi", SN_NOWARN) set_name(0x8014490C, "DRLG_PlaceThemeRooms__FiiiiUc", SN_NOWARN) set_name(0x80144BB4, "DRLG_HoldThemeRooms__Fv", SN_NOWARN) set_name(0x80144D68, "SkipThemeRoom__Fii", SN_NOWARN) set_name(0x80144E34, "InitLevels__Fv", SN_NOWARN) set_name(0x80144F38, "TFit_Shrine__Fi", SN_NOWARN) set_name(0x801451A8, "TFit_Obj5__Fi", SN_NOWARN) set_name(0x8014537C, "TFit_SkelRoom__Fi", SN_NOWARN) set_name(0x8014542C, "TFit_GoatShrine__Fi", SN_NOWARN) set_name(0x801454C4, "CheckThemeObj3__Fiiii", SN_NOWARN) set_name(0x80145614, "TFit_Obj3__Fi", SN_NOWARN) set_name(0x801456D4, "CheckThemeReqs__Fi", SN_NOWARN) set_name(0x801457A0, "SpecialThemeFit__Fii", SN_NOWARN) set_name(0x8014597C, "CheckThemeRoom__Fi", SN_NOWARN) set_name(0x80145C28, "InitThemes__Fv", SN_NOWARN) set_name(0x80145F74, "HoldThemeRooms__Fv", SN_NOWARN) set_name(0x8014605C, "PlaceThemeMonsts__Fii", SN_NOWARN) set_name(0x80146200, "Theme_Barrel__Fi", SN_NOWARN) set_name(0x80146378, "Theme_Shrine__Fi", SN_NOWARN) set_name(0x80146460, "Theme_MonstPit__Fi", SN_NOWARN) set_name(0x8014658C, "Theme_SkelRoom__Fi", SN_NOWARN) set_name(0x80146890, "Theme_Treasure__Fi", SN_NOWARN) set_name(0x80146AF4, "Theme_Library__Fi", SN_NOWARN) set_name(0x80146D64, "Theme_Torture__Fi", SN_NOWARN) set_name(0x80146ED4, "Theme_BloodFountain__Fi", SN_NOWARN) set_name(0x80146F48, "Theme_Decap__Fi", SN_NOWARN) set_name(0x801470B8, "Theme_PurifyingFountain__Fi", SN_NOWARN) set_name(0x8014712C, "Theme_ArmorStand__Fi", SN_NOWARN) set_name(0x801472C4, "Theme_GoatShrine__Fi", SN_NOWARN) set_name(0x80147414, "Theme_Cauldron__Fi", SN_NOWARN) set_name(0x80147488, "Theme_MurkyFountain__Fi", SN_NOWARN) set_name(0x801474FC, "Theme_TearFountain__Fi", SN_NOWARN) set_name(0x80147570, "Theme_BrnCross__Fi", SN_NOWARN) set_name(0x801476E8, "Theme_WeaponRack__Fi", SN_NOWARN) set_name(0x80147880, "UpdateL4Trans__Fv", SN_NOWARN) set_name(0x801478E0, "CreateThemeRooms__Fv", SN_NOWARN) set_name(0x80147AC4, "InitPortals__Fv", SN_NOWARN) set_name(0x80147B24, "InitQuests__Fv", SN_NOWARN) set_name(0x80147F28, "DrawButcher__Fv", SN_NOWARN) set_name(0x80147F6C, "DrawSkelKing__Fiii", SN_NOWARN) set_name(0x80147FA8, "DrawWarLord__Fii", SN_NOWARN) set_name(0x801480A4, "DrawSChamber__Fiii", SN_NOWARN) set_name(0x801481E0, "DrawLTBanner__Fii", SN_NOWARN) set_name(0x801482BC, "DrawBlind__Fii", SN_NOWARN) set_name(0x80148398, "DrawBlood__Fii", SN_NOWARN) set_name(0x80148478, "DRLG_CheckQuests__Fii", SN_NOWARN) set_name(0x801485B4, "InitInv__Fv", SN_NOWARN) set_name(0x80148614, "InitAutomap__Fv", SN_NOWARN) set_name(0x801487D8, "InitAutomapOnce__Fv", SN_NOWARN) set_name(0x801487E8, "MonstPlace__Fii", SN_NOWARN) set_name(0x801488A4, "InitMonsterGFX__Fi", SN_NOWARN) set_name(0x8014897C, "PlaceMonster__Fiiii", SN_NOWARN) set_name(0x80148A1C, "AddMonsterType__Fii", SN_NOWARN) set_name(0x80148B18, "GetMonsterTypes__FUl", SN_NOWARN) set_name(0x80148BC8, "ClrAllMonsters__Fv", SN_NOWARN) set_name(0x80148D08, "InitLevelMonsters__Fv", SN_NOWARN) set_name(0x80148D8C, "GetLevelMTypes__Fv", SN_NOWARN) set_name(0x801491F4, "PlaceQuestMonsters__Fv", SN_NOWARN) set_name(0x801495B8, "LoadDiabMonsts__Fv", SN_NOWARN) set_name(0x801496C8, "PlaceGroup__FiiUci", SN_NOWARN) set_name(0x80149BFC, "SetMapMonsters__FPUcii", SN_NOWARN) set_name(0x80149E20, "InitMonsters__Fv", SN_NOWARN) set_name(0x8014A1D0, "PlaceUniqueMonst__Fiii", SN_NOWARN) set_name(0x8014A93C, "PlaceUniques__Fv", SN_NOWARN) set_name(0x8014AACC, "PreSpawnSkeleton__Fv", SN_NOWARN) set_name(0x8014AC0C, "encode_enemy__Fi", SN_NOWARN) set_name(0x8014AC64, "decode_enemy__Fii", SN_NOWARN) set_name(0x8014AD7C, "IsGoat__Fi", SN_NOWARN) set_name(0x8014ADA8, "InitMissiles__Fv", SN_NOWARN) set_name(0x8014AF80, "InitNoTriggers__Fv", SN_NOWARN) set_name(0x8014AFA4, "InitTownTriggers__Fv", SN_NOWARN) set_name(0x8014B304, "InitL1Triggers__Fv", SN_NOWARN) set_name(0x8014B418, "InitL2Triggers__Fv", SN_NOWARN) set_name(0x8014B5A8, "InitL3Triggers__Fv", SN_NOWARN) set_name(0x8014B704, "InitL4Triggers__Fv", SN_NOWARN) set_name(0x8014B918, "InitSKingTriggers__Fv", SN_NOWARN) set_name(0x8014B964, "InitSChambTriggers__Fv", SN_NOWARN) set_name(0x8014B9B0, "InitPWaterTriggers__Fv", SN_NOWARN) set_name(0x8014B9FC, "InitVPTriggers__Fv", SN_NOWARN) set_name(0x8014BA48, "InitStores__Fv", SN_NOWARN) set_name(0x8014BAC8, "SetupTownStores__Fv", SN_NOWARN) set_name(0x8014BC78, "DeltaLoadLevel__Fv", SN_NOWARN) set_name(0x8014C46C, "SmithItemOk__Fi", SN_NOWARN) set_name(0x8014C4D0, "RndSmithItem__Fi", SN_NOWARN) set_name(0x8014C5DC, "WitchItemOk__Fi", SN_NOWARN) set_name(0x8014C71C, "RndWitchItem__Fi", SN_NOWARN) set_name(0x8014C81C, "BubbleSwapItem__FP10ItemStructT0", SN_NOWARN) set_name(0x8014C900, "SortWitch__Fv", SN_NOWARN) set_name(0x8014CA20, "RndBoyItem__Fi", SN_NOWARN) set_name(0x8014CB44, "HealerItemOk__Fi", SN_NOWARN) set_name(0x8014CCF8, "RndHealerItem__Fi", SN_NOWARN) set_name(0x8014CDF8, "RecreatePremiumItem__Fiiii", SN_NOWARN) set_name(0x8014CEC0, "RecreateWitchItem__Fiiii", SN_NOWARN) set_name(0x8014D018, "RecreateSmithItem__Fiiii", SN_NOWARN) set_name(0x8014D0B4, "RecreateHealerItem__Fiiii", SN_NOWARN) set_name(0x8014D174, "RecreateBoyItem__Fiiii", SN_NOWARN) set_name(0x8014D238, "RecreateTownItem__FiiUsii", SN_NOWARN) set_name(0x8014D2C4, "SpawnSmith__Fi", SN_NOWARN) set_name(0x8014D460, "SpawnWitch__Fi", SN_NOWARN) set_name(0x8014D7CC, "SpawnHealer__Fi", SN_NOWARN) set_name(0x8014DAE8, "SpawnBoy__Fi", SN_NOWARN) set_name(0x8014DC3C, "SortSmith__Fv", SN_NOWARN) set_name(0x8014DD50, "SortHealer__Fv", SN_NOWARN) set_name(0x8014DE70, "RecreateItem__FiiUsii", SN_NOWARN) set_name(0x80122D48, "themeLoc", SN_NOWARN) set_name(0x80123490, "OldBlock", SN_NOWARN) set_name(0x801234A0, "L5dungeon", SN_NOWARN) set_name(0x80123130, "SPATS", SN_NOWARN) set_name(0x80123234, "BSTYPES", SN_NOWARN) set_name(0x80123304, "L5BTYPES", SN_NOWARN) set_name(0x801233D4, "STAIRSUP", SN_NOWARN) set_name(0x801233F8, "L5STAIRSUP", SN_NOWARN) set_name(0x8012341C, "STAIRSDOWN", SN_NOWARN) set_name(0x80123438, "LAMPS", SN_NOWARN) set_name(0x80123444, "PWATERIN", SN_NOWARN) set_name(0x80122D38, "L5ConvTbl", SN_NOWARN) set_name(0x8012B6D0, "RoomList", SN_NOWARN) set_name(0x8012BD24, "predungeon", SN_NOWARN) set_name(0x80129E60, "Dir_Xadd", SN_NOWARN) set_name(0x80129E74, "Dir_Yadd", SN_NOWARN) set_name(0x80129E88, "SPATSL2", SN_NOWARN) set_name(0x80129E98, "BTYPESL2", SN_NOWARN) set_name(0x80129F3C, "BSTYPESL2", SN_NOWARN) set_name(0x80129FE0, "VARCH1", SN_NOWARN) set_name(0x80129FF4, "VARCH2", SN_NOWARN) set_name(0x8012A008, "VARCH3", SN_NOWARN) set_name(0x8012A01C, "VARCH4", SN_NOWARN) set_name(0x8012A030, "VARCH5", SN_NOWARN) set_name(0x8012A044, "VARCH6", SN_NOWARN) set_name(0x8012A058, "VARCH7", SN_NOWARN) set_name(0x8012A06C, "VARCH8", SN_NOWARN) set_name(0x8012A080, "VARCH9", SN_NOWARN) set_name(0x8012A094, "VARCH10", SN_NOWARN) set_name(0x8012A0A8, "VARCH11", SN_NOWARN) set_name(0x8012A0BC, "VARCH12", SN_NOWARN) set_name(0x8012A0D0, "VARCH13", SN_NOWARN) set_name(0x8012A0E4, "VARCH14", SN_NOWARN) set_name(0x8012A0F8, "VARCH15", SN_NOWARN) set_name(0x8012A10C, "VARCH16", SN_NOWARN) set_name(0x8012A120, "VARCH17", SN_NOWARN) set_name(0x8012A130, "VARCH18", SN_NOWARN) set_name(0x8012A140, "VARCH19", SN_NOWARN) set_name(0x8012A150, "VARCH20", SN_NOWARN) set_name(0x8012A160, "VARCH21", SN_NOWARN) set_name(0x8012A170, "VARCH22", SN_NOWARN) set_name(0x8012A180, "VARCH23", SN_NOWARN) set_name(0x8012A190, "VARCH24", SN_NOWARN) set_name(0x8012A1A0, "VARCH25", SN_NOWARN) set_name(0x8012A1B4, "VARCH26", SN_NOWARN) set_name(0x8012A1C8, "VARCH27", SN_NOWARN) set_name(0x8012A1DC, "VARCH28", SN_NOWARN) set_name(0x8012A1F0, "VARCH29", SN_NOWARN) set_name(0x8012A204, "VARCH30", SN_NOWARN) set_name(0x8012A218, "VARCH31", SN_NOWARN) set_name(0x8012A22C, "VARCH32", SN_NOWARN) set_name(0x8012A240, "VARCH33", SN_NOWARN) set_name(0x8012A254, "VARCH34", SN_NOWARN) set_name(0x8012A268, "VARCH35", SN_NOWARN) set_name(0x8012A27C, "VARCH36", SN_NOWARN) set_name(0x8012A290, "VARCH37", SN_NOWARN) set_name(0x8012A2A4, "VARCH38", SN_NOWARN) set_name(0x8012A2B8, "VARCH39", SN_NOWARN) set_name(0x8012A2CC, "VARCH40", SN_NOWARN) set_name(0x8012A2E0, "HARCH1", SN_NOWARN) set_name(0x8012A2F0, "HARCH2", SN_NOWARN) set_name(0x8012A300, "HARCH3", SN_NOWARN) set_name(0x8012A310, "HARCH4", SN_NOWARN) set_name(0x8012A320, "HARCH5", SN_NOWARN) set_name(0x8012A330, "HARCH6", SN_NOWARN) set_name(0x8012A340, "HARCH7", SN_NOWARN) set_name(0x8012A350, "HARCH8", SN_NOWARN) set_name(0x8012A360, "HARCH9", SN_NOWARN) set_name(0x8012A370, "HARCH10", SN_NOWARN) set_name(0x8012A380, "HARCH11", SN_NOWARN) set_name(0x8012A390, "HARCH12", SN_NOWARN) set_name(0x8012A3A0, "HARCH13", SN_NOWARN) set_name(0x8012A3B0, "HARCH14", SN_NOWARN) set_name(0x8012A3C0, "HARCH15", SN_NOWARN) set_name(0x8012A3D0, "HARCH16", SN_NOWARN) set_name(0x8012A3E0, "HARCH17", SN_NOWARN) set_name(0x8012A3F0, "HARCH18", SN_NOWARN) set_name(0x8012A400, "HARCH19", SN_NOWARN) set_name(0x8012A410, "HARCH20", SN_NOWARN) set_name(0x8012A420, "HARCH21", SN_NOWARN) set_name(0x8012A430, "HARCH22", SN_NOWARN) set_name(0x8012A440, "HARCH23", SN_NOWARN) set_name(0x8012A450, "HARCH24", SN_NOWARN) set_name(0x8012A460, "HARCH25", SN_NOWARN) set_name(0x8012A470, "HARCH26", SN_NOWARN) set_name(0x8012A480, "HARCH27", SN_NOWARN) set_name(0x8012A490, "HARCH28", SN_NOWARN) set_name(0x8012A4A0, "HARCH29", SN_NOWARN) set_name(0x8012A4B0, "HARCH30", SN_NOWARN) set_name(0x8012A4C0, "HARCH31", SN_NOWARN) set_name(0x8012A4D0, "HARCH32", SN_NOWARN) set_name(0x8012A4E0, "HARCH33", SN_NOWARN) set_name(0x8012A4F0, "HARCH34", SN_NOWARN) set_name(0x8012A500, "HARCH35", SN_NOWARN) set_name(0x8012A510, "HARCH36", SN_NOWARN) set_name(0x8012A520, "HARCH37", SN_NOWARN) set_name(0x8012A530, "HARCH38", SN_NOWARN) set_name(0x8012A540, "HARCH39", SN_NOWARN) set_name(0x8012A550, "HARCH40", SN_NOWARN) set_name(0x8012A560, "USTAIRS", SN_NOWARN) set_name(0x8012A584, "DSTAIRS", SN_NOWARN) set_name(0x8012A5A8, "WARPSTAIRS", SN_NOWARN) set_name(0x8012A5CC, "CRUSHCOL", SN_NOWARN) set_name(0x8012A5E0, "BIG1", SN_NOWARN) set_name(0x8012A5EC, "BIG2", SN_NOWARN) set_name(0x8012A5F8, "BIG5", SN_NOWARN) set_name(0x8012A604, "BIG8", SN_NOWARN) set_name(0x8012A610, "BIG9", SN_NOWARN) set_name(0x8012A61C, "BIG10", SN_NOWARN) set_name(0x8012A628, "PANCREAS1", SN_NOWARN) set_name(0x8012A648, "PANCREAS2", SN_NOWARN) set_name(0x8012A668, "CTRDOOR1", SN_NOWARN) set_name(0x8012A67C, "CTRDOOR2", SN_NOWARN) set_name(0x8012A690, "CTRDOOR3", SN_NOWARN) set_name(0x8012A6A4, "CTRDOOR4", SN_NOWARN) set_name(0x8012A6B8, "CTRDOOR5", SN_NOWARN) set_name(0x8012A6CC, "CTRDOOR6", SN_NOWARN) set_name(0x8012A6E0, "CTRDOOR7", SN_NOWARN) set_name(0x8012A6F4, "CTRDOOR8", SN_NOWARN) set_name(0x8012A708, "Patterns", SN_NOWARN) set_name(0x80131718, "lockout", SN_NOWARN) set_name(0x80131478, "L3ConvTbl", SN_NOWARN) set_name(0x80131488, "L3UP", SN_NOWARN) set_name(0x8013149C, "L3DOWN", SN_NOWARN) set_name(0x801314B0, "L3HOLDWARP", SN_NOWARN) set_name(0x801314C4, "L3TITE1", SN_NOWARN) set_name(0x801314E8, "L3TITE2", SN_NOWARN) set_name(0x8013150C, "L3TITE3", SN_NOWARN) set_name(0x80131530, "L3TITE6", SN_NOWARN) set_name(0x8013155C, "L3TITE7", SN_NOWARN) set_name(0x80131588, "L3TITE8", SN_NOWARN) set_name(0x8013159C, "L3TITE9", SN_NOWARN) set_name(0x801315B0, "L3TITE10", SN_NOWARN) set_name(0x801315C4, "L3TITE11", SN_NOWARN) set_name(0x801315D8, "L3ISLE1", SN_NOWARN) set_name(0x801315E8, "L3ISLE2", SN_NOWARN) set_name(0x801315F8, "L3ISLE3", SN_NOWARN) set_name(0x80131608, "L3ISLE4", SN_NOWARN) set_name(0x80131618, "L3ISLE5", SN_NOWARN) set_name(0x80131624, "L3ANVIL", SN_NOWARN) set_name(0x80136534, "dung", SN_NOWARN) set_name(0x801366C4, "hallok", SN_NOWARN) set_name(0x801366D8, "L4dungeon", SN_NOWARN) set_name(0x80137FD8, "L4ConvTbl", SN_NOWARN) set_name(0x80137FE8, "L4USTAIRS", SN_NOWARN) set_name(0x80138014, "L4TWARP", SN_NOWARN) set_name(0x80138040, "L4DSTAIRS", SN_NOWARN) set_name(0x80138074, "L4PENTA", SN_NOWARN) set_name(0x801380A8, "L4PENTA2", SN_NOWARN) set_name(0x801380DC, "L4BTYPES", SN_NOWARN)
50.5
68
0.822147
c4312b8b9b3276cd82f195ec746b56497843ecbb
9,085
py
Python
route_report.py
cmosig/route-report
35599caded6b78f665446dfb5cca4df3d8a86dbd
[ "MIT" ]
5
2021-06-02T10:20:36.000Z
2021-06-26T13:13:35.000Z
route_report.py
cmosig/route-report
35599caded6b78f665446dfb5cca4df3d8a86dbd
[ "MIT" ]
3
2021-06-02T10:37:49.000Z
2021-06-03T21:04:11.000Z
route_report.py
cmosig/route-report
35599caded6b78f665446dfb5cca4df3d8a86dbd
[ "MIT" ]
null
null
null
import osm_tags import output import utility as uti import metadata import country_detection import gpxpy import pandas as pd import argparse from termcolor import colored # ------------------------------------------------------------ # INIT # ------------------------------------------------------------ def setup_parser(): parser = argparse.ArgumentParser( description='Finds stuff next to your route.') # input file parser.add_argument('-f', '--input-file', metavar='route.gpx', required=True, type=str, nargs='?', help='used to supply your gpx file', dest="input-file") # search distance parser.add_argument( '-d', '--search-distance', metavar='<distance>', required=False, type=float, nargs='?', help= "defines approx. search radius around route in kilometers (default=1km)", dest="search-distance", default=1) # list of countries parser.add_argument( '-c', '--country-codes', metavar='countries', default="AUTO", required=False, type=str, nargs='?', help= "comma separated list of country codes (ISO 3166-1 Alpha-2 --> see Wikipedia), e.g., DE,US,FR (default=AUTO --> autodetection)", dest="country-codes") # use cache or not parser.add_argument( '-r', '--redownload-files', action='store_true', required=False, help="""if you want to redownload the large file from the openstreetmap repository. This does not include processing of the file. Regardless of this option files will be downloaded automatically if they do not exist.""", dest="redownload-files") # use cache or not parser.add_argument( '-m', '--reprocess-files', action='store_true', required=False, help= """if you wat to reprocess the large openstreetmap file into the metadata file that is used for finding points of interest. Regardless of this option files will be processed automatically if the processed file does not exist.""", dest="reprocess-files") # set output mode parser.add_argument( '-o', '--output-modes', required=False, metavar="print|csv|google-sheets|pdf|html-map", type=str, default="csv,print,html-map", help= "comma separated list of output modes, e.g., print,csv (default=csv,print,html-map)", dest="output-modes") # choose points of interest parser.add_argument( '-p', '--points-of-interest', required=False, metavar="|".join(osm_tags.get_osm_tag_mapping() ["route-report-group"].drop_duplicates().to_list()), default="food-shop,water,petrol-station", type=str, help= """comma separated list of points-of-interest the program is supposed to look for along the route (default=food-shop,water,petrol-station)""", dest="points-of-interest") return vars(parser.parse_args()) # ------------------------------------------------------------ # FILE INTERACTIONS # ------------------------------------------------------------ def extract_points(filename): gpx_file = open(filename, 'r') gpx = gpxpy.parse(gpx_file) all_points = [] for track in gpx.tracks: for segment in track.segments: for point in segment.points: all_points.append({ "latitude": point.latitude, "longitude": point.longitude }) route = pd.DataFrame(all_points) # compute distances between points to get about the position/kilometer on # the route where the point is route["lat_next"] = route["latitude"].shift(1) route["long_next"] = route["longitude"].shift(1) route["diff_distance"] = route.apply(uti.metric_distance_between_latlong, args=("latitude", "longitude", "lat_next", "long_next"), axis=1) route["cum_distance_km"] = route["diff_distance"].cumsum().apply(int) return route[["latitude", "longitude", "cum_distance_km"]] # ------------------------------------------------------------ # MAIN STUFF # ------------------------------------------------------------ def get_poi(ser): """gets points of interested around a given point (lat, long)""" # TODO performance? # TODO make nice and less hacky lati = ser["latitude"] long = ser["longitude"] subset = poi[((poi["longitude"] - long).abs() < search_distance) & ((poi["latitude"] - lati).abs() < search_distance)] list_of_poi = [(row[1]["id"], row[1]["name"], row[1]["latitude"], row[1]["longitude"], row[1]["poi_groups"]) for row in subset.iterrows()] return list_of_poi def postprocess_route_results(route): # TODO remove duplicates by distance to each other --> check if there are # duplicate supermarkets --> saved as way and node # remove points without poi route = route[route["poi"].apply(len) != 0] # first get one pois per line route = route.explode("poi") # extract data for pois route["poi_id"] = route["poi"].str[0] route["poi_name"] = route["poi"].str[1] route["poi_lat"] = route["poi"].str[2] route["poi_long"] = route["poi"].str[3] route["poi_groups"] = route["poi"].str[4] del route["poi"] # compute distance between route point and poi route["poi_distance_to_route"] = route.apply( uti.metric_distance_between_latlong, args=["latitude", "longitude", "poi_lat", "poi_long"], axis=1) # if poi is listed multiple times, then keep the one with the closest # distance to route route = route.sort_values(by="poi_distance_to_route") route = route.drop_duplicates(subset=["poi_id"], keep="first") # sort list by cum. km and pois name route = route.sort_values(by=["cum_distance_km", "poi_name"]) return route def main(args): global search_distance if args["search-distance"] is None: uti.log( colored( "If you use the -d option you also need to supply a distance!", "red")) exit() search_distance = uti.convert_km_to_latlong(args["search-distance"]) # processing the gpx file uti.log("reading and preprocessing route...", expect_more=True) route = extract_points(args["input-file"]) orignal_route = route.copy(deep=True) uti.log("DONE", append=True) # detecting countries on route if args["country-codes"] == "AUTO": uti.log("detecting countries on route...", expect_more=True) country_codes = country_detection.detect_country_for_points( route[["latitude", "longitude"]]) uti.log(",".join(country_codes) + "...", append=True, expect_more=True) uti.log("DONE", append=True) else: country_codes = args["country-codes"].split(',') # downlaod metadata files if necessary metadata.download_and_preprocess_metadata(country_codes, args["redownload-files"], args["reprocess-files"]) # read in metadata uti.log("reading metadata...", expect_more=True) global poi poi = metadata.read_metadata(country_codes) # only take poi the user wants points_of_interest_group_filter = set( args["points-of-interest"].split(',')) poi = poi[poi["poi_groups"].apply(lambda groups: any( [group in points_of_interest_group_filter for group in groups]))] uti.log("DONE", append=True) # get the poi uti.log("searching for points of interest...", expect_more=True) route["poi"] = route.apply(get_poi, axis=1) # the approach below using polygons is only twice as fast and still requires postprocessing and matching with route # create route and add search distance area around it # route_polygon = LineString(map(Point,zip(route["latitude"], route["longitude"]))).buffer(search_distance) # filter poi that are in polygon # poi = poi[poi[["latitude", "longitude"]].apply(lambda point: route_polygon.contains(Point(tuple(point))), axis=1)] route = postprocess_route_results(route) uti.log("DONE", append=True) return route, orignal_route if __name__ == "__main__": args = setup_parser() route_with_shops, orignal_route = main(args) output.output_results(route_with_shops, orignal_route, modes=args["output-modes"].split(','), original_filename=args["input-file"].replace( ".gpx", "").split('/')[-1])
35.07722
136
0.574353
932ee2092e9077898e421cc7f9287f8342e8ca96
2,111
py
Python
iridium/inveniordm/models/base.py
chriz-uniba/iridium
4d357dc9d61aebfedd3c3e6a6b6451798c2c7122
[ "MIT" ]
2
2022-01-21T14:00:31.000Z
2022-03-29T13:47:20.000Z
iridium/inveniordm/models/base.py
chriz-uniba/iridium
4d357dc9d61aebfedd3c3e6a6b6451798c2c7122
[ "MIT" ]
8
2022-01-21T10:18:09.000Z
2022-03-25T13:11:21.000Z
iridium/inveniordm/models/base.py
chriz-uniba/iridium
4d357dc9d61aebfedd3c3e6a6b6451798c2c7122
[ "MIT" ]
2
2022-02-15T16:48:38.000Z
2022-02-16T14:58:24.000Z
"""Modified base model with enhanced pretty-printing.""" import json from typing import cast from pydantic import BaseModel from ...pprint import pp class JSONModel(BaseModel): """ Subclass adding additional features to pydantic BaseModel for API responses. Models deriving from this variant: * automatically are pretty-printed as JSON (for user convenience) * can have read-only attributes declared that prevent direct setting * can be toggled to return original, raw JSON dict (for debugging) Only use this for parsing JSON responses from API requests! Otherwise these enhancements might lead to unintended consequences. """ @property def _read_only(self): return [] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __setattr__(self, key, value): if key in self._read_only: raise ValueError(f"'{key}' is a read-only attribute!") super().__setattr__(key, value) _raw_json: bool = False @classmethod def raw_json(cls, val: bool): cls._raw_json = val def __repr__(self) -> str: """ Pretty-printed appropriate representation of JSON-based objects. In normal circumstances, this should be __str__ instead, because __repr__ is supposed to REPRoduce the object, i.e. be a Python expression yielding the object. But in our case the distinction between "user" and "developer" is not that clear-cut and as users will use this in a Python interpreter context, making this __repr__ seems to be the lesser evil for enhanced usability. """ return pp(json.loads(self.json(exclude_none=True))) @classmethod def parse_obj(cls, val, *args, **kwargs): """ If _raw_json is set, return back the raw JSON dict instead of parsed object. NOTE: This is a DEBUGGING HACK and should only be used as such! """ if cls._raw_json: return cast(cls, val) else: return cast(cls, super().parse_obj(val, *args, **kwargs))
31.507463
85
0.663667
d1d29a0c496b91cbd883e24adeb75d8e67249bff
1,100
py
Python
jobs/types/feedback_validation_errors.py
Tim810306/oppia
6f90044d12dbe0979c999265cbe46f267c4c592d
[ "Apache-2.0" ]
2
2021-05-24T10:23:32.000Z
2021-08-22T18:50:14.000Z
jobs/types/feedback_validation_errors.py
Tim810306/oppia
6f90044d12dbe0979c999265cbe46f267c4c592d
[ "Apache-2.0" ]
11
2021-03-03T07:21:27.000Z
2022-03-12T01:03:44.000Z
jobs/types/feedback_validation_errors.py
Tim810306/oppia
6f90044d12dbe0979c999265cbe46f267c4c592d
[ "Apache-2.0" ]
1
2017-12-06T19:41:49.000Z
2017-12-06T19:41:49.000Z
# coding: utf-8 # # Copyright 2021 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Error classes for feedback model audits.""" from __future__ import absolute_import from __future__ import unicode_literals from jobs.types import base_validation_errors class InvalidEntityTypeError(base_validation_errors.BaseAuditError): """Error class for models that have invalid entity type.""" def __init__(self, model): message = 'entity type %s is invalid.' % model.entity_type super(InvalidEntityTypeError, self).__init__(message, model)
35.483871
74
0.761818
4066e3b597675f9403e717731bdd050d5683c108
1,257
py
Python
core/logic.py
tfagerlind/verso
c2ecbce47180396e640e97450ee72aa034f704b0
[ "MIT" ]
null
null
null
core/logic.py
tfagerlind/verso
c2ecbce47180396e640e97450ee72aa034f704b0
[ "MIT" ]
3
2022-01-21T21:52:52.000Z
2022-01-21T22:03:26.000Z
core/logic.py
tfagerlind/verso
c2ecbce47180396e640e97450ee72aa034f704b0
[ "MIT" ]
null
null
null
"""Provides the main logic of the application""" import logging import semver logger = logging.getLogger() def get_current_version(tags): """Get the current version. Args: tags(list): list of git tags Returns: string: A version that corresponds to the tag that represents the last version. """ versions = [tag[1:] for tag in tags] valid_versions = [version for version in versions if semver.VersionInfo.isvalid(version)] semver_versions = [semver.VersionInfo.parse(version) for version in valid_versions] return str(max(semver_versions)) if semver_versions else "0.0.0" def get_next_version(tags): """Get the next version.""" versions = [tag[1:] for tag in tags] valid_versions = [version for version in versions if semver.VersionInfo.isvalid(version)] semver_versions = [semver.VersionInfo.parse(version) for version in valid_versions] return (str(max(semver_versions).bump_patch()) if semver_versions else "0.1.0")
29.232558
69
0.568019
13820e0f0290b16fcc6bb034e6e8b87cd7825b40
4,116
py
Python
test/system/anarchism/molecule/default/tests/test_testaid_system_anarchism_project_templates.py
RebelCodeBase/testaid
998c827b826fe4374ecf0a234fef61a975e2fcd7
[ "Apache-2.0" ]
17
2019-08-04T09:29:19.000Z
2020-05-16T02:25:20.000Z
test/system/anarchism/molecule/default/tests/test_testaid_system_anarchism_project_templates.py
RebelCodeBase/testaid
998c827b826fe4374ecf0a234fef61a975e2fcd7
[ "Apache-2.0" ]
12
2019-07-19T22:20:42.000Z
2020-01-20T06:45:38.000Z
test/system/anarchism/molecule/default/tests/test_testaid_system_anarchism_project_templates.py
RebelCodeBase/testaid
998c827b826fe4374ecf0a234fef61a975e2fcd7
[ "Apache-2.0" ]
3
2019-08-08T18:18:13.000Z
2019-10-07T13:46:03.000Z
import json import testaid testinfra_hosts = testaid.hosts() def test_testaid_system_templates_resolve_template_string( host, testvars): assert testvars['project_my_var_1'] == 'my_string_1' def test_testaid_system_templates_resolve_template_string_reference( host, testvars): assert testvars['project_template1'] == 'my_string_1' def test_testaid_system_templates_resolve_template_string_twice( host, testvars): assert testvars['project_template2'] == 'my_string_1' def test_testaid_system_templates_resolve_template_string_transitive( host, testvars): assert testvars['project_template3'] == 'my_string_1' def test_testaid_system_templates_resolve_template_string_inline_front( host, testvars): assert testvars['project_template4'] == 'inline+my_string_1' def test_testaid_system_templates_resolve_template_string_inline_back( host, testvars): assert testvars['project_template5'] == 'my_string_1+inline' def test_testaid_system_templates_resolve_template_string_inline_both( host, testvars): assert testvars['project_template6'] == 'inline+my_string_1+inline' def test_testaid_system_templates_resolve_template_no_string( host, testvars): assert testvars['project_my_var_2'] == 99 def test_testaid_system_templates_resolve_template_no_string_reference( host, testvars): assert testvars['project_template7'] == 99 def test_testaid_system_templates_resolve_template_no_string_transitive( host, testvars): # FIXME: Why is this suddenly a string? assert testvars['project_template8'] == '99' def test_testaid_system_templates_resolve_template_no_string_inline_front( host, testvars): assert testvars['project_template9'] == 'inline+99' def test_testaid_system_templates_resolve_template_no_string_inline_back( host, testvars): assert testvars['project_template10'] == '99+inline' def test_testaid_system_templates_resolve_template_no_string_inline_both( host, testvars): assert testvars['project_template11'] == 'inline+99+inline' def test_testaid_system_templates_resolve_template_special_chars_1( host, testvars): assert testvars['project_special1'] == "äö(ü'!)§$;~é" def test_testaid_system_templates_resolve_template_special_chars_2( host, testvars): assert testvars['project_special2'] == 'ñô‰(„}»")¯]¿¬' def test_testaid_system_template_resolve_lookup( host, testvars): assert testvars['project_lookup_flattened'] == [1, 2, 3, 4, 5, 6] def test_testaid_system_templates_resolve_template_list( host, testvars): list1_json = '["first_list_item", "second_list_item"]' assert json.dumps(testvars['project_list1']) == list1_json def test_testaid_system_templates_resolve_template_nested_list( host, testvars): list2_json = '["first_list_item", "second_list_item"]' assert isinstance(testvars['project_list2'], list) assert json.dumps(testvars['project_list2']) == list2_json def test_testaid_system_templates_resolve_template_dict( host, testvars): dict1_json = '{"first_key": "first_value", "second_key": "second_value"}' assert json.dumps(testvars['project_dict1']) == dict1_json def test_testaid_system_templates_resolve_template_filter_zip( host, testvars): filter_zip_json = '[["first_list_item", "anarchism"], ' filter_zip_json += '["second_list_item", "fortune-anarchism"]]' assert json.dumps(testvars['project_filter_zip']) == filter_zip_json def test_testaid_system_templates_resolve_template_filter_dict2items( host, testvars): filter_dict_json = '[{"key": "first_key", ' filter_dict_json += '"value": "first_value"}, ' filter_dict_json += '{"key": "second_key", ' filter_dict_json += '"value": "second_value"}]' assert json.dumps(testvars['project_filter_dict2items']) == \ filter_dict_json
28.783217
77
0.719631
163064019a865a44ee4212a77f525a36189841fe
563
py
Python
adapters/innr/SP120.py
lily148/domoticz-zigbee2mqtt-plugin
5d8b8121b0a86d341ca054df68cb26697e023af9
[ "MIT" ]
null
null
null
adapters/innr/SP120.py
lily148/domoticz-zigbee2mqtt-plugin
5d8b8121b0a86d341ca054df68cb26697e023af9
[ "MIT" ]
null
null
null
adapters/innr/SP120.py
lily148/domoticz-zigbee2mqtt-plugin
5d8b8121b0a86d341ca054df68cb26697e023af9
[ "MIT" ]
null
null
null
from adapters.on_off_switch_adapter import OnOffSwitchAdapter from devices.sensor.current import CurrentSensor from devices.sensor.voltage import VoltageSensor from devices.sensor.kwh import KwhSensor class InnrSP120Plug(OnOffSwitchAdapter): def __init__(self, devices): super().__init__(devices) self.devices.append(VoltageSensor(devices, 'volt', 'voltage', ' (Voltage)')) self.devices.append(CurrentSensor(devices, 'ampere', 'current', ' (Current)')) self.devices.append(KwhSensor(devices, 'power', ['power'], ' (Power)'))
43.307692
86
0.738899
a1ca0e5b229e00901396d5e239fe4ddba417f443
7,812
py
Python
pymodbus/utilities.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
null
null
null
pymodbus/utilities.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
null
null
null
pymodbus/utilities.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
null
null
null
""" Modbus Utilities ----------------- A collection of utilities for packing data, unpacking data computing checksums, and decode checksums. """ from pymodbus.compat import int2byte, byte2int, IS_PYTHON3 from six import string_types import logging _logger = logging.getLogger(__name__) class ModbusTransactionState(object): """ Modbus Client States """ IDLE = 0 SENDING = 1 WAITING_FOR_REPLY = 2 WAITING_TURNAROUND_DELAY = 3 PROCESSING_REPLY = 4 PROCESSING_ERROR = 5 TRANSACTION_COMPLETE = 6 RETRYING = 7 NO_RESPONSE_STATE = 8 @classmethod def to_string(cls, state): states = { ModbusTransactionState.IDLE: "IDLE", ModbusTransactionState.SENDING: "SENDING", ModbusTransactionState.WAITING_FOR_REPLY: "WAITING_FOR_REPLY", ModbusTransactionState.WAITING_TURNAROUND_DELAY: "WAITING_TURNAROUND_DELAY", ModbusTransactionState.PROCESSING_REPLY: "PROCESSING_REPLY", ModbusTransactionState.PROCESSING_ERROR: "PROCESSING_ERROR", ModbusTransactionState.TRANSACTION_COMPLETE: "TRANSACTION_COMPLETE", ModbusTransactionState.RETRYING: "RETRYING TRANSACTION", } return states.get(state, None) # --------------------------------------------------------------------------- # # Helpers # --------------------------------------------------------------------------- # def default(value): """ Given a python object, return the default value of that object. :param value: The value to get the default of :returns: The default value """ return type(value)() def dict_property(store, index): """ Helper to create class properties from a dictionary. Basically this allows you to remove a lot of possible boilerplate code. :param store: The store store to pull from :param index: The index into the store to close over :returns: An initialized property set """ if hasattr(store, '__call__'): getter = lambda self: store(self)[index] setter = lambda self, value: store(self).__setitem__(index, value) elif isinstance(store, str): getter = lambda self: self.__getattribute__(store)[index] setter = lambda self, value: self.__getattribute__(store).__setitem__( index, value) else: getter = lambda self: store[index] setter = lambda self, value: store.__setitem__(index, value) return property(getter, setter) # --------------------------------------------------------------------------- # # Bit packing functions # --------------------------------------------------------------------------- # def pack_bitstring(bits): """ Creates a string out of an array of bits :param bits: A bit array example:: bits = [False, True, False, True] result = pack_bitstring(bits) """ ret = b'' i = packed = 0 for bit in bits: if bit: packed += 128 i += 1 if i == 8: ret += int2byte(packed) i = packed = 0 else: packed >>= 1 if 0 < i < 8: packed >>= (7 - i) ret += int2byte(packed) return ret def unpack_bitstring(string): """ Creates bit array out of a string :param string: The modbus data packet to decode example:: bytes = 'bytes to decode' result = unpack_bitstring(bytes) """ byte_count = len(string) bits = [] for byte in range(byte_count): if IS_PYTHON3: value = byte2int(int(string[byte])) else: value = byte2int(string[byte]) for _ in range(8): bits.append((value & 1) == 1) value >>= 1 return bits def make_byte_string(s): """ Returns byte string from a given string, python3 specific fix :param s: :return: """ if IS_PYTHON3 and isinstance(s, string_types): s = s.encode() return s # --------------------------------------------------------------------------- # # Error Detection Functions # --------------------------------------------------------------------------- # def __generate_crc16_table(): """ Generates a crc16 lookup table .. note:: This will only be generated once """ result = [] for byte in range(256): crc = 0x0000 for _ in range(8): if (byte ^ crc) & 0x0001: crc = (crc >> 1) ^ 0xa001 else: crc >>= 1 byte >>= 1 result.append(crc) return result __crc16_table = __generate_crc16_table() def computeCRC(data): """ Computes a crc16 on the passed in string. For modbus, this is only used on the binary serial protocols (in this case RTU). The difference between modbus's crc16 and a normal crc16 is that modbus starts the crc value out at 0xffff. :param data: The data to create a crc16 of :returns: The calculated CRC """ crc = 0xffff for a in data: idx = __crc16_table[(crc ^ byte2int(a)) & 0xff] crc = ((crc >> 8) & 0xff) ^ idx return ((crc << 8) & 0xff00) | ((crc >> 8) & 0x00ff) def checkCRC(data, check): """ Checks if the data matches the passed in CRC :param data: The data to create a crc16 of :param check: The CRC to validate :returns: True if matched, False otherwise """ calculated_crc = computeCRC(data) _logger.debug(f"Calculated CRC {hex(calculated_crc)}, expected {hex(check)}") return calculated_crc == check def computeLRC(data): """ Used to compute the longitudinal redundancy check against a string. This is only used on the serial ASCII modbus protocol. A full description of this implementation can be found in appendex B of the serial line modbus description. :param data: The data to apply a lrc to :returns: The calculated LRC """ lrc = sum(byte2int(a) for a in data) & 0xff lrc = (lrc ^ 0xff) + 1 return lrc & 0xff def checkLRC(data, check): """ Checks if the passed in data matches the LRC :param data: The data to calculate :param check: The LRC to validate :returns: True if matched, False otherwise """ return computeLRC(data) == check def rtuFrameSize(data, byte_count_pos): """ Calculates the size of the frame based on the byte count. :param data: The buffer containing the frame. :param byte_count_pos: The index of the byte count in the buffer. :returns: The size of the frame. The structure of frames with a byte count field is always the same: - first, there are some header fields - then the byte count field - then as many data bytes as indicated by the byte count, - finally the CRC (two bytes). To calculate the frame size, it is therefore sufficient to extract the contents of the byte count field, add the position of this field, and finally increment the sum by three (one byte for the byte count field, two for the CRC). """ # slave_id + fucntion_code + 2 CRCs return byte2int(len(data) - 2 - 2) #return byte2int(data[byte_count_pos]) + byte_count_pos + 3 def hexlify_packets(packet): """ Returns hex representation of bytestring received :param packet: :return: """ if not packet: return '' if IS_PYTHON3: return " ".join([hex(byte2int(x)) for x in packet]) else: return u" ".join([hex(byte2int(x)) for x in packet]) # --------------------------------------------------------------------------- # # Exported symbols # --------------------------------------------------------------------------- # __all__ = [ 'pack_bitstring', 'unpack_bitstring', 'default', 'computeCRC', 'checkCRC', 'computeLRC', 'checkLRC', 'rtuFrameSize' ]
29.258427
88
0.584357
76a11a27553fb8227bce6ed35f26e14a0df47d01
2,256
py
Python
utils.py
asakko/covid-vaccination-monitor
cce99652958842eb57f5b6a42d8d9dc94f068dc6
[ "MIT" ]
null
null
null
utils.py
asakko/covid-vaccination-monitor
cce99652958842eb57f5b6a42d8d9dc94f068dc6
[ "MIT" ]
null
null
null
utils.py
asakko/covid-vaccination-monitor
cce99652958842eb57f5b6a42d8d9dc94f068dc6
[ "MIT" ]
null
null
null
import json import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pandas as pd import requests import sys import warnings from collections import OrderedDict from datetime import datetime, timezone from io import StringIO def load_data(): url = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv' r = requests.get(url, allow_redirects=True) df = pd.read_csv(StringIO(r.content.decode("utf-8")), low_memory=False, parse_dates=['date'])[['location', 'date', 'total_vaccinations_per_hundred']] return df def plot_chart(ax, df, cmap, m:int = 30): n = len(df.date.unique()) min_date, max_date = df.date.min(), df.date.max() days = (max_date-min_date).days delta = 1+days//m dates = [min_date+pd.Timedelta(days=i*delta) for i in range(1+days//delta)] for loc, color in cmap.items(): ax.plot('date', 'total_vaccinations_per_hundred', data=df[(df.location==loc) & (~df.total_vaccinations_per_hundred.isna())].sort_values('date'), marker='o', color=color, label=loc) ax.set_ylabel('Vaccinated [%]') ax.legend(loc=2) ax.set_xticks(dates) ax.set_xticklabels(dates) ax.tick_params(axis='x', labelrotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) main_country_vs_color = OrderedDict({ 'Israel': '#1A85FF', 'Bahrain': '#FEFE62', 'United Kingdom': '#40B0A6', 'United States': '#4B0092', 'Canada': '#D35FB7', 'China': '#DC3220', 'Russia': '#994F00', 'European Union': '#E66100', 'Japan': '#E1BE6A', 'Australia': '#000000', 'India': '#D35FB7' }) european_country_vs_color = OrderedDict({ 'Austria': '#000000', 'Bulgaria': '#004949', 'Croatia': '#009292', 'Denmark': '#ff6db6', 'Estonia': '#ffb6db', 'France': '#490092', 'Germany': '#006ddb', 'Greece': '#b66dff', 'Hungary': '#6db6ff', 'Italy': '#b6dbff', 'Latvia': '#920000', 'Lithuania': '#924900', 'Luxembourg': '#db6d00', 'Poland': '#24ff24', 'Portugal': '#ffff6d', 'Romania': '#000000' })
33.176471
188
0.612145
32717b0f34ce8f25426fa5c1e9d84844a6f2effa
1,216
py
Python
electrum_dsv/gui/kivy/uix/dialogs/qr_scanner.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
electrum_dsv/gui/kivy/uix/dialogs/qr_scanner.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
electrum_dsv/gui/kivy/uix/dialogs/qr_scanner.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
from kivy.app import App from kivy.factory import Factory from kivy.lang import Builder Factory.register('QRScanner', module='electrum_dsv.gui.kivy.qr_scanner') class QrScannerDialog(Factory.AnimatedPopup): __events__ = ('on_complete', ) def on_symbols(self, instance, value): instance.stop() self.dismiss() data = value[0].data self.dispatch('on_complete', data) def on_complete(self, x): ''' Default Handler for on_complete event. ''' print(x) Builder.load_string(''' #:import KIVY_GUI_PATH electrum_dsv.gui.kivy.KIVY_GUI_PATH <QrScannerDialog> title: _(\ '[size=18dp]Hold your QRCode up to the camera[/size][size=7dp]\\n[/size]') title_size: '24sp' border: 7, 7, 7, 7 size_hint: None, None size: '340dp', '290dp' pos_hint: {'center_y': .53} #separator_color: .89, .89, .89, 1 #separator_height: '1.2dp' #title_color: .437, .437, .437, 1 #background: f'atlas://{KIVY_GUI_PATH}/theming/light/dialog' on_activate: qrscr.start() qrscr.size = self.size on_deactivate: qrscr.stop() QRScanner: id: qrscr on_symbols: root.on_symbols(*args) ''')
25.87234
82
0.635691
f0a60b0e5f1343a97320ef8e18114c4bdd37831e
32,708
py
Python
os_ken/lib/packet/icmpv6.py
rolaya/os-ken
10009e41539c737c7c423f13e4f5bc5f46d219ff
[ "Apache-2.0" ]
1
2019-04-24T04:01:07.000Z
2019-04-24T04:01:07.000Z
os_ken/lib/packet/icmpv6.py
anlaneg/os-ken
379a7694c3129cc0156343af71f4fca8830d9de5
[ "Apache-2.0" ]
null
null
null
os_ken/lib/packet/icmpv6.py
anlaneg/os-ken
379a7694c3129cc0156343af71f4fca8830d9de5
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2012 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import struct import six import sys import array import binascii from . import packet_base from . import packet_utils from os_ken.lib import addrconv from os_ken.lib import stringify ICMPV6_DST_UNREACH = 1 # dest unreachable, codes: ICMPV6_PACKET_TOO_BIG = 2 # packet too big ICMPV6_TIME_EXCEEDED = 3 # time exceeded, code: ICMPV6_PARAM_PROB = 4 # ip6 header bad ICMPV6_ECHO_REQUEST = 128 # echo service ICMPV6_ECHO_REPLY = 129 # echo reply MLD_LISTENER_QUERY = 130 # multicast listener query MLD_LISTENER_REPOR = 131 # multicast listener report MLD_LISTENER_DONE = 132 # multicast listener done MLDV2_LISTENER_REPORT = 143 # multicast listern report (v2) # RFC2292 decls ICMPV6_MEMBERSHIP_QUERY = 130 # group membership query ICMPV6_MEMBERSHIP_REPORT = 131 # group membership report ICMPV6_MEMBERSHIP_REDUCTION = 132 # group membership termination ND_ROUTER_SOLICIT = 133 # router solicitation ND_ROUTER_ADVERT = 134 # router advertisment ND_NEIGHBOR_SOLICIT = 135 # neighbor solicitation ND_NEIGHBOR_ADVERT = 136 # neighbor advertisment ND_REDIREC = 137 # redirect ICMPV6_ROUTER_RENUMBERING = 138 # router renumbering ICMPV6_WRUREQUEST = 139 # who are you request ICMPV6_WRUREPLY = 140 # who are you reply ICMPV6_FQDN_QUERY = 139 # FQDN query ICMPV6_FQDN_REPLY = 140 # FQDN reply ICMPV6_NI_QUERY = 139 # node information request ICMPV6_NI_REPLY = 140 # node information reply ICMPV6_MAXTYPE = 201 # ND_OPTIONS from RFC 4861 ND_OPTION_SLA = 1 # Source Link-Layer Address ND_OPTION_TLA = 2 # Target Link-Layer Address ND_OPTION_PI = 3 # Prefix Information ND_OPTION_RH = 4 # Redirected Header ND_OPTION_MTU = 5 # MTU MODE_IS_INCLUDE = 1 MODE_IS_EXCLUDE = 2 CHANGE_TO_INCLUDE_MODE = 3 CHANGE_TO_EXCLUDE_MODE = 4 ALLOW_NEW_SOURCES = 5 BLOCK_OLD_SOURCES = 6 class icmpv6(packet_base.PacketBase): r"""ICMPv6 (RFC 2463) header encoder/decoder class. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== type\_ Type code Code csum CheckSum (0 means automatically-calculate when encoding) data Payload. os_ken.lib.packet.icmpv6.echo object, \ os_ken.lib.packet.icmpv6.nd_neighbor object, \ os_ken.lib.packet.icmpv6.nd_router_solicit object, \ os_ken.lib.packet.icmpv6.nd_router_advert object, \ os_ken.lib.packet.icmpv6.mld object, \ or a bytearray. ============== ==================== """ _PACK_STR = '!BBH' _MIN_LEN = struct.calcsize(_PACK_STR) _ICMPV6_TYPES = {} @staticmethod def register_icmpv6_type(*args): def _register_icmpv6_type(cls): for type_ in args: icmpv6._ICMPV6_TYPES[type_] = cls return cls return _register_icmpv6_type def __init__(self, type_=0, code=0, csum=0, data=b''): super(icmpv6, self).__init__() self.type_ = type_ self.code = code self.csum = csum self.data = data @classmethod def parser(cls, buf): (type_, code, csum) = struct.unpack_from(cls._PACK_STR, buf) msg = cls(type_, code, csum) offset = cls._MIN_LEN if len(buf) > offset: cls_ = cls._ICMPV6_TYPES.get(type_, None) if cls_: msg.data = cls_.parser(buf, offset) else: msg.data = buf[offset:] return msg, None, None def serialize(self, payload, prev): hdr = bytearray(struct.pack(icmpv6._PACK_STR, self.type_, self.code, self.csum)) if self.data: if self.type_ in icmpv6._ICMPV6_TYPES: assert isinstance(self.data, _ICMPv6Payload) hdr += self.data.serialize() else: hdr += self.data if self.csum == 0: self.csum = packet_utils.checksum_ip(prev, len(hdr), hdr + payload) struct.pack_into('!H', hdr, 2, self.csum) return hdr def __len__(self): return self._MIN_LEN + len(self.data) @six.add_metaclass(abc.ABCMeta) class _ICMPv6Payload(stringify.StringifyMixin): """ Base class for the payload of ICMPv6 packet. """ @icmpv6.register_icmpv6_type(ND_NEIGHBOR_SOLICIT, ND_NEIGHBOR_ADVERT) class nd_neighbor(_ICMPv6Payload): """ICMPv6 sub encoder/decoder class for Neighbor Solicitation and Neighbor Advertisement messages. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== res R,S,O Flags for Neighbor Advertisement. \ The 3 MSBs of "Reserved" field for Neighbor Solicitation. dst Target Address option a derived object of os_ken.lib.packet.icmpv6.nd_option \ or a bytearray. None if no options. ============== ==================== """ _PACK_STR = '!I16s' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} _TYPE = { 'ascii': [ 'dst' ] } @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): nd_neighbor._ND_OPTION_TYPES[cls.option_type()] = cls return cls return _register_nd_option_type(args[0]) def __init__(self, res=0, dst='::', option=None): self.res = res self.dst = dst self.option = option @classmethod def parser(cls, buf, offset): (res, dst) = struct.unpack_from(cls._PACK_STR, buf, offset) offset += cls._MIN_LEN option = None if len(buf) > offset: (type_, length) = struct.unpack_from('!BB', buf, offset) if length == 0: raise struct.error('Invalid length: {len}'.format(len=length)) cls_ = cls._ND_OPTION_TYPES.get(type_) if cls_ is not None: option = cls_.parser(buf, offset) else: option = buf[offset:] msg = cls(res >> 29, addrconv.ipv6.bin_to_text(dst), option) return msg def serialize(self): res = self.res << 29 hdr = bytearray(struct.pack( nd_neighbor._PACK_STR, res, addrconv.ipv6.text_to_bin(self.dst))) if self.option is not None: if isinstance(self.option, nd_option): hdr.extend(self.option.serialize()) else: hdr.extend(self.option) return six.binary_type(hdr) def __len__(self): length = self._MIN_LEN if self.option is not None: length += len(self.option) return length @icmpv6.register_icmpv6_type(ND_ROUTER_SOLICIT) class nd_router_solicit(_ICMPv6Payload): """ICMPv6 sub encoder/decoder class for Router Solicitation messages. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== res This field is unused. It MUST be initialized to zero. option a derived object of os_ken.lib.packet.icmpv6.nd_option \ or a bytearray. None if no options. ============== ==================== """ _PACK_STR = '!I' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): nd_router_solicit._ND_OPTION_TYPES[cls.option_type()] = cls return cls return _register_nd_option_type(args[0]) def __init__(self, res=0, option=None): self.res = res self.option = option @classmethod def parser(cls, buf, offset): (res, ) = struct.unpack_from(cls._PACK_STR, buf, offset) offset += cls._MIN_LEN option = None if len(buf) > offset: (type_, length) = struct.unpack_from('!BB', buf, offset) if length == 0: raise struct.error('Invalid length: {len}'.format(len=length)) cls_ = cls._ND_OPTION_TYPES.get(type_) if cls_ is not None: option = cls_.parser(buf, offset) else: option = buf[offset:] msg = cls(res, option) return msg def serialize(self): hdr = bytearray(struct.pack( nd_router_solicit._PACK_STR, self.res)) if self.option is not None: if isinstance(self.option, nd_option): hdr.extend(self.option.serialize()) else: hdr.extend(self.option) return six.binary_type(hdr) def __len__(self): length = self._MIN_LEN if self.option is not None: length += len(self.option) return length @icmpv6.register_icmpv6_type(ND_ROUTER_ADVERT) class nd_router_advert(_ICMPv6Payload): """ICMPv6 sub encoder/decoder class for Router Advertisement messages. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== ch_l Cur Hop Limit. res M,O Flags for Router Advertisement. rou_l Router Lifetime. rea_t Reachable Time. ret_t Retrans Timer. options List of a derived object of \ os_ken.lib.packet.icmpv6.nd_option or a bytearray. \ None if no options. ============== ==================== """ _PACK_STR = '!BBHII' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): nd_router_advert._ND_OPTION_TYPES[cls.option_type()] = cls return cls return _register_nd_option_type(args[0]) def __init__(self, ch_l=0, res=0, rou_l=0, rea_t=0, ret_t=0, options=None): self.ch_l = ch_l self.res = res self.rou_l = rou_l self.rea_t = rea_t self.ret_t = ret_t options = options or [] assert isinstance(options, list) self.options = options @classmethod def parser(cls, buf, offset): (ch_l, res, rou_l, rea_t, ret_t ) = struct.unpack_from(cls._PACK_STR, buf, offset) offset += cls._MIN_LEN options = [] while len(buf) > offset: (type_, length) = struct.unpack_from('!BB', buf, offset) if length == 0: raise struct.error('Invalid length: {len}'.format(len=length)) cls_ = cls._ND_OPTION_TYPES.get(type_) if cls_ is not None: option = cls_.parser(buf, offset) else: option = buf[offset:offset + (length * 8)] options.append(option) offset += len(option) msg = cls(ch_l, res >> 6, rou_l, rea_t, ret_t, options) return msg def serialize(self): res = self.res << 6 hdr = bytearray(struct.pack( nd_router_advert._PACK_STR, self.ch_l, res, self.rou_l, self.rea_t, self.ret_t)) for option in self.options: if isinstance(option, nd_option): hdr.extend(option.serialize()) else: hdr.extend(option) return six.binary_type(hdr) def __len__(self): length = self._MIN_LEN for option in self.options: length += len(option) return length @six.add_metaclass(abc.ABCMeta) class nd_option(stringify.StringifyMixin): @classmethod @abc.abstractmethod def option_type(cls): pass @abc.abstractmethod def __init__(self, _type, length): self._type = _type self.length = length @classmethod @abc.abstractmethod def parser(cls, buf): pass @abc.abstractmethod def serialize(self): pass def __len__(self): return self._MIN_LEN class nd_option_la(nd_option): _PACK_STR = '!BB6s' _MIN_LEN = struct.calcsize(_PACK_STR) _TYPE = { 'ascii': [ 'hw_src' ] } @abc.abstractmethod def __init__(self, length, hw_src, data): super(nd_option_la, self).__init__(self.option_type(), length) self.hw_src = hw_src self.data = data @classmethod def parser(cls, buf, offset): (_, length, hw_src) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(length, addrconv.mac.bin_to_text(hw_src)) offset += cls._MIN_LEN if len(buf) > offset: msg.data = buf[offset:] return msg def serialize(self): buf = bytearray(struct.pack( self._PACK_STR, self.option_type(), self.length, addrconv.mac.text_to_bin(self.hw_src))) if self.data is not None: buf.extend(self.data) mod = len(buf) % 8 if mod: buf.extend(bytearray(8 - mod)) if 0 == self.length: self.length = len(buf) // 8 struct.pack_into('!B', buf, 1, self.length) return six.binary_type(buf) def __len__(self): length = self._MIN_LEN if self.data is not None: length += len(self.data) return length @nd_neighbor.register_nd_option_type @nd_router_solicit.register_nd_option_type @nd_router_advert.register_nd_option_type class nd_option_sla(nd_option_la): """ICMPv6 sub encoder/decoder class for Neighbor discovery Source Link-Layer Address Option. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.nd_neighbor, os_ken.lib.packet.icmpv6.nd_router_solicit or os_ken.lib.packet.icmpv6.nd_router_advert. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== length length of the option. \ (0 means automatically-calculate when encoding) hw_src Link-Layer Address. \ NOTE: If the address is longer than 6 octets this contains \ the first 6 octets in the address. \ This implementation assumes the address has at least \ 6 octets. data A bytearray which contains the rest of Link-Layer Address \ and padding. When encoding a packet, it's user's \ responsibility to provide necessary padding for 8-octets \ alignment required by the protocol. ============== ==================== """ @classmethod def option_type(cls): return ND_OPTION_SLA def __init__(self, length=0, hw_src='00:00:00:00:00:00', data=None): super(nd_option_sla, self).__init__(length, hw_src, data) @nd_neighbor.register_nd_option_type class nd_option_tla(nd_option_la): """ICMPv6 sub encoder/decoder class for Neighbor discovery Target Link-Layer Address Option. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.nd_neighbor. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== length length of the option. \ (0 means automatically-calculate when encoding) hw_src Link-Layer Address. \ NOTE: If the address is longer than 6 octets this contains \ the first 6 octets in the address. \ This implementation assumes the address has at least \ 6 octets. data A bytearray which contains the rest of Link-Layer Address \ and padding. When encoding a packet, it's user's \ responsibility to provide necessary padding for 8-octets \ alignment required by the protocol. ============== ==================== """ @classmethod def option_type(cls): return ND_OPTION_TLA def __init__(self, length=0, hw_src='00:00:00:00:00:00', data=None): super(nd_option_tla, self).__init__(length, hw_src, data) @nd_router_advert.register_nd_option_type class nd_option_pi(nd_option): r"""ICMPv6 sub encoder/decoder class for Neighbor discovery Prefix Information Option. (RFC 4861) This is used with os_ken.lib.packet.icmpv6.nd_router_advert. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== length length of the option. \ (0 means automatically-calculate when encoding) pl Prefix Length. res1 L,A,R\* Flags for Prefix Information. val_l Valid Lifetime. pre_l Preferred Lifetime. res2 This field is unused. It MUST be initialized to zero. prefix An IP address or a prefix of an IP address. ============== ==================== \*R flag is defined in (RFC 3775) """ _PACK_STR = '!BBBBIII16s' _MIN_LEN = struct.calcsize(_PACK_STR) _TYPE = { 'ascii': [ 'prefix' ] } @classmethod def option_type(cls): return ND_OPTION_PI def __init__(self, length=0, pl=0, res1=0, val_l=0, pre_l=0, res2=0, prefix='::'): super(nd_option_pi, self).__init__(self.option_type(), length) self.pl = pl self.res1 = res1 self.val_l = val_l self.pre_l = pre_l self.res2 = res2 self.prefix = prefix @classmethod def parser(cls, buf, offset): (_, length, pl, res1, val_l, pre_l, res2, prefix ) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(length, pl, res1 >> 5, val_l, pre_l, res2, addrconv.ipv6.bin_to_text(prefix)) return msg def serialize(self): res1 = self.res1 << 5 hdr = bytearray(struct.pack( self._PACK_STR, self.option_type(), self.length, self.pl, res1, self.val_l, self.pre_l, self.res2, addrconv.ipv6.text_to_bin(self.prefix))) if 0 == self.length: self.length = len(hdr) // 8 struct.pack_into('!B', hdr, 1, self.length) return six.binary_type(hdr) @icmpv6.register_icmpv6_type(ICMPV6_ECHO_REPLY, ICMPV6_ECHO_REQUEST) class echo(_ICMPv6Payload): """ICMPv6 sub encoder/decoder class for Echo Request and Echo Reply messages. This is used with os_ken.lib.packet.icmpv6.icmpv6 for ICMPv6 Echo Request and Echo Reply messages. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. ============== ==================== Attribute Description ============== ==================== id Identifier seq Sequence Number data Data ============== ==================== """ _PACK_STR = '!HH' _MIN_LEN = struct.calcsize(_PACK_STR) def __init__(self, id_=0, seq=0, data=None): self.id = id_ self.seq = seq self.data = data @classmethod def parser(cls, buf, offset): (id_, seq) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(id_, seq) offset += cls._MIN_LEN if len(buf) > offset: msg.data = buf[offset:] return msg def serialize(self): hdr = bytearray(struct.pack(echo._PACK_STR, self.id, self.seq)) if self.data is not None: hdr += bytearray(self.data) return hdr def __len__(self): length = self._MIN_LEN if self.data is not None: length += len(self.data) return length @icmpv6.register_icmpv6_type( MLD_LISTENER_QUERY, MLD_LISTENER_REPOR, MLD_LISTENER_DONE) class mld(_ICMPv6Payload): """ICMPv6 sub encoder/decoder class for MLD Lister Query, MLD Listener Report, and MLD Listener Done messages. (RFC 2710) http://www.ietf.org/rfc/rfc2710.txt This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. ============== ========================================= Attribute Description ============== ========================================= maxresp max response time in millisecond. it is meaningful only in Query Message. address a group address value. ============== ========================================= """ _PACK_STR = '!H2x16s' _MIN_LEN = struct.calcsize(_PACK_STR) _TYPE = { 'ascii': [ 'address' ] } def __init__(self, maxresp=0, address='::'): self.maxresp = maxresp self.address = address @classmethod def parser(cls, buf, offset): if cls._MIN_LEN < len(buf[offset:]): msg = mldv2_query.parser(buf[offset:]) else: (maxresp, address) = struct.unpack_from( cls._PACK_STR, buf, offset) msg = cls(maxresp, addrconv.ipv6.bin_to_text(address)) return msg def serialize(self): buf = struct.pack(mld._PACK_STR, self.maxresp, addrconv.ipv6.text_to_bin(self.address)) return buf def __len__(self): return self._MIN_LEN class mldv2_query(mld): """ ICMPv6 sub encoder/decoder class for MLD v2 Lister Query messages. (RFC 3810) http://www.ietf.org/rfc/rfc3810.txt This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. ============== ========================================= Attribute Description ============== ========================================= maxresp max response time in millisecond. it is meaningful only in Query Message. address a group address value. s_flg when set to 1, routers suppress the timer process. qrv robustness variable for a querier. qqic an interval time for a querier in unit of seconds. num a number of the multicast servers. srcs a list of IPv6 addresses of the multicast servers. ============== ========================================= """ _PACK_STR = '!H2x16sBBH' _MIN_LEN = struct.calcsize(_PACK_STR) _TYPE = { 'ascii': [ 'address' ], 'asciilist': [ 'srcs' ] } def __init__(self, maxresp=0, address='::', s_flg=0, qrv=2, qqic=0, num=0, srcs=None): super(mldv2_query, self).__init__(maxresp, address) self.s_flg = s_flg self.qrv = qrv self.qqic = qqic self.num = num srcs = srcs or [] assert isinstance(srcs, list) for src in srcs: assert isinstance(src, str) self.srcs = srcs @classmethod def parser(cls, buf): (maxresp, address, s_qrv, qqic, num ) = struct.unpack_from(cls._PACK_STR, buf) s_flg = (s_qrv >> 3) & 0b1 qrv = s_qrv & 0b111 offset = cls._MIN_LEN srcs = [] while 0 < len(buf[offset:]) and num > len(srcs): assert 16 <= len(buf[offset:]) (src, ) = struct.unpack_from('16s', buf, offset) srcs.append(addrconv.ipv6.bin_to_text(src)) offset += 16 assert num == len(srcs) return cls(maxresp, addrconv.ipv6.bin_to_text(address), s_flg, qrv, qqic, num, srcs) def serialize(self): s_qrv = self.s_flg << 3 | self.qrv buf = bytearray(struct.pack(self._PACK_STR, self.maxresp, addrconv.ipv6.text_to_bin(self.address), s_qrv, self.qqic, self.num)) for src in self.srcs: buf.extend(struct.pack('16s', addrconv.ipv6.text_to_bin(src))) if 0 == self.num: self.num = len(self.srcs) struct.pack_into('!H', buf, 22, self.num) return six.binary_type(buf) def __len__(self): return self._MIN_LEN + len(self.srcs) * 16 @icmpv6.register_icmpv6_type(MLDV2_LISTENER_REPORT) class mldv2_report(mld): """ ICMPv6 sub encoder/decoder class for MLD v2 Lister Report messages. (RFC 3810) http://www.ietf.org/rfc/rfc3810.txt This is used with os_ken.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. ============== ========================================= Attribute Description ============== ========================================= record_num a number of the group records. records a list of os_ken.lib.packet.icmpv6.mldv2_report_group. None if no records. ============== ========================================= """ _PACK_STR = '!2xH' _MIN_LEN = struct.calcsize(_PACK_STR) _class_prefixes = ['mldv2_report_group'] def __init__(self, record_num=0, records=None): self.record_num = record_num records = records or [] assert isinstance(records, list) for record in records: assert isinstance(record, mldv2_report_group) self.records = records @classmethod def parser(cls, buf, offset): (record_num, ) = struct.unpack_from(cls._PACK_STR, buf, offset) offset += cls._MIN_LEN records = [] while 0 < len(buf[offset:]) and record_num > len(records): record = mldv2_report_group.parser(buf[offset:]) records.append(record) offset += len(record) assert record_num == len(records) return cls(record_num, records) def serialize(self): buf = bytearray(struct.pack(self._PACK_STR, self.record_num)) for record in self.records: buf.extend(record.serialize()) if 0 == self.record_num: self.record_num = len(self.records) struct.pack_into('!H', buf, 2, self.record_num) return six.binary_type(buf) def __len__(self): records_len = 0 for record in self.records: records_len += len(record) return self._MIN_LEN + records_len class mldv2_report_group(stringify.StringifyMixin): r""" ICMPv6 sub encoder/decoder class for MLD v2 Lister Report Group Record messages. (RFC 3810) This is used with os_ken.lib.packet.icmpv6.mldv2_report. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the corresponding args in this order. =============== ==================================================== Attribute Description =============== ==================================================== type\_ a group record type for v3. aux_len the length of the auxiliary data in 32-bit words. num a number of the multicast servers. address a group address value. srcs a list of IPv6 addresses of the multicast servers. aux the auxiliary data. =============== ==================================================== """ _PACK_STR = '!BBH16s' _MIN_LEN = struct.calcsize(_PACK_STR) _TYPE = { 'ascii': [ 'address' ], 'asciilist': [ 'srcs' ] } def __init__(self, type_=0, aux_len=0, num=0, address='::', srcs=None, aux=None): self.type_ = type_ self.aux_len = aux_len self.num = num self.address = address srcs = srcs or [] assert isinstance(srcs, list) for src in srcs: assert isinstance(src, str) self.srcs = srcs self.aux = aux @classmethod def parser(cls, buf): (type_, aux_len, num, address ) = struct.unpack_from(cls._PACK_STR, buf) offset = cls._MIN_LEN srcs = [] while 0 < len(buf[offset:]) and num > len(srcs): assert 16 <= len(buf[offset:]) (src, ) = struct.unpack_from('16s', buf, offset) srcs.append(addrconv.ipv6.bin_to_text(src)) offset += 16 assert num == len(srcs) aux = None if aux_len: (aux, ) = struct.unpack_from('%ds' % (aux_len * 4), buf, offset) msg = cls(type_, aux_len, num, addrconv.ipv6.bin_to_text(address), srcs, aux) return msg def serialize(self): buf = bytearray(struct.pack(self._PACK_STR, self.type_, self.aux_len, self.num, addrconv.ipv6.text_to_bin(self.address))) for src in self.srcs: buf.extend(struct.pack('16s', addrconv.ipv6.text_to_bin(src))) if 0 == self.num: self.num = len(self.srcs) struct.pack_into('!H', buf, 2, self.num) if self.aux is not None: mod = len(self.aux) % 4 if mod: self.aux += bytearray(4 - mod) self.aux = six.binary_type(self.aux) buf.extend(self.aux) if 0 == self.aux_len: self.aux_len = len(self.aux) // 4 struct.pack_into('!B', buf, 1, self.aux_len) return six.binary_type(buf) def __len__(self): return self._MIN_LEN + len(self.srcs) * 16 + self.aux_len * 4 icmpv6.set_classes(icmpv6._ICMPV6_TYPES) nd_neighbor.set_classes(nd_neighbor._ND_OPTION_TYPES) nd_router_solicit.set_classes(nd_router_solicit._ND_OPTION_TYPES) nd_router_advert.set_classes(nd_router_advert._ND_OPTION_TYPES)
33.37551
83
0.578054
3926809d4781ea2e15e890d37af86da93bd799ee
1,667
py
Python
setup.py
manuhortet/prom2teams
cde06758af1b5574182beff01a991697a151c264
[ "Apache-2.0" ]
null
null
null
setup.py
manuhortet/prom2teams
cde06758af1b5574182beff01a991697a151c264
[ "Apache-2.0" ]
null
null
null
setup.py
manuhortet/prom2teams
cde06758af1b5574182beff01a991697a151c264
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages with open('requirements.txt') as req: requirements = req.read().splitlines() with open('README.md') as f: try: import pypandoc readme = pypandoc.convert('README.md', 'rst') except (IOError, ImportError) as error: readme = open('README.md').read() with open('LICENSE') as f: license = f.read() setup(name='prom2teams', version='2.2.0', description='Project that redirects Prometheus Alert Manager ' 'notifications to Microsoft Teams', long_description=readme, install_requires=requirements, setup_requires=[ 'flake8', 'pypandoc' ], scripts=[ 'bin/prom2teams', 'bin/prom2teams_uwsgi' ], package_data={ '': ['*.ini', '*.j2'], }, include_package_data=True, data_files=[ ('/usr/local/etc/prom2teams', ['bin/wsgi.py']) ], url='http://github.com/idealista/prom2teams', author='Idealista, S.A.U', author_email='labs@idealista.com', license=license, packages=find_packages(exclude=('tests', 'docs')), keywords='microsoft teams prometheus alert', classifiers=[ 'Development Status :: 4 - Beta', 'Topic :: Utilities', 'Topic :: Communications :: Chat', 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6' ], zip_safe=False)
28.254237
68
0.592082
e74560db67e019622b29707819590fdab77909f8
724
py
Python
Chapter10/hillar_django_restful_10_02/restful01/drones/v2/views.py
weiliy/Django-RESTful-Web-Services
0b26a84ec8005c6a2cef61671b6d009f0780a9cc
[ "MIT" ]
95
2018-01-22T21:35:21.000Z
2022-03-30T10:13:35.000Z
Chapter10/hillar_django_restful_10_02/restful01/drones/v2/views.py
weiliy/Django-RESTful-Web-Services
0b26a84ec8005c6a2cef61671b6d009f0780a9cc
[ "MIT" ]
6
2020-03-24T16:37:46.000Z
2021-06-10T21:04:36.000Z
Chapter10/hillar_django_restful_10_02/restful01/drones/v2/views.py
weiliy/Django-RESTful-Web-Services
0b26a84ec8005c6a2cef61671b6d009f0780a9cc
[ "MIT" ]
73
2018-01-24T02:38:17.000Z
2022-01-23T21:02:41.000Z
""" Book: Django RESTful Web Services Author: Gaston C. Hillar - Twitter.com/gastonhillar Publisher: Packt Publishing Ltd. - http://www.packtpub.com """ from rest_framework import generics from rest_framework.response import Response from rest_framework.reverse import reverse from drones import views class ApiRootVersion2(generics.GenericAPIView): name = 'api-root' def get(self, request, *args, **kwargs): return Response({ 'vehicle-categories': reverse(views.DroneCategoryList.name, request=request), 'vehicles': reverse(views.DroneList.name, request=request), 'pilots': reverse(views.PilotList.name, request=request), 'competitions': reverse(views.CompetitionList.name, request=request) })
31.478261
62
0.762431
a49a852899938510ac9b67ee3a445c00d24d80b3
6,668
py
Python
simple.py
acamara1498/algs
683ea919607cc5e4a22d2d5f7095fb643000a6a5
[ "Apache-2.0" ]
null
null
null
simple.py
acamara1498/algs
683ea919607cc5e4a22d2d5f7095fb643000a6a5
[ "Apache-2.0" ]
null
null
null
simple.py
acamara1498/algs
683ea919607cc5e4a22d2d5f7095fb643000a6a5
[ "Apache-2.0" ]
null
null
null
import alpaca_trade_api as tradeapi import logging import pandas as pd import time import universe api = tradeapi.REST() Universe = universe.Universe NY = 'America/New_York' logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) def main(): done = None logging.info('start running') while True: # clock API returns the server time including # the boolean flag for market open clock = api.get_clock() now = clock.timestamp if clock.is_open and done != now.strftime('%Y-%m-%d'): # ** do our stuff here! ** price_df = prices(Universe) print ("price_df", price_df) orders = get_orders(api, price_df) print ("orders", orders) trade(orders) # flag it as done so it doesn't work again for the day # TODO: this isn't tolerant to process restarts, so this # flag should probably be saved on disk done = now.strftime('%Y-%m-%d') logger.info(f'Done for {done}') time.sleep(1) def prices(symbols): now = pd.Timestamp.now(tz=NY) end_dt = now if now.time() >= pd.Timestamp('09:30', tz=NY).time(): end_dt = now - \ pd.Timedelta(now.strftime('%H:%M:%S')) - pd.Timedelta('1 minute') return _get_prices(symbols, end_dt) def _get_prices(symbols, end_dt, max_workers=5): '''Get the map of DataFrame price data from Alpaca's data API.''' start_dt = end_dt - pd.Timedelta('50 days') start = start_dt.strftime('%Y-%-m-%-d') end = end_dt.strftime('%Y-%-m-%-d') def get_barset(symbols): return api.get_barset( symbols, 'day', limit = 50, start=start, end=end ) # The maximum number of symbols we can request at once is 200. barset = None idx = 0 while idx <= len(symbols) - 1: if barset is None: barset = get_barset(symbols[idx:idx+200]) else: barset.update(get_barset(symbols[idx:idx+200])) idx += 200 return barset.df def calc_scores(price_df, dayindex=-1): '''Calculate scores based on the indicator and return the sorted result. ''' diffs = {} param = 10 for symbol in price_df.columns.levels[0]: df = price_df[symbol] if len(df.close.values) <= param: continue ema = df.close.ewm(span=param).mean()[dayindex] last = df.close.values[dayindex] diff = (last - ema) / last diffs[symbol] = diff return sorted(diffs.items(), key=lambda x: x[1]) def get_orders(api, price_df, position_size=100, max_positions=5): '''Calculate the scores within the universe to build the optimal portfolio as of today, and extract orders to transition from our current portfolio to the desired state. ''' # rank the stocks based on the indicators. ranked = calc_scores(price_df) to_buy = set() to_sell = set() account = api.get_account() # take the top one twentieth out of ranking, # excluding stocks too expensive to buy a share for symbol, _ in ranked[:len(ranked) // 20]: price = float(price_df[symbol].close.values[-1]) if price > float(account.cash): continue to_buy.add(symbol) # now get the current positions and see what to buy, # what to sell to transition to today's desired portfolio. positions = api.list_positions() logger.info(positions) holdings = {p.symbol: p for p in positions} holding_symbol = set(holdings.keys()) to_sell = holding_symbol - to_buy to_buy = to_buy - holding_symbol orders = [] # if a stock is in the portfolio, and not in the desired # portfolio, sell it for symbol in to_sell: shares = holdings[symbol].qty orders.append({ 'symbol': symbol, 'qty': shares, 'side': 'sell', }) logger.info(f'order(sell): {symbol} for {shares}') # likewise, if the portfoio is missing stocks from the # desired portfolio, buy them. We sent a limit for the total # position size so that we don't end up holding too many positions. max_to_buy = max_positions - (len(positions) - len(to_sell)) for symbol in to_buy: if max_to_buy <= 0: break shares = position_size // float(price_df[symbol].close.values[-1]) if shares == 0.0: continue orders.append({ 'symbol': symbol, 'qty': shares, 'side': 'buy', }) logger.info(f'order(buy): {symbol} for {shares}') max_to_buy -= 1 return orders def trade(orders, wait=30): '''This is where we actually submit the orders and wait for them to fill. Waiting is an important step since the orders aren't filled automatically, which means if your buys happen to come before your sells have filled, the buy orders will be bounced. In order to make the transition smooth, we sell first and wait for all the sell orders to fill before submitting our buy orders. ''' # process the sell orders first sells = [o for o in orders if o['side'] == 'sell'] for order in sells: try: logger.info(f'submit(sell): {order}') api.submit_order( symbol=order['symbol'], qty=order['qty'], side='sell', type='market', time_in_force='day', ) except Exception as e: logger.error(e) count = wait while count > 0: pending = api.list_orders() if len(pending) == 0: logger.info(f'all sell orders done') break logger.info(f'{len(pending)} sell orders pending...') time.sleep(1) count -= 1 # process the buy orders next buys = [o for o in orders if o['side'] == 'buy'] for order in buys: try: logger.info(f'submit(buy): {order}') api.submit_order( symbol=order['symbol'], qty=order['qty'], side='buy', type='market', time_in_force='day', ) except Exception as e: print("no") logger.error(e) count = wait while count > 0: pending = api.list_orders() if len(pending) == 0: logger.info(f'all buy orders done') break logger.info(f'{len(pending)} buy orders pending...') time.sleep(1) count -= 1 if __name__ == '__main__': main()
31.158879
78
0.579784
aed661f8b6c823ad6cda792a43435af31b428d1b
1,433
py
Python
setup.py
idlesign/django-logexpose
5f9839d3211bc5bf39ada11a928b95a2efd2525d
[ "BSD-3-Clause" ]
1
2016-08-28T14:51:12.000Z
2016-08-28T14:51:12.000Z
setup.py
idlesign/django-logexpose
5f9839d3211bc5bf39ada11a928b95a2efd2525d
[ "BSD-3-Clause" ]
1
2019-07-08T00:18:02.000Z
2019-07-08T08:10:49.000Z
setup.py
idlesign/django-logexpose
5f9839d3211bc5bf39ada11a928b95a2efd2525d
[ "BSD-3-Clause" ]
2
2016-05-25T08:14:26.000Z
2019-07-08T00:12:19.000Z
import os from setuptools import setup from logexpose import VERSION PATH_BASE = os.path.dirname(__file__) PATH_BIN = os.path.join(PATH_BASE, 'bin') SCRIPTS = None if os.path.exists(PATH_BIN): SCRIPTS = [os.path.join('bin', f) for f in os.listdir(PATH_BIN) if os.path.join(PATH_BIN, f)] f = open(os.path.join(PATH_BASE, 'README.rst')) README = f.read() f.close() setup( name='django-logexpose', version='.'.join(map(str, VERSION)), url='https://github.com/idlesign/django-logexpose', description='Reusable application for Django exposing logs for further analysis.', long_description=README, license='BSD 3-Clause License', author='Igor `idle sign` Starikov', author_email='idlesign@yandex.ru', packages=['logexpose'], include_package_data=True, zip_safe=False, install_requires=[], scripts=SCRIPTS, classifiers=[ # As in https://pypi.python.org/pypi?:action=list_classifiers 'Development Status :: 4 - Beta', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: BSD License' ], )
28.098039
97
0.648988
bd97927c3f3e0280f0e97c61411770abed362e7c
3,194
py
Python
deployment/pypi/setup.py
xumeng723/nni
f47ce0d0adc0f4cd5e3dd2e0f382f646cac03d0e
[ "MIT" ]
null
null
null
deployment/pypi/setup.py
xumeng723/nni
f47ce0d0adc0f4cd5e3dd2e0f382f646cac03d0e
[ "MIT" ]
null
null
null
deployment/pypi/setup.py
xumeng723/nni
f47ce0d0adc0f4cd5e3dd2e0f382f646cac03d0e
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT # OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ================================================================================================== import setuptools import platform from os import walk, path os_type = platform.system() if os_type == 'Linux': os_name = 'POSIX :: Linux' elif os_type == 'Darwin': os_name = 'MacOS' else: raise NotImplementedError('current platform {} not supported'.format(os_type)) data_files = [('bin', ['node-{}-x64/bin/node'.format(os_type.lower())])] for (dirpath, dirnames, filenames) in walk('./nni'): files = [path.normpath(path.join(dirpath, filename)) for filename in filenames] data_files.append((path.normpath(dirpath), files)) with open('../../README.md', 'r') as fh: long_description = fh.read() setuptools.setup( name = 'nni', version = '999.0.0-developing', author = 'Microsoft NNI team', author_email = 'nni@microsoft.com', description = 'Neural Network Intelligence package', long_description = long_description, long_description_content_type = 'text/markdown', license = 'MIT', url = 'https://github.com/Microsoft/nni', packages = setuptools.find_packages('../../tools') + setuptools.find_packages('../../src/sdk/pynni', exclude=['tests']), package_dir = { 'nni_annotation': '../../tools/nni_annotation', 'nni_cmd': '../../tools/nni_cmd', 'nni_trial_tool': '../../tools/nni_trial_tool', 'nni_gpu_tool': '../../tools/nni_gpu_tool', 'nni': '../../src/sdk/pynni/nni' }, python_requires = '>=3.5', install_requires = [ 'schema', 'pyyaml', 'psutil', 'requests', 'astor', 'pyhdfs', 'hyperopt', 'json_tricks', 'numpy', 'scipy', 'coverage' ], classifiers = [ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: ' + os_name ], data_files = data_files, entry_points = { 'console_scripts' : [ 'nnictl = nni_cmd.nnictl:parse_args' ] } )
38.02381
124
0.641828
8c8360a1e775fa05470933c6e700234ab8ccc198
12,707
py
Python
tests/elm_car_simulator.py
EdwardApollo/panda
fcec81cbaf58494bf66eef2067efcf1a6d4e4b7f
[ "MIT" ]
1,279
2017-04-07T02:11:39.000Z
2022-03-28T05:01:30.000Z
tests/elm_car_simulator.py
EdwardApollo/panda
fcec81cbaf58494bf66eef2067efcf1a6d4e4b7f
[ "MIT" ]
473
2017-05-03T06:54:54.000Z
2022-03-31T07:09:12.000Z
tests/elm_car_simulator.py
EdwardApollo/panda
fcec81cbaf58494bf66eef2067efcf1a6d4e4b7f
[ "MIT" ]
610
2017-04-07T05:17:33.000Z
2022-03-26T14:58:32.000Z
#!/usr/bin/env python3 # flake8: noqa """Used to Reverse/Test ELM protocol auto detect and OBD message response without a car.""" import sys import os import struct import binascii import time import threading from collections import deque sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")) from panda import Panda # noqa: E402 def lin_checksum(dat): return sum(dat) % 0x100 class ELMCarSimulator(): def __init__(self, sn, silent=False, can_kbaud=500, can=True, can11b=True, can29b=True, lin=True): self.__p = Panda(sn if sn else Panda.list()[0]) self.__on = True self.__stop = False self.__silent = silent self.__lin_timer = None self.__lin_active = False self.__lin_enable = lin self.__lin_monitor_thread = threading.Thread(target=self.__lin_monitor) self.__can_multipart_data = None self.__can_kbaud = can_kbaud self.__can_extra_noise_msgs = deque() self.__can_enable = can self.__can11b = can11b self.__can29b = can29b self.__can_monitor_thread = threading.Thread(target=self.__can_monitor) @property def panda(self): return self.__p def stop(self): if self.__lin_timer: self.__lin_timer.cancel() self.__lin_timeout_handler() self.__stop = True def join(self): if self.__lin_monitor_thread.is_alive(): self.__lin_monitor_thread.join() if self.__can_monitor_thread.is_alive(): self.__can_monitor_thread.join() if self.__p: print("closing handle") self.__p.close() def set_enable(self, on): self.__on = on def start(self): self.panda.set_safety_mode(Panda.SAFETY_ALLOUTPUT) if self.__lin_enable: self.__lin_monitor_thread.start() if self.__can_enable: self.__can_monitor_thread.start() ######################### # LIN related functions # ######################### def __lin_monitor(self): print("STARTING LIN THREAD") self.panda.set_uart_baud(2, 10400) self.panda.kline_drain() # Toss whatever was already there lin_buff = bytearray() while not self.__stop: lin_msg = self.panda.serial_read(2) if not lin_msg: continue lin_buff += lin_msg #print(" ** Buff", lin_buff) if lin_buff.endswith(b'\x00\xc1\x33\xf1\x81\x66'): # Leading 0 is wakeup lin_buff = bytearray() self.__lin_active = True print("GOT LIN (KWP FAST) WAKEUP SIGNAL") self._lin_send(0x10, b'\xC1\x8F\xE9') self.__reset_lin_timeout() continue if self.__lin_active: msglen = lin_buff[0] & 0x7 if lin_buff[0] & 0xF8 not in (0x80, 0xC0): print("Invalid bytes at start of message") print(" BUFF", lin_buff) continue if len(lin_buff) < msglen + 4: continue if lin_checksum(lin_buff[:-1]) != lin_buff[-1]: continue self.__lin_process_msg(lin_buff[0] & 0xF8, # Priority lin_buff[1], lin_buff[2], lin_buff[3:-1]) lin_buff = bytearray() def _lin_send(self, to_addr, msg): if not self.__silent: print(" LIN Reply (%x)" % to_addr, binascii.hexlify(msg)) PHYS_ADDR = 0x80 #FUNC_ADDR = 0xC0 RECV = 0xF1 #SEND = 0x33 # Car OBD Functional Address headers = struct.pack("BBB", PHYS_ADDR | len(msg), RECV, to_addr) if not self.__silent: print(" Sending LIN", binascii.hexlify(headers + msg), hex(sum(bytearray(headers + msg)) % 0x100)) self.panda.kline_send(headers + msg) def __reset_lin_timeout(self): if self.__lin_timer: self.__lin_timer.cancel() self.__lin_timer = threading.Timer(5, self.__lin_timeout_handler) self.__lin_timer.start() def __lin_timeout_handler(self): print("LIN TIMEOUT") self.__lin_timer = None self.__lin_active = False @property def lin_active(self): return self.__lin_active def __lin_process_msg(self, priority, toaddr, fromaddr, data): self.__reset_lin_timeout() if not self.__silent and data != b'\x3E': print("LIN MSG", "Addr:", hex(toaddr), "obdLen:", len(data), binascii.hexlify(data)) outmsg = None #if data == b'\x3E': # print("KEEP ALIVE") #el if len(data) > 1: outmsg = self._process_obd(data[0], data[1]) if outmsg: obd_header = struct.pack("BB", 0x40 | data[0], data[1]) if len(outmsg) <= 5: self._lin_send(0x10, obd_header + outmsg) else: first_msg_len = min(4, len(outmsg) % 4) or 4 self._lin_send(0x10, obd_header + b'\x01' + b'\x00' * (4 - first_msg_len) + outmsg[:first_msg_len]) for num, i in enumerate(range(first_msg_len, len(outmsg), 4)): self._lin_send(0x10, obd_header + struct.pack('B', (num + 2) % 0x100) + outmsg[i:i + 4]) ######################### # CAN related functions # ######################### def __can_monitor(self): print("STARTING CAN THREAD") self.panda.set_can_speed_kbps(0, self.__can_kbaud) self.panda.can_recv() # Toss whatever was already there while not self.__stop: for address, ts, data, src in self.panda.can_recv(): if self.__on and src == 0 and len(data) == 8 and data[0] >= 2: if not self.__silent: print("Processing CAN message", src, hex(address), binascii.hexlify(data)) self.__can_process_msg(data[1], data[2], address, ts, data, src) elif not self.__silent: print("Rejecting CAN message", src, hex(address), binascii.hexlify(data)) def can_mode_11b(self): self.__can11b = True self.__can29b = False def can_mode_29b(self): self.__can11b = False self.__can29b = True def can_mode_11b_29b(self): self.__can11b = True self.__can29b = True def change_can_baud(self, kbaud): self.__can_kbaud = kbaud self.panda.set_can_speed_kbps(0, self.__can_kbaud) def can_add_extra_noise(self, noise_msg, addr=None): self.__can_extra_noise_msgs.append((addr, noise_msg)) def _can_send(self, addr, msg): if not self.__silent: print(" CAN Reply (%x)" % addr, binascii.hexlify(msg)) self.panda.can_send(addr, msg + b'\x00' * (8 - len(msg)), 0) if self.__can_extra_noise_msgs: noise = self.__can_extra_noise_msgs.popleft() self.panda.can_send(noise[0] if noise[0] is not None else addr, noise[1] + b'\x00' * (8 - len(noise[1])), 0) def _can_addr_matches(self, addr): if self.__can11b and (addr == 0x7DF or (addr & 0x7F8) == 0x7E0): return True if self.__can29b and (addr == 0x18db33f1 or (addr & 0x1FFF00FF) == 0x18da00f1): return True return False def __can_process_msg(self, mode, pid, address, ts, data, src): if not self.__silent: print("CAN MSG", binascii.hexlify(data[1:1 + data[0]]), "Addr:", hex(address), "Mode:", hex(mode)[2:].zfill(2), "PID:", hex(pid)[2:].zfill(2), "canLen:", len(data), binascii.hexlify(data)) if self._can_addr_matches(address) and len(data) == 8: outmsg = None if data[:3] == b'\x30\x00\x00' and len(self.__can_multipart_data): if not self.__silent: print("Request for more data") outaddr = 0x7E8 if address == 0x7DF or address == 0x7E0 else 0x18DAF110 msgnum = 1 while(self.__can_multipart_data): datalen = min(7, len(self.__can_multipart_data)) msgpiece = struct.pack("B", 0x20 | msgnum) + self.__can_multipart_data[:datalen] self._can_send(outaddr, msgpiece) self.__can_multipart_data = self.__can_multipart_data[7:] msgnum = (msgnum + 1) % 0x10 time.sleep(0.01) else: outmsg = self._process_obd(mode, pid) if outmsg: outaddr = 0x7E8 if address == 0x7DF or address == 0x7E0 else 0x18DAF110 if len(outmsg) <= 5: self._can_send(outaddr, struct.pack("BBB", len(outmsg) + 2, 0x40 | data[1], pid) + outmsg) else: first_msg_len = min(3, len(outmsg) % 7) payload_len = len(outmsg) + 3 msgpiece = struct.pack("BBBBB", 0x10 | ((payload_len >> 8) & 0xF), payload_len & 0xFF, 0x40 | data[1], pid, 1) + outmsg[:first_msg_len] self._can_send(outaddr, msgpiece) self.__can_multipart_data = outmsg[first_msg_len:] ######################### # General OBD functions # ######################### def _process_obd(self, mode, pid): if mode == 0x01: # Mode: Show current data if pid == 0x00: # List supported things return b"\xff\xff\xff\xfe" # b"\xBE\x1F\xB8\x10" #Bitfield, random features elif pid == 0x01: # Monitor Status since DTC cleared return b"\x00\x00\x00\x00" # Bitfield, random features elif pid == 0x04: # Calculated engine load return b"\x2f" elif pid == 0x05: # Engine coolant temperature return b"\x3c" elif pid == 0x0B: # Intake manifold absolute pressure return b"\x90" elif pid == 0x0C: # Engine RPM return b"\x1A\xF8" elif pid == 0x0D: # Vehicle Speed return b"\x53" elif pid == 0x10: # MAF air flow rate return b"\x01\xA0" elif pid == 0x11: # Throttle Position return b"\x90" elif pid == 0x33: # Absolute Barometric Pressure return b"\x90" elif mode == 0x09: # Mode: Request vehicle information if pid == 0x02: # Show VIN return b"1D4GP00R55B123456" if pid == 0xFC: # test long multi message. Ligned up for LIN responses return b''.join((struct.pack(">BBH", 0xAA, 0xAA, num + 1) for num in range(80))) if pid == 0xFD: # test long multi message parts = (b'\xAA\xAA\xAA' + struct.pack(">I", num) for num in range(80)) return b'\xAA\xAA\xAA' + b''.join(parts) if pid == 0xFE: # test very long multi message parts = (b'\xAA\xAA\xAA' + struct.pack(">I", num) for num in range(584)) return b'\xAA\xAA\xAA' + b''.join(parts) + b'\xAA' if pid == 0xFF: return b'\xAA\x00\x00' + \ b"".join(((b'\xAA' * 5) + struct.pack(">H", num + 1) for num in range(584))) #return b"\xAA"*100#(0xFFF-3) if __name__ == "__main__": serial = os.getenv("SERIAL") if os.getenv("SERIAL") else None kbaud = int(os.getenv("CANKBAUD")) if os.getenv("CANKBAUD") else 500 # type: ignore bitwidth = int(os.getenv("CANBITWIDTH")) if os.getenv("CANBITWIDTH") else 0 # type: ignore canenable = bool(int(os.getenv("CANENABLE"))) if os.getenv("CANENABLE") else True # type: ignore linenable = bool(int(os.getenv("LINENABLE"))) if os.getenv("LINENABLE") else True # type: ignore sim = ELMCarSimulator(serial, can_kbaud=kbaud, can=canenable, lin=linenable) if(bitwidth == 0): sim.can_mode_11b_29b() if(bitwidth == 11): sim.can_mode_11b() if(bitwidth == 29): sim.can_mode_29b() import signal def signal_handler(signal, frame): print('\nShutting down simulator') sim.stop() sim.join() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) sim.start() signal.pause()
38.6231
101
0.544424
e3e2d8ea3f47d4df3fe07ca4d01e83d8a36eeef2
8,303
py
Python
test/vanilla/version-tolerant/Expected/AcceptanceTests/MediaTypesVersionTolerant/mediatypesversiontolerant/aio/operations/_operations.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/vanilla/version-tolerant/Expected/AcceptanceTests/MediaTypesVersionTolerant/mediatypesversiontolerant/aio/operations/_operations.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/vanilla/version-tolerant/Expected/AcceptanceTests/MediaTypesVersionTolerant/mediatypesversiontolerant/aio/operations/_operations.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, IO, Optional, TypeVar, Union import warnings from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ...operations._operations import ( build_analyze_body_no_accept_header_request, build_analyze_body_request, build_content_type_with_encoding_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class MediaTypesClientOperationsMixin: @distributed_trace_async async def analyze_body(self, input: Optional[Union[IO, Any]] = None, **kwargs: Any) -> str: """Analyze body, that could be different media types. :param input: Input parameter. :type input: IO or Any :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/jpeg", "image/png", "image/tiff", "application/json." :return: str :rtype: str :raises: ~azure.core.exceptions.HttpResponseError Example: .. code-block:: python # JSON input template you can fill out and use as your body input. input = { "source": "str" # Optional. File source path. } """ cls = kwargs.pop("cls", None) # type: ClsType[str] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] json = None content = None if content_type.split(";")[0] in ["application/pdf", "image/jpeg", "image/png", "image/tiff"]: content = input elif content_type.split(";")[0] in ["application/json"]: if input is not None: json = input else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(content_type) ) request = build_analyze_body_request( content_type=content_type, json=json, content=content, template_url=self.analyze_body.metadata["url"], ) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if response.content: deserialized = response.json() else: deserialized = None if cls: return cls(pipeline_response, deserialized, {}) return deserialized analyze_body.metadata = {"url": "/mediatypes/analyze"} # type: ignore @distributed_trace_async async def analyze_body_no_accept_header(self, input: Optional[Union[IO, Any]] = None, **kwargs: Any) -> None: """Analyze body, that could be different media types. Adds to AnalyzeBody by not having an accept type. :param input: Input parameter. :type input: IO or Any :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/jpeg", "image/png", "image/tiff", "application/json." :return: None :rtype: None :raises: ~azure.core.exceptions.HttpResponseError Example: .. code-block:: python # JSON input template you can fill out and use as your body input. input = { "source": "str" # Optional. File source path. } """ cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] json = None content = None if content_type.split(";")[0] in ["application/pdf", "image/jpeg", "image/png", "image/tiff"]: content = input elif content_type.split(";")[0] in ["application/json"]: if input is not None: json = input else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(content_type) ) request = build_analyze_body_no_accept_header_request( content_type=content_type, json=json, content=content, template_url=self.analyze_body_no_accept_header.metadata["url"], ) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if cls: return cls(pipeline_response, None, {}) analyze_body_no_accept_header.metadata = {"url": "/mediatypes/analyzeNoAccept"} # type: ignore @distributed_trace_async async def content_type_with_encoding(self, input: Optional[str] = None, **kwargs: Any) -> str: """Pass in contentType 'text/plain; encoding=UTF-8' to pass test. Value for input does not matter. :param input: Input parameter. :type input: str :return: str :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType[str] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "text/plain") # type: Optional[str] if input is not None: content = input else: content = None request = build_content_type_with_encoding_request( content_type=content_type, content=content, template_url=self.content_type_with_encoding.metadata["url"], ) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if response.content: deserialized = response.json() else: deserialized = None if cls: return cls(pipeline_response, deserialized, {}) return deserialized content_type_with_encoding.metadata = {"url": "/mediatypes/contentTypeWithEncoding"} # type: ignore
39.727273
119
0.628809
07eb3236e96168107973e4e4db2af6ef79943b55
709
py
Python
geemap/__init__.py
Yisheng-Li/geemap
0594917a4acedfebb85879cfe2bcb6a406a55f39
[ "MIT" ]
null
null
null
geemap/__init__.py
Yisheng-Li/geemap
0594917a4acedfebb85879cfe2bcb6a406a55f39
[ "MIT" ]
null
null
null
geemap/__init__.py
Yisheng-Li/geemap
0594917a4acedfebb85879cfe2bcb6a406a55f39
[ "MIT" ]
null
null
null
"""Top-level package for geemap.""" __author__ = """Qiusheng Wu""" __email__ = "giswqs@gmail.com" __version__ = "0.11.4" import os def in_colab_shell(): """Tests if the code is being executed within Google Colab.""" import sys if "google.colab" in sys.modules: return True else: return False def use_folium(): """Whether to use the folium or ipyleaflet plotting backend.""" if os.environ.get("USE_FOLIUM") is not None: return True else: return False if use_folium(): from .foliumap import * else: from .geemap import * if in_colab_shell(): from google.colab import output output.enable_custom_widget_manager()
19.162162
67
0.64598
10be8316d7a849e45d5c434df043d6296f870245
877
py
Python
project_euler/python/094_almost_equilateral_triangles.py
Sabihxh/secret
fb940df9af9c6d440150ffe43b80fcb49ff6c2b4
[ "MIT" ]
null
null
null
project_euler/python/094_almost_equilateral_triangles.py
Sabihxh/secret
fb940df9af9c6d440150ffe43b80fcb49ff6c2b4
[ "MIT" ]
null
null
null
project_euler/python/094_almost_equilateral_triangles.py
Sabihxh/secret
fb940df9af9c6d440150ffe43b80fcb49ff6c2b4
[ "MIT" ]
null
null
null
import numpy as np from math import sqrt n = 10**2 def prime_factors(n): i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) return factors def solution(limit): squares = {x**2: x for x in np.arange(2, int(sqrt(limit) + 1))} result = [] for p_2 in squares: factors = prime_factors(p_2) if factors.count(2) > 1: continue if 2 in factors: factors.remove(2) for factor in factors: if factor % 4 != 1: break else: q_2 = 0.25 * ((squares[p_2] + 1) ** 2) if p_2 - q_2 in squares: result.append(p_2) result = [squares[x] + 1 for x in result] return result print(solution(10**9))
19.065217
67
0.476625
cca1b9f233aa0ed3fcaa4b0ffe2fa52e36d50d77
18,311
py
Python
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Kamaelia/Protocol/SDP.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2017-03-28T06:41:51.000Z
2017-03-28T06:41:51.000Z
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Kamaelia/Protocol/SDP.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
null
null
null
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/Kamaelia/Protocol/SDP.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2016-12-13T21:08:58.000Z
2016-12-13T21:08:58.000Z
#!/usr/bin/env python # # Copyright (C) 2007 British Broadcasting Corporation and Kamaelia Contributors(1) # All Rights Reserved. # # You may only modify and redistribute this under the terms of any of the # following licenses(2): Mozilla Public License, V1.1, GNU General # Public License, V2.0, GNU Lesser General Public License, V2.1 # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://kamaelia.sourceforge.net/AUTHORS - please extend this file, # not this notice. # (2) Reproduced in the COPYING file, and at: # http://kamaelia.sourceforge.net/COPYING # Under section 3.5 of the MPL, we are using this text since we deem the MPL # notice inappropriate for this file. As per MPL/GPL/LGPL removal of this # notice is prohibited. # # Please contact us via: kamaelia-list-owner@lists.sourceforge.net # to discuss alternative licensing. # ------------------------------------------------------------------------- """\ ========================================== Session Description Protocol (SDP) Support ========================================== The SDPParser component parses Session Description Protocol (see `RFC 4566`_) data sent to it as individual lines of text (not multiline strings) and outputs a dictionary containing the parsed session description. .. _`RFC 4566`: http://tools.ietf.org/html/rfc4566 Example Usage ------------- Fetch SDP data from a URL, parse it, and display the output:: Pipeline( OneShot("http://www.mysite.com/sessiondescription.sdp"), SimpleHTTPClient(), chunks_to_lines(), SDPParser(), ConsoleEchoer(), ).run() If the session description at the URL provided is this:: v=0 o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5 s=SDP Seminar i=A Seminar on the session description protocol u=http://www.example.com/seminars/sdp.pdf e=j.doe@example.com (Jane Doe) c=IN IP4 224.2.17.12/127 t=2873397496 2873404696 a=recvonly m=audio 49170 RTP/AVP 0 m=video 51372 RTP/AVP 99 a=rtpmap:99 h263-1998/90000 Then parsing will return this dictionary:: { 'protocol_version': 0, 'origin' : ('jdoe', 2890844526, 2890842807, 'IN', 'IP4', '10.47.16.5'), 'sessionname': 'SDP Seminar', 'information': 'A Seminar on the session description protocol', 'connection' : ('IN', 'IP4', '224.2.17.12', '127', 1), 'time' : [(2873397496L, 2873404696L, [])], 'URI' : 'http://www.example.com/seminars/sdp.pdf', 'email' : 'j.doe@example.com (Jane Doe)', 'attribute' : ['recvonly'], 'media': [ { 'media' : ('audio', 49170, 1, 'RTP/AVP', '0'), 'connection': ('IN', 'IP4', '224.2.17.12', '127', 1) }, { 'media' : ('video', 51372, 1, 'RTP/AVP', '99'), 'connection': ('IN', 'IP4', '224.2.17.12', '127', 1), 'attribute' : ['rtpmap:99 h263-1998/90000'] } ], } Behaviour --------- Send individual lines as strings to SDPParser's "inbox" inbox. SDPParser cannot handle multiple lines in the same string. When SDPParser receives a producerFinished() message on its "control" inbox, or if it encounter another "v=" line then it knows it has reached the end of the SDP data and will output the parsed data as a dictionary to its "outbox" outbox. The SDP format does *not* contain any kind of marker to signify the end of a session description - so SDPParser only deduces this by being told that the producer/data source has finished, or if it encounters a "v=" line indicating the start of another session description. SDPParser can parse more than one session description, one after the other. If the SDP data is malformed AssertionError, or other exceptions, may be raised. SDPParser does not rigorously test for exact compliance - it just complains if there are glaring problems, such as fields appearing in the wrong sections! If a producerFinished or shutdownMicroprocess message is received on the "control" inbox then, once any pending data at the "inbox" inbox has been processed, this component will terminate. It will send the message on out of its "signal" outbox. Only if the message is a producerFinished message will it output the session description is has been parsing. A shutdownMicroprocess message will not result in it being output. Format of parsed output ----------------------- The result of parsing SDP data is a dictionary mapping descriptive names of types to values: ====== ====================== ====================================================================== Session Description ------------------------------------------------------------------------------------------------------ Type Dictionary key Format of the value ====== ====================== ====================================================================== v "protocol_version" version_number o "origin" ("user", session_id, session_version, "net_type", "addr_type", "addr") s "sessionname" "session name" t & r "time" (starttime, stoptime, [repeat,repeat, ...]) where repeat = (interval,duration,[offset,offset, ...]) a "attribute" "value of attribute" b "bandwidth" (mode, bitspersecond) i "information" "value" e "email" "email-address" u "URI" "uri" p "phone" "phone-number" c "connection" ("net_type", "addr_type", "addr", ttl, groupsize) z "timezone adjustments" [(adj-time,offset), (adj-time,offset), ...] k "encryption" ("method","value") m "media" [media-description, media-description, ... ] see next table for media description structure ====== ====================== ====================================================================== Note that 't' and 'r' lines are combined in the dictionary into a single "time" key containing both the start and end times specified in the 't' line and a list of any repeats specified in any 'r' lines present. The "media" key contains a list of media descriptions. Like for the overall session description, each is parsed into a dictionary, that will contain some or all of the following: ====== ====================== ====================================================================== Media Descriptions ------------------------------------------------------------------------------------------------------ Type Dictionary key Format of the value ====== ====================== ====================================================================== m "media" ("media-type", port-number, number-of-ports, "protocol", "format") c "connection" ("net_type", "addr_type", "addr", ttl, groupsize) b "bandwidth" (mode, bitspersecond) i "information" "value" k "encryption" ("method","value") a "attribute" "value of attribute" ====== ====================== ====================================================================== Some lines are optional in SDP. If they are not included, then the parsed output will not contain the corresponding key. The formats of values are left unchanged by the parsing. For example, integers representing times are simply converted to integers, but the units used remain unchanged (ie. they will not be converted to unix time units). """ # Basic Parser for SDP data, as defined in RFC 4566 # # assuming the data is already split into lines # # ignores attribute lines to simplify parsing from Axon.Component import component from Axon.Ipc import producerFinished,shutdownMicroprocess import re class SDPParser(component): """\ SDPParser() -> new SDPParser component. Parses Session Description Protocol data (see RFC 4566) sent to its "inbox" inbox as individual strings for each line of the SDP data. Outputs a dict containing the parsed data from its "outbox" outbox. """ Inboxes = { "inbox" : "SDP data in strings, each containing a single line", "control" : "Shutdown signalling", } Outboxes = { "outbox" : "Parsed SDP data in a dictionary", "signal" : "Shutdown signalling", } def handleControl(self): while self.dataReady("control"): msg = self.recv("control") if isinstance(msg,producerFinished): self.shutdownMsg = msg raise "DONE" elif isinstance(msg,shutdownMicroprocess): self.shutdownMsg = msg raise "STOP" else: self.send(msg,"signal") def readline(self): while 1: if self.dataReady("inbox"): line = self.recv("inbox") if line != "": yield line return self.handleControl() self.pause() yield None def main(self): self.shutdownMsg = None session = {} mandatory = "XXX" try: for line in self.readline(): yield 1 # self.readline() generator complete ... line now contains a line with something on it type,key,value = _parseline(line) while 1: # begin by parsing the session section session = {} mandatory = "vost" multiple_allowed = "abtr" single_allowed = "vosiuepcbzk" most_recent_t = None while type != "m": # check to see if we've been getting SDP data, then another 'v' has come along # signifying the start of a new one if type=="v" and "v" not in mandatory: break mandatory=mandatory.replace(type,"") assert((type in single_allowed) or (type in multiple_allowed)) single_allowed=single_allowed.replace(type,"") if type in multiple_allowed: if type=="r": assert(most_recent_t is not None) most_recent_t[2].append(value) # tag repeats into list on end of time field else: session[key] = session.get(key,[]) session[key].append(value) else: session[key] = value for line in self.readline(): yield 1 # self.readline() generator complete ... line now contains a line with something on it type,key,value = _parseline(line) # we've hit an 'm' so its the end of the session section assert(mandatory=="") # now move onto media sections mandatory_additional="" if "c" in single_allowed: mandatory_additional+="c" session['media'] = [] # do a media section while type=="m": mandatory = "" + mandatory_additional multiple_allowed = "a" single_allowed = "icbk" media={key:value} session['media'].append(media) for line in self.readline(): yield 1 # self.readline() generator complete ... line now contains a line with something on it type,key,value = _parseline(line) while type != "m" and type != "v": mandatory=mandatory.replace(type,"") assert((type in single_allowed) or (type in multiple_allowed)) single_allowed=single_allowed.replace(type,"") if type in multiple_allowed: media[key] = media.get(key,[]) media[key].append(value) else: media[key] = value for line in self.readline(): yield 1 # self.readline() generator complete ... line now contains a line with something on it type,key,value = _parseline(line) # end of media section assert(mandatory=="") # end of complete SDP file (we've hit another 'v' signifying the start of a new one) self.sendOutParsedSDP(session) except "DONE": if mandatory=="": self.sendOutParsedSDP(session) yield 1 except "STOP": pass if self.shutdownMsg is None: self.shutdownMsg = producerFinished() self.send(self.shutdownMsg,"signal") def sendOutParsedSDP(self,session): # normalise it a bit first if "connection" in session: for media in session['media']: media['connection'] = session['connection'] self.send(session,"outbox") def _parseline(line): match = re.match("^(.)=(.*)",line) type,value = match.group(1), match.group(2) if type=="v": assert(value=="0") return type, 'protocol_version', int(value) elif type=="o": user,sid,ver,ntype,atype,addr = re.match("^ *(\S+) +(\d+) +(\d+) +(IN) +(IP[46]) +(.+)",value).groups() return type, 'origin', (user,int(sid),int(ver),ntype,atype,addr) elif type=="s": return type, 'sessionname', value elif type=="i": return type, 'information', value elif type=="u": return type, 'URI', value elif type=="e": return type, 'email', value elif type=="p": return type, 'phone', value elif type=="c": if re.match("^ *IN +IP4 +.*$",value): match = re.match("^ *IN +IP4 +([^/]+)(?:/(\d+)(?:/(\d+))?)? *$",value) ntype,atype = "IN","IP4" addr,ttl,groupsize = match.groups() if ttl is None: ttl=127 if groupsize is None: groupsize=1 elif re.match("^ *IN +IP6 +.*$",value): match = re.match("^ *IN +IP6 +([abcdefABCDEF0123456789:.]+)(?:/(\d+))? *$") ntype,atype = "IN","IP6" addr,groupsize = match.groups() else: assert(False) return type, 'connection', (ntype,atype,addr,ttl,groupsize) elif type=="b": mode,rate = \ re.match("^ *((?:AS)|(?:CT)|(?:X-[^:]+)):(\d+) *$",value).groups() bitspersecond=long(rate)*1000 return type, 'bandwidth', (mode,bitspersecond) elif type=="t": start,stop = [ long(x) for x in re.match("^ *(\d+) +(\d+) *$",value).groups() ] repeats = [] return type, 'time', (start,stop,repeats) elif type=="r": terms=re.split("\s+",value) parsedterms = [] for term in terms: value, unit = re.match("^\d+([dhms])?$").groups() value = long(value) * {None:1, "s":1, "m":60, "h":3600, "d":86400}[unit] parsedterms.append(value) interval,duration=parsedterms[0], parsedterms[1] offsets=parsedterms[2:] return type, 'repeats', (interval,duration,offsets) elif type=="z": adjustments=[] while value.strip() != "": adjtime,offset,offsetunit,value = re.match("^ *(\d+) +([+-]?\d+)([dhms])? *?(.*)$",value).groups() adjtime=long(adjtime) offset=long(offset) * {None:1, "s":1, "m":60, "h":3600, "d":86400}[offsetunit] adjustments.append((adjtime,offset)) return type, 'timezone adjustments', adjustments elif type=="k": method,value = re.match("^(clear|base64|uri|prompt)(?:[:](.*))?$",value).groups() return type, "encryption", (method,value) elif type=="a": return type, 'attribute', value elif type=="m": media, port, numports, protocol, fmt = re.match("^(audio|video|text|application|message) +(\d+)(?:[/](\d+))? +([^ ]+) +(.+)$",value).groups() port=int(port) if numports is None: numports=1 else: numports=int(numports) return type, 'media', (media,port,numports,protocol,fmt) else: return type, 'unknown', value __kamaelia_components__ = ( SDPParser, ) if __name__ == "__main__": from Kamaelia.Util.DataSource import DataSource from Kamaelia.Chassis.Pipeline import Pipeline from Kamaelia.Util.Console import ConsoleEchoer sdp = """\ v=0 o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5 s=SDP Seminar i=A Seminar on the session description protocol u=http://www.example.com/seminars/sdp.pdf e=j.doe@example.com (Jane Doe) c=IN IP4 224.2.17.12/127 t=2873397496 2873404696 a=recvonly m=audio 49170 RTP/AVP 0 m=video 51372 RTP/AVP 99 a=rtpmap:99 h263-1998/90000 v=0 o=bfcrd 1140190501 1140190501 IN IP4 132.185.224.80 s=BFC ONE [H.264/AVC] i=Multicast trial service from the BBC! Get BFC FLURBLE here! a=x-qt-text-nam:BFC FLURBLE [H.264/AVC] a=x-qt-text-aut:BFC Research & Development a=x-qt-text-cpy:Copyright (c) 2006 British Flurbling Corporation u=http://www.bbc.co.uk/multicast/ e=Multicast Support <multicast-tech@bfc.co.uk> t=0 0 c=IN IP4 233.122.227.151/32 m=video 5150 RTP/AVP 33 b=AS:1200000 a=type:broadcast a=mux:m2t v=0 """.splitlines() Pipeline( DataSource(sdp), SDPParser(), ConsoleEchoer(), ).run()
37.369388
149
0.531102
e5f7b538daf2a631271a40cb18d32a3a66fa3bd8
3,259
py
Python
tests/automaton_test.py
University-Projects-UH/ia-sim-cmp
c8bcb11950584c0989ef92789d06a2afd0aa05f4
[ "MIT" ]
null
null
null
tests/automaton_test.py
University-Projects-UH/ia-sim-cmp
c8bcb11950584c0989ef92789d06a2afd0aa05f4
[ "MIT" ]
null
null
null
tests/automaton_test.py
University-Projects-UH/ia-sim-cmp
c8bcb11950584c0989ef92789d06a2afd0aa05f4
[ "MIT" ]
null
null
null
from core import Automaton, nfa_to_dfa, DFA, union_automatas, concat_automatas, \ closure_automaton def test_transform_nfa_to_dfa(): automaton = Automaton(3, 0, [2], transitions=[ (0, 'a', [0]), (0, 'b', [1]), (1, 'a', [2]), (1, 'b', [1]), (2, 'a', [0]), (2, 'b', [1]), ]) automaton = nfa_to_dfa(automaton) assert automaton.recognize('ba') assert automaton.recognize('aababbaba') assert not automaton.recognize('') assert not automaton.recognize('aabaa') assert not automaton.recognize('aababb') dfa = nfa_to_dfa(Automaton(6, 0, [3, 5], transitions=[ (0, '', [1, 2]), (1, '', [3]), (1, 'b', [4]), (2, 'a', [4]), (3, 'c', [3]), (4, '', [5]), (5, 'd', [5]), ])) assert dfa.states == 4 assert len(dfa.finals_states) == 4 assert not dfa.recognize('dddddd') assert not dfa.recognize('cdddd') assert not dfa.recognize('aa') assert not dfa.recognize('ab') assert not dfa.recognize('ddddc') assert dfa.recognize('') assert dfa.recognize('a') assert dfa.recognize('b') assert dfa.recognize('cccccc') assert dfa.recognize('adddd') assert dfa.recognize('bdddd') def test_automatas_union(): aut1 = Automaton(2, 0, [1], [(0, '1', [1])]) aut2 = Automaton(2, 0, [1], [(0, '2', [1])]) aut3 = Automaton(2, 0, [1], [(0, '3', [1])]) un = union_automatas(aut1, aut2) un = union_automatas(un, aut3) dfa = nfa_to_dfa(un) assert dfa.recognize("1") assert dfa.recognize("2") assert dfa.recognize("3") automaton = DFA(2, 0, [1], transitions=[ (0, 'a', [0]), (0, 'b', [1]), (1, 'a', [0]), (1, 'b', [1]), ]) union = union_automatas(automaton, automaton) recognize = nfa_to_dfa(union).recognize assert union.states == 2 * automaton.states + 2 assert recognize('b') assert recognize('abbb') assert recognize('abaaababab') assert not recognize('') assert not recognize('a') assert not recognize('abbbbaa') def test_automatas_concat(): automaton = DFA(2, 0, [1], transitions=[ (0, 'a', [0]), (0, 'b', [1]), (1, 'a', [0]), (1, 'b', [1]), ]) concat = concat_automatas(automaton, automaton) recognize = nfa_to_dfa(concat).recognize assert concat.states == 2 * automaton.states + 1 assert recognize('bb') assert recognize('abbb') assert recognize('abaaababab') assert not recognize('') assert not recognize('a') assert not recognize('b') assert not recognize('ab') assert not recognize('aaaab') assert not recognize('abbbbaa') def test_automaton_closure(): automaton = DFA(2, 0, [1], transitions=[ (0, 'a', [0]), (0, 'b', [1]), (1, 'a', [0]), (1, 'b', [1]), ]) closure = closure_automaton(automaton) recognize = nfa_to_dfa(closure).recognize assert closure.states == automaton.states + 2 assert recognize('') assert recognize('b') assert recognize('ab') assert recognize('bb') assert recognize('abbb') assert recognize('abaaababab') assert not recognize('a') assert not recognize('abbbbaa')
26.933884
81
0.561522
764da7952bce284a6e360b42e546625cf9330b26
5,417
py
Python
ck_maml_train.py
zhangming880102/facial_expression_recognition_maml_pytorch
072655d25028e7d1e384f488d9b344b584d0a254
[ "MIT" ]
1
2021-08-10T06:01:06.000Z
2021-08-10T06:01:06.000Z
ck_maml_train.py
zhangming880102/facial_expression_recognition_maml_pytorch
072655d25028e7d1e384f488d9b344b584d0a254
[ "MIT" ]
null
null
null
ck_maml_train.py
zhangming880102/facial_expression_recognition_maml_pytorch
072655d25028e7d1e384f488d9b344b584d0a254
[ "MIT" ]
null
null
null
import torch, os import numpy as np from fer2013NShot import FerNShot import argparse from meta import Meta def main(args): torch.manual_seed(222) torch.cuda.manual_seed_all(222) np.random.seed(222) print(args) config =[ ('conv2d',[64,3,3,3,1,1]), ('bn',[64]), ('relu',[True]), ('conv2d',[64,64,3,3,1,1]), ('bn',[64]), ('relu',[True]), ('max_pool2d',[2,2,0]), ('conv2d',[128,64,3,3,1,1]), ('bn',[128]), ('relu',[True]), ('conv2d',[128,128,3,3,1,1]), ('bn',[128]), ('relu',[True]), ('max_pool2d',[2,2,0]), ('conv2d',[256,128,3,3,1,1]), ('bn',[256]), ('relu',[True]), ('conv2d',[256,256,3,3,1,1]), ('bn',[256]), ('relu',[True]), ('conv2d',[256,256,3,3,1,1]), ('bn',[256]), ('relu',[True]), ('conv2d',[256,256,3,3,1,1]), ('bn',[256]), ('relu',[True]), ('max_pool2d',[2,2,0]), ('conv2d',[512,256,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('max_pool2d',[2,2,0]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('conv2d',[512,512,3,3,1,1]), ('bn',[512]), ('relu',[True]), ('max_pool2d',[2,2,0]), ('avg_pool2d',[1,1,0]), ('flatten', []), ('linear', [args.n_way,512]) ] device = args.device maml = Meta(args,config).to(device) if not args.reload_model is None: maml.load_state_dict(torch.load(args.reload_model,map_location=device)) maml.train() tmp = filter(lambda x: x.requires_grad, maml.parameters()) num = sum(map(lambda x: np.prod(x.shape), tmp)) print(maml) print('Total trainable tensors:', num) db_train = FerNShot('fer', batchsz=args.task_num, n_way=args.n_way, k_shot=args.k_spt, k_query=args.k_qry, imgsz=args.imgsz) for step in range(args.epoch): print('step:%d'%(step)) x_spt, y_spt, x_qry, y_qry = db_train.next() x_spt, y_spt, x_qry, y_qry = torch.from_numpy(x_spt).to(device), torch.from_numpy(y_spt).to(device), \ torch.from_numpy(x_qry).to(device), torch.from_numpy(y_qry).to(device) # set traning=True to update running_mean, running_variance, bn_weights, bn_bias accs = maml(x_spt, y_spt, x_qry, y_qry) if step % 50 == 0: print('step:', step, '\ttraining acc:', accs) if step % 500 == 0: accs = [] for testid in range(100//args.task_num): # test x_spt, y_spt, x_qry, y_qry = db_train.next('test') x_spt, y_spt, x_qry, y_qry = torch.from_numpy(x_spt).to(device), torch.from_numpy(y_spt).to(device), \ torch.from_numpy(x_qry).to(device), torch.from_numpy(y_qry).to(device) # split to single task each time for x_spt_one, y_spt_one, x_qry_one, y_qry_one in zip(x_spt, y_spt, x_qry, y_qry): test_acc = maml.finetunning(x_spt_one, y_spt_one, x_qry_one, y_qry_one) accs.append( test_acc ) # [b, update_step+1] accs = np.array(accs).mean(axis=0).astype(np.float16) print('Test acc:', accs) state_dict=maml.state_dict() torch.save(state_dict,'models/fer_maml_%d.pt'%(step)) if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('--epoch', type=int, help='epoch number', default=40000) argparser.add_argument('--n_way', type=int, help='n way', default=5) argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=1) argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=7) argparser.add_argument('--imgsz', type=int, help='imgsz', default=32) argparser.add_argument('--imgc', type=int, help='imgc', default=1) argparser.add_argument('--task_num', type=int, help='meta batch size, namely task num', default=8) argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=1e-3) argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=0.4) argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5) argparser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=10) argparser.add_argument('--model', type=str, help='vgg19 or resnet', default='vgg19') argparser.add_argument('--device', type=str, help='cpu or cuda', default='cuda:1') argparser.add_argument('--reload_model', type=str,help='reload maml model',default=None) args = argparser.parse_args() main(args)
37.358621
118
0.541259
d0441c503f5b1418b533840bfaba64021a64858d
13,265
py
Python
frequency_model.py
Aurelien1609/Computational-model
ee11c06d3d84f3caab2deef9b7ec2ec96e30d6bd
[ "BSD-3-Clause" ]
1
2019-03-01T02:17:12.000Z
2019-03-01T02:17:12.000Z
frequency_model.py
Aurelien1609/Computational-model
ee11c06d3d84f3caab2deef9b7ec2ec96e30d6bd
[ "BSD-3-Clause" ]
null
null
null
frequency_model.py
Aurelien1609/Computational-model
ee11c06d3d84f3caab2deef9b7ec2ec96e30d6bd
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys import numpy as np from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from math import sqrt import matplotlib.animation as animation from dana import * ''' Spikes model in computational neuroscience with Brian library. ''' # ----------------------------------------------- Parameters --------------------------------------------------------------------- # #np.random.seed(1) # Initialization of the random generator (same randoms values) STR_density = 1000 STR_size = 1.00,1.00 STR_count = STR_size[0] * STR_size[1] * STR_density GP_density = 1000 GP_size = 0.85,0.85 GP_count = GP_size[0] * GP_size[1] * GP_density # Striatum STR = np.zeros(STR_count, dtype = [("V", float), # Membrane potential ("P", float, 2)]) # Spatial position STR["P"][:,0] = (1.0-STR_size[0])/2 + np.random.uniform(0.0, STR_size[0], len(STR)) STR["P"][:,1] = (1.0-STR_size[1])/2 + np.random.uniform(0.0, STR_size[1], len(STR)) # Globus Pallidus GP = np.zeros(GP_count, dtype = [("V", float), # Membrane potential ("P", float, 2)]) # Spatial position GP["P"][:,0] = (1.0-GP_size[0])/2 + np.random.uniform(0.0, GP_size[0], len(GP)) GP["P"][:,1] = (1.0-GP_size[1])/2 + np.random.uniform(0.0, GP_size[1], len(GP)) # Striatum -> Striatum D = cdist(STR["P"], STR["P"]) W = np.abs(np.random.normal(0.0, 0.1,(len(STR),len(STR)))) S = np.sign(np.random.uniform(-1, 3, (len(STR), len(STR)))) # 60% connections positive / 40% connections negative W_STR_STR = ((W > D)) * S #W_STR_STR = (W > D) np.fill_diagonal(W_STR_STR, 0) # neuron can not connect himself # Globus Pallidus -> Globus Pallidus D = cdist(GP["P"], GP["P"]) W = np.abs(np.random.normal(0.0,0.1,(len(GP),len(GP)))) W_GP_GP = D * (W > D) # Striatum -> Globus Pallidus D = cdist(STR["P"], GP["P"]) W = np.abs(np.random.normal(0.0,0.1,(len(STR),len(GP)))) W_STR_GP = D * (W > D) # Globus Pallidus -> Striatum D = cdist(GP["P"], STR["P"]) W = np.abs(np.random.normal(0.0,0.1,(len(GP),len(STR)))) W_GP_STR = D * (W > D) def save_connections() : np.savez("connections.npz", W_GP_STR, W_STR_GP, W_GP_GP, W_STR_STR) def load_connections() : W_GP_STR, W_STR_GP, W_GP_GP, W_STR_STR = np.load("connections.npz") # ----------------------------------------------- Model --------------------------------------------------------------------- # duration = 200 * millisecond # Default trial duration dt = 1.0 / 1024 * second # Default Time resolution : number of power 2 to avoid approximations #dt = 1 * millisecond STR_H = -65.0 # Resting potentiel Threshold = -30.0 # Maximal Voltage for Spikes activity STR_tau = 0.1 # Time constants STR_N = 1 * 10 ** -3 # Noise level V_init = -65.0 # Init potential V # Sigmoid parameter fmin = 0.0 fmax = 1.0 # frequency PA slope = 1.0 # steepness of the slope mean_freq = -40.0 # Functions def noise(V, level) : """ Initial level of the noisy neurons """ V *= (1 + np.random.uniform(-level, level, V.shape)) return V def sigmoid(V, Fmin = 0, Fmax = 1, mean_freq = 0, slope = 1) : """ Boltzmann sigmoid Returns values between [fmin, fmax] """ V = Fmin + ((Fmax - Fmin) / (1.0 + np.exp((mean_freq - V) / slope))) return V # Populations # G_STR = zeros(len(STR), 'dV/dt = (-V + I_int + I_ext + Input + STR_H)/ STR_tau; U = sigmoid(noise(V, STR_N), fmin, fmax, mean_freq, slope); I_int; I_ext; Input;') G_STR.V = V_init + np.random.uniform(-STR_N, STR_N, G_STR.V.shape) G_STR.U = sigmoid(G_STR.V, fmin, fmax, mean_freq, slope) # Connectivity # SparseConnection(G_STR('U'), G_STR('I_int'), W_STR_STR * 10) # faster computation with sparse matrix # Electrode Stimulation # def input_current(voltage = 100.0, position = [0.5, 0.5], tau_Stim = 0.15) : ''' Add current in dv/dt equation ''' Stim = np.array([(voltage, position)], dtype=[('V', '<f8'), ('P', '<f8', 2)]) Distance_Stim_Neurons = cdist(Stim['P'], STR['P']) # Compute distance between electrode and neurons in STR Stim_Voltage = np.exp(-Distance_Stim_Neurons / tau_Stim) * voltage # Value of stim voltage #Stim_Voltage = voltage * (Distance_Stim_Neurons < 0.3) return Distance_Stim_Neurons, Stim_Voltage Input = 500.0 # here, we add current Position = [0.5, 0.5] # electrode position tau = 0.15 dist_Stim_STR, input_STR = input_current(Input, Position, tau) @clock.at(1 * millisecond) # avoid 0 ms def data(times) : G_STR.Input = input_STR @clock.at(20 * millisecond) def data(times) : G_STR.Input = 0.0 # Trial setup # time = int(duration / dt) + 1 STR_record_V = np.zeros((time, len(STR))) STR_record_U = np.zeros((time, len(STR))) STR_record_Input = np.zeros((time, len(STR))) STR_record_I_int = np.zeros((time, len(STR))) record_index = 0 @before(clock.tick) def save_data(times): global record_index STR_record_V[record_index] = G_STR.V STR_record_U[record_index] = G_STR.U STR_record_Input[record_index] = G_STR.Input STR_record_I_int[record_index] = G_STR.I_int record_index += 1 # Simulation # run(time = duration, dt = dt) # ----------------------------------------------- Displays --------------------------------------------------------------------- # def infos() : '''Some information about the neuronal populations for each structures''' print "Striatal populations: %d" % len(STR) print "Pallidal populations: %d" % len(GP) print C = (W_STR_STR > 0).sum(axis=1) + (W_STR_STR < 0).sum(axis=1) L = W_STR_STR[np.where(W_STR_STR != 0)] print "Collateral striatal connections" print "Mean number: %g (+/- %g)" % (C.mean(), C.std()) print "Mean length: %g (+/- %g)" % (L.mean(), L.std()) print C = (W_GP_GP > 0).sum(axis=1) + (W_GP_GP < 0).sum(axis=1) L = W_GP_GP[np.where(W_GP_GP != 0)] print "Collateral pallidal connections" print "Mean number: %g (+/- %g)" % (C.mean(), C.std()) print "Mean length: %g (+/- %g)" % (L.mean(), L.std()) print C = (W_STR_GP > 0).sum(axis=1) + (W_STR_GP < 0).sum(axis=1) L = W_STR_GP[np.where(W_STR_GP != 0)] print "Striato-pallidal connections" print "Mean number: %g (+/- %g)" % (C.mean(), C.std()) print "Mean length: %g (+/- %g)" % (L.mean(), L.std()) print print "Mean # collateral striato-pallidal connections: %g (+/- %g)" % (C.mean(), C.std()) C = (W_GP_STR > 0).sum(axis=1) + (W_GP_STR < 0).sum(axis=1) L = W_GP_STR[np.where(W_GP_STR != 0)] print "Pallido-striatal connections" print "Mean number: %g (+/- %g)" % (C.mean(), C.std()) print "Mean length: %g (+/- %g)" % (L.mean(), L.std()) print infos() def connections() : ''' The graph of connections of afferent and efferent neurons ''' def on_pick(event): '''Show neuronals afferants with a click and efferents with control and click ''' button = event.mouseevent.button index = event.ind[0] # Clear previous selection/connections STR_selection_plot.set_data([],[]) STR_connections_plot.set_data([],[]) GP_selection_plot.set_data([],[]) GP_connections_plot.set_data([],[]) # --- Output connections --- if button == 1: STR_connections_plot.set_color('red') GP_connections_plot.set_color('red') if event.artist == STR_plot: x,y = STR[index]['P'] STR_selection_plot.set_data([x],[y]) I = W_STR_STR[:,index].nonzero() STR_connections_plot.set_data(STR['P'][I,0], STR['P'][I,1]) I = W_GP_STR[:,index].nonzero() GP_connections_plot.set_data(GP['P'][I,0], GP['P'][I,1]) elif event.artist == GP_plot: x,y = GP[index]['P'] GP_selection_plot.set_data([x],[y]) I = W_GP_GP[:,index].nonzero() GP_connections_plot.set_data(GP['P'][I,0], GP['P'][I,1]) I = W_STR_GP[:,index].nonzero() STR_connections_plot.set_data(STR['P'][I,0], STR['P'][I,1]) # --- Input connections --- elif button == 3: STR_connections_plot.set_color('blue') GP_connections_plot.set_color('blue') if event.artist == STR_plot: x,y = STR[index]['P'] STR_selection_plot.set_data([x],[y]) I = W_STR_STR[index,:].nonzero() STR_connections_plot.set_data(STR['P'][I,0], STR['P'][I,1]) I = W_STR_GP[index].nonzero() GP_connections_plot.set_data(GP['P'][I,0], GP['P'][I,1]) elif event.artist == GP_plot: x,y = GP[index]['P'] GP_selection_plot.set_data([x],[y]) I = W_GP_GP[index,:].nonzero() GP_connections_plot.set_data(GP['P'][I,0], GP['P'][I,1]) I = W_GP_STR[index,:].nonzero() STR_connections_plot.set_data(STR['P'][I,0], STR['P'][I,1]) plt.draw() # Figure fig = plt.figure(figsize=(16,7), facecolor='white') fig.canvas.mpl_connect('pick_event', on_pick) # Striatum plot STR_ax = plt.subplot(121, aspect=1) STR_ax.set_title("Striatum") STR_plot, = STR_ax.plot(STR['P'][:,0], STR['P'][:,1], 'o', color='k', alpha=0.1, picker=5) STR_ax.set_xlim(0,1) STR_ax.set_xticks([]) STR_ax.set_ylim(0,1) STR_ax.set_yticks([]) STR_selection_plot, = STR_ax.plot([],[], 'o', color='black', alpha=1.0, zorder=10) STR_connections_plot, = STR_ax.plot([],[], 'o', color='red', alpha=0.5, zorder=10) # GP plot GP_ax = plt.subplot(122, aspect=1) GP_ax.set_title("Globus Pallidus") GP_plot, = GP_ax.plot(GP['P'][:,0], GP['P'][:,1], 'o', color='k', alpha=0.1, picker=5) GP_ax.set_xlim(0,1) GP_ax.set_xticks([]) GP_ax.set_ylim(0,1) GP_ax.set_yticks([]) GP_selection_plot, = GP_ax.plot([],[], 'o', color='black', alpha=1.0, zorder=10) GP_connections_plot, = GP_ax.plot([],[], 'o', color='red', alpha=0.5, zorder=10) plt.show() connections() frequence = 1 if frequence : ''' Histogram 2D of record activity ''' x = STR["P"][:,0] y = STR["P"][:,1] pause = False step = 1 #step = min(int(duration / dt + 1), step) # step in ms times = 0 bins = 18 hist_cumulate, xa, ya = np.histogram2d(x,y, bins = bins, weights = STR_record_U[0]) hist_counts_neurons, xb, yb = np.histogram2d(x,y, bins = bins) hist_counts_neurons = np.maximum(hist_counts_neurons, 1) mean_activity = hist_cumulate / hist_counts_neurons def onClick(event): ''' Capture a click to turn the histogram paused ''' global pause pause ^= True def updatefig(i) : ''' Updated of potential activity''' global pause, times if not pause and times < len(STR_record_U) : hist_cumulate, xa, ya = np.histogram2d(x,y, bins = bins, weights = STR_record_U[times]) mean_activity = hist_cumulate / hist_counts_neurons plt.title("Mean of frequency networks = " + str("{0:.2f}".format(np.mean(STR_record_U[times]))) + "\n Dispersion of frequency networks = " + str("{0:.2f}".format(np.std(STR_record_U[times]))) + "\n Time = " + str(times) + " ms") im.set_array(mean_activity) times += step # acceleration of the visualization return im fig = plt.figure(figsize=(12, 8)) im = plt.imshow(mean_activity, interpolation='nearest', origin='low', extent=[0, 1, 0, 1], vmin = fmin, vmax = fmax) # vmin = Vmin, vmax = Vmax : fix values potential V, cmap = 'hot' plt.xlabel('x') plt.ylabel('y') cbar = plt.colorbar() cbar.ax.set_ylabel('Frequency in HZ') fig.canvas.mpl_connect('button_press_event', onClick) ani = animation.FuncAnimation(fig, updatefig) plt.show() fig = plt.figure(figsize=(14, 9)) plt.subplot(222) H = plt.hist(STR_record_U[-1], color='.5', edgecolor='w') plt.title('Distribution of frequency at the end') #plt.xlabel('Frequency HZ') plt.ylabel('Number of Neurons') plt.subplot(221) H = plt.hist(STR_record_U[0], color='.5', edgecolor='w') plt.title('Distribution of frequency at start') plt.ylabel('Number of Neurons') plt.subplot(223) number_neuron = 0 #M = np.mean(STR_record_U[:, 0]) title = "STR Neuron " + str(number_neuron) + ", I_int " #+ str("{0:.2f}".format(M)) time_step = np.arange(0, len(STR_record_I_int)) #mean_step = np.zeros(len(STR_record_I_int)) + M plt.plot(time_step, STR_record_I_int[:, number_neuron], c='b', label= title) #plt.plot(time_step, mean_step, c='r', label= 'Mean') plt.title(title) plt.xlabel("Time (mseconds)") plt.ylabel("Intensity (mV)") plt.xlim(0, len(STR_record_U) - 1) #plt.xlim(0, len(STR_record_U) - 1) plt.subplot(224) number_neuron = 0 M = np.mean(STR_record_U[:, 0]) title = "STR Neuron " + str(number_neuron) + ", Mean Frequency = " + str("{0:.2f}".format(M)) time_step = np.arange(0, len(STR_record_U)) mean_step = np.zeros(len(STR_record_U)) + M plt.plot(time_step, STR_record_U[:, number_neuron], c='b', label= title) plt.plot(time_step, mean_step, c='r', label= 'Mean') plt.title(title) plt.xlabel("Time (mseconds)") plt.ylabel("Frequency (HZ)") plt.xlim(0, len(STR_record_U) - 1) plt.show()
32.997512
162
0.599095
8411ee7763470f14a25cb6ca7803dfbe67d2ba82
14,920
py
Python
ViewWidget.py
Linzecong/ExcelDiffer
97ee053cf29f70e401e9ddc65fc2f79d5da2d923
[ "Apache-2.0" ]
20
2019-03-04T11:11:30.000Z
2022-03-14T06:52:46.000Z
ViewWidget.py
hubuyaolian/ExcelDiffer-1
97ee053cf29f70e401e9ddc65fc2f79d5da2d923
[ "Apache-2.0" ]
3
2019-03-04T11:12:44.000Z
2022-01-12T18:06:15.000Z
ViewWidget.py
hubuyaolian/ExcelDiffer-1
97ee053cf29f70e401e9ddc65fc2f79d5da2d923
[ "Apache-2.0" ]
8
2019-03-28T11:07:39.000Z
2022-01-03T19:45:52.000Z
#-*- codingg:utf8 -*- from PyQt5.QtWidgets import QScrollBar, QWidget,QAction, QSplitter, QMainWindow, QApplication, QTableWidgetItem,QTableWidget,QHBoxLayout,QVBoxLayout from PyQt5.QtGui import QBrush,QColor,QIcon from PyQt5.QtCore import Qt,QSettings import sys from ExcelWidget import ExcelWidget class ViewWidget(QMainWindow): def __init__(self): super(ViewWidget,self).__init__() self.diff = -1 self.OldTableWidget = ExcelWidget() self.NewTableWidget = ExcelWidget() self.MainLayout = QHBoxLayout() self.Splitter = QSplitter(Qt.Horizontal) self.Splitter.addWidget(self.OldTableWidget) self.Splitter.addWidget(self.NewTableWidget) self.Splitter.setContentsMargins(5,5,5,5) self.setCentralWidget(self.Splitter) self.Lock = True self.OldTableWidget.currentChanged.connect(lambda x:self.setSame(x,0)) self.NewTableWidget.currentChanged.connect(lambda x:self.setSame(x,1)) self.OldTableWidget.cellClicked.connect(lambda x,y:self.setSameCell(x,y,0)) self.NewTableWidget.cellClicked.connect(lambda x,y:self.setSameCell(x,y,1)) self.OldTableWidget.hbarchange.connect(lambda x:self.NewTableWidget.TableWidgets[self.NewTableWidget.currentIndex()].horizontalScrollBar().setValue(x)) self.NewTableWidget.vbarchange.connect(lambda x:self.OldTableWidget.TableWidgets[self.OldTableWidget.currentIndex()].verticalScrollBar().setValue(x)) self.NewTableWidget.hbarchange.connect(lambda x:self.OldTableWidget.TableWidgets[self.OldTableWidget.currentIndex()].horizontalScrollBar().setValue(x)) self.OldTableWidget.vbarchange.connect(lambda x:self.NewTableWidget.TableWidgets[self.NewTableWidget.currentIndex()].verticalScrollBar().setValue(x)) self.initAction() self.initToolbar() # self.MainLayout.addWidget(self.Splitter) # self.setLayout(self.MainLayout) def setSameCell(self,x,y,type1): if self.Lock == False: return if type1 == 0: self.NewTableWidget.currentWidget().setCurrentCell(x,y) else: self.OldTableWidget.currentWidget().setCurrentCell(x,y) def setSame(self,id,type1): if self.Lock == False: return if type1 == 0: text = self.OldTableWidget.tabText(id) for i in range(self.NewTableWidget.count()): if text == self.NewTableWidget.tabText(i): self.NewTableWidget.setCurrentIndex(i) else: text = self.NewTableWidget.tabText(id) for i in range(self.OldTableWidget.count()): if text == self.OldTableWidget.tabText(i): self.OldTableWidget.setCurrentIndex(i) def initToolbar(self): self.toolbar = self.addToolBar("tabletool") def initAction(self): self.LockAction = QAction(QIcon("icon/lock.png"),"锁定",self) self.LockAction.setStatusTip("锁定表格,使得切换标签页时,新旧两个表格同步,且比较时将比较整个文件!") self.LockAction.triggered.connect(self.lockTab) self.UnlockAction = QAction(QIcon("icon/unlock.png"),"解锁",self) self.UnlockAction.setStatusTip("解锁表格,使得切换标签页时,新旧两个表格不会同步,且只比较选定的标签!") self.UnlockAction.triggered.connect(self.unlockTab) def lockTab(self): self.Lock = True self.toolbar.removeAction(self.LockAction) self.toolbar.addAction(self.UnlockAction) def unlockTab(self): self.Lock = False self.toolbar.removeAction(self.UnlockAction) self.toolbar.addAction(self.LockAction) def setOldTable(self,data): self.OldTableWidget.setData(data) def setNewTable(self,data): self.NewTableWidget.setData(data) def ABCToInt(self, s): dict0 = {} for i in range(26): dict0[chr(ord('A')+i)]=i+1 output = 0 for i in range(len(s)): output = output*26+dict0[s[i]] return output def setHighLight(self,widget,difftype,id): """ 0 old 1 new 2 both """ self.ColorSettings = QSettings("ExcelDiffer", "Color"); hightlight = self.ColorSettings.value("hightlight") self.setColor(self.diff,self.oi,self.ni) if widget == 0: if difftype == "del_col": col = self.ABCToInt(self.diff[difftype][id]) self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(0,col-1) for i in range(self.OldTableWidget.TableWidgets[self.oi].rowCount()): self.OldTableWidget.TableWidgets[self.oi].item(i,col-1).setBackground(QBrush(QColor(hightlight))) if difftype == "del_row": row = self.diff[difftype][id] self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(row-1,0) for j in range(self.OldTableWidget.TableWidgets[self.oi].columnCount()): self.OldTableWidget.TableWidgets[self.oi].item(row-1,j).setBackground(QBrush(QColor(hightlight))) if difftype == "change_cell": rec = self.diff[difftype][id] j = self.ABCToInt(rec[0][1]) self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(rec[0][0]-1,j-1) self.OldTableWidget.TableWidgets[self.oi].item(rec[0][0]-1,j-1).setBackground(QBrush(QColor(hightlight))) j = self.ABCToInt(rec[1][1]) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(rec[1][0]-1,j-1) self.NewTableWidget.TableWidgets[self.ni].item(rec[1][0]-1,j-1).setBackground(QBrush(QColor(hightlight))) if difftype == "del_merge": rec = self.diff["del_merge"][id] self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(rec[0],rec[2]) for i in range(rec[0],rec[1]): for j in range(rec[2],rec[3]): self.OldTableWidget.TableWidgets[self.oi].item(i,j).setBackground(QBrush(QColor(hightlight))) if difftype == "row_exchange": i = self.diff["row_exchange"][id] self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(i[0]-1,0) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(i[1]-1,0) for j in range(self.OldTableWidget.TableWidgets[self.oi].columnCount()): self.OldTableWidget.TableWidgets[self.oi].item(i[0]-1,j).setBackground(QBrush(QColor(hightlight))) for j in range(self.NewTableWidget.TableWidgets[self.ni].columnCount()): self.NewTableWidget.TableWidgets[self.ni].item(i[1]-1,j).setBackground(QBrush(QColor(hightlight))) if difftype == "col_exchange": s = self.diff["col_exchange"][id] j1 = self.ABCToInt(s[0]) j2 = self.ABCToInt(s[1]) self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(0,j1-1) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(0,j2-1) for i in range(self.OldTableWidget.TableWidgets[self.oi].rowCount()): self.OldTableWidget.TableWidgets[self.oi].item(i,j1-1).setBackground(QBrush(QColor(hightlight))) for i in range(self.NewTableWidget.TableWidgets[self.ni].rowCount()): self.NewTableWidget.TableWidgets[self.ni].item(i,j2-1).setBackground(QBrush(QColor(hightlight))) elif widget == 1: if difftype == "add_col": col = self.ABCToInt(self.diff[difftype][id]) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(0,col-1) for i in range(self.NewTableWidget.TableWidgets[self.ni].rowCount()): self.NewTableWidget.TableWidgets[self.ni].item(i,col-1).setBackground(QBrush(QColor(hightlight))) if difftype == "add_row": row = self.diff[difftype][id] self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(row-1,0) for j in range(self.NewTableWidget.TableWidgets[self.ni].columnCount()): self.NewTableWidget.TableWidgets[self.ni].item(row-1,j).setBackground(QBrush(QColor(hightlight))) if difftype == "change_cell": rec = self.diff[difftype][id] j = self.ABCToInt(rec[0][1]) self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(rec[0][0]-1,j-1) self.OldTableWidget.TableWidgets[self.oi].item(rec[0][0]-1,j-1).setBackground(QBrush(QColor(hightlight))) j = self.ABCToInt(rec[1][1]) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(rec[1][0]-1,j-1) self.NewTableWidget.TableWidgets[self.ni].item(rec[1][0]-1,j-1).setBackground(QBrush(QColor(hightlight))) if difftype == "new_merge": rec = self.diff["new_merge"][id] self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(rec[0],rec[2]) for i in range(rec[0],rec[1]): for j in range(rec[2],rec[3]): self.NewTableWidget.TableWidgets[self.ni].item(i,j).setBackground(QBrush(QColor(hightlight))) if difftype == "row_exchange": i = self.diff["row_exchange"][id] self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(i[0]-1,0) for j in range(self.OldTableWidget.TableWidgets[self.oi].columnCount()): self.OldTableWidget.TableWidgets[self.oi].item(i[0]-1,j).setBackground(QBrush(QColor(hightlight))) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(i[1]-1,0) for j in range(self.NewTableWidget.TableWidgets[self.ni].columnCount()): self.NewTableWidget.TableWidgets[self.ni].item(i[1]-1,j).setBackground(QBrush(QColor(hightlight))) if difftype == "col_exchange": s = self.diff["col_exchange"][id] j1 = self.ABCToInt(s[0]) j2 = self.ABCToInt(s[1]) self.OldTableWidget.TableWidgets[self.oi].setCurrentCell(0,j1-1) for i in range(self.OldTableWidget.TableWidgets[self.oi].rowCount()): self.OldTableWidget.TableWidgets[self.oi].item(i,j1-1).setBackground(QBrush(QColor(hightlight))) self.NewTableWidget.TableWidgets[self.ni].setCurrentCell(0,j2-1) for i in range(self.NewTableWidget.TableWidgets[self.ni].rowCount()): self.NewTableWidget.TableWidgets[self.ni].item(i,j2-1).setBackground(QBrush(QColor(hightlight))) else: pass def setColor(self,diff,oi=-1,ni=-1): self.ColorSettings = QSettings("ExcelDiffer", "Color"); hightlight = self.ColorSettings.value("hightlight") background = self.ColorSettings.value("background"); exchange = self.ColorSettings.value("exchange"); add = self.ColorSettings.value("add"); delcolor = self.ColorSettings.value("delcolor"); change = self.ColorSettings.value("change"); self.diff = diff if oi==-1: oi = self.OldTableWidget.currentIndex() ni = self.NewTableWidget.currentIndex() self.oi=oi self.ni=ni for i in range(self.NewTableWidget.TableWidgets[ni].rowCount()): for j in range(self.NewTableWidget.TableWidgets[ni].columnCount()): self.NewTableWidget.TableWidgets[ni].item(i,j).setBackground(QBrush(QColor(background))) self.NewTableWidget.TableWidgets[ni].item(i,j).setForeground(QBrush(QColor("#000000"))) for i in range(self.OldTableWidget.TableWidgets[oi].rowCount()): for j in range(self.OldTableWidget.TableWidgets[oi].columnCount()): self.OldTableWidget.TableWidgets[oi].item(i,j).setBackground(QBrush(QColor(background))) self.OldTableWidget.TableWidgets[oi].item(i,j).setForeground(QBrush(QColor("#000000"))) for i in diff["row_exchange"]: for j in range(self.OldTableWidget.TableWidgets[oi].columnCount()): self.OldTableWidget.TableWidgets[oi].item(i[0]-1,j).setBackground(QBrush(QColor(exchange))) for j in range(self.NewTableWidget.TableWidgets[ni].columnCount()): self.NewTableWidget.TableWidgets[ni].item(i[1]-1,j).setBackground(QBrush(QColor(exchange))) for s in diff["col_exchange"]: j1 = self.ABCToInt(s[0]) j2 = self.ABCToInt(s[1]) for i in range(self.OldTableWidget.TableWidgets[oi].rowCount()): self.OldTableWidget.TableWidgets[oi].item(i,j1-1).setBackground(QBrush(QColor(exchange))) for i in range(self.NewTableWidget.TableWidgets[ni].rowCount()): self.NewTableWidget.TableWidgets[ni].item(i,j2-1).setBackground(QBrush(QColor(exchange))) for rec in diff["new_merge"]: for i in range(rec[0],rec[1]): for j in range(rec[2],rec[3]): self.NewTableWidget.TableWidgets[ni].item(i,j).setBackground(QBrush(QColor(add))) for rec in diff["del_merge"]: for i in range(rec[0],rec[1]): for j in range(rec[2],rec[3]): self.OldTableWidget.TableWidgets[oi].item(i,j).setBackground(QBrush(QColor(delcolor))) for s in diff["add_col"]: j = self.ABCToInt(s) for i in range(self.NewTableWidget.TableWidgets[ni].rowCount()): self.NewTableWidget.TableWidgets[ni].item(i,j-1).setBackground(QBrush(QColor(add))) for s in diff["del_col"]: j = self.ABCToInt(s) for i in range(self.OldTableWidget.TableWidgets[oi].rowCount()): self.OldTableWidget.TableWidgets[oi].item(i,j-1).setBackground(QBrush(QColor(delcolor))) for i in diff["add_row"]: for j in range(self.NewTableWidget.TableWidgets[ni].columnCount()): self.NewTableWidget.TableWidgets[ni].item(i-1,j).setBackground(QBrush(QColor(add))) for i in diff["del_row"]: for j in range(self.OldTableWidget.TableWidgets[oi].columnCount()): self.OldTableWidget.TableWidgets[oi].item(i-1,j).setBackground(QBrush(QColor(delcolor))) for rec in diff["change_cell"]: j = self.ABCToInt(rec[0][1]) self.OldTableWidget.TableWidgets[oi].item(rec[0][0]-1,j-1).setBackground(QBrush(QColor(change))) j = self.ABCToInt(rec[1][1]) self.NewTableWidget.TableWidgets[ni].item(rec[1][0]-1,j-1).setBackground(QBrush(QColor(change))) if __name__=="__main__": app = QApplication(sys.argv) main = ViewWidget() main.show() sys.exit(app.exec_())
52.350877
159
0.623995
d92cf40ab5c5e3dc812b111ba84bce6a36bf7565
1,229
py
Python
server/static/old/FacialDetect.py
loudest/Videostream-Face-Biometrics
44c297c59bf14cd0f9a59c68f5718718e14b0c6e
[ "MIT" ]
2
2017-07-13T13:13:33.000Z
2020-03-27T02:06:56.000Z
server/static/old/FacialDetect.py
loudest/Videostream-Face-Biometrics
44c297c59bf14cd0f9a59c68f5718718e14b0c6e
[ "MIT" ]
null
null
null
server/static/old/FacialDetect.py
loudest/Videostream-Face-Biometrics
44c297c59bf14cd0f9a59c68f5718718e14b0c6e
[ "MIT" ]
null
null
null
import numpy as np import cv2 def facialDetect(cascadePath=None): if cascadePath == None: cascadePath = "haarcascades/haarcascade_frontalface_default.xml" camera = cv2.VideoCapture(0) while True: res, frame = camera.read() cascade = cv2.CascadeClassifier(cascadePath) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imshow('face detection', frame) k = cv2.waitKey(1) & 0xFF if k == 27: cv2.destroyAllWindows() break del(camera) def frameFacialDetect(frame, cascadePath=None, color=None): if cascadePath == None: cascadePath = "haarcascade_frontalface_default.xml" if color == None: color = (0, 255, 0) cascade = cv2.CascadeClassifier(cascadePath) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2) return frame
38.40625
97
0.631408
8266904a36c348eb901c23f43201155bf23cf202
4,603
py
Python
main.py
kokonut27/BHTML-Compiler
39e7e79d789be3ded946965d2b152c4cf6aa8459
[ "MIT" ]
6
2021-04-21T22:46:08.000Z
2021-12-19T14:12:59.000Z
main.py
kokonut27/BHTML-Compiler
39e7e79d789be3ded946965d2b152c4cf6aa8459
[ "MIT" ]
2
2021-04-21T22:54:23.000Z
2021-04-26T12:35:53.000Z
main.py
kokonut27/BHTML-Compiler
39e7e79d789be3ded946965d2b152c4cf6aa8459
[ "MIT" ]
3
2021-04-21T22:48:37.000Z
2021-04-24T21:44:14.000Z
import os, sys, time, re import string fp = input('FilePath: ') def parse(file): print("i started parsing!!!") if '.bhtml' in file: pass else: raise Exception("The file is not a 'bhtml' file") try: f = open(file,'r') except: raise Exception("There is no such file") content = f.read() colist = content.split("\n") ''' load = 0 for i in colist: if i: load+=1 ''' ''' num=0 while num < load: print("Compiling... |") time.sleep(0.08) os.system('clear') print("Compiling... \ ") time.sleep(0.08) os.system('clear') print("Compiling... -") time.sleep(0.08) os.system('clear') print("Compiling... |") time.sleep(0.08) os.system('clear') print('Compiling... /') time.sleep(0.08) os.system('clear') num+=1 ''' def check(): df = re.findall("(?<=[AZaz])?(?!\d*=)[0-9.+-]+", lines) df = str(df) def wait_until(somepredicate, timeout, period=0.25, *args, **kwargs): mustend = time.time() + timeout while time.time() < mustend: if somepredicate(*args, **kwargs): return True time.sleep(period) return False allvars = {} line = 0 read_line=0 getChar1 = "none" getChar2 = "none" getChar3 = "none" var1 = "Undefined variable" input1 = "Undefined input" input2 = "Undefined input" input3 = "Undefined input" def docTAG(): try: if '<!DOCTYPE bhtml>' in lines:#this way is more recommended bhtmldoc = True elif '<!doctype bhtml>' in lines: bhtmldoc = True elif '<!doctype BHTML>' in lines: bhtmldoc = True elif '<!DOCTYPE BHTML>' in lines: bhtmldoc = True else: pass except: pass def aTAG(): try: #lines = lines.replace(' ','') PUT DELETE SPACES FUNCTION HERE if ('<a href = "' in lines): wrd = '<a href = "' res = lines.partition(wrd)[2] split_string = res.split("\">", 1) res = split_string[0] print(res) # been doing too much js #print(lines) os.system(f"touch {res}.bhtml") # creates file ee = lines.partition(f'<a href = "{res}">') f = ee[2] f = str(f) f = f.replace('</a>','') #print(f) # try: #except: # raise Exception("ERROR") print("BEFORE") print(res) #parse(f"{res}.bhtml") print("AFTER") # code here, it means it passed with href tag elif ('<a id = "'): pass else: pass except: raise Exception("ERROR") def pTAG(): try: if '</p>' in lines:#maybe replace </p> with </>? wrd = '<p>' res = lines.partition(wrd)[2] res = res.replace('</p>', '') #res = res.replace(' ', '') res = res.replace('{getChar1}', getChar1) res = res.replace('{getChar2}', getChar2) res = res.replace('{getChar3}', getChar3) res = res.replace("{{input1}}", input1) res = res.replace("{{input2}}", input2) res = res.replace("{{input3}}", input3) res = res.replace("{{var1}}", var1) if "{{" in res: if "}}" in res: start = "{{" end = "}}" check = res[res.find(start) + len(start):res.rfind(end)] if check in allvars: res = res.replace('{{','') res = res.replace('}}','') e = allvars[check] res = res.replace(check, str(e)) else: exit()#add error wait_until("</p>", 0) split_string = res.split("</p>", -1) res = split_string[0] print(res) else: pass except: raise Exception("ERROR") def h1TAG(): pass newvar = 0 file = open(fp) readline2 = 0 for lines in file.readlines(): if "<!--" in lines: wait_until("-->", 0) readline2=1 if readline2 == 1: continue line+=1 lines = lines.replace('\n','') lines = lines.replace('\t','') if lines == '': pass elif "<!--" in lines: wait_until("-->", 0) pass lines = lines.rstrip() if "</p>" in lines: pTAG() if "<a href" in lines: aTAG() elif lines in string.whitespace:#i might remove this pass elif type(lines) == str:#if the code inside index.bhtml is string, it prints, like regular html print(str(lines)) parse(fp)
23.247475
99
0.494026
cb721357046f290b4a4f3e82a54f8c1537b2b002
8,040
py
Python
src/graph_transpiler/webdnn/optimizer/sub_rules/merge_sgemm_and_elementwise_mul.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
1
2018-07-26T13:52:21.000Z
2018-07-26T13:52:21.000Z
src/graph_transpiler/webdnn/optimizer/sub_rules/merge_sgemm_and_elementwise_mul.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
null
null
null
src/graph_transpiler/webdnn/optimizer/sub_rules/merge_sgemm_and_elementwise_mul.py
gunpowder78/webdnn
c659ea49007f91d178ce422a1eebe289516a71ee
[ "MIT" ]
null
null
null
from typing import Tuple from webdnn.graph import traverse from webdnn.graph.axis import Axis from webdnn.graph.graph import Graph from webdnn.graph.operators.elementwise_mul import ElementwiseMul from webdnn.graph.operators.sgemm import Sgemm from webdnn.graph.operators.transpose import Transpose from webdnn.graph.optimize_rule import OptimizeRule from webdnn.graph.order import Order from webdnn.graph.variable import Variable from webdnn.graph.variables.constant_variable import ConstantVariable from webdnn.util import flags from webdnn.util.misc import mul class MergeSgemmAndElementwiseMul(OptimizeRule): """ This optimize rule merges SGEMM weight and ElementwiseMul coefficient. ... code-block:: text x -+ +-{sgemm}- h -+ w1 -+ +-{mul}- y w2 -+ In above sub structure, if some conditions are satisfied, it can be simplified as follows, ... code-block:: x -+ +-{sgemm}- y w1 * w2 -+ Conditions are as follows. - :code:`w1` and :code:`w2` is :class:`~webdnn.graph.variables.constant_variable.ConstantVariable`. - All axes in :code:`w2` is derived from :code:`w1` Considering follow example, ... code-block:: <x shape=[5, 15], order=OrderNC> <w1 shape=[2, 3, 4, 5], order=OrderNHWC> <Sgemm A=w1, B=x, M=24, K=5, N=15, out_shape=[4, 6, 5, 3], out_order=OrderNCHW transposeA=True, transposeB=True> <h shape=[4, 6, 5, 3] order=OrderNCHW> <w2 shape=[6] order=OrderC> In this case, :code:`w1` is regarded as `OrderMK` in SGEMM, and axis :code:`M` is split into :code:`N` and :code:`C` at the end of the SGEMM. ... code-block:: w1 | x ======================|============= SGEMM's inputs' shape is: [N:2, H:3, W:4, C:5] | [N:5, C:15] ----------------------+------------- SGEMM reshaped them as: [M:24, K:5] | [K:5, N:15] ----------------------+------------- SGEMM's output shape is: [M:24, | N:15] -----------+------------- SGEMM splits axes as: [N:4, C:6, | H:5, W:3] | w2's shape is: [C:6] | In this case, it can be said that "all axes in :code:`w2` (:code:`C`) is derived from :code:`w1`". :code:`w1` is reinterpreted as `OrderNCK` with shape :code:`(4, 6, 5)`. Also :code:`w2` is reinterpreted as `OrderNCK` with shape :code:`(1, 6, 1)`. Then, :code:`w1` and :code:`w2` are multiplied elementwisely. """ def flags(self): return [ flags.optimize.OPTIMIZE, flags.optimize.MERGE_SGEMM_AND_ELEMENTWISE_MUL, ] def optimize(self, graph: Graph) -> Tuple[Graph, bool]: flag_changed = False matches = traverse.search_sub_structure(graph, [Sgemm, Variable, ElementwiseMul]) while len(matches) > 0: match = matches.pop() sgemm = match[0] # type: Sgemm elementwise_mul = match[2] # type: ElementwiseMul out_order = sgemm.parameters["out_order"] out_shape = sgemm.parameters["out_shape"] axis_k = Axis('AxisK') if not isinstance(sgemm.inputs["A"], ConstantVariable) and not isinstance(sgemm.inputs["B"], ConstantVariable): # neither x nor w1 is constant continue elif isinstance(sgemm.inputs["A"], ConstantVariable): w1 = sgemm.inputs["A"] # type: ConstantVariable if sgemm.transpose_A: # w1.shape = (M, K) shape = [] axes = [] for axis, size in zip(out_order.axes, out_shape): shape.append(size) axes.append(axis) if mul(shape) >= sgemm.M: break if mul(shape) != sgemm.M: # output axes are derived from both w1 and x continue w1_virtual_order = Order(axes + [axis_k]) w1_virtual_shape = shape + [sgemm.K] else: # w1.shape = (K, M) shape = [sgemm.K] axes = [axis_k] for axis, size in zip(out_order.axes, out_shape): shape.append(size) axes.append(axis) if mul(shape) >= w1.size: break if mul(shape) != w1.size: # output axes are derived from both w1 and x continue w1_virtual_order = Order(axes) w1_virtual_shape = shape else: w1 = sgemm.inputs["B"] # type: ConstantVariable if sgemm.transpose_B: # w1.shape = (K, N) shape = [] axes = [] for axis, size in reversed(list(zip(out_order.axes, out_shape))): shape.insert(0, size) axes.insert(0, axis) if mul(shape) >= sgemm.N: break if mul(shape) != sgemm.N: # output axes are derived from both w1 and x continue w1_virtual_order = Order([axis_k] + axes) w1_virtual_shape = [sgemm.K] + shape else: # w1.shape = (N, K) shape = [sgemm.K] axes = [axis_k] for axis, size in reversed(list(zip(out_order.axes, out_shape))): shape.insert(0, size) axes.insert(0, axis) if mul(shape) >= w1.size: break if mul(shape) != w1.size: # output axes are derived from both w1 and x continue w1_virtual_order = Order(axes) w1_virtual_shape = shape h = sgemm.outputs["C"] # type: Variable x0 = elementwise_mul.inputs["x0"] x1 = elementwise_mul.inputs["x1"] if h == x1: if not isinstance(x0, ConstantVariable): # w2 is not constant continue w2 = x0 # type: ConstantVariable else: if not isinstance(x1, ConstantVariable): # w2 is not constant continue w2 = x1 # type: ConstantVariable y = elementwise_mul.outputs["y"] # type: Variable if not all(axis in w1_virtual_order.axes for axis in w2.order.axes): # w2's axes are derived from both w1 and x continue elementwise_mul.remove_all() y_dummy, = Transpose(None)(h) y_dummy.change_order(y.order) y_dummy.replace(y) w2.change_order(w1_virtual_order) w_new = ConstantVariable(w1.data.reshape(w1_virtual_shape), w1_virtual_order) * w2 # type: ConstantVariable w1.replace(w_new, with_assert=False) flag_changed = True matches = traverse.search_sub_structure(graph, [Sgemm, Variable, ElementwiseMul]) return graph, flag_changed
36.545455
135
0.468035
b0cfa4b3ecf030d303632f51da390fc09933e2e0
590
py
Python
util.py
IshantRam/Pong
4b67dae587e034c5eb04e729ac3bd3920975bfd5
[ "MIT" ]
null
null
null
util.py
IshantRam/Pong
4b67dae587e034c5eb04e729ac3bd3920975bfd5
[ "MIT" ]
null
null
null
util.py
IshantRam/Pong
4b67dae587e034c5eb04e729ac3bd3920975bfd5
[ "MIT" ]
null
null
null
import pygame from pygame.locals import * from sys import exit import random from termcolor import colored # Height and Width HEIGHT = 720 WIDTH = 1024 # RGB Colors WHITE = (255, 255, 255) BLACK = (0, 0, 0) # The scores LEFT_SCORE = 0 RIGHT_SCORE = 0 # The sounds pygame.mixer.init() paddleSound = pygame.mixer.Sound("assets/audio/paddel.wav") scoreSound = pygame.mixer.Sound("assets/audio/score.wav") wallSound = pygame.mixer.Sound("assets/audio/wall.wav") # Wrap the given value according to arguments def constrain(val, min_val, max_val): return min(max_val, max(min_val, val))
21.071429
59
0.742373
47e49e7f026ff9e2c53a716c48067094352b29c1
6,257
py
Python
apteco_api/models/paged_results_export_system_summary.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
2
2020-05-21T14:24:16.000Z
2020-12-03T19:56:34.000Z
apteco_api/models/paged_results_export_system_summary.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
null
null
null
apteco_api/models/paged_results_export_system_summary.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Apteco API An API to allow access to Apteco Marketing Suite resources # noqa: E501 The version of the OpenAPI document: v2 Contact: support@apteco.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class PagedResultsExportSystemSummary(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'offset': 'int', 'count': 'int', 'total_count': 'int', 'list': 'list[ExportSystemSummary]' } attribute_map = { 'offset': 'offset', 'count': 'count', 'total_count': 'totalCount', 'list': 'list' } def __init__(self, offset=None, count=None, total_count=None, list=None): # noqa: E501 """PagedResultsExportSystemSummary - a model defined in OpenAPI""" # noqa: E501 self._offset = None self._count = None self._total_count = None self._list = None self.discriminator = None self.offset = offset self.count = count self.total_count = total_count self.list = list @property def offset(self): """Gets the offset of this PagedResultsExportSystemSummary. # noqa: E501 The number of items that were skipped over from the (potentially filtered) result set # noqa: E501 :return: The offset of this PagedResultsExportSystemSummary. # noqa: E501 :rtype: int """ return self._offset @offset.setter def offset(self, offset): """Sets the offset of this PagedResultsExportSystemSummary. The number of items that were skipped over from the (potentially filtered) result set # noqa: E501 :param offset: The offset of this PagedResultsExportSystemSummary. # noqa: E501 :type: int """ if offset is None: raise ValueError("Invalid value for `offset`, must not be `None`") # noqa: E501 self._offset = offset @property def count(self): """Gets the count of this PagedResultsExportSystemSummary. # noqa: E501 The number of items returned in this page of the result set # noqa: E501 :return: The count of this PagedResultsExportSystemSummary. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this PagedResultsExportSystemSummary. The number of items returned in this page of the result set # noqa: E501 :param count: The count of this PagedResultsExportSystemSummary. # noqa: E501 :type: int """ if count is None: raise ValueError("Invalid value for `count`, must not be `None`") # noqa: E501 self._count = count @property def total_count(self): """Gets the total_count of this PagedResultsExportSystemSummary. # noqa: E501 The total number of items available in the (potentially filtered) result set # noqa: E501 :return: The total_count of this PagedResultsExportSystemSummary. # noqa: E501 :rtype: int """ return self._total_count @total_count.setter def total_count(self, total_count): """Sets the total_count of this PagedResultsExportSystemSummary. The total number of items available in the (potentially filtered) result set # noqa: E501 :param total_count: The total_count of this PagedResultsExportSystemSummary. # noqa: E501 :type: int """ if total_count is None: raise ValueError("Invalid value for `total_count`, must not be `None`") # noqa: E501 self._total_count = total_count @property def list(self): """Gets the list of this PagedResultsExportSystemSummary. # noqa: E501 The list of results # noqa: E501 :return: The list of this PagedResultsExportSystemSummary. # noqa: E501 :rtype: list[ExportSystemSummary] """ return self._list @list.setter def list(self, list): """Sets the list of this PagedResultsExportSystemSummary. The list of results # noqa: E501 :param list: The list of this PagedResultsExportSystemSummary. # noqa: E501 :type: list[ExportSystemSummary] """ if list is None: raise ValueError("Invalid value for `list`, must not be `None`") # noqa: E501 self._list = list def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PagedResultsExportSystemSummary): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.671569
107
0.601726
6621f4a2e4b2a07b420a80ebfb626e3dbc6728bf
767
py
Python
example.py
KelvinGitu/MLDeploy
0f914519173ee31bb265199b7c0e82b3470da596
[ "MIT" ]
3
2019-05-18T17:57:02.000Z
2020-10-19T23:13:17.000Z
example.py
KelvinGitu/MLDeploy
0f914519173ee31bb265199b7c0e82b3470da596
[ "MIT" ]
89
2019-05-16T02:21:14.000Z
2022-03-31T02:01:15.000Z
example.py
KelvinGitu/MLDeploy
0f914519173ee31bb265199b7c0e82b3470da596
[ "MIT" ]
4
2019-05-18T17:57:19.000Z
2020-10-17T14:16:43.000Z
import Sentiment as s print(s.sentiment("This movie was awesome the acting was great, and there were pythons")) print(s.sentiment("This movie was utter junk. There were absolutely 0 pythons. I don't see what the point was at all. Horrible movie. 0/10")) print(s.sentiment("Maize scandal")) print(s.sentiment("Trump signs order limiting migrant asylum at U.S.-Mexico border")) print(s.sentiment("There is awesome healthcare")) print(s.sentiment("Kibera houses are poor")) print(s.sentiment("This is Kenyatta University Referral Hospital, Built at a cost of KSH 11 Billion, project commenced in 2014 and was completed in 2018. The hospital will ease pressure on @KNH_hospital and enhance capacity building of health workers in the region #Big4Agenda #KenyaMbele"))
69.727273
293
0.780965
2fe2bba83405e7ac95ba65f7b9d9df48e9c5c5f2
7,815
py
Python
maskrcnn_benchmark/modeling/rpn/fcos/inference.py
Ricardozzf/FCOS_PLUS
418b0678fe5c3936ae853a23af0aeff2f085544d
[ "BSD-2-Clause" ]
313
2019-07-20T08:30:17.000Z
2022-03-29T03:10:27.000Z
maskrcnn_benchmark/modeling/rpn/fcos/inference.py
Ricardozzf/FCOS_PLUS
418b0678fe5c3936ae853a23af0aeff2f085544d
[ "BSD-2-Clause" ]
16
2019-07-25T05:56:46.000Z
2021-11-04T06:40:08.000Z
maskrcnn_benchmark/modeling/rpn/fcos/inference.py
Ricardozzf/FCOS_PLUS
418b0678fe5c3936ae853a23af0aeff2f085544d
[ "BSD-2-Clause" ]
48
2019-07-21T14:28:57.000Z
2022-03-20T16:30:33.000Z
import torch from ..inference import RPNPostProcessor from ..utils import permute_and_flatten from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.modeling.utils import cat from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes class FCOSPostProcessor(torch.nn.Module): """ Performs post-processing on the outputs of the RetinaNet boxes. This is only used in the testing. """ def __init__(self, pre_nms_thresh, pre_nms_top_n, nms_thresh, fpn_post_nms_top_n, min_size, num_classes, dense_points): """ Arguments: pre_nms_thresh (float) pre_nms_top_n (int) nms_thresh (float) fpn_post_nms_top_n (int) min_size (int) num_classes (int) box_coder (BoxCoder) """ super(FCOSPostProcessor, self).__init__() self.pre_nms_thresh = pre_nms_thresh self.pre_nms_top_n = pre_nms_top_n self.nms_thresh = nms_thresh self.fpn_post_nms_top_n = fpn_post_nms_top_n self.min_size = min_size self.num_classes = num_classes self.dense_points = dense_points def forward_for_single_feature_map( self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, C, H, W = box_cls.shape # put in the same format as locations box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1) box_cls = box_cls.reshape(N, -1, self.num_classes - 1).sigmoid() box_regression = box_regression.view(N, self.dense_points * 4, H, W).permute(0, 2, 3, 1) box_regression = box_regression.reshape(N, -1, 4) centerness = centerness.view(N, self.dense_points, H, W).permute(0, 2, 3, 1) centerness = centerness.reshape(N, -1).sigmoid() candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) # multiply the classification scores with centerness scores box_cls = box_cls * centerness[:, :, None] results = [] for i in range(N): per_box_cls = box_cls[i] per_candidate_inds = candidate_inds[i] per_box_cls = per_box_cls[per_candidate_inds] per_candidate_nonzeros = per_candidate_inds.nonzero() per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] + 1 per_box_regression = box_regression[i] per_box_regression = per_box_regression[per_box_loc] per_locations = locations[per_box_loc] per_pre_nms_top_n = pre_nms_top_n[i] if per_candidate_inds.sum().item() > per_pre_nms_top_n.item(): per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_class = per_class[top_k_indices] per_box_regression = per_box_regression[top_k_indices] per_locations = per_locations[top_k_indices] detections = torch.stack([ per_locations[:, 0] - per_box_regression[:, 0], per_locations[:, 1] - per_box_regression[:, 1], per_locations[:, 0] + per_box_regression[:, 2], per_locations[:, 1] + per_box_regression[:, 3], ], dim=1) h, w = image_sizes[i] boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", per_box_cls) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results def forward(self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[list[BoxList]] box_cls: list[tensor] box_regression: list[tensor] image_sizes: list[(h, w)] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] for _, (l, o, b, c) in enumerate(zip(locations, box_cls, box_regression, centerness)): sampled_boxes.append( self.forward_for_single_feature_map( l, o, b, c, image_sizes ) ) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] boxlists = self.select_over_all_levels(boxlists) return boxlists # TODO very similar to filter_results from PostProcessor # but filter_results is per image # TODO Yang: solve this issue in the future. No good solution # right now. def select_over_all_levels(self, boxlists): num_images = len(boxlists) results = [] for i in range(num_images): scores = boxlists[i].get_field("scores") labels = boxlists[i].get_field("labels") boxes = boxlists[i].bbox boxlist = boxlists[i] result = [] # skip the background for j in range(1, self.num_classes): inds = (labels == j).nonzero().view(-1) scores_j = scores[inds] boxes_j = boxes[inds, :].view(-1, 4) boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms_thresh, score_field="scores" ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.fpn_post_nms_top_n > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] results.append(result) return results def make_fcos_postprocessor(config): pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N nms_thresh = config.MODEL.FCOS.NMS_TH fpn_post_nms_top_n = config.TEST.DETECTIONS_PER_IMG dense_points = config.MODEL.FCOS.DENSE_POINTS box_selector = FCOSPostProcessor( pre_nms_thresh=pre_nms_thresh, pre_nms_top_n=pre_nms_top_n, nms_thresh=nms_thresh, fpn_post_nms_top_n=fpn_post_nms_top_n, min_size=0, num_classes=config.MODEL.FCOS.NUM_CLASSES, dense_points=dense_points) return box_selector
39.271357
96
0.606142
12e98e8d061c8b8076f693224d9f2fcdffbd859c
875
py
Python
slides/slide18.py
samdmarshall/pyconfig
10c5d2ce5465510404c3a119f0be4a0ee9b5ae33
[ "BSD-3-Clause" ]
51
2016-05-17T19:31:30.000Z
2020-08-16T13:55:51.000Z
slides/slide18.py
samdmarshall/pyconfig
10c5d2ce5465510404c3a119f0be4a0ee9b5ae33
[ "BSD-3-Clause" ]
54
2016-06-03T11:13:50.000Z
2019-03-10T22:02:57.000Z
slides/slide18.py
samdmarshall/pyconfig
10c5d2ce5465510404c3a119f0be4a0ee9b5ae33
[ "BSD-3-Clause" ]
4
2016-05-31T16:10:01.000Z
2017-04-07T03:23:18.000Z
#!/usr/bin/python import pypresenter.slide class slide18(pypresenter.slide): def __init__(self): super(self.__class__, self).__init__('left') def content(self, window=None): return "\nIntegration with Xcode is easy!"\ "\n\n"\ "1. Install pyconfig\n\n"\ "\t$ brew update\n"\ "\t$ brew tap samdmarshall/formulae\n"\ "\t$ brew install samdmarshall/formulae/pyconfig\n"\ "\n"\ "2. Add a 'Pre-Build' Script Phase to your scheme\n\n"\ "3. Invoke 'pyconfig' with the path to your config files\n\n" def draw(self, window): self.displayText(window, self.content()) def formatting(self): return { # title "0": ['underline'], "31": ['normal'] }
35
77
0.513143
99fbb70d88a82934ebe65d9ba89df09d492d5bb6
1,080
py
Python
Services/JSON-RPC/Basic_Template/test_call_basic_services.py
astroseger/dnn-model-services
1755ac9a45d6113544d12010fb3ba95ab3a0690c
[ "MIT" ]
null
null
null
Services/JSON-RPC/Basic_Template/test_call_basic_services.py
astroseger/dnn-model-services
1755ac9a45d6113544d12010fb3ba95ab3a0690c
[ "MIT" ]
null
null
null
Services/JSON-RPC/Basic_Template/test_call_basic_services.py
astroseger/dnn-model-services
1755ac9a45d6113544d12010fb3ba95ab3a0690c
[ "MIT" ]
null
null
null
import jsonrpcclient from services import registry if __name__ == '__main__': try: opt = input('Which service (1|2)? ') if opt == '1': # Service ONE - Arithmetics jsonrpc_method = input('Which method (add|sub|mul|div)? ') a = input('Number 1: ') b = input('Number 2: ') jsonrpc_port = registry['basic_service_one']['jsonrpc'] jsonrpcclient.request(f"http://127.0.0.1:{jsonrpc_port}", jsonrpc_method, a=a, b=b) elif opt == '2': # Service TWO - Basic Echo jsonrpc_method = input('Which method (version|echo)? ') jsonrpc_port = registry['basic_service_two']['jsonrpc'] jsonrpcclient.request(f"http://127.0.0.1:{jsonrpc_port}", jsonrpc_method, test="testing...") else: print('Service unavailable!') except Exception as e: print(e)
36
70
0.480556
f46954c4960373fd49532e76ec463644479b320b
1,878
py
Python
tools/pylcc/guide/eventOut.py
liaozhaoyan/surftrace
879e9d6a4410373b211cc7a9d22dd3fa102bfbf4
[ "MIT" ]
null
null
null
tools/pylcc/guide/eventOut.py
liaozhaoyan/surftrace
879e9d6a4410373b211cc7a9d22dd3fa102bfbf4
[ "MIT" ]
null
null
null
tools/pylcc/guide/eventOut.py
liaozhaoyan/surftrace
879e9d6a4410373b211cc7a9d22dd3fa102bfbf4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # cython:language_level=2 """ ------------------------------------------------- File Name: eventOut Description : Author : liaozhaoyan date: 2021/11/3 ------------------------------------------------- Change Activity: 2021/11/3: ------------------------------------------------- """ __author__ = 'liaozhaoyan' import ctypes as ct from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h" #define TASK_COMM_LEN 16 struct data_t { u32 c_pid; u32 p_pid; char c_comm[TASK_COMM_LEN]; char p_comm[TASK_COMM_LEN]; }; LBC_PERF_OUTPUT(e_out, struct data_t, 128); SEC("kprobe/wake_up_new_task") int j_wake_up_new_task(struct pt_regs *ctx) { struct task_struct* parent = (struct task_struct *)PT_REGS_PARM1(ctx); struct data_t data = {}; data.c_pid = bpf_get_current_pid_tgid() >> 32; bpf_get_current_comm(&data.c_comm, TASK_COMM_LEN); data.p_pid = BPF_CORE_READ(parent, pid); bpf_core_read(&data.p_comm[0], TASK_COMM_LEN, &parent->comm[0]); bpf_perf_event_output(ctx, &e_out, BPF_F_CURRENT_CPU, &data, sizeof(data)); return 0; } char _license[] SEC("license") = "GPL"; """ class CeventOut(ClbcBase): def __init__(self): super(CeventOut, self).__init__("eventOut", bpf_str=bpfPog) def _cb(self, cpu, data, size): stream = ct.string_at(data, size) e = self.maps['e_out'].event(stream) print("current pid:%d, comm:%s. wake_up_new_task pid: %d, comm: %s" % ( e.c_pid, e.c_comm, e.p_pid, e.p_comm )) def loop(self): self.maps['e_out'].open_perf_buffer(self._cb) try: self.maps['e_out'].perf_buffer_poll() except KeyboardInterrupt: print("key interrupt.") exit() if __name__ == "__main__": e = CeventOut() e.loop()
26.828571
79
0.57934
4bbd16566a711c0a7725d46f901d9cd6d75c3233
204
py
Python
testdataToAudio.py
Shameli91/prml
3f09f87cad830d8566d523058b3ccec4de25a3c2
[ "MIT" ]
null
null
null
testdataToAudio.py
Shameli91/prml
3f09f87cad830d8566d523058b3ccec4de25a3c2
[ "MIT" ]
null
null
null
testdataToAudio.py
Shameli91/prml
3f09f87cad830d8566d523058b3ccec4de25a3c2
[ "MIT" ]
null
null
null
import numpy as np from scipy.io.wavfile import write for i in range(0, 4512): data = np.load('./bird-audio-detection/' + str(i) + '.npy') write('./main/testData/' + str(i) + '.wav', 48000, data)
34
63
0.627451
374a2de1b2e9059689e1a639908faa7db46bbe95
223
py
Python
shop/urls.py
DenisDolmatov2020/lote
cb6b1021ed541799cabb5b3e850792690debcec8
[ "MIT" ]
null
null
null
shop/urls.py
DenisDolmatov2020/lote
cb6b1021ed541799cabb5b3e850792690debcec8
[ "MIT" ]
null
null
null
shop/urls.py
DenisDolmatov2020/lote
cb6b1021ed541799cabb5b3e850792690debcec8
[ "MIT" ]
null
null
null
from django.urls import path from shop.views import ShopListView, shop_detail_view urlpatterns = [ path('<slug:slug>/', shop_detail_view, name='detail-shop'), path('', ShopListView.as_view(), name='list-shops') ]
24.777778
63
0.717489
d6c2f969c5b93ee71273e78f4a129232cbf2585c
416
py
Python
tests/commands/test_convert.py
Playfloor/bonobo
feb7ec850566ca3c2ccc139610201dbd237d6083
[ "Apache-2.0" ]
1,573
2016-12-09T09:28:50.000Z
2022-03-31T06:16:45.000Z
tests/commands/test_convert.py
Playfloor/bonobo
feb7ec850566ca3c2ccc139610201dbd237d6083
[ "Apache-2.0" ]
257
2016-12-25T06:54:33.000Z
2022-03-18T22:12:17.000Z
tests/commands/test_convert.py
Playfloor/bonobo
feb7ec850566ca3c2ccc139610201dbd237d6083
[ "Apache-2.0" ]
153
2016-12-09T07:23:58.000Z
2022-03-18T22:01:23.000Z
import sys import pytest from bonobo.util.environ import change_working_directory from bonobo.util.testing import all_runners @all_runners def test_convert(runner, tmpdir): csv_content = "id;name\n1;Romain" tmpdir.join("in.csv").write(csv_content) with change_working_directory(tmpdir): runner("convert", "in.csv", "out.csv") assert tmpdir.join("out.csv").read().strip() == csv_content
23.111111
63
0.730769
87fc073da18fdd50aeb56e8565202e691e97d1a4
4,069
py
Python
tests/operators/gpu/test_fused_relu_grad_bn_double_reduce_grad.py
Kiike5/akg
f16019261cca6b2d33b3b6f27c45ee8e6f7a834b
[ "Apache-2.0" ]
null
null
null
tests/operators/gpu/test_fused_relu_grad_bn_double_reduce_grad.py
Kiike5/akg
f16019261cca6b2d33b3b6f27c45ee8e6f7a834b
[ "Apache-2.0" ]
null
null
null
tests/operators/gpu/test_fused_relu_grad_bn_double_reduce_grad.py
Kiike5/akg
f16019261cca6b2d33b3b6f27c45ee8e6f7a834b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from __future__ import absolute_import import numpy as np from akg.utils import kernel_exec as utils from tests.common.gen_random import random_gaussian from akg.utils.result_analysis import gpu_profiling from akg.utils.format_transform import to_tvm_nd_array from tests.operators.gpu.test_fused_pattern_grad import relu_grad_np from tests.common.test_op.resnet.fused_relu_grad_bn_double_reduce_grad import fused_relu_grad_bn_double_reduce_grad def compute_expect(inshp_data, outshp_data): out_shape = outshp_data.shape scale = out_shape[0] * out_shape[1] * out_shape[2] mul = np.multiply(inshp_data, inshp_data) mean1 = np.divide(mul, scale) add = np.add(outshp_data, outshp_data) addgrad = relu_grad_np(add, outshp_data).astype(inshp_data.dtype) mul1 = np.multiply(addgrad, scale) sub = np.subtract(mul1, inshp_data) outdata_cast = outshp_data.astype(inshp_data.dtype) mean2 = np.divide(inshp_data, scale) sub1 = np.subtract(outdata_cast, mean2) mul2 = np.multiply(sub1, inshp_data) div = np.divide(mul2, inshp_data) sub2 = np.subtract(sub, div) mul3 = np.multiply(mean1, sub2).astype(outshp_data.dtype) mul4 = np.multiply(inshp_data, inshp_data) mean3 = np.divide(mul4, scale) mean4 = np.divide(inshp_data, scale) sub3 = np.subtract(outshp_data.astype(inshp_data.dtype), mean4) mul5 = np.multiply(inshp_data, sub3) div1 = np.divide(mul5, inshp_data) sub4 = np.subtract(sub, div1) mul6 = np.multiply(mean3, sub4).astype(outshp_data.dtype) return [mul3, mul6] def gen_data(shape, out_shape, dtype, out_dtype): support_list = {"float16": np.float16, "float32": np.float32} inshp_data = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) outshp_data = random_gaussian(out_shape, miu=1, sigma=0.1).astype(support_list[out_dtype]) output = np.full(out_shape, np.nan, out_dtype) expect = compute_expect(inshp_data, outshp_data) return inshp_data, outshp_data, output, expect def test_fused_relu_grad_bn_double_reduce_grad(shape, out_shape, dtype="float32", layout="NHWC", out_dtype="float16", poly_sch=False): shape_list = [shape] * 5 + [out_shape] + [shape] * 3 + [out_shape] + [shape] * 3 + [out_shape] * 3 dtype_list = [dtype] * 5 +[out_dtype] +[dtype] * 3 + [out_dtype] + [dtype] * 3 +[out_dtype] * 3 op_attrs = [layout, out_dtype] if poly_sch: mod = utils.op_build_test( fused_relu_grad_bn_double_reduce_grad, shape_list, dtype_list, op_attrs=op_attrs, kernel_name="fused_relu_grad_bn_double_reduce_grad", attrs={ "target": "cuda"}) inshp_data, outshp_data, output, expect = gen_data(shape, out_shape, dtype, out_dtype) inputs = [inshp_data] * 5 + [outshp_data] + [inshp_data] * 3 + [outshp_data] + [inshp_data] * 3 + [outshp_data] * 3 outputs = [output, output] arg_list = inputs + outputs outputs = utils.mod_launch(mod, arg_list, outputs=tuple(range(-len(outputs), 0)), expect=expect) res = np.allclose(outputs, expect, rtol=5e-03, atol=1.e-8) print("Test {}".format("Pass" if res else "Fail")) if not res: print("Error cuda:========================") print(mod.imported_modules[0].get_source()) raise AssertionError("Test fail") inputs = to_tvm_nd_array(inputs) expect = to_tvm_nd_array(expect) gpu_profiling(mod, *inputs, *expect, 400)
43.287234
134
0.706808
bb32713cad3ef761bc5847b3b339d1aab75152e6
398
py
Python
jobportal/migrations/0008_remove_person_join_date.py
klenks/jobsportal
330f3b40220a9a721897a047ebaaabe98a11edde
[ "MIT" ]
null
null
null
jobportal/migrations/0008_remove_person_join_date.py
klenks/jobsportal
330f3b40220a9a721897a047ebaaabe98a11edde
[ "MIT" ]
null
null
null
jobportal/migrations/0008_remove_person_join_date.py
klenks/jobsportal
330f3b40220a9a721897a047ebaaabe98a11edde
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-14 23:57 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('jobportal', '0007_auto_20170314_2337'), ] operations = [ migrations.RemoveField( model_name='person', name='join_date', ), ]
19.9
49
0.61809
1222d8b11f2d788ac26dd5e7b250c152ffd2c4fa
800
py
Python
setup.py
jsta/gssurgo
d1ff22880040fcb58347cf948cf7f3ce8b7830ee
[ "MIT" ]
3
2018-08-16T02:13:46.000Z
2020-06-03T06:31:42.000Z
setup.py
jsta/gssurgo
d1ff22880040fcb58347cf948cf7f3ce8b7830ee
[ "MIT" ]
16
2018-08-16T02:14:07.000Z
2021-04-09T10:31:49.000Z
setup.py
jsta/gSSURGO
d1ff22880040fcb58347cf948cf7f3ce8b7830ee
[ "MIT" ]
1
2018-11-14T18:39:14.000Z
2018-11-14T18:39:14.000Z
"""A package that enables open source workflows with the gSSURGO dataset.""" import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="gssurgo", version="1.0.1", author="Jemma Stachelek", author_email="stachel2@msu.edu", description="Python toolbox enabling an open source gSSURGO workflow", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jsta/gssurgo", scripts=["bin/extract_gssurgo_tif"], include_package_data=True, packages=setuptools.find_packages(exclude=['tests']), classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), )
30.769231
76
0.68625
7ecd210caca6ebe7d1f38bc144c284dfaf0d9adc
1,091
py
Python
examples/pyplot/customIndividualAxes.py
danielhrisca/vedo
487568b7956a67b87752e3d518ba3f7e87b327a6
[ "CC0-1.0" ]
1
2021-04-25T06:28:01.000Z
2021-04-25T06:28:01.000Z
examples/pyplot/customIndividualAxes.py
danielhrisca/vedo
487568b7956a67b87752e3d518ba3f7e87b327a6
[ "CC0-1.0" ]
null
null
null
examples/pyplot/customIndividualAxes.py
danielhrisca/vedo
487568b7956a67b87752e3d518ba3f7e87b327a6
[ "CC0-1.0" ]
null
null
null
"""Create individual axes to each separate object in a scene. Access any element to change its size and color""" from vedo import * # Create a bunch of objects s1 = Sphere(pos=(10, 0, 0), r=1, c='r') s2 = Sphere(pos=( 0,10, 0), r=2, c='g') s3 = Sphere(pos=( 0, 0,10), r=3, c='b') pt = Point([-4,-4,-4], c='k') # Build individual axes for each object. # A new Assembly object is returned: axes1 = s1.buildAxes(c='r') axes2 = s2.buildAxes(c='g') axes3 = s3.buildAxes(c='b', numberOfDivisions=10) # axes3 is an Assembly (group of Meshes). # Unpack it and scale the 7th label getting it by its name, # make it 5 times bigger big and fuchsia: axes3.unpack('xNumericLabel7').scale(5).c('fuchsia') # Print all element names in axes3: #for m in axes3.getMeshes(): print(m.name) # By specifiyng axes in show(), new axes are # created which span the whole bounding box. # Options are passed through a dictionary show(pt, s1,axes1, s2,axes2, s3,axes3, __doc__, viewup='z', axes=dict(c='black', numberOfDivisions=10, yzGrid=False, ), )
32.088235
62
0.652612
155ba7e6691e8501725daf3f1a4e5a3a742a3a82
57,193
py
Python
tests/integration/test_subscription.py
sharma7n/braintree_python
34c36bddca7aa55512ee5129175eedcfc6d1fb30
[ "MIT" ]
null
null
null
tests/integration/test_subscription.py
sharma7n/braintree_python
34c36bddca7aa55512ee5129175eedcfc6d1fb30
[ "MIT" ]
null
null
null
tests/integration/test_subscription.py
sharma7n/braintree_python
34c36bddca7aa55512ee5129175eedcfc6d1fb30
[ "MIT" ]
null
null
null
from tests.test_helper import * from braintree.test.nonces import Nonces from datetime import date, timedelta class TestSubscription(unittest.TestCase): def setUp(self): self.credit_card = Customer.create({ "first_name": "Mike", "last_name": "Jones", "credit_card": { "number": "4111111111111111", "expiration_date": "05/2010", "cvv": "100" } }).customer.credit_cards[0] self.updateable_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "price": Decimal("54.32"), "plan_id": TestHelper.trialless_plan["id"] }).subscription def test_create_returns_successful_result_if_valid(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"] }) self.assertTrue(result.is_success) subscription = result.subscription self.assertNotEqual(None, re.search(r"\A\w{6}\Z", subscription.id)) self.assertEqual(Decimal("12.34"), subscription.price) self.assertEqual(Decimal("12.34"), subscription.next_bill_amount) self.assertEqual(Decimal("12.34"), subscription.next_billing_period_amount) self.assertEqual(Subscription.Status.Active, subscription.status) self.assertEqual("integration_trialless_plan", subscription.plan_id) self.assertEqual(TestHelper.default_merchant_account_id, subscription.merchant_account_id) self.assertEqual(Decimal("0.00"), subscription.balance) self.assertEqual(date, type(subscription.first_billing_date)) self.assertEqual(date, type(subscription.next_billing_date)) self.assertEqual(date, type(subscription.billing_period_start_date)) self.assertEqual(date, type(subscription.billing_period_end_date)) self.assertEqual(date, type(subscription.paid_through_date)) self.assertEqual(datetime, type(subscription.created_at)) self.assertEqual(datetime, type(subscription.updated_at)) self.assertEqual(1, subscription.current_billing_cycle) self.assertEqual(0, subscription.failure_count) self.assertEqual(self.credit_card.token, subscription.payment_method_token) self.assertEqual(Subscription.Status.Active, subscription.status_history[0].status) self.assertEqual(Decimal("12.34"), subscription.status_history[0].price) self.assertEqual(Decimal("0.00"), subscription.status_history[0].balance) self.assertEqual(Subscription.Source.Api, subscription.status_history[0].subscription_source) self.assertEqual("USD", subscription.status_history[0].currency_iso_code) self.assertEqual(TestHelper.trialless_plan["id"], subscription.status_history[0].plan_id) def test_create_returns_successful_result_with_payment_method_nonce(self): config = Configuration.instantiate() customer_id = Customer.create().customer.id parsed_client_token = TestHelper.generate_decoded_client_token({"customer_id": customer_id}) authorization_fingerprint = json.loads(parsed_client_token)["authorizationFingerprint"] http = ClientApiHttp(config, { "authorization_fingerprint": authorization_fingerprint, "shared_customer_identifier": "fake_identifier", "shared_customer_identifier_type": "testing" }) _, response = http.add_card({ "credit_card": { "number": "4111111111111111", "expiration_month": "11", "expiration_year": "2099", }, "share": True }) nonce = json.loads(response)["creditCards"][0]["nonce"] result = Subscription.create({ "payment_method_nonce": nonce, "plan_id": TestHelper.trialless_plan["id"] }) self.assertTrue(result.is_success) transaction = result.subscription.transactions[0] self.assertEqual("411111", transaction.credit_card_details.bin) def test_create_can_set_the_id(self): new_id = str(random.randint(1, 1000000)) result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "id": new_id }) self.assertTrue(result.is_success) self.assertEqual(new_id, result.subscription.id) def test_create_can_set_the_merchant_account_id(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "merchant_account_id": TestHelper.non_default_merchant_account_id }) self.assertTrue(result.is_success) self.assertEqual(TestHelper.non_default_merchant_account_id, result.subscription.merchant_account_id) def test_create_defaults_to_plan_without_trial(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription self.assertEqual(TestHelper.trialless_plan["trial_period"], subscription.trial_period) self.assertEqual(None, subscription.trial_duration) self.assertEqual(None, subscription.trial_duration_unit) def test_create_defaults_to_plan_with_trial(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], }).subscription self.assertEqual(TestHelper.trial_plan["trial_period"], subscription.trial_period) self.assertEqual(TestHelper.trial_plan["trial_duration"], subscription.trial_duration) self.assertEqual(TestHelper.trial_plan["trial_duration_unit"], subscription.trial_duration_unit) def test_create_and_override_plan_with_trial(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "trial_duration": 5, "trial_duration_unit": Subscription.TrialDurationUnit.Month }).subscription self.assertEqual(True, subscription.trial_period) self.assertEqual(5, subscription.trial_duration) self.assertEqual(Subscription.TrialDurationUnit.Month, subscription.trial_duration_unit) def test_create_and_override_trial_period(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "trial_period": False }).subscription self.assertEqual(False, subscription.trial_period) def test_create_and_override_number_of_billing_cycles(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "number_of_billing_cycles": 10 }).subscription self.assertEqual(10, subscription.number_of_billing_cycles) def test_create_and_override_number_of_billing_cycles_to_never_expire(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "never_expires": True }).subscription self.assertEqual(None, subscription.number_of_billing_cycles) def test_create_creates_a_transaction_if_no_trial_period(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription self.assertEqual(1, len(subscription.transactions)) transaction = subscription.transactions[0] self.assertEqual(Transaction, type(transaction)) self.assertEqual(TestHelper.trialless_plan["price"], transaction.amount) self.assertEqual("sale", transaction.type) self.assertEqual(subscription.id, transaction.subscription_id) def test_create_has_transaction_with_billing_period_dates(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription transaction = subscription.transactions[0] self.assertEqual(subscription.billing_period_start_date, transaction.subscription_details.billing_period_start_date) self.assertEqual(subscription.billing_period_end_date, transaction.subscription_details.billing_period_end_date) def test_create_returns_a_transaction_if_transaction_is_declined(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "price": TransactionAmounts.Decline }) self.assertFalse(result.is_success) self.assertEqual(Transaction.Status.ProcessorDeclined, result.transaction.status) def test_create_doesnt_creates_a_transaction_if_trial_period(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], }).subscription self.assertEqual(0, len(subscription.transactions)) def test_create_with_error_result(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "id": "invalid token" }) self.assertFalse(result.is_success) id_errors = result.errors.for_object("subscription").on("id") self.assertEqual(1, len(id_errors)) self.assertEqual("81906", id_errors[0].code) def test_create_inherits_billing_day_of_month_from_plan(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.billing_day_of_month_plan["id"], }) self.assertTrue(result.is_success) self.assertEqual(5, result.subscription.billing_day_of_month) def test_create_allows_overriding_billing_day_of_month(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.billing_day_of_month_plan["id"], "billing_day_of_month": 19 }) self.assertTrue(result.is_success) self.assertEqual(19, result.subscription.billing_day_of_month) def test_create_allows_overriding_billing_day_of_month_with_start_immediately(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.billing_day_of_month_plan["id"], "options": { "start_immediately": True } }) self.assertTrue(result.is_success) self.assertEqual(1, len(result.subscription.transactions)) def test_create_allows_specifying_first_billing_date(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.billing_day_of_month_plan["id"], "first_billing_date": date.today() + timedelta(days=3) }) self.assertTrue(result.is_success) self.assertEqual(date.today() + timedelta(days=3), result.subscription.first_billing_date) self.assertEqual(Subscription.Status.Pending, result.subscription.status) def test_create_does_not_allow_first_billing_date_in_the_past(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.billing_day_of_month_plan["id"], "first_billing_date": date.today() - timedelta(days=3) }) self.assertFalse(result.is_success) billing_date_errors = result.errors.for_object("subscription").on("first_billing_date") self.assertEqual(1, len(billing_date_errors)) self.assertEqual(ErrorCodes.Subscription.FirstBillingDateCannotBeInThePast, billing_date_errors[0].code) def test_create_does_not_inherit_add_ons_or_discounts_from_the_plan_when_flag_is_set(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "options": { "do_not_inherit_add_ons_or_discounts": True } }).subscription self.assertEqual(0, len(subscription.add_ons)) self.assertEqual(0, len(subscription.discounts)) def test_create_inherits_add_ons_and_discounts_from_the_plan_when_not_specified(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"] }).subscription self.assertEqual(2, len(subscription.add_ons)) add_ons = sorted(subscription.add_ons, key=lambda add_on: add_on.id) self.assertEqual("increase_10", add_ons[0].id) self.assertEqual(Decimal("10.00"), add_ons[0].amount) self.assertEqual(1, add_ons[0].quantity) self.assertEqual(None, add_ons[0].number_of_billing_cycles) self.assertTrue(add_ons[0].never_expires) self.assertEqual(0, add_ons[0].current_billing_cycle) self.assertEqual("increase_20", add_ons[1].id) self.assertEqual(Decimal("20.00"), add_ons[1].amount) self.assertEqual(1, add_ons[1].quantity) self.assertEqual(None, add_ons[1].number_of_billing_cycles) self.assertTrue(add_ons[1].never_expires) self.assertEqual(0, add_ons[1].current_billing_cycle) self.assertEqual(2, len(subscription.discounts)) discounts = sorted(subscription.discounts, key=lambda discount: discount.id) self.assertEqual("discount_11", discounts[0].id) self.assertEqual(Decimal("11.00"), discounts[0].amount) self.assertEqual(1, discounts[0].quantity) self.assertEqual(None, discounts[0].number_of_billing_cycles) self.assertTrue(discounts[0].never_expires) self.assertEqual(0, discounts[0].current_billing_cycle) self.assertEqual("discount_7", discounts[1].id) self.assertEqual(Decimal("7.00"), discounts[1].amount) self.assertEqual(1, discounts[1].quantity) self.assertEqual(None, discounts[1].number_of_billing_cycles) self.assertTrue(discounts[1].never_expires) self.assertEqual(0, discounts[1].current_billing_cycle) def test_create_allows_overriding_of_inherited_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "update": [ { "amount": Decimal("50.00"), "existing_id": "increase_10", "quantity": 2, "number_of_billing_cycles": 5 }, { "amount": Decimal("100.00"), "existing_id": "increase_20", "quantity": 4, "never_expires": True } ] }, "discounts": { "update": [ { "amount": Decimal("15.00"), "existing_id": "discount_7", "quantity": 3, "number_of_billing_cycles": 19 } ] } }).subscription self.assertEqual(2, len(subscription.add_ons)) add_ons = sorted(subscription.add_ons, key=lambda add_on: add_on.id) self.assertEqual("increase_10", add_ons[0].id) self.assertEqual(Decimal("50.00"), add_ons[0].amount) self.assertEqual(2, add_ons[0].quantity) self.assertEqual(5, add_ons[0].number_of_billing_cycles) self.assertFalse(add_ons[0].never_expires) self.assertEqual(0, add_ons[0].current_billing_cycle) self.assertEqual("increase_20", add_ons[1].id) self.assertEqual(Decimal("100.00"), add_ons[1].amount) self.assertEqual(4, add_ons[1].quantity) self.assertEqual(None, add_ons[1].number_of_billing_cycles) self.assertTrue(add_ons[1].never_expires) self.assertEqual(0, add_ons[1].current_billing_cycle) self.assertEqual(2, len(subscription.discounts)) discounts = sorted(subscription.discounts, key=lambda discount: discount.id) self.assertEqual("discount_11", discounts[0].id) self.assertEqual(Decimal("11.00"), discounts[0].amount) self.assertEqual(1, discounts[0].quantity) self.assertEqual(None, discounts[0].number_of_billing_cycles) self.assertTrue(discounts[0].never_expires) self.assertEqual(0, discounts[0].current_billing_cycle) self.assertEqual("discount_7", discounts[1].id) self.assertEqual(Decimal("15.00"), discounts[1].amount) self.assertEqual(3, discounts[1].quantity) self.assertEqual(19, discounts[1].number_of_billing_cycles) self.assertFalse(discounts[1].never_expires) self.assertEqual(0, discounts[1].current_billing_cycle) def test_create_allows_deleting_of_inherited_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "remove": ["increase_10", "increase_20"] }, "discounts": { "remove": ["discount_7"] } }).subscription self.assertEqual(0, len(subscription.add_ons)) self.assertEqual(1, len(subscription.discounts)) self.assertEqual("discount_11", subscription.discounts[0].id) def test_create_allows_adding_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "add": [ { "amount": Decimal("50.00"), "inherited_from_id": "increase_30", "quantity": 2, "number_of_billing_cycles": 5 } ], "remove": ["increase_10", "increase_20"] }, "discounts": { "add": [ { "amount": Decimal("17.00"), "inherited_from_id": "discount_15", "never_expires": True } ], "remove": ["discount_7", "discount_11"] } }).subscription self.assertEqual(1, len(subscription.add_ons)) self.assertEqual("increase_30", subscription.add_ons[0].id) self.assertEqual(Decimal("50.00"), subscription.add_ons[0].amount) self.assertEqual(2, subscription.add_ons[0].quantity) self.assertEqual(5, subscription.add_ons[0].number_of_billing_cycles) self.assertFalse(subscription.add_ons[0].never_expires) self.assertEqual(0, subscription.add_ons[0].current_billing_cycle) self.assertEqual(1, len(subscription.discounts)) self.assertEqual("discount_15", subscription.discounts[0].id) self.assertEqual(Decimal("17.00"), subscription.discounts[0].amount) self.assertEqual(1, subscription.discounts[0].quantity) self.assertEqual(None, subscription.discounts[0].number_of_billing_cycles) self.assertTrue(subscription.discounts[0].never_expires) self.assertEqual(0, subscription.discounts[0].current_billing_cycle) def test_create_properly_parses_validation_errors_for_arrays(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "update": [ { "existing_id": "increase_10", "amount": "invalid" }, { "existing_id": "increase_20", "quantity": -2 } ] } }) self.assertFalse(result.is_success) self.assertEqual( ErrorCodes.Subscription.Modification.AmountIsInvalid, result.errors.for_object("subscription").for_object("add_ons").for_object("update").for_index(0).on("amount")[0].code ) self.assertEqual( ErrorCodes.Subscription.Modification.QuantityIsInvalid, result.errors.for_object("subscription").for_object("add_ons").for_object("update").for_index(1).on("quantity")[0].code ) def test_descriptors_accepts_name_phone_and_url(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "descriptor": { "name": "123*123456789012345678", "phone": "3334445555", "url": "ebay.com" } }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual("123*123456789012345678", subscription.descriptor.name) self.assertEqual("3334445555", subscription.descriptor.phone) transaction = subscription.transactions[0] self.assertEqual("123*123456789012345678", transaction.descriptor.name) self.assertEqual("3334445555", transaction.descriptor.phone) self.assertEqual("ebay.com", transaction.descriptor.url) def test_descriptors_has_validation_errors_if_format_is_invalid(self): result = Transaction.sale({ "amount": TransactionAmounts.Authorize, "credit_card": { "number": "4111111111111111", "expiration_date": "05/2009" }, "descriptor": { "name": "badcompanyname12*badproduct12", "phone": "%bad4445555" } }) self.assertFalse(result.is_success) name_errors = result.errors.for_object("transaction").for_object("descriptor").on("name") self.assertEqual(1, len(name_errors)) self.assertEqual(ErrorCodes.Descriptor.NameFormatIsInvalid, name_errors[0].code) phone_errors = result.errors.for_object("transaction").for_object("descriptor").on("phone") self.assertEqual(1, len(phone_errors)) self.assertEqual(ErrorCodes.Descriptor.PhoneFormatIsInvalid, phone_errors[0].code) def test_find_with_valid_id(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], }).subscription found_subscription = Subscription.find(subscription.id) self.assertEqual(subscription.id, found_subscription.id) @raises_with_regexp(NotFoundError, "subscription with id bad_token not found") def test_find_with_invalid_token(self): Subscription.find("bad_token") def test_update_creates_a_prorated_transaction_when_merchant_is_set_to_prorate(self): result = Subscription.update(self.updateable_subscription.id, { "price": self.updateable_subscription.price + Decimal("1"), }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(2, len(subscription.transactions)) def test_update_creates_a_prorated_transaction_when_flag_is_passed_as_True(self): result = Subscription.update(self.updateable_subscription.id, { "price": self.updateable_subscription.price + Decimal("1"), "options": { "prorate_charges": True } }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(2, len(subscription.transactions)) def test_update_does_not_create_a_prorated_transaction_when_flag_is_passed_as_False(self): result = Subscription.update(self.updateable_subscription.id, { "price": self.updateable_subscription.price + Decimal("1"), "options": { "prorate_charges": False } }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(1, len(subscription.transactions)) def test_update_does_not_update_subscription_when_revert_subscription_on_proration_failure_is_true(self): result = Subscription.update(self.updateable_subscription.id, { "price": self.updateable_subscription.price + Decimal("2100"), "options": { "prorate_charges": True, "revert_subscription_on_proration_failure": True } }) self.assertFalse(result.is_success) found_subscription = Subscription.find(result.subscription.id) self.assertEqual(len(self.updateable_subscription.transactions) + 1, len(result.subscription.transactions)) self.assertEqual("processor_declined", result.subscription.transactions[0].status) self.assertEqual(Decimal("0.00"), found_subscription.balance) self.assertEqual(self.updateable_subscription.price, found_subscription.price) def test_update_updates_subscription_when_revert_subscription_on_proration_failure_is_false(self): result = Subscription.update(self.updateable_subscription.id, { "price": self.updateable_subscription.price + Decimal("2100"), "options": { "prorate_charges": True, "revert_subscription_on_proration_failure": False } }) self.assertTrue(result.is_success) found_subscription = Subscription.find(result.subscription.id) self.assertEqual(len(self.updateable_subscription.transactions) + 1, len(result.subscription.transactions)) self.assertEqual("processor_declined", result.subscription.transactions[0].status) self.assertEqual(result.subscription.transactions[0].amount, Decimal(found_subscription.balance)) self.assertEqual(self.updateable_subscription.price + Decimal("2100"), found_subscription.price) def test_update_with_successful_result(self): new_id = str(random.randint(1, 1000000)) result = Subscription.update(self.updateable_subscription.id, { "id": new_id, "price": Decimal("9999.88"), "plan_id": TestHelper.trial_plan["id"] }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(new_id, subscription.id) self.assertEqual(TestHelper.trial_plan["id"], subscription.plan_id) self.assertEqual(Decimal("9999.88"), subscription.price) def test_update_with_merchant_account_id(self): result = Subscription.update(self.updateable_subscription.id, { "merchant_account_id": TestHelper.non_default_merchant_account_id, }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(TestHelper.non_default_merchant_account_id, subscription.merchant_account_id) def test_update_with_payment_method_token(self): newCard = CreditCard.create({ "customer_id": self.credit_card.customer_id, "number": "4111111111111111", "expiration_date": "05/2009", "cvv": "100", "cardholder_name": self.credit_card.cardholder_name }).credit_card result = Subscription.update(self.updateable_subscription.id, { "payment_method_token": newCard.token }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(newCard.token, subscription.payment_method_token) def test_update_with_payment_method_nonce(self): config = Configuration.instantiate() customer_id = self.credit_card.customer_id parsed_client_token = TestHelper.generate_decoded_client_token({"customer_id": customer_id}) authorization_fingerprint = json.loads(parsed_client_token)["authorizationFingerprint"] http = ClientApiHttp(config, { "authorization_fingerprint": authorization_fingerprint, "shared_customer_identifier": "fake_identifier", "shared_customer_identifier_type": "testing" }) _, response = http.add_card({ "credit_card": { "number": "4242424242424242", "expiration_month": "11", "expiration_year": "2099", }, "share": True }) nonce = json.loads(response)["creditCards"][0]["nonce"] result = Subscription.update(self.updateable_subscription.id, { "payment_method_nonce": nonce }) self.assertTrue(result.is_success) subscription = result.subscription newCard = CreditCard.find(subscription.payment_method_token) self.assertEqual("4242", newCard.last_4) self.assertNotEqual(newCard.last_4, self.credit_card.last_4) def test_update_with_number_of_billing_cycles(self): result = Subscription.update(self.updateable_subscription.id, { "number_of_billing_cycles": 10 }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(10, subscription.number_of_billing_cycles) def test_update_with_never_expires(self): result = Subscription.update(self.updateable_subscription.id, { "never_expires": True }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(None, subscription.number_of_billing_cycles) def test_update_with_error_result(self): result = Subscription.update(self.updateable_subscription.id, { "id": "bad id", }) self.assertFalse(result.is_success) id_errors = result.errors.for_object("subscription").on("id") self.assertEqual(1, len(id_errors)) self.assertEqual("81906", id_errors[0].code) @raises(NotFoundError) def test_update_raises_error_when_subscription_not_found(self): Subscription.update("notfound", { "id": "newid", }) def test_update_allows_overriding_of_inherited_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], }).subscription subscription = Subscription.update(subscription.id, { "add_ons": { "update": [ { "amount": Decimal("50.00"), "existing_id": "increase_10", "quantity": 2, "number_of_billing_cycles": 5 }, { "amount": Decimal("100.00"), "existing_id": "increase_20", "quantity": 4, "never_expires": True } ] }, "discounts": { "update": [ { "amount": Decimal("15.00"), "existing_id": "discount_7", "quantity": 3, "number_of_billing_cycles": 19 } ] } }).subscription self.assertEqual(2, len(subscription.add_ons)) add_ons = sorted(subscription.add_ons, key=lambda add_on: add_on.id) self.assertEqual("increase_10", add_ons[0].id) self.assertEqual(Decimal("50.00"), add_ons[0].amount) self.assertEqual(2, add_ons[0].quantity) self.assertEqual(5, add_ons[0].number_of_billing_cycles) self.assertFalse(add_ons[0].never_expires) self.assertEqual("increase_20", add_ons[1].id) self.assertEqual(Decimal("100.00"), add_ons[1].amount) self.assertEqual(4, add_ons[1].quantity) self.assertEqual(None, add_ons[1].number_of_billing_cycles) self.assertTrue(add_ons[1].never_expires) self.assertEqual(2, len(subscription.discounts)) discounts = sorted(subscription.discounts, key=lambda discount: discount.id) self.assertEqual("discount_11", discounts[0].id) self.assertEqual(Decimal("11.00"), discounts[0].amount) self.assertEqual(1, discounts[0].quantity) self.assertEqual(None, discounts[0].number_of_billing_cycles) self.assertTrue(discounts[0].never_expires) self.assertEqual("discount_7", discounts[1].id) self.assertEqual(Decimal("15.00"), discounts[1].amount) self.assertEqual(3, discounts[1].quantity) self.assertEqual(19, discounts[1].number_of_billing_cycles) self.assertFalse(discounts[1].never_expires) def test_update_allows_adding_and_removing_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], }).subscription subscription = Subscription.update(subscription.id, { "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "add": [ { "amount": Decimal("50.00"), "inherited_from_id": "increase_30", "quantity": 2, "number_of_billing_cycles": 5 } ], "remove": ["increase_10", "increase_20"] }, "discounts": { "add": [ { "amount": Decimal("17.00"), "inherited_from_id": "discount_15", "never_expires": True } ], "remove": ["discount_7", "discount_11"] } }).subscription self.assertEqual(1, len(subscription.add_ons)) self.assertEqual("increase_30", subscription.add_ons[0].id) self.assertEqual(Decimal("50.00"), subscription.add_ons[0].amount) self.assertEqual(2, subscription.add_ons[0].quantity) self.assertEqual(5, subscription.add_ons[0].number_of_billing_cycles) self.assertFalse(subscription.add_ons[0].never_expires) self.assertEqual(1, len(subscription.discounts)) self.assertEqual("discount_15", subscription.discounts[0].id) self.assertEqual(Decimal("17.00"), subscription.discounts[0].amount) self.assertEqual(1, subscription.discounts[0].quantity) self.assertEqual(None, subscription.discounts[0].number_of_billing_cycles) self.assertTrue(subscription.discounts[0].never_expires) def test_update_allows_adding_and_removing_unicode_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], }).subscription subscription = Subscription.update(subscription.id, { "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "add": [ { "amount": Decimal("50.00"), "inherited_from_id": u"increase_30", "quantity": 2, "number_of_billing_cycles": 5 } ], "remove": [u"increase_10", u"increase_20"] }, "discounts": { "add": [ { "amount": Decimal("17.00"), "inherited_from_id": u"discount_15", "never_expires": True } ], "remove": [u"discount_7", u"discount_11"] } }).subscription self.assertEqual(1, len(subscription.add_ons)) self.assertEqual(u"increase_30", subscription.add_ons[0].id) self.assertEqual(Decimal("50.00"), subscription.add_ons[0].amount) self.assertEqual(2, subscription.add_ons[0].quantity) self.assertEqual(5, subscription.add_ons[0].number_of_billing_cycles) self.assertFalse(subscription.add_ons[0].never_expires) self.assertEqual(1, len(subscription.discounts)) self.assertEqual(u"discount_15", subscription.discounts[0].id) self.assertEqual(Decimal("17.00"), subscription.discounts[0].amount) self.assertEqual(1, subscription.discounts[0].quantity) self.assertEqual(None, subscription.discounts[0].number_of_billing_cycles) self.assertTrue(subscription.discounts[0].never_expires) def test_update_can_replace_entire_set_of_add_ons_and_discounts(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], }).subscription subscription = Subscription.update(subscription.id, { "payment_method_token": self.credit_card.token, "plan_id": TestHelper.add_on_discount_plan["id"], "add_ons": { "add": [ {"inherited_from_id": "increase_30"}, {"inherited_from_id": "increase_20"}, ], }, "discounts": { "add": [ {"inherited_from_id": "discount_15"}, ], }, "options": { "replace_all_add_ons_and_discounts": True, }, }).subscription self.assertEqual(2, len(subscription.add_ons)) add_ons = sorted(subscription.add_ons, key=lambda add_on: add_on.id) self.assertEqual("increase_20", add_ons[0].id) self.assertEqual(Decimal("20.00"), add_ons[0].amount) self.assertEqual(1, add_ons[0].quantity) self.assertEqual(None, add_ons[0].number_of_billing_cycles) self.assertTrue(add_ons[0].never_expires) self.assertEqual("increase_30", add_ons[1].id) self.assertEqual(Decimal("30.00"), add_ons[1].amount) self.assertEqual(1, add_ons[1].quantity) self.assertEqual(None, add_ons[1].number_of_billing_cycles) self.assertTrue(add_ons[1].never_expires) self.assertEqual(1, len(subscription.discounts)) self.assertEqual("discount_15", subscription.discounts[0].id) self.assertEqual(Decimal("15.00"), subscription.discounts[0].amount) self.assertEqual(1, subscription.discounts[0].quantity) self.assertEqual(None, subscription.discounts[0].number_of_billing_cycles) self.assertTrue(subscription.discounts[0].never_expires) def test_update_descriptor_name_and_phone(self): result = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "descriptor": { "name": "123*123456789012345678", "phone": "1234567890" } }) self.assertTrue(result.is_success) subscription = result.subscription updated_subscription = Subscription.update(subscription.id, { "descriptor": { "name": "999*99", "phone": "1234567890" } }).subscription self.assertEqual("999*99", updated_subscription.descriptor.name) self.assertEqual("1234567890", updated_subscription.descriptor.phone) def test_cancel_with_successful_response(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"] }).subscription result = Subscription.cancel(subscription.id) self.assertTrue(result.is_success) self.assertEqual("Canceled", result.subscription.status) def test_unsuccessful_cancel_returns_validation_error(self): Subscription.cancel(self.updateable_subscription.id) result = Subscription.cancel(self.updateable_subscription.id) self.assertFalse(result.is_success) status_errors = result.errors.for_object("subscription").on("status") self.assertTrue(len(status_errors), 1) self.assertEqual("81905", status_errors[0].code) @raises(NotFoundError) def test_cancel_raises_not_found_error_with_bad_subscription(self): Subscription.cancel("notreal") def test_search_with_argument_list_rather_than_literal_list(self): trial_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("1") }).subscription trialless_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "price": Decimal("1") }).subscription collection = Subscription.search( SubscriptionSearch.plan_id == "integration_trial_plan", SubscriptionSearch.price == Decimal("1") ) self.assertTrue(TestHelper.includes(collection, trial_subscription)) self.assertFalse(TestHelper.includes(collection, trialless_subscription)) def test_search_on_billing_cycles_remaining(self): subscription_5 = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "number_of_billing_cycles": 5 }).subscription subscription_10 = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "number_of_billing_cycles": 10 }).subscription collection = Subscription.search([ SubscriptionSearch.billing_cycles_remaining >= 7 ]) self.assertTrue(TestHelper.includes(collection, subscription_10)) self.assertFalse(TestHelper.includes(collection, subscription_5)) def test_search_on_created_at(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription empty_collection = Subscription.search([ SubscriptionSearch.created_at.between(date.today() + timedelta(1), date.today() + timedelta(2)) ]) self.assertTrue(empty_collection.maximum_size == 0) success_collection = Subscription.search([ SubscriptionSearch.created_at.between(date.today() - timedelta(1), date.today() + timedelta(1)) ]) self.assertTrue(success_collection.maximum_size > 0) def test_search_on_days_past_due(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription TestHelper.make_past_due(subscription, 3) collection = Subscription.search([ SubscriptionSearch.days_past_due.between(2, 10) ]) self.assertTrue(collection.maximum_size > 0) for subscription in collection.items: self.assertTrue(2 <= subscription.days_past_due <= 10) def test_search_on_plan_id(self): trial_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("2") }).subscription trialless_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "price": Decimal("2") }).subscription collection = Subscription.search([ SubscriptionSearch.plan_id == "integration_trial_plan", SubscriptionSearch.price == Decimal("2") ]) self.assertTrue(TestHelper.includes(collection, trial_subscription)) self.assertFalse(TestHelper.includes(collection, trialless_subscription)) collection = Subscription.search([ SubscriptionSearch.plan_id.in_list("integration_trial_plan", "integration_trialless_plan"), SubscriptionSearch.price == Decimal("2") ]) self.assertTrue(TestHelper.includes(collection, trial_subscription)) self.assertTrue(TestHelper.includes(collection, trialless_subscription)) def test_search_on_plan_id_is_acts_like_text_node_instead_of_multiple_value(self): for plan in [TestHelper.trial_plan, TestHelper.trialless_plan]: Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": plan["id"], "price": Decimal("3") }) collection = Subscription.search([ SubscriptionSearch.plan_id == "no such plan id", SubscriptionSearch.price == Decimal("3") ]) self.assertEqual(0, collection.maximum_size) def test_search_on_status(self): active_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "price": Decimal("3") }).subscription canceled_subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], "price": Decimal("3") }).subscription Subscription.cancel(canceled_subscription.id) collection = Subscription.search([ SubscriptionSearch.status.in_list([Subscription.Status.Active, Subscription.Status.Canceled]), SubscriptionSearch.price == Decimal("3") ]) self.assertTrue(TestHelper.includes(collection, active_subscription)) self.assertTrue(TestHelper.includes(collection, canceled_subscription)) def test_search_on_merchant_account_id(self): subscription_default_ma = Subscription.create({ "merchant_account_id": TestHelper.default_merchant_account_id, "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("4") }).subscription subscription_non_default_ma = Subscription.create({ "merchant_account_id": TestHelper.non_default_merchant_account_id, "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("4") }).subscription collection = Subscription.search([ SubscriptionSearch.merchant_account_id == TestHelper.default_merchant_account_id, SubscriptionSearch.price == Decimal("4") ]) self.assertTrue(TestHelper.includes(collection, subscription_default_ma)) self.assertFalse(TestHelper.includes(collection, subscription_non_default_ma)) def test_search_on_bogus_merchant_account_id(self): subscription = Subscription.create({ "merchant_account_id": TestHelper.default_merchant_account_id, "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("4") }).subscription collection = Subscription.search([ SubscriptionSearch.merchant_account_id == subscription.merchant_account_id, SubscriptionSearch.price == Decimal("4") ]) self.assertTrue(TestHelper.includes(collection, subscription)) collection = Subscription.search([ SubscriptionSearch.merchant_account_id.in_list(["totally_bogus_id", subscription.merchant_account_id]), SubscriptionSearch.price == Decimal("4") ]) self.assertTrue(TestHelper.includes(collection, subscription)) collection = Subscription.search([ SubscriptionSearch.merchant_account_id == "totally_bogus_id", SubscriptionSearch.price == Decimal("4") ]) self.assertFalse(TestHelper.includes(collection, subscription)) def test_search_on_price(self): subscription_900 = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("900") }).subscription subscription_1000 = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], "price": Decimal("1000") }).subscription collection = Subscription.search([ SubscriptionSearch.price >= Decimal("950") ]) self.assertTrue(TestHelper.includes(collection, subscription_1000)) self.assertFalse(TestHelper.includes(collection, subscription_900)) def test_search_on_transaction_id(self): subscription_found = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription subscription_not_found = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription collection = Subscription.search( SubscriptionSearch.transaction_id == subscription_found.transactions[0].id ) self.assertTrue(TestHelper.includes(collection, subscription_found)) self.assertFalse(TestHelper.includes(collection, subscription_not_found)) def test_search_on_id(self): subscription_found = Subscription.create({ "id": "find_me_%s" % random.randint(1, 1000000), "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], }).subscription subscription_not_found = Subscription.create({ "id": "do_not_find_me_%s" % random.randint(1, 1000000), "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"], }).subscription collection = Subscription.search([ SubscriptionSearch.id.starts_with("find_me") ]) self.assertTrue(TestHelper.includes(collection, subscription_found)) self.assertFalse(TestHelper.includes(collection, subscription_not_found)) def test_search_on_next_billing_date(self): subscription_found = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"] }).subscription subscription_not_found = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trial_plan["id"] }).subscription next_billing_date_cutoff = datetime.today() + timedelta(days=5) collection = Subscription.search( SubscriptionSearch.next_billing_date >= next_billing_date_cutoff ) self.assertTrue(TestHelper.includes(collection, subscription_found)) self.assertFalse(TestHelper.includes(collection, subscription_not_found)) def test_retryCharge_without_amount__deprecated(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription TestHelper.make_past_due(subscription) result = Subscription.retryCharge(subscription.id) self.assertTrue(result.is_success) transaction = result.transaction self.assertEqual(subscription.price, transaction.amount) self.assertNotEqual(None, transaction.processor_authorization_code) self.assertEqual(Transaction.Type.Sale, transaction.type) self.assertEqual(Transaction.Status.Authorized, transaction.status) def test_retry_charge_without_amount(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription TestHelper.make_past_due(subscription) result = Subscription.retry_charge(subscription.id) self.assertTrue(result.is_success) transaction = result.transaction self.assertEqual(subscription.price, transaction.amount) self.assertNotEqual(None, transaction.processor_authorization_code) self.assertEqual(Transaction.Type.Sale, transaction.type) self.assertEqual(Transaction.Status.Authorized, transaction.status) def test_retryCharge_with_amount__deprecated(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription TestHelper.make_past_due(subscription) result = Subscription.retryCharge(subscription.id, Decimal(TransactionAmounts.Authorize)) self.assertTrue(result.is_success) transaction = result.transaction self.assertEqual(Decimal(TransactionAmounts.Authorize), transaction.amount) self.assertNotEqual(None, transaction.processor_authorization_code) self.assertEqual(Transaction.Type.Sale, transaction.type) self.assertEqual(Transaction.Status.Authorized, transaction.status) def test_retry_charge_with_amount(self): subscription = Subscription.create({ "payment_method_token": self.credit_card.token, "plan_id": TestHelper.trialless_plan["id"], }).subscription TestHelper.make_past_due(subscription) result = Subscription.retry_charge(subscription.id, Decimal(TransactionAmounts.Authorize)) self.assertTrue(result.is_success) transaction = result.transaction self.assertEqual(Decimal(TransactionAmounts.Authorize), transaction.amount) self.assertNotEqual(None, transaction.processor_authorization_code) self.assertEqual(Transaction.Type.Sale, transaction.type) self.assertEqual(Transaction.Status.Authorized, transaction.status) def test_create_with_paypal_future_payment_method_token(self): http = ClientApiHttp.create() status_code, nonce = http.get_paypal_nonce({ "consent-code": "consent-code", "options": {"validate": False} }) self.assertEqual(202, status_code) payment_method_token = PaymentMethod.create({ "customer_id": Customer.create().customer.id, "payment_method_nonce": nonce }).payment_method.token result = Subscription.create({ "payment_method_token": payment_method_token, "plan_id": TestHelper.trialless_plan["id"] }) self.assertTrue(result.is_success) subscription = result.subscription self.assertEqual(payment_method_token, subscription.payment_method_token) def test_create_fails_with_paypal_one_time_payment_method_nonce(self): result = Subscription.create({ "payment_method_nonce": Nonces.PayPalOneTimePayment, "plan_id": TestHelper.trialless_plan["id"] }) self.assertFalse(result.is_success) self.assertEqual( ErrorCodes.Subscription.PaymentMethodNonceIsInvalid, result.errors.for_object("subscription")[0].code ) def test_create_fails_with_paypal_future_payment_method_nonce(self): result = Subscription.create({ "payment_method_nonce": Nonces.PayPalFuturePayment, "plan_id": TestHelper.trialless_plan["id"] }) self.assertFalse(result.is_success) self.assertEqual( ErrorCodes.Subscription.PaymentMethodNonceIsInvalid, result.errors.for_object("subscription")[0].code )
42.053676
131
0.64695
7d128d5bf4a50e75ca592d54eddac6091352fe63
296
py
Python
python/phonenumbers/data/alt_format_36.py
rodgar-nvkz/python-phonenumbers
4c7c4892211dbc9bc328bc3356b03853eaf993dc
[ "Apache-2.0" ]
2,424
2015-01-05T05:34:45.000Z
2022-03-28T22:37:53.000Z
python/phonenumbers/data/alt_format_36.py
rodgar-nvkz/python-phonenumbers
4c7c4892211dbc9bc328bc3356b03853eaf993dc
[ "Apache-2.0" ]
166
2015-01-30T23:59:18.000Z
2022-03-14T21:08:42.000Z
Lib/site-packages/phonenumbers/data/alt_format_36.py
PsychedVic/Portafolio
4bd59d19de41fbea5317d4f2b9e6219ea0359945
[ "bzip2-1.0.6" ]
345
2015-01-02T00:33:27.000Z
2022-03-26T13:06:57.000Z
"""Auto-generated file, do not edit by hand. 36 metadata""" from ..phonemetadata import NumberFormat PHONE_ALT_FORMAT_36 = [NumberFormat(pattern='(\\d)(\\d{4})(\\d{3})', format='\\1 \\2 \\3', leading_digits_pattern=['1']), NumberFormat(pattern='(\\d{2})(\\d{4})(\\d{3})', format='\\1 \\2 \\3')]
59.2
193
0.628378
4d5b397e37a092cf5f61d5636b7860b318a6f8ed
436
py
Python
detect_secrets/plugins/twilio.py
paulo-sampaio/detect-secrets
73ffbc35a72cb316d9e1842cc131b6098cf3c36a
[ "Apache-2.0" ]
2,212
2018-04-03T20:58:42.000Z
2022-03-31T17:58:38.000Z
detect_secrets/plugins/twilio.py
paulo-sampaio/detect-secrets
73ffbc35a72cb316d9e1842cc131b6098cf3c36a
[ "Apache-2.0" ]
354
2018-04-03T16:29:55.000Z
2022-03-31T18:26:26.000Z
detect_secrets/plugins/twilio.py
paulo-sampaio/detect-secrets
73ffbc35a72cb316d9e1842cc131b6098cf3c36a
[ "Apache-2.0" ]
298
2018-04-02T19:35:15.000Z
2022-03-28T04:52:14.000Z
""" This plugin searches for Twilio API keys """ import re from .base import RegexBasedDetector class TwilioKeyDetector(RegexBasedDetector): """Scans for Twilio API keys.""" secret_type = 'Twilio API Key' denylist = [ # Account SID (ACxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) re.compile(r'AC[a-z0-9]{32}'), # Auth token (SKxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) re.compile(r'SK[a-z0-9]{32}'), ]
21.8
58
0.662844
5597dfc0fee593a1a48d9a5e3ef52ff15e9b6b34
5,685
py
Python
app/util/analytics/log_reader.py
dsplugins/dc-app-performance-toolkit
0a1bb0f8d40f1dc4104aebe926695238a0ef3d00
[ "Apache-2.0" ]
null
null
null
app/util/analytics/log_reader.py
dsplugins/dc-app-performance-toolkit
0a1bb0f8d40f1dc4104aebe926695238a0ef3d00
[ "Apache-2.0" ]
null
null
null
app/util/analytics/log_reader.py
dsplugins/dc-app-performance-toolkit
0a1bb0f8d40f1dc4104aebe926695238a0ef3d00
[ "Apache-2.0" ]
null
null
null
import os import re from datetime import datetime from util.project_paths import ENV_TAURUS_ARTIFACT_DIR GIT_OPERATIONS = ['jmeter_clone_repo_via_http', 'jmeter_clone_repo_via_ssh', 'jmeter_git_push_via_http', 'jmeter_git_fetch_via_http', 'jmeter_git_push_via_ssh', 'jmeter_git_fetch_via_ssh'] class BaseFileReader: @staticmethod def validate_file_exists(path): if not os.path.exists(path): raise Exception(f'{path} does not exist') @staticmethod def validate_file_not_empty(file): if len(file) == 0: raise SystemExit(f'ERROR: {file} file in {file} is empty') @staticmethod def validate_headers(headers_list, validation_dict): for key, value in validation_dict.items(): if headers_list[key] != value: raise SystemExit(f'Header validation error. ' f'Actual: {headers_list[key]}, Expected: {validation_dict[key]}') @property def log_dir(self): return ENV_TAURUS_ARTIFACT_DIR class BztFileReader(BaseFileReader): bzt_log_name = 'bzt.log' dt_regexp = r'(\d{4}-\d{1,2}-\d{1,2}\s+\d{1,2}:\d{1,2}:\d{1,2})' jmeter_test_regexp = r'jmeter_\S*' selenium_test_regexp = r'selenium_\S*' locust_test_regexp = r'locust_\S*' success_test_rate_regexp = r'(\d{1,3}.\d{1,2}%)' def __init__(self): self.bzt_log = self.get_bzt_log() self.bzt_log_results_part = self._get_results_bzt_log_part() def get_bzt_log(self): bzt_log_path = f'{self.log_dir}/{self.bzt_log_name}' self.validate_file_exists(bzt_log_path) with open(bzt_log_path) as log_file: log_file = log_file.readlines() self.validate_file_not_empty(log_file) return log_file def _get_duration_by_start_finish_strings(self): first_string = self.bzt_log[0] last_string = self.bzt_log[-1] start_time = re.findall(self.dt_regexp, first_string)[0] start_datetime_obj = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') finish_time = re.findall(self.dt_regexp, last_string)[0] finish_datetime_obj = datetime.strptime(finish_time, '%Y-%m-%d %H:%M:%S') duration = finish_datetime_obj - start_datetime_obj return duration.seconds def _get_duration_by_test_duration(self): test_duration = None for string in self.bzt_log: if 'Test duration' in string: str_duration = string.split('duration:')[1].replace('\n', '') str_duration = str_duration.replace(' ', '') duration_datetime_obj = datetime.strptime(str_duration, '%H:%M:%S') test_duration = (duration_datetime_obj.hour * 3600 + duration_datetime_obj.minute * 60 + duration_datetime_obj.second) break return test_duration def _get_test_count_by_type(self, tests_type, log): trigger = f' {tests_type}_' test_search_regx = "" if tests_type == 'jmeter': test_search_regx = self.jmeter_test_regexp elif tests_type == 'selenium': test_search_regx = self.selenium_test_regexp elif tests_type == 'locust': test_search_regx = self.locust_test_regexp tests = {} for line in log: if trigger in line and ('FAIL' in line or 'OK' in line): test_name = re.findall(test_search_regx, line)[0] test_rate = float(''.join(re.findall(self.success_test_rate_regexp, line))[:-1]) if test_name not in tests: tests[test_name] = test_rate return tests def _get_results_bzt_log_part(self): test_result_string_trigger = 'Request label stats:' res_string_idx = [index for index, value in enumerate(self.bzt_log) if test_result_string_trigger in value] # Cut bzt.log from the 'Request label stats:' string to the end if res_string_idx: res_string_idx = res_string_idx[0] results_bzt_run = self.bzt_log[res_string_idx:] return results_bzt_run @property def selenium_test_rates(self): return self._get_test_count_by_type(tests_type='selenium', log=self.bzt_log_results_part) @property def jmeter_test_rates(self): return self._get_test_count_by_type(tests_type='jmeter', log=self.bzt_log_results_part) @property def locust_test_rates(self): return self._get_test_count_by_type(tests_type='locust', log=self.bzt_log_results_part) @property def actual_run_time(self): run_time_bzt = self._get_duration_by_test_duration() return run_time_bzt if run_time_bzt else self._get_duration_by_start_finish_strings() class ResultsFileReader(BaseFileReader): header_validation = {0: 'Label', 1: '# Samples'} def __init__(self): self.results_log = self.get_results_log() def get_results_log(self): results_log_path = f'{self.log_dir}/results.csv' self.validate_file_exists(results_log_path) with open(results_log_path) as res_file: header = res_file.readline() results = res_file.readlines() self.validate_file_not_empty(results) headers_list = header.split(',') self.validate_headers(headers_list, self.header_validation) return results @property def actual_git_operations_count(self): count = 0 for line in self.results_log: if any(s in line for s in GIT_OPERATIONS): count = count + int(line.split(',')[1]) return count
38.673469
115
0.651187
cf2fdc23b093f1a49f1e0e1433a54c5706ccda12
2,611
py
Python
tests/components/test_panel_iframe.py
loraxx753/skynet
86a1b0a6c6a3f81bc92d4f61de6a9a6b9f964543
[ "Apache-2.0" ]
13
2017-02-01T13:25:34.000Z
2022-01-26T01:30:39.000Z
tests/components/test_panel_iframe.py
1Forward1Back/home-assistant
ce24ef0c20dea0fd671d6f2c2a8b1456b4b66ba6
[ "MIT" ]
9
2017-07-26T18:05:32.000Z
2021-12-05T14:16:34.000Z
tests/components/test_panel_iframe.py
1Forward1Back/home-assistant
ce24ef0c20dea0fd671d6f2c2a8b1456b4b66ba6
[ "MIT" ]
21
2017-07-26T17:09:40.000Z
2022-03-27T22:37:22.000Z
"""The tests for the panel_iframe component.""" import unittest from unittest.mock import patch from homeassistant import bootstrap from homeassistant.components import frontend from tests.common import get_test_home_assistant class TestPanelIframe(unittest.TestCase): """Test the panel_iframe component.""" def setup_method(self, method): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() def teardown_method(self, method): """Stop everything that was started.""" self.hass.stop() def test_wrong_config(self): """Test setup with wrong configuration.""" to_try = [ {'invalid space': { 'url': 'https://home-assistant.io'}}, {'router': { 'url': 'not-a-url'}}] for conf in to_try: assert not bootstrap.setup_component( self.hass, 'panel_iframe', { 'panel_iframe': conf }) @patch.dict('homeassistant.components.frontend.FINGERPRINTS', { 'panels/ha-panel-iframe.html': 'md5md5'}) def test_correct_config(self): """Test correct config.""" assert bootstrap.setup_component( self.hass, 'panel_iframe', { 'panel_iframe': { 'router': { 'icon': 'mdi:network-wireless', 'title': 'Router', 'url': 'http://192.168.1.1', }, 'weather': { 'icon': 'mdi:weather', 'title': 'Weather', 'url': 'https://www.wunderground.com/us/ca/san-diego', }, }, }) # 5 dev tools + map are automatically loaded + 2 iframe panels assert len(self.hass.data[frontend.DATA_PANELS]) == 8 assert self.hass.data[frontend.DATA_PANELS]['router'] == { 'component_name': 'iframe', 'config': {'url': 'http://192.168.1.1'}, 'icon': 'mdi:network-wireless', 'title': 'Router', 'url': '/frontend/panels/iframe-md5md5.html', 'url_path': 'router' } assert self.hass.data[frontend.DATA_PANELS]['weather'] == { 'component_name': 'iframe', 'config': {'url': 'https://www.wunderground.com/us/ca/san-diego'}, 'icon': 'mdi:weather', 'title': 'Weather', 'url': '/frontend/panels/iframe-md5md5.html', 'url_path': 'weather', }
34.813333
78
0.52049
ddf657cbfc82f31e521b7c5d0638fdad968e135c
15,032
py
Python
ios/build/tools/setup-gn.py
Ron423c/chromium
2edf7b980065b648f8b2a6e52193d83832fe36b7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
ios/build/tools/setup-gn.py
Ron423c/chromium
2edf7b980065b648f8b2a6e52193d83832fe36b7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
ios/build/tools/setup-gn.py
Ron423c/chromium
2edf7b980065b648f8b2a6e52193d83832fe36b7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2021-03-07T14:20:02.000Z
2021-03-07T14:20:02.000Z
#!/usr/bin/python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import convert_gn_xcodeproj import errno import os import re import shutil import subprocess import sys import tempfile try: import configparser except ImportError: import ConfigParser as configparser try: import StringIO as io except ImportError: import io SUPPORTED_TARGETS = ('iphoneos', 'iphonesimulator', 'maccatalyst') SUPPORTED_CONFIGS = ('Debug', 'Release', 'Profile', 'Official', 'Coverage') # Name of the gn variable to set when generating Xcode project. GENERATE_XCODE_PROJECT = 'ios_set_attributes_for_xcode_project_generation' # Pattern matching lines from ~/.lldbinit that must not be copied to the # generated .lldbinit file. They match what the user were told to add to # their global ~/.lldbinit file before setup-gn.py was updated to generate # a project specific file and thus must not be copied as they would cause # the settings to be overwritten. LLDBINIT_SKIP_PATTERNS = ( re.compile('^script sys.path\\[:0\\] = \\[\'.*/src/tools/lldb\'\\]$'), re.compile('^script import lldbinit$'), re.compile('^settings append target.source-map .* /google/src/.*$'), ) class ConfigParserWithStringInterpolation(configparser.SafeConfigParser): '''A .ini file parser that supports strings and environment variables.''' ENV_VAR_PATTERN = re.compile(r'\$([A-Za-z0-9_]+)') def values(self, section): return map( lambda kv: self._UnquoteString(self._ExpandEnvVar(kv[1])), configparser.ConfigParser.items(self, section)) def getstring(self, section, option, fallback=''): try: raw_value = self.get(section, option) except configparser.NoOptionError, _: return fallback return self._UnquoteString(self._ExpandEnvVar(raw_value)) def _UnquoteString(self, string): if not string or string[0] != '"' or string[-1] != '"': return string return string[1:-1] def _ExpandEnvVar(self, value): match = self.ENV_VAR_PATTERN.search(value) if not match: return value name, (begin, end) = match.group(1), match.span(0) prefix, suffix = value[:begin], self._ExpandEnvVar(value[end:]) return prefix + os.environ.get(name, '') + suffix class GnGenerator(object): '''Holds configuration for a build and method to generate gn default files.''' FAT_BUILD_DEFAULT_ARCH = '64-bit' TARGET_CPU_VALUES = { 'iphoneos': '"arm64"', 'iphonesimulator': '"x64"', 'maccatalyst': '"x64"', } TARGET_ENVIRONMENT_VALUES = { 'iphoneos': '"device"', 'iphonesimulator': '"simulator"', 'maccatalyst': '"catalyst"' } def __init__(self, settings, config, target): assert target in SUPPORTED_TARGETS assert config in SUPPORTED_CONFIGS self._settings = settings self._config = config self._target = target def _GetGnArgs(self, extra_args=None): """Build the list of arguments to pass to gn. Returns: A list of tuple containing gn variable names and variable values (it is not a dictionary as the order needs to be preserved). """ args = [] # build/config/ios/ios_sdk.gni asserts that goma is not enabled when # building Official, so ignore the value of goma.enabled when creating # args.gn for Official. if self._config != 'Official': if self._settings.getboolean('goma', 'enabled'): args.append(('use_goma', True)) goma_dir = self._settings.getstring('goma', 'install') if goma_dir: args.append(('goma_dir', '"%s"' % os.path.expanduser(goma_dir))) args.append(('target_os', '"ios"')) args.append(('is_debug', self._config in ('Debug', 'Coverage'))) args.append(('enable_dsyms', self._config in ('Profile', 'Official'))) args.append(('enable_stripping', 'enable_dsyms')) args.append(('is_official_build', self._config == 'Official')) args.append(('is_chrome_branded', 'is_official_build')) args.append(('use_clang_coverage', self._config == 'Coverage')) args.append(('is_component_build', False)) if os.environ.get('FORCE_MAC_TOOLCHAIN', '0') == '1': args.append(('use_system_xcode', False)) args.append(('target_cpu', self.TARGET_CPU_VALUES[self._target])) args.append(( 'target_environment', self.TARGET_ENVIRONMENT_VALUES[self._target])) if self._target == 'maccatalyst': # Building for "catalyst" environment has not been open-sourced thus can't # use ToT clang and need to use Xcode's version instead. This version of # clang does not generate the same warning as ToT clang, so do not treat # warnings as errors. # TODO(crbug.com/1145947): remove once clang ToT supports "macabi". args.append(('use_xcode_clang', True)) args.append(('treat_warnings_as_errors', False)) # The "catalyst" environment is only supported from iOS 13.0 SDK. Until # Chrome uses this SDK, it needs to be overridden for "catalyst" builds. args.append(('ios_deployment_target', '"13.0"')) # If extra arguments are passed to the function, pass them before the # user overrides (if any). if extra_args is not None: args.extend(extra_args) # Add user overrides after the other configurations so that they can # refer to them and override them. args.extend(self._settings.items('gn_args')) return args def Generate(self, gn_path, root_path, build_dir): self.WriteArgsGn(build_dir, generate_xcode_project=True) subprocess.check_call( self.GetGnCommand(gn_path, root_path, build_dir, True)) def CreateGnRules(self, gn_path, root_path, build_dir): gn_command = self.GetGnCommand(gn_path, root_path, build_dir, False) self.WriteArgsGn(build_dir, generate_xcode_project=False) self.WriteBuildNinja(gn_command, build_dir) self.WriteBuildNinjaDeps(build_dir) def WriteArgsGn(self, build_dir, generate_xcode_project): with open(os.path.join(build_dir, 'args.gn'), 'w') as stream: stream.write('# This file was generated by setup-gn.py. Do not edit\n') stream.write('# but instead use ~/.setup-gn or $repo/.setup-gn files\n') stream.write('# to configure settings.\n') stream.write('\n') if self._target != 'maccatalyst': if self._settings.has_section('$imports$'): for import_rule in self._settings.values('$imports$'): stream.write('import("%s")\n' % import_rule) stream.write('\n') extra_args = [(GENERATE_XCODE_PROJECT, generate_xcode_project)] gn_args = self._GetGnArgs(extra_args) for name, value in gn_args: if isinstance(value, bool): stream.write('%s = %s\n' % (name, str(value).lower())) elif isinstance(value, list): stream.write('%s = [%s' % (name, '\n' if len(value) > 1 else '')) if len(value) == 1: prefix = ' ' suffix = ' ' else: prefix = ' ' suffix = ',\n' for item in value: if isinstance(item, bool): stream.write('%s%s%s' % (prefix, str(item).lower(), suffix)) else: stream.write('%s%s%s' % (prefix, item, suffix)) stream.write(']\n') else: # ConfigParser removes quote around empty string which confuse # `gn gen` so restore them. if not value: value = '""' stream.write('%s = %s\n' % (name, value)) def WriteBuildNinja(self, gn_command, build_dir): with open(os.path.join(build_dir, 'build.ninja'), 'w') as stream: stream.write('ninja_required_version = 1.7.2\n') stream.write('\n') stream.write('rule gn\n') stream.write(' command = %s\n' % NinjaEscapeCommand(gn_command)) stream.write(' description = Regenerating ninja files\n') stream.write('\n') stream.write('build build.ninja: gn\n') stream.write(' generator = 1\n') stream.write(' depfile = build.ninja.d\n') def WriteBuildNinjaDeps(self, build_dir): with open(os.path.join(build_dir, 'build.ninja.d'), 'w') as stream: stream.write('build.ninja: nonexistant_file.gn\n') def GetGnCommand(self, gn_path, src_path, out_path, generate_xcode_project): gn_command = [ gn_path, '--root=%s' % os.path.realpath(src_path), '-q' ] if generate_xcode_project: gn_command.append('--ide=xcode') gn_command.append('--ninja-executable=autoninja') gn_command.append('--xcode-build-system=new') if self._settings.has_section('filters'): target_filters = self._settings.values('filters') if target_filters: gn_command.append('--filters=%s' % ';'.join(target_filters)) else: gn_command.append('--check') gn_command.append('gen') gn_command.append('//%s' % os.path.relpath(os.path.abspath(out_path), os.path.abspath(src_path))) return gn_command def NinjaNeedEscape(arg): '''Returns True if |arg| needs to be escaped when written to .ninja file.''' return ':' in arg or '*' in arg or ';' in arg def NinjaEscapeCommand(command): '''Escapes |command| in order to write it to .ninja file.''' result = [] for arg in command: if NinjaNeedEscape(arg): arg = arg.replace(':', '$:') arg = arg.replace(';', '\\;') arg = arg.replace('*', '\\*') else: result.append(arg) return ' '.join(result) def FindGn(): '''Returns absolute path to gn binary looking at the PATH env variable.''' for path in os.environ['PATH'].split(os.path.pathsep): gn_path = os.path.join(path, 'gn') if os.path.isfile(gn_path) and os.access(gn_path, os.X_OK): return gn_path return None def GenerateXcodeProject(gn_path, root_dir, out_dir, settings): '''Convert GN generated Xcode project into multi-configuration Xcode project.''' prefix = os.path.abspath(os.path.join(out_dir, '_temp')) temp_path = tempfile.mkdtemp(prefix=prefix) try: generator = GnGenerator(settings, 'Debug', 'iphonesimulator') generator.Generate(gn_path, root_dir, temp_path) convert_gn_xcodeproj.ConvertGnXcodeProject( root_dir, os.path.join(temp_path), os.path.join(out_dir, 'build'), SUPPORTED_CONFIGS) finally: if os.path.exists(temp_path): shutil.rmtree(temp_path) def CreateLLDBInitFile(root_dir, out_dir, settings): ''' Generate an .lldbinit file for the project that load the script that fixes the mapping of source files (see docs/ios/build_instructions.md#debugging). ''' with open(os.path.join(out_dir, 'build', '.lldbinit'), 'w') as lldbinit: lldb_script_dir = os.path.join(os.path.abspath(root_dir), 'tools', 'lldb') lldbinit.write('script sys.path[:0] = [\'%s\']\n' % lldb_script_dir) lldbinit.write('script import lldbinit\n') workspace_name = settings.getstring( 'gn_args', 'ios_internal_citc_workspace_name') if workspace_name != '': username = os.environ['USER'] for shortname in ('googlemac', 'third_party', 'blaze-out'): lldbinit.write('settings append target.source-map %s %s\n' % ( shortname, '/google/src/cloud/%s/%s/google3/%s' % ( username, workspace_name, shortname))) # Append the content of //ios/build/tools/lldbinit.defaults if it exists. tools_dir = os.path.join(root_dir, 'ios', 'build', 'tools') defaults_lldbinit_path = os.path.join(tools_dir, 'lldbinit.defaults') if os.path.isfile(defaults_lldbinit_path): with open(defaults_lldbinit_path) as defaults_lldbinit: for line in defaults_lldbinit: lldbinit.write(line) # Append the content of ~/.lldbinit if it exists. Line that look like they # are trying to configure source mapping are skipped as they probably date # back from when setup-gn.py was not generating an .lldbinit file. global_lldbinit_path = os.path.join(os.environ['HOME'], '.lldbinit') if os.path.isfile(global_lldbinit_path): with open(global_lldbinit_path) as global_lldbinit: for line in global_lldbinit: if any(pattern.match(line) for pattern in LLDBINIT_SKIP_PATTERNS): continue lldbinit.write(line) def GenerateGnBuildRules(gn_path, root_dir, out_dir, settings): '''Generates all template configurations for gn.''' for config in SUPPORTED_CONFIGS: for target in SUPPORTED_TARGETS: build_dir = os.path.join(out_dir, '%s-%s' % (config, target)) if not os.path.isdir(build_dir): os.makedirs(build_dir) generator = GnGenerator(settings, config, target) generator.CreateGnRules(gn_path, root_dir, build_dir) def Main(args): default_root = os.path.normpath(os.path.join( os.path.dirname(__file__), os.pardir, os.pardir, os.pardir)) parser = argparse.ArgumentParser( description='Generate build directories for use with gn.') parser.add_argument( 'root', default=default_root, nargs='?', help='root directory where to generate multiple out configurations') parser.add_argument( '--import', action='append', dest='import_rules', default=[], help='path to file defining default gn variables') parser.add_argument( '--gn-path', default=None, help='path to gn binary (default: look up in $PATH)') parser.add_argument( '--build-dir', default='out', help='path where the build should be created (default: %(default)s)') args = parser.parse_args(args) # Load configuration (first global and then any user overrides). settings = ConfigParserWithStringInterpolation() settings.read([ os.path.splitext(__file__)[0] + '.config', os.path.expanduser('~/.setup-gn'), ]) # Add private sections corresponding to --import argument. if args.import_rules: settings.add_section('$imports$') for i, import_rule in enumerate(args.import_rules): if not import_rule.startswith('//'): import_rule = '//%s' % os.path.relpath( os.path.abspath(import_rule), os.path.abspath(args.root)) settings.set('$imports$', '$rule%d$' % i, import_rule) # Validate settings. if settings.getstring('build', 'arch') not in ('64-bit', '32-bit', 'fat'): sys.stderr.write('ERROR: invalid value for build.arch: %s\n' % settings.getstring('build', 'arch')) sys.exit(1) # Find path to gn binary either from command-line or in PATH. if args.gn_path: gn_path = args.gn_path else: gn_path = FindGn() if gn_path is None: sys.stderr.write('ERROR: cannot find gn in PATH\n') sys.exit(1) out_dir = os.path.join(args.root, args.build_dir) if not os.path.isdir(out_dir): os.makedirs(out_dir) GenerateXcodeProject(gn_path, args.root, out_dir, settings) GenerateGnBuildRules(gn_path, args.root, out_dir, settings) CreateLLDBInitFile(args.root, out_dir, settings) if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
37.024631
80
0.668973
5ba7cdb84391d7ab67cac5954bf757125e3ce6d4
3,201
py
Python
utils/logger.py
MoustafaMeshry/fbias_gan_residual
798a7935d42b9987039ceddb2e415a499a2e18ce
[ "MIT" ]
29
2021-11-05T10:09:21.000Z
2022-03-15T13:37:06.000Z
utils/logger.py
MoustafaMeshry/fbias_gan_residual
798a7935d42b9987039ceddb2e415a499a2e18ce
[ "MIT" ]
null
null
null
utils/logger.py
MoustafaMeshry/fbias_gan_residual
798a7935d42b9987039ceddb2e415a499a2e18ce
[ "MIT" ]
2
2021-12-15T13:04:52.000Z
2022-01-22T16:30:34.000Z
"""From https://github.com/LMescheder/GAN_stability/blob/master/gan_training/logger.py""" import pickle import os import torchvision class Logger(object): def __init__(self, log_dir='./logs', img_dir='./imgs', monitoring=None, monitoring_dir=None): self.stats = dict() self.log_dir = log_dir self.img_dir = img_dir if not os.path.exists(log_dir): os.makedirs(log_dir) if not os.path.exists(img_dir): os.makedirs(img_dir) if not (monitoring is None or monitoring == 'none'): self.setup_monitoring(monitoring, monitoring_dir) else: self.monitoring = None self.monitoring_dir = None def setup_monitoring(self, monitoring, monitoring_dir=None): self.monitoring = monitoring self.monitoring_dir = monitoring_dir if monitoring == 'telemetry': import telemetry self.tm = telemetry.ApplicationTelemetry() if self.tm.get_status() == 0: print('Telemetry successfully connected.') elif monitoring == 'tensorboard': import tensorboardX self.tb = tensorboardX.SummaryWriter(monitoring_dir) else: raise NotImplementedError('Monitoring tool "%s" not supported!' % monitoring) def add(self, category, k, v, it): if category not in self.stats: self.stats[category] = {} if k not in self.stats[category]: self.stats[category][k] = [] self.stats[category][k].append((it, v)) k_name = '%s/%s' % (category, k) if self.monitoring == 'telemetry': self.tm.metric_push_async({ 'metric': k_name, 'value': v, 'it': it }) elif self.monitoring == 'tensorboard': self.tb.add_scalar(k_name, v, it) def add_imgs(self, imgs, class_name, it): outdir = os.path.join(self.img_dir, class_name) if not os.path.exists(outdir): os.makedirs(outdir) outfile = os.path.join(outdir, '%08d.png' % it) imgs = imgs / 2 + 0.5 imgs = torchvision.utils.make_grid(imgs) torchvision.utils.save_image(imgs, outfile, nrow=8) if self.monitoring == 'tensorboard': self.tb.add_image(class_name, imgs, it) def get_last(self, category, k, default=0.): if category not in self.stats: return default elif k not in self.stats[category]: return default else: return self.stats[category][k][-1][1] def save_stats(self, filename): filename = os.path.join(self.log_dir, filename) with open(filename, 'wb') as f: pickle.dump(self.stats, f) def load_stats(self, filename): filename = os.path.join(self.log_dir, filename) if not os.path.exists(filename): print('Warning: file "%s" does not exist!' % filename) return try: with open(filename, 'rb') as f: self.stats = pickle.load(f) except EOFError: print('Warning: log file corrupted!')
33.34375
89
0.577632
be6f75e6d06fa23e958363ecc97342fd015af791
6,481
py
Python
scripts/TEMP/temp_post.py
shunhuahan/mcclintock
999f064847e824d41a76791c913e24454ef6cba8
[ "Unlicense" ]
null
null
null
scripts/TEMP/temp_post.py
shunhuahan/mcclintock
999f064847e824d41a76791c913e24454ef6cba8
[ "Unlicense" ]
null
null
null
scripts/TEMP/temp_post.py
shunhuahan/mcclintock
999f064847e824d41a76791c913e24454ef6cba8
[ "Unlicense" ]
null
null
null
import os import sys import subprocess sys.path.append(snakemake.config['args']['mcc_path']) import scripts.mccutils as mccutils import scripts.output as output import config.TEMP.temp_post as config def main(): mccutils.log("temp","running TEMP post processing") insert_summary = snakemake.input.insert_summary absence_summary = snakemake.input.absence_summary te_gff = snakemake.input.te_gff reference_fasta = snakemake.input.reference_fasta log = snakemake.params.log sample_name = snakemake.params.sample_name chromosomes = snakemake.params.chromosomes.split(",") out_dir = snakemake.params.out_dir insertions = read_insertion_summary(insert_summary, sample_name) absence_bed = make_absence_bed(absence_summary, sample_name, out_dir) non_absent_ref_insertions = get_non_absent_ref_tes(te_gff, absence_bed, sample_name, out_dir, log) insertions += non_absent_ref_insertions insertions = filter_insertions(insertions, chromosomes, acceptable_classes=config.ACCEPTABLE_INSERTION_SUPPORT_CLASSES, frequency_theshold=config.FREQUENCY_THRESHOLD) if len(insertions) > 0: insertions = output.make_redundant_bed(insertions, sample_name, out_dir, method="temp") insertions = output.make_nonredundant_bed(insertions, sample_name, out_dir, method="temp") output.write_vcf(insertions, reference_fasta, sample_name, "temp", out_dir) else: mccutils.run_command(["touch", out_dir+"/"+sample_name+"_temp_redundant.bed"]) mccutils.run_command(["touch", out_dir+"/"+sample_name+"_temp_nonredundant.bed"]) mccutils.log("temp","TEMP postprocessing complete") def read_insertion_summary(infile, sample): insertions = [] with open(infile,"r") as inf: for x,line in enumerate(inf): if x > 0: insert = output.Insertion(output.Temp()) split_line = line.split("\t") if len(split_line) == 14: insert.chromosome = split_line[0] insert.start = int(split_line[1])-1 insert.end = int(split_line[2]) insert.family = split_line[3] insert.name = insert.family+"|non-reference|"+split_line[7]+"|"+sample+"|temp|" if "antisense" in split_line[4]: insert.strand = "-" else: insert.strand = "+" insert.support_info.support['class'].value = split_line[5] insert.support_info.support['variantsupport'].value = int(float(split_line[6])) insert.support_info.support['frequency'].value = float(split_line[7]) insert.support_info.support['junction1'].value = int(split_line[8]) insert.support_info.support['junction1support'].value = int(split_line[9]) insert.support_info.support['junction2'].value = int(split_line[10]) insert.support_info.support['junction2support'].value = int(split_line[11]) insert.support_info.support['fiveprimesupport'].value = int(float(split_line[12])) insert.support_info.support['threeprimesupport'].value = int(float(split_line[13].replace("\n",""))) insert.type = "non-reference" if insert.end >= insert.start and insert.end > 0 and insert.start > -1: # if split read, use junction positions as start and end if insert.support_info.support['junction1support'].value > 0 and insert.support_info.support['junction2support'].value > 0: insert.start = insert.support_info.support['junction1'].value insert.end = insert.support_info.support['junction2'].value insert.name = insert.name+"sr|" # read pair else: insert.name = insert.name+"rp|" insertions.append(insert) else: print("<TEMP POST> Omitting malformed line from insertion summary results:", line) else: print("<TEMP POST> Omitting malformed line from insertion summary results:", line) return insertions def make_absence_bed(summary_file, sample, out): out_bed = out+"/"+sample+".absent.bed" lines = [] with open(summary_file, "r") as inf: for x,line in enumerate(inf): if x > 0: split_line = line.split("\t") new_line = "\t".join([split_line[0], split_line[1], split_line[2]]) new_line += "\n" lines.append(new_line) if len(lines) < 1: lines.append("empty\t0\t1\n") with open(out_bed,"w") as bed: for line in lines: bed.write(line) return out_bed def get_non_absent_ref_tes(te_gff, absence_bed, sample, out, log): insertions = [] tmp_gff = out+"/tmp.ref_nonabs.gff" command = ["bedtools", "subtract", "-A", "-a", te_gff, "-b", absence_bed] mccutils.run_command_stdout(command, tmp_gff, log=log) with open(tmp_gff,"r") as gff: for line in gff: if "#" not in line: line = line.replace(";","\t") split_line = line.split("\t") insert = output.Insertion(output.Temp()) insert.chromosome = split_line[0] insert.start = int(split_line[3]) insert.end = int(split_line[4]) insert.name = split_line[9].split("=")[1]+"|reference|NA|"+sample+"|temp|nonab|" insert.strand = split_line[6] insert.type = "reference" insertions.append(insert) mccutils.remove(tmp_gff) return insertions def filter_insertions(insertions, chromosomes, acceptable_classes=["1p1"], frequency_theshold=0.1): out = [] for insert in insertions: if ( insert.chromosome in chromosomes and ( insert.type == "reference" or (insert.support_info.support['class'].value in acceptable_classes and insert.support_info.support['frequency'].value > frequency_theshold))): out.append(insert) return out if __name__ == "__main__": main()
43.206667
170
0.597284
b65182c8d950fc5ef1a251c5f78310ab9456518c
330
py
Python
actions/__init__.py
BlackCatDevel0per/s2txt
fe1cf551057be5777eb8f27e9d56dd2ae3cbb514
[ "Apache-2.0" ]
null
null
null
actions/__init__.py
BlackCatDevel0per/s2txt
fe1cf551057be5777eb8f27e9d56dd2ae3cbb514
[ "Apache-2.0" ]
null
null
null
actions/__init__.py
BlackCatDevel0per/s2txt
fe1cf551057be5777eb8f27e9d56dd2ae3cbb514
[ "Apache-2.0" ]
null
null
null
from .uic4load import UIC from .menubar import FileMenu from .menubar import Record from .menubar import Options from .menubar import Other from .window import WindowActions from .buttons import Buttons from .buttons import Shortcuts class Actions(WindowActions, FileMenu, Record, Options, Other, Buttons, Shortcuts): pass
23.571429
83
0.80303
e836256d50a2fa4f979740aa49b809c52f73f21e
457
py
Python
chapter9/leds_led_shim.py
dannystaple/Learn-Robotics-Programming-Second-Edition
081ed9bbab59aab57334fe8f2f06a157a8639eb4
[ "MIT" ]
19
2020-05-13T12:53:59.000Z
2022-03-07T19:50:30.000Z
chapter9/leds_led_shim.py
dannystaple/Learn-Robotics-Programming-Second-Edition
081ed9bbab59aab57334fe8f2f06a157a8639eb4
[ "MIT" ]
1
2020-11-20T16:56:24.000Z
2020-12-01T06:24:45.000Z
chapter9/leds_led_shim.py
dannystaple/Learn-Robotics-Programming-Second-Edition
081ed9bbab59aab57334fe8f2f06a157a8639eb4
[ "MIT" ]
12
2019-12-24T18:13:14.000Z
2022-03-20T23:44:12.000Z
import ledshim class Leds: @property def count(self): return ledshim.width def set_one(self, led_number, color): ledshim.set_pixel(led_number, *color) def set_range(self, led_range, color): for pixel in led_range: ledshim.set_pixel(pixel, *color) def set_all(self, color): ledshim.set_all(*color) def clear(self): ledshim.clear() def show(self): ledshim.show()
19.041667
45
0.610503
e738fa006b43b0aafbdbe957091cd90856c35c67
3,049
py
Python
docs/tests/test_images.py
yjf18340/webots
60d441c362031ab8fde120cc0cd97bdb1a31a3d5
[ "Apache-2.0" ]
1
2019-01-21T07:14:55.000Z
2019-01-21T07:14:55.000Z
docs/tests/test_images.py
chinakwy/webots
7c35a359848bafe81fe0229ac2ed587528f4c73e
[ "Apache-2.0" ]
null
null
null
docs/tests/test_images.py
chinakwy/webots
7c35a359848bafe81fe0229ac2ed587528f4c73e
[ "Apache-2.0" ]
1
2020-09-25T02:01:45.000Z
2020-09-25T02:01:45.000Z
"""Test module of the images.""" import unittest from books import Books import fnmatch import os import re class TestImages(unittest.TestCase): """Unit test of the images.""" def test_images_are_valid(self): """Test that the MD files refer to valid URLs.""" books = Books() for book in books.books: for md_path in book.md_paths: with open(md_path) as f: content = f.read() for match in re.finditer(r"!\[(.*?)\]\((.*?)\)", content): # remove parameters is_youtube_video = match.group(1) == "youtube video" if not is_youtube_video: image_ref = match.group(2).split(' ')[0] image_path = os.path.join(book.path, image_ref) self.assertTrue( os.path.isfile(image_path), msg='%s: "%s" not found' % (md_path, image_path) ) def test_all_images_are_used(self): """Test that all the image files are referenced somewhere.""" books = Books() for book in books.books: # search for all images images_paths = [] # ['image/sonar.png', 'image/sphere.png', ...] for root, dirnames, filenames in os.walk(book.path): if 'scenes' in root.replace(books.project_path, ''): continue for filename in fnmatch.filter(filenames, '*.png') + fnmatch.filter(filenames, '*.jpg'): image_path = os.path.join(root, filename) image_path = image_path[(len(book.path) + 1):] images_paths.append(image_path.replace('\\', '/')) self.assertGreater( len(images_paths), 0, msg='No image found in book "%s"' % book.name ) # check the image reference can be found in at least one MD file for image_path in images_paths: found = False for md_path in book.md_paths: with open(md_path) as file: if (image_path in file.read() or image_path.replace('.png', '.thumbnail.jpg') in images_paths or image_path.replace('.png', '.thumbnail.png') in images_paths): found = True break self.assertTrue( found, msg='Image "%s" not referenced in any MD file.' % image_path ) # in case of thumbnail make sure the original file is available if image_path.endswith('.thumbnail.jpg'): self.assertTrue( image_path.replace('.thumbnail.jpg', '.png') in images_paths, msg='Missing original file for thumbnail "%s".' % image_path ) if __name__ == '__main__': unittest.main()
42.347222
104
0.501804
5f44da2c24c3de60f95ddb288c8d9295ccd2ae5e
10,246
py
Python
tcfcli/cmds/deploy/cli.py
alfredhuang211/scfcli
f5e086ff4fcee8d645682e85cd1486b28a224d08
[ "Apache-2.0" ]
null
null
null
tcfcli/cmds/deploy/cli.py
alfredhuang211/scfcli
f5e086ff4fcee8d645682e85cd1486b28a224d08
[ "Apache-2.0" ]
null
null
null
tcfcli/cmds/deploy/cli.py
alfredhuang211/scfcli
f5e086ff4fcee8d645682e85cd1486b28a224d08
[ "Apache-2.0" ]
null
null
null
import click import os import sys import time from io import BytesIO from tcfcli.common.template import Template from tcfcli.common.user_exceptions import TemplateNotFoundException, InvalidTemplateException, ContextException from tcfcli.common.user_exceptions import CloudAPIException from tcfcli.libs.utils.scf_client import ScfClient from tcfcli.common import tcsam from tcfcli.common.user_config import UserConfig from tcfcli.common.tcsam.tcsam_macro import TcSamMacro as tsmacro from zipfile import ZipFile, ZIP_DEFLATED from tcfcli.libs.utils.cos_client import CosClient _CURRENT_DIR = '.' _BUILD_DIR = './.tcf_build' DEF_TMP_FILENAME = 'template.yaml' REGIONS = ['ap-beijing', 'ap-chengdu', 'ap-guangzhou', 'ap-hongkong', 'ap-mumbai', 'ap-shanghai'] @click.command() @click.option('--template-file', '-t', default=DEF_TMP_FILENAME, type=click.Path(exists=True), help="TCF template file for deploy") @click.option('--cos-bucket', '-c', type=str, help="COS bucket name") @click.option('-n', '--name', type=str, help="Function name") @click.option('-ns', '--namespace', type=str, help="Namespace name") @click.option('--region', '-r', type=click.Choice(REGIONS), help="The region which the function want to be deployed") @click.option('-f', '--forced', is_flag=True, default=False, help="Update the function when it already exists,default false") @click.option('--skip-event', is_flag=True, default=False, help="Keep previous version triggers, do not cover them this time.") def deploy(template_file, cos_bucket, name, namespace, region, forced, skip_event): ''' Deploy a scf. ''' package = Package(template_file, cos_bucket, name, region, namespace) resource = package.do_package() deploy = Deploy(resource, namespace, region, forced, skip_event) deploy.do_deploy() class Package(object): def __init__(self, template_file, cos_bucket, function, region, deploy_namespace): self.template_file = template_file self.template_file_dir = "" self.cos_bucket = cos_bucket self.check_params() template_data = tcsam.tcsam_validate(Template.get_template_data(self.template_file)) self.resource = template_data.get(tsmacro.Resources, {}) self.function = function self.deploy_namespace = deploy_namespace self.region = region def do_package(self): for ns in self.resource: for func in list(self.resource[ns]): if func == tsmacro.Type: continue if self.function is not None and func != self.function: self.resource[ns].pop(func) continue code_url = self._do_package_core( self.resource[ns][func][tsmacro.Properties].get(tsmacro.CodeUri, ""), ns, func, self.region ) if "cos_bucket_name" in code_url: self.resource[ns][func][tsmacro.Properties]["CosBucketName"] = code_url["cos_bucket_name"] self.resource[ns][func][tsmacro.Properties]["CosObjectName"] = code_url["cos_object_name"] click.secho("Upload function zip file '{}' to COS bucket '{}' success". format(os.path.basename(code_url["cos_object_name"]), code_url["cos_bucket_name"]), fg="green") elif "zip_file" in code_url: self.resource[ns][func][tsmacro.Properties]["LocalZipFile"] = code_url["zip_file"] # click.secho("Generate resource '{}' success".format(self.resource), fg="green") return self.resource def check_params(self): if not self.template_file: click.secho("FAM Template Not Found", fg="red") raise TemplateNotFoundException("Missing option --template-file") if not os.path.isfile(self.template_file): click.secho("FAM Template Not Found", fg="red") raise TemplateNotFoundException("template-file Not Found") self.template_file = os.path.abspath(self.template_file) self.template_file_dir = os.path.dirname(os.path.abspath(self.template_file)) uc = UserConfig() if self.cos_bucket and self.cos_bucket.endswith("-" + uc.appid): self.cos_bucket = self.cos_bucket.replace("-" + uc.appid, '') def _do_package_core(self, func_path, namespace, func_name, region=None): zipfile, zip_file_name, zip_file_name_cos = self._zip_func(func_path, namespace, func_name) code_url = dict() if self.cos_bucket: CosClient(region).upload_file2cos(bucket=self.cos_bucket, file=zipfile.read(), key=zip_file_name_cos) code_url["cos_bucket_name"] = self.cos_bucket code_url["cos_object_name"] = "/" + zip_file_name_cos else: code_url["zip_file"] = os.path.join(os.getcwd(), _BUILD_DIR, zip_file_name) return code_url def _zip_func(self, func_path, namespace, func_name): buff = BytesIO() if not os.path.exists(func_path): raise ContextException("Function file or path not found by CodeUri '{}'".format(func_path)) if self.deploy_namespace and self.deploy_namespace != namespace: namespace = self.deploy_namespace zip_file_name = str(namespace) + '-' + str(func_name) + '-latest.zip' zip_file_name_cos = str(namespace) + '-' + str(func_name) + '-latest' + time.strftime( "-%Y-%m-%d-%H-%M-%S", time.localtime(int(time.time()))) + '.zip' cwd = os.getcwd() os.chdir(self.template_file_dir) os.chdir(func_path) with ZipFile(buff, mode='w', compression=ZIP_DEFLATED) as zip_object: for current_path, sub_folders, files_name in os.walk(_CURRENT_DIR): if current_path == _BUILD_DIR: continue for file in files_name: zip_object.write(os.path.join(current_path, file)) os.chdir(cwd) buff.seek(0) buff.name = zip_file_name if not os.path.exists(_BUILD_DIR): os.mkdir(_BUILD_DIR) zip_file_path = os.path.join(_BUILD_DIR, zip_file_name) if os.path.exists(zip_file_path): os.remove(zip_file_path) # a temporary support for upload func from local zipfile with open(zip_file_path, 'wb') as f: f.write(buff.read()) buff.seek(0) click.secho("Compress function '{}' to zipfile '{}' success".format(zip_file_path, zip_file_name)) return buff, zip_file_name, zip_file_name_cos class Deploy(object): def __init__(self, resource, namespace, region=None, forced=False, skip_event=False): self.resources = resource self.namespace = namespace self.region = region self.forced = forced self.skip_event = skip_event def do_deploy(self): for ns in self.resources: if not self.resources[ns]: continue click.secho("Deploy namespace '{ns}' begin".format(ns=ns)) for func in self.resources[ns]: if func == tsmacro.Type: continue self._do_deploy_core(self.resources[ns][func], func, ns, self.region, self.forced, self.skip_event) click.secho("Deploy namespace '{ns}' end".format(ns=ns)) def _do_deploy_core(self, func, func_name, func_ns, region, forced, skip_event=False): # check namespace exit, create namespace if self.namespace and self.namespace != func_ns: func_ns = self.namespace rep = ScfClient(region).get_ns(func_ns) if not rep: click.secho("{ns} not exists, create it now".format(ns=func_ns), fg="red") err = ScfClient(region).create_ns(func_ns) if err is not None: if sys.version_info[0] == 3: s = err.get_message() else: s = err.get_message().encode("UTF-8") click.secho("Create namespace '{name}' failure. Error: {e}.".format( name=func_ns, e=s), fg="red") sys.exit(1) err = ScfClient(region).deploy_func(func, func_name, func_ns, forced) if err is not None: if sys.version_info[0] == 3: s = err.get_message() else: s = err.get_message().encode("UTF-8") err_msg = "Deploy function '{name}' failure, {e}.".format(name=func_name, e=s) if err.get_request_id(): err_msg += ("\nRequestId: {}" .format(err.get_request_id().encode("UTF-8"))) raise CloudAPIException(err_msg.decode("UTF-8")) click.secho("Deploy function '{name}' success".format(name=func_name), fg="green") if not skip_event: self._do_deploy_trigger(func, func_name, func_ns, region) def _do_deploy_trigger(self, func, func_name, func_ns, region=None): proper = func.get(tsmacro.Properties, {}) events = proper.get(tsmacro.Events, {}) hasError = None for trigger in events: err = ScfClient(region).deploy_trigger(events[trigger], trigger, func_name, func_ns) if err is not None: hasError = err if sys.version_info[0] == 3: s = err.get_message() else: s = err.get_message().encode("UTF-8") click.secho( "Deploy trigger '{name}' failure. Error: {e}.".format(name=trigger, e=s), fg="red") if err.get_request_id(): click.secho("RequestId: {}".format(err.get_request_id().encode("UTF-8")), fg="red") continue click.secho("Deploy trigger '{name}' success".format(name=trigger), fg="green") if hasError is not None: sys.exit(1)
43.232068
111
0.60121
dec5c48341dd63e70af67a32c7c2142426be2404
4,026
py
Python
src/tributaries/metadata.py
akilby/tributary-cache
f4884a2aa49685b9e8aeb925c50afda887db1b18
[ "MIT" ]
null
null
null
src/tributaries/metadata.py
akilby/tributary-cache
f4884a2aa49685b9e8aeb925c50afda887db1b18
[ "MIT" ]
null
null
null
src/tributaries/metadata.py
akilby/tributary-cache
f4884a2aa49685b9e8aeb925c50afda887db1b18
[ "MIT" ]
null
null
null
from .utils.codeparsers import code_tree from .utils.objecthashers import complex_hasher def determine_metadata(func, args, kwargs, exclusion_list, globals_list, old_version=False): metadata = dict() metadata['func'] = func metadata['args'] = args metadata['kwargs'] = kwargs (metadata['code'], metadata['other_globals']) = code_tree(func, args, kwargs, exclusion_list, globals_list, old_version=old_version) if old_version: metadata.pop('other_globals') return refactor_metadata_for_storage(metadata) def refactor_metadata_for_readability(metadata): m = metadata.copy() code = m['code'] code = {k: '-code snipped-' for k, v in code.items()} args = m['args'] args = [(arg[:20] + ['...', '-args snipped-'] if isinstance(arg, list) and len(arg) > 20 else arg) for arg in args] args = [(set(list(arg)[:20]).union(set(['...', '-args snipped-'])) if isinstance(arg, set) and len(arg) > 20 else arg) for arg in args] args = [dict_refactor(arg) if isinstance(arg, dict) else arg for arg in args] kwargs = m['kwargs'] kwargs = dict_refactor(kwargs) other_globals = m['other_globals'] for key, val in other_globals.items(): if isinstance(val, list) and len(val) > 20: other_globals[key] = val[:20] + ['...', '-other_globals snipped-'] m2 = metadata.copy() m2['code'] = code m2['args'] = args m2['kwargs'] = kwargs m2['other_globals'] = other_globals return m2 def dict_refactor(kwargs): for key, val in kwargs.items(): if isinstance(val, list) and len(val) > 20: kwargs[key] = val[:20] + ['...', '-snipped-'] elif isinstance(val, set) and len(val) > 20: kwargs[key] = set(list(val)[:20]).union( set(['...', '-snipped-'])) elif isinstance(val, dict): for key1, val1 in val.items(): if isinstance(val1, list) and len(val1) > 20: val[key1] = val1[:20] + ['...', '-snipped-'] kwargs[key] = val return kwargs def refactor_metadata_for_storage(metadata): m, m2 = metadata.copy(), metadata.copy() args, kwargs = m['args'], m['kwargs'] args = [complex_hasher(arg) for arg in args] args = hash_arglist(args) kw = dict_hasher(kwargs.copy()) m2['args'] = tuple(args) m2['kwargs'] = kw return m2 def hash_arglist(arglist): if isinstance(arglist, list) or isinstance(arglist, tuple): arglist = hash_all_in_arglist(arglist) argsnew = [] for arg in arglist: if isinstance(arg, list) or isinstance(arg, tuple): arg = hash_all_in_arglist(arg) elif isinstance(arg, dict): arg = dict_hasher(arg.copy()) argsnew.append(arg) if isinstance(arglist, tuple): return tuple(argsnew) elif isinstance(arglist, list): return argsnew return arglist def hash_all_in_arglist(arglist): argsnew = [] for arg in arglist: if isinstance(arg, list) or isinstance(arg, tuple): arg2 = [complex_hasher(a) for a in arg] arg2 = hash_all_in_arglist(arg2) if isinstance(arg, tuple): arg2 = tuple(arg2) else: arg2 = arg argsnew.append(arg2) if isinstance(arglist, tuple): return tuple(argsnew) return argsnew def dict_hasher(kw): kw = kw.copy() for key, val in kw.items(): kw[key] = complex_hasher(val) if isinstance(val, list): kw[key] = [complex_hasher(arg) for arg in val] elif isinstance(val, dict): m3 = val.copy() for key_small, val_small in m3.items(): m3[key_small] = complex_hasher(val_small) kw[key] = m3 return kw
33.831933
78
0.564083
fa5a804f51c456014a5b0677dbaa37c9b7d84eb9
2,572
py
Python
partname_resolver/units/resistance.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
partname_resolver/units/resistance.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
partname_resolver/units/resistance.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
from decimal import Decimal from .unit_base import Unit import re class Resistance(Unit): multiply = {u'G': Decimal('1000000000'), u'G\u03a9': Decimal('1000000000'), u'GR': Decimal('1000000000'), u'M': Decimal('1000000'), u'M\u03a9': Decimal('1000000'), u'MR': Decimal('1000000'), u'k': Decimal('1000'), u'k\u03a9': Decimal('1000'), u'kR': Decimal('1000'), u'R': Decimal('1'), u'\u03a9': Decimal('1'), u'm': Decimal('0.001'), u'm\u03a9': Decimal('0.001'), u'mR': Decimal('0.001'), u'u': Decimal('0.000001'), u'u\u03a9': Decimal('0.000001'), u'uR': Decimal('0.000001')} def __init__(self, resistance): if isinstance(resistance, Decimal): self.resistance = resistance elif isinstance(resistance, str): self.resistance = self.__convert_str_resistance_to_decimal_ohms(resistance) else: print(resistance) raise TypeError super().__init__("Watt", '\u03a9', self.resistance) self.str_conversion_prefixes = ['u', 'm', '-', 'k', 'M', 'G'] def __eq__(self, other): if isinstance(other, str): return self.resistance == self.__convert_str_resistance_to_decimal_ohms(other) if isinstance(other, Resistance): return self.resistance == other.resistance @staticmethod def __convert_str_resistance_to_decimal_ohms(resistance): resistance = resistance.replace("Ohms", "\u03a9") resistance = resistance.replace("Ohm", "\u03a9") try: separated = re.split('(\d+)', resistance) if separated[-1] in Resistance.multiply: multiplier = Resistance.multiply[separated[-1]] value = Decimal(resistance.replace(separated[-1], '')) value = value * multiplier return value else: for i, chunk in enumerate(separated): if chunk in Resistance.multiply: multiplier = Resistance.multiply[chunk] resistance = Decimal(resistance.replace(chunk, '.')) resistance = resistance * multiplier return resistance return Decimal(resistance) except: print("Unable to convert resistance: " + resistance) raise
40.1875
90
0.531882
ccbba72c16c09f70975f250b253f1ebc57e79161
23
py
Python
ros/devel/lib/python2.7/dist-packages/kvaser/msg/__init__.py
Innovation-Cell/radar
de1bcd91e5a831e2858539241edfea3ce79f3afd
[ "MIT" ]
null
null
null
ros/devel/lib/python2.7/dist-packages/kvaser/msg/__init__.py
Innovation-Cell/radar
de1bcd91e5a831e2858539241edfea3ce79f3afd
[ "MIT" ]
null
null
null
ros/devel/lib/python2.7/dist-packages/kvaser/msg/__init__.py
Innovation-Cell/radar
de1bcd91e5a831e2858539241edfea3ce79f3afd
[ "MIT" ]
null
null
null
from ._CANESR import *
11.5
22
0.73913
3e9ea83d0288e186d79c951cfb17aac1ef101fa3
8,858
py
Python
accelbyte_py_sdk/api/lobby/operations/player/admin_set_player_session_attribute.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/lobby/operations/player/admin_set_player_session_attribute.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/lobby/operations/player/admin_set_player_session_attribute.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
# Auto-generated at 2021-09-27T17:01:26.588557+08:00 # from: Justice Lobby Service (1.33.0) # Copyright (c) 2018 - 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HttpResponse from ...models import ModelsSetPlayerSessionAttributeRequest from ...models import RestapiErrorResponseBody class AdminSetPlayerSessionAttribute(Operation): """admin set player's session attribute (adminSetPlayerSessionAttribute) Properties: url: /lobby/v1/admin/player/namespaces/{namespace}/users/{userId}/attributes method: PUT tags: player consumes: ["application/json"] produces: ["application/json"] security: bearer body: (body) REQUIRED ModelsSetPlayerSessionAttributeRequest in body namespace: (namespace) REQUIRED str in path user_id: (userId) REQUIRED str in path Responses: 204: No Content - (No Content) 400: Bad Request - RestapiErrorResponseBody (Bad Request) 401: Unauthorized - RestapiErrorResponseBody (Unauthorized) 403: Forbidden - RestapiErrorResponseBody (Forbidden) 404: Not Found - RestapiErrorResponseBody (Not Found) 500: Internal Server Error - RestapiErrorResponseBody (Internal Server Error) """ # region fields _url: str = "/lobby/v1/admin/player/namespaces/{namespace}/users/{userId}/attributes" _method: str = "PUT" _consumes: List[str] = ["application/json"] _produces: List[str] = ["application/json"] _security: Optional[str] = "bearer" _location_query: str = None body: ModelsSetPlayerSessionAttributeRequest # REQUIRED in [body] namespace: str # REQUIRED in [path] user_id: str # REQUIRED in [path] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def security(self) -> Optional[str]: return self._security @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods def get_full_url(self, base_url: Union[None, str] = None) -> str: result = base_url if base_url is not None else "" # path params url = self.url for k, v in self.get_path_params().items(): url = url.replace(f"{{{k}}}", v) result += url return result # noinspection PyMethodMayBeStatic def get_all_required_fields(self) -> List[str]: return [ "body", "namespace", "user_id", ] # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "body": self.get_body_params(), "path": self.get_path_params(), } def get_body_params(self) -> Any: return self.body.to_dict() def get_path_params(self) -> dict: result = {} if hasattr(self, "namespace"): result["namespace"] = self.namespace if hasattr(self, "user_id"): result["userId"] = self.user_id return result # endregion get_x_params methods # region is/has methods def is_valid(self) -> bool: if not hasattr(self, "body") or self.body is None: return False if not hasattr(self, "namespace") or self.namespace is None: return False if not hasattr(self, "user_id") or self.user_id is None: return False return True # endregion is/has methods # region with_x methods def with_body(self, value: ModelsSetPlayerSessionAttributeRequest) -> AdminSetPlayerSessionAttribute: self.body = value return self def with_namespace(self, value: str) -> AdminSetPlayerSessionAttribute: self.namespace = value return self def with_user_id(self, value: str) -> AdminSetPlayerSessionAttribute: self.user_id = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result = {} if hasattr(self, "body") and self.body: result["body"] = self.body.to_dict(include_empty=include_empty) elif include_empty: result["body"] = ModelsSetPlayerSessionAttributeRequest() if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = str() if hasattr(self, "user_id") and self.user_id: result["userId"] = str(self.user_id) elif include_empty: result["userId"] = str() return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response(self, code: int, content_type: str, content: Any) -> Tuple[Union[None, HttpResponse], Union[None, RestapiErrorResponseBody]]: """Parse the given response. 204: No Content - (No Content) 400: Bad Request - RestapiErrorResponseBody (Bad Request) 401: Unauthorized - RestapiErrorResponseBody (Unauthorized) 403: Forbidden - RestapiErrorResponseBody (Forbidden) 404: Not Found - RestapiErrorResponseBody (Not Found) 500: Internal Server Error - RestapiErrorResponseBody (Internal Server Error) """ if code == 204: return HttpResponse.create(code, "No Content"), None if code == 400: return None, RestapiErrorResponseBody.create_from_dict(content) if code == 401: return None, RestapiErrorResponseBody.create_from_dict(content) if code == 403: return None, RestapiErrorResponseBody.create_from_dict(content) if code == 404: return None, RestapiErrorResponseBody.create_from_dict(content) if code == 500: return None, RestapiErrorResponseBody.create_from_dict(content) was_handled, undocumented_response = HttpResponse.try_create_undocumented_response(code, content) if was_handled: return None, undocumented_response return None, HttpResponse.create_unhandled_error() # endregion response methods # region static methods @classmethod def create( cls, body: ModelsSetPlayerSessionAttributeRequest, namespace: str, user_id: str, ) -> AdminSetPlayerSessionAttribute: instance = cls() instance.body = body instance.namespace = namespace instance.user_id = user_id return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> AdminSetPlayerSessionAttribute: instance = cls() if "body" in dict_ and dict_["body"] is not None: instance.body = ModelsSetPlayerSessionAttributeRequest.create_from_dict(dict_["body"], include_empty=include_empty) elif include_empty: instance.body = ModelsSetPlayerSessionAttributeRequest() if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = str() if "userId" in dict_ and dict_["userId"] is not None: instance.user_id = str(dict_["userId"]) elif include_empty: instance.user_id = str() return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "body": "body", "namespace": "namespace", "userId": "user_id", } # endregion static methods
31.411348
148
0.634793
cefb6546985d976e9ae0021f73b367ddccb17ec6
64,458
py
Python
monai/transforms/utility/dictionary.py
bamf-health/MONAI
6a2086d21baf4b60c2ab3d400ed5c97cf24a0da9
[ "Apache-2.0" ]
null
null
null
monai/transforms/utility/dictionary.py
bamf-health/MONAI
6a2086d21baf4b60c2ab3d400ed5c97cf24a0da9
[ "Apache-2.0" ]
null
null
null
monai/transforms/utility/dictionary.py
bamf-health/MONAI
6a2086d21baf4b60c2ab3d400ed5c97cf24a0da9
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of dictionary-based wrappers around the "vanilla" transforms for utility functions defined in :py:class:`monai.transforms.utility.array`. Class names are ended with 'd' to denote dictionary-based transforms. """ import logging import re from copy import deepcopy from typing import Any, Callable, Dict, Hashable, List, Mapping, Optional, Sequence, Tuple, Union import numpy as np import torch from monai.config import DtypeLike, KeysCollection from monai.config.type_definitions import NdarrayOrTensor from monai.data.utils import no_collation from monai.transforms.inverse import InvertibleTransform from monai.transforms.transform import MapTransform, Randomizable, RandomizableTransform from monai.transforms.utility.array import ( AddChannel, AsChannelFirst, AsChannelLast, CastToType, ClassesToIndices, ConvertToMultiChannelBasedOnBratsClasses, CuCIM, DataStats, EnsureChannelFirst, EnsureType, FgBgToIndices, Identity, IntensityStats, LabelToMask, Lambda, MapLabelValue, RemoveRepeatedChannel, RepeatChannel, SimulateDelay, SplitChannel, SqueezeDim, ToCupy, ToDevice, ToNumpy, ToPIL, TorchVision, ToTensor, Transpose, ) from monai.transforms.utils import extreme_points_to_image, get_extreme_points from monai.utils import convert_to_numpy, ensure_tuple, ensure_tuple_rep from monai.utils.enums import InverseKeys, TransformBackends __all__ = [ "AddChannelD", "AddChannelDict", "AddChanneld", "AddExtremePointsChannelD", "AddExtremePointsChannelDict", "AddExtremePointsChanneld", "AsChannelFirstD", "AsChannelFirstDict", "AsChannelFirstd", "AsChannelLastD", "AsChannelLastDict", "AsChannelLastd", "CastToTypeD", "CastToTypeDict", "CastToTyped", "ConcatItemsD", "ConcatItemsDict", "ConcatItemsd", "ConvertToMultiChannelBasedOnBratsClassesD", "ConvertToMultiChannelBasedOnBratsClassesDict", "ConvertToMultiChannelBasedOnBratsClassesd", "CopyItemsD", "CopyItemsDict", "CopyItemsd", "CuCIMd", "CuCIMD", "CuCIMDict", "DataStatsD", "DataStatsDict", "DataStatsd", "DeleteItemsD", "DeleteItemsDict", "DeleteItemsd", "EnsureChannelFirstD", "EnsureChannelFirstDict", "EnsureChannelFirstd", "EnsureTypeD", "EnsureTypeDict", "EnsureTyped", "FgBgToIndicesD", "FgBgToIndicesDict", "FgBgToIndicesd", "IdentityD", "IdentityDict", "Identityd", "IntensityStatsd", "IntensityStatsD", "IntensityStatsDict", "LabelToMaskD", "LabelToMaskDict", "LabelToMaskd", "LambdaD", "LambdaDict", "Lambdad", "MapLabelValueD", "MapLabelValueDict", "MapLabelValued", "RandCuCIMd", "RandCuCIMD", "RandCuCIMDict", "RandLambdaD", "RandLambdaDict", "RandLambdad", "RandTorchVisionD", "RandTorchVisionDict", "RandTorchVisiond", "RemoveRepeatedChannelD", "RemoveRepeatedChannelDict", "RemoveRepeatedChanneld", "RepeatChannelD", "RepeatChannelDict", "RepeatChanneld", "SelectItemsD", "SelectItemsDict", "SelectItemsd", "SimulateDelayD", "SimulateDelayDict", "SimulateDelayd", "SplitChannelD", "SplitChannelDict", "SplitChanneld", "SqueezeDimD", "SqueezeDimDict", "SqueezeDimd", "ToCupyD", "ToCupyDict", "ToCupyd", "ToDeviced", "ToDeviceD", "ToDeviceDict", "ToNumpyD", "ToNumpyDict", "ToNumpyd", "ToPILD", "ToPILDict", "ToPILd", "ToTensorD", "ToTensorDict", "ToTensord", "TorchVisionD", "TorchVisionDict", "TorchVisiond", "Transposed", "TransposeDict", "TransposeD", ] class Identityd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Identity`. """ backend = Identity.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.identity = Identity() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.identity(d[key]) return d class AsChannelFirstd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelFirst`. """ backend = AsChannelFirst.backend def __init__(self, keys: KeysCollection, channel_dim: int = -1, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the last dimension. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = AsChannelFirst(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AsChannelLastd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelLast`. """ backend = AsChannelLast.backend def __init__(self, keys: KeysCollection, channel_dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the first dimension. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = AsChannelLast(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AddChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AddChannel`. """ backend = AddChannel.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.adder = AddChannel() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.adder(d[key]) return d class EnsureChannelFirstd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.EnsureChannelFirst`. """ backend = EnsureChannelFirst.backend def __init__( self, keys: KeysCollection, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", strict_check: bool = True, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` meta_keys: explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key `image`, the metadata by default is in `image_meta_dict`. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None and `key_{postfix}` was used to store the metadata in `LoadImaged`. So need the key to extract metadata for channel dim information, default is `meta_dict`. For example, for data with key `image`, metadata by default is in `image_meta_dict`. strict_check: whether to raise an error when the meta information is insufficient. """ super().__init__(keys) self.adjuster = EnsureChannelFirst(strict_check=strict_check) self.meta_keys = ensure_tuple_rep(meta_keys, len(self.keys)) self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) def __call__(self, data) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, meta_key, meta_key_postfix in zip(self.keys, self.meta_keys, self.meta_key_postfix): d[key] = self.adjuster(d[key], d[meta_key or f"{key}_{meta_key_postfix}"]) return d class RepeatChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.RepeatChannel`. """ backend = RepeatChannel.backend def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` repeats: the number of repetitions for each element. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.repeater = RepeatChannel(repeats) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.repeater(d[key]) return d class RemoveRepeatedChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.RemoveRepeatedChannel`. """ backend = RemoveRepeatedChannel.backend def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` repeats: the number of repetitions for each element. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.repeater = RemoveRepeatedChannel(repeats) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.repeater(d[key]) return d class SplitChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SplitChannel`. All the input specified by `keys` should be split into same count of data. """ backend = SplitChannel.backend def __init__( self, keys: KeysCollection, output_postfixes: Optional[Sequence[str]] = None, channel_dim: int = 0, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` output_postfixes: the postfixes to construct keys to store split data. for example: if the key of input data is `pred` and split 2 classes, the output data keys will be: pred_(output_postfixes[0]), pred_(output_postfixes[1]) if None, using the index number: `pred_0`, `pred_1`, ... `pred_N`. channel_dim: which dimension of input image is the channel, default to 0. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.output_postfixes = output_postfixes self.splitter = SplitChannel(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): rets = self.splitter(d[key]) postfixes: Sequence = list(range(len(rets))) if self.output_postfixes is None else self.output_postfixes if len(postfixes) != len(rets): raise AssertionError("count of split results must match output_postfixes.") for i, r in enumerate(rets): split_key = f"{key}_{postfixes[i]}" if split_key in d: raise RuntimeError(f"input data already contains key {split_key}.") d[split_key] = r return d class CastToTyped(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CastToType`. """ backend = CastToType.backend def __init__( self, keys: KeysCollection, dtype: Union[Sequence[Union[DtypeLike, torch.dtype]], DtypeLike, torch.dtype] = np.float32, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: convert image to this data type, default is `np.float32`. it also can be a sequence of dtypes or torch.dtype, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. """ MapTransform.__init__(self, keys, allow_missing_keys) self.dtype = ensure_tuple_rep(dtype, len(self.keys)) self.converter = CastToType() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, dtype in self.key_iterator(d, self.dtype): d[key] = self.converter(d[key], dtype=dtype) return d class ToTensord(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToTensor`. """ backend = ToTensor.backend def __init__( self, keys: KeysCollection, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: target data content type to convert, for example: torch.float, etc. device: specify the target device to put the Tensor data. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToTensor(dtype=dtype, device=device) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): self.push_transform(d, key) d[key] = self.converter(d[key]) return d def inverse(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = deepcopy(dict(data)) for key in self.key_iterator(d): # Create inverse transform inverse_transform = ToNumpy() # Apply inverse d[key] = inverse_transform(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class EnsureTyped(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.EnsureType`. Ensure the input data to be a PyTorch Tensor or numpy array, support: `numpy array`, `PyTorch Tensor`, `float`, `int`, `bool`, `string` and `object` keep the original. If passing a dictionary, list or tuple, still return dictionary, list or tuple and recursively convert every item to the expected data type. Note: Currently, we only convert tensor data to numpy array or scalar number in the inverse operation. """ backend = EnsureType.backend def __init__( self, keys: KeysCollection, data_type: str = "tensor", dtype: Optional[Union[DtypeLike, torch.dtype]] = None, device: Optional[torch.device] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` data_type: target data type to convert, should be "tensor" or "numpy". dtype: target data content type to convert, for example: np.float32, torch.float, etc. device: for Tensor data type, specify the target device. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = EnsureType(data_type=data_type, dtype=dtype, device=device) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): self.push_transform(d, key) d[key] = self.converter(d[key]) return d def inverse(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = deepcopy(dict(data)) for key in self.key_iterator(d): # FIXME: currently, only convert tensor data to numpy array or scalar number, # need to also invert numpy array but it's not easy to determine the previous data type d[key] = convert_to_numpy(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class ToNumpyd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`. """ backend = ToNumpy.backend def __init__( self, keys: KeysCollection, dtype: Optional[DtypeLike] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: target data type when converting to numpy array. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToNumpy(dtype=dtype) def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class ToCupyd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToCupy`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: data type specifier. It is inferred from the input by default. allow_missing_keys: don't raise exception if key is missing. """ backend = ToCupy.backend def __init__(self, keys: KeysCollection, dtype=None, allow_missing_keys: bool = False) -> None: super().__init__(keys, allow_missing_keys) self.converter = ToCupy(dtype=dtype) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class ToPILd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`. """ backend = ToPIL.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToPIL() def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class Transposed(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Transpose`. """ backend = Transpose.backend def __init__( self, keys: KeysCollection, indices: Optional[Sequence[int]], allow_missing_keys: bool = False ) -> None: super().__init__(keys, allow_missing_keys) self.transform = Transpose(indices) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.transform(d[key]) # if None was supplied then numpy uses range(a.ndim)[::-1] indices = self.transform.indices or range(d[key].ndim)[::-1] self.push_transform(d, key, extra_info={"indices": indices}) return d def inverse(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = deepcopy(dict(data)) for key in self.key_iterator(d): transform = self.get_most_recent_transform(d, key) # Create inverse transform fwd_indices = np.array(transform[InverseKeys.EXTRA_INFO]["indices"]) inv_indices = np.argsort(fwd_indices) inverse_transform = Transpose(inv_indices.tolist()) # Apply inverse d[key] = inverse_transform(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class DeleteItemsd(MapTransform): """ Delete specified items from data dictionary to release memory. It will remove the key-values and copy the others to construct a new dictionary. """ def __init__( self, keys: KeysCollection, sep: str = ".", use_re: Union[Sequence[bool], bool] = False, ) -> None: """ Args: keys: keys of the corresponding items to delete, can be "A{sep}B{sep}C" to delete key `C` in nested dictionary, `C` can be regular expression. See also: :py:class:`monai.transforms.compose.MapTransform` sep: the separator tag to define nested dictionary keys, default to ".". use_re: whether the specified key is a regular expression, it also can be a list of bool values, map the to keys. """ super().__init__(keys) self.sep = sep self.use_re = ensure_tuple_rep(use_re, len(self.keys)) def __call__(self, data): def _delete_item(keys, d, use_re: bool = False): key = keys[0] if len(keys) > 1: d[key] = _delete_item(keys[1:], d[key], use_re) return d return {k: v for k, v in d.items() if (use_re and not re.search(key, k)) or (not use_re and k != key)} d = dict(data) for key, use_re in zip(self.keys, self.use_re): d = _delete_item(key.split(self.sep), d, use_re) return d class SelectItemsd(MapTransform): """ Select only specified items from data dictionary to release memory. It will copy the selected key-values and construct and new dictionary. """ def __call__(self, data): return {key: data[key] for key in self.key_iterator(data)} class SqueezeDimd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SqueezeDim`. """ backend = SqueezeDim.backend def __init__(self, keys: KeysCollection, dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dim: dimension to be squeezed. Default: 0 (the first dimension) allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = SqueezeDim(dim=dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class DataStatsd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.DataStats`. """ backend = DataStats.backend def __init__( self, keys: KeysCollection, prefix: Union[Sequence[str], str] = "Data", data_type: Union[Sequence[bool], bool] = True, data_shape: Union[Sequence[bool], bool] = True, value_range: Union[Sequence[bool], bool] = True, data_value: Union[Sequence[bool], bool] = False, additional_info: Optional[Union[Sequence[Callable], Callable]] = None, logger_handler: Optional[logging.Handler] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` prefix: will be printed in format: "{prefix} statistics". it also can be a sequence of string, each element corresponds to a key in ``keys``. data_type: whether to show the type of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. data_shape: whether to show the shape of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. value_range: whether to show the value range of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. data_value: whether to show the raw value of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. a typical example is to print some properties of Nifti image: affine, pixdim, etc. additional_info: user can define callable function to extract additional info from input data. it also can be a sequence of string, each element corresponds to a key in ``keys``. logger_handler: add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least `INFO`. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.prefix = ensure_tuple_rep(prefix, len(self.keys)) self.data_type = ensure_tuple_rep(data_type, len(self.keys)) self.data_shape = ensure_tuple_rep(data_shape, len(self.keys)) self.value_range = ensure_tuple_rep(value_range, len(self.keys)) self.data_value = ensure_tuple_rep(data_value, len(self.keys)) self.additional_info = ensure_tuple_rep(additional_info, len(self.keys)) self.logger_handler = logger_handler self.printer = DataStats(logger_handler=logger_handler) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, prefix, data_type, data_shape, value_range, data_value, additional_info in self.key_iterator( d, self.prefix, self.data_type, self.data_shape, self.value_range, self.data_value, self.additional_info ): d[key] = self.printer( d[key], prefix, data_type, data_shape, value_range, data_value, additional_info, ) return d class SimulateDelayd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SimulateDelay`. """ backend = SimulateDelay.backend def __init__( self, keys: KeysCollection, delay_time: Union[Sequence[float], float] = 0.0, allow_missing_keys: bool = False ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` delay_time: The minimum amount of time, in fractions of seconds, to accomplish this identity task. It also can be a sequence of string, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.delay_time = ensure_tuple_rep(delay_time, len(self.keys)) self.delayer = SimulateDelay() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, delay_time in self.key_iterator(d, self.delay_time): d[key] = self.delayer(d[key], delay_time=delay_time) return d class CopyItemsd(MapTransform): """ Copy specified items from data dictionary and save with different key names. It can copy several items together and copy several times. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, keys: KeysCollection, times: int, names: KeysCollection, allow_missing_keys: bool = False ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` times: expected copy times, for example, if keys is "img", times is 3, it will add 3 copies of "img" data to the dictionary. names: the names corresponding to the newly copied data, the length should match `len(keys) x times`. for example, if keys is ["img", "seg"] and times is 2, names can be: ["img_1", "seg_1", "img_2", "seg_2"]. allow_missing_keys: don't raise exception if key is missing. Raises: ValueError: When ``times`` is nonpositive. ValueError: When ``len(names)`` is not ``len(keys) * times``. Incompatible values. """ super().__init__(keys, allow_missing_keys) if times < 1: raise ValueError(f"times must be positive, got {times}.") self.times = times names = ensure_tuple(names) if len(names) != (len(self.keys) * times): raise ValueError( "len(names) must match len(keys) * times, " f"got len(names)={len(names)} len(keys) * times={len(self.keys) * times}." ) self.names = names def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: """ Raises: KeyError: When a key in ``self.names`` already exists in ``data``. """ d = dict(data) key_len = len(self.keys) for i in range(self.times): for key, new_key in self.key_iterator(d, self.names[i * key_len : (i + 1) * key_len]): if new_key in d: raise KeyError(f"Key {new_key} already exists in data.") val = d[key] if isinstance(val, torch.Tensor): d[new_key] = val.detach().clone() else: d[new_key] = deepcopy(val) return d class ConcatItemsd(MapTransform): """ Concatenate specified items from data dictionary together on the first dim to construct a big array. Expect all the items are numpy array or PyTorch Tensor. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, keys: KeysCollection, name: str, dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be concatenated together. See also: :py:class:`monai.transforms.compose.MapTransform` name: the name corresponding to the key to store the concatenated data. dim: on which dimension to concatenate the items, default is 0. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.name = name self.dim = dim def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: """ Raises: TypeError: When items in ``data`` differ in type. TypeError: When the item type is not in ``Union[numpy.ndarray, torch.Tensor]``. """ d = dict(data) output = [] data_type = None for key in self.key_iterator(d): if data_type is None: data_type = type(d[key]) elif not isinstance(d[key], data_type): raise TypeError("All items in data must have the same type.") output.append(d[key]) if data_type is np.ndarray: d[self.name] = np.concatenate(output, axis=self.dim) elif data_type is torch.Tensor: d[self.name] = torch.cat(output, dim=self.dim) # type: ignore else: raise TypeError(f"Unsupported data type: {data_type}, available options are (numpy.ndarray, torch.Tensor).") return d class Lambdad(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Lambda`. For example: .. code-block:: python :emphasize-lines: 2 input_data={'image': np.zeros((10, 2, 2)), 'label': np.ones((10, 2, 2))} lambd = Lambdad(keys='label', func=lambda x: x[:4, :, :]) print(lambd(input_data)['label'].shape) (4, 2, 2) Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` func: Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. inv_func: Lambda/function of inverse operation if want to invert transforms, default to `lambda x: x`. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. overwrite: whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. Note: The inverse operation doesn't allow to define `extra_info` or access other information, such as the image's original size. If need these complicated information, please write a new InvertibleTransform directly. """ backend = Lambda.backend def __init__( self, keys: KeysCollection, func: Union[Sequence[Callable], Callable], inv_func: Union[Sequence[Callable], Callable] = no_collation, overwrite: Union[Sequence[bool], bool] = True, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.func = ensure_tuple_rep(func, len(self.keys)) self.inv_func = ensure_tuple_rep(inv_func, len(self.keys)) self.overwrite = ensure_tuple_rep(overwrite, len(self.keys)) self._lambd = Lambda() def _transform(self, data: Any, func: Callable): return self._lambd(data, func=func) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, func, overwrite in self.key_iterator(d, self.func, self.overwrite): ret = self._transform(data=d[key], func=func) if overwrite: d[key] = ret self.push_transform(d, key) return d def _inverse_transform(self, transform_info: Dict, data: Any, func: Callable): return self._lambd(data, func=func) def inverse(self, data): d = deepcopy(dict(data)) for key, inv_func, overwrite in self.key_iterator(d, self.inv_func, self.overwrite): transform = self.get_most_recent_transform(d, key) ret = self._inverse_transform(transform_info=transform, data=d[key], func=inv_func) if overwrite: d[key] = ret self.pop_transform(d, key) return d class RandLambdad(Lambdad, RandomizableTransform): """ Randomizable version :py:class:`monai.transforms.Lambdad`, the input `func` may contain random logic, or randomly execute the function based on `prob`. so `CacheDataset` will not execute it and cache the results. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` func: Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. inv_func: Lambda/function of inverse operation if want to invert transforms, default to `lambda x: x`. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. overwrite: whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in ``keys``. prob: probability of executing the random function, default to 1.0, with 100% probability to execute. note that all the data specified by `keys` will share the same random probability to execute or not. allow_missing_keys: don't raise exception if key is missing. For more details, please check :py:class:`monai.transforms.Lambdad`. Note: The inverse operation doesn't allow to define `extra_info` or access other information, such as the image's original size. If need these complicated information, please write a new InvertibleTransform directly. """ backend = Lambda.backend def __init__( self, keys: KeysCollection, func: Union[Sequence[Callable], Callable], inv_func: Union[Sequence[Callable], Callable] = no_collation, overwrite: Union[Sequence[bool], bool] = True, prob: float = 1.0, allow_missing_keys: bool = False, ) -> None: Lambdad.__init__( self=self, keys=keys, func=func, inv_func=inv_func, overwrite=overwrite, allow_missing_keys=allow_missing_keys, ) RandomizableTransform.__init__(self=self, prob=prob, do_transform=True) def _transform(self, data: Any, func: Callable): return self._lambd(data, func=func) if self._do_transform else data def __call__(self, data): self.randomize(data) return super().__call__(data) def _inverse_transform(self, transform_info: Dict, data: Any, func: Callable): return self._lambd(data, func=func) if transform_info[InverseKeys.DO_TRANSFORM] else data class LabelToMaskd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LabelToMask`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` select_labels: labels to generate mask from. for 1 channel label, the `select_labels` is the expected label values, like: [1, 2, 3]. for One-Hot format label, the `select_labels` is the expected channel indices. merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes, will return a single channel mask with binary data. allow_missing_keys: don't raise exception if key is missing. """ backend = LabelToMask.backend def __init__( # pytype: disable=annotation-type-mismatch self, keys: KeysCollection, select_labels: Union[Sequence[int], int], merge_channels: bool = False, allow_missing_keys: bool = False, ) -> None: # pytype: disable=annotation-type-mismatch super().__init__(keys, allow_missing_keys) self.converter = LabelToMask(select_labels=select_labels, merge_channels=merge_channels) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class FgBgToIndicesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.FgBgToIndices`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` fg_postfix: postfix to save the computed foreground indices in dict. for example, if computed on `label` and `postfix = "_fg_indices"`, the key will be `label_fg_indices`. bg_postfix: postfix to save the computed background indices in dict. for example, if computed on `label` and `postfix = "_bg_indices"`, the key will be `label_bg_indices`. image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to determine the negative sample(background). so the output items will not map to all the voxels in the label. image_threshold: if enabled image_key, use ``image > image_threshold`` to determine the valid image content area and select background only in this area. output_shape: expected shape of output indices. if not None, unravel indices to specified shape. allow_missing_keys: don't raise exception if key is missing. """ backend = FgBgToIndices.backend def __init__( self, keys: KeysCollection, fg_postfix: str = "_fg_indices", bg_postfix: str = "_bg_indices", image_key: Optional[str] = None, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.fg_postfix = fg_postfix self.bg_postfix = bg_postfix self.image_key = image_key self.converter = FgBgToIndices(image_threshold, output_shape) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) image = d[self.image_key] if self.image_key else None for key in self.key_iterator(d): d[str(key) + self.fg_postfix], d[str(key) + self.bg_postfix] = self.converter(d[key], image) return d class ClassesToIndicesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ClassesToIndices`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` indices_postfix: postfix to save the computed indices of all classes in dict. for example, if computed on `label` and `postfix = "_cls_indices"`, the key will be `label_cls_indices`. num_classes: number of classes for argmax label, not necessary for One-Hot label. image_key: if image_key is not None, use ``image > image_threshold`` to define valid region, and only select the indices within the valid region. image_threshold: if enabled image_key, use ``image > image_threshold`` to determine the valid image content area and select only the indices of classes in this area. output_shape: expected shape of output indices. if not None, unravel indices to specified shape. allow_missing_keys: don't raise exception if key is missing. """ backend = ClassesToIndices.backend def __init__( self, keys: KeysCollection, indices_postfix: str = "_cls_indices", num_classes: Optional[int] = None, image_key: Optional[str] = None, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.indices_postfix = indices_postfix self.image_key = image_key self.converter = ClassesToIndices(num_classes, image_threshold, output_shape) def __call__(self, data: Mapping[Hashable, Any]): d = dict(data) image = d[self.image_key] if self.image_key else None for key in self.key_iterator(d): d[str(key) + self.indices_postfix] = self.converter(d[key], image) return d class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ConvertToMultiChannelBasedOnBratsClasses`. Convert labels to multi channels based on brats18 classes: label 1 is the necrotic and non-enhancing tumor core label 2 is the the peritumoral edema label 4 is the GD-enhancing tumor The possible classes are TC (Tumor core), WT (Whole tumor) and ET (Enhancing tumor). """ def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): super().__init__(keys, allow_missing_keys) self.converter = ConvertToMultiChannelBasedOnBratsClasses() def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AddExtremePointsChanneld(Randomizable, MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AddExtremePointsChannel`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` label_key: key to label source to get the extreme points. background: Class index of background label, defaults to 0. pert: Random perturbation amount to add to the points, defaults to 0.0. sigma: if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions. rescale_min: minimum value of output data. rescale_max: maximum value of output data. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys: KeysCollection, label_key: str, background: int = 0, pert: float = 0.0, sigma: Union[Sequence[float], float, Sequence[torch.Tensor], torch.Tensor] = 3.0, rescale_min: float = -1.0, rescale_max: float = 1.0, allow_missing_keys: bool = False, ): MapTransform.__init__(self, keys, allow_missing_keys) self.background = background self.pert = pert self.points: List[Tuple[int, ...]] = [] self.label_key = label_key self.sigma = sigma self.rescale_min = rescale_min self.rescale_max = rescale_max def randomize(self, label: np.ndarray) -> None: self.points = get_extreme_points(label, rand_state=self.R, background=self.background, pert=self.pert) def __call__(self, data): d = dict(data) label = d[self.label_key] if label.shape[0] != 1: raise ValueError("Only supports single channel labels!") # Generate extreme points self.randomize(label[0, :]) for key in self.key_iterator(d): img = d[key] points_image = extreme_points_to_image( points=self.points, label=label, sigma=self.sigma, rescale_min=self.rescale_min, rescale_max=self.rescale_max, ) d[key] = np.concatenate([img, points_image], axis=0) return d class TorchVisiond(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.TorchVision` for non-randomized transforms. For randomized transforms of TorchVision use :py:class:`monai.transforms.RandTorchVisiond`. Note: As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call `ToTensord` transform to convert Numpy to Tensor. """ def __init__( self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in TorchVision package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the TorchVision transform. kwargs: parameters for the TorchVision transform. """ super().__init__(keys, allow_missing_keys) self.trans = TorchVision(name, *args, **kwargs) def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class RandTorchVisiond(Randomizable, MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.TorchVision` for randomized transforms. For deterministic non-randomized transforms of TorchVision use :py:class:`monai.transforms.TorchVisiond`. Note: - As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call `ToTensord` transform to convert Numpy to Tensor. - This class inherits the ``Randomizable`` purely to prevent any dataset caching to skip the transform computation. If the random factor of the underlying torchvision transform is not derived from `self.R`, the results may not be deterministic. See Also: :py:class:`monai.transforms.Randomizable`. """ def __init__( self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in TorchVision package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the TorchVision transform. kwargs: parameters for the TorchVision transform. """ MapTransform.__init__(self, keys, allow_missing_keys) self.trans = TorchVision(name, *args, **kwargs) def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class MapLabelValued(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.MapLabelValue`. """ def __init__( self, keys: KeysCollection, orig_labels: Sequence, target_labels: Sequence, dtype: DtypeLike = np.float32, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` orig_labels: original labels that map to others. target_labels: expected label values, 1: 1 map to the `orig_labels`. dtype: convert the output data to dtype, default to float32. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.mapper = MapLabelValue(orig_labels=orig_labels, target_labels=target_labels, dtype=dtype) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.key_iterator(d): d[key] = self.mapper(d[key]) return d class IntensityStatsd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.IntensityStats`. Compute statistics for the intensity values of input image and store into the meta data dictionary. For example: if `ops=[lambda x: np.mean(x), "max"]` and `key_prefix="orig"`, may generate below stats: `{"orig_custom_0": 1.5, "orig_max": 3.0}`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` ops: expected operations to compute statistics for the intensity. if a string, will map to the predefined operations, supported: ["mean", "median", "max", "min", "std"] mapping to `np.nanmean`, `np.nanmedian`, `np.nanmax`, `np.nanmin`, `np.nanstd`. if a callable function, will execute the function on input image. key_prefix: the prefix to combine with `ops` name to generate the key to store the results in the meta data dictionary. if some `ops` are callable functions, will use "{key_prefix}_custom_{index}" as the key, where index counts from 0. mask_keys: if not None, specify the mask array for the image to extract only the interested area to compute statistics, mask must have the same shape as the image. it should be a sequence of strings or None, map to the `keys`. channel_wise: whether to compute statistics for every channel of input image separately. if True, return a list of values for every operation, default to False. meta_keys: explicitly indicate the key of the corresponding meta data dictionary. used to store the computed statistics to the meta dict. for example, for data with key `image`, the metadata by default is in `image_meta_dict`. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. used to store the computed statistics to the meta dict. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys: KeysCollection, ops: Sequence[Union[str, Callable]], key_prefix: str, mask_keys: Optional[KeysCollection] = None, channel_wise: bool = False, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.stats = IntensityStats(ops=ops, key_prefix=key_prefix, channel_wise=channel_wise) self.mask_keys = ensure_tuple_rep(None, len(self.keys)) if mask_keys is None else ensure_tuple(mask_keys) self.meta_keys = ensure_tuple_rep(None, len(self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) def __call__(self, data) -> Dict[Hashable, np.ndarray]: d = dict(data) for key, mask_key, meta_key, meta_key_postfix in self.key_iterator( d, self.mask_keys, self.meta_keys, self.meta_key_postfix ): meta_key = meta_key or f"{key}_{meta_key_postfix}" d[key], d[meta_key] = self.stats( img=d[key], meta_data=d.get(meta_key), mask=d.get(mask_key) if mask_key is not None else None, ) return d class ToDeviced(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToDevice`. """ backend = [TransformBackends.TORCH] def __init__( self, keys: KeysCollection, device: Union[torch.device, str], allow_missing_keys: bool = False, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` device: target device to move the Tensor, for example: "cuda:1". allow_missing_keys: don't raise exception if key is missing. kwargs: other args for the PyTorch `Tensor.to()` API, for more details: https://pytorch.org/docs/stable/generated/torch.Tensor.to.html. """ super().__init__(keys, allow_missing_keys) self.converter = ToDevice(device=device, **kwargs) def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class CuCIMd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CuCIM` for non-randomized transforms. For randomized transforms of CuCIM use :py:class:`monai.transforms.RandCuCIMd`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in CuCIM package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the CuCIM transform. kwargs: parameters for the CuCIM transform. Note: CuCIM transforms only work with CuPy arrays, this transform expects input data to be `cupy.ndarray`. Users can call `ToCuPy` transform to convert a numpy array or torch tensor to cupy array. """ def __init__( self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: super().__init__(keys=keys, allow_missing_keys=allow_missing_keys) self.trans = CuCIM(name, *args, **kwargs) def __call__(self, data): """ Args: data: Dict[Hashable, `cupy.ndarray`] Returns: Dict[Hashable, `cupy.ndarray`] """ d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class RandCuCIMd(CuCIMd, RandomizableTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CuCIM` for randomized transforms. For deterministic non-randomized transforms of CuCIM use :py:class:`monai.transforms.CuCIMd`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in CuCIM package. apply_prob: the probability to apply the transform (default=1.0) allow_missing_keys: don't raise exception if key is missing. args: parameters for the CuCIM transform. kwargs: parameters for the CuCIM transform. Note: - CuCIM transform only work with CuPy arrays, so this transform expects input data to be `cupy.ndarray`. Users can call `ToCuPy` transform to convert a numpy array or torch tensor to cupy array. - If the cuCIM transform is already randomized the `apply_prob` argument has nothing to do with the randomness of the underlying cuCIM transform. `apply_prob` defines if the transform (either randomized or non-randomized) being applied randomly, so it can apply non-randomized tranforms randomly but be careful with setting `apply_prob` to anything than 1.0 when using along with cuCIM's randomized transforms. - If the random factor of the underlying cuCIM transform is not derived from `self.R`, the results may not be deterministic. See Also: :py:class:`monai.transforms.Randomizable`. """ def __init__( self, apply_prob: float = 1.0, *args, **kwargs, ) -> None: CuCIMd.__init__(self, *args, **kwargs) RandomizableTransform.__init__(self, prob=apply_prob) def __call__(self, data): """ Args: data: Dict[Hashable, `cupy.ndarray`] Returns: Dict[Hashable, `cupy.ndarray`] """ self.randomize(data) if not self._do_transform: return dict(data) return super().__call__(data) IdentityD = IdentityDict = Identityd AsChannelFirstD = AsChannelFirstDict = AsChannelFirstd AsChannelLastD = AsChannelLastDict = AsChannelLastd AddChannelD = AddChannelDict = AddChanneld EnsureChannelFirstD = EnsureChannelFirstDict = EnsureChannelFirstd RemoveRepeatedChannelD = RemoveRepeatedChannelDict = RemoveRepeatedChanneld RepeatChannelD = RepeatChannelDict = RepeatChanneld SplitChannelD = SplitChannelDict = SplitChanneld CastToTypeD = CastToTypeDict = CastToTyped ToTensorD = ToTensorDict = ToTensord EnsureTypeD = EnsureTypeDict = EnsureTyped ToNumpyD = ToNumpyDict = ToNumpyd ToCupyD = ToCupyDict = ToCupyd ToPILD = ToPILDict = ToPILd TransposeD = TransposeDict = Transposed DeleteItemsD = DeleteItemsDict = DeleteItemsd SelectItemsD = SelectItemsDict = SelectItemsd SqueezeDimD = SqueezeDimDict = SqueezeDimd DataStatsD = DataStatsDict = DataStatsd SimulateDelayD = SimulateDelayDict = SimulateDelayd CopyItemsD = CopyItemsDict = CopyItemsd ConcatItemsD = ConcatItemsDict = ConcatItemsd LambdaD = LambdaDict = Lambdad LabelToMaskD = LabelToMaskDict = LabelToMaskd FgBgToIndicesD = FgBgToIndicesDict = FgBgToIndicesd ClassesToIndicesD = ClassesToIndicesDict = ClassesToIndicesd ConvertToMultiChannelBasedOnBratsClassesD = ( ConvertToMultiChannelBasedOnBratsClassesDict ) = ConvertToMultiChannelBasedOnBratsClassesd AddExtremePointsChannelD = AddExtremePointsChannelDict = AddExtremePointsChanneld TorchVisionD = TorchVisionDict = TorchVisiond RandTorchVisionD = RandTorchVisionDict = RandTorchVisiond RandLambdaD = RandLambdaDict = RandLambdad MapLabelValueD = MapLabelValueDict = MapLabelValued IntensityStatsD = IntensityStatsDict = IntensityStatsd ToDeviceD = ToDeviceDict = ToDeviced CuCIMD = CuCIMDict = CuCIMd RandCuCIMD = RandCuCIMDict = RandCuCIMd
39.642066
120
0.648841
850c4eed4265db8cc45336dd535e6aa16427e73b
525
py
Python
Learning Python/practice/prnt, str, num/numbers.py
Magical-Man/Learning-Python
488347b06be8013ab048963a0a0e9e81995d18b6
[ "MIT" ]
null
null
null
Learning Python/practice/prnt, str, num/numbers.py
Magical-Man/Learning-Python
488347b06be8013ab048963a0a0e9e81995d18b6
[ "MIT" ]
null
null
null
Learning Python/practice/prnt, str, num/numbers.py
Magical-Man/Learning-Python
488347b06be8013ab048963a0a0e9e81995d18b6
[ "MIT" ]
null
null
null
print (8 * 8) #there are several different kinds of math operations and symbols # + plus adding #- minus subtracting # / slash dividing # * asterisk multiplying # % modulous dividing with remainder # < less than true false # > greater than true false # <= less than equal true false # >= greater than equal true false #Now we will test all of these print(3 + 3) print(3 - 3) print(3 / 3) print(3 *3) print(4 % 3) print(5 > 6) print(5 < 6) print(5 <= 6) print(6 <=6)
20.192308
65
0.607619
ec901f7328ecdfde0b3ccc1f2bd5a260f0851fe5
1,158
py
Python
lib/test_bindings.py
pymor/pymor-deal.II
520b36b42d7e58e8adaefb4c772d36d650f30c27
[ "BSD-2-Clause" ]
7
2016-05-12T12:15:30.000Z
2020-06-14T08:06:27.000Z
lib/test_bindings.py
pymor/pymor-deal.II
520b36b42d7e58e8adaefb4c772d36d650f30c27
[ "BSD-2-Clause" ]
8
2020-01-24T13:13:22.000Z
2022-02-24T08:25:22.000Z
lib/test_bindings.py
pymor/pymor-deal.II
520b36b42d7e58e8adaefb4c772d36d650f30c27
[ "BSD-2-Clause" ]
2
2019-03-02T14:32:22.000Z
2021-10-06T09:10:01.000Z
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2018 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import numpy as np import pydealii_bindings as dealii def test_vector(): v = dealii.Vector(10) u = dealii.Vector(10) ones = dealii.Vector(10) for i in range(len(ones)): ones[i] = 1 w = dealii.Vector(u) assert u.size() == w.size() == v.size() v[1] = 3 u[9], u[1] = 3, 3 assert v != u u[9] = 0 assert v == u u[1] = 0 # currently not working # g = iter(u) # for val in u: # assert val == 0 u[1:] = dealii.Vector(9) u[:] = ones for i in range(len(u)): assert u[i] == 1 v[:] = np.ones((10,), np.double) assert v == u v.axpy(1.1, u) ddones = dealii.Vector(100) ddones[:] = np.ones((100,), np.double) npdd = np.array(ddones, copy=False) assert np.allclose(npdd, np.ones((100,), dtype=np.double)) npdd += 1.0 ddones /= 2.0 assert np.allclose(npdd, ddones) if __name__ == "__main__": test_vector()
24.125
77
0.57772
e127733d9795a18762c920210a765e26d847b3b0
1,427
py
Python
blueque/listener.py
ustudio/Blueque
f973c470d6558856bbd7f3bf4d6a3e42d38fce85
[ "Apache-2.0" ]
5
2016-12-03T23:10:45.000Z
2018-06-06T17:06:27.000Z
blueque/listener.py
ustudio/Blueque
f973c470d6558856bbd7f3bf4d6a3e42d38fce85
[ "Apache-2.0" ]
8
2015-06-19T21:32:48.000Z
2021-01-08T19:27:45.000Z
blueque/listener.py
ustudio/Blueque
f973c470d6558856bbd7f3bf4d6a3e42d38fce85
[ "Apache-2.0" ]
1
2017-05-18T06:15:17.000Z
2017-05-18T06:15:17.000Z
from blueque.process_helpers import process_running import os import socket import time class Listener(object): def __init__(self, queue, task_factory): super(Listener, self).__init__() self._hostname = socket.getfqdn() self._pid = os.getpid() self._name = "_".join((self._hostname, str(self._pid))) self._queue = queue self._queue.add_listener(self._name) self._task_factory = task_factory def _parse_name(self, name): host, pid = name.rsplit('_', 1) return host, int(pid) def listen(self): while True: task_id = self._queue.dequeue(self._name) if task_id is not None: return self._task_factory(task_id) else: time.sleep(1) def claim_orphan(self): for listener in self._queue.get_listeners(): host, pid = self._parse_name(listener) if host != self._hostname: continue if pid == self._pid: continue if process_running(pid): continue if self._queue.remove_listener(listener) == 0: # already claimed continue task_id = self._queue.reclaim_task(listener, self._name) if task_id is None: continue return self._task_factory(task_id) return None
25.482143
68
0.567624
c6ee8b75944aa328e566138154ae36edefdf01bb
112
py
Python
deploy/apache/wsgi.py
archman/unicorn-webapp
fac170e228760246c56673587b4a0aa2758adf53
[ "MIT" ]
1
2018-07-06T16:04:32.000Z
2018-07-06T16:04:32.000Z
deploy/apache/wsgi.py
archman/unicorn-webapp
fac170e228760246c56673587b4a0aa2758adf53
[ "MIT" ]
1
2021-11-02T14:12:57.000Z
2021-11-02T14:12:57.000Z
deploy/apache/wsgi.py
archman/unicorn-webapp
fac170e228760246c56673587b4a0aa2758adf53
[ "MIT" ]
1
2018-09-27T17:06:56.000Z
2018-09-27T17:06:56.000Z
#!/usr/bin/env python3 import sys sys.path.insert(0, '/usr/share/unicorn') from app import app as application
16
40
0.741071
3bf9f9aea79b4940fe9ce236b504ece6711ab2f9
2,995
py
Python
setup.py
serge-sotnyk/inception-external-recommender
ad3c9a5d18d45940b2002c7c72b7d3dcfcca258e
[ "Apache-2.0" ]
null
null
null
setup.py
serge-sotnyk/inception-external-recommender
ad3c9a5d18d45940b2002c7c72b7d3dcfcca258e
[ "Apache-2.0" ]
null
null
null
setup.py
serge-sotnyk/inception-external-recommender
ad3c9a5d18d45940b2002c7c72b7d3dcfcca258e
[ "Apache-2.0" ]
null
null
null
# !/usr/bin/env python # -*- coding: utf-8 -*- import io import os from setuptools import setup, find_packages # Package meta-data. NAME = "inception-rec" DESCRIPTION = "INCEpTION external recommender library in Python" HOMEPAGE = "https://inception-project.github.io/" EMAIL = "inception-users@googlegroups.com" AUTHOR = "The INCEpTION team" REQUIRES_PYTHON = ">=3.6.0" install_requires = [ "flask", "filelock", "dkpro-cassis>=0.5.0", "joblib", ] contrib_dependencies = [ ] test_dependencies = [ "pytest", "codecov", "pytest-cov", ] dev_dependencies = [ "waitress", "black", "wget" ] doc_dependencies = [ "sphinx", "sphinx-autodoc-typehints", "sphinx-rtd-theme" ] extras = { "test": test_dependencies, "dev": dev_dependencies, "doc": doc_dependencies, "contrib": contrib_dependencies, } here = os.path.abspath(os.path.dirname(__file__)) # Import the README and use it as the long-description. # Note: this will only work if "README.rst" is present in your MANIFEST.in file! try: with io.open(os.path.join(here, "README.md"), encoding="utf-8") as f: long_description = "\n" + f.read() except FileNotFoundError: long_description = DESCRIPTION # Load the package"s __version__.py module as a dictionary. about = {} with open(os.path.join(here, "ariadne", "__version__.py")) as f: exec(f.read(), about) # Where the magic happens: setup( name=NAME, version=about["__version__"], description=DESCRIPTION, long_description=long_description, long_description_content_type="text/markdown", author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=HOMEPAGE, packages=find_packages(exclude="tests"), keywords="uima dkpro inception nlp", project_urls={ "Bug Tracker": "https://github.com/serge-sotnyk/inception-external-recommender/issues", "Documentation": "https://github.com/inception-project/inception-external-recommender", "Source Code": "https://github.com/serge-sotnyk/inception-external-recommender", }, install_requires=install_requires, test_suite="tests", tests_require=test_dependencies, extras_require=extras, include_package_data=True, license="Apache License 2.0", classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries", "Topic :: Scientific/Engineering :: Human Machine Interfaces", "Topic :: Text Processing :: Linguistic" ], )
26.741071
95
0.668114
8de18155b7410b62598a4078529a184027a9cff5
1,276
py
Python
maxarcat_client/test/test_search_body.py
fsvenson/maxarcat
3b015b73734c274dbc821ac118980dbcd2e36879
[ "MIT" ]
null
null
null
maxarcat_client/test/test_search_body.py
fsvenson/maxarcat
3b015b73734c274dbc821ac118980dbcd2e36879
[ "MIT" ]
null
null
null
maxarcat_client/test/test_search_body.py
fsvenson/maxarcat
3b015b73734c274dbc821ac118980dbcd2e36879
[ "MIT" ]
2
2021-02-25T08:43:06.000Z
2022-02-21T19:18:21.000Z
# coding: utf-8 """ Maxar Content API - Catalog The Maxar Content Catalog API implements a STAC-compliant service for searching the Maxar content catalog. __The STAC specification is still under development. When version 1.0 of the STAC specification is released the Content Catalog API will be updated to reflect any changes, some of which will not be backward compatible with this current version.__ For information on STAC see [stacspec.org](https://stacspec.org) # noqa: E501 OpenAPI spec version: 0.9 Contact: DL-Content-Catalog@maxar.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import maxarcat_client from maxarcat_client.models.search_body import SearchBody # noqa: E501 from maxarcat_client.rest import ApiException class TestSearchBody(unittest.TestCase): """SearchBody unit test stubs""" def setUp(self): pass def tearDown(self): pass def testSearchBody(self): """Test SearchBody""" # FIXME: construct object with mandatory attributes with example values # model = maxarcat_client.models.search_body.SearchBody() # noqa: E501 pass if __name__ == '__main__': unittest.main()
31.9
440
0.732759
89f98dbbb4de95181e5eddf12f565f1869e397d9
622
py
Python
GUI/dialogs/geometry_dialogs/landing_dialog/landing_gear_dialog.py
StepLogic/Parametric-Drone-Design-Software
be9c537427f85b08c071c2666712fd32643cd439
[ "Unlicense" ]
7
2021-03-17T01:23:28.000Z
2021-05-06T20:41:21.000Z
GUI/dialogs/geometry_dialogs/landing_dialog/landing_gear_dialog.py
StepLogic/Parametric-Drone-Design-Software
be9c537427f85b08c071c2666712fd32643cd439
[ "Unlicense" ]
null
null
null
GUI/dialogs/geometry_dialogs/landing_dialog/landing_gear_dialog.py
StepLogic/Parametric-Drone-Design-Software
be9c537427f85b08c071c2666712fd32643cd439
[ "Unlicense" ]
null
null
null
from PyQt5.QtCore import * from PyQt5.QtWidgets import * from GUI.tabs.geometry_tabs_.landing_gear.landing_gear_tab import landing_gear_tab class landing_gear_dialog(QDialog): def __init__(self): super().__init__() self.tab = landing_gear_tab() self.layout = QFormLayout(self) self.buttons = QDialogButtonBox( QDialogButtonBox.Ok | QDialogButtonBox.Cancel, Qt.Horizontal, self) self.layout.addRow(self.tab) self.layout.addRow(self.buttons) self.buttons.accepted.connect(self.accept) self.buttons.rejected.connect(self.reject)
31.1
82
0.694534
e65f9534a8d4407674ace98975fddbe39ac28de4
271
py
Python
tests/artificial/transf_Quantization/trend_ConstantTrend/cycle_7/ar_12/test_artificial_128_Quantization_ConstantTrend_7_12_0.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/artificial/transf_Quantization/trend_ConstantTrend/cycle_7/ar_12/test_artificial_128_Quantization_ConstantTrend_7_12_0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/artificial/transf_Quantization/trend_ConstantTrend/cycle_7/ar_12/test_artificial_128_Quantization_ConstantTrend_7_12_0.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "ConstantTrend", cycle_length = 7, transform = "Quantization", sigma = 0.0, exog_count = 0, ar_order = 12);
38.714286
171
0.738007
ad98b405c270fb42a3b257fd39f7166d8a93aff4
1,602
py
Python
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/sms/apis/BatchSendRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
null
null
null
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/sms/apis/BatchSendRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
null
null
null
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/sms/apis/BatchSendRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
null
null
null
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class BatchSendRequest(JDCloudRequest): """ 指定模板群发短信 """ def __init__(self, parameters, header=None, version="v1"): super(BatchSendRequest, self).__init__( '/regions/{regionId}/batchSend', 'POST', header, version) self.parameters = parameters class BatchSendParameters(object): def __init__(self, regionId, templateId, signId, phoneList, ): """ :param regionId: Region ID :param templateId: 模板Id :param signId: 签名Id :param phoneList: 群发的国内电话号码,群发时一次最多不要超过200个手机号 """ self.regionId = regionId self.templateId = templateId self.signId = signId self.phoneList = phoneList self.params = None def setParams(self, params): """ :param params: (Optional) 短信模板变量对应的数据值,Array格式 """ self.params = params
29.127273
75
0.682272
25afba94385e8aba86bf83e3db52dd52b28a266b
3,313
py
Python
main.py
kristerduster/stock-fundamentals
edef9b273968de01cbb79b8efe93b75f4dec2ae9
[ "MIT" ]
null
null
null
main.py
kristerduster/stock-fundamentals
edef9b273968de01cbb79b8efe93b75f4dec2ae9
[ "MIT" ]
null
null
null
main.py
kristerduster/stock-fundamentals
edef9b273968de01cbb79b8efe93b75f4dec2ae9
[ "MIT" ]
null
null
null
#import stock info module from yahoo fin api to use methods import yahoo_fin.stock_info as si #import pandas module to use pandas methods import pandas as pd #define function (acronym for convert to number) takes object parameter, converts to number, ex: changes 13.56 B to 13,560,000,000 def ctn(x): x=str(x) if "B" in x: x=x.split("B") x=float(('').join(x))*1000000000 elif "M" in x: x = x.split("M") x=float(("").join(x))*1000000 elif "K" in x: x = x.split("K") x=float(("").join(x))*1000 elif "T" in x: x = x.split("T") x=float(("").join(x))*1000000000000 return(x) #function takes string parameter ticker, gets stats valuation (dataframe), switches rows and columns, deletes unnecessary columns def org_stats_valuation(ticker): df = si.get_stats_valuation(ticker) df.rename(columns={"Unnamed: 0":"Attribute"},inplace=True) df=df.set_index('Attribute').transpose() df['Ticker']=ticker df=df.set_index('Ticker') df=df.iloc[0:1] df = df.drop(['Market Cap (intraday) 5','Enterprise Value 3','Price/Sales (ttm)','PEG Ratio (5 yr expected) 1','Enterprise Value/Revenue 3','Enterprise Value/EBITDA 6'], axis=1) return df #function takes string parameter ticker, gets stats (dataframe), switches rows and columns, deletes unnecessary columns def org_stats(ticker): df2=si.get_stats(ticker) df2.columns=['Attribute','Recent'] df2=df2.set_index('Attribute').transpose() df2['Ticker']=ticker df2=df2.set_index('Ticker') df2=df2.iloc[0:2] df2=df2.drop(df2.columns[0:30],axis=1) df2=df2.drop(['Return on Assets (ttm)','Diluted EPS (ttm)','Quarterly Earnings Growth (yoy)','Total Cash Per Share (mrq)','Current Ratio (mrq)','Book Value Per Share (mrq)'],axis=1) df2=df2.drop(df2.columns[4:8],axis=1) return df2 #function takes string parameter ticker, gets cash flow (dataframe), switches rows and columns, deletes unnecessary columns def org_cash_flow(ticker): df3=si.get_cash_flow(ticker) df3=df3.iloc[1:2,:1] df3=df3.transpose() df3['Ticker']=ticker df3=df3.set_index('Ticker') df3.rename(columns={"changeInCash":"Net Cash Change"},inplace=True) return df3 #define new function with one list parameter tickers, sorts ticker data for each ticker in one dataframe, creates new columns of data based on existing columns def get_fundamentals(tickers): bigDF=pd.DataFrame() for ticker in tickers: df=org_stats_valuation(ticker) df2=org_stats(ticker) df3=org_cash_flow(ticker) DF=pd.concat([df,df2,df3],axis=1) bigDF=pd.concat([bigDF,DF]) bigDF["Spendings on Expenditures"]=(bigDF["Operating Cash Flow (ttm)"].apply(ctn)-bigDF["Levered Free Cash Flow (ttm)"].apply(ctn))/bigDF["Operating Cash Flow (ttm)"].apply(ctn) bigDF["Debt/Net Income"]=bigDF["Total Debt (mrq)"].apply(ctn)/bigDF["Net Income Avi to Common (ttm)"].apply(ctn) bigDF["Dividends and Buyouts"]=(bigDF["Levered Free Cash Flow (ttm)"].apply(ctn)-bigDF["Net Cash Change"])/bigDF["Levered Free Cash Flow (ttm)"].apply(ctn) bigDF["Free Cash/Revenue"]=bigDF["Levered Free Cash Flow (ttm)"].apply(ctn)/bigDF["Revenue (ttm)"].apply(ctn) return(bigDF) get_fundamentals(["INTC","NVDA","MSFT","FB"])
48.720588
185
0.679445
0478f3c8bd4203f238622e97f3b2f2f8f49180be
353
py
Python
django_import_data/migrations/0018_remove_modelimportattempt_row_data.py
GreenBankObservatory/django-import-data
80b75f5a1a750c75c1d9f6c759a357cf600d4a5e
[ "MIT" ]
1
2021-09-22T14:37:41.000Z
2021-09-22T14:37:41.000Z
django_import_data/migrations/0018_remove_modelimportattempt_row_data.py
GreenBankObservatory/django-import-data
80b75f5a1a750c75c1d9f6c759a357cf600d4a5e
[ "MIT" ]
null
null
null
django_import_data/migrations/0018_remove_modelimportattempt_row_data.py
GreenBankObservatory/django-import-data
80b75f5a1a750c75c1d9f6c759a357cf600d4a5e
[ "MIT" ]
null
null
null
# Generated by Django 2.2.2 on 2019-07-08 19:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('django_import_data', '0017_auto_20190708_1504'), ] operations = [ migrations.RemoveField( model_name='modelimportattempt', name='row_data', ), ]
19.611111
58
0.620397
3125387b09450e85c9b88c20c03355c47519399a
984
py
Python
model-optimizer/mo/front/kaldi/extractors/activation_ext.py
undeadinu/dldt
fbc7a4a710c24def8ab199926a7da90a0394b87d
[ "Apache-2.0" ]
3
2019-07-08T09:03:03.000Z
2020-09-09T10:34:17.000Z
model-optimizer/mo/front/kaldi/extractors/activation_ext.py
undeadinu/dldt
fbc7a4a710c24def8ab199926a7da90a0394b87d
[ "Apache-2.0" ]
3
2020-11-13T18:59:18.000Z
2022-02-10T02:14:53.000Z
model-optimizer/mo/front/kaldi/extractors/activation_ext.py
undeadinu/dldt
fbc7a4a710c24def8ab199926a7da90a0394b87d
[ "Apache-2.0" ]
1
2018-12-05T07:38:25.000Z
2018-12-05T07:38:25.000Z
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from mo.front.extractor import FrontExtractorOp from mo.ops.op import Op class ActivationFrontExtractor(FrontExtractorOp): op = 'activation' enabled = True @staticmethod def extract(node): mapping_rule = { 'operation': node.pb.operation } Op.get_op_class_by_name('Activation').update_node_stat(node, mapping_rule) return __class__.enabled
29.818182
82
0.734756
37c5ef61e2e4c021eb5d5f919a617987f7f32763
215
py
Python
codigo/Live25/tabulares/ods_parser.py
cassiasamp/live-de-python
00b5e51793097544ba9b75c97a0d30e63970bf45
[ "MIT" ]
572
2018-04-03T03:17:08.000Z
2022-03-31T19:05:32.000Z
codigo/Live25/tabulares/ods_parser.py
cassiasamp/live-de-python
00b5e51793097544ba9b75c97a0d30e63970bf45
[ "MIT" ]
176
2018-05-18T15:56:16.000Z
2022-03-28T20:39:07.000Z
codigo/Live25/tabulares/ods_parser.py
cassiasamp/live-de-python
00b5e51793097544ba9b75c97a0d30e63970bf45
[ "MIT" ]
140
2018-04-18T13:59:11.000Z
2022-03-29T00:43:49.000Z
import ezodf doc = ezodf.opendoc('episodios.ods') # type(doc) folhas = list(doc.sheets.names()) ep_folha = doc.sheets[folhas[0]] linhas = sum(list(ep_folha.rows()), []) print(list(map(lambda x: x.value, linhas)))
21.5
43
0.693023
1bbd77a24d056c3d22878fd6737b4541a3266094
886
py
Python
isi_sdk_8_1_1/test/test_mapping_import.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_1_1/test/test_mapping_import.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_1_1/test/test_mapping_import.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_1_1 from isi_sdk_8_1_1.models.mapping_import import MappingImport # noqa: E501 from isi_sdk_8_1_1.rest import ApiException class TestMappingImport(unittest.TestCase): """MappingImport unit test stubs""" def setUp(self): pass def tearDown(self): pass def testMappingImport(self): """Test MappingImport""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_1_1.models.mapping_import.MappingImport() # noqa: E501 pass if __name__ == '__main__': unittest.main()
21.609756
83
0.699774
ba1cce940083a1e90b7891cd1938ab449ef8d4d3
566
py
Python
WebMirror/management/rss_parser_funcs/feed_parse_extractBierutranslationsHomeBlog.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
193
2016-08-02T22:04:35.000Z
2022-03-09T20:45:41.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractBierutranslationsHomeBlog.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
533
2016-08-23T20:48:23.000Z
2022-03-28T15:55:13.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractBierutranslationsHomeBlog.py
rrosajp/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
19
2015-08-13T18:01:08.000Z
2021-07-12T17:13:09.000Z
def extractBierutranslationsHomeBlog(item): ''' Parser for 'bierutranslations.home.blog' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
25.727273
104
0.64311
2f1bc58eef4fedc834bc1db3c7fd47178424ce04
21,036
py
Python
commands/moderation.py
OxLemonxO/RobTheBoat
a556ad76665f23b83421ce6a62f3170cf8850508
[ "MIT" ]
null
null
null
commands/moderation.py
OxLemonxO/RobTheBoat
a556ad76665f23b83421ce6a62f3170cf8850508
[ "MIT" ]
null
null
null
commands/moderation.py
OxLemonxO/RobTheBoat
a556ad76665f23b83421ce6a62f3170cf8850508
[ "MIT" ]
null
null
null
import asyncio from discord.ext import commands from utils.mysql import * from utils.channel_logger import Channel_Logger from utils.tools import * from utils import checks class Moderation(commands.Cog): def __init__(self, bot): self.bot = bot self.logger = Channel_Logger(bot) @checks.server_mod_or_perms(kick_members=True) @commands.command() async def kick(self, ctx, user:discord.Member): """Kicks the specified user from the server""" try: await ctx.guild.kick(user) await ctx.send("Finally kicked `{}`.".format(user)) except discord.errors.Forbidden: if user.top_role.position == ctx.me.top_role.position: await ctx.send("Did you ever know that I can't really kick that user just simply because it's on the same role level as me?") elif user.top_role.position > ctx.me.top_role.position: await ctx.send("HEEEEEEEEEEEYYYYYYYY, I can't kick them! They're higher than me.") else: await ctx.send("I don't have the `Kick Members` permission...") @checks.server_mod_or_perms(ban_members=True) @commands.command() async def ban(self, ctx, user:discord.Member, *, reason:str=None): """Bans the specified user from the server""" if reason is None: reason = "No reason was specified" reason += "**\n\n**Banned by {}".format(ctx.author) try: await ctx.guild.ban(user, delete_message_days=0, reason=reason) except discord.errors.Forbidden: if user.top_role.position == ctx.me.top_role.position: await ctx.send("Can't ban someone if they're on the same level as I am. ") elif user.top_role.position > ctx.me.top_role.position: await ctx.send("I can't ban someone if they're higher than me, fool!") else: await ctx.send("Can't smash someone with a ban hammer if I don't even have the `Ban Members` permission.") return await ctx.send("Successfully banned `{}`".format(user)) @checks.server_mod_or_perms(ban_members=True) @commands.command() async def unban(self, ctx, *, username:str): """Unbans the user with the specifed name from the server""" try: banlist = await ctx.guild.bans() except discord.errors.Forbidden: await ctx.send("Hey. Uh. Sorry to break it to you, but I don't have the `Ban Members` permission, which also allows to unban.") return user = None for ban in banlist: if ban.user.name == username: user = ban.user if user is None: await ctx.send("For somewhat reason, `{}` isn't on the banlist.".format(username)) return await ctx.guild.unban(user) await ctx.send("Pardoned `{}`.".format(user)) @checks.server_mod_or_perms(ban_members=True) @commands.command() async def hackban(self, ctx, id:int, *, reason:str=None): """Bans the user with the specified id from the server""" if reason is None: reason = "No reason was specified" reason += "**\n\n**Banned by {}".format(ctx.author) try: await self.bot.http.ban(id, ctx.guild.id, delete_message_days=0, reason=reason) except discord.errors.HTTPException or discord.errors.NotFound: await ctx.send("No Discord Member exists with the ID of `{}`".format(id)) return except discord.errors.Forbidden: await ctx.send("Can't really ban someone with an ID without the goddamn `Ban Members` permission.") return banlist = await ctx.guild.bans() for ban in banlist: if ban.user.id == id: user = ban.user await ctx.send("Successfully banned `{}`".format(user)) @commands.command() async def banlist(self, ctx): """Displays the server's banlist""" try: banlist = await ctx.guild.bans() except discord.errors.Forbidden: await ctx.send("Can't list them without the `Ban Members` permission.") return bancount = len(banlist) display_bans = [] bans = None if bancount == 0: bans = "Hooray! No one's banned." else: for ban in banlist: if len(", ".join(display_bans)) < 1800: display_bans.append(str(ban.user)) else: bans = ", ".join(display_bans) + "\n... and {} more".format(len(banlist) - len(display_bans)) break if not bans: bans = ", ".join(display_bans) await ctx.send("Total bans: `{}`\n```{}```".format(bancount, bans)) @checks.server_mod_or_perms(manage_roles=True) @commands.command() async def mute(self, ctx, user:discord.Member, *, reason:str=None): """Mutes the specified user""" if reason is None: reason = "No reason was specified" reason += "**\n\n**Muted by {}".format(ctx.author) mute_role_name = read_data_entry(ctx.guild.id, "mute-role") mute_role = discord.utils.get(ctx.guild.roles, name=mute_role_name) if mute_role is None: await ctx.send("wyd I can't find the `{}`".format(mute_role_name)) return try: await user.add_roles(mute_role, reason=reason) await ctx.send("Hushed `{}`".format(user)) except discord.errors.Forbidden: if mute_role.position == ctx.me.top_role.position: await ctx.send("Why did you mute me, fool?") elif mute_role.position > ctx.me.top_role.position: await ctx.send("I can't add the mute role because it's somehow higher than me? You better well damn fix that if you want to use this.") else: await ctx.send("I'm missing that one permission to actually remove and add roles. Oh wait, it's the `Manage Roles` permission.") @checks.server_mod_or_perms(manage_roles=True) @commands.command() async def unmute(self, ctx, user:discord.Member): """Unmutes the specified user""" mute_role_name = read_data_entry(ctx.guild.id, "mute-role") mute_role = discord.utils.get(ctx.guild.roles, name=mute_role_name) if mute_role is None: await ctx.send("I could not find any role named `{}`".format(mute_role_name)) return try: await user.remove_roles(mute_role, reason="Unmuted by {}".format(ctx.author)) await ctx.send("Successfully unmuted `{}`".format(user)) except discord.errors.Forbidden: if mute_role.position == ctx.me.top_role.position: await ctx.send("WHY'D YOU MUTE ME THOT") elif mute_role.position > ctx.me.top_role.position: await ctx.send("I can't remove the mute if the role is higher than me...") else: await ctx.send("I'm missing that one permission to actually remove and add roles. Oh wait, it's the `Manage Roles` permission.") @checks.server_mod_or_perms(manage_messages=True) @commands.command(aliases=['p', 'purge', '🇵', '🅿']) async def prune(self, ctx, amount:int): """Mass deletes a specified amount of messages""" try: await ctx.message.delete() except discord.errors.Forbidden: await ctx.send("And you would expect me to mass delete messages without manage messages? I wonder why'd you think that one...") return deleted = await ctx.channel.purge(limit=amount) deleted_message = await ctx.send("{} Deleted {} messages".format(ctx.author.mention, len(deleted))) await asyncio.sleep(10) # The try and except pass is so in the event a user prunes again or deletes the prune notification before the bot automatically does it, it will not raise an error try: await deleted_message.delete() except: pass @checks.server_mod_or_perms(manage_messages=True) @commands.command() async def pin(self, ctx, id:int): """Pins the message with the specified ID to the channel""" try: message = await ctx.channel.get_message(id) except discord.errors.NotFound: await ctx.send("Can't find the message ID `{}`".format(id)) return try: await message.pin() except discord.errors.Forbidden: await ctx.send("Can't pin it to the wall without `Manage Messages`") @checks.server_mod_or_perms(manage_messages=True) @commands.command() async def unpin(self, ctx, id:int): """Unpins the message with the specified ID from the channel""" pinned_messages = await ctx.channel.pins() message = discord.utils.get(pinned_messages, id=id) if message is None: await ctx.send("Can't find the message ID `{}`".format(id)) return try: await message.unpin() await ctx.send("Successfully unpinned the message!") except discord.errors.Forbidden: await ctx.send("`Can't unpin it from the wall without `Manage Messages`") #i got REALLY fucking tired of editing every single Manage Role perm here @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def addrole(self, ctx, user:discord.Member, *, name:str): """Adds the specified role to the specified user""" role = discord.utils.get(ctx.guild.roles, name=name) if role is None: await ctx.send("No role with the name of `{}` was found on this server".format(name)) return try: await user.add_roles(role, reason="The role \"{}\" was added by {}".format(role.name, ctx.author)) await ctx.send("Successfully added the `{}` role to `{}`".format(name, user)) except discord.errors.Forbidden: if role.position == ctx.me.top_role.position: await ctx.send("I can't add the highest role I have to other users. Sorry, not my rules. Blame Discord.") elif role.position > ctx.me.top_role.position: await ctx.send("Can't add roles that are definitely higher than the top one I already have.") else: await ctx.send("I do not have the `Manage Roles` permission") @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def removerole(self, ctx, user:discord.Member, *, name:str): """Removes the specified role from the specified user""" role = discord.utils.get(ctx.guild.roles, name=name) if role is None: await ctx.send("No role with the name of `{}` was found on this server".format(name)) return try: await user.remove_roles(role, reason="The role \"{}\" was removed by {}".format(role.name, ctx.author)) await ctx.send("Successfully removed the `{}` role from `{}`".format(name, user)) except discord.errors.Forbidden: if role.position == ctx.me.top_role.position: await ctx.send("I can't remove the highest role I have to other users. Sorry, not my rules. Blame Discord.") elif role.position > ctx.me.top_role.position: await ctx.send("Can't remove roles that are definitely higher than the top one I already have.") else: await ctx.send("I do not have the `Manage Roles` permission") @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def createrole(self, ctx, *, name:str): """Creates a role with the specified name""" try: await ctx.guild.create_role(name=name, reason="Created by {}".format(ctx.author), permissions=ctx.guild.default_role.permissions) await ctx.send("Made a role named `{}`".format(name)) except discord.errors.Forbidden: await ctx.send("I do not have the `Manage Roles` permission") @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def deleterole(self, ctx, *, name:str): """Deletes the role with the specified name""" role = discord.utils.get(ctx.guild.roles, name=name) if role is None: await ctx.send("Can't find the role named `{}`".format(name)) return try: await role.delete(reason="Deleted by {}".format(ctx.author)) await ctx.send("Trashed out the role `{}`".format(name)) except discord.errors.Forbidden: if role.position == ctx.me.top_role.position: await ctx.send("I can't delete my own highest role, dingus.") elif role.position > ctx.me.top_role.position: await ctx.send("I can't delete any roles higher than the one I have, dork.") else: await ctx.send("I do not have the `Manage Roles` permission") @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def editrole(self, ctx, type:str, value:str, *, name:str): """Edits a role with the specified name""" role = discord.utils.get(ctx.guild.roles, name=name) if role is None: await ctx.send("There isn't a role named `{}` anywhere on the server...".format(name)) return if type == "color": if value != "remove": try: color = discord.Color(value=int(value.strip("#"), 16)) except: await ctx.send("`{}` isn't a valid color. Better be using hexadecimal color codes! (Ex: #FF0000)".format(value)) return else: color = discord.Color.default() try: await role.edit(reason="Edited by {}".format(ctx.author), color=color) await ctx.send("Edited the role named `{}`".format(name)) except discord.errors.Forbidden: if role.position == ctx.me.top_role.position: await ctx.send("Can't even touch my highest role.") elif role.position > ctx.me.top_role.position: await ctx.send("Can't edit it because it's higher than my highest role (this gets annoying if you've seen it 95 times)") else: await ctx.send("I do not have the `Manage Roles` permission") except discord.errors.NotFound: # Don't ask, for some reason if the role is higher than the bot's highest role it returns a NotFound 404 error await ctx.send("That role is higher than my highest role (HOH) (HOH)") elif type == "permissions": try: perms = discord.Permissions(permissions=int(value)) except: await ctx.send("`{}` is not a valid permission number! If you need help finding the permission number, then go to <http://creeperseth.com/discordpermcalc> for a permission calculator!".format(value)) return try: await role.edit(reason="Edited by {}".format(ctx.author), permissions=perms) await ctx.send("Edited the role named `{}`".format(name)) except discord.errors.Forbidden: await ctx.send("I either do not have the `Manage Roles` permission") except discord.errors.NotFound: await ctx.send("That role is higher than my highest role (HOH)") elif type == "position": try: pos = int(value) except: await self.bot.send_message(ctx.channel, "`" + value + "` is not a valid number") return if pos >= ctx.guild.me.top_role.position: await ctx.send("That number is not lower than my highest role's position. My highest role's permission is `{}`".format(ctx.guild.me.top_role.position)) return try: if pos <= 0: pos = 1 await role.edit(reason="Moved by {}".format(ctx.author), position=pos) await ctx.send("Edited the role named `{}`".format(name)) except discord.errors.Forbidden: await ctx.send("I do not have the `Manage Roles` permission") except discord.errors.NotFound: await ctx.send("That role is higher than my highest role (HOH)") elif type == "separate": try: bool = convert_to_bool(value) except ValueError: await ctx.send("`{}` is not a valid boolean".format(value)) return try: await role.edit(reason="Edited by {}".format(ctx.author), hoist=bool) await ctx.send("Edited the role named `{}`".format(name)) except discord.errors.Forbidden: await ctx.send("I do not have the `Manage Roles` permission or that role is not lower than my highest role.") elif type == "mentionable": try: bool = convert_to_bool(value) except ValueError: await ctx.send("`{}` is not a valid boolean".format(value)) return try: await role.edit(reason="Edited by {}".format(ctx.author), mentionable=bool) await ctx.send("Edited the role named `{}`".format(name)) except discord.errors.Forbidden: await ctx.send("I do not have the `Manage Roles` permission") except discord.errors.NotFound: await ctx.send("That role is higher than my highest role (HOH)") else: await ctx.send("Invalid type specified, valid types are `color`, `permissions`, `position`, `separate`, and `mentionable`") @checks.server_admin_or_perms(manage_roles=True) @commands.command() async def renamerole(self, ctx, name:str, newname:str): """Renames a role with the specified name, be sure to put double quotes (\") around the name and the new name""" role = discord.utils.get(ctx.guild.roles, name=name) if role is None: await ctx.send("No role was found on this server with the name of `{}`".format(name)) return try: await role.edit(reason="Renamed by {}".format(ctx.author), name=newname) await ctx.send("Successfully renamed the `{}` role to `{}`".format(name, newname)) except discord.errors.Forbidden: if role.position == ctx.me.top_role.position: await ctx.send("I can't change my name of my own highest role. Do it yourself manually, you lazy child.") elif role.position > ctx.me.top_role.position: await ctx.send("boooooooooooooooooooooo icantchangeitbecauseitshigherthanmyhighestroooooooooole") else: await ctx.send("I do not have the `Manage Roles` permission") @checks.server_mod_or_perms(ban_members=True) @commands.command() async def massban(self, ctx, *, ids:str): """Mass bans users by ids (separate ids with spaces pls)""" await ctx.channel.trigger_typing() ids = ids.split(" ") failed_ids = [] success = 0 for id in ids: try: await self.bot.http.ban(id, ctx.guild.id, delete_message_days=0) success += 1 except: failed_ids.append("`{}`".format(id)) if len(failed_ids) != 0: await ctx.send("I couldn't ban the following ID(s): {}".format(", ".join(ids))) await ctx.send("I mass banned successfully {} out of {} users.".format(success, len(ids))) @checks.server_mod_or_perms(manage_messages=True) @commands.command() async def removereactions(self, ctx, id:int): """Clear reactions from a message""" try: message = await ctx.channel.get_message(id) except discord.errors.NotFound: await ctx.send("I can't find that one message ID (`{}`) with the reactions on it".format(id)) return try: await message.clear_reactions() await ctx.send("Removed the shitty reactions from the message.") except discord.errors.Forbidden: await ctx.send("I don't have the `Manage Messages` permission to remove them shit reactions.") def setup(bot): bot.add_cog(Moderation(bot))
50.934625
216
0.58918
1867db84d8f3ff1a9adac3a2c8e66cd1823f7516
13,455
py
Python
Predictions/csv/last_rows.py
janithmehta/StockMarketPrediction
5f85b81289ad599bd30b5cd8555eec0f7bfb509d
[ "MIT" ]
18
2018-02-01T09:41:16.000Z
2022-01-13T06:53:56.000Z
Predictions/csv/wrong_csv/last_rows.py
darbary/StockMarketPrediction
5f85b81289ad599bd30b5cd8555eec0f7bfb509d
[ "MIT" ]
1
2018-08-08T06:29:28.000Z
2018-08-15T07:10:49.000Z
Predictions/csv/wrong_csv/last_rows.py
darbary/StockMarketPrediction
5f85b81289ad599bd30b5cd8555eec0f7bfb509d
[ "MIT" ]
10
2017-05-09T06:25:56.000Z
2021-01-05T23:17:58.000Z
import pandas as pd import statistics as st import numpy as np list1=['AMBUJACEM','ASIANPAINT','BANKBARODA','HDIL','HEROMOTOCO','HINDUNILVR','ITC','INFY','TCS','MARUTI'] for m in list1: name=m+'.csv' df=pd.read_csv(name) #df=df[::-1] #For Old format ''' df=df.replace([np.inf,-np.inf],np.nan) df=df.replace('#DIV/0!',np.nan) df=df.replace('null',np.nan) df=df.dropna() df['X1'] = 0.00 df['X2'] = 0.00 df['X3'] = 0.00 df['X4'] = 0.00 df['X5'] = 0.00 df['X6'] = 0.00 df['X7'] = 0.00 df['X8'] = 0.00 df['X9'] = 0.00 df['X10'] = 0.00 df['X11'] = 0.00 df['X12'] = 0.00 df['X13'] = 0.00 df['X14'] = 0.00 df['X15'] = 0.00 df['X16']=0.00 df['X17']=0.00 df['X18']=0.00 df['X19']=0.00 df['X20']=0.00 df['X21']=0.00 df['X22']=0.00 df['X23']=0.00 df['X24']=0.00 df['K5']=0.00 df['K10']=0.00 df['K15']=0.00 df['K20']=0.00 df['M1']=0.00 df['M5']=0.00 df['M10']=0.00 df['M15']=0.00 df['M20']=0.00 df['One Day Momentum']=0.00 df['Five Day Momentum']=0.00 df['Ten Day Momentum']=0.00 df['Fifteen Day Momentum']=0.00 df['Twenty Day Momentum']=0.00 df['Next Day Price']=0.00 df['5 Day Price']=0.00 df['10 Day Price']=0.00 df['15 Day Price']=0.00 df['20 Day Price']=0.00 df['One Day Change']=0.00 df['Five Day Change']=0.00 df['Ten Day Change']=0.00 df['Fifteen Day Change']=0.00 df['Twenty Day Change']=0.00 df['One Day Trend']=0.00 df['Five Day Trend']=0.00 df['Ten Day Trend']=0.00 df['Fifteen Day Trend']=0.00 df['Twenty Day Trend']=0.00 df['Close']=df['Close'].astype(float) df['High']=df['High'].astype(float) df['Low']=df['Low'].astype(float) ''' for i in range(len(df)-20,len(df)): df['X1'][i]=(df['Close'][i]-df['Close'][i-1])/df['Close'][i-1] ma5=0.0 for j in range(1,6): ma5+=df['Close'][i-j] ma5=ma5/5 df['X2'][i]=(df['Close'][i]-ma5)/ma5 ma10=0.0 for j in range(1,11): ma10+=df['Close'][i-j] ma10=ma10/10 df['X3'][i]=(df['Close'][i]-ma10)/ma10 ma15=0.0 for j in range(1,16): ma15+=df['Close'][i-j] ma15=ma15/15 df['X4'][i]=(df['Close'][i]-ma15)/ma15 ma20=0.0 for j in range(1,21): ma20+=df['Close'][i-j] ma20=ma20/20 df['X5'][i]=(df['Close'][i]-ma20)/ma20 ma25=0.0 for j in range(1,26): ma25+=df['Close'][i-j] ma25=ma25/25 df['X6'][i]=(df['Close'][i]-ma25)/ma25 ma30=0.0 for j in range(1,31): ma30+=df['Close'][i-j] ma30=ma30/30 df['X7'][i]=(df['Close'][i]-ma30)/ma30 ma35=0.0 for j in range(1,36): ma35+=df['Close'][i-j] ma35=ma35/35 df['X8'][i]=(df['Close'][i]-ma35)/ma35 ma40=0.0 for j in range(1,41): ma40+=df['Close'][i-j] ma40=ma40/40 df['X9'][i]=(df['Close'][i]-ma40)/ma40 ub10=0.0 #print(df['Close'][i-1:i-11]) ub10=ma10+0.02*st.pstdev(df['Close'][i-11:i-1]) lb10=0.0 lb10=ma10-0.02*st.pstdev(df['Close'][i-11:i-1]) ub20=0.0 ub20=ma20+0.02*st.pstdev(df['Close'][i-21:i-1]) lb20=0.0 lb20=ma20-0.02*st.pstdev(df['Close'][i-21:i-1]) ub30=0.0 ub30=ma30+0.02*st.pstdev(df['Close'][i-31:i-1]) lb30=0.0 lb30=ma30-0.02*st.pstdev(df['Close'][i-31:i-1]) if df['Close'][i]>ub10: df['X10'][i]=df['Close'][i]-ub10 elif df['Close'][i]<lb10: df['X10'][i]=df['Close'][i]-lb10 if df['Close'][i]>ub20: df['X11'][i]=df['Close'][i]-ub20 elif df['Close'][i]<lb20: df['X11'][i]=df['Close'][i]-lb20 if df['Close'][i]>ub30: df['X12'][i]=df['Close'][i]-ub30 elif df['Close'][i]<lb30: df['X12'][i]=df['Close'][i]-lb30 rs5=0.0 change=0.0 gain=0.0 loss=0.0 for j in range(0,5): change=df['Close'][i-j]-df['Close'][i-j-1] if change>0.0: gain+=change elif change<0.0: loss+=(-1*change) if loss==0.0: rsi5=100.0 else: rs5=gain/loss rsi5=0.0 rsi5=100.0-100.0/(1+rs5) df['X13'][i]=(rsi5-50.0)/50.0 rs10=0.0 change=0.0 gain=0.0 loss=0.0 for j in range(0,10): change=df['Close'][i-j]-df['Close'][i-j-1] if change>0.0: gain+=change elif change<0.0: loss+=(-1*change) if loss==0.0: rsi10=100 else: rs10=gain/loss rsi10=0.0 rsi10=100.00-100.00/(1+rs10) df['X14'][i]=(rsi10-50.00)/50.00 rs15=0.0 change=0.0 gain=0.0 loss=0.0 for j in range(0,15): change=df['Close'][i-j]-df['Close'][i-j-1] if change>0.0: gain+=change elif change<0.0: loss+=(-1*change) if loss==0.0: rsi15=100.00 else: rs15=gain/loss rsi15=0.0 rsi15=100.00-100.00/(1+rs15) df['X15'][i]=(rsi15-50.00)/50.00 rs20=0.0 change=0.0 gain=0.0 loss=0.0 for j in range(0,20): change=df['Close'][i-j]-df['Close'][i-j-1] if change>0.0: gain+=change elif change<0.0: loss+=(-1*change) if loss==0.0: rsi20=100.00 else: rs20=gain/loss rsi20=0.0 rsi20=100.00-100.00/(1+rs20) df['X16'][i]=(rsi20-50.00)/50.00 min_low_price=1000000 max_high_price=0 for j in range(1,6): min_low_price=min(min_low_price,df['Low'][i-j]) max_high_price=max(max_high_price,df['High'][i-j]) k5=100*((df['Close'][i]-min_low_price)/(max_high_price-min_low_price)) df['K5'][i] = k5 df['X17'][i]=(k5-50)/50 min_low_price=1000000 max_high_price=0 for j in range(1,11): min_low_price=min(min_low_price,df['Low'][i-j]) max_high_price=max(max_high_price,df['High'][i-j]) k10=100*((df['Close'][i]-min_low_price)/(max_high_price-min_low_price)) df['K10'][i] = k10 df['X18'][i]=(k10-50)/50 min_low_price=1000000 max_high_price=0 for j in range(1,16): min_low_price=min(min_low_price,df['Low'][i-j]) max_high_price=max(max_high_price,df['High'][i-j]) k15=100*((df['Close'][i]-min_low_price)/(max_high_price-min_low_price)) df['K15'][i]=k15 df['X19'][i]=(k15-50)/50 min_low_price=1000000 max_high_price=0 for j in range(1,21): min_low_price=min(min_low_price,df['Low'][i-j]) max_high_price=max(max_high_price,df['High'][i-j]) k20=100*((df['Close'][i]-min_low_price)/(max_high_price-min_low_price)) df['K20'][i]=k20 df['X20'][i]=(k20-50)/50 #Newly added Code on 22/1/17 #new code 21/2/17 ''' if(i-1>-1): df['Next Day Price'][i]=df['Close'][i+1] if(i-5>-1): df['5 Day Price'][i]=df['Close'][i+5] if(i-10>-1): df['10 Day Price'][i]=df['Close'][i+10] if(i-15>-1): df['15 Day Price'][i]=df['Close'][i+15] if(i-20>-1): df['20 Day Price'][i]=df['Close'][i+20] ''' df['M1'][i]=(df['Close'][i]-df['Close'][i-1])/(df['Close'][i-1]) df['M5'][i]=(df['Close'][i]-df['Close'][i-5])/(df['Close'][i-5]) df['M10'][i]=(df['Close'][i]-df['Close'][i-10])/(df['Close'][i-10]) df['M15'][i]=(df['Close'][i]-df['Close'][i-15])/(df['Close'][i-15]) df['M20'][i]=(df['Close'][i]-df['Close'][i-20])/(df['Close'][i-20]) if df['M1'][i]>0: df['One Day Momentum'][i]=1 else: df['One Day Momentum'][i]=-1 if df['M5'][i]>0: df['Five Day Momentum'][i]=1 else: df['Five Day Momentum'][i]=-1 if df['M10'][i]>0: df['Ten Day Momentum'][i]=1 else: df['Ten Day Momentum'][i]=-1 if df['M15'][i]>0: df['Fifteen Day Momentum'][i]=1 else: df['Fifteen Day Momentum'][i]=-1 if df['M20'][i]>0: df['Twenty Day Momentum'][i]=1 else: df['Twenty Day Momentum'][i]=-1 df['One Day Change'][i]=(df['Close'][i-1]-df['Close'][i])/(df['Close'][i]) if df['One Day Change'][i]>0: df['One Day Trend'][i]=1 else: df['One Day Trend'][i]=-1 df['Five Day Change'][i]=(df['Close'][i-5]-df['Close'][i])/(df['Close'][i]) if df['Five Day Change'][i]>0: df['Five Day Trend'][i]=1 else: df['Five Day Trend'][i]=-1 df['Ten Day Change'][i]=(df['Close'][i-10]-df['Close'][i])/(df['Close'][i]) if df['Ten Day Change'][i]>0: df['Ten Day Trend'][i]=1 else: df['Ten Day Trend'][i]=-1 df['Fifteen Day Change'][i]=(df['Close'][i-15]-df['Close'][i])/(df['Close'][i]) if df['Fifteen Day Change'][i]>0: df['Fifteen Day Trend'][i]=1 else: df['Fifteen Day Trend'][i]=-1 df['Twenty Day Change'][i]=(df['Close'][i-20]-df['Close'][i])/(df['Close'][i]) if df['Twenty Day Change'][i]>0: df['Twenty Day Trend'][i]=1 else: df['Twenty Day Trend'][i]=-1 print("Loop1") for i in range(len(df)-20,len(df)): d5=0.0 for j in range(1,6): d5+=df['K5'][i-j] d5=d5/5 df['X21'][i]=(df['K5'][i]-d5-50)/50 d10=0.0 for j in range(1,11): d10+=df['K10'][i-j] d10=d10/10 df['X22'][i]=(df['K10'][i]-d10-50)/50 d15=0.0 for j in range(1,16): d15+=df['K15'][i-j] d15=d15/15 df['X23'][i]=(df['K15'][i]-d15-50)/50 d20=0.0 for j in range(1,21): d20+=df['K20'][i-j] d20=d20/20 df['X24'][i]=(df['K20'][i]-d20-50)/50 print("loop2") #df=df.ix[20:] #df=df.ix[:-20] #df=df.drop(df.index[0:41]) #df=df.drop(df.index[790:len(df['Date'])]) df.drop('Unnamed: 0', axis=1, inplace=True) df.to_csv(name)
32.188995
106
0.365292
3102c6d711ac87d1ac5d6160c439fed7b2e76845
1,740
py
Python
setup.py
ihmeuw/vivarium_conic_vitamin_a_supp_gbd2019
5cd99c9fad9d93b69801e82835dfb1f843e7782a
[ "BSD-3-Clause" ]
null
null
null
setup.py
ihmeuw/vivarium_conic_vitamin_a_supp_gbd2019
5cd99c9fad9d93b69801e82835dfb1f843e7782a
[ "BSD-3-Clause" ]
null
null
null
setup.py
ihmeuw/vivarium_conic_vitamin_a_supp_gbd2019
5cd99c9fad9d93b69801e82835dfb1f843e7782a
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os from setuptools import setup, find_packages if __name__ == "__main__": base_dir = os.path.dirname(__file__) src_dir = os.path.join(base_dir, "src") about = {} with open(os.path.join(src_dir, "vivarium_conic_vitamin_a_supp_gbd2019", "__about__.py")) as f: exec(f.read(), about) with open(os.path.join(base_dir, "README.rst")) as f: long_description = f.read() install_requirements = [ 'vivarium==0.10.10', 'vivarium_public_health==0.10.14', 'click', 'gbd_mapping>=3.0.0, <4.0.0', 'jinja2', 'loguru', 'numpy', 'pandas', 'scipy', 'tables', 'pyyaml', ] # use "pip install -e .[dev]" to install required components + extra components extras_require = [ 'vivarium_cluster_tools==1.2.10', 'vivarium_inputs[data]==4.0.4', ] setup( name=about['__title__'], version=about['__version__'], description=about['__summary__'], long_description=long_description, license=about['__license__'], url=about["__uri__"], author=about["__author__"], author_email=about["__email__"], package_dir={'': 'src'}, packages=find_packages(where='src'), include_package_data=True, install_requires=install_requirements, extras_require={ 'dev': extras_require, }, zip_safe=False, entry_points=''' [console_scripts] make_artifacts=vivarium_conic_vitamin_a_supp_gbd2019.tools.cli:make_artifacts make_results=vivarium_conic_vitamin_a_supp_gbd2019.tools.cli:make_results ''' )
25.217391
99
0.597126
eff41738ab63d16911e60f00eb5f48d7e14e13a4
3,393
py
Python
third_party/tests/YosysTestSuite/rpc/frontend.py
parzival3/Surelog
cf126533ebfb2af7df321057af9e3535feb30487
[ "Apache-2.0" ]
156
2019-11-16T17:29:55.000Z
2022-01-21T05:41:13.000Z
third_party/tests/YosysTestSuite/rpc/frontend.py
parzival3/Surelog
cf126533ebfb2af7df321057af9e3535feb30487
[ "Apache-2.0" ]
414
2021-06-11T07:22:01.000Z
2022-03-31T22:06:14.000Z
third_party/tests/YosysTestSuite/rpc/frontend.py
parzival3/Surelog
cf126533ebfb2af7df321057af9e3535feb30487
[ "Apache-2.0" ]
30
2019-11-18T16:31:40.000Z
2021-12-26T01:22:51.000Z
def modules(): return ["python_inv"] def derive(module, parameters): assert module == r"python_inv" if parameters.keys() != {r"\width"}: raise ValueError("Invalid parameters") return "ilang", r""" module \impl wire width {width:d} input 1 \i wire width {width:d} output 2 \o cell $neg $0 parameter \A_SIGNED 1'0 parameter \A_WIDTH 32'{width:b} parameter \Y_WIDTH 32'{width:b} connect \A \i connect \Y \o end end module \python_inv wire width {width:d} input 1 \i wire width {width:d} output 2 \o cell \impl $0 connect \i \i connect \o \o end end """.format(width=parameters[r"\width"]) # ---------------------------------------------------------------------------- import json import argparse import sys, socket, os try: import msvcrt, win32pipe, win32file except ImportError: msvcrt = win32pipe = win32file = None def map_parameter(parameter): if parameter["type"] == "unsigned": return int(parameter["value"], 2) if parameter["type"] == "signed": width = len(parameter["value"]) value = int(parameter["value"], 2) if value & (1 << (width - 1)): value = -((1 << width) - value) return value if parameter["type"] == "string": return parameter["value"] if parameter["type"] == "real": return float(parameter["value"]) def call(input_json): input = json.loads(input_json) if input["method"] == "modules": return json.dumps({"modules": modules()}) if input["method"] == "derive": try: frontend, source = derive(input["module"], {name: map_parameter(value) for name, value in input["parameters"].items()}) return json.dumps({"frontend": frontend, "source": source}) except ValueError as e: return json.dumps({"error": str(e)}) def main(): parser = argparse.ArgumentParser() modes = parser.add_subparsers(dest="mode") mode_stdio = modes.add_parser("stdio") if os.name == "posix": mode_path = modes.add_parser("unix-socket") if os.name == "nt": mode_path = modes.add_parser("named-pipe") mode_path.add_argument("path") args = parser.parse_args() if args.mode == "stdio": while True: input = sys.stdin.readline() if not input: break sys.stdout.write(call(input) + "\n") sys.stdout.flush() if args.mode == "unix-socket": sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.bind(args.path) try: sock.listen(1) conn, addr = sock.accept() file = conn.makefile("rw") while True: input = file.readline() if not input: break file.write(call(input) + "\n") file.flush() finally: sock.close() os.unlink(args.path) if args.mode == "named-pipe": pipe = win32pipe.CreateNamedPipe(args.path, win32pipe.PIPE_ACCESS_DUPLEX, win32pipe.PIPE_TYPE_BYTE|win32pipe.PIPE_READMODE_BYTE|win32pipe.PIPE_WAIT, 1, 4096, 4096, 0, None) win32pipe.ConnectNamedPipe(pipe, None) try: while True: input = b"" while not input.endswith(b"\n"): result, data = win32file.ReadFile(pipe, 4096) assert result == 0 input += data assert not b"\n" in input or input.endswith(b"\n") output = (call(input.decode("utf-8")) + "\n").encode("utf-8") length = len(output) while length > 0: result, done = win32file.WriteFile(pipe, output) assert result == 0 length -= done except win32file.error as e: if e.args[0] == 109: # ERROR_BROKEN_PIPE pass else: raise if __name__ == "__main__": main()
26.716535
80
0.644562
f548f72c851943202f587791ccf51c2ca1f7b02b
545
py
Python
server/managers/BulleManager.py
b3ckerdev/Transformice-Server
d87ef61618fbed2736b72347ccf645765ad22b66
[ "MIT" ]
2
2021-03-15T14:46:57.000Z
2022-01-27T10:50:49.000Z
server/managers/BulleManager.py
b3ckerdev/Transformice-Server
d87ef61618fbed2736b72347ccf645765ad22b66
[ "MIT" ]
null
null
null
server/managers/BulleManager.py
b3ckerdev/Transformice-Server
d87ef61618fbed2736b72347ccf645765ad22b66
[ "MIT" ]
null
null
null
import random class BulleManager: __bulles__ = [] @staticmethod def get(): return BulleManager.__bulles__ @staticmethod def count(): return len(BulleManager.__bulles__) @staticmethod def add(bulle_ip): BulleManager.__bulles__.append(bulle_ip) @staticmethod def remove(bulle_ip): BulleManager.__bulles__.remove(bulle_ip) @staticmethod def get_bulle(room): for bulle in BulleManager.__bulles__: if room in bulle.bulle_rooms: return bulle return random.choice(BulleManager.__bulles__)
20.185185
47
0.730275
55244a0d81363097896cadd79c5cf307e1cfad22
22,465
py
Python
venv/lib/python2.7/site-packages/sslyze/plugins/robot_plugin.py
sravani-m/Web-Application-Security-Framework
d9f71538f5cba6fe1d8eabcb26c557565472f6a6
[ "MIT" ]
3
2019-04-09T22:59:33.000Z
2019-06-14T09:23:24.000Z
venv/lib/python2.7/site-packages/sslyze/plugins/robot_plugin.py
sravani-m/Web-Application-Security-Framework
d9f71538f5cba6fe1d8eabcb26c557565472f6a6
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/sslyze/plugins/robot_plugin.py
sravani-m/Web-Application-Security-Framework
d9f71538f5cba6fe1d8eabcb26c557565472f6a6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals import socket import types from enum import Enum from typing import Optional, Tuple, Text, List, Dict, Type from xml.etree.ElementTree import Element import binascii import math from cryptography.hazmat.backends import default_backend from cryptography.x509 import load_pem_x509_certificate from nassl._nassl import WantReadError from nassl.ssl_client import ClientCertificateRequested, OpenSslVersionEnum from tls_parser.change_cipher_spec_protocol import TlsChangeCipherSpecRecord from sslyze.plugins import plugin_base from sslyze.plugins.plugin_base import PluginScanResult, PluginScanCommand from sslyze.server_connectivity_info import ServerConnectivityInfo from tls_parser.alert_protocol import TlsAlertRecord from tls_parser.record_protocol import TlsRecordTlsVersionBytes from tls_parser.exceptions import NotEnoughData from tls_parser.handshake_protocol import TlsHandshakeRecord, TlsHandshakeTypeByte, TlsRsaClientKeyExchangeRecord from tls_parser.parser import TlsRecordParser from tls_parser.tls_version import TlsVersionEnum from sslyze.utils.ssl_connection import SSLHandshakeRejected from sslyze.utils.thread_pool import ThreadPool class RobotScanCommand(PluginScanCommand): """Test the server(s) for the Return Of Bleichenbacher's Oracle Threat vulnerability. """ @classmethod def get_cli_argument(cls): # type: () -> Text return 'robot' @classmethod def get_title(cls): # type: () -> Text return 'ROBOT Attack' @classmethod def is_aggressive(cls): # type: () -> bool # Each scan spawns 10 threads return True class RobotPmsPaddingPayloadEnum(Enum): VALID = 0 WRONG_FIRST_TWO_BYTES = 1 WRONG_POSITION_00 = 2 NO_00_IN_THE_MIDDLE = 3 WRONG_VERSION_NUMBER = 4 class RobotTlsRecordPayloads(object): # From https://github.com/robotattackorg/robot-detect and testssl.sh # The high level idea of an oracle attack is to send several payloads that are slightly wrong, in different ways, # hoping that the server is going to give a different response (a TLS alert, a connection reset, no data, etc.) for # each payload _CKE_PAYLOADS_HEX = { RobotPmsPaddingPayloadEnum.VALID: "0002{pms_padding}00{tls_version}{pms}", # noqa: E241 RobotPmsPaddingPayloadEnum.WRONG_FIRST_TWO_BYTES: "4117{pms_padding}00{tls_version}{pms}", # noqa: E241 RobotPmsPaddingPayloadEnum.WRONG_POSITION_00: "0002{pms_padding}11{pms}0011", # noqa: E241 RobotPmsPaddingPayloadEnum.NO_00_IN_THE_MIDDLE: "0002{pms_padding}111111{pms}", # noqa: E241 RobotPmsPaddingPayloadEnum.WRONG_VERSION_NUMBER: "0002{pms_padding}000202{pms}", # noqa: E241 } _PMS_HEX = "aa112233445566778899112233445566778899112233445566778899112233445566778899112233445566778899" @classmethod def get_client_key_exchange_record(cls, robot_payload_enum, tls_version, modulus, exponent): # type: (RobotPmsPaddingPayloadEnum, TlsVersionEnum, int, int) -> TlsRsaClientKeyExchangeRecord """A client key exchange record with a hardcoded pre_master_secret, and a valid or invalid padding. """ pms_padding = cls._compute_pms_padding(modulus) tls_version_hex = binascii.b2a_hex(TlsRecordTlsVersionBytes[tls_version.name].value).decode('ascii') pms_with_padding_payload = cls._CKE_PAYLOADS_HEX[robot_payload_enum] final_pms = pms_with_padding_payload.format(pms_padding=pms_padding, tls_version=tls_version_hex, pms=cls._PMS_HEX) cke_robot_record = TlsRsaClientKeyExchangeRecord.from_parameters( tls_version, exponent, modulus, int(final_pms, 16) ) return cke_robot_record @staticmethod def _compute_pms_padding(modulus): # type: (int) -> Text # Generate the padding for the pre_master_scecret modulus_bit_size = int(math.ceil(math.log(modulus, 2))) modulus_byte_size = (modulus_bit_size + 7) // 8 # pad_len is length in hex chars, so bytelen * 2 pad_len = (modulus_byte_size - 48 - 3) * 2 pms_padding_hex = ("abcd" * (pad_len // 2 + 1))[:pad_len] return pms_padding_hex # Encrypted Finished record corresponding to the PMS below and the ch_def client hello in the ROBOT poc script _FINISHED_RECORD = bytearray.fromhex( '005091a3b6aaa2b64d126e5583b04c113259c4efa48e40a19b8e5f2542c3b1d30f8d80b7582b72f08b21dfcbff09d4b281676a0fb40' 'd48c20c4f388617ff5c00808a96fbfe9bb6cc631101a6ba6b6bc696f0' ) @classmethod def get_finished_record_bytes(cls, tls_version): # type: (TlsVersionEnum) -> bytes """The Finished TLS record corresponding to the hardcoded PMS used in the Client Key Exchange record. """ # TODO(AD): The ROBOT poc script uses the same Finished record for all possible client hello (default, GCM, # etc.); as the Finished record contains a hashes of all previous records, it will be wrong and will cause # servers to send a TLS Alert 20 # Here just like in the poc script, the Finished message does not match the Client Hello we sent return b'\x16' + TlsRecordTlsVersionBytes[tls_version.name].value + cls._FINISHED_RECORD class RobotScanResultEnum(Enum): """An enum to provide the result of running a RobotScanCommand. """ VULNERABLE_WEAK_ORACLE = 1 #: The server is vulnerable but the attack would take too long VULNERABLE_STRONG_ORACLE = 2 #: The server is vulnerable and real attacks are feasible NOT_VULNERABLE_NO_ORACLE = 3 #: The server supports RSA cipher suites but does not act as an oracle NOT_VULNERABLE_RSA_NOT_SUPPORTED = 4 #: The server does not supports RSA cipher suites UNKNOWN_INCONSISTENT_RESULTS = 5 #: Could not determine whether the server is vulnerable or not class RobotServerResponsesAnalyzer(object): def __init__(self, payload_responses): # type: (Dict[RobotPmsPaddingPayloadEnum, List[Text]]) -> None # A mapping of a ROBOT payload enum -> a list of two server responses as text self._payload_responses = payload_responses def compute_result_enum(self): # type: () -> RobotScanResultEnum """Look at the server's response to each ROBOT payload and return the conclusion of the analysis. """ # Ensure the results were consistent for payload_enum, server_responses in self._payload_responses.items(): # We ran the check twice per payload and the two responses should be the same if server_responses[0] != server_responses[1]: return RobotScanResultEnum.UNKNOWN_INCONSISTENT_RESULTS # Check if the server acts as an oracle by checking if the server replied differently to the payloads if len(set([server_responses[0] for server_responses in self._payload_responses.values()])) == 1: # All server responses were identical - no oracle return RobotScanResultEnum.NOT_VULNERABLE_NO_ORACLE # All server responses were NOT identical, server is vulnerable # Check to see if it is a weak oracle response_1 = self._payload_responses[RobotPmsPaddingPayloadEnum.WRONG_FIRST_TWO_BYTES][0] response_2 = self._payload_responses[RobotPmsPaddingPayloadEnum.WRONG_POSITION_00][0] response_3 = self._payload_responses[RobotPmsPaddingPayloadEnum.NO_00_IN_THE_MIDDLE][0] # From the original script: # If the response to the invalid PKCS#1 request (oracle_bad1) is equal to both # requests starting with 0002, we have a weak oracle. This is because the only # case where we can distinguish valid from invalid requests is when we send # correctly formatted PKCS#1 message with 0x00 on a correct position. This # makes our oracle weak if response_1 == response_2 == response_3: return RobotScanResultEnum.VULNERABLE_WEAK_ORACLE else: return RobotScanResultEnum.VULNERABLE_STRONG_ORACLE class RobotPlugin(plugin_base.Plugin): """Test the server(s) for the Return Of Bleichenbacher's Oracle Threat vulnerability. """ @classmethod def get_available_commands(cls): # type: () -> List[Type[PluginScanCommand]] return [RobotScanCommand] def process_task(self, server_info, scan_command): # type: (ServerConnectivityInfo, PluginScanCommand) -> RobotScanResult if not isinstance(scan_command, RobotScanCommand): raise ValueError('Unexpected scan command') rsa_params = None # With TLS 1.2 some servers are only vulnerable when using the GCM cipher suites - try them first if server_info.highest_ssl_version_supported == OpenSslVersionEnum.TLSV1_2: cipher_string = 'AES128-GCM-SHA256:AES256-GCM-SHA384' rsa_params = self._get_rsa_parameters(server_info, cipher_string) if rsa_params is None: # The attempts with GCM TLS 1.2 RSA cipher suites failed - try the normal RSA cipher suites cipher_string = 'RSA' rsa_params = self._get_rsa_parameters(server_info, cipher_string) if rsa_params is None: # Could not connect to the server using RSA - not vulnerable return RobotScanResult(server_info, scan_command, RobotScanResultEnum.NOT_VULNERABLE_RSA_NOT_SUPPORTED) rsa_modulus, rsa_exponent = rsa_params # On the first attempt, finish the TLS handshake after sending the Robot payload robot_should_complete_handshake = True robot_result_enum = self._run_oracle_over_threads(server_info, cipher_string, rsa_modulus, rsa_exponent, robot_should_complete_handshake) if robot_result_enum == RobotScanResultEnum.NOT_VULNERABLE_NO_ORACLE: # Try again but this time do not finish the TLS handshake - for some servers it will reveal an oracle robot_should_complete_handshake = False robot_result_enum = self._run_oracle_over_threads(server_info, cipher_string, rsa_modulus, rsa_exponent, robot_should_complete_handshake) return RobotScanResult(server_info, scan_command, robot_result_enum) @classmethod def _run_oracle_over_threads(cls, server_info, cipher_string, rsa_modulus, rsa_exponent, should_complete_handshake): # type: (ServerConnectivityInfo, Text, int, int, bool) -> RobotScanResultEnum # Use threads to speed things up thread_pool = ThreadPool() for payload_enum in RobotPmsPaddingPayloadEnum: # Run each payload twice to ensure the results are consistent thread_pool.add_job((cls._send_robot_payload, [server_info, cipher_string, payload_enum, should_complete_handshake, rsa_modulus, rsa_exponent])) thread_pool.add_job((cls._send_robot_payload, [server_info, cipher_string, payload_enum, should_complete_handshake, rsa_modulus, rsa_exponent])) # Use one thread per check thread_pool.start(nb_threads=len(RobotPmsPaddingPayloadEnum) * 2) # Store the results - two attempts per ROBOT payload payload_responses = { RobotPmsPaddingPayloadEnum.VALID: [], RobotPmsPaddingPayloadEnum.WRONG_FIRST_TWO_BYTES: [], RobotPmsPaddingPayloadEnum.WRONG_POSITION_00: [], RobotPmsPaddingPayloadEnum.NO_00_IN_THE_MIDDLE: [], RobotPmsPaddingPayloadEnum.WRONG_VERSION_NUMBER: [], } # type: Dict[RobotPmsPaddingPayloadEnum, List[Text]] for completed_job in thread_pool.get_result(): (job, (payload_enum, server_response)) = completed_job payload_responses[payload_enum].append(server_response) for failed_job in thread_pool.get_error(): # Should never happen when running the Robot check as we catch all exceptions in the handshake (_, exception) = failed_job raise exception thread_pool.join() return RobotServerResponsesAnalyzer(payload_responses).compute_result_enum() @staticmethod def _get_rsa_parameters(server_info, openssl_cipher_string): # type: (ServerConnectivityInfo, Text) -> Optional[Tuple[int, int]] ssl_connection = server_info.get_preconfigured_ssl_connection() ssl_connection.ssl_client.set_cipher_list(openssl_cipher_string) parsed_cert = None try: # Perform the SSL handshake ssl_connection.connect() certificate = ssl_connection.ssl_client.get_peer_certificate() parsed_cert = load_pem_x509_certificate(certificate.as_pem().encode('ascii'), backend=default_backend()) except SSLHandshakeRejected: # Server does not support RSA cipher suites? pass except ClientCertificateRequested: # AD: The server asked for a client cert. We could still retrieve the server certificate, but it is unclear # to me if the ROBOT check is supposed to work even if we do not provide a client cert. My guess is that # it should not work since it requires completing a full handshake, which we can't without a client cert. # Hence, propagate the error to make the check fail. raise finally: ssl_connection.close() if parsed_cert: return parsed_cert.public_key().public_numbers().n, parsed_cert.public_key().public_numbers().e else: return None @staticmethod def _send_robot_payload( server_info, # type: ServerConnectivityInfo rsa_cipher_string, # type: Text robot_payload_enum, # type: RobotPmsPaddingPayloadEnum robot_should_finish_handshake, # type: bool rsa_modulus, # type: int rsa_exponent # type: int ): # type: (...) -> Tuple[RobotPmsPaddingPayloadEnum, Text] # Do a handshake which each record and keep track of what the server returned ssl_connection = server_info.get_preconfigured_ssl_connection() # Replace nassl.sslClient.do_handshake() with a ROBOT checking SSL handshake so that all the SSLyze # options (startTLS, proxy, etc.) still work ssl_connection.ssl_client.do_handshake = types.MethodType(do_handshake_with_robot, ssl_connection.ssl_client) ssl_connection.ssl_client.set_cipher_list(rsa_cipher_string) # Compute the payload cke_payload = RobotTlsRecordPayloads.get_client_key_exchange_record( robot_payload_enum, server_info.highest_ssl_version_supported, rsa_modulus, rsa_exponent ) # H4ck: we need to pass some arguments to the handshake but there is no simple way to do it; we use an attribute ssl_connection.ssl_client._robot_cke_record = cke_payload ssl_connection.ssl_client._robot_should_finish_handshake = robot_should_finish_handshake server_response = '' try: # Start the SSL handshake ssl_connection.connect() except ServerResponseToRobot as e: # Should always be thrown server_response = e.server_response finally: ssl_connection.close() return robot_payload_enum, server_response class ServerResponseToRobot(Exception): def __init__(self, server_response): # type: (Text) -> None # Could be a TLS alert or some data, always as text so we can easily detect different responses self.server_response = server_response def do_handshake_with_robot(self): # type: ignore """Modified do_handshake() to send a ROBOT payload and return the result. """ try: # Start the handshake using nassl - will throw WantReadError right away self._ssl.do_handshake() except WantReadError: # Send the Client Hello len_to_read = self._network_bio.pending() while len_to_read: # Get the data from the SSL engine handshake_data_out = self._network_bio.read(len_to_read) # Send it to the peer self._sock.send(handshake_data_out) len_to_read = self._network_bio.pending() # Retrieve the server's response - directly read the underlying network socket # Retrieve data until we get to the ServerHelloDone # The server may send back a ServerHello, an Alert or a CertificateRequest first did_receive_hello_done = False remaining_bytes = b'' while not did_receive_hello_done: try: tls_record, len_consumed = TlsRecordParser.parse_bytes(remaining_bytes) remaining_bytes = remaining_bytes[len_consumed::] except NotEnoughData: # Try to get more data raw_ssl_bytes = self._sock.recv(16381) if not raw_ssl_bytes: # No data? break remaining_bytes = remaining_bytes + raw_ssl_bytes continue if isinstance(tls_record, TlsHandshakeRecord): # Does the record contain a ServerDone message? for handshake_message in tls_record.subprotocol_messages: if handshake_message.handshake_type == TlsHandshakeTypeByte.SERVER_DONE: did_receive_hello_done = True break # If not, it could be a ServerHello, Certificate or a CertificateRequest if the server requires client auth elif isinstance(tls_record, TlsAlertRecord): # Server returned a TLS alert break else: raise ValueError('Unknown record? Type {}'.format(tls_record.header.type)) if did_receive_hello_done: # Send a special Client Key Exchange Record as the payload self._sock.send(self._robot_cke_record.to_bytes()) if self._robot_should_finish_handshake: # Then send a CCS record ccs_record = TlsChangeCipherSpecRecord.from_parameters( tls_version=TlsVersionEnum[self._ssl_version.name] ) self._sock.send(ccs_record.to_bytes()) # Lastly send a Finished record finished_record_bytes = RobotTlsRecordPayloads.get_finished_record_bytes(self._ssl_version) self._sock.send(finished_record_bytes) # Return whatever the server sent back by raising an exception # The goal is to detect similar/different responses while True: try: tls_record, len_consumed = TlsRecordParser.parse_bytes(remaining_bytes) remaining_bytes = remaining_bytes[len_consumed::] except NotEnoughData: # Try to get more data try: raw_ssl_bytes = self._sock.recv(16381) if not raw_ssl_bytes: # No data? raise ServerResponseToRobot('No data') except socket.error as e: # Server closed the connection after receiving the CCS payload raise ServerResponseToRobot('socket.error {}'.format(str(e))) remaining_bytes = remaining_bytes + raw_ssl_bytes continue if isinstance(tls_record, TlsAlertRecord): raise ServerResponseToRobot('TLS Alert {} {}'.format(tls_record.alert_description, tls_record.alert_severity)) else: break raise ServerResponseToRobot('Ok') class RobotScanResult(PluginScanResult): """The result of running a RobotScanCommand on a specific server. Attributes: robot_result_enum (RobotScanResultEnum): An Enum providing the result of the Robot scan. """ def __init__(self, server_info, scan_command, robot_result_enum): # type: (ServerConnectivityInfo, RobotScanCommand, RobotScanResultEnum) -> None super(RobotScanResult, self).__init__(server_info, scan_command) self.robot_result_enum = robot_result_enum def as_text(self): # type: () -> List[Text] if self.robot_result_enum == RobotScanResultEnum.VULNERABLE_STRONG_ORACLE: robot_txt = 'VULNERABLE - Strong oracle, a real attack is possible' elif self.robot_result_enum == RobotScanResultEnum.VULNERABLE_WEAK_ORACLE: robot_txt = 'VULNERABLE - Weak oracle, the attack would take too long' elif self.robot_result_enum == RobotScanResultEnum.NOT_VULNERABLE_NO_ORACLE: robot_txt = 'OK - Not vulnerable' elif self.robot_result_enum == RobotScanResultEnum.NOT_VULNERABLE_RSA_NOT_SUPPORTED: robot_txt = 'OK - Not vulnerable, RSA cipher suites not supported' elif self.robot_result_enum == RobotScanResultEnum.UNKNOWN_INCONSISTENT_RESULTS: robot_txt = 'UNKNOWN - Received inconsistent results' else: raise ValueError('Should never happen') return [self._format_title(self.scan_command.get_title()), self._format_field('', robot_txt)] def as_xml(self): # type: () -> Element xml_output = Element(self.scan_command.get_cli_argument(), title=self.scan_command.get_title()) xml_output.append(Element('robotAttack', resultEnum=self.robot_result_enum.name)) return xml_output
49.373626
121
0.668329
195fdfcbf0ab13e99ed72417886818cb28db21e5
3,318
py
Python
tensorflow_datasets/testing/fake_data_generation/flic.py
shashwat9kumar/datasets
99b055408025f8e934fcbb0fc054488aa087ebfb
[ "Apache-2.0" ]
1
2021-05-10T10:41:27.000Z
2021-05-10T10:41:27.000Z
tensorflow_datasets/testing/fake_data_generation/flic.py
shashwat9kumar/datasets
99b055408025f8e934fcbb0fc054488aa087ebfb
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/testing/fake_data_generation/flic.py
shashwat9kumar/datasets
99b055408025f8e934fcbb0fc054488aa087ebfb
[ "Apache-2.0" ]
1
2021-08-02T22:12:40.000Z
2021-08-02T22:12:40.000Z
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates FLIC like files with random data for testing.""" import os from absl import app from absl import flags import numpy as np import scipy.io import tensorflow.compat.v2 as tf from tensorflow_datasets.core.utils import py_utils from tensorflow_datasets.testing import fake_data_utils flags.DEFINE_string("tfds_dir", py_utils.tfds_dir(), "Path to tensorflow_datasets directory") FLAGS = flags.FLAGS def _output_dir(data): """Returns output directory.""" dname = "FLIC" if data == "small" else "FLIC-full" return os.path.join(FLAGS.tfds_dir, "testing", "test_data", "fake_examples", "flic", dname) def _generate_image(data, fdir, fname): dirname = os.path.join(_output_dir(data), fdir) if not os.path.exists(dirname): os.makedirs(dirname) tf.io.gfile.copy( fake_data_utils.get_random_jpeg(480, 720), os.path.join(dirname, fname), overwrite=True) def _generate_mat(data, train_fname, test_fname): """Generate MAT file for given data type (small or full).""" dirname = os.path.join(_output_dir(data), "examples.mat") data = { "examples": np.array([ np.array([ np.array([1, 2, 3], dtype=np.uint16), "example_movie", np.array( [np.array([1.0, 2.0, 3.0]), np.array([1.0, 2.0, 3.0])]), train_fname, np.array([1.0, 2.0, 3.0]), 1.0, np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32), True, False, ]), np.array([ np.array([1, 2, 3], dtype=np.uint16), "example_movie", np.array( [np.array([1.0, 2.0, 3.0]), np.array([1.0, 2.0, 3.0])]), test_fname, np.array([1.0, 2.0, 3.0]), 1.0, np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32), False, True, ]), ]), } scipy.io.savemat(dirname, data) def main(unused_argv): _generate_image("small", "images", "example_movie00000001.jpg") _generate_image("small", "images", "example_movie00000002.jpg") _generate_mat("small", "example_movie00000001.jpg", "example_movie00000002.jpg") _generate_image("full", "images", "example_movie00000003.jpg") _generate_image("full", "images", "example_movie00000004.jpg") _generate_mat("full", "example_movie00000003.jpg", "example_movie00000004.jpg") if __name__ == "__main__": app.run(main)
31.6
78
0.589512
69ba4ed8e89c06f186b94b0a9345b10c1f7f72e9
8,727
py
Python
db_rest_api/test_api.py
min-yin-sri/indra
93d4cb8b23764a2775f9dbdf5eb73b6053006d73
[ "BSD-2-Clause" ]
2
2020-01-14T08:59:10.000Z
2020-12-18T16:21:38.000Z
db_rest_api/test_api.py
min-yin-sri/indra
93d4cb8b23764a2775f9dbdf5eb73b6053006d73
[ "BSD-2-Clause" ]
null
null
null
db_rest_api/test_api.py
min-yin-sri/indra
93d4cb8b23764a2775f9dbdf5eb73b6053006d73
[ "BSD-2-Clause" ]
null
null
null
import unittest import json import sys from itertools import combinations from datetime import datetime from db_rest_api.api import MAX_STATEMENTS from indra.statements import stmts_from_json from db_rest_api import api TIMELIMIT = 1 SIZELIMIT = 4e7 class DbApiTestCase(unittest.TestCase): def setUp(self): api.app.testing = True self.app = api.app.test_client() def tearDown(self): pass def __time_get_query(self, end_point, query_str): start_time = datetime.now() resp = self.app.get('/%s/?%s' % (end_point, query_str)) t_delta = datetime.now() - start_time dt = t_delta.seconds + t_delta.microseconds/1e6 print(dt) size = int(resp.headers['Content-Length']) raw_size = sys.getsizeof(resp.data) print("Raw size: {raw:f}/{lim:f}, Compressed size: {comp:f}/{lim:f}." .format(raw=raw_size/1e6, lim=SIZELIMIT/1e6, comp=size/1e6)) return resp, dt, size def __check_good_statement_query(self, *args, **kwargs): check_stmts = kwargs.pop('check_stmts', True) time_limit = kwargs.pop('time_limit', TIMELIMIT) query_str = '&'.join(['%s=%s' % (k, v) for k, v in kwargs.items()] + list(args)) resp, dt, size = self.__time_get_query('statements', query_str) assert resp.status_code == 200, \ ('Got error code %d: \"%s\".' % (resp.status_code, resp.data.decode())) resp_dict = json.loads(resp.data.decode('utf-8')) assert not resp_dict['limited'] json_stmts = resp_dict['statements'] assert len(json_stmts) is not 0, \ 'Did not get any statements.' assert size <= SIZELIMIT, \ ("Query took up %f MB. Must be less than %f MB." % (size/1e6, SIZELIMIT/1e6)) stmts = stmts_from_json(json_stmts) assert all([s.evidence for s in stmts]), \ "Some statements lack evidence." # To allow for faster response-times, we currently do not include # support links in the response. # assert any([s.supports + s.supported_by for s in stmts]),\ # ("Some statements lack support: %s." # % str([str(s) for s in stmts if not s.supports+s.supported_by])) # if check_stmts: # assert all([not s1.matches(s2) # for s1, s2 in combinations(stmts, 2)]),\ # ("Some statements match: %s." # % str([(s1, s2) for s1, s2 in combinations(stmts, 2) # if s1.matches(s2)])) assert dt <= time_limit, \ ("Query took %f seconds. Must be less than %f seconds." % (dt, time_limit)) return resp def test_blank_response(self): """Test the response to an empty request.""" resp, dt, size = self.__time_get_query('statements', '') assert resp.status_code == 400, \ ('Got unexpected response with code %d: %s.' % (resp.status_code, resp.data.decode())) assert dt <= TIMELIMIT, \ ("Query took %f seconds. Must be less than %f seconds." % (dt, TIMELIMIT)) assert size <= SIZELIMIT, \ "Query took up %f MB. Must be less than %f MB." % (size/1e6, SIZELIMIT/1e6) def test_specific_query(self): """Test whether we can get a "fully" specified statement.""" self.__check_good_statement_query(object='MAP2K1', subject='MAPK1', type='Phosphorylation') def test_object_only_query(self): """Test whether we can get an object only statement.""" self.__check_good_statement_query(object='GLUL', type='IncreaseAmount') def test_query_with_two_agents(self): """Test a query were the roles of the agents are not given.""" self.__check_good_statement_query('agent=MAP2K1', 'agent=MAPK1', type='Phosphorylation') def test_query_with_other(self): """Test that we can get an ActiveForm.""" self.__check_good_statement_query(agent='MAPK1', type='ActiveForm') def test_bad_camel(self): """Test that a type can be poorly formatted and resolve correctly.""" self.__check_good_statement_query(agent='MAPK1', type='acTivefOrm') def test_big_query(self): """Load-test with several big queries.""" self.__check_good_statement_query(agent='AKT1', check_stmts=False, time_limit=5) self.__check_good_statement_query(agent='MAPK1', check_stmts=False, time_limit=10) def test_query_with_too_many_stmts(self): """Test our check of statement length and the response.""" resp, dt, size = self.__time_get_query('statements', 'agent=TP53&on_limit=error') assert resp.status_code == 413, "Unexpected status code: %s" % str(resp) assert dt < 30, "Query took too long: %d" % dt assert 'Acetylation' in json.loads(resp.data.decode('utf-8'))['statements'] resp, dt, size = self.__time_get_query('statements', 'agent=TP53&on_limit=sample') assert resp.status_code == 200, str(resp) assert dt < 30, dt resp_dict = json.loads(resp.data.decode('utf-8')) assert len(resp_dict['statements']) == MAX_STATEMENTS resp, dt, size = self.__time_get_query('statements', 'agent=TP53&on_limit=truncate') def test_query_with_hgnc_ns(self): """Test specifying HGNC as a namespace.""" self.__check_good_statement_query(subject='6871@HGNC', object='MAP2K1', type='Phosphorylation') def test_query_with_text_ns(self): """Test specifying TEXT as a namespace.""" self.__check_good_statement_query(subject='ERK@TEXT', type='Phosphorylation') def test_query_with_hgnc_symbol_ns(self): """Test specifying HGNC-SYMBOL as a namespace.""" self.__check_good_statement_query(subject='MAPK1@HGNC-SYMBOL', type='Phosphorylation') def test_query_with_chebi_ns(self): """Test specifying CHEBI as a namespace.""" self.__check_good_statement_query(subject='CHEBI:6801@CHEBI') def test_query_with_bad_hgnc(self): resp, dt, size = self.__time_get_query('statements', ('subject=MEK&object=ERK' '&type=Phosphorylation')) assert resp.status_code != 200, "Got good status code." assert dt <= TIMELIMIT, dt assert size <= SIZELIMIT, size def test_famplex_query(self): resp, dt, size = self.__time_get_query('statements', ('subject=PDGF@FPLX' '&object=FOS' '&type=Phosphorylation')) resp_dict = json.loads(resp.data.decode('utf-8')) stmts = stmts_from_json(resp_dict['statements']) assert len(stmts) assert all([s.agent_list()[0].db_refs.get('FPLX') == 'PDGF' for s in stmts]),\ 'Not all subjects match.' assert dt <= TIMELIMIT, dt assert size <= SIZELIMIT, size def __test_basic_paper_query(self, id_val, id_type, min_num_results=1): query_str = 'id=%s&type=%s' % (id_val, id_type) resp, dt, size = self.__time_get_query('papers', query_str) assert dt <= TIMELIMIT, dt assert size <= SIZELIMIT, size assert resp.status_code == 200, str(resp) json_str = resp.data.decode('utf-8') json_list = json.loads(json_str)['statements'] assert len(json_list) >= min_num_results, (min_num_results, len(json_list)) return def test_pmid_paper_query(self): self.__test_basic_paper_query('8436299', 'pmid') # Now check without pmid specified (should be assumed.) resp, _, _ = self.__time_get_query('papers', 'id=8436299') assert resp.status_code == 200, str(resp) def test_pmcid_paper_query(self): self.__test_basic_paper_query('PMC5770457', 'pmcid') def test_trid_paper_query(self): self.__test_basic_paper_query('28145129', 'trid') if __name__ == '__main__': unittest.main()
42.570732
85
0.576143
21ee399f035f3042134c162511659e50c2a90e93
5,230
py
Python
crabageprediction/venv/Lib/site-packages/numpy/f2py/diagnose.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
20,453
2015-01-02T09:00:47.000Z
2022-03-31T23:35:56.000Z
crabageprediction/venv/Lib/site-packages/numpy/f2py/diagnose.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
14,862
2015-01-01T01:28:34.000Z
2022-03-31T23:48:52.000Z
bot/lib/python3.7/site-packages/numpy/f2py/diagnose.py
carlosrh18/DavinciBot
d73a6b7f68d7bab25d134d3f85c6b63a86c206c5
[ "MIT" ]
9,362
2015-01-01T15:49:43.000Z
2022-03-31T21:26:51.000Z
#!/usr/bin/env python3 import os import sys import tempfile def run_command(cmd): print('Running %r:' % (cmd)) os.system(cmd) print('------') def run(): _path = os.getcwd() os.chdir(tempfile.gettempdir()) print('------') print('os.name=%r' % (os.name)) print('------') print('sys.platform=%r' % (sys.platform)) print('------') print('sys.version:') print(sys.version) print('------') print('sys.prefix:') print(sys.prefix) print('------') print('sys.path=%r' % (':'.join(sys.path))) print('------') try: import numpy has_newnumpy = 1 except ImportError: print('Failed to import new numpy:', sys.exc_info()[1]) has_newnumpy = 0 try: from numpy.f2py import f2py2e has_f2py2e = 1 except ImportError: print('Failed to import f2py2e:', sys.exc_info()[1]) has_f2py2e = 0 try: import numpy.distutils has_numpy_distutils = 2 except ImportError: try: import numpy_distutils has_numpy_distutils = 1 except ImportError: print('Failed to import numpy_distutils:', sys.exc_info()[1]) has_numpy_distutils = 0 if has_newnumpy: try: print('Found new numpy version %r in %s' % (numpy.__version__, numpy.__file__)) except Exception as msg: print('error:', msg) print('------') if has_f2py2e: try: print('Found f2py2e version %r in %s' % (f2py2e.__version__.version, f2py2e.__file__)) except Exception as msg: print('error:', msg) print('------') if has_numpy_distutils: try: if has_numpy_distutils == 2: print('Found numpy.distutils version %r in %r' % ( numpy.distutils.__version__, numpy.distutils.__file__)) else: print('Found numpy_distutils version %r in %r' % ( numpy_distutils.numpy_distutils_version.numpy_distutils_version, numpy_distutils.__file__)) print('------') except Exception as msg: print('error:', msg) print('------') try: if has_numpy_distutils == 1: print( 'Importing numpy_distutils.command.build_flib ...', end=' ') import numpy_distutils.command.build_flib as build_flib print('ok') print('------') try: print( 'Checking availability of supported Fortran compilers:') for compiler_class in build_flib.all_compilers: compiler_class(verbose=1).is_available() print('------') except Exception as msg: print('error:', msg) print('------') except Exception as msg: print( 'error:', msg, '(ignore it, build_flib is obsolute for numpy.distutils 0.2.2 and up)') print('------') try: if has_numpy_distutils == 2: print('Importing numpy.distutils.fcompiler ...', end=' ') import numpy.distutils.fcompiler as fcompiler else: print('Importing numpy_distutils.fcompiler ...', end=' ') import numpy_distutils.fcompiler as fcompiler print('ok') print('------') try: print('Checking availability of supported Fortran compilers:') fcompiler.show_fcompilers() print('------') except Exception as msg: print('error:', msg) print('------') except Exception as msg: print('error:', msg) print('------') try: if has_numpy_distutils == 2: print('Importing numpy.distutils.cpuinfo ...', end=' ') from numpy.distutils.cpuinfo import cpuinfo print('ok') print('------') else: try: print( 'Importing numpy_distutils.command.cpuinfo ...', end=' ') from numpy_distutils.command.cpuinfo import cpuinfo print('ok') print('------') except Exception as msg: print('error:', msg, '(ignore it)') print('Importing numpy_distutils.cpuinfo ...', end=' ') from numpy_distutils.cpuinfo import cpuinfo print('ok') print('------') cpu = cpuinfo() print('CPU information:', end=' ') for name in dir(cpuinfo): if name[0] == '_' and name[1] != '_' and getattr(cpu, name[1:])(): print(name[1:], end=' ') print('------') except Exception as msg: print('error:', msg) print('------') os.chdir(_path) if __name__ == "__main__": run()
33.741935
102
0.478967
449881578f011e35bf3228d4b17eb15e702469a8
18,506
gyp
Python
Source/devtools/devtools.gyp
primiano/blink-gitcs
0b5424070e3006102e0036deea1e2e263b871eaa
[ "BSD-3-Clause" ]
1
2017-08-25T05:15:52.000Z
2017-08-25T05:15:52.000Z
Source/devtools/devtools.gyp
primiano/blink-gitcs
0b5424070e3006102e0036deea1e2e263b871eaa
[ "BSD-3-Clause" ]
null
null
null
Source/devtools/devtools.gyp
primiano/blink-gitcs
0b5424070e3006102e0036deea1e2e263b871eaa
[ "BSD-3-Clause" ]
null
null
null
# # Copyright (C) 2013 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # { 'includes': [ 'devtools.gypi', ], 'targets': [ { 'target_name': 'devtools_frontend_resources', 'type': 'none', 'dependencies': [ 'supported_css_properties', 'frontend_protocol_sources', 'build_applications', ], 'conditions': [ ['debug_devtools==0', { 'dependencies': [ 'concatenated_devtools_css', 'concatenated_inspector_css', 'concatenated_toolbox_css', ], }], ], 'copies': [ { 'destination': '<(PRODUCT_DIR)/resources/inspector/Images', 'files': [ '<@(devtools_image_files)', ], }, ], }, { 'target_name': 'devtools_extension_api', 'type': 'none', 'actions': [{ 'action_name': 'devtools_extension_api', 'script_name': 'scripts/generate_devtools_extension_api.py', 'inputs': [ '<@(_script_name)', '<@(devtools_extension_api_files)', ], 'outputs': ['<(PRODUCT_DIR)/resources/inspector/devtools_extension_api.js'], 'action': ['python', '<@(_script_name)', '<@(_outputs)', '<@(devtools_extension_api_files)'], }], }, { 'target_name': 'generate_devtools_grd', 'type': 'none', 'dependencies': [ 'devtools_extension_api', 'devtools_frontend_resources', ], 'conditions': [ ['debug_devtools==0', { 'actions': [{ 'action_name': 'generate_devtools_grd', 'script_name': 'scripts/generate_devtools_grd.py', 'relative_path_dirs': [ '<(PRODUCT_DIR)/resources/inspector', 'front_end' ], 'static_files': [ # Intentionally empty. Should get rebuilt when switching from debug_devtools==1. ], 'devtools_static_files_list': '<|(devtools_static_grd_files.tmp <@(_static_files))', 'generated_files': [ '<(PRODUCT_DIR)/resources/inspector/devtools.css', '<(PRODUCT_DIR)/resources/inspector/devtools.html', '<(PRODUCT_DIR)/resources/inspector/devtools.js', '<(PRODUCT_DIR)/resources/inspector/inspector.css', '<(PRODUCT_DIR)/resources/inspector/inspector.html', '<(PRODUCT_DIR)/resources/inspector/inspector.js', '<(PRODUCT_DIR)/resources/inspector/toolbox.css', '<(PRODUCT_DIR)/resources/inspector/toolbox.html', '<(PRODUCT_DIR)/resources/inspector/toolbox.js', '<(PRODUCT_DIR)/resources/inspector/audits_module.js', '<(PRODUCT_DIR)/resources/inspector/console_module.js', '<(PRODUCT_DIR)/resources/inspector/devices_module.js', '<(PRODUCT_DIR)/resources/inspector/elements_module.js', '<(PRODUCT_DIR)/resources/inspector/heap_snapshot_worker_module.js', '<(PRODUCT_DIR)/resources/inspector/layers_module.js', '<(PRODUCT_DIR)/resources/inspector/network_module.js', '<(PRODUCT_DIR)/resources/inspector/profiler_module.js', '<(PRODUCT_DIR)/resources/inspector/promises_module.js', '<(PRODUCT_DIR)/resources/inspector/resources_module.js', '<(PRODUCT_DIR)/resources/inspector/script_formatter_worker_module.js', '<(PRODUCT_DIR)/resources/inspector/settings_module.js', '<(PRODUCT_DIR)/resources/inspector/source_frame_module.js', '<(PRODUCT_DIR)/resources/inspector/sources_module.js', '<(PRODUCT_DIR)/resources/inspector/temp_storage_shared_worker_module.js', '<(PRODUCT_DIR)/resources/inspector/timeline_module.js', '<(PRODUCT_DIR)/resources/inspector/devtools_extension_api.js', ], 'inputs': [ '<@(_script_name)', '<@(_static_files)', '<@(_generated_files)', '<@(devtools_image_files)', '<(_devtools_static_files_list)', ], 'images_path': [ 'front_end/Images', ], 'outputs': ['<(SHARED_INTERMEDIATE_DIR)/devtools/devtools_resources.grd'], 'action': ['python', '<@(_script_name)', '<@(_generated_files)', '--static_files_list', '<(_devtools_static_files_list)', '--relative_path_dirs', '<@(_relative_path_dirs)', '--images', '<@(_images_path)', '--output', '<@(_outputs)'], }], }, { # If we're not concatenating devtools files, we want to # run after the original files have been copied to # <(PRODUCT_DIR)/resources/inspector. 'dependencies': ['devtools_frontend_resources'], 'actions': [{ 'action_name': 'generate_devtools_grd', 'script_name': 'scripts/generate_devtools_grd.py', 'relative_path_dirs': [ 'front_end', '<(PRODUCT_DIR)/resources/inspector', ], 'static_files': [ '<@(all_devtools_files)', 'front_end/Runtime.js', ], 'devtools_static_files_list': '<|(devtools_static_grd_files.tmp <@(_static_files))', 'generated_files': [ '<(PRODUCT_DIR)/resources/inspector/InspectorBackendCommands.js', '<(PRODUCT_DIR)/resources/inspector/SupportedCSSProperties.js', '<(PRODUCT_DIR)/resources/inspector/devtools.html', '<(PRODUCT_DIR)/resources/inspector/inspector.html', '<(PRODUCT_DIR)/resources/inspector/toolbox.html', ], 'inputs': [ '<@(_script_name)', '<@(_static_files)', '<@(_generated_files)', '<@(devtools_image_files)', '<(_devtools_static_files_list)', ], 'images_path': [ 'front_end/Images', ], # Note that other files are put under /devtools directory, together with declared devtools_resources.grd 'outputs': ['<(SHARED_INTERMEDIATE_DIR)/devtools/devtools_resources.grd'], 'action': ['python', '<@(_script_name)', '<@(_generated_files)', '--static_files_list', '<(_devtools_static_files_list)', '--relative_path_dirs', '<@(_relative_path_dirs)', '--images', '<@(_images_path)', '--output', '<@(_outputs)'], }], }], ], }, { 'target_name': 'frontend_protocol_sources', 'type': 'none', 'actions': [ { 'action_name': 'generateInspectorProtocolFrontendSources', 'inputs': [ # The python script in action below. 'scripts/CodeGeneratorFrontend.py', # Input file for the script. 'protocol.json', ], 'outputs': [ '<(PRODUCT_DIR)/resources/inspector/InspectorBackendCommands.js', ], 'action': [ 'python', 'scripts/CodeGeneratorFrontend.py', 'protocol.json', '--output_js_dir', '<(PRODUCT_DIR)/resources/inspector/', ], 'message': 'Generating Inspector protocol frontend sources from protocol.json', }, ] }, { 'target_name': 'supported_css_properties', 'type': 'none', 'actions': [ { 'action_name': 'generateSupportedCSSProperties', 'inputs': [ # The python script in action below. 'scripts/generate_supported_css.py', # Input files for the script. '../core/css/CSSProperties.in', ], 'outputs': [ '<(PRODUCT_DIR)/resources/inspector/SupportedCSSProperties.js', ], 'action': [ 'python', '<@(_inputs)', '<@(_outputs)', ], 'message': 'Generating supported CSS properties for front end', }, ] }, # Frontend applications and modules. { 'target_name': 'build_applications', 'type': 'none', 'dependencies': [ 'supported_css_properties', 'frontend_protocol_sources', ], 'output_path': '<(PRODUCT_DIR)/resources/inspector/', 'actions': [{ 'action_name': 'build_applications', 'script_name': 'scripts/build_applications.py', 'helper_scripts': [ 'scripts/modular_build.py', 'scripts/concatenate_application_code.py', ], 'inputs': [ '<@(_script_name)', '<@(_helper_scripts)', '<@(all_devtools_files)', 'front_end/devtools.html', 'front_end/inspector.html', 'front_end/toolbox.html', '<(_output_path)/InspectorBackendCommands.js', '<(_output_path)/SupportedCSSProperties.js', ], 'action': ['python', '<@(_script_name)', 'devtools', 'inspector', 'toolbox', '--input_path', 'front_end', '--output_path', '<@(_output_path)', '--debug', '<@(debug_devtools)'], 'conditions': [ ['debug_devtools==0', { # Release 'outputs': [ '<(_output_path)/devtools.html', '<(_output_path)/devtools.js', '<(_output_path)/inspector.html', '<(_output_path)/inspector.js', '<(_output_path)/toolbox.html', '<(_output_path)/toolbox.js', '<(_output_path)/audits_module.js', '<(_output_path)/console_module.js', '<(_output_path)/devices_module.js', '<(_output_path)/elements_module.js', '<(_output_path)/heap_snapshot_worker_module.js', '<(_output_path)/layers_module.js', '<(_output_path)/network_module.js', '<(_output_path)/profiler_module.js', '<(_output_path)/promises_module.js', '<(_output_path)/resources_module.js', '<(_output_path)/script_formatter_worker_module.js', '<(_output_path)/settings_module.js', '<(_output_path)/source_frame_module.js', '<(_output_path)/sources_module.js', '<(_output_path)/temp_storage_shared_worker_module.js', '<(_output_path)/timeline_module.js', ], }, { # Debug 'outputs': [ '<(_output_path)/devtools.html', '<(_output_path)/inspector.html', '<(_output_path)/toolbox.html', ] }] ] }], 'conditions': [ ['debug_devtools==0', { # Release }, { # Debug # Copy runtime core and non-module directories here. 'copies': [ { 'destination': '<(_output_path)', 'files': [ '<@(devtools_core_base_files)', '<@(devtools_core_css_files)', ], }, { 'destination': '<(_output_path)/UglifyJS', 'files': [ '<@(devtools_uglify_files)', ], }, { 'destination': '<(_output_path)/cm', 'files': [ '<@(devtools_cm_js_files)', '<@(devtools_cm_css_files)', ], }, ] }] ] }, ], # targets 'conditions': [ ['debug_devtools==0', { 'targets': [ { 'target_name': 'concatenated_devtools_css', 'type': 'none', 'actions': [{ 'action_name': 'concatenate_devtools_css', 'script_name': 'scripts/concatenate_css_files.py', 'input_stylesheet': 'front_end/devtools.css', 'inputs': [ '<@(_script_name)', '<@(_input_stylesheet)', '<@(devtools_core_css_files)', ], 'search_path': [ 'front_end' ], 'outputs': ['<(PRODUCT_DIR)/resources/inspector/devtools.css'], 'action': ['python', '<@(_script_name)', '<@(_input_stylesheet)', '<@(_outputs)'], }], }, { 'target_name': 'concatenated_inspector_css', 'type': 'none', 'actions': [{ 'action_name': 'concatenate_inspector_css', 'script_name': 'scripts/concatenate_css_files.py', 'input_stylesheet': 'front_end/inspector.css', 'inputs': [ '<@(_script_name)', '<@(_input_stylesheet)', '<@(devtools_core_css_files)', ], 'search_path': [ 'front_end' ], 'outputs': ['<(PRODUCT_DIR)/resources/inspector/inspector.css'], 'action': ['python', '<@(_script_name)', '<@(_input_stylesheet)', '<@(_outputs)'], }], }, { 'target_name': 'concatenated_toolbox_css', 'type': 'none', 'actions': [{ 'action_name': 'concatenate_toolbox_css', 'script_name': 'scripts/concatenate_css_files.py', 'input_stylesheet': 'front_end/toolbox.css', 'inputs': [ '<@(_script_name)', '<@(_input_stylesheet)', '<@(devtools_core_css_files)', ], 'search_path': [ 'front_end' ], 'outputs': ['<(PRODUCT_DIR)/resources/inspector/toolbox.css'], 'action': ['python', '<@(_script_name)', '<@(_input_stylesheet)', '<@(_outputs)'], }], }, ], }], ], # conditions }
48.572178
257
0.45034
2c0c94ab6e1a54403ba3bf2e6cd87543c698cde5
1,331
py
Python
test/test_cluster_nodes_onefs_version.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
test/test_cluster_nodes_onefs_version.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
test/test_cluster_nodes_onefs_version.py
Atomicology/isilon_sdk_python
91039da803ae37ed4abf8d2a3f59c333f3ef1866
[ "MIT" ]
null
null
null
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ref: https://github.com/swagger-api/swagger-codegen """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.cluster_nodes_onefs_version import ClusterNodesOnefsVersion class TestClusterNodesOnefsVersion(unittest.TestCase): """ ClusterNodesOnefsVersion unit test stubs """ def setUp(self): pass def tearDown(self): pass def testClusterNodesOnefsVersion(self): """ Test ClusterNodesOnefsVersion """ model = swagger_client.models.cluster_nodes_onefs_version.ClusterNodesOnefsVersion() if __name__ == '__main__': unittest.main()
27.163265
92
0.746807
5565f14d40cd6255a96f070259d3b3e1e73778c2
13,436
py
Python
espnet/nets/e2e_asr_common.py
LuoTianqi/espnet
b7ff2546b37c3f12b2bd45d879f2f0f88767b639
[ "Apache-2.0" ]
1
2020-02-06T15:59:22.000Z
2020-02-06T15:59:22.000Z
espnet/nets/e2e_asr_common.py
LuoTianqi/espnet
b7ff2546b37c3f12b2bd45d879f2f0f88767b639
[ "Apache-2.0" ]
null
null
null
espnet/nets/e2e_asr_common.py
LuoTianqi/espnet
b7ff2546b37c3f12b2bd45d879f2f0f88767b639
[ "Apache-2.0" ]
1
2021-02-28T05:57:51.000Z
2021-02-28T05:57:51.000Z
#!/usr/bin/env python3 # Copyright 2017 Johns Hopkins University (Shinji Watanabe) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Common functions for ASR.""" import argparse import editdistance import json import logging import numpy as np import six import sys from itertools import groupby def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))): """End detection. desribed in Eq. (50) of S. Watanabe et al "Hybrid CTC/Attention Architecture for End-to-End Speech Recognition" :param ended_hyps: :param i: :param M: :param D_end: :return: """ if len(ended_hyps) == 0: return False count = 0 best_hyp = sorted(ended_hyps, key=lambda x: x['score'], reverse=True)[0] for m in six.moves.range(M): # get ended_hyps with their length is i - m hyp_length = i - m hyps_same_length = [x for x in ended_hyps if len(x['yseq']) == hyp_length] if len(hyps_same_length) > 0: best_hyp_same_length = sorted(hyps_same_length, key=lambda x: x['score'], reverse=True)[0] if best_hyp_same_length['score'] - best_hyp['score'] < D_end: count += 1 if count == M: return True else: return False # TODO(takaaki-hori): add different smoothing methods def label_smoothing_dist(odim, lsm_type, transcript=None, blank=0): """Obtain label distribution for loss smoothing. :param odim: :param lsm_type: :param blank: :param transcript: :return: """ if transcript is not None: with open(transcript, 'rb') as f: trans_json = json.load(f)['utts'] if lsm_type == 'unigram': assert transcript is not None, 'transcript is required for %s label smoothing' % lsm_type labelcount = np.zeros(odim) for k, v in trans_json.items(): ids = np.array([int(n) for n in v['output'][0]['tokenid'].split()]) # to avoid an error when there is no text in an uttrance if len(ids) > 0: labelcount[ids] += 1 labelcount[odim - 1] = len(transcript) # count <eos> labelcount[labelcount == 0] = 1 # flooring labelcount[blank] = 0 # remove counts for blank labeldist = labelcount.astype(np.float32) / np.sum(labelcount) else: logging.error( "Error: unexpected label smoothing type: %s" % lsm_type) sys.exit() return labeldist def get_vgg2l_odim(idim, in_channel=3, out_channel=128): """Return the output size of the VGG frontend. :param in_channel: input channel size :param out_channel: output channel size :return: output size :rtype int """ idim = idim / in_channel idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 1st max pooling idim = np.ceil(np.array(idim, dtype=np.float32) / 2) # 2nd max pooling return int(idim) * out_channel # numer of channels class ErrorCalculator(object): """Calculate CER and WER for E2E_ASR and CTC models during training. :param y_hats: numpy array with predicted text :param y_pads: numpy array with true (target) text :param char_list: :param sym_space: :param sym_blank: :return: """ def __init__(self, char_list, sym_space, sym_blank, report_cer=False, report_wer=False): """Construct an ErrorCalculator object.""" super(ErrorCalculator, self).__init__() self.report_cer = report_cer self.report_wer = report_wer self.char_list = char_list self.space = sym_space self.blank = sym_blank self.idx_blank = self.char_list.index(self.blank) if self.space in self.char_list: self.idx_space = self.char_list.index(self.space) else: self.idx_space = None def __call__(self, ys_hat, ys_pad, is_ctc=False): """Calculate sentence-level WER/CER score. :param torch.Tensor ys_hat: prediction (batch, seqlen) :param torch.Tensor ys_pad: reference (batch, seqlen) :param bool is_ctc: calculate CER score for CTC :return: sentence-level WER score :rtype float :return: sentence-level CER score :rtype float """ cer, wer = None, None if is_ctc: return self.calculate_cer_ctc(ys_hat, ys_pad) elif not self.report_cer and not self.report_wer: return cer, wer seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad) if self.report_cer: cer = self.calculate_cer(seqs_hat, seqs_true) if self.report_wer: wer = self.calculate_wer(seqs_hat, seqs_true) return cer, wer def calculate_cer_ctc(self, ys_hat, ys_pad): """Calculate sentence-level CER score for CTC. :param torch.Tensor ys_hat: prediction (batch, seqlen) :param torch.Tensor ys_pad: reference (batch, seqlen) :return: average sentence-level CER score :rtype float """ cers, char_ref_lens = [], [] for i, y in enumerate(ys_hat): y_hat = [x[0] for x in groupby(y)] y_true = ys_pad[i] seq_hat, seq_true = [], [] for idx in y_hat: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_hat.append(self.char_list[int(idx)]) for idx in y_true: idx = int(idx) if idx != -1 and idx != self.idx_blank and idx != self.idx_space: seq_true.append(self.char_list[int(idx)]) hyp_chars = "".join(seq_hat) ref_chars = "".join(seq_true) if len(ref_chars) > 0: cers.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None return cer_ctc def convert_to_char(self, ys_hat, ys_pad): """Convert index to character. :param torch.Tensor seqs_hat: prediction (batch, seqlen) :param torch.Tensor seqs_true: reference (batch, seqlen) :return: token list of prediction :rtype list :return: token list of reference :rtype list """ seqs_hat, seqs_true = [], [] for i, y_hat in enumerate(ys_hat): y_true = ys_pad[i] eos_true = np.where(y_true == -1)[0] eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true) # To avoid wrong higher WER than the one obtained from the decoding # eos from y_true is used to mark the eos in y_hat # because of that y_hats has not padded outs with -1. seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]] seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] seq_hat_text = "".join(seq_hat).replace(self.space, ' ') seq_hat_text = seq_hat_text.replace(self.blank, '') seq_true_text = "".join(seq_true).replace(self.space, ' ') seqs_hat.append(seq_hat_text) seqs_true.append(seq_true_text) return seqs_hat, seqs_true def calculate_cer(self, seqs_hat, seqs_true): """Calculate sentence-level CER score. :param list seqs_hat: prediction :param list seqs_true: reference :return: average sentence-level CER score :rtype float """ char_eds, char_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_chars = seq_hat_text.replace(' ', '') ref_chars = seq_true_text.replace(' ', '') char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) return float(sum(char_eds)) / sum(char_ref_lens) def calculate_wer(self, seqs_hat, seqs_true): """Calculate sentence-level WER score. :param list seqs_hat: prediction :param list seqs_true: reference :return: average sentence-level WER score :rtype float """ word_eds, word_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) return float(sum(word_eds)) / sum(word_ref_lens) class ErrorCalculatorTrans(object): """Calculate CER and WER for transducer models. Args: decoder (nn.Module): decoder module args (Namespace): argument Namespace containing options report_cer (boolean): compute CER option report_wer (boolean): compute WER option """ def __init__(self, decoder, args, report_cer=False, report_wer=False): """Construct an ErrorCalculator object for transducer model.""" super(ErrorCalculatorTrans, self).__init__() self.dec = decoder recog_args = {'beam_size': args.beam_size, 'nbest': args.nbest, 'space': args.sym_space, 'score_norm_transducer': args.score_norm_transducer} self.recog_args = argparse.Namespace(**recog_args) self.char_list = args.char_list self.space = args.sym_space self.blank = args.sym_blank self.report_cer = args.report_cer self.report_wer = args.report_wer def __call__(self, hs_pad, ys_pad): """Calculate sentence-level WER/CER score for transducer models. Args: hs_pad (torch.Tensor): batch of padded input sequence (batch, T, D) ys_pad (torch.Tensor): reference (batch, seqlen) Returns: (float): sentence-level CER score (float): sentence-level WER score """ cer, wer = None, None if not self.report_cer and not self.report_wer: return cer, wer batchsize = int(hs_pad.size(0)) batch_nbest = [] for b in six.moves.range(batchsize): if self.recog_args.beam_size == 1: nbest_hyps = self.dec.recognize(hs_pad[b], self.recog_args) else: nbest_hyps = self.dec.recognize_beam(hs_pad[b], self.recog_args) batch_nbest.append(nbest_hyps) ys_hat = [nbest_hyp[0]['yseq'][1:] for nbest_hyp in batch_nbest] seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad.cpu()) if self.report_cer: cer = self.calculate_cer(seqs_hat, seqs_true) if self.report_wer: wer = self.calculate_wer(seqs_hat, seqs_true) return cer, wer def convert_to_char(self, ys_hat, ys_pad): """Convert index to character. Args: ys_hat (torch.Tensor): prediction (batch, seqlen) ys_pad (torch.Tensor): reference (batch, seqlen) Returns: (list): token list of prediction (list): token list of reference """ seqs_hat, seqs_true = [], [] for i, y_hat in enumerate(ys_hat): y_true = ys_pad[i] eos_true = np.where(y_true == -1)[0] eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true) seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]] seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] seq_hat_text = "".join(seq_hat).replace(self.space, ' ') seq_hat_text = seq_hat_text.replace(self.blank, '') seq_true_text = "".join(seq_true).replace(self.space, ' ') seqs_hat.append(seq_hat_text) seqs_true.append(seq_true_text) return seqs_hat, seqs_true def calculate_cer(self, seqs_hat, seqs_true): """Calculate sentence-level CER score for transducer model. Args: seqs_hat (torch.Tensor): prediction (batch, seqlen) seqs_true (torch.Tensor): reference (batch, seqlen) Returns: (float): average sentence-level CER score """ char_eds, char_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_chars = seq_hat_text.replace(' ', '') ref_chars = seq_true_text.replace(' ', '') char_eds.append(editdistance.eval(hyp_chars, ref_chars)) char_ref_lens.append(len(ref_chars)) return float(sum(char_eds)) / sum(char_ref_lens) def calculate_wer(self, seqs_hat, seqs_true): """Calculate sentence-level WER score for transducer model. Args: seqs_hat (torch.Tensor): prediction (batch, seqlen) seqs_true (torch.Tensor): reference (batch, seqlen) Returns: (float): average sentence-level WER score """ word_eds, word_ref_lens = [], [] for i, seq_hat_text in enumerate(seqs_hat): seq_true_text = seqs_true[i] hyp_words = seq_hat_text.split() ref_words = seq_true_text.split() word_eds.append(editdistance.eval(hyp_words, ref_words)) word_ref_lens.append(len(ref_words)) return float(sum(word_eds)) / sum(word_ref_lens)
34.363171
102
0.607175
284cc42ad58fa9d7f464b554d862caf47c34fb71
59,546
py
Python
gewittergefahr/gg_utils/gridded_forecasts.py
dopplerchase/GewitterGefahr
4415b08dd64f37eba5b1b9e8cc5aa9af24f96593
[ "MIT" ]
26
2018-10-04T01:07:35.000Z
2022-01-29T08:49:32.000Z
gewittergefahr/gg_utils/gridded_forecasts.py
liuximarcus/GewitterGefahr
d819874d616f98a25187bfd3091073a2e6d5279e
[ "MIT" ]
4
2017-12-25T02:01:08.000Z
2018-12-19T01:54:21.000Z
gewittergefahr/gg_utils/gridded_forecasts.py
liuximarcus/GewitterGefahr
d819874d616f98a25187bfd3091073a2e6d5279e
[ "MIT" ]
11
2017-12-10T23:05:29.000Z
2022-01-29T08:49:33.000Z
"""Methods to create gridded spatial forecasts from storm-cell-based ones.""" import copy import numpy import pandas from gewittergefahr.gg_utils import storm_tracking_utils as tracking_utils from gewittergefahr.gg_utils import projections from gewittergefahr.gg_utils import polygons from gewittergefahr.gg_utils import grids from gewittergefahr.gg_utils import interp from gewittergefahr.gg_utils import nwp_model_utils from gewittergefahr.gg_utils import grid_smoothing_2d from gewittergefahr.gg_utils import geodetic_utils from gewittergefahr.gg_utils import time_conversion from gewittergefahr.gg_utils import number_rounding as rounder from gewittergefahr.gg_utils import error_checking from gewittergefahr.deep_learning import prediction_io # TODO(thunderhoser): This file needs to be cleaned up a bit. I used to allow # each init time to have its own grid, and some of the code for this is still # hanging around. MINOR_SEPARATOR_STRING = '\n\n' + '-' * 50 + '\n\n' MAX_STORM_SPEED_M_S01 = 60. LOG_MESSAGE_TIME_FORMAT = '%Y-%m-%d-%H%M%S' GAUSSIAN_SMOOTHING_METHOD = 'gaussian' CRESSMAN_SMOOTHING_METHOD = 'cressman' VALID_SMOOTHING_METHODS = [GAUSSIAN_SMOOTHING_METHOD, CRESSMAN_SMOOTHING_METHOD] DEFAULT_PROJECTION_OBJECT = nwp_model_utils.init_projection( nwp_model_utils.RAP_MODEL_NAME) DEFAULT_LEAD_TIME_RES_SECONDS = 60 DEFAULT_GRID_SPACING_METRES = 1000. DEFAULT_GRID_SPACING_DEG = 0.01 DEFAULT_PROB_RADIUS_FOR_GRID_METRES = 1e4 DEFAULT_SMOOTHING_E_FOLDING_RADIUS_METRES = 5000. DEFAULT_SMOOTHING_CUTOFF_RADIUS_METRES = 15000. LATLNG_POLYGON_COLUMN_PREFIX = tracking_utils.BUFFER_COLUMN_PREFIX XY_POLYGON_COLUMN_PREFIX = 'polygon_object_xy_buffer' FORECAST_COLUMN_PREFIX = 'forecast_probability_buffer' GRID_ROWS_IN_POLYGON_COLUMN_PREFIX = 'grid_rows_in_buffer' GRID_COLUMNS_IN_POLYGON_COLUMN_PREFIX = 'grid_columns_in_buffer' COLUMN_PREFIXES = [ LATLNG_POLYGON_COLUMN_PREFIX, XY_POLYGON_COLUMN_PREFIX, FORECAST_COLUMN_PREFIX, GRID_ROWS_IN_POLYGON_COLUMN_PREFIX, GRID_COLUMNS_IN_POLYGON_COLUMN_PREFIX ] LATLNG_POLYGON_COLUMN_TYPE = 'latlng' XY_POLYGON_COLUMN_TYPE = 'xy' FORECAST_COLUMN_TYPE = 'forecast' GRID_ROWS_IN_POLYGON_COLUMN_TYPE = 'grid_rows_in_polygon' GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE = 'grid_columns_in_polygon' COLUMN_TYPES = [ LATLNG_POLYGON_COLUMN_TYPE, XY_POLYGON_COLUMN_TYPE, FORECAST_COLUMN_TYPE, GRID_ROWS_IN_POLYGON_COLUMN_TYPE, GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE ] SPEED_COLUMN = 'speed_m_s01' GEOGRAPHIC_BEARING_COLUMN = 'geographic_bearing_deg' def _check_smoothing_method(smoothing_method): """Ensures that smoothing method is valid. :param smoothing_method: String name for smoothing method. :raises: ValueError: if `smoothing_method not in VALID_SMOOTHING_METHODS`. """ error_checking.assert_is_string(smoothing_method) if smoothing_method not in VALID_SMOOTHING_METHODS: error_string = ( '\n{0:s}\nValid smoothing methods (listed above) do not include ' '"{1:s}".' ).format(str(VALID_SMOOTHING_METHODS), smoothing_method) raise ValueError(error_string) def _column_name_to_buffer(column_name): """Parses distance buffer from column name. If distance buffer cannot be found in column name, returns None for all outputs. :param column_name: Name of column. This column may contain x-y polygons, lat-long polygons, or forecast probabilities. :return: min_buffer_dist_metres: Minimum buffer distance. :return: max_buffer_dist_metres: Maximum buffer distance. """ this_column_name = copy.deepcopy(column_name) for this_prefix in COLUMN_PREFIXES: this_column_name = this_column_name.replace( this_prefix, LATLNG_POLYGON_COLUMN_PREFIX) return tracking_utils.column_name_to_buffer(this_column_name) def _buffer_to_column_name( min_buffer_dist_metres, max_buffer_dist_metres, column_type): """Generates column name for distance buffer. :param min_buffer_dist_metres: Minimum buffer distance. :param max_buffer_dist_metres: Max buffer distance. :param column_type: Column type (may be any string in `COLUMN_TYPES`). :return: column_name: Name of column. """ column_name = tracking_utils.buffer_to_column_name( min_distance_metres=min_buffer_dist_metres, max_distance_metres=max_buffer_dist_metres) if column_type == LATLNG_POLYGON_COLUMN_TYPE: return column_name if column_type == XY_POLYGON_COLUMN_TYPE: return column_name.replace( LATLNG_POLYGON_COLUMN_PREFIX, XY_POLYGON_COLUMN_PREFIX) if column_type == FORECAST_COLUMN_TYPE: return column_name.replace( LATLNG_POLYGON_COLUMN_PREFIX, FORECAST_COLUMN_PREFIX) if column_type == GRID_ROWS_IN_POLYGON_COLUMN_TYPE: return column_name.replace( LATLNG_POLYGON_COLUMN_PREFIX, GRID_ROWS_IN_POLYGON_COLUMN_PREFIX) if column_type == GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE: return column_name.replace( LATLNG_POLYGON_COLUMN_PREFIX, GRID_COLUMNS_IN_POLYGON_COLUMN_PREFIX) return None def _get_distance_buffer_columns(storm_object_table, column_type): """Returns all column names corresponding to distance buffers. :param storm_object_table: pandas DataFrame. :param column_type: Column type (may be any string in `COLUMN_TYPES`). :return: dist_buffer_column_names: 1-D list of column names corresponding to distance buffers. If there are no columns with distance buffers, returns None. """ column_names = list(storm_object_table) dist_buffer_column_names = None for this_column_name in column_names: if (column_type == XY_POLYGON_COLUMN_TYPE and XY_POLYGON_COLUMN_PREFIX not in this_column_name): continue if (column_type == LATLNG_POLYGON_COLUMN_TYPE and LATLNG_POLYGON_COLUMN_PREFIX not in this_column_name): continue if (column_type == FORECAST_COLUMN_TYPE and FORECAST_COLUMN_PREFIX not in this_column_name): continue if (column_type == GRID_ROWS_IN_POLYGON_COLUMN_TYPE and GRID_ROWS_IN_POLYGON_COLUMN_PREFIX not in this_column_name): continue if (column_type == GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE and GRID_COLUMNS_IN_POLYGON_COLUMN_PREFIX not in this_column_name): continue _, this_max_distance_metres = _column_name_to_buffer( this_column_name) if this_max_distance_metres is None: continue if dist_buffer_column_names is None: dist_buffer_column_names = [this_column_name] else: dist_buffer_column_names.append(this_column_name) return dist_buffer_column_names def _check_distance_buffers(min_distances_metres, max_distances_metres): """Ensures that distance buffers are unique and abutting. B = number of distance buffers :param min_distances_metres: length-B numpy array of minimum buffer distances. :param max_distances_metres: length-B numpy array of max buffer distances. :raises: ValueError: if distance buffers are non-unique or non-abutting. """ error_checking.assert_is_numpy_array( min_distances_metres, num_dimensions=1) error_checking.assert_is_geq_numpy_array( min_distances_metres, 0., allow_nan=True) num_buffers = len(min_distances_metres) these_expected_dim = numpy.array([num_buffers], dtype=int) error_checking.assert_is_numpy_array( max_distances_metres, exact_dimensions=these_expected_dim) sort_indices = numpy.argsort(max_distances_metres) sorted_min_distances_metres = numpy.round( min_distances_metres[sort_indices] ) sorted_max_distances_metres = numpy.round( max_distances_metres[sort_indices] ) for j in range(num_buffers): if numpy.isnan(sorted_min_distances_metres[j]): error_checking.assert_is_geq(sorted_max_distances_metres[j], 0.) else: error_checking.assert_is_greater( sorted_max_distances_metres[j], sorted_min_distances_metres[j] ) if (j != 0 and sorted_min_distances_metres[j] != sorted_max_distances_metres[j - 1]): error_string = ( 'Minimum distance for {0:d}th buffer ({1:d} m) does not equal ' 'max distance for {2:d}th buffer ({3:d} m). This means the two' ' distance buffers are not abutting.' ).format( j + 1, int(sorted_min_distances_metres[j]), j, int(sorted_max_distances_metres[j - 1]) ) raise ValueError(error_string) def _polygons_from_latlng_to_xy( storm_object_table, projection_object=DEFAULT_PROJECTION_OBJECT): """Projects distance buffers around each storm object from lat-long to x-y. N = number of storm objects B = number of distance buffers around each storm object :param storm_object_table: N-row pandas DataFrame. Each row contains the polygons for distance buffers around one storm object. For the [j]th distance buffer, required column is given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="latlng") :param projection_object: See doc for `polygons.project_latlng_to_xy`. :return: storm_object_table: Same as input but with additional columns. For the [j]th distance buffer, new column is given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") """ buffer_column_names_latlng = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=LATLNG_POLYGON_COLUMN_TYPE) num_buffers = len(buffer_column_names_latlng) min_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) max_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) buffer_column_names_xy = [''] * num_buffers for j in range(num_buffers): min_buffer_distances_metres[j], max_buffer_distances_metres[j] = ( _column_name_to_buffer(buffer_column_names_latlng[j]) ) buffer_column_names_xy[j] = _buffer_to_column_name( min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type=XY_POLYGON_COLUMN_TYPE) num_storm_objects = len(storm_object_table.index) object_array = numpy.full(num_storm_objects, numpy.nan, dtype=object) for j in range(num_buffers): storm_object_table = storm_object_table.assign(**{ buffer_column_names_xy[j]: object_array }) for i in range(num_storm_objects): for j in range(num_buffers): storm_object_table[buffer_column_names_xy[j]].values[i], _ = ( polygons.project_latlng_to_xy( polygon_object_latlng=storm_object_table[ buffer_column_names_latlng[j] ].values[i], projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) ) return storm_object_table def _create_default_xy_grid(x_spacing_metres, y_spacing_metres): """Creates default x-y grid. M = number of rows in grid N = number of columns in grid :param x_spacing_metres: Spacing between adjacent grid points in x-direction (i.e., between adjacent columns). :param y_spacing_metres: Spacing between adjacent grid points in y-direction (i.e., between adjacent rows). :return: grid_points_x_metres: length-N numpy array with x-coordinates of grid points. :return: grid_points_y_metres: length-M numpy array with y-coordinates of grid points. """ rap_x_coords_metres, rap_y_coords_metres = ( nwp_model_utils.get_xy_grid_points( model_name=nwp_model_utils.RAP_MODEL_NAME, grid_name=nwp_model_utils.NAME_OF_130GRID) ) false_easting_metres, false_northing_metres = ( nwp_model_utils.get_false_easting_and_northing( model_name=nwp_model_utils.RAP_MODEL_NAME, grid_name=nwp_model_utils.NAME_OF_130GRID) ) rap_x_coords_metres -= false_easting_metres rap_y_coords_metres -= false_northing_metres x_min_metres = rap_x_coords_metres[50] x_max_metres = rap_x_coords_metres[-30] y_min_metres = rap_y_coords_metres[40] y_max_metres = rap_y_coords_metres[-70] x_min_metres = rounder.floor_to_nearest(x_min_metres, x_spacing_metres) x_max_metres = rounder.ceiling_to_nearest(x_max_metres, x_spacing_metres) y_min_metres = rounder.floor_to_nearest(y_min_metres, y_spacing_metres) y_max_metres = rounder.ceiling_to_nearest(y_max_metres, y_spacing_metres) num_rows = 1 + int(numpy.round( (y_max_metres - y_min_metres) / y_spacing_metres )) num_columns = 1 + int(numpy.round( (x_max_metres - x_min_metres) / x_spacing_metres )) return grids.get_xy_grid_points( x_min_metres=x_min_metres, y_min_metres=y_min_metres, x_spacing_metres=x_spacing_metres, y_spacing_metres=y_spacing_metres, num_rows=num_rows, num_columns=num_columns) def _create_xy_grid(storm_object_table, x_spacing_metres, y_spacing_metres, max_lead_time_sec): """Creates x-y grid encompassing all storm objects. M = number of grid rows (unique grid-point y-coordinates) N = number of grid columns (unique grid-point x-coordinates) :param storm_object_table: pandas DataFrame. Each row contains the polygons and forecast probabilities for distance buffers around one storm object. For the [j]th distance buffer, required columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") :param x_spacing_metres: Spacing between adjacent grid points in x-direction (i.e., between adjacent columns). :param y_spacing_metres: Spacing between adjacent grid points in y-direction (i.e., between adjacent rows). :param max_lead_time_sec: Max lead time for which gridded forecasts will be created. :return: grid_points_x_metres: length-N numpy array with x-coordinates of grid points. :return: grid_points_y_metres: length-M numpy array with y-coordinates of grid points. """ buffer_column_names_xy = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=XY_POLYGON_COLUMN_TYPE) x_min_metres = numpy.inf x_max_metres = -numpy.inf y_min_metres = numpy.inf y_max_metres = -numpy.inf num_buffers = len(buffer_column_names_xy) num_storm_objects = len(storm_object_table.index) for i in range(num_storm_objects): for j in range(num_buffers): this_polygon_object = storm_object_table[ buffer_column_names_xy[j] ].values[i] these_x_metres = numpy.array(this_polygon_object.exterior.xy[0]) these_y_metres = numpy.array(this_polygon_object.exterior.xy[1]) x_min_metres = min([x_min_metres, numpy.min(these_x_metres)]) x_max_metres = max([x_max_metres, numpy.max(these_x_metres)]) y_min_metres = min([y_min_metres, numpy.min(these_y_metres)]) y_max_metres = max([y_max_metres, numpy.max(these_y_metres)]) x_min_metres = x_min_metres - MAX_STORM_SPEED_M_S01 * max_lead_time_sec x_max_metres = x_max_metres + MAX_STORM_SPEED_M_S01 * max_lead_time_sec y_min_metres = y_min_metres - MAX_STORM_SPEED_M_S01 * max_lead_time_sec y_max_metres = y_max_metres + MAX_STORM_SPEED_M_S01 * max_lead_time_sec x_min_metres = rounder.floor_to_nearest(x_min_metres, x_spacing_metres) x_max_metres = rounder.ceiling_to_nearest(x_max_metres, x_spacing_metres) y_min_metres = rounder.floor_to_nearest(y_min_metres, y_spacing_metres) y_max_metres = rounder.ceiling_to_nearest(y_max_metres, y_spacing_metres) num_rows = 1 + int(numpy.round( (y_max_metres - y_min_metres) / y_spacing_metres )) num_columns = 1 + int(numpy.round( (x_max_metres - x_min_metres) / x_spacing_metres )) return grids.get_xy_grid_points( x_min_metres=x_min_metres, y_min_metres=y_min_metres, x_spacing_metres=x_spacing_metres, y_spacing_metres=y_spacing_metres, num_rows=num_rows, num_columns=num_columns) def _create_latlng_grid( grid_points_x_metres, grid_points_y_metres, latitude_spacing_deg, longitude_spacing_deg, projection_object=DEFAULT_PROJECTION_OBJECT): """Creates a lat-long grid encompassing the original x-y grid. M_xy = number of rows (unique grid-point y-coordinates) in original grid N_xy = number of columns (unique grid-point x-coordinates) in original grid M_ll = number of rows (unique grid-point latitudes) in new grid N_ll = number of columns (unique grid-point longitudes) in new grid :param grid_points_x_metres: numpy array (length N_xy) with x-coordinates of original grid points. :param grid_points_y_metres: numpy array (length M_xy) with y-coordinates of original grid points. :param latitude_spacing_deg: Spacing between latitudinally adjacent grid points (i.e., between adjacent rows). :param longitude_spacing_deg: Spacing between longitudinally adjacent grid points (i.e., between adjacent columns). :param projection_object: See doc for `projections.project_xy_to_latlng`. :return: grid_point_latitudes_deg: numpy array (length M_ll) with latitudes (deg N) of new grid points. :return: grid_point_longitudes_deg: numpy array (length N_ll) with longitudes (deg E) of new grid points. """ grid_point_x_matrix_metres, grid_point_y_matrix_metres = ( grids.xy_vectors_to_matrices( x_unique_metres=grid_points_x_metres, y_unique_metres=grid_points_y_metres) ) latitude_matrix_deg, longitude_matrix_deg = ( projections.project_xy_to_latlng( x_coords_metres=grid_point_x_matrix_metres, y_coords_metres=grid_point_y_matrix_metres, projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) ) min_latitude_deg = rounder.floor_to_nearest( numpy.min(latitude_matrix_deg), latitude_spacing_deg ) max_latitude_deg = rounder.ceiling_to_nearest( numpy.max(latitude_matrix_deg), latitude_spacing_deg ) min_longitude_deg = rounder.floor_to_nearest( numpy.min(longitude_matrix_deg), longitude_spacing_deg ) max_longitude_deg = rounder.ceiling_to_nearest( numpy.max(longitude_matrix_deg), longitude_spacing_deg ) num_rows = 1 + int(numpy.round( (max_latitude_deg - min_latitude_deg) / latitude_spacing_deg )) num_columns = 1 + int(numpy.round( (max_longitude_deg - min_longitude_deg) / longitude_spacing_deg )) return grids.get_latlng_grid_points( min_latitude_deg=min_latitude_deg, min_longitude_deg=min_longitude_deg, lat_spacing_deg=latitude_spacing_deg, lng_spacing_deg=longitude_spacing_deg, num_rows=num_rows, num_columns=num_columns) def _interp_probabilities_to_latlng_grid( probability_matrix_xy, grid_points_x_metres, grid_points_y_metres, latitude_spacing_deg, longitude_spacing_deg, projection_object=DEFAULT_PROJECTION_OBJECT): """Interpolates forecast probabilities from x-y to lat-long grid. M_xy = number of rows (unique grid-point y-coordinates) in original grid N_xy = number of columns (unique grid-point x-coordinates) in original grid M_ll = number of rows (unique grid-point latitudes) in new grid N_ll = number of columns (unique grid-point longitudes) in new grid :param probability_matrix_xy: numpy array (M_xy by N_xy) of forecast probabilities on original grid. :param grid_points_x_metres: numpy array (length N_xy) with x-coordinates of original grid points. :param grid_points_y_metres: numpy array (length M_xy) with y-coordinates of original grid points. :param latitude_spacing_deg: Spacing between latitudinally adjacent grid points (i.e., between adjacent rows). :param longitude_spacing_deg: Spacing between longitudinally adjacent grid points (i.e., between adjacent columns). :param projection_object: See doc for `projections.project_xy_to_latlng`. :return: probability_matrix_latlng: numpy array (M_ll by N_ll) of forecast probabilities on new grid. :return: grid_point_latitudes_deg: numpy array (length M_ll) with latitudes (deg N) of new grid points. :return: grid_point_longitudes_deg: numpy array (length N_ll) with longitudes (deg E) of new grid points. """ grid_point_latitudes_deg, grid_point_longitudes_deg = _create_latlng_grid( grid_points_x_metres=grid_points_x_metres, grid_points_y_metres=grid_points_y_metres, projection_object=projection_object, latitude_spacing_deg=latitude_spacing_deg, longitude_spacing_deg=longitude_spacing_deg) grid_point_lat_matrix_deg, grid_point_lng_matrix_deg = ( grids.latlng_vectors_to_matrices( unique_latitudes_deg=grid_point_latitudes_deg, unique_longitudes_deg=grid_point_longitudes_deg) ) latlng_grid_x_matrix_metres, latlng_grid_y_matrix_metres = ( projections.project_latlng_to_xy( grid_point_lat_matrix_deg, grid_point_lng_matrix_deg, projection_object=projection_object, false_easting_metres=0., false_northing_metres=0.) ) num_latlng_grid_rows = len(grid_point_latitudes_deg) num_latlng_grid_columns = len(grid_point_longitudes_deg) num_latlng_grid_points = num_latlng_grid_rows * num_latlng_grid_columns latlng_grid_x_vector_metres = numpy.reshape( latlng_grid_x_matrix_metres, num_latlng_grid_points) latlng_grid_y_vector_metres = numpy.reshape( latlng_grid_y_matrix_metres, num_latlng_grid_points) probability_vector_latlng = interp.interp_from_xy_grid_to_points( input_matrix=probability_matrix_xy, sorted_grid_point_x_metres=grid_points_x_metres, sorted_grid_point_y_metres=grid_points_y_metres, query_x_coords_metres=latlng_grid_x_vector_metres, query_y_coords_metres=latlng_grid_y_vector_metres, method_string=interp.NEAREST_NEIGHBOUR_METHOD_STRING, extrapolate=True) probability_matrix_latlng = numpy.reshape( probability_vector_latlng, (num_latlng_grid_rows, num_latlng_grid_columns) ) return (probability_matrix_latlng, grid_point_latitudes_deg, grid_point_longitudes_deg) def _normalize_probs_by_polygon_area( storm_object_table, prob_radius_for_grid_metres): """Normalizes each forecast probability by area of the attached polygon. Specifically, this method applies the following equation: f_norm = 1 - (1 - f_polygon)^(pi * r^2 / A) f_polygon = forecast probability of event occurring within the polygon A = area of the polygon r = `prob_radius_for_grid_metres` f_norm = forecast probability of event occurring within radius r Also: N = number of storm objects B = number of distance buffers around each storm object :param storm_object_table: N-row pandas DataFrame. Each row contains the polygons and forecast probabilities for distance buffers around one storm object. For the [j]th distance buffer, required columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="forecast") :param prob_radius_for_grid_metres: Effective radius for gridded probabilities. For example, if the gridded value is "probability within 10 km of a point," this should be 10 000. :return: storm_object_table: Same as input, except that probabilities are normalized. """ buffer_column_names_xy = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=XY_POLYGON_COLUMN_TYPE) num_buffers = len(buffer_column_names_xy) min_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) max_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) forecast_column_names = [''] * num_buffers for j in range(num_buffers): min_buffer_distances_metres[j], max_buffer_distances_metres[j] = ( _column_name_to_buffer(buffer_column_names_xy[j]) ) forecast_column_names[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=FORECAST_COLUMN_TYPE) num_storm_objects = len(storm_object_table.index) prob_area_for_grid_metres2 = numpy.pi * prob_radius_for_grid_metres ** 2 for j in range(num_buffers): these_areas_metres2 = numpy.array([ storm_object_table[buffer_column_names_xy[j]].values[i].area for i in range(num_storm_objects) ]) these_original_probs = storm_object_table[ forecast_column_names[j] ].values these_normalized_probs = 1. - numpy.power( 1. - these_original_probs, prob_area_for_grid_metres2 / these_areas_metres2 ) storm_object_table = storm_object_table.assign(**{ forecast_column_names[j]: these_normalized_probs }) return storm_object_table def _storm_motion_from_uv_to_speed_direction(storm_object_table): """For each storm object, converts motion from u-v to speed-direction. N = number of storm objects :param storm_object_table: N-row pandas DataFrame with the following columns. storm_object_table.east_velocity_m_s01: Eastward velocity of storm object (metres per second). storm_object_table.north_velocity_m_s01: Northward velocity of storm object (metres per second). :return: storm_object_table: N-row pandas DataFrame with the following columns. storm_object_table.speed_m_s01: Storm speed (magnitude of velocity) in m/s. storm_object_table.geographic_bearing_deg: Storm bearing in geographic degrees (clockwise from due north). """ storm_speeds_m_s01, geodetic_bearings_deg = ( geodetic_utils.xy_to_scalar_displacements_and_bearings( x_displacements_metres=storm_object_table[ tracking_utils.EAST_VELOCITY_COLUMN].values, y_displacements_metres=storm_object_table[ tracking_utils.NORTH_VELOCITY_COLUMN].values) ) storm_object_table = storm_object_table.assign(**{ SPEED_COLUMN: storm_speeds_m_s01, GEOGRAPHIC_BEARING_COLUMN: geodetic_bearings_deg }) return storm_object_table.drop( [tracking_utils.EAST_VELOCITY_COLUMN, tracking_utils.NORTH_VELOCITY_COLUMN], axis=1, inplace=False ) def _extrapolate_polygons( storm_object_table, lead_time_seconds, projection_object=DEFAULT_PROJECTION_OBJECT): """For each storm object, extrapolates distance buffers forward in time. N = number of storm objects :param storm_object_table: N-row pandas DataFrame. Each row contains data for distance buffers around one storm object. For the [j]th distance buffer, required columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="latlng") Other required columns are listed below. storm_object_table.speed_m_s01: Storm speed (magnitude of velocity) in m/s. storm_object_table.geographic_bearing_deg: Storm bearing in geographic degrees (clockwise from due north). :param lead_time_seconds: Lead time. Polygons will be extrapolated this far into the future. :param projection_object: See doc for `_polygons_from_latlng_to_xy`. :return: extrap_storm_object_table: N-row pandas DataFrame. Each row contains extrapolated polygons for distance buffers around one storm object. For the [j]th distance buffer, columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") """ buffer_column_names_latlng = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=LATLNG_POLYGON_COLUMN_TYPE) num_storm_objects = len(storm_object_table.index) object_array = numpy.full(num_storm_objects, numpy.nan, dtype=object) num_buffers = len(buffer_column_names_latlng) extrap_storm_object_table = None for j in range(num_buffers): if extrap_storm_object_table is None: extrap_storm_object_table = pandas.DataFrame.from_dict({ buffer_column_names_latlng[j]: object_array }) else: extrap_storm_object_table = extrap_storm_object_table.assign(**{ buffer_column_names_latlng[j]: object_array }) for j in range(num_buffers): these_first_vertex_lat_deg = [ storm_object_table[buffer_column_names_latlng[j]].values[ i].exterior.xy[1][0] for i in range(num_storm_objects) ] these_first_vertex_lng_deg = [ storm_object_table[buffer_column_names_latlng[j]].values[ i].exterior.xy[0][0] for i in range(num_storm_objects) ] these_first_vertex_lat_deg = numpy.array(these_first_vertex_lat_deg) these_first_vertex_lng_deg = numpy.array(these_first_vertex_lng_deg) these_extrap_lat_deg, these_extrap_lng_deg = ( geodetic_utils.start_points_and_displacements_to_endpoints( start_latitudes_deg=these_first_vertex_lat_deg, start_longitudes_deg=these_first_vertex_lng_deg, scalar_displacements_metres= storm_object_table[SPEED_COLUMN].values * lead_time_seconds, geodetic_bearings_deg= storm_object_table[GEOGRAPHIC_BEARING_COLUMN].values) ) these_lat_diffs_deg = these_extrap_lat_deg - these_first_vertex_lat_deg these_lng_diffs_deg = these_extrap_lng_deg - these_first_vertex_lng_deg for i in range(num_storm_objects): these_new_latitudes_deg = these_lat_diffs_deg[i] + numpy.array( storm_object_table[ buffer_column_names_latlng[j]].values[i].exterior.xy[1] ) these_new_longitudes_deg = these_lng_diffs_deg[i] + numpy.array( storm_object_table[ buffer_column_names_latlng[j]].values[i].exterior.xy[0] ) extrap_storm_object_table[ buffer_column_names_latlng[j] ].values[i] = polygons.vertex_arrays_to_polygon_object( exterior_x_coords=these_new_longitudes_deg, exterior_y_coords=these_new_latitudes_deg) return _polygons_from_latlng_to_xy( storm_object_table=extrap_storm_object_table, projection_object=projection_object) def _find_min_value_greater_or_equal(sorted_input_array, test_value): """Finds minimum value in array that is >= test value. :param sorted_input_array: Input array. Must be sorted in ascending order. :param test_value: Test value (scalar). :return: min_value_geq_test: Minimum of value input_array that is >= test_value. :return: min_index_geq_test: Array index of min_value_geq_test in input_array. If min_index_geq_test = i, this means that min_value_geq_test = sorted_input_array[i]. """ # TODO(thunderhoser): Put this method somewhere else. It applies to many # more things than gridded forecasting. min_index_geq_test = numpy.searchsorted( sorted_input_array, numpy.array([test_value]), side='left' )[0] return sorted_input_array[min_index_geq_test], min_index_geq_test def _find_max_value_less_than_or_equal(sorted_input_array, test_value): """Finds maximum value in array that is <= test value. :param sorted_input_array: Input array. Must be sorted in ascending order. :param test_value: Test value (scalar). :return: max_value_leq_test: Max value of input_array that is <= test_value. :return: max_index_leq_test: Array index of max_value_leq_test in input_array. If max_index_leq_test = i, this means that max_value_leq_test = sorted_input_array[i]. """ # TODO(thunderhoser): Put this method somewhere else. It applies to many # more things than gridded forecasting. max_index_leq_test = -1 + numpy.searchsorted( sorted_input_array, numpy.array([test_value]), side='right' )[0] return sorted_input_array[max_index_leq_test], max_index_leq_test def _find_grid_points_in_polygon( polygon_object_xy, grid_points_x_metres, grid_points_y_metres): """Finds grid points in polygon. M = number of rows (unique grid-point y-coordinates) N = number of columns (unique grid-point x-coordinates) P = number of grid points in polygon :param polygon_object_xy: Instance of `shapely.geometry.Polygon` with vertices in x-y coordinates (metres). :param grid_points_x_metres: length-N numpy array with x-coordinates of grid points. Must be sorted in ascending order. :param grid_points_y_metres: length-M numpy array with y-coordinates of grid points. Must be sorted in ascending order. :return: rows_in_polygon: length-P integer numpy array of rows in polygon. :return: columns_in_polygon: length-P integer numpy array of columns in polygon. """ min_x_in_polygon_metres = numpy.min(numpy.array( polygon_object_xy.exterior.xy[0] )) max_x_in_polygon_metres = numpy.max(numpy.array( polygon_object_xy.exterior.xy[0] )) min_y_in_polygon_metres = numpy.min(numpy.array( polygon_object_xy.exterior.xy[1] )) max_y_in_polygon_metres = numpy.max(numpy.array( polygon_object_xy.exterior.xy[1] )) _, min_row_to_test = _find_min_value_greater_or_equal( grid_points_y_metres, min_y_in_polygon_metres) _, max_row_to_test = _find_max_value_less_than_or_equal( grid_points_y_metres, max_y_in_polygon_metres) _, min_column_to_test = _find_min_value_greater_or_equal( grid_points_x_metres, min_x_in_polygon_metres) _, max_column_to_test = _find_max_value_less_than_or_equal( grid_points_x_metres, max_x_in_polygon_metres) rows_in_polygon = [] columns_in_polygon = [] for this_row in range(min_row_to_test, max_row_to_test + 1): for this_column in range(min_column_to_test, max_column_to_test + 1): this_flag = polygons.point_in_or_on_polygon( polygon_object=polygon_object_xy, query_x_coordinate=grid_points_x_metres[this_column], query_y_coordinate=grid_points_y_metres[this_row] ) if not this_flag: continue rows_in_polygon.append(this_row) columns_in_polygon.append(this_column) rows_in_polygon = numpy.array(rows_in_polygon, dtype=int) columns_in_polygon = numpy.array(columns_in_polygon, dtype=int) return rows_in_polygon, columns_in_polygon def _polygons_to_grid_points( storm_object_table, grid_points_x_metres, grid_points_y_metres): """Finds grid points in each polygon. M = number of rows (unique grid-point y-coordinates) N = number of columns (unique grid-point x-coordinates) P = number of grid points in a given polygon :param storm_object_table: pandas DataFrame. Each row contains the polygons for distance buffers around one storm object. For the [j]th distance buffer, required column is given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") :param grid_points_x_metres: length-N numpy array with x-coordinates of grid points. Must be sorted in ascending order. :param grid_points_y_metres: length-M numpy array with y-coordinates of grid points. Must be sorted in ascending order. :return: storm_object_table: Same as input but with additional columns. For the [j]th distance buffer, new columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_rows_in_polygon") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_columns_in_polygon") """ xy_buffer_column_names = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=XY_POLYGON_COLUMN_TYPE) num_buffers = len(xy_buffer_column_names) min_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) max_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) grid_rows_in_buffer_column_names = [''] * num_buffers grid_columns_in_buffer_column_names = [''] * num_buffers for j in range(num_buffers): min_buffer_distances_metres[j], max_buffer_distances_metres[j] = ( _column_name_to_buffer(xy_buffer_column_names[j]) ) grid_rows_in_buffer_column_names[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_ROWS_IN_POLYGON_COLUMN_TYPE) grid_columns_in_buffer_column_names[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE) nested_array = storm_object_table[[ xy_buffer_column_names[0], xy_buffer_column_names[0] ]].values.tolist() for j in range(num_buffers): storm_object_table = storm_object_table.assign(**{ grid_rows_in_buffer_column_names[j]: nested_array }) storm_object_table = storm_object_table.assign(**{ grid_columns_in_buffer_column_names[j]: nested_array }) num_storm_objects = len(storm_object_table.index) for i in range(num_storm_objects): for j in range(num_buffers): these_grid_rows, these_grid_columns = _find_grid_points_in_polygon( polygon_object_xy=storm_object_table[ xy_buffer_column_names[j]].values[i], grid_points_x_metres=grid_points_x_metres, grid_points_y_metres=grid_points_y_metres) storm_object_table[ grid_rows_in_buffer_column_names[j] ].values[i] = these_grid_rows storm_object_table[ grid_columns_in_buffer_column_names[j] ].values[i] = these_grid_columns return storm_object_table def _extrap_polygons_to_grid_points( orig_storm_object_table, extrap_storm_object_table, grid_spacing_x_metres, grid_spacing_y_metres): """Finds grid points in each extrapolated polygon. M = number of rows (unique grid-point y-coordinates) N = number of columns (unique grid-point x-coordinates) P = number of grid points in a given polygon K = number of storm objects t_0 = initial time (valid time of all storm objects) t_L = lead time :param orig_storm_object_table: K-row pandas DataFrame. Each row contains data for distance buffers around one storm object at t_0. For the [j]th distance buffer, required columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_rows_in_polygon") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_columns_in_polygon") :param extrap_storm_object_table: K-row pandas DataFrame. Each row contains polygons for distance buffers around one storm object, extrapolated to (t_0 + t_L). For the [j]th distance buffer, required column is given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="xy") :param grid_spacing_x_metres: Spacing between adjacent grid points in x-direction (i.e., between adjacent columns). :param grid_spacing_y_metres: Spacing between adjacent grid points in y-direction (i.e., between adjacent rows). :return: extrap_storm_object_table: Same as input but with additional columns. For the [j]th distance buffer, new columns are given by the following command: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_rows_in_polygon") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="grid_columns_in_polygon") """ xy_buffer_column_names = _get_distance_buffer_columns( storm_object_table=orig_storm_object_table, column_type=XY_POLYGON_COLUMN_TYPE) num_buffers = len(xy_buffer_column_names) min_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) max_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) grid_rows_in_buffer_column_names = [''] * num_buffers grid_columns_in_buffer_column_names = [''] * num_buffers for j in range(num_buffers): min_buffer_distances_metres[j], max_buffer_distances_metres[j] = ( _column_name_to_buffer(xy_buffer_column_names[j])) grid_rows_in_buffer_column_names[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_ROWS_IN_POLYGON_COLUMN_TYPE) grid_columns_in_buffer_column_names[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE) nested_array = extrap_storm_object_table[[ xy_buffer_column_names[0], xy_buffer_column_names[0] ]].values.tolist() for j in range(num_buffers): extrap_storm_object_table = extrap_storm_object_table.assign(**{ grid_rows_in_buffer_column_names[j]: nested_array }) extrap_storm_object_table = extrap_storm_object_table.assign(**{ grid_columns_in_buffer_column_names[j]: nested_array }) num_storm_objects = len(orig_storm_object_table.index) for i in range(num_storm_objects): for j in range(num_buffers): this_orig_polygon_object = orig_storm_object_table[ xy_buffer_column_names[j] ].values[i] this_extrap_polygon_object = extrap_storm_object_table[ xy_buffer_column_names[j] ].values[i] this_x_diff_metres = ( numpy.array(this_extrap_polygon_object.exterior.xy[0])[0] - numpy.array(this_orig_polygon_object.exterior.xy[0])[0] ) this_y_diff_metres = ( numpy.array(this_extrap_polygon_object.exterior.xy[1])[0] - numpy.array(this_orig_polygon_object.exterior.xy[1])[0] ) this_row_diff = int(numpy.round( this_y_diff_metres / grid_spacing_y_metres )) this_column_diff = int(numpy.round( this_x_diff_metres / grid_spacing_x_metres )) this_name = grid_rows_in_buffer_column_names[j] extrap_storm_object_table[this_name].values[i] = ( orig_storm_object_table[this_name].values[i] + this_row_diff ) this_name = grid_columns_in_buffer_column_names[j] extrap_storm_object_table[this_name].values[i] = ( orig_storm_object_table[this_name].values[i] + this_column_diff ) return extrap_storm_object_table def create_forecast_grids( storm_object_table, min_lead_time_sec, max_lead_time_sec, lead_time_resolution_sec=DEFAULT_LEAD_TIME_RES_SECONDS, grid_spacing_x_metres=DEFAULT_GRID_SPACING_METRES, grid_spacing_y_metres=DEFAULT_GRID_SPACING_METRES, interp_to_latlng_grid=True, latitude_spacing_deg=DEFAULT_GRID_SPACING_DEG, longitude_spacing_deg=DEFAULT_GRID_SPACING_DEG, prob_radius_for_grid_metres=DEFAULT_PROB_RADIUS_FOR_GRID_METRES, smoothing_method=None, smoothing_e_folding_radius_metres= DEFAULT_SMOOTHING_E_FOLDING_RADIUS_METRES, smoothing_cutoff_radius_metres=DEFAULT_SMOOTHING_CUTOFF_RADIUS_METRES): """For each time with at least one storm object, creates grid of fcst probs. T = number of times with at least one storm object = number of forecast-initialization times M = number of rows in given forecast grid (different for each init time) N = number of columns in given forecast grid (different for each init time) :param storm_object_table: pandas DataFrame with columns listed below. Each row corresponds to one storm object. For the [j]th distance buffer, required columns are given by the following commands: _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="latlng") _buffer_to_column_name(min_buffer_distances_metres[j], max_buffer_distances_metres[j], column_type="forecast") Other required columns are listed below. storm_object_table.full_id_string: Full storm ID. storm_object_table.valid_time_unix_sec: Valid time. storm_object_table.centroid_latitude_deg: Latitude (deg N) of storm centroid. storm_object_table.centroid_longitude_deg: Longitude (deg E) of storm centroid. storm_object_table.east_velocity_m_s01: Eastward velocity of storm cell (metres per second). storm_object_table.north_velocity_m_s01: Northward velocity of storm cell (metres per second). :param min_lead_time_sec: Minimum lead time. For each time with at least one storm object, gridded probabilities will be event probabilities for `min_lead_time_sec`...`max_lead_time_sec` into the future. :param max_lead_time_sec: See documentation for `min_lead_time_sec`. :param lead_time_resolution_sec: Spacing between successive lead times. For all lead times in {min_lead_time_sec, min_lead_time_sec + lead_time_resolution_sec, min_lead_time_sec + 2 * lead_time_resolution_sec, ..., max_lead_time_sec}, storm objects will be extrapolated along their respective motion vectors. Lower values of `lead_time_resolution_sec` lead to smoother forecast grids. :param grid_spacing_x_metres: Spacing between adjacent grid points in x-direction (i.e., between adjacent columns). :param grid_spacing_y_metres: Spacing between adjacent grid points in y-direction (i.e., between adjacent rows). :param interp_to_latlng_grid: Boolean flag. If True, the probability field for each initial time will be saved as both an x-y grid and a lat-long grid. :param latitude_spacing_deg: Spacing between meridionally adjacent grid points (i.e., between adjacent rows). :param longitude_spacing_deg: Spacing between zonally adjacent grid points (i.e., between adjacent columns). :param prob_radius_for_grid_metres: Effective radius for gridded probabilities. For example, if the gridded value is "probability within 10 km of a point," this should be 10 000. :param smoothing_method: Smoothing method. For each initial time, smoother will be applied to the final forecast probability field. Valid options are "gaussian", "cressman", and None. :param smoothing_e_folding_radius_metres: e-folding radius for Gaussian smoother. See documentation for `grid_smoothing_2d.apply_gaussian`. :param smoothing_cutoff_radius_metres: Cutoff radius for Gaussian or Cressman smoother. See documentation for `grid_smoothing_2d.apply_gaussian` or `grid_smoothing_2d.apply_cressman`. :return: gridded_forecast_dict: See doc for `prediction_io.write_gridded_predictions`. """ # TODO(thunderhoser): Min and max lead time should be determined by params # for target variable. # TODO(thunderhoser): Effective radius should allow non-zero probs outside # of polygon buffer. Or maybe allowing for uncertainty in the future track # would handle this. error_checking.assert_is_integer(min_lead_time_sec) error_checking.assert_is_geq(min_lead_time_sec, 0) error_checking.assert_is_integer(max_lead_time_sec) error_checking.assert_is_greater(max_lead_time_sec, min_lead_time_sec) error_checking.assert_is_integer(lead_time_resolution_sec) error_checking.assert_is_greater(lead_time_resolution_sec, 0) error_checking.assert_is_boolean(interp_to_latlng_grid) error_checking.assert_is_greater(prob_radius_for_grid_metres, 0.) if smoothing_method is not None: _check_smoothing_method(smoothing_method) num_lead_times = 1 + int(numpy.round( float(max_lead_time_sec - min_lead_time_sec) / lead_time_resolution_sec )) lead_times_seconds = numpy.linspace( min_lead_time_sec, max_lead_time_sec, num=num_lead_times, dtype=int) latlng_buffer_columns = _get_distance_buffer_columns( storm_object_table=storm_object_table, column_type=LATLNG_POLYGON_COLUMN_TYPE) num_buffers = len(latlng_buffer_columns) min_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) max_buffer_distances_metres = numpy.full(num_buffers, numpy.nan) xy_buffer_columns = [''] * num_buffers buffer_forecast_columns = [''] * num_buffers buffer_row_list_columns = [''] * num_buffers buffer_column_list_columns = [''] * num_buffers for j in range(num_buffers): min_buffer_distances_metres[j], max_buffer_distances_metres[j] = ( _column_name_to_buffer(latlng_buffer_columns[j]) ) xy_buffer_columns[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=XY_POLYGON_COLUMN_TYPE) buffer_forecast_columns[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=FORECAST_COLUMN_TYPE) buffer_row_list_columns[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_ROWS_IN_POLYGON_COLUMN_TYPE) buffer_column_list_columns[j] = _buffer_to_column_name( min_buffer_dist_metres=min_buffer_distances_metres[j], max_buffer_dist_metres=max_buffer_distances_metres[j], column_type=GRID_COLUMNS_IN_POLYGON_COLUMN_TYPE) _check_distance_buffers( min_distances_metres=min_buffer_distances_metres, max_distances_metres=max_buffer_distances_metres) storm_object_table = _storm_motion_from_uv_to_speed_direction( storm_object_table) init_times_unix_sec = numpy.unique( storm_object_table[tracking_utils.TIME_COLUMN].values ) init_time_strings = [ time_conversion.unix_sec_to_string(t, LOG_MESSAGE_TIME_FORMAT) for t in init_times_unix_sec ] grid_point_x_coords_metres, grid_point_y_coords_metres = ( _create_default_xy_grid( x_spacing_metres=grid_spacing_x_metres, y_spacing_metres=grid_spacing_y_metres) ) num_xy_rows = len(grid_point_y_coords_metres) num_xy_columns = len(grid_point_x_coords_metres) num_init_times = len(init_time_strings) gridded_forecast_dict = { prediction_io.INIT_TIMES_KEY: init_times_unix_sec, prediction_io.MIN_LEAD_TIME_KEY: min_lead_time_sec, prediction_io.MAX_LEAD_TIME_KEY: max_lead_time_sec, prediction_io.GRID_X_COORDS_KEY: grid_point_x_coords_metres, prediction_io.GRID_Y_COORDS_KEY: grid_point_y_coords_metres, prediction_io.XY_PROBABILITIES_KEY: [None] * num_init_times, prediction_io.PROJECTION_KEY: DEFAULT_PROJECTION_OBJECT } if interp_to_latlng_grid: gridded_forecast_dict.update({ prediction_io.LATLNG_PROBABILITIES_KEY: [None] * num_init_times }) for i in range(num_init_times): this_storm_object_table = storm_object_table.loc[ storm_object_table[tracking_utils.TIME_COLUMN] == init_times_unix_sec[i] ] this_num_storm_objects = len(this_storm_object_table.index) this_storm_object_table = _polygons_from_latlng_to_xy( storm_object_table=this_storm_object_table) this_storm_object_table = _normalize_probs_by_polygon_area( storm_object_table=this_storm_object_table, prob_radius_for_grid_metres=prob_radius_for_grid_metres) this_storm_object_table = _polygons_to_grid_points( storm_object_table=this_storm_object_table, grid_points_x_metres=grid_point_x_coords_metres, grid_points_y_metres=grid_point_y_coords_metres) this_probability_matrix_xy = numpy.full( (num_xy_rows, num_xy_columns), 0. ) this_num_forecast_matrix = numpy.full( (num_xy_rows, num_xy_columns), 0, dtype=int ) for this_lead_time_sec in lead_times_seconds: print(( 'Updating forecast grid for initial time {0:s}, lead time {1:d}' ' seconds...' ).format(init_time_strings[i], this_lead_time_sec)) this_extrap_storm_object_table = _extrapolate_polygons( storm_object_table=this_storm_object_table, lead_time_seconds=this_lead_time_sec) this_extrap_storm_object_table = _extrap_polygons_to_grid_points( orig_storm_object_table=this_storm_object_table, extrap_storm_object_table=this_extrap_storm_object_table, grid_spacing_x_metres=grid_spacing_x_metres, grid_spacing_y_metres=grid_spacing_y_metres) for j in range(num_buffers): for k in range(this_num_storm_objects): these_rows = this_extrap_storm_object_table[ buffer_row_list_columns[j] ].values[k] if len(these_rows) == 0: # Outside of grid. continue these_columns = this_extrap_storm_object_table[ buffer_column_list_columns[j] ].values[k] this_num_forecast_matrix[these_rows, these_columns] += 1 this_probability_matrix_xy[these_rows, these_columns] = ( this_probability_matrix_xy[these_rows, these_columns] + this_storm_object_table[ buffer_forecast_columns[j] ].values[k] ) this_probability_matrix_xy = ( this_probability_matrix_xy / this_num_forecast_matrix ) if smoothing_method is not None: print('Smoothing forecast grid for initial time {0:s}...'.format( init_time_strings[i] )) if smoothing_method == GAUSSIAN_SMOOTHING_METHOD: this_probability_matrix_xy = grid_smoothing_2d.apply_gaussian( input_matrix=this_probability_matrix_xy, grid_spacing_x=grid_spacing_x_metres, grid_spacing_y=grid_spacing_y_metres, e_folding_radius=smoothing_e_folding_radius_metres, cutoff_radius=smoothing_cutoff_radius_metres) elif smoothing_method == CRESSMAN_SMOOTHING_METHOD: this_probability_matrix_xy = grid_smoothing_2d.apply_cressman( input_matrix=this_probability_matrix_xy, grid_spacing_x=grid_spacing_x_metres, grid_spacing_y=grid_spacing_y_metres, cutoff_radius=smoothing_cutoff_radius_metres) # gridded_forecast_dict[prediction_io.XY_PROBABILITIES_KEY][i] = ( # scipy.sparse.csr_matrix(this_probability_matrix_xy) # ) gridded_forecast_dict[prediction_io.XY_PROBABILITIES_KEY][i] = ( this_probability_matrix_xy ) if not interp_to_latlng_grid: if i != num_init_times - 1: print(MINOR_SEPARATOR_STRING) continue print(( 'Interpolating forecast to lat-long grid for initial time ' '{0:s}...' ).format( init_time_strings[i] )) if i != num_init_times - 1: print(MINOR_SEPARATOR_STRING) (this_prob_matrix_latlng, these_latitudes_deg, these_longitudes_deg ) = _interp_probabilities_to_latlng_grid( probability_matrix_xy=this_probability_matrix_xy, grid_points_x_metres=grid_point_x_coords_metres, grid_points_y_metres=grid_point_y_coords_metres, latitude_spacing_deg=latitude_spacing_deg, longitude_spacing_deg=longitude_spacing_deg) # gridded_forecast_dict[prediction_io.LATLNG_PROBABILITIES_KEY][i] = ( # scipy.sparse.csr_matrix(this_prob_matrix_latlng) # ) gridded_forecast_dict[prediction_io.LATLNG_PROBABILITIES_KEY][i] = ( this_prob_matrix_latlng ) if i != 0: continue gridded_forecast_dict.update({ prediction_io.GRID_LATITUDES_KEY: these_latitudes_deg, prediction_io.GRID_LONGITUDES_KEY: these_longitudes_deg }) return gridded_forecast_dict
41.236842
80
0.718856
56e49e0d3837092ddd568580e2fa534c4574a070
451
py
Python
python/fundir/du_jindutiao.py
harkhuang/harkcode
1c9802bfc8d599e20ee9082eca14165a782ddf85
[ "MIT" ]
3
2015-10-27T00:49:46.000Z
2019-04-19T08:14:46.000Z
python/fundir/du_jindutiao.py
harkhuang/harkcode
1c9802bfc8d599e20ee9082eca14165a782ddf85
[ "MIT" ]
1
2018-11-05T07:54:55.000Z
2018-11-05T07:54:55.000Z
python/fundir/du_jindutiao.py
harkhuang/harkcode
1c9802bfc8d599e20ee9082eca14165a782ddf85
[ "MIT" ]
1
2015-12-19T08:47:53.000Z
2015-12-19T08:47:53.000Z
import sys import time # Output example: [======= ] 75% # width defines bar width # percent defines current percentage def progress(width, percent): print "%s %d%%\r" % (('%%-%ds' % width) % (width * percent / 100 * '='), percent), if percent >= 100: print sys.stdout.flush() # Simulate doing something ... for i in xrange(100): progress(50, (i + 1)) time.sleep(0.01) # Slow it down for demo
23.736842
87
0.563193
ec098986397d79df0f19a66fa4f98f19ff0f2d90
5,069
py
Python
scripts/synmap/dag_tools.py
LyonsLab/coge
1d9a8e84a8572809ee3260ede44290e14de3bdd1
[ "BSD-2-Clause" ]
37
2015-02-24T18:58:30.000Z
2021-03-07T21:22:18.000Z
scripts/synmap/dag_tools.py
LyonsLab/coge
1d9a8e84a8572809ee3260ede44290e14de3bdd1
[ "BSD-2-Clause" ]
12
2016-06-09T21:57:00.000Z
2020-09-11T18:48:51.000Z
scripts/synmap/dag_tools.py
LyonsLab/coge
1d9a8e84a8572809ee3260ede44290e14de3bdd1
[ "BSD-2-Clause" ]
19
2016-03-26T08:15:17.000Z
2021-04-12T05:03:29.000Z
#!/usr/bin/env python from operator import itemgetter import numpy import re try: import psyco; pysco.full() except: pass def dag_array(dagf): recs = [] #collections.defaultdict(list) fh = open(dagf, 'r') qname_len = 0 sname_len = 0 qchr_len = 0 schr_len = 0 for line in fh: if line[0] == '#': continue qchr, qname, qstart, qstop, schr, sname, sstart, sstop, score = line.rstrip("*,\n,+").split("\t")[:9] if len(qchr) > qchr_len: qchr_len = len(qchr) if len(schr) > schr_len: schr_len = len(schr) if len(qname) > qname_len: qname_len = len(qname) if len(sname) > sname_len: sname_len = len(sname) if not (qname, sname) in recs: recs[(qname, sname)] = [] recs[(qname, sname)].append([qchr, qname, int(qstart), int(qstop), schr, sname, int(sstart), int(sstop), float(score)]) fh.close() arr = [] for k in sorted(recs, key=itemgetter(1)): arr.extend([li for li in sorted(recs[k], itemgetter(8))]) dag_names = ('qchr', 'qname', 'qstart', 'qstop', 'schr', 'sname', 'sstart', 'sstop', 'score') dag_types = ['S', 'S', 'i4', 'i4', 'S', 'S', 'i4', 'i4', 'f8'] dag_types[0] += str(qchr_len) dag_types[4] += str(schr_len) dag_types[1] += str(qname_len) dag_types[5] += str(sname_len) return numpy.rec.array(arr, names=dag_names, formats=dag_types) chrre = re.compile("(\d+)") def get_chr(line): try: return re.search(chrre, line).groups(0)[0] except: print >>sys.stderr, line sys.exit(2) def blast_to_dag(blast_file, query, subject, qdups, sdups, get_chr=get_chr, condense=True): if qdups: qdups = frozenset([x.strip() for x in open(qdups)]) if sdups: sdups = frozenset([x.strip() for x in open(sdups)]) #if query == subject: subject += "2" qorg = query + "_" sorg = subject + "_" seen = {} n_qdups = 0 n_sdups = 0 for line in open(blast_file): line = line.split("\t") if line[0] in qdups: n_qdups += 1; continue if line[1] in sdups: n_sdups += 1; continue if condense: key = line[0] + line[1] eval, score = map(float, line[-2:]) if key in seen and (seen[key][0] < eval and seen[key][1] > score): continue seen[key] = (eval, score) qinfo = line[0].split("||") sinfo = line[1].split("||") # it wast just the name if len(qinfo) > 1: qchr = qinfo[0] qlocs = [l.lstrip('0') for l in qinfo[1:3]] if len(qinfo) > 4 and qinfo[4] == '-1': qlocs.reverse() else: # a whole chromosome, use the locs it came with. qlocs = line[6:8] qchr = line[0] # qchr = get_chr(line[0]) line[0] = line[0]+"||"+qlocs[0]+"||"+qlocs[1] if len(sinfo) > 1: schr = sinfo[0] slocs = [l.lstrip('0') for l in sinfo[1:3]] if len(sinfo) > 4 and sinfo[4] == '-1': slocs.reverse() else: # a whole chromosome, use the locs it came with. slocs = line[8:10] schr = line[1] # schr = get_chr(line[1]) line[1] = line[1]+"||"+slocs[0]+"||"+slocs[1] print "\t".join([ qorg + qchr, line[0] + "||" + line[2], qlocs[0], qlocs[1] ,sorg + schr, line[1] + "||" + line[2], slocs[0], slocs[1], line[10]]) if qdups: print >>sys.stderr, "removed %i dups from query " % n_qdups if sdups: print >>sys.stderr, "removed %i dups from subject" % n_sdups if __name__ == "__main__": import sys, os import re import cPickle from optparse import OptionParser usage = """ takes a tab-delimited blast file and converts it to the format used by dagchainer and tandems.py. output is to STDOUT. if (optional) files are given for query/subject_dups with format: dupa_name dupb_name . . dupzzz_name then any hits containing those are removed. from the output """ parser = OptionParser(usage) parser.add_option("-b", "--blast_file", dest="blast_file", help="the name of the blast_file", default=False) parser.add_option("-q", "--query", dest="query", help="the name of the query organism") parser.add_option("-s", "--subject", dest="subject", help="the name of the subject organism") parser.add_option("--query_dups", dest="query_dups", help="file containing list of query dups", default=[]) parser.add_option("--subject_dups", dest="subject_dups", help="file containing list of subject dups", default=[]) parser.add_option("-c","--condense", dest="condense", help="condense duplicate blast hits", action="store_false") (options, _) = parser.parse_args() condense=options.condense if not options.blast_file: sys.exit(parser.print_help()) blast_to_dag(options.blast_file, options.query, options.subject, options.query_dups, options.subject_dups, condense=condense)
34.719178
129
0.575853
69794be633b15aa9552c4427a027a10d5c44da9a
2,231
py
Python
bot/messenger.py
teamgalaxis/beercounter-bot
00d632eca2b4c1bc943a95d156b9d6058d2f9834
[ "MIT" ]
null
null
null
bot/messenger.py
teamgalaxis/beercounter-bot
00d632eca2b4c1bc943a95d156b9d6058d2f9834
[ "MIT" ]
null
null
null
bot/messenger.py
teamgalaxis/beercounter-bot
00d632eca2b4c1bc943a95d156b9d6058d2f9834
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging import random logger = logging.getLogger(__name__) class Messenger(object): def __init__(self, slack_clients): self.clients = slack_clients def send_message(self, channel_id, msg): # in the case of Group and Private channels, RTM channel payload is a complex dictionary if isinstance(channel_id, dict): channel_id = channel_id['id'] logger.debug('Sending msg: %s to channel: %s' % (msg, channel_id)) channel = self.clients.rtm.server.channels.find(channel_id) channel.send_message(msg) def write_help_message(self, channel_id): bot_uid = self.clients.bot_user_id() txt = '{}\n{}\n{}\n{}'.format( "I'm your friendly Slack bot written in Python. I'll *_respond_* to the following commands:", "> `hi <@" + bot_uid + ">` - I'll respond with a randomized greeting mentioning your user. :wave:", "> `<@" + bot_uid + "> joke` - I'll tell you one of my finest jokes, with a typing pause for effect. :laughing:", "> `<@" + bot_uid + "> attachment` - I'll demo a post with an attachment using the Web API. :paperclip:") self.send_message(channel_id, txt) def write_greeting(self, channel_id, user_id): greetings = ['Hi', 'Hello', 'Nice to meet you', 'Howdy', 'Salutations'] txt = '{}, <@{}>!'.format(random.choice(greetings), user_id) self.send_message(channel_id, txt) def write_prompt(self, channel_id): bot_uid = self.clients.bot_user_id() txt = "I'm sorry, I didn't quite understand... Can I help you? (e.g. `<@" + bot_uid + "> help`)" self.send_message(channel_id, txt) def write_joke(self, channel_id): question = "Why did the python cross the road?" self.send_message(channel_id, question) self.clients.send_user_typing_pause(channel_id) answer = "To eat the chicken on the other side! :laughing:" self.send_message(channel_id, answer) def write_error(self, channel_id, err_msg): txt = ":face_with_head_bandage: my maker didn't handle this error very well:\n>```{}```".format(err_msg) self.send_message(channel_id, txt)
44.62
125
0.639623
2c74166bf9ec4eb7b543ee3ea940751a6b3bfb0e
2,425
py
Python
baselines/deepq/experiments/atari/model.py
yenchenlin/rl-attack-detection
13ff1765cf52dda150c4266d8e68fd3c4aa350ed
[ "MIT" ]
66
2017-09-27T21:40:56.000Z
2022-02-22T13:58:41.000Z
baselines/deepq/experiments/atari/model.py
haider4445/AdvDRL
c17ef8d6044c31a172884d2124e87d72f848dda2
[ "MIT" ]
4
2017-09-27T19:29:26.000Z
2021-02-22T10:01:33.000Z
baselines/deepq/experiments/atari/model.py
haider4445/AdvDRL
c17ef8d6044c31a172884d2124e87d72f848dda2
[ "MIT" ]
14
2017-09-27T22:13:16.000Z
2021-07-12T10:01:58.000Z
import tensorflow as tf import tensorflow.contrib.layers as layers def model(img_in, num_actions, scope, reuse=False, concat_softmax=False): """As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf""" with tf.variable_scope(scope, reuse=reuse): out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) if concat_softmax: out = tf.nn.softmax(out) return out def dueling_model(img_in, num_actions, scope, reuse=False): """As described in https://arxiv.org/abs/1511.06581""" with tf.variable_scope(scope, reuse=reuse): out = img_in with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("state_value"): state_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None) with tf.variable_scope("action_value"): actions_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores = action_scores - tf.expand_dims(action_scores_mean, 1) return state_score + action_scores
52.717391
113
0.693196
c70b20988a0b1db8e34d3ab9b47456170f316371
1,783
py
Python
qa/Rules/NamingConventionRules/FunctionNamingRule.py
tartarini/MAF3
f9614d36591754544b23e3a670980799254dfd2c
[ "Apache-2.0" ]
1
2021-05-10T19:01:48.000Z
2021-05-10T19:01:48.000Z
qa/Rules/NamingConventionRules/FunctionNamingRule.py
examyes/MAF3
f9614d36591754544b23e3a670980799254dfd2c
[ "Apache-2.0" ]
null
null
null
qa/Rules/NamingConventionRules/FunctionNamingRule.py
examyes/MAF3
f9614d36591754544b23e3a670980799254dfd2c
[ "Apache-2.0" ]
1
2018-02-06T03:51:57.000Z
2018-02-06T03:51:57.000Z
from xml.dom import minidom as xd import re from AbstractRule import AbstractRule class FunctionNamingRule(AbstractRule): def __init__(self): AbstractRule.__init__(self) def execute(self): self.dom = xd.parse(self.FullPathInputFile) className = self.dom.getElementsByTagName('compounddef')[0].getElementsByTagName('compoundname')[0].firstChild.nodeValue members = self.dom.getElementsByTagName('memberdef') for member in members: attrs = member.attributes if(attrs["kind"].value == self.ParameterList[0]): type = None for memberChild in member.childNodes: if(memberChild.nodeName == "type" and memberChild.firstChild): type = str(memberChild.firstChild.nodeValue) if(memberChild.nodeName == "name"): x = re.compile(self.ParameterList[1]) if(type != None and re.match(x, str(memberChild.firstChild.nodeValue))): #print className, memberChild.firstChild.nodeValue if(memberChild.firstChild.nodeValue[:8] != "operator"): line = member.getElementsByTagName('location')[0].attributes["line"].value #self.MarkedList.append((str(className))+"::"+memberChild.firstChild.nodeValue+ " " + line) self.MarkedList.append("<item>\n"\ + " <class>" + str(className) + "</class>\n"\ + " <function>" +memberChild.firstChild.nodeValue + "</function>\n"\ + " <line>" + line + "</line>\n"\ + "</item>") return self.MarkedList
48.189189
128
0.550757
6f59749556298066b29379b2a96838661e424475
1,275
py
Python
Src/Scripts/clean.py
Enerccio/ironpython26-fixed
e302db14f05396a378adb438565a829e66acbf94
[ "MS-PL" ]
1
2020-02-11T06:02:40.000Z
2020-02-11T06:02:40.000Z
Src/Languages/IronPython/Scripts/clean.py
rudimk/dlr-dotnet
71d11769f99d6ff1516ddbaed091a359eb46c670
[ "MS-PL" ]
null
null
null
Src/Languages/IronPython/Scripts/clean.py
rudimk/dlr-dotnet
71d11769f99d6ff1516ddbaed091a359eb46c670
[ "MS-PL" ]
1
2018-11-21T04:10:23.000Z
2018-11-21T04:10:23.000Z
##################################################################################### # # Copyright (c) Microsoft Corporation. All rights reserved. # # This source code is subject to terms and conditions of the Microsoft Public License. A # copy of the license can be found in the License.html file at the root of this distribution. If # you cannot locate the Microsoft Public License, please send an email to # ironpy@microsoft.com. By using this source code in any fashion, you are agreeing to be bound # by the terms of the Microsoft Public License. # # You must not remove this notice, or any other, from this software. # # ##################################################################################### import os def is_binary(filename): root, ext = os.path.splitext(filename) return ext in ['.pyc', '.pyo', '.pdb', '.exe', '.dll', '.projdata'] def do_dir(dirname): if dirname == BIN_DIR: return for file in os.listdir(dirname): filename = os.path.join(dirname, file) if os.path.isdir(filename): do_dir(filename) elif is_binary(filename): print 'deleting', filename os.remove(filename) TOP_DIR = "c:\\IronPython-0.7" BIN_DIR = os.path.join(TOP_DIR, "bin") do_dir(TOP_DIR)
31.097561
97
0.58902
3f761d68a19f2f12339f3b75f281c92a21e6c7d6
3,110
py
Python
app/models.py
gabrielranulfo/projeto-integrador
4b3dc72fa2a38697fd4b21b08ec5ad5e8c44e28f
[ "MIT" ]
null
null
null
app/models.py
gabrielranulfo/projeto-integrador
4b3dc72fa2a38697fd4b21b08ec5ad5e8c44e28f
[ "MIT" ]
19
2021-11-13T22:16:31.000Z
2021-11-13T22:20:49.000Z
app/models.py
gabrielranulfo/projeto-integrador
4b3dc72fa2a38697fd4b21b08ec5ad5e8c44e28f
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ License: MIT Copyright (c) 2019 - present AppSeed.us """ from django.db import models #from django.contrib.auth.models import User class Cad_empresa(models.Model): nome_fantasia_empresa = models.CharField(max_length=80) cnpj_empresa = models.CharField(max_length=18) endereco_empresa = models.CharField(max_length=80) cidade_empresa = models.CharField(max_length=80) cep_empresa = models.CharField(max_length=9) estado_empresa = models.CharField(max_length=40) telefone_empresa = models.CharField(max_length=15) from django.db.models import Count class Cad_setores(models.Model): setor_nome = models.CharField(max_length=30) resposavel_setor = models.CharField(max_length=30) cargo_setor = models.CharField(max_length=30) contato_setor = models.CharField(max_length=30) class Cad_equipes(models.Model): nome = models.CharField(max_length=30) telefone = models.CharField(max_length=30) responsabilidade = models.CharField(max_length=30) class Cad_fornecedores(models.Model): fornecedor = models.CharField(max_length=30) cnpj = models.CharField(max_length=30) dpo = models.CharField(max_length=30) telefone = models.CharField(max_length=30) class Cad_dpo(models.Model): nome = models.CharField(max_length=30) cpf = models.CharField(max_length=30) cargo = models.CharField(max_length=30) contato = models.CharField(max_length=30) empresa = models.CharField(max_length=30) cnpj = models.CharField(max_length=30) endereco = models.CharField(max_length=30) cidade = models.CharField(max_length=30) estado = models.CharField(max_length=30) class Cad_dados_previos(models.Model): questao_dados_previos = models.CharField(max_length=90) resposta = models.CharField(max_length=10) class Cad_itens_auditaveis(models.Model): questao_itens_auditaveis = models.CharField(max_length=90) il = models.IntegerField() icn = models.IntegerField() e = models.IntegerField() fr = models.IntegerField() @property def fr(self): return (self.il ** 2 + self.icn ** 2)*((7-self.e) ** 2) class Cad_fator_de_risco(models.Model): questao_fator_de_risco = models.CharField(max_length=90) fator_de_risco = models.IntegerField() #fator_de_risco = Cad_itens_auditaveis.fr() ##CALCULO DO FATOR DE RISCO fr = (il ** 2 + icn ** 2)*((7-e) ** 2) class Cad_Mapeamento(models.Model): dado = models.CharField(max_length=30) tipo = models.CharField(max_length=30) fonte = models.CharField(max_length=30) motivo = models.CharField(max_length=30) base_legal = models.CharField(max_length=30) tratamento = models.CharField(max_length=30) eliminacao = models.CharField(max_length=30) compartilhamento = models.CharField(max_length=30) necessario_consentimento = models.CharField(max_length=30) possui_consentimento = models.CharField(max_length=30) menor = models.CharField(max_length=30) impacto_pessoal = models.CharField(max_length=30) missao_critica = models.CharField(max_length=30)
36.588235
71
0.739228
59efe88ffa92f1f7968cc71c174e468051bc56ef
2,955
py
Python
src/uams_platform/uams_manipulation/script/waypoint_generation_visualization.py
S-JingTao/ROS_Air_ground_simulation_model
393aa2c881dd6d0fe5efdb94409800c2d161832a
[ "MIT" ]
null
null
null
src/uams_platform/uams_manipulation/script/waypoint_generation_visualization.py
S-JingTao/ROS_Air_ground_simulation_model
393aa2c881dd6d0fe5efdb94409800c2d161832a
[ "MIT" ]
null
null
null
src/uams_platform/uams_manipulation/script/waypoint_generation_visualization.py
S-JingTao/ROS_Air_ground_simulation_model
393aa2c881dd6d0fe5efdb94409800c2d161832a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function from __future__ import division import rospy import rosbag import numpy as np import matplotlib.pyplot as plt import matplotlib; matplotlib.use('TkAgg') from waypoint_generation_library import WaypointGen from scipy import linalg from nav_msgs.msg import Odometry from geometry_msgs.msg import Quaternion from sensor_msgs.msg import Imu from tf.transformations import euler_from_quaternion, quaternion_from_euler from mpl_toolkits import mplot3d WaypointGeneration = WaypointGen() waypoints, desVel, desAcc, timeVec = WaypointGeneration.waypoint_calculation() desiredPos = WaypointGeneration.desiredPos # plot the waypoints figPos = plt.figure() axPos = plt.axes(projection = '3d') axPos.plot3D(desiredPos[:,0], desiredPos[:,1], desiredPos[:,2], 'ro') pnt3d = axPos.scatter(waypoints[:,0], waypoints[:,1], waypoints[:,2], c = timeVec) cbar = plt.colorbar(pnt3d) cbar.set_label("Time [sec]") # label the axes and give title axPos.set_xlabel('X-Axis [m]') axPos.set_ylabel('Y-Axis [m]') axPos.set_zlabel('Z-Axis [m]') axPos.set_title('Minimum Jerk Position Waypoints') # plot the desired kinematics figOtherKinematics = plt.figure() figOtherKinematics.suptitle('Desired Kinematics in Inertial Frame') # desired position waypoints axPos = plt.subplot(311) axPos.plot(timeVec, waypoints[:,0], '-r', label = '$x_b$') axPos.plot(timeVec, waypoints[:,1], '-k', label = '$y_b$') axPos.plot(timeVec, waypoints[:,2], '-b', label = '$z_b$') # add the yaw legend axPos.plot(np.nan, '-g', label = 'yaw') axPos.legend(loc = 0) plt.grid() plt.xlabel('Time [sec]') plt.ylabel('Position [m]') # plt.title('Desired Position in Inertial Frame') # desired yaw axYaw = axPos.twinx() axYaw.plot(timeVec, waypoints[:,3], '-g') axYaw.set_ylabel('Yaw [rad]') # desired velocity waypoints axVel = plt.subplot(312) axVel.plot(timeVec, desVel[:,0], '-r', label = '$v_{x,b}$') axVel.plot(timeVec, desVel[:,1], '-k', label = '$v_{y,b}$') axVel.plot(timeVec, desVel[:,2], '-b', label = '$v_{z,b}$') # add the yaw legend axVel.plot(np.nan, '-g', label = '$yaw_{rate}$') axVel.legend(loc = 0) plt.grid() plt.xlabel('Time [sec]') plt.ylabel('Velocity [m/s]') # plt.title('Desired Velocity in Inertial Frame') # desired yaw axYawRate = axVel.twinx() axYawRate.plot(timeVec, desVel[:,3], '-g') axYawRate.set_ylabel('Yaw [rad/s]') # desired acceleration waypoints axAcc = plt.subplot(313) axAcc.plot(timeVec, desAcc[:,0], '-r', label = '$a_{x,b}$') axAcc.plot(timeVec, desAcc[:,1], '-k', label = '$a_{y,b}$') axAcc.plot(timeVec, desAcc[:,2], '-b', label = '$a_{z,b}$') # add the yaw legend axAcc.plot(np.nan, '-g', label = '$yaw_{acc}$') axAcc.legend(loc = 0) plt.grid() plt.xlabel('Time [sec]') plt.ylabel('Acceleration [$m/s^2$]') # plt.title('Desired Acceleration in Inertial Frame') # desired yaw axYawRate = axAcc.twinx() axYawRate.plot(timeVec, desAcc[:,3], '-g') axYawRate.set_ylabel('Yaw [$rad/s^2$]') plt.show()
33.202247
82
0.710321
c536ca9ef0c7bea3c88f7db8a210a5321b275010
430
py
Python
tests/params.py
dendisuhubdy/mapper-tda
fa54ab7bd4aa383aa5101e31f5424c09b91d86c7
[ "MIT" ]
1
2017-06-05T12:25:43.000Z
2017-06-05T12:25:43.000Z
tests/params.py
dendisuhubdy/mapper-tda
fa54ab7bd4aa383aa5101e31f5424c09b91d86c7
[ "MIT" ]
null
null
null
tests/params.py
dendisuhubdy/mapper-tda
fa54ab7bd4aa383aa5101e31f5424c09b91d86c7
[ "MIT" ]
null
null
null
import os # Info DATASET_DIM = 3 # Code Path EM_CODE_PATH = '' DATA_PATH = os.getcwd() + '/tests/' # Graph Plot Parameters PLOT_PATH = os.getcwd() + '/plots/' ANGLE = (20,170) plot_type_str = ['spring', 'random' ,'shell' ,'spectral' ,'viz'][4] # Clustering Parameters CLUSTERING_PLOT_BOOL = True CLUSTERING_BIN_NUMBER = 'auto' # Filter Function Parameters eccentricity_P = 2 # Mapper Paramteres p = .1 N = 8
10.75
67
0.667442
f9b40ac93f7ae67a3ec57b9a5bf784740e1abff9
2,560
py
Python
parameters.py
ash368/FaceParsing
67f8bb7e9a4651c1be45687113d3d6d9e55e04bb
[ "MIT" ]
138
2020-01-10T17:54:30.000Z
2022-03-17T04:05:38.000Z
parameters.py
ash368/FaceParsing
67f8bb7e9a4651c1be45687113d3d6d9e55e04bb
[ "MIT" ]
21
2020-02-07T12:27:41.000Z
2022-02-05T14:50:15.000Z
parameters.py
ash368/FaceParsing
67f8bb7e9a4651c1be45687113d3d6d9e55e04bb
[ "MIT" ]
28
2020-01-10T10:27:19.000Z
2022-03-10T07:52:25.000Z
import argparse def str2bool(v): return v.lower() in ('true') def get_parameters(): parser = argparse.ArgumentParser() parser.add_argument('--imsize', type=int, default=512) parser.add_argument( '--arch', type=str, choices=['UNet', 'DFANet', 'DANet', 'DABNet', 'CE2P', 'FaceParseNet18', 'FaceParseNet34', "FaceParseNet50", "FaceParseNet101", "EHANet18"], required=True) # Training setting parser.add_argument('--epochs', type=int, default=200, help='how many times to update the generator') parser.add_argument('--pretrained_model', type=int, default=0) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--num_workers', type=int, default=4) parser.add_argument('--g_lr', type=float, default=0.001) parser.add_argument('--weight_decay', type=float, default=1e-5) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--classes', type=int, default=19) # Testing setting # parser.add_argument('--test_size', type=int, default=2824) # parser.add_argument('--val_size', type=int, default=2993) parser.add_argument('--model_name', type=str, default='model.pth') # Misc parser.add_argument('--train', type=str2bool, default=True) parser.add_argument('--parallel', type=str2bool, default=False) # Path parser.add_argument('--img_path', type=str, default='./Data_preprocessing/train_img') parser.add_argument('--label_path', type=str, default='./Data_preprocessing/train_label') parser.add_argument('--model_save_path', type=str, default='./models') parser.add_argument('--sample_path', type=str, default='./samples') parser.add_argument('--val_img_path', type=str, default='./Data_preprocessing/val_img') parser.add_argument('--val_label_path', type=str, default='./Data_preprocessing/val_label') parser.add_argument('--test_image_path', type=str, default='./Data_preprocessing/test_img') parser.add_argument('--test_label_path', type=str, default='./Data_preprocessing/test_label') parser.add_argument('--test_color_label_path', type=str, default='./test_color_visualize') # Step size parser.add_argument('--sample_step', type=int, default=200) parser.add_argument('--tb_step', type=int, default=100) return parser.parse_args()
43.389831
119
0.645313
967873951f8e30a56973275a38df007655282ded
867
py
Python
services/todo.py
gitrus/flask-rest-pylearn
b62d62d54b508d3e30e3c1a2e29658df0e2d86b4
[ "MIT" ]
null
null
null
services/todo.py
gitrus/flask-rest-pylearn
b62d62d54b508d3e30e3c1a2e29658df0e2d86b4
[ "MIT" ]
null
null
null
services/todo.py
gitrus/flask-rest-pylearn
b62d62d54b508d3e30e3c1a2e29658df0e2d86b4
[ "MIT" ]
1
2020-07-01T10:40:53.000Z
2020-07-01T10:40:53.000Z
import datetime import typing as t from models.todo.todo import ToDo, ToDoStatus class ToDoService: def update(self, todo: ToDo, update_obj: dict) -> ToDo: pass def create(self, create_obj: dict) -> ToDo: pass def fetch_overdue_todos(self, date: datetime) -> t.List[ToDo]: pass def complete_todo(self, todo: ToDo) -> ToDo: todo.status = ToDoStatus.DONE return todo def fetch_todos(self) -> t.List[ToDo]: return [ ToDo('first', 'desc first'), ToDo('second', 'desc second') ] def fetch_by_id(self, uid: str) -> ToDo: return ToDo( uid, uid ) ToDoServiceSingleton = ToDoService() """ Rest API -> Adapter -> App logic (Service) -> Adapter db -> db | model """
20.162791
66
0.540946
f19fd783995fcf7ca441b4b0696658c263945fd6
3,779
py
Python
allennlp/tests/models/reading_comprehension/qanet_fine_test.py
Whu-wxy/allennlp
c863900e3e1fe7be540b9a0632a7a032491fc3ab
[ "Apache-2.0" ]
6
2019-05-27T03:24:30.000Z
2021-01-23T14:32:45.000Z
allennlp/tests/models/reading_comprehension/qanet_fine_test.py
Whu-wxy/allennlp
c863900e3e1fe7be540b9a0632a7a032491fc3ab
[ "Apache-2.0" ]
null
null
null
allennlp/tests/models/reading_comprehension/qanet_fine_test.py
Whu-wxy/allennlp
c863900e3e1fe7be540b9a0632a7a032491fc3ab
[ "Apache-2.0" ]
3
2019-09-05T05:55:14.000Z
2021-06-20T05:12:06.000Z
# pylint: disable=no-self-use,invalid-name from flaky import flaky import numpy from numpy.testing import assert_almost_equal from allennlp.common import Params from allennlp.data import DatasetReader, Vocabulary from allennlp.common.testing import ModelTestCase from allennlp.data.dataset import Batch from allennlp.models import Model from mymodel.QaNet_fine_grained import QaNet_fine_grained class QaNetFineTest(ModelTestCase): def setUp(self): super().setUp() self.set_up_model('/home/ubuntu/MyFiles/nlp/config/qanet_fine.json', '/home/ubuntu/MyFiles/nlp/config/dev-v1.1.json') def test_forward_pass_runs_correctly(self): batch = Batch(self.instances) batch.index_instances(self.vocab) training_tensors = batch.as_tensor_dict() output_dict = self.model(**training_tensors) metrics = self.model.get_metrics(reset=True) # We've set up the data such that there's a fake answer that consists of the whole # paragraph. _Any_ valid prediction for that question should produce an F1 of greater than # zero, while if we somehow haven't been able to load the evaluation data, or there was an # error with using the evaluation script, this will fail. This makes sure that we've # loaded the evaluation data correctly and have hooked things up to the official evaluation # script. assert metrics['f1'] > 0 span_start_probs = output_dict['span_start_probs'][0].data.numpy() span_end_probs = output_dict['span_start_probs'][0].data.numpy() assert_almost_equal(numpy.sum(span_start_probs, -1), 1, decimal=6) assert_almost_equal(numpy.sum(span_end_probs, -1), 1, decimal=6) span_start, span_end = tuple(output_dict['best_span'][0].data.numpy()) assert span_start >= 0 assert span_start <= span_end assert span_end < self.instances[0].fields['passage'].sequence_length() assert isinstance(output_dict['best_span_str'][0], str) @flaky def test_model_can_train_save_and_load(self): self.ensure_model_can_train_save_and_load(self.param_file, tolerance=1e-4) def test_batch_predictions_are_consistent(self): # The same issue as the bidaf test case. # The CNN encoder has problems with this kind of test - it's not properly masked yet, so # changing the amount of padding in the batch will result in small differences in the # output of the encoder. So, we'll remove the CNN encoder entirely from the model for this test. # Save some state. # pylint: disable=protected-access,attribute-defined-outside-init saved_model = self.model saved_instances = self.instances # Modify the state, run the test with modified state. params = Params.from_file(self.param_file) reader = DatasetReader.from_params(params['dataset_reader']) reader._token_indexers = {'tokens': reader._token_indexers['tokens']} self.instances = reader.read(self.FIXTURES_ROOT / 'data' / 'squad.json') vocab = Vocabulary.from_instances(self.instances) for instance in self.instances: instance.index_fields(vocab) del params['model']['text_field_embedder']['token_embedders']['token_characters'] params['model']['phrase_layer']['num_convs_per_block'] = 0 params['model']['modeling_layer']['num_convs_per_block'] = 0 self.model = Model.from_params(vocab=vocab, params=params['model']) self.ensure_batch_predictions_are_consistent() # Restore the state. self.model = saved_model self.instances = saved_instances test = QaNetFineTest() test.setUp() test.test_forward_pass_runs_correctly()
47.2375
104
0.705213
86d940c55389dc36574adc7bfec882bb42703d17
3,985
py
Python
test/programytest/mappings/test_normalise.py
cdoebler1/AIML2
ee692ec5ea3794cd1bc4cc8ec2a6b5e5c20a0d6a
[ "MIT" ]
345
2016-11-23T22:37:04.000Z
2022-03-30T20:44:44.000Z
test/programytest/mappings/test_normalise.py
MikeyBeez/program-y
00d7a0c7d50062f18f0ab6f4a041068e119ef7f0
[ "MIT" ]
275
2016-12-07T10:30:28.000Z
2022-02-08T21:28:33.000Z
test/programytest/mappings/test_normalise.py
VProgramMist/modified-program-y
f32efcafafd773683b3fe30054d5485fe9002b7d
[ "MIT" ]
159
2016-11-28T18:59:30.000Z
2022-03-20T18:02:44.000Z
import os import re import unittest from unittest.mock import patch from programy.mappings.normal import NormalCollection from programy.storage.factory import StorageFactory from programy.storage.stores.file.config import FileStorageConfiguration from programy.storage.stores.file.config import FileStoreConfiguration from programy.storage.stores.file.engine import FileStorageEngine class NormaliseTests(unittest.TestCase): def test_initialise_collection(self): collection = NormalCollection() self.assertIsNotNone(collection) def test_collection_operations(self): collection = NormalCollection() self.assertIsNotNone(collection) collection.add_to_lookup(".COM", [re.compile('(^\\.COM|\\.COM|\\.COM$)', re.IGNORECASE), ' DOT COM ']) self.assertTrue(collection.has_key(".COM")) self.assertEqual([re.compile('(^\\.COM|\\.COM|\\.COM$)', re.IGNORECASE), ' DOT COM '], collection.value(".COM")) self.assertEqual("keithsterling dot com", collection.normalise_string("keithsterling.COM")) def test_load(self): storage_factory = StorageFactory() file_store_config = FileStorageConfiguration() file_store_config._normal_storage = FileStoreConfiguration(file=os.path.dirname(__file__) + os.sep + "test_files" + os.sep + "normal.txt", fileformat="text", extension="txt", encoding="utf-8", delete_on_start=False) storage_engine = FileStorageEngine(file_store_config) storage_factory._storage_engines[StorageFactory.NORMAL] = storage_engine storage_factory._store_to_engine_map[StorageFactory.NORMAL] = storage_engine collection = NormalCollection() self.assertIsNotNone(collection) self.assertTrue(collection.load(storage_factory)) self.assertEqual(collection.normalise_string("keithsterling.COM"), "keithsterling dot com") self.assertEquals([re.compile('(^\\.COM|\\.COM|\\.COM$)', re.IGNORECASE), ' DOT COM '], collection.normalise(".COM")) self.assertEquals(None, collection.normalise(".XXX")) def test_reload(self): storage_factory = StorageFactory() file_store_config = FileStorageConfiguration() file_store_config._normal_storage = FileStoreConfiguration(file=os.path.dirname(__file__) + os.sep + "test_files" + os.sep + "normal.txt", fileformat="text", extension="txt", encoding="utf-8", delete_on_start=False) storage_engine = FileStorageEngine(file_store_config) storage_factory._storage_engines[StorageFactory.NORMAL] = storage_engine storage_factory._store_to_engine_map[StorageFactory.NORMAL] = storage_engine collection = NormalCollection() self.assertIsNotNone(collection) self.assertTrue(collection.load(storage_factory)) self.assertEqual(collection.normalise_string("keithsterling.COM"), "keithsterling dot com") self.assertTrue(collection.reload(storage_factory)) self.assertEqual(collection.normalise_string("keithsterling.COM"), "keithsterling dot com") def patch_load_collection(self, lookups_engine): raise Exception("Mock Exception") @patch("programy.mappings.normal.NormalCollection._load_collection", patch_load_collection) def test_load_with_exception(self): storage_factory = StorageFactory() file_store_config = FileStorageConfiguration() file_store_config._normal_storage = FileStoreConfiguration(file=os.path.dirname(__file__) + os.sep + "test_files" + os.sep + "normal.txt", fileformat="text", extension="txt", encoding="utf-8", delete_on_start=False) storage_engine = FileStorageEngine(file_store_config) storage_factory._storage_engines[StorageFactory.NORMAL] = storage_engine storage_factory._store_to_engine_map[StorageFactory.NORMAL] = storage_engine collection = NormalCollection() self.assertIsNotNone(collection) self.assertFalse(collection.load(storage_factory))
43.791209
223
0.738018