hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
9f10cc17acd62c179ea44373769b26c8bb3baa94
9,231
py
Python
train.py
qigtang/ssd.pytorch
f39c59f08c0688bae162639f7c82b9566d51f9df
[ "MIT" ]
null
null
null
train.py
qigtang/ssd.pytorch
f39c59f08c0688bae162639f7c82b9566d51f9df
[ "MIT" ]
null
null
null
train.py
qigtang/ssd.pytorch
f39c59f08c0688bae162639f7c82b9566d51f9df
[ "MIT" ]
null
null
null
from data import * from utils.augmentations import SSDAugmentation from layers.modules import MultiBoxLoss from ssd import build_ssd import os import sys import time import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torch.nn.init as init import torch.utils.data as data import numpy as np import argparse def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Training With Pytorch') train_set = parser.add_mutually_exclusive_group() parser.add_argument('--dataset', default='VOC', choices=['VOC', 'COCO'], type=str, help='VOC or COCO') parser.add_argument('--dataset_root', default=VOC_ROOT, help='Dataset root directory path') parser.add_argument('--basenet', default='vgg16_reducedfc.pth', help='Pretrained base model') parser.add_argument('--batch_size', default=32, type=int, help='Batch size for training') parser.add_argument('--resume', default=None, type=str, help='Checkpoint state_dict file to resume training from') parser.add_argument('--start_iter', default=0, type=int, help='Resume training at this iter') parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading') parser.add_argument('--cuda', default=True, type=str2bool, help='Use CUDA to train model') parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='Momentum value for optim') parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD') parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD') parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom for loss visualization') parser.add_argument('--save_folder', default='weights/', help='Directory for saving checkpoint models') args = parser.parse_args() if torch.cuda.is_available(): if args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: It looks like you have a CUDA device, but aren't " + "using CUDA.\nRun with --cuda for optimal training speed.") torch.set_default_tensor_type('torch.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) def train(): if args.dataset == 'COCO': if args.dataset_root == VOC_ROOT: if not os.path.exists(COCO_ROOT): parser.error('Must specify dataset_root if specifying dataset') print("WARNING: Using default COCO dataset_root because " + "--dataset_root was not specified.") args.dataset_root = COCO_ROOT cfg = coco dataset = COCODetection(root=args.dataset_root, transform=SSDAugmentation(cfg['min_dim'], MEANS)) elif args.dataset == 'VOC': if args.dataset_root == COCO_ROOT: parser.error('Must specify dataset if specifying dataset_root') cfg = voc dataset = VOCDetection(root=args.dataset_root, transform=SSDAugmentation(cfg['min_dim'], MEANS)) if args.visdom: import visdom viz = visdom.Visdom() ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes']) net = ssd_net if args.cuda: net = torch.nn.DataParallel(ssd_net) cudnn.benchmark = True if args.resume: print('Resuming training, loading {}...'.format(args.resume)) ssd_net.load_weights(args.resume) else: vgg_weights = torch.load(args.save_folder + args.basenet) print('Loading base network...') ssd_net.vgg.load_state_dict(vgg_weights) if args.cuda: net = net.cuda() if not args.resume: print('Initializing weights...') # initialize newly added layers' weights with xavier method ssd_net.extras.apply(weights_init) ssd_net.loc.apply(weights_init) ssd_net.conf.apply(weights_init) optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5, False, args.cuda) net.train() # loss counters loc_loss = 0 conf_loss = 0 epoch = 0 print('Loading the dataset...') epoch_size = len(dataset) // args.batch_size print('Training SSD on:', dataset.name) print('Using the specified args:') print(args) step_index = 0 if args.visdom: vis_title = 'SSD.PyTorch on ' + dataset.name vis_legend = ['Loc Loss', 'Conf Loss', 'Total Loss'] iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend) epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend) data_loader = data.DataLoader(dataset, args.batch_size, num_workers=args.num_workers, shuffle=False, collate_fn=detection_collate, pin_memory=True) # create batch iterator batch_iterator = iter(data_loader) for iteration in range(args.start_iter, cfg['max_iter']): if args.visdom and iteration != 0 and (iteration % epoch_size == 0): update_vis_plot(epoch, loc_loss, conf_loss, epoch_plot, None, 'append', epoch_size) # reset epoch loss counters loc_loss = 0 conf_loss = 0 epoch += 1 if iteration in cfg['lr_steps']: step_index += 1 adjust_learning_rate(optimizer, args.gamma, step_index) try: # load train data images, targets = next(batch_iterator) except StopIteration: batch_iterator = iter(data_loader) images, targets = next(batch_iterator) if args.cuda: images = Variable(images.cuda()) targets = [Variable(ann.cuda(), volatile=True) for ann in targets] else: images = Variable(images) targets = [Variable(ann, volatile=True) for ann in targets] # forward t0 = time.time() out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, targets) loss = loss_l + loss_c loss.backward() optimizer.step() t1 = time.time() loc_loss += loss_l.data[0] conf_loss += loss_c.data[0] if iteration % 10 == 0: print('timer: %.4f sec.' % (t1 - t0)) print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ') if args.visdom: update_vis_plot(iteration, loss_l.data[0], loss_c.data[0], iter_plot, epoch_plot, 'append') if iteration != 0 and iteration % 5000 == 0: print('Saving state, iter:', iteration) torch.save(ssd_net.state_dict(), 'weights/ssd300_COCO_' + repr(iteration) + '.pth') torch.save(ssd_net.state_dict(), args.save_folder + '' + args.dataset + '.pth') def adjust_learning_rate(optimizer, gamma, step): """Sets the learning rate to the initial LR decayed by 10 at every specified step # Adapted from PyTorch Imagenet example: # https://github.com/pytorch/examples/blob/master/imagenet/main.py """ lr = args.lr * (gamma ** (step)) for param_group in optimizer.param_groups: param_group['lr'] = lr def xavier(param): init.xavier_uniform(param) def weights_init(m): if isinstance(m, nn.Conv2d): xavier(m.weight.data) m.bias.data.zero_() def create_vis_plot(_xlabel, _ylabel, _title, _legend): return viz.line( X=torch.zeros((1,)).cpu(), Y=torch.zeros((1, 3)).cpu(), opts=dict( xlabel=_xlabel, ylabel=_ylabel, title=_title, legend=_legend ) ) def update_vis_plot(iteration, loc, conf, window1, window2, update_type, epoch_size=1): viz.line( X=torch.ones((1, 3)).cpu() * iteration, Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu() / epoch_size, win=window1, update=update_type ) # initialize epoch plot on first iteration if iteration == 0: viz.line( X=torch.zeros((1, 3)).cpu(), Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu(), win=window2, update=True ) if __name__ == '__main__': train()
35.367816
92
0.596793
ba821648338a9b1da3958da5f4e2067eec275992
2,540
py
Python
ginza/tag_map.py
polm/ginza
b868823f793057ac3976fa343fd9bd14ebe1c75e
[ "MIT" ]
1
2020-04-08T04:45:20.000Z
2020-04-08T04:45:20.000Z
ginza/tag_map.py
joreyolo/ginza
b868823f793057ac3976fa343fd9bd14ebe1c75e
[ "MIT" ]
null
null
null
ginza/tag_map.py
joreyolo/ginza
b868823f793057ac3976fa343fd9bd14ebe1c75e
[ "MIT" ]
null
null
null
# encoding: utf8 from __future__ import unicode_literals from spacy.symbols import POS, PUNCT, INTJ, X, ADJ, AUX, ADP, PART, CCONJ, SCONJ, NOUN from spacy.symbols import SPACE, SYM, PRON, VERB, ADV, PROPN, NUM, DET TAG_MAP = { # Universal Dependencies Mapping # (private repository) # https://github.com/mynlp/udjapanese/blob/master/UDJapaneseBCCWJ/unidic_to_udpos_mapping/bccwj_pos_suw_rule.json "記号-一般": {POS: SYM}, "記号-文字": {POS: SYM}, "感動詞-フィラー": {POS: INTJ}, "感動詞-一般": {POS: INTJ}, # spaces should be treated as token.whitespace_ "空白": {POS: SPACE}, "形状詞-一般": {POS: ADJ}, "形状詞-タリ": {POS: ADJ}, "形状詞-助動詞語幹": {POS: ADJ}, "形容詞-一般": {POS: ADJ}, "形容詞-非自立可能": {POS: ADJ}, # All the root tokens are ADJ "助詞-格助詞": {POS: ADP}, "助詞-係助詞": {POS: ADP}, "助詞-終助詞": {POS: PART}, "助詞-準体助詞": {POS: SCONJ}, "助詞-接続助詞": {POS: CCONJ}, "助詞-副助詞": {POS: ADP}, "助動詞": {POS: AUX}, "接続詞": {POS: SCONJ}, "接頭辞": {POS: NOUN}, "接尾辞-形状詞的": {POS: NOUN}, "接尾辞-形容詞的": {POS: NOUN}, "接尾辞-動詞的": {POS: NOUN}, "接尾辞-名詞的-サ変可能": {POS: NOUN}, # All the root tokens are NOUN "接尾辞-名詞的-一般": {POS: NOUN}, "接尾辞-名詞的-助数詞": {POS: NOUN}, "接尾辞-名詞的-副詞可能": {POS: NOUN}, # All the root tokens are NOUN "代名詞": {POS: PRON}, "動詞-一般": {POS: VERB}, "動詞-非自立可能": {POS: VERB}, # All the root tokens are VERB except the tokens lemma is '為る' and POS is AUX "副詞": {POS: ADV}, "補助記号-AA-一般": {POS: SYM}, # text art "補助記号-AA-顔文字": {POS: SYM}, # kaomoji "補助記号-一般": {POS: PUNCT}, "補助記号-括弧開": {POS: PUNCT}, # open bracket "補助記号-括弧閉": {POS: PUNCT}, # close bracket "補助記号-句点": {POS: PUNCT}, # period or other EOS marker "補助記号-読点": {POS: PUNCT}, # comma "名詞-固有名詞-一般": {POS: PROPN}, # general proper noun "名詞-固有名詞-人名-一般": {POS: PROPN}, # person's name "名詞-固有名詞-人名-姓": {POS: PROPN}, # surname "名詞-固有名詞-人名-名": {POS: PROPN}, # first name "名詞-固有名詞-地名-一般": {POS: PROPN}, # place name "名詞-固有名詞-地名-国": {POS: PROPN}, # country name "名詞-助動詞語幹": {POS: AUX}, "名詞-数詞": {POS: NUM}, # includes Chinese numerals "名詞-普通名詞-サ変可能": {POS: NOUN}, # ADJ=3349 and VERB=3411 for root "名詞-普通名詞-サ変形状詞可能": {POS: NOUN}, # ADJ=40 and NOUN=30 for root "名詞-普通名詞-一般": {POS: NOUN}, "名詞-普通名詞-形状詞可能": {POS: ADJ}, # ADJ=404 and NOUN=161 for root "名詞-普通名詞-助数詞可能": {POS: NOUN}, # All the root tokens are NOUN "名詞-普通名詞-副詞可能": {POS: NOUN}, # All the root tokens are NOUN "連体詞": {POS: DET}, }
32.151899
117
0.572047
3f3a352d4fdb283b1eb9a76f28c8f0b3b11ff62a
615,817
py
Python
docassemble_base/docassemble/base/parse.py
Partnervine/docassemble
05a154d4788ada27ad220a0d95456b0b0a26c46b
[ "MIT" ]
null
null
null
docassemble_base/docassemble/base/parse.py
Partnervine/docassemble
05a154d4788ada27ad220a0d95456b0b0a26c46b
[ "MIT" ]
null
null
null
docassemble_base/docassemble/base/parse.py
Partnervine/docassemble
05a154d4788ada27ad220a0d95456b0b0a26c46b
[ "MIT" ]
null
null
null
import mimetypes import traceback import re from jinja2.runtime import StrictUndefined, UndefinedError from jinja2.exceptions import TemplateError from jinja2.environment import Environment from jinja2.environment import Template as JinjaTemplate from jinja2 import meta as jinja2meta from jinja2.lexer import Token from jinja2.utils import internalcode, missing, object_type_repr from jinja2.ext import Extension import ast import ruamel.yaml as yaml import string import os import os.path import sys import types from urllib.request import urlretrieve equals_byte = bytes('=', 'utf-8') import httplib2 import datetime import time import operator import pprint import copy import codecs import array import random import tempfile import json import docassemble.base.filter import docassemble.base.pdftk import docassemble.base.file_docx from docassemble.base.error import DAError, DANotFoundError, MandatoryQuestion, DAErrorNoEndpoint, DAErrorMissingVariable, ForcedNameError, QuestionError, ResponseError, BackgroundResponseError, BackgroundResponseActionError, CommandError, CodeExecute, DAValidationError, ForcedReRun, LazyNameError, DAAttributeError, DAIndexError import docassemble.base.functions import docassemble.base.util from docassemble.base.functions import pickleable_objects, word, get_language, server, RawValue, get_config from docassemble.base.logger import logmessage from docassemble.base.pandoc import MyPandoc, word_to_markdown from docassemble.base.mako.template import Template as MakoTemplate from docassemble.base.mako.exceptions import SyntaxException, CompileException from docassemble.base.astparser import myvisitnode import collections.abc as abc from collections import OrderedDict from types import CodeType import pandas import dateutil.parser import pytz from itertools import groupby, chain from collections import namedtuple from bs4 import BeautifulSoup import xml.etree.ElementTree as ET from docassemble_textstat.textstat import textstat from html.parser import HTMLParser from io import StringIO import qrcode import qrcode.image.svg RangeType = type(range(1,2)) NoneType = type(None) debug = True import_core = compile("from docassemble.base.core import objects_from_file, objects_from_structure", '<code block>', 'exec') import_util = compile('from docassemble.base.util import *', '<code block>', 'exec') import_process_action = compile('from docassemble.base.util import process_action', '<code block>', 'exec') run_process_action = compile('process_action()', '<code block>', 'exec') match_process_action = re.compile(r'process_action\(') match_mako = re.compile(r'<%|\${|% if|% for|% while|\#\#') emoji_match = re.compile(r':([^ ]+):') valid_variable_match = re.compile(r'^[^\d][A-Za-z0-9\_]*$') nameerror_match = re.compile(r'\'(.*)\' (is not defined|referenced before assignment|is undefined)') document_match = re.compile(r'^--- *$', flags=re.MULTILINE) remove_trailing_dots = re.compile(r'[\n\r]+\.\.\.$') fix_tabs = re.compile(r'\t') dot_split = re.compile(r'([^\.\[\]]+(?:\[.*?\])?)') match_brackets_at_end = re.compile(r'^(.*)(\[.+?\])') match_inside_brackets = re.compile(r'\[(.+?)\]') match_brackets = re.compile(r'(\[.+?\])') match_brackets_or_dot = re.compile(r'(\[.+?\]|\.[a-zA-Z_][a-zA-Z0-9_]*)') complications = re.compile(r'[\.\[]') list_of_indices = ['i', 'j', 'k', 'l', 'm', 'n'] extension_of_doc_format = {'pdf':'pdf', 'docx': 'docx', 'rtf': 'rtf', 'rtf to docx': 'docx', 'tex': 'tex', 'html': 'html'} do_not_translate = """<%doc> do not translate </%doc> """ def process_audio_video_list(the_list, the_user_dict): output = list() for the_item in the_list: output.append({'text': the_item['text'].text(the_user_dict), 'package': the_item['package'], 'type': the_item['type']}) return output def textify(data, the_user_dict): return list(map((lambda x: x.text(the_user_dict)), data)) # def set_absolute_filename(func): # #logmessage("Running set_absolute_filename in parse") # docassemble.base.functions.set_absolute_filename(func) # def set_url_finder(func): # docassemble.base.filter.set_url_finder(func) # docassemble.base.functions.set_url_finder(func) # def set_url_for(func): # docassemble.base.filter.set_url_for(func) # def set_file_finder(func): # docassemble.base.filter.set_file_finder(func) # def set_da_send_mail(func): # docassemble.base.filter.set_da_send_mail(func) # def blank_save_numbered_file(*args, **kwargs): # return(None, None, None) # save_numbered_file = blank_save_numbered_file # def set_save_numbered_file(func): # global save_numbered_file # #logmessage("set the save_numbered_file function to " + str(func)) # save_numbered_file = func # return initial_dict = dict(_internal=dict(session_local=dict(), device_local=dict(), user_local=dict(), dirty=dict(), progress=0, tracker=0, docvar=dict(), doc_cache=dict(), steps=1, steps_offset=0, secret=None, informed=dict(), livehelp=dict(availability='unavailable', mode='help', roles=list(), partner_roles=list()), answered=set(), answers=dict(), objselections=dict(), starttime=None, modtime=None, accesstime=dict(), tasks=dict(), gather=list(), event_stack=dict(), misc=dict()), url_args=dict(), nav=docassemble.base.functions.DANav()) def set_initial_dict(the_dict): global initial_dict initial_dict = the_dict return def get_initial_dict(): return copy.deepcopy(initial_dict); class PackageImage: def __init__(self, **kwargs): self.filename = kwargs.get('filename', None) self.attribution = kwargs.get('attribution', None) self.setname = kwargs.get('setname', None) self.package = kwargs.get('package', 'docassemble.base') def get_filename(self): return(docassemble.base.functions.static_filename_path(str(self.package) + ':' + str(self.filename))) def get_reference(self): #logmessage("get_reference is considering " + str(self.package) + ':' + str(self.filename)) return str(self.package) + ':' + str(self.filename) class InterviewSource: def __init__(self, **kwargs): if not hasattr(self, 'package'): self.package = kwargs.get('package', None) self.language = kwargs.get('language', '*') self.dialect = kwargs.get('dialect', None) self.testing = kwargs.get('testing', False) self.translating = kwargs.get('translating', False) def __le__(self, other): return str(self) <= (str(other) if isinstance(other, InterviewSource) else other) def __ge__(self, other): return str(self) >= (str(other) if isinstance(other, InterviewSource) else other) def __gt__(self, other): return str(self) > (str(other) if isinstance(other, InterviewSource) else other) def __lt__(self, other): return str(self) < (str(other) if isinstance(other, InterviewSource) else other) def __eq__(self, other): return self is other def __ne__(self, other): return self is not other def __str__(self): if hasattr(self, 'path'): return str(self.path) return 'interviewsource' def __hash__(self): if hasattr(self, 'path'): return hash((self.path,)) else: return hash(('interviewsource',)) def set_path(self, path): self.path = path return def get_name(self): if ':' in self.path: return self.path return self.get_package() + ':data/questions/' + self.path def get_index(self): the_index = docassemble.base.functions.server.server_redis.get('da:interviewsource:' + self.path) if the_index is None: #sys.stderr.write("Updating index from get_index for " + self.path + "\n") the_index = docassemble.base.functions.server.server_redis.incr('da:interviewsource:' + self.path) return the_index def update_index(self): #sys.stderr.write("Updating index for " + self.path + "\n") docassemble.base.functions.server.server_redis.incr('da:interviewsource:' + self.path) def set_filepath(self, filepath): self.filepath = filepath return def set_directory(self, directory): self.directory = directory return def set_content(self, content): self.content = content return def set_language(self, language): self.language = language return def set_dialect(self, dialect): self.dialect = dialect return def set_testing(self, testing): self.testing = testing return def set_package(self, package): self.package = package return def update(self): return True def get_modtime(self): return self._modtime def get_language(self): return self.language def get_dialect(self): return self.dialect def get_package(self): return self.package def get_testing(self): return self.testing def get_interview(self): return Interview(source=self) def append(self, path): return None class InterviewSourceString(InterviewSource): def __init__(self, **kwargs): self.set_path(kwargs.get('path', None)) self.set_directory(kwargs.get('directory', None)) self.set_content(kwargs.get('content', None)) self._modtime = datetime.datetime.utcnow() return super().__init__(**kwargs) class InterviewSourceFile(InterviewSource): def __init__(self, **kwargs): self.playground = None if 'filepath' in kwargs: if re.search(r'SavedFile', str(type(kwargs['filepath']))): self.playground = kwargs['filepath'] if self.playground.subdir and self.playground.subdir != 'default': self.playground_file = os.path.join(self.playground.subdir, self.playground.filename) else: self.playground_file = self.playground.filename #sys.stderr.write("The path is " + repr(self.playground.path) + "\n") if os.path.isfile(self.playground.path) and os.access(self.playground.path, os.R_OK): self.set_filepath(self.playground.path) else: raise DAError("Reference to invalid playground path") else: self.set_filepath(kwargs['filepath']) else: self.filepath = None if 'path' in kwargs: self.set_path(kwargs['path']) return super().__init__(**kwargs) def set_path(self, path): self.path = path parts = path.split(":") if len(parts) == 2: self.package = parts[0] self.basename = parts[1] else: self.package = None # if self.package is None: # m = re.search(r'^/(playground\.[0-9]+)/', path) # if m: # self.package = m.group(1) if self.filepath is None: self.set_filepath(interview_source_from_string(self.path)) if self.package is None and re.search(r'docassemble.base.data.', self.filepath): self.package = 'docassemble.base' return def set_filepath(self, filepath): #logmessage("Called set_filepath with " + str(filepath)) self.filepath = filepath if self.filepath is None: self.directory = None else: self.set_directory(os.path.dirname(self.filepath)) return def reset_modtime(self): try: with open(self.filepath, 'a'): os.utime(self.filepath, None) except: logmessage("InterviewSourceFile: could not reset modification time on interview") def update(self): #logmessage("Update: " + str(self.filepath)) try: with open(self.filepath, 'r', encoding='utf-8') as the_file: self.set_content(the_file.read()) #sys.stderr.write("Returning true\n") return True except Exception as errmess: #sys.stderr.write("Error: " + str(errmess) + "\n") pass return False def get_modtime(self): #logmessage("get_modtime called in parse where path is " + str(self.path)) if self.playground is not None: return self.playground.get_modtime(filename=self.playground_file) self._modtime = os.path.getmtime(self.filepath) return(self._modtime) def append(self, path): new_file = os.path.join(self.directory, path) if os.path.isfile(new_file) and os.access(new_file, os.R_OK): new_source = InterviewSourceFile() new_source.path = path new_source.directory = self.directory new_source.basename = path new_source.filepath = new_file new_source.playground = self.playground if hasattr(self, 'package'): new_source.package = self.package if new_source.update(): return(new_source) return(None) def dummy_embed_input(status, variable): return variable class InterviewStatus: def __init__(self, current_info=dict(), **kwargs): self.current_info = current_info self.attributions = set() self.seeking = list() self.tracker = kwargs.get('tracker', -1) self.maps = list() self.extra_scripts = list() self.extra_css = list() self.using_screen_reader = False self.can_go_back = True self.attachments = None self.linkcounter = 0 #restore this, maybe #self.next_action = list() self.embedded = set() self.extras = dict() self.followed_mc = False self.tentatively_answered = set() self.checkin = False def get_all_fields_used(self, user_dict): if 'list_collect' in self.extras: all_fields = set() allow_append = self.extras['list_collect_allow_append'] iterator_re = re.compile(r"\[%s\]" % (self.extras['list_iterator'],)) list_len = len(self.extras['list_collect'].elements) if hasattr(self.extras['list_collect'], 'minimum_number') and self.extras['list_collect'].minimum_number is not None and self.extras['list_collect'].minimum_number > list_len: list_len = self.extras['list_collect'].minimum_number if list_len == 0: list_len = 1 if self.extras['list_collect'].ask_object_type or not allow_append: extra_amount = 0 else: extra_amount = get_config('list collect extra count', 15) for list_indexno in range(list_len + extra_amount): for field_used in self.question.fields_used: all_fields.add(re.sub(iterator_re, '[' + str(list_indexno) +']', field_used)) return all_fields else: return self.question.fields_used def get_fields_and_sub_fields_and_collect_fields(self, user_dict): all_fields = self.question.get_fields_and_sub_fields(user_dict) if 'list_collect' in self.extras: allow_append = self.extras['list_collect_allow_append'] iterator_re = re.compile(r"\[%s\]" % (self.extras['list_iterator'],)) if 'sub_fields' in self.extras: field_list = list() for field in self.question.fields: if field.number in self.extras['sub_fields']: field_list.extend(self.extras['sub_fields'][field.number]) else: field_list.append(field) else: field_list = self.question.fields list_len = len(self.extras['list_collect'].elements) if hasattr(self.extras['list_collect'], 'minimum_number') and self.extras['list_collect'].minimum_number is not None and self.extras['list_collect'].minimum_number > list_len: list_len = self.extras['list_collect'].minimum_number if list_len == 0: list_len = 1 if self.extras['list_collect'].ask_object_type or not allow_append: extra_amount = 0 else: extra_amount = get_config('list collect extra count', 15) for list_indexno in range(list_len + extra_amount): for field in field_list: the_field = copy.deepcopy(field) the_field.number = str(list_indexno) + '_' + str(the_field.number) if hasattr(the_field, 'saveas'): the_field.saveas = safeid(re.sub(iterator_re, '[' + str(list_indexno) +']', from_safeid(field.saveas))) all_fields.append(the_field) return all_fields def is_empty_mc(self, field): if hasattr(field, 'choicetype') and not (hasattr(field, 'inputtype') and field.inputtype == 'combobox'): if field.choicetype in ['compute', 'manual']: if field.number not in self.selectcompute: return False pairlist = list(self.selectcompute[field.number]) else: logmessage("is_empty_mc: unknown choicetype " + str(field.choicetype)) return False if len(pairlist) == 0: return True return False def get_field_info(self): datatypes = dict() hiddens = dict() files = list() ml_info = dict() checkboxes = dict() saveas_by_number = dict() saveas_to_use = dict() if self.extras.get('list_collect', False) is not False: list_collect_list = self.extras['list_collect'].instanceName else: list_collect_list = None if self.orig_sought is not None: orig_sought = self.orig_sought else: orig_sought = None if self.question.question_type == "signature": signature_saveas = self.question.fields[0].saveas else: signature_saveas = None if hasattr(self.question, 'fields_saveas'): datatypes[safeid(self.question.fields_saveas)] = "boolean" fields_saveas = self.question.fields_saveas else: fields_saveas = None if self.question.question_type in ["yesno", "yesnomaybe"]: datatypes[self.question.fields[0].saveas] = self.question.fields[0].datatype elif self.question.question_type in ["noyes", "noyesmaybe"]: datatypes[self.question.fields[0].saveas] = self.question.fields[0].datatype elif self.question.question_type == "review" and hasattr(self.question, 'review_saveas'): datatypes[safeid(self.question.review_saveas)] = "boolean" elif self.question.question_type == "fields": the_field_list = self.get_field_list() for field in the_field_list: if hasattr(field, 'saveas'): if (hasattr(field, 'extras') and (('show_if_var' in field.extras and 'show_if_val' in self.extras) or 'show_if_js' in field.extras)) or (hasattr(field, 'disableothers') and field.disableothers): the_saveas = safeid('_field_' + str(field.number)) else: the_saveas = field.saveas saveas_to_use[field.saveas] = the_saveas saveas_by_number[field.number] = the_saveas for field in the_field_list: if not self.extras['ok'][field.number]: continue if self.is_empty_mc(field): if hasattr(field, 'datatype'): hiddens[field.saveas] = field.datatype else: hiddens[field.saveas] = True if hasattr(field, 'datatype'): datatypes[field.saveas] = field.datatype if field.datatype in ('object_multiselect', 'object_checkboxes'): datatypes[safeid(from_safeid(field.saveas) + ".gathered")] = 'boolean' continue if hasattr(field, 'extras'): if 'ml_group' in field.extras or 'ml_train' in field.extras: ml_info[field.saveas] = dict() if 'ml_group' in field.extras: ml_info[field.saveas]['group_id'] = self.extras['ml_group'][field.number] if 'ml_train' in field.extras: ml_info[field.saveas]['train'] = self.extras['ml_train'][field.number] if hasattr(field, 'choicetype'): vals = set([str(x['key']) for x in self.selectcompute[field.number]]) if len(vals) == 1 and ('True' in vals or 'False' in vals): datatypes[field.saveas] = 'boolean' elif len(vals) == 1 and 'None' in vals: datatypes[field.saveas] = 'threestate' elif len(vals) == 2 and ('True' in vals and 'False' in vals): datatypes[field.saveas] = 'boolean' elif len(vals) == 2 and (('True' in vals and 'None' in vals) or ('False' in vals and 'None' in vals)): datatypes[field.saveas] = 'threestate' elif len(vals) == 3 and ('True' in vals and 'False' in vals and 'None' in vals): datatypes[field.saveas] = 'threestate' else: datatypes[field.saveas] = field.datatype elif hasattr(field, 'datatype') and hasattr(field, 'saveas'): datatypes[field.saveas] = field.datatype if hasattr(field, 'datatype') and hasattr(field, 'saveas'): if (field.datatype in ['files', 'file', 'camera', 'user', 'environment', 'camcorder', 'microphone']): files.append(saveas_by_number[field.number]) if not hasattr(field, 'choicetype'): datatypes[field.saveas] = field.datatype if field.datatype == 'boolean': if field.sign > 0: checkboxes[field.saveas] = 'False' else: checkboxes[field.saveas] = 'True' elif field.datatype == 'threestate': checkboxes[field.saveas] = 'None' elif field.datatype in ['multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes']: if field.choicetype in ['compute', 'manual']: pairlist = list(self.selectcompute[field.number]) else: pairlist = list() for pair in pairlist: if isinstance(pair['key'], str): checkboxes[safeid(from_safeid(field.saveas) + "[B" + myb64quote(pair['key']) + "]")] = 'False' else: checkboxes[safeid(from_safeid(field.saveas) + "[R" + myb64quote(repr(pair['key'])) + "]")] = 'False' elif not self.extras['required'][field.number]: checkboxes[field.saveas] = 'None' if field.datatype in ('object_multiselect', 'object_checkboxes'): datatypes[safeid(from_safeid(field.saveas) + ".gathered")] = 'boolean' if self.extras.get('list_collect_is_final', False): if self.extras['list_collect'].ask_number: datatypes[safeid(self.extras['list_collect'].instanceName + ".target_number")] = 'integer' else: datatypes[safeid(self.extras['list_collect'].instanceName + ".there_is_another")] = 'boolean' elif self.question.question_type == "settrue": datatypes[self.question.fields[0].saveas] = "boolean" elif self.question.question_type == "multiple_choice" and hasattr(self.question.fields[0], 'datatype'): datatypes[self.question.fields[0].saveas] = self.question.fields[0].datatype return {'datatypes': datatypes, 'hiddens': hiddens, 'files': files, 'ml_info': ml_info, 'checkboxes': checkboxes, 'list_collect_list': list_collect_list, 'orig_sought': orig_sought, 'fields_saveas': fields_saveas, 'signature_saveas': signature_saveas} def do_sleep(self): if hasattr(self.question, 'sleep'): try: time.sleep(self.question.sleep) except: sys.stderr.write("do_sleep: invalid sleep amount " + repr(self.question.sleep) + "\n") def get_field_list(self): if 'sub_fields' in self.extras: field_list = list() for field in self.question.fields: if field.number in self.extras['sub_fields']: field_list.extend(self.extras['sub_fields'][field.number]) else: field_list.append(field) else: field_list = self.question.fields if 'list_collect' in self.extras: full_field_list = list() allow_append = self.extras['list_collect_allow_append'] iterator_re = re.compile(r"\[%s\]" % (self.extras['list_iterator'],)) list_len = len(self.extras['list_collect'].elements) if hasattr(self.extras['list_collect'], 'minimum_number') and self.extras['list_collect'].minimum_number is not None and self.extras['list_collect'].minimum_number > list_len: list_len = self.extras['list_collect'].minimum_number if list_len == 0: list_len = 1 if self.extras['list_collect'].ask_object_type or not allow_append: extra_amount = 0 else: extra_amount = get_config('list collect extra count', 15) for list_indexno in range(list_len + extra_amount): header_field = Field({'type': 'html', 'extras': {'html': TextObject('')}}) if list_indexno >= list_len: header_field.collect_type = 'extraheader' elif list_indexno == 0: header_field.collect_type = 'firstheader' else: header_field.collect_type = 'header' header_field.collect_number = list_indexno header_field.number = str(list_indexno) full_field_list.append(header_field) self.extras['ok'][str(list_indexno)] = True self.extras['required'][str(list_indexno)] = False for field in field_list: the_field = copy.deepcopy(field) the_field.number = str(list_indexno) + '_' + str(the_field.number) if hasattr(the_field, 'saveas'): the_field.saveas = safeid(re.sub(iterator_re, '[' + str(list_indexno) + ']', from_safeid(the_field.saveas))) if hasattr(the_field, 'disableothers') and the_field.disableothers: list_of_other_fields = list() if isinstance(the_field.disableothers, list): for other_saveas in the_field.disableothers: list_of_other_fields.append(re.sub(iterator_re, '[' + str(list_indexno) + ']', other_saveas)) else: for other_field in field_list: if not hasattr(other_field, 'saveas'): continue if other_field.number == field.number: continue list_of_other_fields.append(re.sub(iterator_re, '[' + str(list_indexno) +']', from_safeid(other_field.saveas))) the_field.disableothers = list_of_other_fields if hasattr(the_field, 'uncheckothers') and the_field.uncheckothers: list_of_other_fields = list() if isinstance(the_field.uncheckothers, list): for other_saveas in the_field.uncheckothers: list_of_other_fields.append(re.sub(iterator_re, '[' + str(list_indexno) +']', from_safeid(other_saveas))) else: for other_field in field_list: if not hasattr(other_field, 'saveas'): continue if other_field.number == field.number or not (hasattr(other_field, 'inputtype') and other_field.inputtype in ['yesno', 'noyes', 'yesnowide', 'noyeswide']): continue list_of_other_fields.append(re.sub(iterator_re, '[' + str(list_indexno) +']', from_safeid(other_field.saveas))) the_field.uncheckothers = list_of_other_fields if hasattr(the_field, 'extras'): if 'show_if_var' in the_field.extras: the_field.extras['show_if_var'] = safeid(re.sub(r'\[' + self.extras['list_iterator'] + r'\]', '[' + str(list_indexno) + ']', from_safeid(the_field.extras['show_if_var']))) if 'show_if_js' in the_field.extras: the_field.extras['show_if_js']['expression'].original_text = re.sub(iterator_re, '[' + str(list_indexno) + ']', the_field.extras['show_if_js']['expression'].original_text) self.extras['show_if_js'][the_field.number]['expression'] = re.sub(iterator_re, '[' + str(list_indexno) + ']', self.extras['show_if_js'][the_field.number]['expression']) if the_field.extras['show_if_js']['expression'].uses_mako: the_field.extras['show_if_js']['expression'].template = MakoTemplate(the_field.extras['show_if_js']['expression'].original_text, strict_undefined=True, input_encoding='utf-8') for ii in range(len(the_field.extras['show_if_js']['vars'])): the_field.extras['show_if_js']['vars'][ii] = re.sub(iterator_re, '[' + str(list_indexno) + ']', the_field.extras['show_if_js']['vars'][ii]) for ii in range(len(self.extras['show_if_js'][the_field.number]['vars'])): self.extras['show_if_js'][the_field.number]['vars'][ii] = re.sub(iterator_re, '[' + str(list_indexno) + ']', self.extras['show_if_js'][the_field.number]['vars'][ii]) if list_indexno >= list_len: the_field.collect_type = 'extra' else: the_field.collect_type = 'mid' the_field.collect_number = list_indexno full_field_list.append(the_field) post_header_field = Field({'type': 'html', 'extras': {'html': TextObject('')}}) if extra_amount > 0 and list_indexno == list_len + extra_amount - 1: post_header_field.collect_type = 'extrafinalpostheader' elif list_indexno >= list_len: post_header_field.collect_type = 'extrapostheader' else: post_header_field.collect_type = 'postheader' post_header_field.collect_number = list_indexno post_header_field.number = str(list_indexno) full_field_list.append(post_header_field) return full_field_list else: return field_list def mark_tentative_as_answered(self, the_user_dict): for question in self.tentatively_answered: question.mark_as_answered(the_user_dict) self.tentatively_answered.clear() def initialize_screen_reader(self): self.using_screen_reader = True self.screen_reader_text = dict() self.screen_reader_links = {'question': [], 'help': []} def populate(self, question_result): self.question = question_result['question'] self.questionText = question_result['question_text'] self.subquestionText = question_result['subquestion_text'] self.continueLabel = question_result['continue_label'] self.decorations = question_result['decorations'] self.audiovideo = question_result['audiovideo'] self.helpText = question_result['help_text'] self.attachments = question_result['attachments'] self.selectcompute = question_result['selectcompute'] self.defaults = question_result['defaults'] self.other_defaults = dict() #self.defined = question_result['defined'] self.hints = question_result['hints'] self.helptexts = question_result['helptexts'] self.extras = question_result['extras'] self.labels = question_result['labels'] self.sought = question_result['sought'] self.orig_sought = question_result['orig_sought'] def set_tracker(self, tracker): self.tracker = tracker def get_history(self): output = {'steps': []} if self.question.from_source.path != self.question.interview.source.path and self.question.from_source.path is not None: output['source_file'] = self.question.from_source.path if hasattr(self.question, 'source_code') and self.question.source_code is not None: output['source_code'] = self.question.source_code index = 0 seeking_len = len(self.seeking) if seeking_len: starttime = self.seeking[0]['time'] for stage in self.seeking: index += 1 if index < seeking_len and 'reason' in self.seeking[index] and self.seeking[index]['reason'] in ('asking', 'running') and self.seeking[index]['question'] is stage['question'] and 'question' in stage and 'reason' in stage and stage['reason'] == 'considering': continue the_stage = {'time': "%.5fs" % (stage['time'] - starttime), 'index': index} if 'question' in stage and 'reason' in stage and (index < (seeking_len - 1) or stage['question'] is not self.question): the_stage['reason'] = stage['reason'] if stage['reason'] == 'initial': the_stage['reason_text'] = "Ran initial code" elif stage['reason'] == 'mandatory question': the_stage['reason_text'] = "Tried to ask mandatory question" elif stage['reason'] == 'mandatory code': the_stage['reason_text'] = "Tried to run mandatory code" elif stage['reason'] == 'asking': the_stage['reason_text'] = "Tried to ask question" elif stage['reason'] == 'running': the_stage['reason_text'] = "Tried to run block" elif stage['reason'] == 'considering': the_stage['reason_text'] = "Considered using block" elif stage['reason'] == 'objects from file': the_stage['reason_text'] = "Tried to load objects from file" elif stage['reason'] == 'data': the_stage['reason_text'] = "Tried to load data" elif stage['reason'] == 'objects': the_stage['reason_text'] = "Tried to load objects" elif stage['reason'] == 'result of multiple choice': the_stage['reason_text'] = "Followed the result of multiple choice selection" if stage['question'].from_source.path != self.question.interview.source.path and stage['question'].from_source.path is not None: the_stage['source_file'] = stage['question'].from_source.path if (not hasattr(stage['question'], 'source_code')) or stage['question'].source_code is None: the_stage['embedded'] = True else: the_stage['code'] = stage['question'].source_code elif 'variable' in stage: the_stage['reason'] = 'needed' the_stage['reason_text'] = "Needed definition of" the_stage['variable_name'] = str(stage['variable']) elif 'done' in stage: the_stage['reason'] = 'complete' the_stage['reason_text'] = "Completed processing" else: continue output['steps'].append(the_stage) return output def as_data(self, the_user_dict, encode=True): result = dict(language=self.question.language) debug = self.question.interview.debug if debug: output = dict(question='', help='') if 'progress' in the_user_dict['_internal']: result['progress'] = the_user_dict['_internal']['progress'] if self.question.language in self.question.interview.default_validation_messages: result['validation_messages'] = copy.copy(self.question.interview.default_validation_messages[self.question.language]) else: result['validation_messages'] = dict() if 'reload_after' in self.extras: result['reload'] = 1000 * int(self.extras['reload_after']) lang = docassemble.base.functions.get_language() if len(self.question.terms) or len(self.question.interview.terms): result['terms'] = dict() if 'terms' in self.extras: for term, vals in self.extras['terms'].items(): result['terms'][term] = vals['definition'] if lang in self.question.interview.terms and len(self.question.interview.terms[lang]): for term, vals in self.question.interview.terms[lang].items(): result['terms'][term] = vals['definition'] elif self.question.language in self.question.interview.terms and len(self.question.interview.terms[self.question.language]): for term, vals in self.question.interview.terms[self.question.language].items(): result['terms'][term] = vals['definition'] if len(self.question.autoterms) or len(self.question.interview.autoterms): result['autoterms'] = dict() if 'autoterms' in self.extras: for term, vals in self.extras['autoterms'].items(): result['autoterms'][term] = vals['definition'] if lang in self.question.interview.autoterms and len(self.question.interview.autoterms[lang]): for term, vals in question.interview.autoterms[lang].items(): result['autoterms'][term] = vals['definition'] elif self.question.language in self.question.interview.autoterms and len(self.question.interview.autoterms[self.question.language]): for term, vals in self.question.interview.autoterms[self.question.language].items(): result['autoterms'][term] = vals['definition'] if self.orig_sought is not None: result['event_list'] = [self.orig_sought] if 'action_buttons' in self.extras: result['additional_buttons'] = [] for item in self.extras['action_buttons']: new_item = copy.deepcopy(item) new_item['label'] = docassemble.base.filter.markdown_to_html(item['label'], trim=True, do_terms=False, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + new_item['label'] + '</p>' for param in ('questionText',): if hasattr(self, param) and getattr(self, param) is not None: result[param] = docassemble.base.filter.markdown_to_html(getattr(self, param).rstrip(), trim=True, status=self, verbatim=(not encode)) if debug: output['question'] += result[param] if hasattr(self, 'subquestionText') and self.subquestionText is not None: if self.question.question_type == "fields": embedder = dummy_embed_input else: embedder = None result['subquestionText'] = docassemble.base.filter.markdown_to_html(self.subquestionText.rstrip(), status=self, verbatim=(not encode), embedder=embedder) if debug: output['question'] += result['subquestionText'] for param in ('continueLabel', 'helpLabel'): if hasattr(self, param) and getattr(self, param) is not None: result[param] = docassemble.base.filter.markdown_to_html(getattr(self, param).rstrip(), trim=True, do_terms=False, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + result[param] + '</p>' if 'menu_items' in self.extras and isinstance(self.extras['menu_items'], list): result['menu_items'] = self.extras['menu_items'] for param in ('cssClass', 'tableCssClass', 'css', 'script'): if param in self.extras and isinstance(self.extras[param], str): result[param] = self.extras[param].rstrip() for param in ('back_button_label',): if param in self.extras and isinstance(self.extras[param], str): result[param] = docassemble.base.filter.markdown_to_html(self.extras[param].rstrip(), trim=True, do_terms=False, status=self, verbatim=(not encode)) for param in ('rightText', 'underText'): if param in self.extras and isinstance(self.extras[param], str): result[param] = docassemble.base.filter.markdown_to_html(self.extras[param].rstrip(), status=self, verbatim=(not encode)) if debug: output['question'] += result[param] if 'continueLabel' not in result: if self.question.question_type == "review": result['continueLabel'] = word('Resume') else: result['continueLabel'] = word('Continue') if debug: output['question'] += '<p>' + result['continueLabel'] + '</p>' if self.question.question_type == "yesno": result['yesLabel'] = self.question.yes() result['noLabel'] = self.question.no() elif self.question.question_type == "noyes": result['noLabel'] = self.question.yes() result['yesLabel'] = self.question.no() elif self.question.question_type == "yesnomaybe": result['yesLabel'] = self.question.yes() result['noLabel'] = self.question.no() result['maybeLabel'] = self.question.maybe() elif self.question.question_type == "noyesmaybe": result['noLabel'] = self.question.yes() result['yesLabel'] = self.question.no() result['maybeLabel'] = self.question.maybe() steps = the_user_dict['_internal']['steps'] - the_user_dict['_internal']['steps_offset'] if self.can_go_back and steps > 1: result['allow_going_back'] = True result['backTitle'] = word("Go back to the previous question") back_button_val = self.extras.get('back_button', None) if (back_button_val or (back_button_val is None and self.question.interview.question_back_button)): result['questionBackButton'] = self.back else: result['allow_going_back'] = False if self.question.question_type == "signature": result['signaturePhrases'] = { 'clear': word('Clear'), 'noSignature': word("You must sign your name to continue."), 'loading': word('Loading. Please wait . . . '), } if 'questionMetadata' in self.extras: result['question_metadata'] = self.extras['questionMetadata'] if 'segment' in self.extras: result['segment'] = self.extras['segment'] if 'ga_id' in self.extras: result['ga_id'] = self.extras['ga_id'] if hasattr(self.question, 'id'): result['id'] = self.question.id if hasattr(self, 'audiovideo') and self.audiovideo is not None: audio_result = docassemble.base.filter.get_audio_urls(self.audiovideo) video_result = docassemble.base.filter.get_video_urls(self.audiovideo) if len(audio_result) > 0: result['audio'] = [dict(url=re.sub(r'.*"(http[^"]+)".*', r'\1', x)) if isinstance(x, str) else dict(url=x[0], mime_type=x[1]) for x in audio_result] if len(video_result) > 0: result['video'] = [dict(url=re.sub(r'.*"(http[^"]+)".*', r'\1', x)) if isinstance(x, str) else dict(url=x[0], mime_type=x[1]) for x in video_result] if hasattr(self, 'helpText') and len(self.helpText) > 0: result['helpText'] = list() result['helpBackLabel'] = word("Back to question") for help_text in self.helpText: the_help = dict() if 'audiovideo' in help_text and help_text['audiovideo'] is not None: audio_result = docassemble.base.filter.get_audio_urls(help_text['audiovideo']) video_result = docassemble.base.filter.get_video_urls(help_text['audiovideo']) if len(audio_result) > 0: the_help['audio'] = [dict(url=x[0], mime_type=x[1]) for x in audio_result] if len(video_result) > 0: the_help['video'] = [dict(url=x[0], mime_type=x[1]) for x in video_result] if 'content' in help_text and help_text['content'] is not None: the_help['content'] = docassemble.base.filter.markdown_to_html(help_text['content'].rstrip(), status=self, verbatim=(not encode)) if debug: output['help'] += the_help['content'] if 'heading' in help_text and help_text['heading'] is not None: the_help['heading'] = help_text['heading'].rstrip() if debug: output['help'] += '<p>' + the_help['heading'] + '</p>' elif len(self.helpText) > 1: the_help['heading'] = word('Help with this question') result['helpText'].append(the_help) result['help'] = dict() if self.helpText[0]['label']: result['help']['label'] = docassemble.base.filter.markdown_to_html(self.helpText[0]['label'], trim=True, do_terms=False, status=self, verbatim=(not encode)) else: result['help']['label'] = self.question.help() result['help']['title'] = word("Help is available for this question") result['help']['specific'] = False if self.question.helptext is None else True if 'questionText' not in result and self.question.question_type == "signature": result['questionText'] = word('Sign Your Name') if debug: output['question'] += '<p>' + result['questionText'] + '</p>' result['questionType'] = self.question.question_type if hasattr(self.question, 'question_variety'): result['questionVariety'] = self.question.question_variety if self.question.is_mandatory or self.question.mandatory_code is not None: result['mandatory'] = True if hasattr(self.question, 'name'): result['_question_name'] = self.question.name result['_tracker'] = self.tracker if hasattr(self, 'datatypes'): result['_datatypes'] = safeid(json.dumps(self.datatypes)) if hasattr(self, 'varnames'): result['_varnames'] = safeid(json.dumps(self.varnames)) if len(self.question.fields) > 0: result['fields'] = list() if hasattr(self.question, 'review_saveas'): result['question_variable_name'] = self.question.review_saveas if hasattr(self.question, 'fields_saveas'): result['question_variable_name'] = self.question.fields_saveas if self.decorations is not None: width_value = get_config('decoration size', 2.0) width_units = get_config('decoration units', 'em') for decoration in self.decorations: if 'image' in decoration: result['decoration'] = {} the_image = self.question.interview.images.get(decoration['image'], None) if the_image is not None: the_url = docassemble.base.functions.server.url_finder(str(the_image.package) + ':' + str(the_image.filename)) width = str(width_value) + str(width_units) filename = docassemble.base.functions.server.file_finder(str(the_image.package) + ':' + str(the_image.filename)) if 'extension' in filename and filename['extension'] == 'svg' and 'width' in filename: if filename['width'] and filename['height']: height = str(width_value * (filename['height']/filename['width'])) + str(width_units) else: height = 'auto' if the_url is not None: result['decoration']['url'] = the_url result['decoration']['size'] = {"width": width, "height": height} if the_image.attribution is not None: self.attributions.add(the_image.attribution) break elif get_config('default icons', None) in ('material icons', 'font awesome'): result['decoration']['name'] = decoration['image'] result['decoration']['size'] = str(width_value) + str(width_units) break if len(self.attachments) > 0: result['attachments'] = list() if self.current_info['user']['is_authenticated'] and self.current_info['user']['email']: result['default_email'] = self.current_info['user']['email'] for attachment in self.attachments: the_attachment = dict(url=dict(), number=dict(), filename_with_extension=dict()) if 'orig_variable_name' in attachment and attachment['orig_variable_name']: the_attachment['variable_name'] = attachment['orig_variable_name'] if 'name' in attachment: if attachment['name']: the_attachment['name'] = docassemble.base.filter.markdown_to_html(attachment['name'], trim=True, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + the_attachment['name'] + '</p>' if 'description' in attachment: if attachment['description']: the_attachment['description'] = docassemble.base.filter.markdown_to_html(attachment['description'], status=self, verbatim=(not encode)) if debug: output['question'] += the_attachment['description'] for key in ('valid_formats', 'filename', 'content', 'markdown', 'raw'): if key in attachment: if attachment[key]: the_attachment[key] = attachment[key] for the_format in attachment['file']: the_attachment['url'][the_format] = docassemble.base.functions.server.url_finder(attachment['file'][the_format], filename=attachment['filename'] + '.' + extension_of_doc_format[the_format]) the_attachment['number'][the_format] = attachment['file'][the_format] the_attachment['filename_with_extension'][the_format] = attachment['filename'] + '.' + extension_of_doc_format[the_format] result['attachments'].append(the_attachment) if self.extras.get('list_collect', False) is not False: result['listCollect'] = { 'deleteLabel': word('Delete'), 'addAnotherLabel': self.extras['list_collect_add_another_label'] if self.extras['list_collect_add_another_label'] else word("Add another"), 'deletedLabel': word("(Deleted)"), 'undeleteLabel': word("Undelete"), } validation_rules_used = set() file_fields = list() for field in self.question.fields: the_field = dict() the_field['number'] = field.number if hasattr(field, 'saveas'): the_field['variable_name'] = from_safeid(field.saveas) if encode: the_field['variable_name_encoded'] = field.saveas the_field['validation_messages'] = dict() if self.question.question_type == 'multiple_choice' and self.question.question_variety in ["radio", "dropdown", "combobox"]: if self.question.question_variety == 'combobox': the_field['validation_messages']['required'] = field.validation_message('combobox required', self, word("You need to select one or type in a new value.")) else: the_field['validation_messages']['required'] = field.validation_message('multiple choice required', self, word("You need to select one.")) elif not (hasattr(field, 'datatype') and field.datatype in ['multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes']): if hasattr(field, 'inputtype') and field.inputtype == 'combobox': the_field['validation_messages']['required'] = field.validation_message('combobox required', self, word("You need to select one or type in a new value.")) elif hasattr(field, 'inputtype') and field.inputtype == 'ajax': the_field['validation_messages']['required'] = field.validation_message('combobox required', self, word("You need to select one.")) elif hasattr(field, 'datatype') and (field.datatype == 'object_radio' or (hasattr(field, 'inputtype') and field.inputtype in ('yesnoradio', 'noyesradio', 'radio', 'dropdown'))): the_field['validation_messages']['required'] = field.validation_message('multiple choice required', self, word("You need to select one.")) else: the_field['validation_messages']['required'] = field.validation_message('required', self, word("This field is required.")) if hasattr(field, 'inputtype') and field.inputtype in ['yesno', 'noyes', 'yesnowide', 'noyeswide'] and hasattr(field, 'uncheckothers') and field.uncheckothers is not False: the_field['validation_messages']['uncheckothers'] = field.validation_message('checkboxes required', self, word("Check at least one option, or check “%s”"), parameters=tuple([strip_tags(self.labels[field.number])])) if hasattr(field, 'datatype') and field.datatype not in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): for key in ('minlength', 'maxlength'): if hasattr(field, 'extras') and key in field.extras and key in self.extras: if key == 'minlength': the_field['validation_messages'][key] = field.validation_message(key, self, word("You must type at least %s characters."), parameters=tuple([self.extras[key][field.number]])) elif key == 'maxlength': the_field['validation_messages'][key] = field.validation_message(key, self, word("You cannot type more than %s characters."), parameters=tuple([self.extras[key][field.number]])) if hasattr(field, 'datatype'): if field.datatype in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes') and ((hasattr(field, 'nota') and self.extras['nota'][field.number] is not False) or (hasattr(field, 'extras') and (('minlength' in field.extras and 'minlength' in self.extras) or ('maxlength' in field.extras and 'maxlength' in self.extras)))): if field.datatype.endswith('checkboxes'): d_type = 'checkbox' else: d_type = 'multiselect' if hasattr(field, 'extras') and (('minlength' in field.extras and 'minlength' in self.extras) or ('maxlength' in field.extras and 'maxlength' in self.extras)): checkbox_messages = dict() if 'minlength' in field.extras and 'minlength' in self.extras and 'maxlength' in field.extras and 'maxlength' in self.extras and self.extras['minlength'][field.number] == self.extras['maxlength'][field.number] and self.extras['minlength'][field.number] > 0: if 'nota' not in self.extras: self.extras['nota'] = dict() self.extras['nota'][field.number] = False if d_type == 'checkbox': checkbox_messages['checkexactly'] = field.validation_message(d_type + ' minmaxlength', self, word("Please select exactly %s."), parameters=tuple([self.extras['maxlength'][field.number]])) else: checkbox_messages['selectexactly'] = field.validation_message(d_type + ' minmaxlength', self, word("Please select exactly %s."), parameters=tuple([self.extras['maxlength'][field.number]])) else: if 'minlength' in field.extras and 'minlength' in self.extras: if d_type == 'checkbox': if self.extras['minlength'][field.number] == 1: checkbox_messages['checkatleast'] = field.validation_message('checkbox minlength', self, word("Please select one.")) else: checkbox_messages['checkatleast'] = field.validation_message('checkbox minlength', self, word("Please select at least %s."), parameters=tuple([self.extras['minlength'][field.number]])) if int(float(self.extras['minlength'][field.number])) > 0: if 'nota' not in self.extras: self.extras['nota'] = dict() self.extras['nota'][field.number] = False else: if self.extras['minlength'][field.number] == 1: checkbox_messages['minlength'] = field.validation_message(d_type + ' minlength', self, word("Please select one.")) else: checkbox_messages['minlength'] = field.validation_message(d_type + ' minlength', self, word("Please select at least %s."), parameters=tuple([self.extras['minlength'][field.number]])) if 'maxlength' in field.extras and 'maxlength' in self.extras: if d_type == 'checkbox': checkbox_messages['checkatmost'] = field.validation_message(d_type + ' maxlength', self, word("Please select no more than %s."), parameters=tuple([self.extras['maxlength'][field.number]])) else: checkbox_messages['maxlength'] = field.validation_message(d_type + ' maxlength', self, word("Please select no more than %s."), parameters=tuple([self.extras['maxlength'][field.number]])) the_field['validation_messages'].update(checkbox_messages) if d_type == 'checkbox': if hasattr(field, 'nota') and self.extras['nota'][field.number] is not False: the_field['validation_messages']['checkatleast'] = field.validation_message('checkboxes required', self, word("Check at least one option, or check “%s”"), parameters=tuple([self.extras['nota'][field.number]])) if field.datatype == 'date': the_field['validation_messages']['date'] = field.validation_message('date', self, word("You need to enter a valid date.")) if hasattr(field, 'extras') and 'min' in field.extras and 'min' in self.extras and 'max' in field.extras and 'max' in self.extras and field.number in self.extras['min'] and field.number in self.extras['max']: the_field['validation_messages']['minmax'] = field.validation_message('date minmax', self, word("You need to enter a date between %s and %s."), parameters=(docassemble.base.util.format_date(self.extras['min'][field.number], format='medium'), docassemble.base.util.format_date(self.extras['max'][field.number], format='medium'))) else: was_defined = dict() for key in ['min', 'max']: if hasattr(field, 'extras') and key in field.extras and key in self.extras and field.number in self.extras[key]: was_defined[key] = True if key == 'min': the_field['validation_messages']['min'] = field.validation_message('date min', self, word("You need to enter a date on or after %s."), parameters=tuple([docassemble.base.util.format_date(self.extras[key][field.number], format='medium')])) elif key == 'max': the_field['validation_messages']['max'] = field.validation_message('date max', self, word("You need to enter a date on or before %s."), parameters=tuple([docassemble.base.util.format_date(self.extras[key][field.number], format='medium')])) if len(was_defined) == 0 and 'default date min' in self.question.interview.options and 'default date max' in self.question.interview.options: the_field['min'] = docassemble.base.util.format_date(self.question.interview.options['default date min'], format='yyyy-MM-dd') the_field['max'] = docassemble.base.util.format_date(self.question.interview.options['default date max'], format='yyyy-MM-dd') the_field['validation_messages']['minmax'] = field.validation_message('date minmax', self, word("You need to enter a date between %s and %s."), parameters=(docassemble.base.util.format_date(self.question.interview.options['default date min'], format='medium'), docassemble.base.util.format_date(self.question.interview.options['default date max'], format='medium'))) elif 'max' not in was_defined and 'default date max' in self.question.interview.options: the_field['max'] = docassemble.base.util.format_date(self.question.interview.options['default date max'], format='yyyy-MM-dd') the_field['validation_messages']['max'] = field.validation_message('date max', self, word("You need to enter a date on or before %s."), parameters=tuple([docassemble.base.util.format_date(self.question.interview.options['default date max'], format='medium')])) elif 'min' not in was_defined and 'default date min' in self.question.interview.options: the_field['min'] = docassemble.base.util.format_date(self.question.interview.options['default date min'], format='yyyy-MM-dd') the_field['validation_messages']['min'] = field.validation_message('date min', self, word("You need to enter a date on or after %s."), parameters=tuple([docassemble.base.util.format_date(self.question.interview.options['default date min'], format='medium')])) if field.datatype == 'time': the_field['validation_messages']['time'] = field.validation_message('time', self, word("You need to enter a valid time.")) if field.datatype in ['datetime', 'datetime-local']: the_field['validation_messages']['datetime'] = field.validation_message('datetime', self, word("You need to enter a valid date and time.")) if field.datatype == 'email': the_field['validation_messages']['email'] = field.validation_message('email', self, word("You need to enter a complete e-mail address.")) if field.datatype in ['number', 'currency', 'float', 'integer']: the_field['validation_messages']['number'] = field.validation_message('number', self, word("You need to enter a number.")) if field.datatype == 'integer' and not ('step' in self.extras and field.number in self.extras['step']): the_field['validation_messages']['step'] = field.validation_message('integer', self, word("Please enter a whole number.")) elif 'step' in self.extras and field.number in self.extras['step']: the_field['validation_messages']['step'] = field.validation_message('step', self, word("Please enter a multiple of {0}.")) for key in ['min', 'max']: if hasattr(field, 'extras') and key in field.extras and key in self.extras and field.number in self.extras[key]: if key == 'min': the_field['validation_messages'][key] = field.validation_message('min', self, word("You need to enter a number that is at least %s."), parameters=tuple([self.extras[key][field.number]])) elif key == 'max': the_field['validation_messages'][key] = field.validation_message('max', self, word("You need to enter a number that is at most %s."), parameters=tuple([self.extras[key][field.number]])) if (field.datatype in ['files', 'file', 'camera', 'user', 'environment', 'camcorder', 'microphone']): file_fields.append(field) the_field['validation_messages']['required'] = field.validation_message('file required', self, word("You must provide a file.")) if 'accept' in self.extras and field.number in self.extras['accept']: the_field['validation_messages']['accept'] = field.validation_message('accept', self, word("Please upload a file with a valid file format.")) if get_config('maximum content length') is not None: the_field['max'] = get_config('maximum content length') the_field['validation_messages']['max'] = field.validation_message('maxuploadsize', self, word("Your file upload is larger than the server can accept. Please reduce the size of your file upload.")) for param in ('datatype', 'fieldtype', 'sign', 'inputtype', 'address_autocomplete'): if hasattr(field, param): the_field[param] = getattr(field, param) if hasattr(field, 'shuffle') and field.shuffle is not False: the_field['shuffle'] = True if hasattr(field, 'disableothers') and field.disableothers and hasattr(field, 'saveas'): the_field['disable_others'] = True if hasattr(field, 'uncheckothers') and field.uncheckothers is not False: the_field['uncheck_others'] = True for key in ('minlength', 'maxlength', 'min', 'max', 'step', 'scale', 'inline', 'inline width', 'rows', 'accept', 'currency symbol', 'field metadata'): if key in self.extras and field.number in self.extras[key]: if key in ('minlength', 'maxlength', 'min', 'max', 'step'): validation_rules_used.add(key) the_field[key] = self.extras[key][field.number] if hasattr(field, 'saveas') and field.saveas in self.embedded: the_field['embedded'] = True if hasattr(self, 'shuffle'): the_field['shuffle'] = self.shuffle if field.number in self.defaults: the_default = self.defaults[field.number] if isinstance(the_default, (str, int, bool, float)): the_field['default'] = the_default else: the_default = None if self.question.question_type == 'multiple_choice' or hasattr(field, 'choicetype') or (hasattr(field, 'datatype') and field.datatype in ('object', 'multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes', 'object_radio')): the_field['choices'] = self.get_choices_data(field, the_default, the_user_dict, encode=encode) if hasattr(field, 'nota'): the_field['none_of_the_above'] = docassemble.base.filter.markdown_to_html(self.extras['nota'][field.number], do_terms=False, status=self, verbatim=(not encode)) the_field['active'] = self.extras['ok'][field.number] if field.number in self.extras['required']: the_field['required'] = self.extras['required'][field.number] if the_field['required']: validation_rules_used.add('required') if 'validation messages' in self.extras and field.number in self.extras['validation messages']: the_field['validation_messages'].update(self.extras['validation messages'][field.number]) if 'permissions' in self.extras: the_field['permissions'] = self.extras['permissions'][field.number] if hasattr(field, 'datatype') and field.datatype in ('file', 'files', 'camera', 'user', 'environment') and 'max_image_size' in self.extras and self.extras['max_image_size']: the_field['max_image_size'] = self.extras['max_image_size'] if hasattr(field, 'datatype') and field.datatype in ('file', 'files', 'camera', 'user', 'environment') and 'image_type' in self.extras and self.extras['image_type']: the_field['image_type'] = self.extras['image_type'] if hasattr(field, 'extras'): if 'ml_group' in field.extras or 'ml_train' in field.extras: the_field['ml_info'] = dict() if 'ml_group' in field.extras: the_field['ml_info']['group_id'] = self.extras['ml_group'][field.number] if 'ml_train' in field.extras: the_field['ml_info']['train'] = self.extras['ml_train'][field.number] if 'show_if_var' in field.extras and 'show_if_val' in self.extras: the_field['show_if_sign'] = field.extras['show_if_sign'] the_field['show_if_var'] = from_safeid(field.extras['show_if_var']) the_field['show_if_val'] = self.extras['show_if_val'][field.number] if 'show_if_js' in field.extras: the_field['show_if_js'] = dict(expression=field.extras['show_if_js']['expression'].text(the_user_dict), vars=field.extras['show_if_js']['vars'], sign=field.extras['show_if_js']['sign'], mode=field.extras['show_if_js']['mode']) if 'note' in self.extras and field.number in self.extras['note']: the_field['note'] = docassemble.base.filter.markdown_to_html(self.extras['note'][field.number], status=self, verbatim=(not encode)) if 'html' in self.extras and field.number in self.extras['html']: the_field['html'] = self.extras['html'][field.number] if field.number in self.hints: the_field['hint'] = self.hints[field.number] if debug: output['question'] += '<p>' + the_field['hint'] + '</p>' if field.number in self.labels: the_field['label'] = docassemble.base.filter.markdown_to_html(self.labels[field.number], trim=True, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + the_field['label'] + '</p>' if field.number in self.helptexts: the_field['helptext'] = docassemble.base.filter.markdown_to_html(self.helptexts[field.number], status=self, verbatim=(not encode)) if debug: output['question'] += the_field['helptext'] if self.question.question_type in ("yesno", "yesnomaybe"): the_field['true_label'] = docassemble.base.filter.markdown_to_html(self.question.yes(), trim=True, do_terms=False, status=self, verbatim=(not encode)) the_field['false_label'] = docassemble.base.filter.markdown_to_html(self.question.no(), trim=True, do_terms=False, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + the_field['true_label'] + '</p>' output['question'] += '<p>' + the_field['false_label'] + '</p>' if self.question.question_type == 'yesnomaybe': the_field['maybe_label'] = docassemble.base.filter.markdown_to_html(self.question.maybe(), trim=True, do_terms=False, status=self, verbatim=(not encode)) if debug: output['question'] += '<p>' + the_field['maybe_label'] + '</p>' result['fields'].append(the_field) if len(self.attributions): result['attributions'] = [x.rstrip() for x in self.attributions] if 'track_location' in self.extras and self.extras['track_location']: result['track_location'] = True if 'inverse navbar' in self.question.interview.options: if self.question.interview.options['inverse navbar']: result['navbarVariant'] = 'dark' else: result['navbarVariant'] = 'light' elif get_config('inverse navbar', True): result['navbarVariant'] = 'dark' else: result['navbarVariant'] = 'light' if debug: readability = dict() for question_type in ('question', 'help'): if question_type not in output: continue phrase = docassemble.base.functions.server.to_text(output[question_type]) if (not phrase) or len(phrase) < 10: phrase = "The sky is blue." phrase = re.sub(r'[^A-Za-z 0-9\.\,\?\#\!\%\&\(\)]', r' ', phrase) readability[question_type] = [('Flesch Reading Ease', textstat.flesch_reading_ease(phrase)), ('Flesch-Kincaid Grade Level', textstat.flesch_kincaid_grade(phrase)), ('Gunning FOG Scale', textstat.gunning_fog(phrase)), ('SMOG Index', textstat.smog_index(phrase)), ('Automated Readability Index', textstat.automated_readability_index(phrase)), ('Coleman-Liau Index', textstat.coleman_liau_index(phrase)), ('Linsear Write Formula', textstat.linsear_write_formula(phrase)), ('Dale-Chall Readability Score', textstat.dale_chall_readability_score(phrase)), ('Readability Consensus', textstat.text_standard(phrase))] result['source'] = {'label': word("Source"), 'title': word("How this question came to be asked"), 'history': self.get_history(), 'readability': readability} return result def get_choices(self, field, the_user_dict): question = self.question choice_list = list() if hasattr(field, 'saveas') and field.saveas is not None: saveas = from_safeid(field.saveas) if self.question.question_type == "multiple_choice": #if hasattr(field, 'has_code') and field.has_code: pairlist = list(self.selectcompute[field.number]) for pair in pairlist: choice_list.append([pair['label'], saveas, pair['key']]) elif hasattr(field, 'choicetype'): if field.choicetype in ('compute', 'manual'): pairlist = list(self.selectcompute[field.number]) elif field.datatype in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): pairlist = list() if field.datatype in ('object_multiselect', 'object_checkboxes'): for pair in pairlist: choice_list.append([pair['label'], saveas, from_safeid(pair['key'])]) elif field.datatype in ('object', 'object_radio'): for pair in pairlist: choice_list.append([pair['label'], saveas, from_safeid(pair['key'])]) elif field.datatype in ('multiselect', 'checkboxes'): for pair in pairlist: choice_list.append([pair['label'], saveas + "[" + repr(pair['key']) + "]", True]) else: for pair in pairlist: choice_list.append([pair['label'], saveas, pair['key']]) if hasattr(field, 'nota') and (field.datatype.endswith('checkboxes') and self.extras['nota'][field.number] is not False): #or (field.datatype.endswith('multiselect') and self.extras['nota'][field.number] is True) if self.extras['nota'][field.number] is True: formatted_item = word("None of the above") else: formatted_item = self.extras['nota'][field.number] choice_list.append([formatted_item, None, None]) else: indexno = 0 for choice in self.selectcompute[field.number]: choice_list.append([choice['label'], '_internal["answers"][' + repr(question.extended_question_name(the_user_dict)) + ']', indexno]) indexno += 1 return choice_list def icon_url(self, name): the_image = self.question.interview.images.get(name, None) if the_image is None: return None if the_image.attribution is not None: self.attributions.add(the_image.attribution) url = docassemble.base.functions.server.url_finder(str(the_image.package) + ':' + str(the_image.filename)) return url def get_choices_data(self, field, defaultvalue, the_user_dict, encode=True): question = self.question choice_list = list() if hasattr(field, 'saveas') and field.saveas is not None: saveas = from_safeid(field.saveas) if self.question.question_type == "multiple_choice": pairlist = list(self.selectcompute[field.number]) for pair in pairlist: item = dict(label=docassemble.base.filter.markdown_to_html(pair['label'], trim=True, do_terms=False, status=self, verbatim=encode), value=pair['key']) if 'help' in pair: item['help'] = docassemble.base.filter.markdown_to_html(pair['help'].rstrip(), trim=True, do_terms=False, status=self, verbatim=encode) if 'default' in pair: item['default'] = pair['default'] if 'image' in pair: if isinstance(pair['image'], dict): if pair['image']['type'] == 'url': item['image'] = pair['image']['value'] else: item['image'] = self.icon_url(pair['image']['value']) else: item['image'] = self.icon_url(pair['image']) choice_list.append(item) elif hasattr(field, 'choicetype'): if field.choicetype in ('compute', 'manual'): pairlist = list(self.selectcompute[field.number]) elif field.datatype in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): pairlist = list() if field.datatype in ('object_multiselect', 'object_checkboxes'): for pair in pairlist: item = dict(label=docassemble.base.filter.markdown_to_html(pair['label'], trim=True, do_terms=False, status=self, verbatim=encode), value=from_safeid(pair['key'])) if ('default' in pair and pair['default']) or (defaultvalue is not None and isinstance(defaultvalue, (list, set)) and str(pair['key']) in defaultvalue) or (isinstance(defaultvalue, dict) and str(pair['key']) in defaultvalue and defaultvalue[str(pair['key'])]) or (isinstance(defaultvalue, (str, int, bool, float)) and str(pair['key']) == str(defaultvalue)): item['selected'] = True if 'help' in pair: item['help'] = pair['help'] choice_list.append(item) elif field.datatype in ('object', 'object_radio'): for pair in pairlist: item = dict(label=docassemble.base.filter.markdown_to_html(pair['label'], trim=True, do_terms=False, status=self, verbatim=encode), value=from_safeid(pair['key'])) if ('default' in pair and pair['default']) or (defaultvalue is not None and isinstance(defaultvalue, (str, int, bool, float)) and str(pair['key']) == str(defaultvalue)): item['selected'] = True if 'default' in pair: item['default'] = str(pair['default']) if 'help' in pair: item['help'] = pair['help'] choice_list.append(item) elif field.datatype in ('multiselect', 'checkboxes'): for pair in pairlist: item = dict(label=docassemble.base.filter.markdown_to_html(pair['label'], trim=True, do_terms=False, status=self, verbatim=encode), variable_name=saveas + "[" + repr(pair['key']) + "]", value=True) if encode: item['variable_name_encoded'] = safeid(saveas + "[" + repr(pair['key']) + "]") if ('default' in pair and pair['default']) or (defaultvalue is not None and isinstance(defaultvalue, (list, set)) and str(pair['key']) in defaultvalue) or (isinstance(defaultvalue, dict) and str(pair['key']) in defaultvalue and defaultvalue[str(pair['key'])]) or (isinstance(defaultvalue, (str, int, bool, float)) and str(pair['key']) == str(defaultvalue)): item['selected'] = True if 'help' in pair: item['help'] = pair['help'] choice_list.append(item) else: for pair in pairlist: item = dict(label=docassemble.base.filter.markdown_to_html(pair['label'], trim=True, do_terms=False, status=self, verbatim=encode), value=pair['key']) if ('default' in pair and pair['default']) or (defaultvalue is not None and isinstance(defaultvalue, (str, int, bool, float)) and str(pair['key']) == str(defaultvalue)): item['selected'] = True choice_list.append(item) if hasattr(field, 'nota') and self.extras['nota'][field.number] is not False: if self.extras['nota'][field.number] is True: formatted_item = word("None of the above") else: formatted_item = self.extras['nota'][field.number] choice_list.append(dict(label=docassemble.base.filter.markdown_to_html(formatted_item, trim=True, do_terms=False, status=self, verbatim=encode))) else: indexno = 0 for choice in self.selectcompute[field.number]: item = dict(label=docassemble.base.filter.markdown_to_html(choice['label'], trim=True, do_terms=False, status=self, verbatim=encode), variable_name='_internal["answers"][' + repr(question.extended_question_name(the_user_dict)) + ']', value=indexno) if encode: item['variable_name_encoded'] = safeid('_internal["answers"][' + repr(question.extended_question_name(the_user_dict)) + ']') if 'image' in choice: the_image = self.icon_url(choice['image']) if the_image: item['image'] = the_image if 'help' in choice: item['help'] = choice['help'] if 'default' in choice: item['default'] = choice['default'] choice_list.append(item) indexno += 1 return choice_list # def new_counter(initial_value=0): # d = {'counter': initial_value} # def f(): # return_value = d['counter'] # d['counter'] += 1 # return(return_value) # return f # increment_question_counter = new_counter() class TextObject: def __deepcopy__(self, memo): return TextObject(self.original_text) def __init__(self, x, question=None, translate=True): self.original_text = x self.other_lang = dict() if translate and question is not None and question.interview.source.translating and isinstance(x, str) and re.search(r'[^\s0-9]', self.original_text) and not re.search(r'\<%doc\>\s*do not translate', self.original_text, re.IGNORECASE) and self.original_text != 'no label': if not hasattr(question, 'translations'): question.translations = list() if self.original_text not in question.translations: question.translations.append(self.original_text) if isinstance(x, str) and match_mako.search(x): if question is None: names_used = set() else: names_used = question.names_used self.template = MakoTemplate(x, strict_undefined=True, input_encoding='utf-8') for x in self.template.names_used - self.template.names_set: names_used.add(x) self.uses_mako = True else: self.uses_mako = False if translate and question is not None and len(question.interview.translations) and isinstance(x, str): if self.original_text in question.interview.translation_dict: if question.language == '*': self.language = docassemble.base.functions.server.default_language else: self.language = question.language for orig_lang in question.interview.translation_dict[self.original_text]: if orig_lang == question.language or (question.language == '*' and orig_lang == docassemble.base.functions.server.default_language): for target_lang in question.interview.translation_dict[self.original_text][orig_lang]: if self.uses_mako: self.other_lang[target_lang] = (question.interview.translation_dict[self.original_text][orig_lang][target_lang], MakoTemplate(question.interview.translation_dict[self.original_text][orig_lang][target_lang], strict_undefined=True, input_encoding='utf-8')) else: self.other_lang[target_lang] = (question.interview.translation_dict[self.original_text][orig_lang][target_lang],) def text(self, the_user_dict): if len(self.other_lang): target_lang = docassemble.base.functions.get_language() if self.language != target_lang and target_lang in self.other_lang: if self.uses_mako: return(self.other_lang[target_lang][1].render(**the_user_dict)) else: return(self.other_lang[target_lang][0]) if self.uses_mako: return(self.template.render(**the_user_dict)) else: return(self.original_text) def myb64quote(text): return "'" + re.sub(r'[\n=]', '', codecs.encode(text.encode('utf8'), 'base64').decode()) + "'" def safeid(text): return re.sub(r'[\n=]', '', codecs.encode(text.encode('utf8'), 'base64').decode()) def from_safeid(text): return(codecs.decode(repad(bytearray(text, encoding='utf-8')), 'base64').decode('utf8')) def repad(text): return text + (equals_byte * ((4 - len(text) % 4) % 4)) class Field: def __init__(self, data): if 'number' in data: self.number = data['number'] else: self.number = 0 if 'saveas' in data: self.saveas = safeid(data['saveas']) if 'saveas_code' in data: self.saveas_code = data['saveas_code'] if 'showif_code' in data: self.showif_code = data['showif_code'] if 'action' in data: self.action = data['action'] if 'label' in data: self.label = data['label'] if 'type' in data: self.datatype = data['type'] if 'choicetype' in data: self.choicetype = data['choicetype'] if 'disable others' in data: self.disableothers = data['disable others'] if 'uncheck others' in data: self.uncheckothers = data['uncheck others'] if 'default' in data: self.default = data['default'] if 'combobox action' in data: self.combobox_action = data['combobox action'] if 'hint' in data: self.hint = data['hint'] if 'data' in data: self.data = data['data'] if 'help' in data: self.helptext = data['help'] if 'validate' in data: self.validate = data['validate'] if 'validation messages' in data: self.validation_messages = data['validation messages'] if 'address_autocomplete' in data: self.address_autocomplete = data['address_autocomplete'] if 'max_image_size' in data: self.max_image_size = data['max_image_size'] if 'image_type' in data: self.image_type = data['image_type'] if 'accept' in data: self.accept = data['accept'] if 'persistent' in data or 'private' in data or 'allow_users' in data or 'allow_privileges' in data: self.permissions = dict(persistent=data.get('persistent', None), private=data.get('private', None), allow_users=data.get('allow_users', None), allow_privileges=data.get('allow_privileges', None)) if 'rows' in data: self.rows = data['rows'] if 'object_labeler' in data: self.object_labeler = data['object_labeler'] if 'help_generator' in data: self.help_generator = data['help_generator'] if 'image_generator' in data: self.image_generator = data['image_generator'] if 'extras' in data: self.extras = data['extras'] if 'selections' in data: self.selections = data['selections'] if 'boolean' in data: self.datatype = 'boolean' self.sign = data['boolean'] if 'type' in data: self.inputtype = data['type'] if 'threestate' in data: self.datatype = 'threestate' self.sign = data['threestate'] if 'type' in data: self.inputtype = data['type'] if 'choices' in data: self.fieldtype = 'multiple_choice' self.choices = data['choices'] if 'inputtype' in data: self.inputtype = data['inputtype'] if 'has_code' in data: self.has_code = True # if 'script' in data: # self.script = data['script'] # if 'css' in data: # self.css = data['css'] if 'shuffle' in data: self.shuffle = data['shuffle'] if 'nota' in data: self.nota = data['nota'] if 'required' in data: self.required = data['required'] else: self.required = True def validation_message(self, validation_type, status, default_message, parameters=None): message = None if 'validation messages' in status.extras and self.number in status.extras['validation messages']: validation_type_tail = re.sub(r'.* ', '', validation_type) if validation_type in status.extras['validation messages'][self.number]: message = status.extras['validation messages'][self.number][validation_type] elif validation_type != validation_type_tail and validation_type_tail in status.extras['validation messages'][self.number]: message = status.extras['validation messages'][self.number][validation_type_tail] if message is None and status.question.language in status.question.interview.default_validation_messages and validation_type in status.question.interview.default_validation_messages[status.question.language]: message = status.question.interview.default_validation_messages[status.question.language][validation_type] if message is None: message = default_message if parameters is not None and len(parameters) > 0: try: message = message % parameters except TypeError: pass return message def recursive_eval_dataobject(target, the_user_dict): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_eval_dataobject(val, the_user_dict) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(recursive_eval_dataobject(val, the_user_dict)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(recursive_eval_dataobject(val, the_user_dict)) return new_set if isinstance(target, (bool, float, int, NoneType)): return target if isinstance(target, TextObject): return target.text(the_user_dict) else: raise DAError("recursive_eval_dataobject: expected a TextObject, but found a " + str(type(target))) def recursive_eval_data_from_code(target, the_user_dict): if isinstance(target, dict): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_eval_data_from_code(val, the_user_dict) return new_dict if isinstance(target, list): new_list = list() for val in target: new_list.append(recursive_eval_data_from_code(val, the_user_dict)) return new_list if isinstance(target, set): new_set = set() for val in target: new_set.add(recursive_eval_data_from_code(val, the_user_dict)) return new_set if isinstance(target, CodeType): return eval(target, the_user_dict) else: return target def recursive_textobject(target, question): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_textobject(val, question) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(recursive_textobject(val, question)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(recursive_textobject(val, question)) return new_set return TextObject(str(target), question=question) def recursive_eval_textobject(target, the_user_dict, question, tpl, skip_undefined): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_eval_textobject(val, the_user_dict, question, tpl, skip_undefined) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(recursive_eval_textobject(val, the_user_dict, question, tpl, skip_undefined)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(recursive_eval_textobject(val, the_user_dict, question, tpl, skip_undefined)) return new_set if isinstance(target, (bool, NoneType)): return target if isinstance(target, TextObject): if skip_undefined: try: text = target.text(the_user_dict) except: text = '' else: text = target.text(the_user_dict) return docassemble.base.file_docx.transform_for_docx(text, question, tpl) else: raise DAError("recursive_eval_textobject: expected a TextObject, but found a " + str(type(target))) def recursive_textobject_or_primitive(target, question): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_textobject_or_primitive(val, question) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(recursive_textobject_or_primitive(val, question)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(recursive_textobject_or_primitive(val, question)) return new_set if isinstance(target, (int, bool, float, NoneType)): return target return TextObject(str(target), question=question) def recursive_eval_textobject_or_primitive(target, the_user_dict): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = recursive_eval_textobject_or_primitive(val, the_user_dict) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(recursive_eval_textobject_or_primitive(val, the_user_dict)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(recursive_eval_textobject_or_primitive(val, the_user_dict)) return new_set if isinstance(target, (bool, int, float, NoneType)): return target if isinstance(target, TextObject): return target.text(the_user_dict) else: raise DAError("recursive_eval_textobject_or_primitive: expected a TextObject, but found a " + str(type(target))) def fix_quotes(match): instring = match.group(1) n = len(instring) output = '' i = 0 while i < n: if instring[i] == '\u201c' or instring[i] == '\u201d': output += '"' elif instring[i] == '\u2018' or instring[i] == '\u2019': output += "'" elif instring[i] == '&' and i + 4 < n and instring[i:i+5] == '&amp;': output += '&' i += 4 else: output += instring[i] i += 1 return output def docx_variable_fix(variable): variable = re.sub(r'\\', '', variable) variable = re.sub(r'^([A-Za-z\_][A-Za-z\_0-9]*).*', r'\1', variable) return variable def url_sanitize(url): return re.sub(r'\s', ' ', url) class FileInPackage: def __init__(self, fileref, area, package): if area == 'template' and not isinstance(fileref, dict): docassemble.base.functions.package_template_filename(fileref, package=package) self.fileref = fileref if isinstance(self.fileref, dict): self.is_code = True if 'code' not in self.fileref: raise DAError("A docx or pdf template file expressed in the form of a dictionary must have 'code' as the key" + str(self.fileref)) self.code = compile(self.fileref['code'], '<template file code>', 'eval') else: self.is_code = False self.area = area self.package = package def path(self, the_user_dict=dict()): if self.area == 'template': if self.is_code: if len(the_user_dict) == 0: raise Exception("FileInPackage.path: called with empty dict") the_file_ref = eval(self.code, the_user_dict) if isinstance(the_file_ref, list) and len(the_file_ref): the_file_ref = the_file_ref[0] if the_file_ref.__class__.__name__ == 'DAFile': the_file_ref = the_file_ref.path() elif the_file_ref.__class__.__name__ == 'DAFileList' and len(the_file_ref.elements) > 0: the_file_ref = the_file_ref.elements[0].path() elif the_file_ref.__class__.__name__ == 'DAStaticFile': the_file_ref = the_file_ref.path() elif re.search(r'^https?://', str(the_file_ref)): temp_template_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) try: urlretrieve(url_sanitize(str(the_file_ref)), temp_template_file.name) except Exception as err: raise DAError("FileInPackage: error downloading " + str(the_file_ref) + ": " + str(err)) the_file_ref = temp_template_file.name if not str(the_file_ref).startswith('/'): the_file_ref = docassemble.base.functions.package_template_filename(str(the_file_ref), package=self.package) return the_file_ref else: return docassemble.base.functions.package_template_filename(self.fileref, package=self.package) def paths(self, the_user_dict=dict()): if self.area == 'template': result = [] if self.is_code: if len(the_user_dict) == 0: raise Exception("FileInPackage.path: called with empty dict") the_file_refs = eval(self.code, the_user_dict) if not isinstance(the_file_refs, list): the_file_refs = [the_file_refs] for the_file_ref in the_file_refs: if the_file_ref.__class__.__name__ == 'DAFile': result.append(the_file_ref.path()) elif the_file_ref.__class__.__name__ == 'DAFileList' and len(the_file_ref.elements) > 0: for item in the_file_ref.elements: result.append(item.path()) elif the_file_ref.__class__.__name__ == 'DAStaticFile': result.append(the_file_ref.path()) elif re.search(r'^https?://', str(the_file_ref)): temp_template_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) try: urlretrieve(url_sanitize(str(the_file_ref)), temp_template_file.name) except Exception as err: raise DAError("FileInPackage: error downloading " + str(the_file_ref) + ": " + str(err)) result.append(temp_template_file.name) else: result.append(the_file_ref) else: result.append(docassemble.base.functions.package_template_filename(self.fileref, package=self.package)) final_result = [] for the_file_ref in result: if not str(the_file_ref).startswith('/'): final_result.append(docassemble.base.functions.package_template_filename(str(the_file_ref), package=self.package)) else: final_result.append(the_file_ref) return final_result class FileOnServer: def __init__(self, fileref, question): self.fileref = fileref self.question = question def path(self): info = docassemble.base.functions.server.file_finder(self.fileref, question=self.question) if 'fullpath' in info and info['fullpath']: return info['fullpath'] raise DAError("Could not find the file " + str(self.fileref)) class Question: def idebug(self, data): if hasattr(self, 'from_source') and hasattr(self, 'package'): return "\nIn file " + str(self.from_source.path) + " from package " + str(self.package) + ":\n\n" + yaml.dump(data) else: return yaml.dump(data) def __init__(self, orig_data, caller, **kwargs): if not isinstance(orig_data, dict): raise DAError("A block must be in the form of a dictionary." + self.idebug(orig_data)) data = dict() for key, value in orig_data.items(): data[key.lower()] = value should_append = True if 'register_target' in kwargs: register_target = kwargs['register_target'] main_list = False else: register_target = self main_list = True self.from_source = kwargs.get('source', None) self.package = kwargs.get('package', None) self.interview = caller if self.interview.debug: self.source_code = kwargs.get('source_code', None) self.fields = [] self.attachments = [] self.is_generic = False self.name = None self.role = list() self.condition = list() self.terms = dict() self.autoterms = dict() self.need = None self.need_post = None self.scan_for_variables = True self.embeds = False self.helptext = None self.subcontent = None self.reload_after = None self.continuelabel = None self.backbuttonlabel = None self.cornerbackbuttonlabel = None self.helplabel = None self.progress = None self.section = None self.script = None self.css = None self.checkin = None self.target = None self.decorations = None self.audiovideo = None self.compute_attachment = None self.can_go_back = True self.other_fields_used = set() self.fields_used = set() self.fields_for_invalidation = set() self.fields_for_onchange = set() self.names_used = set() self.mako_names = set() self.reconsider = list() self.undefine = list() self.action_buttons = list() self.validation_code = None num_directives = 0 for directive in ('yesno', 'noyes', 'yesnomaybe', 'noyesmaybe', 'fields', 'buttons', 'choices', 'dropdown', 'combobox', 'signature', 'review'): if directive in data: num_directives += 1 if num_directives > 1: raise DAError("There can only be one directive in a question. You had more than one.\nThe directives are yesno, noyes, yesnomaybe, noyesmaybe, fields, buttons, choices, dropdown, combobox, and signature." + self.idebug(data)) if num_directives > 0 and 'question' not in data: raise DAError("This block is missing a 'question' directive." + self.idebug(data)) if self.interview.debug: for key in data: if key not in ('features', 'scan for variables', 'only sets', 'question', 'code', 'event', 'translations', 'default language', 'on change', 'sections', 'progressive', 'auto open', 'section', 'machine learning storage', 'language', 'prevent going back', 'back button', 'usedefs', 'continue button label', 'resume button label', 'back button label', 'corner back button label', 'skip undefined', 'list collect', 'mandatory', 'attachment options', 'script', 'css', 'initial', 'default role', 'command', 'objects from file', 'use objects', 'data', 'variable name', 'data from code', 'objects', 'id', 'ga id', 'segment id', 'segment', 'supersedes', 'order', 'image sets', 'images', 'def', 'mako', 'interview help', 'default screen parts', 'default validation messages', 'generic object', 'generic list object', 'comment', 'metadata', 'modules', 'reset', 'imports', 'terms', 'auto terms', 'role', 'include', 'action buttons', 'if', 'validation code', 'require', 'orelse', 'attachment', 'attachments', 'attachment code', 'attachments code', 'allow emailing', 'allow downloading', 'email subject', 'email body', 'email address default', 'progress', 'zip filename', 'action', 'backgroundresponse', 'response', 'binaryresponse', 'all_variables', 'response filename', 'content type', 'redirect url', 'null response', 'sleep', 'include_internal', 'css class', 'table css class', 'response code', 'subquestion', 'reload', 'help', 'audio', 'video', 'decoration', 'signature', 'under', 'pre', 'post', 'right', 'check in', 'yesno', 'noyes', 'yesnomaybe', 'noyesmaybe', 'sets', 'event', 'choices', 'buttons', 'dropdown', 'combobox', 'field', 'shuffle', 'review', 'need', 'depends on', 'target', 'table', 'rows', 'columns', 'require gathered', 'allow reordering', 'edit', 'delete buttons', 'confirm', 'read only', 'edit header', 'confirm', 'show if empty', 'template', 'content file', 'content', 'subject', 'reconsider', 'undefine', 'continue button field', 'fields', 'indent', 'url', 'default', 'datatype', 'extras', 'allowed to set', 'show incomplete', 'not available label', 'required', 'always include editable files', 'question metadata', 'include attachment notice', 'include download tab', 'manual attachment list'): logmessage("Ignoring unknown dictionary key '" + key + "'." + self.idebug(data)) if 'features' in data: should_append = False if not isinstance(data['features'], dict): raise DAError("A features section must be a dictionary." + self.idebug(data)) if data['features'].get('use catchall', False): self.interview.options['use catchall'] = True if 'table width' in data['features']: if not isinstance(data['features']['table width'], int): raise DAError("Table width in features must be an integer." + self.idebug(data)) self.interview.table_width = data['features']['table width'] if 'progress bar' in data['features']: self.interview.use_progress_bar = True if data['features']['progress bar'] else False if 'progress can go backwards' in data['features'] and data['features']['progress can go backwards']: self.interview.options['strict progress'] = True if 'show progress bar percentage' in data['features'] and data['features']['show progress bar percentage']: self.interview.show_progress_bar_percentage = True if 'progress bar method' in data['features'] and isinstance(data['features']['progress bar method'], str): self.interview.progress_bar_method = data['features']['progress bar method'] if 'progress bar multiplier' in data['features'] and isinstance(data['features']['progress bar multiplier'], (int, float)): if data['features']['progress bar multiplier'] <= 0.0 or data['features']['progress bar multiplier'] >= 1.0: raise DAError("progress bar multiplier in features must be between 0 and 1." + self.idebug(data)) self.interview.progress_bar_method = data['features']['progress bar multiplier'] if 'question back button' in data['features']: self.interview.question_back_button = True if data['features']['question back button'] else False if 'question help button' in data['features']: self.interview.question_help_button = True if data['features']['question help button'] else False if 'navigation back button' in data['features']: self.interview.navigation_back_button = True if data['features']['navigation back button'] else False if 'go full screen' in data['features'] and data['features']['go full screen']: self.interview.force_fullscreen = data['features']['go full screen'] if 'navigation' in data['features'] and data['features']['navigation']: self.interview.use_navigation = data['features']['navigation'] if 'small screen navigation' in data['features']: if data['features']['small screen navigation'] == 'dropdown': self.interview.use_navigation_on_small_screens = 'dropdown' else: if not data['features']['small screen navigation']: self.interview.use_navigation_on_small_screens = False if 'centered' in data['features'] and not data['features']['centered']: self.interview.flush_left = True if 'maximum image size' in data['features']: self.interview.max_image_size = eval(str(data['features']['maximum image size'])) if 'image upload type' in data['features']: self.interview.image_type = str(data['features']['image upload type']) if 'debug' in data['features'] and isinstance(data['features']['debug'], bool): self.interview.debug = data['features']['debug'] if 'cache documents' in data['features']: self.interview.cache_documents = data['features']['cache documents'] if 'loop limit' in data['features']: self.interview.loop_limit = data['features']['loop limit'] if 'recursion limit' in data['features']: self.interview.recursion_limit = data['features']['recursion limit'] if 'pdf/a' in data['features'] and data['features']['pdf/a'] in (True, False): self.interview.use_pdf_a = data['features']['pdf/a'] if 'tagged pdf' in data['features'] and data['features']['tagged pdf'] in (True, False): self.interview.use_tagged_pdf = data['features']['tagged pdf'] if 'bootstrap theme' in data['features'] and data['features']['bootstrap theme']: self.interview.bootstrap_theme = data['features']['bootstrap theme'] if 'inverse navbar' in data['features']: self.interview.options['inverse navbar'] = data['features']['inverse navbar'] if 'popover trigger' in data['features']: self.interview.options['popover trigger'] = data['features']['popover trigger'] if 'review button color' in data['features']: self.interview.options['review button color'] = data['features']['review button color'] if 'review button icon' in data['features']: self.interview.options['review button icon'] = data['features']['review button icon'] if 'disable analytics' in data['features'] and data['features']['disable analytics']: self.interview.options['analyics on'] = data['features']['disable analytics'] if 'hide navbar' in data['features']: self.interview.options['hide navbar'] = data['features']['hide navbar'] if 'hide standard menu' in data['features']: self.interview.options['hide standard menu'] = data['features']['hide standard menu'] if 'labels above fields' in data['features']: self.interview.options['labels above'] = True if data['features']['labels above fields'] else False if 'send question data' in data['features']: self.interview.options['send question data'] = True if data['features']['send question data'] else False if 'checkin interval' in data['features']: if not isinstance(data['features']['checkin interval'], int): raise DAError("A features section checkin interval entry must be an integer." + self.idebug(data)) if data['features']['checkin interval'] > 0 and data['features']['checkin interval'] < 1000: raise DAError("A features section checkin interval entry must be at least 1000, if not 0." + self.idebug(data)) self.interview.options['checkin interval'] = data['features']['checkin interval'] for key in ('javascript', 'css'): if key in data['features']: if isinstance(data['features'][key], list): the_list = data['features'][key] elif isinstance(data['features'][key], dict): raise DAError("A features section " + key + " entry must be a list or plain text." + self.idebug(data)) else: the_list = [data['features'][key]] for the_file in the_list: if key not in self.interview.external_files: self.interview.external_files[key] = list() self.interview.external_files[key].append((self.from_source.get_package(), the_file)) for key in ('default date min', 'default date max'): if key in data['features']: if not isinstance(data['features'][key], str): raise DAError("A features section " + key + " entry must be plain text." + self.idebug(data)) try: self.interview.options[key] = pytz.timezone(docassemble.base.functions.get_default_timezone()).localize(dateutil.parser.parse(data['features'][key])) except: raise DAError("The " + key + " in features did not contain a valid date." + self.idebug(data)) if 'field' in data and not ('yesno' in data or 'noyes' in data or 'yesnomaybe' in data or 'noyesmaybe' in data or 'buttons' in data or 'choices' in data or 'dropdown' in data or 'combobox' in data): data['continue button field'] = data['field'] del data['field'] if 'scan for variables' in data: if data['scan for variables']: self.scan_for_variables = True else: self.scan_for_variables = False if 'only sets' in data: if isinstance(data['only sets'], str): self.fields_used.add(data['only sets']) elif isinstance(data['only sets'], list): for key in data['only sets']: self.fields_used.add(key) else: raise DAError("An only sets phrase must be text or a list." + self.idebug(data)) self.scan_for_variables = False if 'question' in data and 'code' in data: raise DAError("A block can be a question block or a code block but cannot be both at the same time." + self.idebug(data)) if 'event' in data: if 'field' in data or 'fields' in data or 'yesno' in data or 'noyes' in data: raise DAError("The 'event' designator is for special screens that do not gather information and can only be used with 'buttons' or with no other controls." + self.idebug(data)) if 'translations' in data: should_append = False if not isinstance(data['translations'], list): raise DAError("A 'translations' block must be a list" + self.idebug(data)) tr_todo = list() for item in data['translations']: if not isinstance(item, str): raise DAError("A 'translations' block must be a list of text items" + self.idebug(data)) if not (item.endswith('.xlsx') or item.endswith('.xlf') or item.endswith('.xliff')): raise DAError("Invalid translations entry '" + item + "'. A translations entry must refer to a file ending in .xlsx, .xlf, or .xliff." + self.idebug(data)) parts = item.split(":") if len(parts) == 1: item = re.sub(r'^data/sources/', '', item) the_package = self.from_source.get_package() if the_package is not None: item = self.from_source.get_package() + ':data/sources/' + item tr_todo.append(item) elif len(parts) == 2 and parts[0].startswith('docassemble.') and parts[1].startswith('data/sources/'): tr_todo.append(item) else: raise DAError("Invalid translations entry: " + item + ". A translations entry must refer to a data sources file" + self.idebug(data)) for item in tr_todo: self.interview.translations.append(item) if item.endswith(".xlsx"): the_xlsx_file = docassemble.base.functions.package_data_filename(item) if not os.path.isfile(the_xlsx_file): raise DAError("The translations file " + the_xlsx_file + " could not be found") df = pandas.read_excel(the_xlsx_file) for column_name in ('interview', 'question_id', 'index_num', 'hash', 'orig_lang', 'tr_lang', 'orig_text', 'tr_text'): if column_name not in df.columns: raise DAError("Invalid translations file " + os.path.basename(the_xlsx_file) + ": column " + column_name + " is missing") for indexno in df.index: if not isinstance(df['tr_text'][indexno], str) or df['tr_text'][indexno] == '': continue if df['orig_text'][indexno] not in self.interview.translation_dict: self.interview.translation_dict[df['orig_text'][indexno]] = dict() if df['orig_lang'][indexno] not in self.interview.translation_dict[df['orig_text'][indexno]]: self.interview.translation_dict[df['orig_text'][indexno]][df['orig_lang'][indexno]] = dict() self.interview.translation_dict[df['orig_text'][indexno]][df['orig_lang'][indexno]][df['tr_lang'][indexno]] = df['tr_text'][indexno] elif item.endswith(".xlf") or item.endswith(".xliff"): the_xlf_file = docassemble.base.functions.package_data_filename(item) if not os.path.isfile(the_xlf_file): continue tree = ET.parse(the_xlf_file) root = tree.getroot() indexno = 1 if root.attrib['version'] == "1.2": for the_file in root.iter('{urn:oasis:names:tc:xliff:document:1.2}file'): source_lang = the_file.attrib.get('source-language', 'en') target_lang = the_file.attrib.get('target-language', 'en') for transunit in the_file.iter('{urn:oasis:names:tc:xliff:document:1.2}trans-unit'): orig_text = '' tr_text = '' for source in transunit.iter('{urn:oasis:names:tc:xliff:document:1.2}source'): if source.text: orig_text += source.text for mrk in source: orig_text += mrk.text if mrk.tail: orig_text += mrk.tail for target in transunit.iter('{urn:oasis:names:tc:xliff:document:1.2}target'): if target.text: tr_text += target.text for mrk in target: tr_text += mrk.text if mrk.tail: tr_text += mrk.tail if orig_text == '' or tr_text == '': continue if orig_text not in self.interview.translation_dict: self.interview.translation_dict[orig_text] = dict() if source_lang not in self.interview.translation_dict[orig_text]: self.interview.translation_dict[orig_text][source_lang] = dict() self.interview.translation_dict[orig_text][source_lang][target_lang] = tr_text elif root.attrib['version'] == "2.0": source_lang = root.attrib.get('srcLang', 'en') target_lang = root.attrib.get('trgLang', 'en') for segment in root.iter('{urn:oasis:names:tc:xliff:document:2.0}segment'): orig_text = '' tr_text = '' for source in segment.iter('{urn:oasis:names:tc:xliff:document:2.0}source'): if source.text: orig_text += source.text for mrk in source: orig_text += mrk.text if mrk.tail: orig_text += mrk.tail for target in segment.iter('{urn:oasis:names:tc:xliff:document:2.0}target'): if target.text: tr_text += target.text for mrk in target: tr_text += mrk.text if mrk.tail: tr_text += mrk.tail if orig_text == '' or tr_text == '': continue if orig_text not in self.interview.translation_dict: self.interview.translation_dict[orig_text] = dict() if source_lang not in self.interview.translation_dict[orig_text]: self.interview.translation_dict[orig_text][source_lang] = dict() self.interview.translation_dict[orig_text][source_lang][target_lang] = tr_text if 'default language' in data: should_append = False self.from_source.set_language(data['default language']) if 'on change' in data: should_append = False self.scan_for_variables = False if not isinstance(data['on change'], dict): raise DAError("An on change block must be a dictionary." + self.idebug(data)) if len(data) > 1: raise DAError("An on change block must not contain any other keys." + self.idebug(data)) for key, val in data['on change'].items(): if not (isinstance(key, str) and isinstance(val, str)): raise DAError("An on change block must be a dictionary where the keys are field names and the values are Python code." + self.idebug(data)) if key not in self.interview.onchange: self.interview.onchange[key] = list() self.interview.onchange[key].append(compile(val, '<on change code>', 'exec')) self.find_fields_in(val) if 'sections' in data: should_append = False if not isinstance(data['sections'], list): raise DAError("A sections list must be a list." + self.idebug(data)) if 'language' in data: the_language = data['language'] else: the_language = '*' self.interview.sections[the_language] = data['sections'] if 'progressive' in data: if 'sections' not in data: raise DAError("A progressive directive can only be used with sections." + self.idebug(data)) if not isinstance(data['progressive'], bool): raise DAError("A progressive directive can only be true or false." + self.idebug(data)) self.interview.sections_progressive = data['progressive'] if 'auto open' in data: if 'sections' not in data: raise DAError("An auto open directive can only be used with sections." + self.idebug(data)) if not isinstance(data['auto open'], bool): raise DAError("An auto open directive can only be true or false." + self.idebug(data)) self.interview.sections_auto_open = data['auto open'] if 'section' in data: if 'question' not in data: raise DAError("You can only set the section from a question." + self.idebug(data)) self.section = data['section'] if 'machine learning storage' in data: should_append = False new_storage = data['machine learning storage'] if not new_storage.endswith('.json'): raise DAError("Invalid machine learning storage entry '" + str(data['machine learning storage']) + ".' A machine learning storage entry must refer to a file ending in .json." + self.idebug(data)) parts = new_storage.split(":") if len(parts) == 1: new_storage = re.sub(r'^data/sources/', '', new_storage) the_package = self.from_source.get_package() if the_package is not None: new_storage = self.from_source.get_package() + ':data/sources/' + new_storage self.interview.set_ml_store(new_storage) elif len(parts) == 2 and parts[0].startswith('docassemble.') and parts[1].startswith('data/sources/'): self.interview.set_ml_store(data['machine learning storage']) else: raise DAError("Invalid machine learning storage entry: " + str(data['machine learning storage']) + self.idebug(data)) if 'language' in data: self.language = data['language'] else: self.language = self.from_source.get_language() if 'prevent going back' in data and data['prevent going back']: self.can_go_back = False if 'back button' in data: if isinstance(data['back button'], (bool, NoneType)): self.back_button = data['back button'] else: self.back_button = compile(data['back button'], '<back button>', 'eval') else: self.back_button = None if 'allowed to set' in data: if isinstance(data['allowed to set'], list): for item in data['allowed to set']: if not isinstance(item, str): raise DAError("When allowed to set is a list, it must be a list of text items." + self.idebug(data)) self.allowed_to_set = data['allowed to set'] elif isinstance(data['allowed to set'], str): self.allowed_to_set = compile(data['allowed to set'], '<allowed to set>', 'eval') self.find_fields_in(data['allowed to set']) else: raise DAError("When allowed to set is not a list, it must be plain text." + self.idebug(data)) if 'usedefs' in data: defs = list() if isinstance(data['usedefs'], list): usedefs = data['usedefs'] else: usedefs = [data['usedefs']] for usedef in usedefs: if isinstance(usedef, (dict, list, set, bool)): raise DAError("A usedefs section must consist of a list of strings or a single string." + self.idebug(data)) if usedef not in self.interview.defs: raise DAError('Referred to a non-existent def "' + usedef + '." All defs must be defined before they are used.' + self.idebug(data)) defs.extend(self.interview.defs[usedef]) definitions = "\n".join(defs) + "\n"; else: definitions = ""; if 'continue button label' in data: if 'yesno' in data or 'noyes' in data or 'yesnomaybe' in data or 'noyesmaybe' in data or 'buttons' in data: raise DAError("You cannot set a continue button label if the type of question is yesno, noyes, yesnomaybe, noyesmaybe, or buttons." + self.idebug(data)) self.continuelabel = TextObject(definitions + str(data['continue button label']), question=self) if 'resume button label' in data: if 'review' not in data: raise DAError("You cannot set a resume button label if the type of question is not review." + self.idebug(data)) self.continuelabel = TextObject(definitions + str(data['resume button label']), question=self) if 'back button label' in data: self.backbuttonlabel = TextObject(definitions + str(data['back button label']), question=self) if 'corner back button label' in data: self.cornerbackbuttonlabel = TextObject(definitions + str(data['corner back button label']), question=self) if 'skip undefined' in data: if 'review' not in data: raise DAError("You cannot set the skip undefined directive if the type of question is not review." + self.idebug(data)) if not data['skip undefined']: self.skip_undefined = False if 'list collect' in data: if 'fields' not in data: raise DAError("You cannot set list collect without a fields specifier." + self.idebug(data)) if isinstance(data['list collect'], (str, bool)): self.list_collect = compile(str(data['list collect']), '<list collect code>', 'eval') elif isinstance(data['list collect'], dict): if 'enable' in data['list collect']: self.list_collect = compile(str(data['list collect']['enable']), '<list collect code>', 'eval') else: self.list_collect = compile('True', '<list collect code>', 'eval') if 'label' in data['list collect']: self.list_collect_label = TextObject(definitions + str(data['list collect']['label']), question=self) if 'is final' in data['list collect']: self.list_collect_is_final = compile(str(data['list collect']['is final']), '<list collect final code>', 'eval') if 'allow append' in data['list collect']: self.list_collect_allow_append = compile(str(data['list collect']['allow append']), '<list collect allow append code>', 'eval') if 'allow delete' in data['list collect']: self.list_collect_allow_delete = compile(str(data['list collect']['allow delete']), '<list collect allow delete code>', 'eval') if 'add another label' in data['list collect']: self.list_collect_add_another_label = TextObject(definitions + str(data['list collect']['add another label']), question=self) else: raise DAError("Invalid data under list collect." + self.idebug(data)) if 'mandatory' in data: if 'initial' in data: raise DAError("You cannot use the mandatory modifier and the initial modifier at the same time." + self.idebug(data)) if 'id' not in data and self.interview.debug and self.interview.source.package.startswith('docassemble.playground'): self.interview.issue['mandatory_id'] = True if 'question' not in data and 'code' not in data and 'objects' not in data and 'attachment' not in data and 'data' not in data and 'data from code' not in data: raise DAError("You cannot use the mandatory modifier on this type of block." + self.idebug(data)) if data['mandatory'] is True: self.is_mandatory = True self.mandatory_code = None elif data['mandatory'] in (False, None): self.is_mandatory = False self.mandatory_code = None else: self.is_mandatory = False if isinstance(data['mandatory'], str): self.mandatory_code = compile(data['mandatory'], '<mandatory code>', 'eval') self.find_fields_in(data['mandatory']) else: self.mandatory_code = None else: self.is_mandatory = False self.mandatory_code = None if 'attachment options' in data: should_append = False if not isinstance(data['attachment options'], list): data['attachment options'] = [data['attachment options']] for attachment_option in data['attachment options']: if not isinstance(attachment_option, dict): raise DAError("An attachment option must a dictionary." + self.idebug(data)) for key in attachment_option: value = attachment_option[key] if key == 'initial yaml': if 'initial_yaml' not in self.interview.attachment_options: self.interview.attachment_options['initial_yaml'] = list() if isinstance(value, list): the_list = value else: the_list = [value] for yaml_file in the_list: if not isinstance(yaml_file, str): raise DAError('An initial yaml file must be a string.' + self.idebug(data)) self.interview.attachment_options['initial_yaml'].append(FileInPackage(yaml_file, 'template', self.package)) elif key == 'additional yaml': if 'additional_yaml' not in self.interview.attachment_options: self.interview.attachment_options['additional_yaml'] = list() if isinstance(value, list): the_list = value else: the_list = [value] for yaml_file in the_list: if not isinstance(yaml_file, str): raise DAError('An additional yaml file must be a string.' + self.idebug(data)) self.interview.attachment_options['additional_yaml'].append(FileInPackage(yaml_file, 'template', self.package)) elif key == 'template file': if not isinstance(value, str): raise DAError('The template file must be a string.' + self.idebug(data)) self.interview.attachment_options['template_file'] = FileInPackage(value, 'template', self.package) elif key == 'rtf template file': if not isinstance(value, str): raise DAError('The rtf template file must be a string.' + self.idebug(data)) self.interview.attachment_options['rtf_template_file'] = FileInPackage(value, 'template', self.package) elif key == 'docx reference file': if not isinstance(value, str): raise DAError('The docx reference file must be a string.' + self.idebug(data)) self.interview.attachment_options['docx_reference_file'] = FileInPackage(value, 'template', self.package) if 'script' in data: if not isinstance(data['script'], str): raise DAError("A script section must be plain text." + self.idebug(data)) self.script = TextObject(definitions + do_not_translate + str(data['script']), question=self) if 'css' in data: if not isinstance(data['css'], str): raise DAError("A css section must be plain text." + self.idebug(data)) self.css = TextObject(definitions + do_not_translate + str(data['css']), question=self) if 'initial' in data and 'code' not in data: raise DAError("Only a code block can be marked as initial." + self.idebug(data)) if 'initial' in data or 'default role' in data: if 'default role' in data or data['initial'] is True: self.is_initial = True self.initial_code = None elif data['initial'] in (False, None): self.is_initial = False self.initial_code = None else: self.is_initial = False if isinstance(data['initial'], str): self.initial_code = compile(data['initial'], '<initial code>', 'eval') self.find_fields_in(data['initial']) else: self.initial_code = None else: self.is_initial = False self.initial_code = None if 'command' in data and data['command'] in ('exit', 'logout', 'exit_logout', 'continue', 'restart', 'leave', 'refresh', 'signin', 'register', 'new_session'): self.question_type = data['command'] self.content = TextObject(data.get('url', ''), question=self) return if 'objects from file' in data: if not isinstance(data['objects from file'], list): data['objects from file'] = [data['objects from file']] if 'use objects' in data and data['use objects']: self.question_type = 'objects_from_file_da' else: self.question_type = 'objects_from_file' self.objects_from_file = data['objects from file'] for item in data['objects from file']: if isinstance(item, dict): for key in item: self.fields.append(Field({'saveas': key, 'type': 'object_from_file', 'file': item[key]})) if self.scan_for_variables: self.fields_used.add(key) else: self.other_fields_used.add(key) else: raise DAError("An objects section cannot contain a nested list." + self.idebug(data)) if 'data' in data and 'variable name' in data: if not isinstance(data['variable name'], str): raise DAError("A data block variable name must be plain text." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['variable name'].strip()) else: self.other_fields_used.add(data['variable name'].strip()) if 'use objects' in data and data['use objects']: self.question_type = 'data_da' else: self.question_type = 'data' self.fields.append(Field({'saveas': data['variable name'].strip(), 'type': 'data', 'data': self.recursive_dataobject(data['data'])})) if 'data from code' in data and 'variable name' in data: if not isinstance(data['variable name'], str): raise DAError("A data from code block variable name must be plain text." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['variable name']) else: self.other_fields_used.add(data['variable name']) if 'use objects' in data and data['use objects']: self.question_type = 'data_from_code_da' else: self.question_type = 'data_from_code' self.fields.append(Field({'saveas': data['variable name'], 'type': 'data_from_code', 'data': self.recursive_data_from_code(data['data from code'])})) if 'objects' in data: if not isinstance(data['objects'], list): data['objects'] = [data['objects']] #raise DAError("An objects section must be organized as a list." + self.idebug(data)) self.question_type = 'objects' self.objects = data['objects'] for item in data['objects']: if isinstance(item, dict): for key in item: self.fields.append(Field({'saveas': key, 'type': 'object', 'objecttype': item[key]})) if self.scan_for_variables: self.fields_used.add(key) else: self.other_fields_used.add(key) else: raise DAError("An objects section cannot contain a nested list." + self.idebug(data)) if 'id' in data: # if str(data['id']) in self.interview.ids_in_use: # raise DAError("The id " + str(data['id']) + " is already in use by another block. Id names must be unique." + self.idebug(data)) self.id = str(data['id']).strip() if self.interview.debug and self.interview.source.package.startswith('docassemble.playground') and self.id in self.interview.ids_in_use: self.interview.issue['id_collision'] = self.id self.interview.ids_in_use.add(self.id) self.interview.questions_by_id[self.id] = self if 'ga id' in data: if not isinstance(data['ga id'], str): raise DAError("A 'ga id' must refer to text." + self.idebug(data)) self.ga_id = TextObject(definitions + str(data['ga id']), question=self) if 'segment id' in data: if not isinstance(data['segment id'], str): raise DAError("A 'segment id' must refer to text." + self.idebug(data)) if not hasattr(self, 'segment'): self.segment = dict(arguments=dict()) self.segment['id'] = TextObject(definitions + str(data['segment id']), question=self) if 'segment' in data: if not isinstance(data['segment'], dict): raise DAError("A 'segment' must refer to a dictionary." + self.idebug(data)) if 'id' in data['segment']: if not isinstance(data['segment']['id'], str): raise DAError("An 'id' under 'segment' must refer to text." + self.idebug(data)) if not hasattr(self, 'segment'): self.segment = dict(arguments=dict()) self.segment['id'] = TextObject(definitions + str(data['segment']['id']), question=self) if 'arguments' in data['segment']: if not isinstance(data['segment']['arguments'], dict): raise DAError("An 'arguments' under 'segment' must refer to a dictionary." + self.idebug(data)) if not hasattr(self, 'segment'): self.segment = dict(arguments=dict()) for key, val in data['segment']['arguments'].items(): if not isinstance(val, (str, int, float, bool)): raise DAError("Each item under 'arguments' in a 'segment' must be plain text." + self.idebug(data)) self.segment['arguments'][key] = TextObject(definitions + str(val), question=self) if 'supersedes' in data: if not isinstance(data['supersedes'], list): supersedes_list = [str(data['supersedes'])] else: supersedes_list = [str(x) for x in data['supersedes']] self.interview.id_orderings.append(dict(type="supersedes", question=self, supersedes=supersedes_list)) if 'order' in data: should_append = False if 'question' in data or 'code' in data or 'attachment' in data or 'attachments' in data or 'template' in data: raise DAError("An 'order' block cannot be combined with another type of block." + self.idebug(data)) if not isinstance(data['order'], list): raise DAError("An 'order' block must be a list." + self.idebug(data)) self.interview.id_orderings.append(dict(type="order", order=[str(x) for x in data['order']])) for key in ('image sets', 'images'): if key not in data: continue should_append = False if not isinstance(data[key], dict): raise DAError("The '" + key + "' section needs to be a dictionary, not a list or text." + self.idebug(data)) if key == 'images': data[key] = {'unspecified': {'images': data[key]}} elif 'images' in data[key] and 'attribution' in data[key]: data[key] = {'unspecified': data[key]} for setname, image_set in data[key].items(): if not isinstance(image_set, dict): if key == 'image sets': raise DAError("Each item in the 'image sets' section needs to be a dictionary, not a list. Each dictionary item should have an 'images' definition (which can be a dictionary or list) and an optional 'attribution' definition (which must be text)." + self.idebug(data)) else: raise DAError("Each item in the 'images' section needs to be a dictionary, not a list." + self.idebug(data)) if 'attribution' in image_set: if not isinstance(image_set['attribution'], str): raise DAError("An attribution in an 'image set' section cannot be a dictionary or a list." + self.idebug(data)) attribution = re.sub(r'\n', ' ', image_set['attribution'].strip()) else: attribution = None if 'images' in image_set: if isinstance(image_set['images'], list): image_list = image_set['images'] elif isinstance(image_set['images'], dict): image_list = [image_set['images']] else: if key == 'image set': raise DAError("An 'images' definition in an 'image set' item must be a dictionary or a list." + self.idebug(data)) else: raise DAError("An 'images' section must be a dictionary or a list." + self.idebug(data)) for image in image_list: if not isinstance(image, dict): the_image = {str(image): str(image)} else: the_image = image for key, value in the_image.items(): self.interview.images[key] = PackageImage(filename=value, attribution=attribution, setname=setname, package=self.package) if 'def' in data: should_append = False if not isinstance(data['def'], str): raise DAError("A def name must be a string." + self.idebug(data)) if data['def'] not in self.interview.defs: self.interview.defs[data['def']] = list() if 'mako' in data: if isinstance(data['mako'], str): list_of_defs = [data['mako']] elif isinstance(data['mako'], list): list_of_defs = data['mako'] else: raise DAError("A mako template definition must be a string or a list of strings." + self.idebug(data)) for definition in list_of_defs: if not isinstance(definition, str): raise DAError("A mako template definition must be a string." + self.idebug(data)) self.interview.defs[data['def']].append(definition) if 'interview help' in data: should_append = False if isinstance(data['interview help'], list): raise DAError("An interview help section must not be in the form of a list." + self.idebug(data)) elif not isinstance(data['interview help'], dict): data['interview help'] = {'content': str(data['interview help'])} audiovideo = list() if 'label' in data['interview help']: data['interview help']['label'] = str(data['interview help']['label']) if 'audio' in data['interview help']: if not isinstance(data['interview help']['audio'], list): the_list = [data['interview help']['audio']] else: the_list = data['interview help']['audio'] audiovideo = list() for the_item in the_list: if isinstance(the_item, (list, dict)): raise DAError("An interview help audio section must be in the form of a text item or a list of text items." + self.idebug(data)) audiovideo.append({'text': TextObject(definitions + str(data['interview help']['audio']), question=self), 'package': self.package, 'type': 'audio'}) if 'video' in data['interview help']: if not isinstance(data['interview help']['video'], list): the_list = [data['interview help']['video']] else: the_list = data['interview help']['video'] for the_item in the_list: if isinstance(the_item, (list, dict)): raise DAError("An interview help video section must be in the form of a text item or a list of text items." + self.idebug(data)) audiovideo.append({'text': TextObject(definitions + str(data['interview help']['video']), question=self), 'package': self.package, 'type': 'video'}) if 'video' not in data['interview help'] and 'audio' not in data['interview help']: audiovideo = None if 'heading' in data['interview help']: if not isinstance(data['interview help']['heading'], (dict, list)): help_heading = TextObject(definitions + str(data['interview help']['heading']), question=self) else: raise DAError("A heading within an interview help section must be text, not a list or a dictionary." + self.idebug(data)) else: help_heading = None if 'content' in data['interview help']: if not isinstance(data['interview help']['content'], (dict, list)): help_content = TextObject(definitions + str(data['interview help']['content']), question=self) else: raise DAError("Help content must be text, not a list or a dictionary." + self.idebug(data)) else: raise DAError("No content section was found in an interview help section." + self.idebug(data)) if 'label' in data['interview help']: if not isinstance(data['interview help']['label'], (dict, list)): help_label = TextObject(definitions + str(data['interview help']['label']), question=self) else: raise DAError("Help label must be text, not a list or a dictionary." + self.idebug(data)) else: help_label = None if self.language not in self.interview.helptext: self.interview.helptext[self.language] = list() self.interview.helptext[self.language].append({'content': help_content, 'heading': help_heading, 'audiovideo': audiovideo, 'label': help_label, 'from': 'interview'}) if 'default screen parts' in data: should_append = False if not isinstance(data['default screen parts'], dict): raise DAError("A default screen parts block must be in the form of a dictionary." + self.idebug(data)) if self.language not in self.interview.default_screen_parts: self.interview.default_screen_parts[self.language] = dict() for key, content in data['default screen parts'].items(): if content is None: if key in self.interview.default_screen_parts[self.language]: del self.interview.default_screen_parts[self.language][key] else: if not (isinstance(key, str) and isinstance(content, str)): raise DAError("A default screen parts block must be a dictionary of text keys and text values." + self.idebug(data)) self.interview.default_screen_parts[self.language][key] = TextObject(definitions + str(content.strip()), question=self) if 'default validation messages' in data: should_append = False if not isinstance(data['default validation messages'], dict): raise DAError("A default validation messages block must be in the form of a dictionary." + self.idebug(data)) if self.language not in self.interview.default_validation_messages: self.interview.default_validation_messages[self.language] = dict() for validation_key, validation_message in data['default validation messages'].items(): if not (isinstance(validation_key, str) and isinstance(validation_message, str)): raise DAError("A validation messages block must be a dictionary of text keys and text values." + self.idebug(data)) self.interview.default_validation_messages[self.language][validation_key] = validation_message.strip() if 'generic object' in data: self.is_generic = True #self.is_generic_list = False self.generic_object = data['generic object'] elif 'generic list object' in data: self.is_generic = True #self.is_generic_list = True self.generic_object = data['generic list object'] else: self.is_generic = False if 'comment' in data and len(data) == 1: should_append = False if 'metadata' in data: for key in data: if key not in ('metadata', 'comment'): raise DAError("A metadata directive cannot be mixed with other directives." + self.idebug(data)) should_append = False if isinstance(data['metadata'], dict): data['metadata']['_origin_path'] = self.from_source.path data['metadata']['_origin_package'] = self.from_source.get_package() self.interview.metadata.append(data['metadata']) else: raise DAError("A metadata section must be organized as a dictionary." + self.idebug(data)) if 'modules' in data: if isinstance(data['modules'], str): data['modules'] = [data['modules']] if isinstance(data['modules'], list): if 'docassemble.base.util' in data['modules'] or 'docassemble.base.legal' in data['modules']: # logmessage("setting imports_util to true") self.interview.imports_util = True # else: # logmessage("not setting imports_util to true") self.question_type = 'modules' self.module_list = data['modules'] else: raise DAError("A modules section must be organized as a list." + self.idebug(data)) if 'reset' in data: #logmessage("Found a reset") if isinstance(data['reset'], str): data['reset'] = [data['reset']] if isinstance(data['reset'], list): self.question_type = 'reset' self.reset_list = data['reset'] else: raise DAError("A reset section must be organized as a list." + self.idebug(data)) if 'imports' in data: if isinstance(data['imports'], str): data['imports'] = [data['imports']] if isinstance(data['imports'], list): self.question_type = 'imports' self.module_list = data['imports'] else: raise DAError("An imports section must be organized as a list." + self.idebug(data)) if 'terms' in data and 'question' in data: if not isinstance(data['terms'], (dict, list)): raise DAError("Terms must be organized as a dictionary or a list." + self.idebug(data)) if isinstance(data['terms'], dict): data['terms'] = [data['terms']] for termitem in data['terms']: if not isinstance(termitem, dict): raise DAError("A terms section organized as a list must be a list of dictionary items." + self.idebug(data)) if len(termitem) == 2 and 'phrases' in termitem and isinstance(termitem['phrases'], list) and 'definition' in termitem: termitems = [(phrase, termitem['definition']) for phrase in termitem['phrases']] else: termitems = termitem.items() for term, definition in termitems: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) alt_terms = dict() re_dict = dict() re_dict[self.language] = re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL) for lang, tr_tuple in term_textobject.other_lang.items(): lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) re_dict[lang] = re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL) alt_terms[lang] = tr_tuple[0] self.terms[lower_term] = {'definition': TextObject(definitions + str(definition), question=self), 're': re_dict, 'alt_terms': alt_terms} if 'auto terms' in data and 'question' in data: if not isinstance(data['auto terms'], (dict, list)): raise DAError("Terms must be organized as a dictionary or a list." + self.idebug(data)) if isinstance(data['auto terms'], dict): data['auto terms'] = [data['auto terms']] for termitem in data['auto terms']: if not isinstance(termitem, dict): raise DAError("A terms section organized as a list must be a list of dictionary items." + self.idebug(data)) if len(termitem) == 2 and 'phrases' in termitem and isinstance(termitem['phrases'], list) and 'definition' in termitem: termitems = [(phrase, termitem['definition']) for phrase in termitem['phrases']] else: termitems = termitem.items() for term, definition in termitems: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) alt_terms = dict() re_dict = dict() re_dict[self.language] = re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL) for lang, tr_tuple in term_textobject.other_lang.items(): lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) re_dict[lang] = re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL) alt_terms[lang] = tr_tuple[0] self.autoterms[lower_term] = {'definition': TextObject(definitions + str(definition), question=self), 're': re_dict, 'alt_terms': alt_terms} if 'terms' in data and 'question' not in data: should_append = False if self.language not in self.interview.terms: self.interview.terms[self.language] = dict() if isinstance(data['terms'], list): for termitem in data['terms']: if isinstance(termitem, dict): if len(termitem) == 2 and 'phrases' in termitem and isinstance(termitem['phrases'], list) and 'definition' in termitem: termitems = [(phrase, termitem['definition']) for phrase in termitem['phrases']] else: termitems = termitem.items() for term, definition in termitems: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) definition_textobject = TextObject(str(definition), question=self) self.interview.terms[self.language][lower_term] = {'definition': str(definition), 're': re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL)} for lang, tr_tuple in term_textobject.other_lang.items(): if lang not in self.interview.terms: self.interview.terms[lang] = dict() if tr_tuple[0] not in self.interview.terms[lang]: if lang in definition_textobject.other_lang: lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) self.interview.terms[lang][tr_tuple[0]] = {'definition': definition_textobject.other_lang[lang][0], 're': re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL)} else: raise DAError("A terms section organized as a list must be a list of dictionary items." + self.idebug(data)) elif isinstance(data['terms'], dict): for term in data['terms']: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) definition_textobject = TextObject(str(data['terms'][term]), question=self) self.interview.terms[self.language][lower_term] = {'definition': str(data['terms'][term]), 're': re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL)} for lang, tr_tuple in term_textobject.other_lang.items(): if lang not in self.interview.terms: self.interview.terms[lang] = dict() if tr_tuple[0] not in self.interview.terms[lang]: if lang in definition_textobject.other_lang: lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) self.interview.terms[lang][tr_tuple[0]] = {'definition': definition_textobject.other_lang[lang][0], 're': re.compile(r"{(?i)(%s)(\|[^\}]*)?}" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL)} else: raise DAError("A terms section must be organized as a dictionary or a list." + self.idebug(data)) if 'auto terms' in data and 'question' not in data: should_append = False if self.language not in self.interview.autoterms: self.interview.autoterms[self.language] = dict() if isinstance(data['auto terms'], list): for termitem in data['auto terms']: if isinstance(termitem, dict): if len(termitem) == 2 and 'phrases' in termitem and isinstance(termitem['phrases'], list) and 'definition' in termitem: termitems = [(phrase, termitem['definition']) for phrase in termitem['phrases']] else: termitems = termitem.items() for term, definition in termitems: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) definition_textobject = TextObject(str(definition), question=self) self.interview.autoterms[self.language][lower_term] = {'definition': str(definition), 're': re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL)} for lang, tr_tuple in term_textobject.other_lang.items(): if lang not in self.interview.autoterms: self.interview.autoterms[lang] = dict() if tr_tuple[0] not in self.interview.autoterms[lang]: if lang in definition_textobject.other_lang: lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) self.interview.autoterms[lang][tr_tuple[0]] = {'definition': definition_textobject.other_lang[lang][0], 're': re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL)} else: raise DAError("An auto terms section organized as a list must be a list of dictionary items." + self.idebug(data)) elif isinstance(data['auto terms'], dict): for term in data['auto terms']: lower_term = re.sub(r'\s+', ' ', term.lower()) term_textobject = TextObject(str(lower_term), question=self) definition_textobject = TextObject(str(data['auto terms'][term]), question=self) self.interview.autoterms[self.language][lower_term] = {'definition': str(data['auto terms'][term]), 're': re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_term),), re.IGNORECASE | re.DOTALL)} for lang, tr_tuple in term_textobject.other_lang.items(): if lang not in self.interview.autoterms: self.interview.autoterms[lang] = dict() if tr_tuple[0] not in self.interview.autoterms[lang]: if lang in definition_textobject.other_lang: lower_other = re.sub(r'\s+', ' ', tr_tuple[0].lower()) self.interview.autoterms[lang][tr_tuple[0]] = {'definition': definition_textobject.other_lang[lang][0], 're': re.compile(r"{?(?i)\b(%s)\b}?" % (re.sub(r'\s', '\\\s+', lower_other),), re.IGNORECASE | re.DOTALL)} else: raise DAError("An auto terms section must be organized as a dictionary or a list." + self.idebug(data)) if 'default role' in data: if 'code' not in data: should_append = False if isinstance(data['default role'], str): self.interview.default_role = [data['default role']] elif isinstance(data['default role'], list): self.interview.default_role = data['default role'] else: raise DAError("A default role must be a list or a string." + self.idebug(data)) if 'role' in data: if isinstance(data['role'], str): if data['role'] not in self.role: self.role.append(data['role']) elif isinstance(data['role'], list): for rolename in data['role']: if data['role'] not in self.role: self.role.append(rolename) else: raise DAError("The role of a question must be a string or a list." + self.idebug(data)) else: self.role = list() if 'include' in data: should_append = False if isinstance(data['include'], str): data['include'] = [data['include']] if isinstance(data['include'], list): for questionPath in data['include']: if ':' in questionPath: self.interview.read_from(interview_source_from_string(questionPath)) else: new_source = self.from_source.append(questionPath) if new_source is None: new_source = interview_source_from_string('docassemble.base:data/questions/' + re.sub(r'^data/questions/', '', questionPath)) if new_source is None: raise DANotFoundError('Question file ' + questionPath + ' not found') self.interview.read_from(new_source) else: raise DAError("An include section must be organized as a list." + self.idebug(data)) if 'action buttons' in data: if isinstance(data['action buttons'], dict) and len(data['action buttons']) == 1 and 'code' in data['action buttons']: self.action_buttons.append(compile(data['action buttons']['code'], '<action buttons code>', 'eval')) else: if not isinstance(data['action buttons'], list): raise DAError("An action buttons specifier must be a list." + self.idebug(data)) for item in data['action buttons']: if not isinstance(item, dict): raise DAError("An action buttons item must be a dictionary." + self.idebug(data)) action = item.get('action', None) target = item.get('new window', None) if target is True: target = '_blank' elif target is False: target = None label = item.get('label', None) color = item.get('color', 'primary') icon = item.get('icon', None) placement = item.get('placement', None) forget_prior = item.get('forget prior', False) given_arguments = item.get('arguments', dict()) if not isinstance(action, str): raise DAError("An action buttons item must contain an action in plain text." + self.idebug(data)) if not isinstance(target, (str, NoneType)): raise DAError("The new window specifier in an action buttons item must refer to True or plain text." + self.idebug(data)) if not isinstance(given_arguments, dict): raise DAError("The arguments specifier in an action buttons item must refer to a dictionary." + self.idebug(data)) if not isinstance(label, str): raise DAError("An action buttons item must contain a label in plain text." + self.idebug(data)) if not isinstance(color, str): raise DAError("The color specifier in an action buttons item must refer to plain text." + self.idebug(data)) if not isinstance(icon, (str, NoneType)): raise DAError("The icon specifier in an action buttons item must refer to plain text." + self.idebug(data)) if not isinstance(placement, (str, NoneType)): raise DAError("The placement specifier in an action buttons item must refer to plain text." + self.idebug(data)) if not isinstance(forget_prior, bool): raise DAError("The forget prior specifier in an action buttons item must refer to true or false." + self.idebug(data)) button = dict(action=TextObject(definitions + action, question=self), label=TextObject(definitions + label, question=self), color=TextObject(definitions + color, question=self)) if target is not None: button['target'] = TextObject(definitions + target, question=self) else: button['target'] = None if icon is not None: button['icon'] = TextObject(definitions + icon, question=self) else: button['icon'] = None if placement is not None: button['placement'] = TextObject(definitions + placement, question=self) else: button['placement'] = None if forget_prior: button['forget_prior'] = True else: button['forget_prior'] = False button['arguments'] = dict() for key, val in given_arguments.items(): if isinstance(val, (list, dict)): raise DAError("The arguments specifier in an action buttons item must refer to plain items." + self.idebug(data)) if isinstance(val, str): button['arguments'][key] = TextObject(definitions + val, question=self) else: button['arguments'][key] = val self.action_buttons.append(button) if 'if' in data: if isinstance(data['if'], str): self.condition = [compile(data['if'], '<if code>', 'eval')] self.find_fields_in(data['if']) elif isinstance(data['if'], list): self.condition = [compile(x, '<if code>', 'eval') for x in data['if']] for x in data['if']: self.find_fields_in(x) else: raise DAError("An if statement must either be text or a list." + self.idebug(data)) if 'validation code' in data: if not isinstance(data['validation code'], str): raise DAError("A validation code statement must be text." + self.idebug(data)) self.validation_code = compile(data['validation code'], '<code block>', 'exec') self.find_fields_in(data['validation code']) if 'require' in data: if isinstance(data['require'], list): self.question_type = 'require' try: self.require_list = list(map((lambda x: compile(x, '<require code>', 'eval')), data['require'])) for x in data['require']: self.find_fields_in(x) except: logmessage("Compile error in require:\n" + str(data['require']) + "\n" + str(sys.exc_info()[0])) raise if 'orelse' in data: if isinstance(data['orelse'], dict): self.or_else_question = Question(data['orelse'], self.interview, register_target=register_target, source=self.from_source, package=self.package) else: raise DAError("The orelse part of a require section must be organized as a dictionary." + self.idebug(data)) else: raise DAError("A require section must have an orelse part." + self.idebug(data)) else: raise DAError("A require section must be organized as a list." + self.idebug(data)) if 'attachment' in data: self.attachments = self.process_attachment_list(data['attachment']) elif 'attachments' in data: self.attachments = self.process_attachment_list(data['attachments']) elif 'attachment code' in data: self.process_attachment_code(data['attachment code']) elif 'attachments code' in data: self.process_attachment_code(data['attachments code']) if 'allow emailing' in data: self.allow_emailing = data['allow emailing'] if 'allow downloading' in data: self.allow_downloading = data['allow downloading'] if 'email subject' in data: self.email_subject = TextObject(definitions + str(data['email subject']), question=self) if 'email body' in data: self.email_body = TextObject(definitions + str(data['email body']), question=self) if 'email template' in data: self.email_template = compile(data['email template'], '<email template>', 'eval') self.find_fields_in(data['email template']) if 'email address default' in data: self.email_default = TextObject(definitions + str(data['email address default']), question=self) if 'always include editable files' in data: self.always_include_editable_files = data['always include editable files'] if 'include attachment notice' in data: self.attachment_notice = data['include attachment notice'] if 'include download tab' in data: self.download_tab = data['include download tab'] if 'manual attachment list' in data: self.manual_attachment_list = data['manual attachment list'] # if 'role' in data: # if isinstance(data['role'], list): # for rolename in data['role']: # if rolename not in self.role: # self.role.append(rolename) # elif isinstance(data['role'], str) and data['role'] not in self.role: # self.role.append(data['role']) # else: # raise DAError("A role section must be text or a list." + self.idebug(data)) if 'progress' in data: if data['progress'] is None: self.progress = -1 else: try: self.progress = int(data['progress']) self.interview.progress_points.add(self.progress) except: logmessage("Invalid progress number " + repr(data['progress'])) if 'zip filename' in data: self.zip_filename = TextObject(definitions + str(data['zip filename']), question=self) if 'action' in data: self.question_type = 'backgroundresponseaction' self.content = TextObject('action') self.action = data['action'] if 'backgroundresponse' in data: self.question_type = 'backgroundresponse' self.content = TextObject('backgroundresponse') self.backgroundresponse = data['backgroundresponse'] if 'response' in data: self.content = TextObject(definitions + str(data['response']), question=self) self.question_type = 'response' elif 'binaryresponse' in data: self.question_type = 'response' self.content = TextObject('binary') self.binaryresponse = data['binaryresponse'] if 'response' not in data: self.content = TextObject('') elif 'all_variables' in data: self.question_type = 'response' self.all_variables = True if 'include_internal' in data: self.include_internal = data['include_internal'] self.content = TextObject('all_variables') elif 'response filename' in data: self.question_type = 'sendfile' if data['response filename'].__class__.__name__ == 'DAFile': self.response_file = data['response filename'] if hasattr(data['response filename'], 'mimetype') and data['response filename'].mimetype: self.content_type = TextObject(data['response filename'].mimetype) else: info = docassemble.base.functions.server.file_finder(data['response filename'], question=self) if 'fullpath' in info and info['fullpath']: self.response_file = FileOnServer(data['response filename'], self) #info['fullpath'] else: self.response_file = None if 'mimetype' in info and info['mimetype']: self.content_type = TextObject(info['mimetype']) else: self.content_type = TextObject('text/plain; charset=utf-8') self.content = TextObject('') if 'content type' in data: self.content_type = TextObject(definitions + str(data['content type']), question=self) elif not (hasattr(self, 'content_type') and self.content_type): if self.response_file is not None: self.content_type = TextObject(get_mimetype(self.response_file.path())) else: self.content_type = TextObject('text/plain; charset=utf-8') elif 'redirect url' in data: self.question_type = 'redirect' self.content = TextObject(definitions + str(data['redirect url']), question=self) elif 'null response' in data: self.content = TextObject('null') self.question_type = 'response' if 'sleep' in data: self.sleep = data['sleep'] if 'response' in data or 'binaryresponse' in data or 'all_variables' or 'null response' in data: if 'include_internal' in data: self.include_internal = data['include_internal'] if 'content type' in data: self.content_type = TextObject(definitions + str(data['content type']), question=self) else: self.content_type = TextObject('text/plain; charset=utf-8') if 'response code' in data: self.response_code = data['response code'] if 'css class' in data: if 'question' not in data: raise DAError("A css class can only accompany a question." + self.idebug(data)) self.css_class = TextObject(definitions + str(data['css class']), question=self) if 'table css class' in data: if 'question' not in data: raise DAError("A table css class can only accompany a question." + self.idebug(data)) self.table_css_class = TextObject(definitions + str(data['table css class']), question=self) if 'question' in data: self.content = TextObject(definitions + str(data['question']), question=self) if 'subquestion' in data: self.subcontent = TextObject(definitions + str(data['subquestion']), question=self) if 'reload' in data and data['reload']: self.reload_after = TextObject(definitions + str(data['reload']), question=self) if 'help' in data: if isinstance(data['help'], dict): for key, value in data['help'].items(): if key == 'label': self.helplabel = TextObject(definitions + str(value), question=self) if key == 'audio': if not isinstance(value, list): the_list = [value] else: the_list = value for list_item in the_list: if isinstance(list_item, (dict, list, set)): raise DAError("An audio declaration in a help block can only contain a text item or a list of text items." + self.idebug(data)) if self.audiovideo is None: self.audiovideo = dict() if 'help' not in self.audiovideo: self.audiovideo['help'] = list() self.audiovideo['help'].append({'text': TextObject(definitions + str(list_item.strip()), question=self), 'package': self.package, 'type': 'audio'}) if key == 'video': if not isinstance(value, list): the_list = [value] else: the_list = value for list_item in the_list: if isinstance(list_item, (dict, list, set)): raise DAError("A video declaration in a help block can only contain a text item or a list of text items." + self.idebug(data)) if self.audiovideo is None: self.audiovideo = dict() if 'help' not in self.audiovideo: self.audiovideo['help'] = list() self.audiovideo['help'].append({'text': TextObject(definitions + str(list_item.strip()), question=self), 'package': self.package, 'type': 'video'}) if key == 'content': if isinstance(value, (dict, list, set)): raise DAError("A content declaration in a help block can only contain text." + self.idebug(data)) self.helptext = TextObject(definitions + str(value), question=self) else: self.helptext = TextObject(definitions + str(data['help']), question=self) if 'audio' in data: if not isinstance(data['audio'], list): the_list = [data['audio']] else: the_list = data['audio'] for list_item in the_list: if isinstance(list_item, (dict, list, set)): raise DAError("An audio declaration can only contain a text item or a list of text items." + self.idebug(data)) if self.audiovideo is None: self.audiovideo = dict() if 'question' not in self.audiovideo: self.audiovideo['question'] = list() self.audiovideo['question'].append({'text': TextObject(definitions + str(list_item.strip()), question=self), 'package': self.package, 'type': 'audio'}) if 'video' in data: if not isinstance(data['video'], list): the_list = [data['video']] else: the_list = data['video'] for list_item in the_list: if isinstance(list_item, (dict, list, set)): raise DAError("A video declaration can only contain a text item or a list of text items." + self.idebug(data)) if self.audiovideo is None: self.audiovideo = dict() if 'question' not in self.audiovideo: self.audiovideo['question'] = list() self.audiovideo['question'].append({'text': TextObject(definitions + str(list_item.strip()), question=self), 'package': self.package, 'type': 'video'}) if 'decoration' in data: if isinstance(data['decoration'], dict): decoration_list = [data['decoration']] elif isinstance(data['decoration'], list): decoration_list = data['decoration'] else: decoration_list = [{'image': str(data['decoration'])}] processed_decoration_list = [] for item in decoration_list: if isinstance(item, dict): the_item = item else: the_item = {'image': str(item.rstrip())} item_to_add = dict() for key, value in the_item.items(): item_to_add[key] = TextObject(do_not_translate + value, question=self) processed_decoration_list.append(item_to_add) self.decorations = processed_decoration_list if 'signature' in data: self.question_type = 'signature' if 'required' in data: if isinstance(data['required'], bool): is_required = data['required'] else: is_required = {'compute': compile(data['required'], '<required code>', 'eval'), 'sourcecode': data['required']} self.find_fields_in(data['required']) self.fields.append(Field({'saveas': data['signature'], 'required': is_required})) else: self.fields.append(Field({'saveas': data['signature']})) if self.scan_for_variables: self.fields_used.add(data['signature']) else: self.other_fields_used.add(data['signature']) elif 'required' in data: raise DAError("The required modifier can only be used on a signature block" + self.idebug(data)) if 'question metadata' in data: self.question_metadata = recursive_textobject_or_primitive(data['question metadata'], self) if 'under' in data: self.undertext = TextObject(definitions + str(data['under']), question=self) if 'pre' in data: self.pretext = TextObject(definitions + str(data['pre']), question=self) if 'post' in data: self.posttext = TextObject(definitions + str(data['post']), question=self) if 'right' in data: self.righttext = TextObject(definitions + str(data['right']), question=self) if 'check in' in data: self.interview.uses_action = True if isinstance(data['check in'], (dict, list, set)): raise DAError("A check in event must be text or a list." + self.idebug(data)) self.checkin = str(data['check in']) self.names_used.add(str(data['check in'])) if 'yesno' in data: if not isinstance(data['yesno'], str): raise DAError("A yesno must refer to text." + self.idebug(data)) self.fields.append(Field({'saveas': data['yesno'], 'boolean': 1})) if self.scan_for_variables: self.fields_used.add(data['yesno']) else: self.other_fields_used.add(data['yesno']) self.question_type = 'yesno' if 'noyes' in data: if not isinstance(data['noyes'], str): raise DAError("A noyes must refer to text." + self.idebug(data)) self.fields.append(Field({'saveas': data['noyes'], 'boolean': -1})) if self.scan_for_variables: self.fields_used.add(data['noyes']) else: self.other_fields_used.add(data['noyes']) self.question_type = 'noyes' if 'yesnomaybe' in data: if not isinstance(data['yesnomaybe'], str): raise DAError("A yesnomaybe must refer to text." + self.idebug(data)) self.fields.append(Field({'saveas': data['yesnomaybe'], 'threestate': 1})) if self.scan_for_variables: self.fields_used.add(data['yesnomaybe']) else: self.other_fields_used.add(data['yesnomaybe']) self.question_type = 'yesnomaybe' if 'noyesmaybe' in data: if not isinstance(data['noyesmaybe'], str): raise DAError("A noyesmaybe must refer to text." + self.idebug(data)) self.fields.append(Field({'saveas': data['noyesmaybe'], 'threestate': -1})) if self.scan_for_variables: self.fields_used.add(data['noyesmaybe']) else: self.other_fields_used.add(data['noyesmaybe']) self.question_type = 'noyesmaybe' if 'sets' in data: if isinstance(data['sets'], str): self.fields_used.add(data['sets']) elif isinstance(data['sets'], list): for key in data['sets']: self.fields_used.add(key) else: raise DAError("A sets phrase must be text or a list." + self.idebug(data)) if 'event' in data: self.interview.uses_action = True if isinstance(data['event'], str): self.fields_used.add(data['event']) elif isinstance(data['event'], list): for key in data['event']: self.fields_used.add(key) else: raise DAError("An event phrase must be text or a list." + self.idebug(data)) if 'choices' in data or 'buttons' in data or 'dropdown' in data or 'combobox' in data: if 'field' in data: uses_field = True data['field'] = data['field'].strip() else: uses_field = False if 'shuffle' in data and data['shuffle']: shuffle = True else: shuffle = False if 'choices' in data or 'dropdown' in data or 'combobox' in data: if 'choices' in data: has_code, choices = self.parse_fields(data['choices'], register_target, uses_field) self.question_variety = 'radio' elif 'combobox' in data: has_code, choices = self.parse_fields(data['combobox'], register_target, uses_field) self.question_variety = 'combobox' else: has_code, choices = self.parse_fields(data['dropdown'], register_target, uses_field) self.question_variety = 'dropdown' field_data = {'choices': choices, 'shuffle': shuffle} if has_code: field_data['has_code'] = True if 'default' in data: field_data['default'] = TextObject(definitions + str(data['default']), question=self) elif 'buttons' in data: has_code, choices = self.parse_fields(data['buttons'], register_target, uses_field) field_data = {'choices': choices, 'shuffle': shuffle} if has_code: field_data['has_code'] = True self.question_variety = 'buttons' if 'validation messages' in data: if not isinstance(data['validation messages'], dict): raise DAError("A validation messages indicator must be a dictionary." + self.idebug(data)) field_data['validation messages'] = dict() for validation_key, validation_message in data['validation messages'].items(): if not (isinstance(validation_key, str) and isinstance(validation_message, str)): raise DAError("A validation messages indicator must be a dictionary of text keys and text values." + self.idebug(data)) field_data['validation messages'][validation_key] = TextObject(definitions + str(validation_message).strip(), question=self) if uses_field: data['field'] = data['field'].strip() if invalid_variable_name(data['field']): raise DAError("Missing or invalid variable name " + repr(data['field']) + "." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['field']) else: self.other_fields_used.add(data['field']) field_data['saveas'] = data['field'] if 'datatype' in data and 'type' not in field_data: field_data['type'] = data['datatype'] elif is_boolean(field_data): field_data['type'] = 'boolean' elif is_threestate(field_data): field_data['type'] = 'threestate' self.fields.append(Field(field_data)) self.question_type = 'multiple_choice' elif 'continue button field' in data and 'fields' not in data and 'yesno' not in data and 'noyes' not in data and 'yesnomaybe' not in data and 'noyesmaybe' not in data and 'signature' not in data: if not isinstance(data['continue button field'], str): raise DAError("A continue button field must be plain text." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['continue button field']) else: self.other_fields_used.add(data['continue button field']) if 'review' in data: self.review_saveas = data['continue button field'] else: field_data = {'saveas': data['continue button field']} self.fields.append(Field(field_data)) self.question_type = 'settrue' if 'need' in data: if isinstance(data['need'], (str, dict)): need_list = [data['need']] elif isinstance(data['need'], list): need_list = data['need'] else: raise DAError("A need phrase must be text or a list." + self.idebug(data)) pre_need_list = [] post_need_list = [] for item in need_list: if isinstance(item, dict): if not (('pre' in item and len(item) == 1) or ('post' in item and len(item) == 1) or ('pre' in item and 'post' in item and len(item) == 2)): raise DAError("If 'need' contains a dictionary it can only include keys 'pre' or 'post'." + self.idebug(data)) if 'post' in item: if isinstance(item['post'], str): post_need_list.append(item['post']) elif isinstance(item['post'], list): post_need_list.extend(item['post']) else: raise DAError("A need post phrase must be text or a list." + self.idebug(data)) if 'pre' in item: if isinstance(item['pre'], str): pre_need_list.append(item['pre']) elif isinstance(item['pre'], list): pre_need_list.extend(item['pre']) else: raise DAError("A need pre phrase must be text or a list." + self.idebug(data)) else: pre_need_list.append(item) for sub_item in pre_need_list + post_need_list: if not isinstance(sub_item, str): raise DAError("In 'need', the items must be text strings." + self.idebug(data)) if len(pre_need_list): try: self.need = list(map((lambda x: compile(x, '<need expression>', 'eval')), pre_need_list)) for x in pre_need_list: self.find_fields_in(x) except: logmessage("Question: compile error in need code:\n" + str(data['need']) + "\n" + str(sys.exc_info()[0])) raise if len(post_need_list): try: self.need_post = list(map((lambda x: compile(x, '<post need expression>', 'eval')), post_need_list)) for x in post_need_list: self.find_fields_in(x) except: logmessage("Question: compile error in need code:\n" + str(data['need']) + "\n" + str(sys.exc_info()[0])) raise if 'depends on' in data: if not isinstance(data['depends on'], list): depends_list = [str(data['depends on'])] else: depends_list = [str(x) for x in data['depends on']] # if len(depends_list): # if self.need is None: # self.need = list() # self.need += list(map((lambda x: compile(x, '<depends expression>', 'exec')), depends_list)) else: depends_list = [] if 'target' in data: self.interview.uses_action = True if isinstance(data['target'], (list, dict, set, bool, int, float)): raise DAError("The target of a template must be plain text." + self.idebug(data)) if 'template' not in data: raise DAError("A target directive can only be used with a template." + self.idebug(data)) self.target = data['target'] if 'table' in data or 'rows' in data or 'columns' in data: if 'table' not in data or 'rows' not in data or 'columns' not in data: raise DAError("A table definition must have definitions for table, row, and column." + self.idebug(data)) if isinstance(data['rows'], (list, dict, set, bool, int, float)): raise DAError("The row part of a table definition must be plain Python code." + self.idebug(data)) data['rows'] = data['rows'].strip() if not isinstance(data['columns'], list): raise DAError("The column part of a table definition must be a list." + self.idebug(data)) row = compile(data['rows'], '<row code>', 'eval') self.find_fields_in(data['rows']) header = list() column = list() read_only = dict(edit=True, delete=True) is_editable = False require_gathered = True if 'require gathered' in data and data['require gathered'] is False: require_gathered = False else: require_gathered = True if 'show incomplete' in data and data['show incomplete'] is True: show_incomplete = True else: show_incomplete = False if show_incomplete is True or require_gathered is False: ensure_complete = False else: ensure_complete = True if 'not available label' in data and isinstance(data['not available label'], str): not_available_label = data['not available label'].strip() else: # word('n/a') not_available_label = 'n/a' for col in data['columns']: if not isinstance(col, dict): raise DAError("The column items in a table definition must be dictionaries." + self.idebug(data)) if len(col) == 0: raise DAError("A column item in a table definition cannot be empty." + self.idebug(data)) if 'header' in col and 'cell' in col: header_text = col['header'] cell_text = str(col['cell']).strip() else: for key, val in col.items(): header_text = key cell_text = str(val).strip() break if header_text == '': header.append(TextObject('&nbsp;')) else: header.append(TextObject(definitions + str(header_text), question=self)) self.find_fields_in(cell_text) column.append(compile(cell_text, '<column code>', 'eval')) if 'allow reordering' in data and data['allow reordering'] is not False: reorder = True else: reorder = False if 'edit' in data and data['edit'] is not False: is_editable = True if isinstance(data['edit'], list): if len(data['edit']) == 0: raise DAError("The edit directive must be a list of attributes, or True or False" + self.idebug(data)) for attribute_name in data['edit']: if not isinstance(attribute_name, str): raise DAError("The edit directive must be a list of attribute names" + self.idebug(data)) elif not isinstance(data['edit'], bool): raise DAError("The edit directive must be a list of attributes, or True or False" + self.idebug(data)) keyword_args = '' if 'delete buttons' in data and not data['delete buttons']: keyword_args += ', delete=False' if 'confirm' in data and data['confirm']: keyword_args += ', confirm=True' if 'read only' in data: if not isinstance(data['read only'], str): raise DAError("The read only directive must be plain text referring to an attribute" + self.idebug(data)) keyword_args += ', read_only_attribute=' + repr(data['read only'].strip()) if isinstance(data['edit'], list): column.append(compile('(' + data['rows'] + ').item_actions(row_item, row_index, ' + ', '.join([repr(y) for y in data['edit']]) + keyword_args + ', reorder=' + repr(reorder) + ', ensure_complete=' + repr(ensure_complete) + ')', '<edit code>', 'eval')) else: column.append(compile('(' + data['rows'] + ').item_actions(row_item, row_index' + keyword_args + ', reorder=' + repr(reorder) + ', ensure_complete=' + repr(ensure_complete) + ')', '<edit code>', 'eval')) if 'edit header' in data: if not isinstance(data['edit header'], str): raise DAError("The edit header directive must be text" + self.idebug(data)) if data['edit header'] == '': header.append(TextObject('&nbsp;')) else: header.append(TextObject(definitions + str(data['edit header']), question=self)) else: header.append(TextObject(word("Actions"))) elif ('delete buttons' in data and data['delete buttons']) or reorder: is_editable = True keyword_args = '' if 'read only' in data: if not isinstance(data['read only'], str): raise DAError("The read only directive must be plain text referring to an attribute" + self.idebug(data)) keyword_args += ', read_only_attribute=' + repr(data['read only'].strip()) if 'confirm' in data and data['confirm']: keyword_args += ', confirm=True' if 'delete buttons' in data and data['delete buttons']: column.append(compile('(' + data['rows'] + ').item_actions(row_item, row_index, edit=False' + keyword_args + ', reorder=' + repr(reorder) + ', ensure_complete=' + repr(ensure_complete) + ')', '<delete button code>', 'eval')) else: column.append(compile('(' + data['rows'] + ').item_actions(row_item, row_index, edit=False' + keyword_args + ', delete=False, reorder=' + repr(reorder) + ', ensure_complete=' + repr(ensure_complete) + ')', '<reorder buttons code>', 'eval')) if 'edit header' in data: if not isinstance(data['edit header'], str): raise DAError("The edit header directive must be text" + self.idebug(data)) if data['edit header'] == '': header.append(TextObject('&nbsp;')) else: header.append(TextObject(definitions + str(data['edit header']), question=self)) else: header.append(TextObject(word("Actions"))) if self.scan_for_variables: self.fields_used.add(data['table']) else: self.other_fields_used.add(data['table']) empty_message = data.get('show if empty', True) if empty_message not in (True, False, None): empty_message = TextObject(definitions + str(empty_message), question=self) field_data = {'saveas': data['table'], 'extras': dict(header=header, row=row, column=column, empty_message=empty_message, indent=data.get('indent', False), is_editable=is_editable, require_gathered=require_gathered, show_incomplete=show_incomplete, not_available_label=not_available_label)} self.fields.append(Field(field_data)) self.content = TextObject('') self.subcontent = TextObject('') self.question_type = 'table' if 'template' in data and 'content file' in data: if isinstance(data['content file'], dict): if len(data['content file']) == 1 and 'code' in data['content file'] and isinstance(data['content file']['code'], str): if self.scan_for_variables: self.fields_used.add(data['template']) else: self.other_fields_used.add(data['template']) field_data = {'saveas': data['template']} self.fields.append(Field(field_data)) self.compute = compile(data['content file']['code'], '<content file code>', 'eval') self.sourcecode = data['content file']['code'] self.find_fields_in(data['content file']['code']) self.question_type = 'template_code' else: raise DAError('A content file must be specified as text, as a list of text filenames, or as a dictionary with code as the key' + self.idebug(data)) else: if not isinstance(data['content file'], list): data['content file'] = [data['content file']] data['content'] = '' for content_file in data['content file']: if not isinstance(content_file, str): raise DAError('A content file must be specified as text, as a list of text filenames, or as a dictionary with code as the key' + self.idebug(data)) file_to_read = docassemble.base.functions.package_template_filename(content_file, package=self.package) #if file_to_read is not None and get_mimetype(file_to_read) != 'text/markdown': # raise DAError('The content file ' + str(data['content file']) + ' is not a markdown file ' + str(file_to_read) + self.idebug(data)) if file_to_read is not None and os.path.isfile(file_to_read) and os.access(file_to_read, os.R_OK): with open(file_to_read, 'r', encoding='utf-8') as the_file: data['content'] += the_file.read() else: raise DAError('Unable to read content file ' + str(data['content file']) + ' after trying to find it at ' + str(file_to_read) + self.idebug(data)) if 'template' in data and 'content' in data: if isinstance(data['template'], (list, dict)): raise DAError("A template must designate a single variable expressed as text." + self.idebug(data)) if isinstance(data['content'], (list, dict)): raise DAError("The content of a template must be expressed as text." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['template']) else: self.other_fields_used.add(data['template']) field_data = {'saveas': data['template']} self.fields.append(Field(field_data)) self.content = TextObject(definitions + str(data['content']), question=self) #logmessage("keys are: " + str(self.mako_names)) if 'subject' in data: self.subcontent = TextObject(definitions + str(data['subject']), question=self) else: self.subcontent = TextObject("") self.question_type = 'template' #if self.scan_for_variables: # self.reset_list = self.fields_used if 'code' in data: if 'event' in data: self.question_type = 'event_code' self.scan_for_variables = False else: self.question_type = 'code' if isinstance(data['code'], str): if not self.interview.calls_process_action and match_process_action.search(data['code']): self.interview.calls_process_action = True try: self.compute = compile(data['code'], '<code block>', 'exec') self.sourcecode = data['code'] except: logmessage("Question: compile error in code:\n" + str(data['code']) + "\n" + str(sys.exc_info()[0])) raise self.find_fields_in(data['code']) else: raise DAError("A code section must be text, not a list or a dictionary." + self.idebug(data)) if 'reconsider' in data: #if not isinstance(data['reconsider'], bool): # raise DAError("A reconsider directive must be true or false." + self.idebug(data)) if isinstance(data['reconsider'], bool): if data['reconsider']: if self.is_generic: if self.generic_object not in self.interview.reconsider_generic: self.interview.reconsider_generic[self.generic_object] = set() self.interview.reconsider_generic[self.generic_object].update(self.fields_used) else: self.interview.reconsider.update(self.fields_used) else: if isinstance(data['reconsider'], str): fields = [data['reconsider']] elif isinstance(data['reconsider'], list): fields = data['reconsider'] else: raise DAError("A reconsider directive must be true, false, a single variable or a list." + self.idebug(data)) for the_field in fields: if not isinstance(the_field, str): raise DAError("A reconsider directive must refer to variable names expressed as text." + self.idebug(data)) self.find_fields_in(the_field) self.reconsider.append(the_field) if 'undefine' in data: if isinstance(data['undefine'], str): fields = [data['undefine']] elif isinstance(data['undefine'], list): fields = data['undefine'] else: raise DAError("A undefine directive must a single variable or a list." + self.idebug(data)) for the_field in fields: if not isinstance(the_field, str): raise DAError("A undefine directive must refer to variable names expressed as text." + self.idebug(data)) self.find_fields_in(the_field) self.undefine.append(the_field) if 'continue button field' in data and 'question' in data and ('field' in data or 'fields' in data or 'yesno' in data or 'noyes' in data or 'yesnomaybe' in data or 'noyesmaybe' in data or 'signature' in data): if not isinstance(data['continue button field'], str): raise DAError("A continue button field must be plain text." + self.idebug(data)) if self.scan_for_variables: self.fields_used.add(data['continue button field']) else: self.other_fields_used.add(data['continue button field']) self.fields_saveas = data['continue button field'] if 'fields' in data: self.question_type = 'fields' if isinstance(data['fields'], dict): data['fields'] = [data['fields']] if not isinstance(data['fields'], list): raise DAError("The fields must be written in the form of a list." + self.idebug(data)) else: field_number = 0 for field in data['fields']: docassemble.base.functions.this_thread.misc['current_field'] = field_number if isinstance(field, dict): manual_keys = set() field_info = {'type': 'text', 'number': field_number} if 'datatype' in field: if field['datatype'] in ('radio', 'combobox', 'pulldown', 'ajax'): field['input type'] = field['datatype'] field['datatype'] = 'text' if field['datatype'] == 'mlarea': field['input type'] = 'area' field['datatype'] = 'ml' if field['datatype'] == 'area': field['input type'] = 'area' field['datatype'] = 'text' if 'input type' in field and field['input type'] == 'ajax': if 'action' not in field: raise DAError("An ajax field must have an associated action." + self.idebug(data)) if 'choices' in field or 'code' in field: raise DAError("An ajax field cannot contain a list of choices except through an action." + self.idebug(data)) if len(field) == 1 and 'code' in field: field_info['type'] = 'fields_code' self.find_fields_in(field['code']) field_info['extras'] = dict(fields_code=compile(field['code'], '<fields code>', 'eval')) self.fields.append(Field(field_info)) field_number += 1 if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] continue if 'datatype' in field and field['datatype'] in ('object', 'object_radio', 'multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes') and not ('choices' in field or 'code' in field): raise DAError("A multiple choice field must refer to a list of choices." + self.idebug(data)) if 'input type' in field and field['input type'] in ('radio', 'combobox', 'pulldown') and not ('choices' in field or 'code' in field): raise DAError("A multiple choice field must refer to a list of choices." + self.idebug(data)) if 'object labeler' in field and ('datatype' not in field or not field['datatype'].startswith('object')): raise DAError("An object labeler can only be used with an object data type") if 'note' in field and 'html' in field: raise DAError("You cannot include both note and html in a field." + self.idebug(data)) for key in field: if key == 'default' and 'datatype' in field and field['datatype'] in ('object', 'object_radio', 'object_multiselect', 'object_checkboxes'): continue if key == 'input type': field_info['inputtype'] = field[key] elif 'datatype' in field and field['datatype'] in ('ml', 'mlarea') and key in ('using', 'keep for training'): if key == 'using': if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras']['ml_group'] = TextObject(definitions + str(field[key]), question=self) if key == 'keep for training': if 'extras' not in field_info: field_info['extras'] = dict() if isinstance(field[key], bool): field_info['extras']['ml_train'] = field[key] else: field_info['extras']['ml_train'] = {'compute': compile(field[key], '<keep for training code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'validation messages': if not isinstance(field[key], dict): raise DAError("A validation messages indicator must be a dictionary." + self.idebug(data)) field_info['validation messages'] = dict() for validation_key, validation_message in field[key].items(): if not (isinstance(validation_key, str) and isinstance(validation_message, str)): raise DAError("A validation messages indicator must be a dictionary of text keys and text values." + self.idebug(data)) field_info['validation messages'][validation_key] = TextObject(definitions + str(validation_message).strip(), question=self) elif key == 'validate': field_info['validate'] = {'compute': compile(field[key], '<validate code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'rows' and (('input type' in field and field['input type'] == 'area') or ('datatype' in field and field['datatype'] in ('multiselect', 'object_multiselect'))): field_info['rows'] = {'compute': compile(str(field[key]), '<rows code>', 'eval'), 'sourcecode': str(field[key])} self.find_fields_in(field[key]) elif key == 'maximum image size' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): field_info['max_image_size'] = {'compute': compile(str(field[key]), '<maximum image size code>', 'eval'), 'sourcecode': str(field[key])} self.find_fields_in(field[key]) elif key == 'image upload type' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): if field[key].lower().strip() in ('jpeg', 'jpg', 'bmp', 'png'): field_info['image_type'] = {'compute': compile(repr(field[key]), '<image upload type code>', 'eval'), 'sourcecode': repr(field[key])} else: field_info['image_type'] = {'compute': compile(str(field[key]), '<image upload type code>', 'eval'), 'sourcecode': str(field[key])} elif key == 'accept' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): field_info['accept'] = {'compute': compile(field[key], '<accept code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'allow privileges' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): if isinstance(field[key], list): for item in field[key]: if not isinstance(item, str): raise DAError("An allow privileges specifier must be a list of plain text items or code." + self.idebug(data)) field_info['allow_privileges'] = field[key] elif isinstance(field[key], str): field_info['allow_privileges'] = [field[key]] elif isinstance(field[key], dict) and len(field[key]) == 1 and 'code' in field[key]: field_info['allow_privileges'] = {'compute': compile(field[key]['code'], '<allow privileges code>', 'eval'), 'sourcecode': field[key]['code']} self.find_fields_in(field[key]['code']) else: raise DAError("An allow privileges specifier must be a list of plain text items or code." + self.idebug(data)) elif key == 'allow users' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): if isinstance(field[key], list): for item in field[key]: if not isinstance(item, (str, int)): raise DAError("An allow users specifier must be a list of integers and plain text items or code." + self.idebug(data)) field_info['allow_users'] = field[key] elif isinstance(field[key], str): field_info['allow_users'] = [field[key]] elif isinstance(field[key], dict) and len(field[key]) == 1 and 'code' in field[key]: field_info['allow_users'] = {'compute': compile(field[key]['code'], '<allow users code>', 'eval'), 'sourcecode': field[key]['code']} self.find_fields_in(field[key]['code']) else: raise DAError("An allow users specifier must be a list of integers and plain text items or code." + self.idebug(data)) elif key == 'persistent' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): if isinstance(field[key], bool): field_info['persistent'] = field[key] else: field_info['persistent'] = {'compute': compile(field[key], '<persistent code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'private' and 'datatype' in field and field['datatype'] in ('file', 'files', 'camera', 'user', 'environment'): if isinstance(field[key], bool): field_info['private'] = field[key] else: field_info['private'] = {'compute': compile(field[key], '<public code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'object labeler': field_info['object_labeler'] = {'compute': compile(str(field[key]), '<object labeler code>', 'eval'), 'sourcecode': str(field[key])} self.find_fields_in(field[key]) elif key == 'help generator': field_info['help_generator'] = {'compute': compile(str(field[key]), '<help generator code>', 'eval'), 'sourcecode': str(field[key])} self.find_fields_in(field[key]) elif key == 'image generator': field_info['image_generator'] = {'compute': compile(str(field[key]), '<image generator code>', 'eval'), 'sourcecode': str(field[key])} self.find_fields_in(field[key]) elif key == 'required': if isinstance(field[key], bool): field_info['required'] = field[key] else: field_info['required'] = {'compute': compile(field[key], '<required code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) elif key == 'js show if' or key == 'js hide if': if not isinstance(field[key], str): raise DAError("A js show if or js hide if expression must be a string" + self.idebug(data)) js_info = dict() if key == 'js show if': js_info['sign'] = True else: js_info['sign'] = False js_info['mode'] = 0 js_info['expression'] = TextObject(definitions + str(field[key]).strip(), question=self, translate=False) js_info['vars'] = list(set(re.findall(r'val\(\'([^\)]+)\'\)', field[key]) + re.findall(r'val\("([^\)]+)"\)', field[key]))) if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras']['show_if_js'] = js_info elif key == 'js disable if' or key == 'js enable if': if not isinstance(field[key], str): raise DAError("A js disable if or js enable if expression must be a string" + self.idebug(data)) js_info = dict() if key == 'js enable if': js_info['sign'] = True else: js_info['sign'] = False js_info['mode'] = 1 js_info['expression'] = TextObject(definitions + str(field[key]).strip(), question=self, translate=False) js_info['vars'] = list(set(re.findall(r'val\(\'([^\)]+)\'\)', field[key]) + re.findall(r'val\("([^\)]+)"\)', field[key]))) if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras']['show_if_js'] = js_info elif key == 'show if' or key == 'hide if': if 'extras' not in field_info: field_info['extras'] = dict() if isinstance(field[key], dict): showif_valid = False if 'variable' in field[key] and 'is' in field[key]: if 'js show if' in field or 'js hide if' in field: raise DAError("You cannot mix js show if and non-js show if" + self.idebug(data)) if 'js disable if' in field or 'js enable if' in field: raise DAError("You cannot mix js disable if and non-js show if" + self.idebug(data)) field_info['extras']['show_if_var'] = safeid(field[key]['variable'].strip()) if isinstance(field[key]['is'], str): field_info['extras']['show_if_val'] = TextObject(definitions + str(field[key]['is']).strip(), question=self) else: field_info['extras']['show_if_val'] = TextObject(str(field[key]['is'])) showif_valid = True if 'code' in field[key]: field_info['showif_code'] = compile(field[key]['code'], '<show if code>', 'eval') self.find_fields_in(field[key]['code']) showif_valid = True if not showif_valid: raise DAError("The keys of '" + key + "' must be 'variable' and 'is,' or 'code.'" + self.idebug(data)) elif isinstance(field[key], list): raise DAError("The keys of '" + key + "' cannot be a list" + self.idebug(data)) elif isinstance(field[key], str): field_info['extras']['show_if_var'] = safeid(field[key].strip()) field_info['extras']['show_if_val'] = TextObject('True') else: raise DAError("Invalid variable name in show if/hide if") exclusive = False if isinstance(field[key], dict) and 'code' in field[key]: if len(field[key]) == 1: exclusive = True if key == 'show if': field_info['extras']['show_if_sign_code'] = 1 else: field_info['extras']['show_if_sign_code'] = 0 if not exclusive: if key == 'show if': field_info['extras']['show_if_sign'] = 1 else: field_info['extras']['show_if_sign'] = 0 field_info['extras']['show_if_mode'] = 0 elif key == 'disable if' or key == 'enable if': if 'extras' not in field_info: field_info['extras'] = dict() if isinstance(field[key], dict): showif_valid = False if 'variable' in field[key] and 'is' in field[key]: if 'js show if' in field or 'js hide if' in field: raise DAError("You cannot mix js show if and non-js disable if" + self.idebug(data)) if 'js disable if' in field or 'js enable if' in field: raise DAError("You cannot mix js disable if and non-js disable if" + self.idebug(data)) field_info['extras']['show_if_var'] = safeid(field[key]['variable'].strip()) if isinstance(field[key]['is'], str): field_info['extras']['show_if_val'] = TextObject(definitions + str(field[key]['is']).strip(), question=self) else: field_info['extras']['show_if_val'] = TextObject(str(field[key]['is'])) showif_valid = True if 'code' in field[key]: field_info['showif_code'] = compile(field[key]['code'], '<show if code>', 'eval') self.find_fields_in(field[key]['code']) showif_valid = True if not showif_valid: raise DAError("The keys of '" + key + "' must be 'variable' and 'is,' or 'code.'" + self.idebug(data)) elif isinstance(field[key], list): raise DAError("The keys of '" + key + "' cannot be a list" + self.idebug(data)) elif isinstance(field[key], str): field_info['extras']['show_if_var'] = safeid(field[key].strip()) field_info['extras']['show_if_val'] = TextObject('True') else: raise DAError("Invalid variable name in disable if/enable if") exclusive = False if isinstance(field[key], dict) and 'code' in field[key]: if len(field[key]) == 1: exclusive = True if key == 'enable if': field_info['extras']['show_if_sign_code'] = 1 else: field_info['extras']['show_if_sign_code'] = 0 if not exclusive: if key == 'enable if': field_info['extras']['show_if_sign'] = 1 else: field_info['extras']['show_if_sign'] = 0 field_info['extras']['show_if_mode'] = 1 elif key == 'default' or key == 'hint' or key == 'help': if not isinstance(field[key], dict) and not isinstance(field[key], list): field_info[key] = TextObject(definitions + str(field[key]), question=self) if key == 'default': if isinstance(field[key], dict) and 'code' in field[key]: if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras']['default'] = {'compute': compile(field[key]['code'], '<default code>', 'eval'), 'sourcecode': field[key]['code']} self.find_fields_in(field[key]['code']) else: if isinstance(field[key], (dict, list)): field_info[key] = field[key] if 'datatype' not in field and 'code' not in field and 'choices' not in field: auto_determine_type(field_info, the_value=field[key]) elif key == 'disable others': if 'datatype' in field and field['datatype'] in ('file', 'files', 'range', 'multiselect', 'checkboxes', 'camera', 'user', 'environment', 'camcorder', 'microphone', 'object_multiselect', 'object_checkboxes'): #'yesno', 'yesnowide', 'noyes', 'noyeswide', raise DAError("A 'disable others' directive cannot be used with this data type." + self.idebug(data)) if not isinstance(field[key], (list, bool)): raise DAError("A 'disable others' directive must be True, False, or a list of variable names." + self.idebug(data)) field_info['disable others'] = field[key] if field[key] is not False: field_info['required'] = False elif key == 'uncheck others' and 'datatype' in field and field['datatype'] in ('yesno', 'yesnowide', 'noyes', 'noyeswide'): if not isinstance(field[key], (list, bool)): raise DAError("An 'uncheck others' directive must be True, False, or a list of variable names." + self.idebug(data)) field_info['uncheck others'] = field[key] elif key == 'datatype': field_info['type'] = field[key] if field[key] in ('yesno', 'yesnowide', 'noyes', 'noyeswide') and 'required' not in field_info: field_info['required'] = False if field[key] == 'range' and 'required' not in field_info: field_info['required'] = False if field[key] == 'range' and not ('min' in field and 'max' in field): raise DAError("If the datatype of a field is 'range', you must provide a min and a max." + self.idebug(data)) if field[key] in ('yesno', 'yesnowide', 'yesnoradio'): field_info['boolean'] = 1 elif field[key] in ('noyes', 'noyeswide', 'noyesradio'): field_info['boolean'] = -1 elif field[key] == 'yesnomaybe': field_info['threestate'] = 1 elif field[key] == 'noyesmaybe': field_info['threestate'] = -1 elif key == 'code': self.find_fields_in(field[key]) field_info['choicetype'] = 'compute' field_info['selections'] = {'compute': compile(field[key], '<choices code>', 'eval'), 'sourcecode': field[key]} self.find_fields_in(field[key]) if 'exclude' in field: if isinstance(field['exclude'], dict): raise DAError("An exclude entry cannot be a dictionary." + self.idebug(data)) if not isinstance(field['exclude'], list): field_info['selections']['exclude'] = [compile(field['exclude'], '<expression>', 'eval')] self.find_fields_in(field['exclude']) else: field_info['selections']['exclude'] = list() for x in field['exclude']: field_info['selections']['exclude'].append(compile(x, '<expression>', 'eval')) self.find_fields_in(x) elif key == 'address autocomplete': field_info['address_autocomplete'] = True elif key == 'action' and 'input type' in field and field['input type'] == 'ajax': if not isinstance(field[key], str): raise DAError("An action must be plain text" + self.idebug(data)) if 'combobox action' not in field_info: field_info['combobox action'] = dict(trig=4) field_info['combobox action']['action'] = field[key] elif key == 'trigger at' and 'action' in field and 'input type' in field and field['input type'] == 'ajax': if (not isinstance(field[key], int)) or field[key] < 2: raise DAError("A trigger at must an integer greater than one" + self.idebug(data)) if 'combobox action' not in field_info: field_info['combobox action'] = dict() field_info['combobox action']['trig'] = field[key] elif key == 'exclude': pass elif key == 'choices': if 'datatype' in field and field['datatype'] in ('object', 'object_radio', 'object_multiselect', 'object_checkboxes'): field_info['choicetype'] = 'compute' if not isinstance(field[key], (list, str)): raise DAError("choices is not in appropriate format" + self.idebug(data)) field_info['selections'] = dict() else: field_info['choicetype'] = 'manual' field_info['selections'] = dict(values=self.process_selections_manual(field[key])) if 'datatype' not in field: auto_determine_type(field_info) for item in field_info['selections']['values']: if isinstance(item['key'], TextObject): if not item['key'].uses_mako: manual_keys.add(item['key'].original_text) else: manual_keys.add(item['key']) if 'exclude' in field: if isinstance(field['exclude'], dict): raise DAError("An exclude entry cannot be a dictionary." + self.idebug(data)) if not isinstance(field['exclude'], list): self.find_fields_in(field['exclude']) field_info['selections']['exclude'] = [compile(field['exclude'].strip(), '<expression>', 'eval')] else: field_info['selections']['exclude'] = list() for x in field['exclude']: self.find_fields_in(x) field_info['selections']['exclude'].append(compile(x, '<expression>', 'eval')) elif key in ('note', 'html'): if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras'][key] = TextObject(definitions + str(field[key]), question=self) elif key == 'field metadata': if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras'][key] = recursive_textobject_or_primitive(field[key], self) elif key in ('min', 'max', 'minlength', 'maxlength', 'step', 'scale', 'inline', 'inline width', 'currency symbol'): if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras'][key] = TextObject(definitions + str(field[key]), question=self) # elif key in ('css', 'script'): # if 'extras' not in field_info: # field_info['extras'] = dict() # if field_info['type'] == 'text': # field_info['type'] = key # field_info['extras'][key] = TextObject(definitions + str(field[key]), question=self) elif key == 'shuffle': field_info['shuffle'] = field[key] elif key == 'none of the above' and 'datatype' in field and field['datatype'] in ('checkboxes', 'object_checkboxes', 'object_radio'): if isinstance(field[key], bool): field_info['nota'] = field[key] else: field_info['nota'] = TextObject(definitions + interpret_label(field[key]), question=self) elif key == 'field': if 'label' not in field: raise DAError("If you use 'field' to indicate a variable in a 'fields' section, you must also include a 'label.'" + self.idebug(data)) if not isinstance(field[key], str): raise DAError("Fields in a 'field' section must be plain text." + self.idebug(data)) field[key] = field[key].strip() if invalid_variable_name(field[key]): raise DAError("Missing or invalid variable name " + repr(field[key]) + "." + self.idebug(data)) field_info['saveas'] = field[key] elif key == 'label': if 'field' not in field: raise DAError("If you use 'label' to label a field in a 'fields' section, you must also include a 'field.'" + self.idebug(data)) field_info['label'] = TextObject(definitions + interpret_label(field[key]), question=self) else: if 'label' in field_info: raise DAError("Syntax error: field label '" + str(key) + "' overwrites previous label, '" + str(field_info['label'].original_text) + "'" + self.idebug(data)) field_info['label'] = TextObject(definitions + interpret_label(key), question=self) if not isinstance(field[key], str): raise DAError("Fields in a 'field' section must be plain text." + self.idebug(data)) field[key] = field[key].strip() if invalid_variable_name(field[key]): raise DAError("Missing or invalid variable name " + repr(field[key]) + " for key " + repr(key) + "." + self.idebug(data)) field_info['saveas'] = field[key] if 'type' in field_info: if field_info['type'] in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes') and 'nota' not in field_info: field_info['nota'] = True if field_info['type'] == 'object_radio' and 'nota' not in field_info: field_info['nota'] = False if 'choicetype' in field_info and field_info['choicetype'] == 'compute' and 'type' in field_info and field_info['type'] in ('object', 'object_radio', 'object_multiselect', 'object_checkboxes'): if 'choices' not in field: raise DAError("You need to have a choices element if you want to set a variable to an object." + self.idebug(data)) if not isinstance(field['choices'], list): select_list = [str(field['choices'])] else: select_list = field['choices'] if 'exclude' in field: if isinstance(field['exclude'], dict): raise DAError("choices exclude list is not in appropriate format" + self.idebug(data)) if not isinstance(field['exclude'], list): exclude_list = [str(field['exclude']).strip()] else: exclude_list = [x.strip() for x in field['exclude']] if len(exclude_list): select_list.append('exclude=[' + ", ".join(exclude_list) + ']') if 'default' in field: if not isinstance(field['default'], (list, str)): raise DAError("default list is not in appropriate format" + self.idebug(data)) if not isinstance(field['default'], list): default_list = [str(field['default'])] else: default_list = field['default'] else: default_list = list() if field_info['type'] in ('object_multiselect', 'object_checkboxes'): default_list.append('_DAOBJECTDEFAULTDA') if len(default_list): select_list.append('default=[' + ", ".join(default_list) + ']') additional_parameters = '' if 'object_labeler' in field_info: additional_parameters += ", object_labeler=_DAOBJECTLABELER" if 'help_generator' in field_info: additional_parameters += ", help_generator=_DAHELPGENERATOR" if 'image_generator' in field_info: additional_parameters += ", image_generator=_DAIMAGEGENERATOR" source_code = "docassemble_base_core_selections(" + ", ".join(select_list) + additional_parameters + ")" #logmessage("source_code is " + source_code) field_info['selections'] = {'compute': compile(source_code, '<expression>', 'eval'), 'sourcecode': source_code} if 'saveas' in field_info: if not isinstance(field_info['saveas'], str): raise DAError("Invalid variable name " + repr(field_info['saveas']) + "." + self.idebug(data)) self.fields.append(Field(field_info)) if 'type' in field_info: if field_info['type'] in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): if self.scan_for_variables: self.fields_used.add(field_info['saveas']) self.fields_used.add(field_info['saveas'] + '.gathered') if field_info['type'] in ('multiselect', 'checkboxes'): for the_key in manual_keys: self.fields_used.add(field_info['saveas'] + '[' + repr(the_key) + ']') else: self.other_fields_used.add(field_info['saveas']) self.other_fields_used.add(field_info['saveas'] + '.gathered') if field_info['type'] in ('multiselect', 'checkboxes'): for the_key in manual_keys: self.other_fields_used.add(field_info['saveas'] + '[' + repr(the_key) + ']') elif field_info['type'] == 'ml': if self.scan_for_variables: self.fields_used.add(field_info['saveas']) else: self.other_fields_used.add(field_info['saveas']) self.interview.mlfields[field_info['saveas']] = dict(saveas=field_info['saveas']) if 'extras' in field_info and 'ml_group' in field_info['extras']: self.interview.mlfields[field_info['saveas']]['ml_group'] = field_info['extras']['ml_group'] if re.search(r'\.text$', field_info['saveas']): field_info['saveas'] = field_info['saveas'].strip() if invalid_variable_name(field_info['saveas']): raise DAError("Missing or invalid variable name " + repr(field_info['saveas']) + "." + self.idebug(data)) field_info['saveas'] = re.sub(r'\.text$', '', field_info['saveas']) if self.scan_for_variables: self.fields_used.add(field_info['saveas']) else: self.other_fields_used.add(field_info['saveas']) else: if self.scan_for_variables: self.fields_used.add(field_info['saveas'] + '.text') else: self.other_fields_used.add(field_info['saveas'] + '.text') else: if self.scan_for_variables: self.fields_used.add(field_info['saveas']) else: self.other_fields_used.add(field_info['saveas']) else: if self.scan_for_variables: self.fields_used.add(field_info['saveas']) else: self.other_fields_used.add(field_info['saveas']) elif 'note' in field or 'html' in field: if 'note' in field: field_info['type'] = 'note' else: field_info['type'] = 'html' self.fields.append(Field(field_info)) else: raise DAError("A field was listed without indicating a label or a variable name, and the field was not a note or raw HTML." + self.idebug(data) + " and field_info was " + repr(field_info)) else: raise DAError("Each individual field in a list of fields must be expressed as a dictionary item, e.g., ' - Fruit: user.favorite_fruit'." + self.idebug(data)) field_number += 1 if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] if 'review' in data: self.question_type = 'review' if self.is_mandatory and 'continue button field' not in data: raise DAError("A review block without a continue button field cannot be mandatory." + self.idebug(data)) if isinstance(data['review'], dict): data['review'] = [data['review']] if not isinstance(data['review'], list): raise DAError("The review must be written in the form of a list." + self.idebug(data)) field_number = 0 for field in data['review']: if not isinstance(field, dict): raise DAError("Each individual field in a list of fields must be expressed as a dictionary item, e.g., ' - Fruit: user.favorite_fruit'." + self.idebug(data)) field_info = {'number': field_number, 'data': []} for key in field: if key == 'action': continue elif key == 'help': if not isinstance(field[key], dict) and not isinstance(field[key], list): field_info[key] = TextObject(definitions + str(field[key]), question=self) if 'button' in field: #or 'css' in field or 'script' in field: raise DAError("In a review block, you cannot mix help text with a button item." + self.idebug(data)) #, css, or script elif key == 'button': if not isinstance(field[key], dict) and not isinstance(field[key], list): field_info['help'] = TextObject(definitions + str(field[key]), question=self) field_info['type'] = 'button' elif key in ('note', 'html'): if 'type' not in field_info: field_info['type'] = key if 'extras' not in field_info: field_info['extras'] = dict() field_info['extras'][key] = TextObject(definitions + str(field[key]), question=self) elif key == 'show if': if not isinstance(field[key], list): field_list = [field[key]] else: field_list = field[key] field_data = [] for the_saveas in field_list: #if not isinstance(the_saveas, str): # raise DAError("Invalid variable name in fields." + self.idebug(data)) the_saveas = str(the_saveas).strip() #if invalid_variable_name(the_saveas): # raise DAError("Missing or invalid variable name " + repr(the_saveas) + " ." + self.idebug(data)) if the_saveas not in field_data: field_data.append(the_saveas) self.find_fields_in(the_saveas) if len(field_list): if 'saveas_code' not in field_info: field_info['saveas_code'] = [] field_info['saveas_code'].extend([(compile(y, '<expression>', 'eval'), True) for y in field_list]) elif key in ('field', 'fields'): if 'label' not in field: raise DAError("If you use 'field' or 'fields' to indicate variables in a 'review' section, you must also include a 'label.'" + self.idebug(data)) if not isinstance(field[key], list): field_list = [field[key]] else: field_list = field[key] field_info['data'] = [] for the_saveas in field_list: if isinstance(the_saveas, dict) and len(the_saveas) == 1 and ('undefine' in the_saveas or 'recompute' in the_saveas or 'set' in the_saveas or 'follow up' in the_saveas): if 'set' in the_saveas: if not isinstance(the_saveas['set'], list): raise DAError("The set statement must refer to a list." + self.idebug(data)) clean_list = [] for the_dict in the_saveas['set']: if not isinstance(the_dict, dict): raise DAError("A set command must refer to a list of dicts." + self.idebug(data)) for the_var, the_val in the_dict.items(): if not isinstance(the_var, str): raise DAError("A set command must refer to a list of dicts with keys as variable names." + self.idebug(data)) the_var_stripped = the_var.strip() if invalid_variable_name(the_var_stripped): raise DAError("Missing or invalid variable name " + repr(the_var) + " ." + self.idebug(data)) self.find_fields_in(the_var_stripped) clean_list.append([the_var_stripped, the_val]) field_info['data'].append(dict(action='_da_set', arguments=dict(variables=clean_list))) if 'follow up' in the_saveas: if not isinstance(the_saveas['follow up'], list): raise DAError("The follow up statement must refer to a list." + self.idebug(data)) for var in the_saveas['follow up']: if not isinstance(var, str): raise DAError("Invalid variable name in follow up " + command + "." + self.idebug(data)) var_saveas = var.strip() if invalid_variable_name(var_saveas): raise DAError("Missing or invalid variable name " + repr(var_saveas) + " ." + self.idebug(data)) self.find_fields_in(var_saveas) #field_info['data'].append(dict(action="_da_follow_up", arguments=dict(action=var))) field_info['data'].append(dict(action=var, arguments=dict())) for command in ('undefine', 'invalidate', 'recompute'): if command not in the_saveas: continue if not isinstance(the_saveas[command], list): raise DAError("The " + command + " statement must refer to a list." + self.idebug(data)) clean_list = [] for undef_var in the_saveas[command]: if not isinstance(undef_var, str): raise DAError("Invalid variable name " + repr(undef_var) + " in " + command + "." + self.idebug(data)) undef_saveas = undef_var.strip() if invalid_variable_name(undef_saveas): raise DAError("Missing or invalid variable name " + repr(undef_saveas) + " ." + self.idebug(data)) self.find_fields_in(undef_saveas) clean_list.append(undef_saveas) if command == 'invalidate': field_info['data'].append(dict(action='_da_invalidate', arguments=dict(variables=clean_list))) else: field_info['data'].append(dict(action='_da_undefine', arguments=dict(variables=clean_list))) if command == 'recompute': field_info['data'].append(dict(action='_da_compute', arguments=dict(variables=clean_list))) continue if isinstance(the_saveas, dict) and len(the_saveas) == 2 and 'action' in the_saveas and 'arguments' in the_saveas: if not isinstance(the_saveas['arguments'], dict): raise DAError("An arguments directive must refer to a dictionary. " + repr(data)) field_info['data'].append(dict(action=the_saveas['action'], arguments=the_saveas['arguments'])) if not isinstance(the_saveas, str): raise DAError("Invalid variable name " + repr(the_saveas) + " in fields." + self.idebug(data)) the_saveas = the_saveas.strip() if invalid_variable_name(the_saveas): raise DAError("Missing or invalid variable name " + repr(the_saveas) + " ." + self.idebug(data)) if the_saveas not in field_info['data']: field_info['data'].append(the_saveas) self.find_fields_in(the_saveas) if 'action' in field: field_info['action'] = dict(action=field['action'], arguments=dict()) elif key == 'label': if 'field' not in field and 'fields' not in field: raise DAError("If you use 'label' to label a field in a 'review' section, you must also include a 'field' or 'fields.'" + self.idebug(data)) field_info['label'] = TextObject(definitions + interpret_label(field[key]), question=self) else: field_info['label'] = TextObject(definitions + interpret_label(key), question=self) if not isinstance(field[key], list): field_list = [field[key]] else: field_list = field[key] field_info['data'] = [] for the_saveas in field_list: if isinstance(the_saveas, dict) and len(the_saveas) == 1 and ('undefine' in the_saveas or 'recompute' in the_saveas): if 'set' in the_saveas: if not isinstance(the_saveas['set'], list): raise DAError("The set statement must refer to a list." + self.idebug(data)) clean_list = [] for the_dict in the_saveas['set']: if not isinstance(the_dict, dict): raise DAError("A set command must refer to a list of dicts." + self.idebug(data)) for the_var, the_val in the_dict.items(): if not isinstance(the_var, str): raise DAError("A set command must refer to a list of dicts with keys as variable names." + self.idebug(data)) the_var_stripped = the_var.strip() if invalid_variable_name(the_var_stripped): raise DAError("Missing or invalid variable name " + repr(the_var) + " ." + self.idebug(data)) self.find_fields_in(the_var_stripped) clean_list.append([the_var_stripped, the_val]) field_info['data'].append(dict(action='_da_set', arguments=dict(variables=clean_list))) for command in ('undefine', 'recompute'): if command not in the_saveas: continue if not isinstance(the_saveas[command], list): raise DAError("The " + command + " statement must refer to a list." + self.idebug(data)) clean_list = [] for undef_var in the_saveas[command]: if not isinstance(undef_var, str): raise DAError("Invalid variable name " + repr(undef_var) + " in fields " + command + "." + self.idebug(data)) undef_saveas = undef_var.strip() if invalid_variable_name(undef_saveas): raise DAError("Missing or invalid variable name " + repr(undef_saveas) + " ." + self.idebug(data)) self.find_fields_in(undef_saveas) clean_list.append(undef_saveas) if command == 'invalidate': field_info['data'].append(dict(action='_da_invalidate', arguments=dict(variables=clean_list))) else: field_info['data'].append(dict(action='_da_undefine', arguments=dict(variables=clean_list))) if command == 'recompute': field_info['data'].append(dict(action='_da_compute', arguments=dict(variables=clean_list))) continue if not isinstance(the_saveas, str): raise DAError("Invalid variable name " + repr(the_saveas) + " in fields." + self.idebug(data)) the_saveas = the_saveas.strip() if invalid_variable_name(the_saveas): raise DAError("Missing or invalid variable name " + repr(the_saveas) + " ." + self.idebug(data)) #if the_saveas not in field_info['data']: field_info['data'].append(the_saveas) self.find_fields_in(the_saveas) if 'action' in field: field_info['action'] = dict(action=field['action'], arguments=dict()) if 'type' in field_info and field_info['type'] in ('note', 'html') and 'label' in field_info: del field_info['type'] if len(field_info['data']): if 'saveas_code' not in field_info: field_info['saveas_code'] = [] field_info['saveas_code'].extend([(compile(y, '<expression>', 'eval'), False) for y in field_info['data'] if isinstance(y, str)]) if 'action' not in field_info: if len(field_info['data']) == 1 and isinstance(field_info['data'][0], str): field_info['action'] = dict(action=field_info['data'][0], arguments=dict()) else: field_info['action'] = dict(action="_da_force_ask", arguments=dict(variables=field_info['data'])) if len(field_info['data']) or ('type' in field_info and field_info['type'] in ('note', 'html')): self.fields.append(Field(field_info)) else: raise DAError("A field in a review list was listed without indicating a label or a variable name, and the field was not a note or raw HTML." + self.idebug(field_info)) field_number += 1 if not hasattr(self, 'question_type'): if len(self.attachments) and len(self.fields_used) and not hasattr(self, 'content'): self.question_type = 'attachments' elif hasattr(self, 'content'): self.question_type = 'deadend' if should_append: if not hasattr(self, 'question_type'): raise DAError("No question type could be determined for this section." + self.idebug(data)) if main_list: self.interview.questions_list.append(self) self.number = self.interview.next_number() #self.number = len(self.interview.questions_list) - 1 if hasattr(self, 'id'): self.name = "ID " + self.id # if self.name in self.interview.questions_by_name: # raise DAError("Question ID " + str(self.id) + " results in duplicate question name") else: self.name = "Question_" + str(self.number) else: self.number = self.interview.next_block_number() if self.name is None: self.name = "Block_" + str(self.number) self.interview.all_questions.append(self) # if hasattr(self, 'id'): # try: # self.interview.questions_by_id[self.id].append(self) # except: # self.interview.questions_by_id[self.id] = [self] if self.name is not None: self.interview.questions_by_name[self.name] = self foundmatch = False for field_name in self.fields_used: if re.search(r'\[', field_name): foundmatch = True break while foundmatch: foundmatch = False vars_to_add = set() for field_name in self.fields_used: for m in re.finditer(r'^(.*?)\[\'([^\'\"]*)\'\](.*)', field_name): new_var = m.group(1) + "['" + m.group(2) + "']" + m.group(3) if new_var not in self.fields_used: foundmatch = True #logmessage("Adding " + new_var) vars_to_add.add(new_var) # new_var = m.group(1) + '["' + m.group(2) + '"]' + m.group(3) # if new_var not in self.fields_used: # foundmatch = True # logmessage("Adding " + new_var) # vars_to_add.add(new_var) for m in re.finditer(r'^(.*?)\[\"([^\"\']*)\"\](.*)', field_name): new_var = m.group(1) + "['" + m.group(2) + "']" + m.group(3) if new_var not in self.fields_used: foundmatch = True #logmessage("Adding " + new_var) vars_to_add.add(new_var) new_var = m.group(1) + "['" + m.group(2) + "']" + m.group(3) if new_var not in self.fields_used: foundmatch = True #logmessage("Adding " + new_var) vars_to_add.add(new_var) for m in re.finditer(r'^(.*?)\[u\'([^\'\"]*)\'\](.*)', field_name): new_var = m.group(1) + "['" + m.group(2) + "']" + m.group(3) if new_var not in self.fields_used: foundmatch = True #logmessage("Adding " + new_var) vars_to_add.add(new_var) # new_var = m.group(1) + '["' + m.group(2) + '"]' + m.group(3) # if new_var not in self.fields_used: # foundmatch = True # logmessage("Adding " + new_var) # vars_to_add.add(new_var) for new_var in vars_to_add: #logmessage("Really adding " + new_var) self.fields_used.add(new_var) for field_name in self.fields_used: if field_name not in self.interview.questions: self.interview.questions[field_name] = dict() if self.language not in self.interview.questions[field_name]: self.interview.questions[field_name][self.language] = list() self.interview.questions[field_name][self.language].append(register_target) if self.is_generic: if self.generic_object not in self.interview.generic_questions: self.interview.generic_questions[self.generic_object] = dict() if field_name not in self.interview.generic_questions[self.generic_object]: self.interview.generic_questions[self.generic_object][field_name] = dict() if self.language not in self.interview.generic_questions[self.generic_object][field_name]: self.interview.generic_questions[self.generic_object][field_name][self.language] = list() self.interview.generic_questions[self.generic_object][field_name][self.language].append(register_target) for variable in depends_list: if variable not in self.interview.invalidation: self.interview.invalidation[variable] = set() self.interview.invalidation[variable].add(field_name) if len(self.attachments): indexno = 0 for att in self.attachments: att['question_name'] = self.name att['indexno'] = indexno indexno += 1 self.data_for_debug = data def get_old_values(self, user_dict): old_values = dict() for field_name in self.fields_for_invalidation: try: old_values[field_name] = eval(field_name, user_dict) except Exception as err: if field_name in user_dict['_internal']['dirty']: old_values[field_name] = user_dict['_internal']['dirty'][field_name] return old_values def invalidate_dependencies_of_variable(self, the_user_dict, field_name, old_value): if field_name in self.interview.invalidation_todo or field_name in self.interview.onchange_todo: self.interview.invalidate_dependencies(field_name, the_user_dict, { field_name: old_value }) try: del the_user_dict['_internal']['dirty'][field_name] except: pass def invalidate_dependencies(self, the_user_dict, old_values): for field_name in self.fields_used.union(self.other_fields_used): if field_name in self.interview.invalidation_todo or field_name in self.interview.onchange_todo: self.interview.invalidate_dependencies(field_name, the_user_dict, old_values) try: del the_user_dict['_internal']['dirty'][field_name] except: pass def post_exec(self, the_user_dict): if self.need_post is not None: for need_code in self.need_post: eval(need_code, the_user_dict) def exec_setup(self, is_generic, the_x, iterators, the_user_dict): if is_generic: if the_x != 'None': exec("x = " + the_x, the_user_dict) if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], the_user_dict) for the_field in self.undefine: docassemble.base.functions.undefine(the_field) if len(self.reconsider) > 0: docassemble.base.functions.reconsider(*[substitute_vars(item, is_generic, the_x, iterators) for item in self.reconsider]) if self.need is not None: for need_code in self.need: eval(need_code, the_user_dict) def recursive_data_from_code(self, target): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = self.recursive_data_from_code(val) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(self.recursive_data_from_code(val)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(self.recursive_data_from_code(val)) return new_set if isinstance(target, (bool, float, int, NoneType)): return target self.find_fields_in(target) return compile(target, '<expression>', 'eval') def recursive_dataobject(self, target): if isinstance(target, dict) or (hasattr(target, 'elements') and isinstance(target.elements, dict)): new_dict = dict() for key, val in target.items(): new_dict[key] = self.recursive_dataobject(val) return new_dict if isinstance(target, list) or (hasattr(target, 'elements') and isinstance(target.elements, list)): new_list = list() for val in target.__iter__(): new_list.append(self.recursive_dataobject(val)) return new_list if isinstance(target, set) or (hasattr(target, 'elements') and isinstance(target.elements, set)): new_set = set() for val in target.__iter__(): new_set.add(self.recursive_dataobject(val, self.mako_names)) return new_set if isinstance(target, (bool, float, int, NoneType)): return target return TextObject(str(target), question=self) def find_fields_in(self, code): myvisitor = myvisitnode() t = ast.parse(str(code)) myvisitor.visit(t) predefines = set(globals().keys()) | set(locals().keys()) if self.scan_for_variables: for item in myvisitor.targets.keys(): if item not in predefines: self.fields_used.add(item) else: for item in myvisitor.targets.keys(): if item not in predefines: self.other_fields_used.add(item) definables = set(predefines) | set(myvisitor.targets.keys()) for item in myvisitor.names.keys(): if item not in definables: self.names_used.add(item) def yes(self): return word("Yes") def no(self): return word("No") def maybe(self): return word("I don't know") def back(self): return word("Back") def cornerback(self): return word("Back") def help(self): return word("Help") def process_attachment_code(self, sourcecode): if not isinstance(sourcecode, str): raise DAError("An attachment code specifier must be plain text") try: self.compute_attachment = compile(sourcecode, '<expression>', 'eval') self.find_fields_in(sourcecode) self.sourcecode = sourcecode except: logmessage("Question: compile error in code:\n" + str(sourcecode) + "\n" + str(sys.exc_info()[0])) raise def process_attachment_list(self, target): if isinstance(target, list): att_list = list(map((lambda x: self.process_attachment(x)), target)) return att_list else: return([self.process_attachment(target)]) def process_attachment(self, orig_target): metadata = dict() variable_name = str() defs = list() options = dict() if isinstance(orig_target, dict): target = dict() for key, value in orig_target.items(): target[key.lower()] = value if 'language' in target: options['language'] = target['language'] if 'name' not in target: target['name'] = word("Document") if 'filename' not in target: #target['filename'] = docassemble.base.functions.space_to_underscore(target['name']) target['filename'] = '' if 'description' not in target: target['description'] = '' if 'redact' in target: if isinstance(target['redact'], bool) or isinstance(target['redact'], NoneType): options['redact'] = target['redact'] else: options['redact'] = compile(target['redact'], '<expression>', 'eval') self.find_fields_in(target['redact']) if 'checkbox export value' in target and 'pdf template file' in target: if not isinstance(target['checkbox export value'], str): raise DAError("A checkbox export value must be a string." + self.idebug(target)) options['checkbox_export_value'] = TextObject(target['checkbox export value']) if 'decimal places' in target and 'pdf template file' in target: if not isinstance(target['decimal places'], (str, int)): raise DAError("A decimal places directive must be an integer or string." + self.idebug(target)) options['decimal_places'] = TextObject(str(target['decimal places'])) if 'initial yaml' in target: if not isinstance(target['initial yaml'], list): target['initial yaml'] = [target['initial yaml']] options['initial_yaml'] = list() for yaml_file in target['initial yaml']: if not isinstance(yaml_file, str): raise DAError('An initial yaml file must be a string.' + self.idebug(target)) options['initial_yaml'].append(FileInPackage(yaml_file, 'template', self.package)) if 'additional yaml' in target: if not isinstance(target['additional yaml'], list): target['additional yaml'] = [target['additional yaml']] options['additional_yaml'] = list() for yaml_file in target['additional yaml']: if not isinstance(yaml_file, str): raise DAError('An additional yaml file must be a string.' + self.idebug(target)) options['additional_yaml'].append(FileInPackage(yaml_file, 'template', self.package)) if 'template file' in target: if not isinstance(target['template file'], str): raise DAError('The template file must be a string.' + self.idebug(target)) options['template_file'] = FileInPackage(target['template file'], 'template', self.package) if 'rtf template file' in target: if not isinstance(target['rtf template file'], str): raise DAError('The rtf template file must be a string.' + self.idebug(target)) options['rtf_template_file'] = FileInPackage(target['rtf template file'], 'template', self.package) if 'docx reference file' in target: if not isinstance(target['docx reference file'], str): raise DAError('The docx reference file must be a string.' + self.idebug(target)) options['docx_reference_file'] = FileInPackage(target['docx reference file'], 'template', self.package) if 'usedefs' in target: if isinstance(target['usedefs'], str): the_list = [target['usedefs']] elif isinstance(target['usedefs'], list): the_list = target['usedefs'] else: raise DAError('The usedefs included in an attachment must be specified as a list of strings or a single string.' + self.idebug(target)) for def_key in the_list: if not isinstance(def_key, str): raise DAError('The defs in an attachment must be strings.' + self.idebug(target)) if def_key not in self.interview.defs: raise DAError('Referred to a non-existent def "' + def_key + '." All defs must be defined before they are used.' + self.idebug(target)) defs.extend(self.interview.defs[def_key]) if 'variable name' in target: variable_name = target['variable name'] if variable_name is None: raise DAError('A variable name cannot be None.' + self.idebug(target)) if self.scan_for_variables: self.fields_used.add(target['variable name']) else: self.other_fields_used.add(target['variable name']) else: variable_name = "_internal['docvar'][" + str(self.interview.next_attachment_number()) + "]" if 'metadata' in target: if not isinstance(target['metadata'], dict): raise DAError('Unknown data type ' + str(type(target['metadata'])) + ' in attachment metadata.' + self.idebug(target)) for key in target['metadata']: data = target['metadata'][key] if data is list: for sub_data in data: if sub_data is not str: raise DAError('Unknown data type ' + str(type(sub_data)) + ' in list in attachment metadata' + self.idebug(target)) newdata = list(map((lambda x: TextObject(x, question=self)), data)) metadata[key] = newdata elif isinstance(data, str): metadata[key] = TextObject(data, question=self) elif isinstance(data, bool): metadata[key] = data else: raise DAError('Unknown data type ' + str(type(data)) + ' in key in attachment metadata' + self.idebug(target)) if 'raw' in target and target['raw']: if 'content file' in target: content_file = target['content file'] if isinstance(content_file, dict): target['valid formats'] = ['raw'] target['raw'] = '.txt' else: if not isinstance(content_file, list): content_file = [content_file] the_ext = None for item in content_file: (the_base, the_ext) = os.path.splitext(item) if the_ext: target['raw'] = the_ext target['valid formats'] = ['raw'] else: target['raw'] = False else: target['raw'] = False else: target['raw'] = False if 'content file' in target: if isinstance(target['content file'], dict): if len(target['content file']) == 1 and 'code' in target['content file'] and isinstance(target['content file']['code'], str): options['content file code'] = compile(target['content file']['code'], '<content file code>', 'eval') self.find_fields_in(target['content file']['code']) else: raise DAError('A content file must be specified as text, a list of text filenames, or a dictionary where the one key is code' + self.idebug(target)) else: if not isinstance(target['content file'], list): target['content file'] = [target['content file']] target['content'] = '' for content_file in target['content file']: if not isinstance(content_file, str): raise DAError('A content file must be specified as text, a list of text filenames, or a dictionary where the one key is code' + self.idebug(target)) file_to_read = docassemble.base.functions.package_template_filename(content_file, package=self.package) if file_to_read is not None and os.path.isfile(file_to_read) and os.access(file_to_read, os.R_OK): with open(file_to_read, 'r', encoding='utf-8') as the_file: target['content'] += the_file.read() else: raise DAError('Unable to read content file ' + str(content_file) + ' after trying to find it at ' + str(file_to_read) + self.idebug(target)) if 'pdf template file' in target and ('code' in target or 'field variables' in target or 'field code' in target or 'raw field variables' in target) and 'fields' not in target: target['fields'] = dict() field_mode = 'manual' elif 'docx template file' in target: if 'update references' in target: if isinstance(target['update references'], bool): options['update_references'] = target['update references'] elif isinstance(target['update references'], str): options['update_references'] = compile(target['update references'], '<expression>', 'eval') self.find_fields_in(target['update references']) else: raise DAError('Unknown data type in attachment "update references".' + self.idebug(target)) if 'fields' in target: field_mode = 'manual' else: target['fields'] = dict() if 'code' in target or 'field variables' in target or 'field code' in target or 'raw field variables' in target: field_mode = 'manual' else: field_mode = 'auto' else: field_mode = 'manual' if 'fields' in target: if 'pdf template file' not in target and 'docx template file' not in target: raise DAError('Fields supplied to attachment but no pdf template file or docx template file supplied' + self.idebug(target)) if 'pdf template file' in target and 'docx template file' in target: raise DAError('You cannot use a pdf template file and a docx template file at the same time' + self.idebug(target)) if 'pdf template file' in target: template_type = 'pdf' target['valid formats'] = ['pdf'] if 'editable' in target: options['editable'] = compile(str(target['editable']), '<editable expression>', 'eval') elif 'docx template file' in target: template_type = 'docx' if 'valid formats' in target: if isinstance(target['valid formats'], str): target['valid formats'] = [target['valid formats']] elif not isinstance(target['valid formats'], list): raise DAError('Unknown data type in attachment valid formats.' + self.idebug(target)) if 'rtf to docx' in target['valid formats']: raise DAError('Valid formats cannot include "rtf to docx" when "docx template file" is used' + self.idebug(target)) else: target['valid formats'] = ['docx', 'pdf'] if template_type == 'docx': if not isinstance(target['docx template file'], (str, dict, list)): raise DAError(template_type + ' template file supplied to attachment must be a string, dict, or list' + self.idebug(target)) if not isinstance(target['docx template file'], list): target[template_type + ' template file'] = [target['docx template file']] else: if not isinstance(target[template_type + ' template file'], (str, dict)): raise DAError(template_type + ' template file supplied to attachment must be a string or dict' + self.idebug(target)) if field_mode == 'auto': options['fields'] = 'auto' elif not isinstance(target['fields'], (list, dict)): raise DAError('fields supplied to attachment must be a list or dictionary' + self.idebug(target)) target['content'] = '' if template_type == 'docx': options[template_type + '_template_file'] = [FileInPackage(item, 'template', package=self.package) for item in target['docx template file']] for item in target['docx template file']: if not isinstance(item, (str, dict)): raise DAError('docx template file supplied to attachment must be a string or dict' + self.idebug(target)) template_files = [] for template_file in options['docx_template_file']: if not template_file.is_code: the_docx_path = template_file.path() if not os.path.isfile(the_docx_path): raise DAError("Missing docx template file " + os.path.basename(the_docx_path)) template_files.append(the_docx_path) if len(template_files): if len(template_files) == 1: the_docx_path = template_files[0] else: the_docx_path = docassemble.base.file_docx.concatenate_files(template_files) try: docx_template = docassemble.base.file_docx.DocxTemplate(the_docx_path) the_env = custom_jinja_env() the_xml = docx_template.get_xml() the_xml = re.sub(r'<w:p>', '\n<w:p>', the_xml) the_xml = re.sub(r'({[\%\{].*?[\%\}]})', fix_quotes, the_xml) the_xml = docx_template.patch_xml(the_xml) parsed_content = the_env.parse(the_xml) except TemplateError as the_error: if the_error.filename is None: try: the_error.filename = os.path.basename(options['docx_template_file'].path()) except: pass if hasattr(the_error, 'lineno') and the_error.lineno is not None: line_number = max(the_error.lineno - 4, 0) the_error.docx_context = map(lambda x: re.sub(r'<[^>]+>', '', x), the_xml.splitlines()[line_number:(line_number + 7)]) raise the_error for key in jinja2meta.find_undeclared_variables(parsed_content): if not key.startswith('_'): self.mako_names.add(key) for key in ('field code', 'fields'): if key in target: if isinstance(target[key], list): for item in target[key]: for field_name in item.keys(): try: self.names_used.remove(field_name) except: pass try: self.mako_names.remove(field_name) except: pass elif isinstance(target[key], dict): for field_name in target[key].keys(): try: self.names_used.remove(field_name) except: pass try: self.mako_names.remove(field_name) except: pass else: options[template_type + '_template_file'] = FileInPackage(target[template_type + ' template file'], 'template', package=self.package) if field_mode == 'manual': options['fields'] = recursive_textobject(target['fields'], self) if 'code' in target: if isinstance(target['code'], str): options['code'] = compile(target['code'], '<expression>', 'eval') self.find_fields_in(target['code']) if 'field variables' in target: if not isinstance(target['field variables'], list): raise DAError('The field variables must be expressed in the form of a list' + self.idebug(target)) if 'code dict' not in options: options['code dict'] = dict() for varname in target['field variables']: if not valid_variable_match.match(str(varname)): raise DAError('The variable ' + str(varname) + " cannot be used in a code list" + self.idebug(target)) options['code dict'][varname] = compile(varname, '<expression>', 'eval') self.find_fields_in(varname) if 'raw field variables' in target: if not isinstance(target['raw field variables'], list): raise DAError('The raw field variables must be expressed in the form of a list' + self.idebug(target)) if 'raw code dict' not in options: options['raw code dict'] = dict() for varname in target['raw field variables']: if not valid_variable_match.match(str(varname)): raise DAError('The variable ' + str(varname) + " cannot be used in a code list" + self.idebug(target)) options['raw code dict'][varname] = compile(varname, '<expression>', 'eval') self.find_fields_in(varname) if 'field code' in target: if 'code dict' not in options: options['code dict'] = dict() if not isinstance(target['field code'], list): target['field code'] = [target['field code']] for item in target['field code']: if not isinstance(item, dict): raise DAError('The field code must be expressed in the form of a dictionary' + self.idebug(target)) for key, val in item.items(): options['code dict'][key] = compile(str(val), '<expression>', 'eval') self.find_fields_in(val) if 'valid formats' in target: if isinstance(target['valid formats'], str): target['valid formats'] = [target['valid formats']] elif not isinstance(target['valid formats'], list): raise DAError('Unknown data type in attachment valid formats.' + self.idebug(target)) if 'rtf to docx' in target['valid formats'] and 'docx' in target['valid formats']: raise DAError('Valid formats cannot include both "rtf to docx" and "docx."' + self.idebug(target)) else: target['valid formats'] = ['*'] if 'password' in target: options['password'] = TextObject(target['password']) if 'template password' in target: options['template_password'] = TextObject(target['template password']) if 'persistent' in target: if isinstance(target['persistent'], bool): options['persistent'] = target['persistent'] elif isinstance(target['persistent'], str): options['persistent'] = compile(target['persistent'], '<persistent expression>', 'eval') self.find_fields_in(target['persistent']) else: raise DAError('Unknown data type in attachment persistent.' + self.idebug(target)) if 'private' in target: if isinstance(target['private'], bool): options['private'] = target['private'] elif isinstance(target['private'], str): options['private'] = compile(target['private'], '<public expression>', 'eval') self.find_fields_in(target['private']) else: raise DAError('Unknown data type in attachment public.' + self.idebug(target)) if 'allow privileges' in target: if isinstance(target['allow privileges'], dict) and len(target['allow privileges']) == 1 and 'code' in target['allow privileges'] and isinstance(target['allow privileges']['code'], str): options['allow privileges'] = compile(target['allow privileges']['code'], '<allow privileges expression>', 'eval') elif isinstance(target['allow privileges'], str): options['allow privileges'] = [target['allow privileges']] elif isinstance(target['allow privileges'], list): for item in target['allow privileges']: if not isinstance(item, str): raise DAError('Unknown data type in attachment allow privileges.' + self.idebug(target)) options['allow privileges'] = target['allow privileges'] if 'allow users' in target: if isinstance(target['allow users'], dict) and len(target['allow users']) == 1 and 'code' in target['allow users'] and isinstance(target['allow users']['code'], str): options['allow users'] = compile(target['allow users']['code'], '<allow users expression>', 'eval') elif isinstance(target['allow users'], (str, int)): options['allow users'] = [target['allow users']] elif isinstance(target['allow users'], list): for item in target['allow users']: if not isinstance(item, (str, int)): raise DAError('Unknown data type in attachment allow users.' + self.idebug(target)) options['allow users'] = target['allow users'] if 'hyperlink style' in target: if isinstance(target['hyperlink style'], str): options['hyperlink_style'] = TextObject(target['hyperlink style'].strip(), question=self) else: raise DAError('Unknown data type in attachment hyperlink style.' + self.idebug(target)) if 'pdf/a' in target: if isinstance(target['pdf/a'], bool): options['pdf_a'] = target['pdf/a'] elif isinstance(target['pdf/a'], str): options['pdf_a'] = compile(target['pdf/a'], '<pdfa expression>', 'eval') self.find_fields_in(target['pdf/a']) else: raise DAError('Unknown data type in attachment pdf/a.' + self.idebug(target)) if 'skip undefined' in target: if isinstance(target['skip undefined'], bool): options['skip_undefined'] = target['skip undefined'] elif isinstance(target['skip undefined'], str): options['skip_undefined'] = compile(target['skip undefined'], '<skip undefined expression>', 'eval') self.find_fields_in(target['skip undefined']) else: raise DAError('Unknown data type in attachment skip undefined.' + self.idebug(target)) else: options['skip_undefined'] = False; if 'tagged pdf' in target: if isinstance(target['tagged pdf'], bool): options['tagged_pdf'] = target['tagged pdf'] elif isinstance(target['tagged pdf'], str): options['tagged_pdf'] = compile(target['tagged pdf'], '<tagged pdf expression>', 'eval') self.find_fields_in(target['tagged pdf']) else: raise DAError('Unknown data type in attachment tagged pdf.' + self.idebug(target)) if 'content' not in target: if 'content file code' in options: return({'name': TextObject(target['name'], question=self), 'filename': TextObject(target['filename'], question=self), 'description': TextObject(target['description'], question=self), 'content': None, 'valid_formats': target['valid formats'], 'metadata': metadata, 'variable_name': variable_name, 'orig_variable_name': variable_name, 'options': options, 'raw': target['raw']}) raise DAError("No content provided in attachment." + self.idebug(target)) #logmessage("The content is " + str(target['content'])) return({'name': TextObject(target['name'], question=self), 'filename': TextObject(target['filename'], question=self), 'description': TextObject(target['description'], question=self), 'content': TextObject("\n".join(defs) + "\n" + target['content'], question=self), 'valid_formats': target['valid formats'], 'metadata': metadata, 'variable_name': variable_name, 'orig_variable_name': variable_name, 'options': options, 'raw': target['raw']}) elif isinstance(orig_target, str): return({'name': TextObject('Document'), 'filename': TextObject('Document'), 'description': TextObject(''), 'content': TextObject(orig_target, question=self), 'valid_formats': ['*'], 'metadata': metadata, 'variable_name': variable_name, 'orig_variable_name': variable_name, 'options': options, 'raw': False}) else: raise DAError("Unknown data type in attachment") def get_question_for_field_with_sub_fields(self, field, user_dict): field_list = eval(field.extras['fields_code'], user_dict) if not isinstance(field_list, list): raise DAError("A code directive that defines items in fields must return a list") new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self.interview, new_interview) return Question(dict(question='n/a', fields=field_list), new_interview, source=new_interview_source, package=self.package) def get_fields_and_sub_fields(self, user_dict): all_fields = list() for field in self.fields: if hasattr(field, 'extras') and 'fields_code' in field.extras: the_question = self.get_question_for_field_with_sub_fields(field, user_dict) for sub_field in the_question.fields: all_fields.append(sub_field) else: all_fields.append(field) return all_fields def ask(self, user_dict, old_user_dict, the_x, iterators, sought, orig_sought, process_list_collect=True, test_for_objects=True): #logmessage("ask: orig_sought is " + str(orig_sought) + " and q is " + self.name) docassemble.base.functions.this_thread.current_question = self if the_x != 'None': exec("x = " + the_x, user_dict) if len(iterators): for indexno in range(len(iterators)): #logmessage("Running " + list_of_indices[indexno] + " = " + iterators[indexno]) exec(list_of_indices[indexno] + " = " + iterators[indexno], user_dict) if self.need is not None: for need_code in self.need: eval(need_code, user_dict) for the_field in self.undefine: docassemble.base.functions.undefine(the_field) if len(self.reconsider) > 0: docassemble.base.functions.reconsider(*self.reconsider) question_text = self.content.text(user_dict) #logmessage("Asking " + str(question_text)) #sys.stderr.write("Asking " + str(question_text) + "\n") if self.subcontent is not None: subquestion = self.subcontent.text(user_dict) else: subquestion = None the_default_titles = dict() if self.language in self.interview.default_title: the_default_titles.update(self.interview.default_title[self.language]) for key, val in self.interview.default_title['*'].items(): if key not in the_default_titles: the_default_titles[key] = val extras = dict() if len(self.action_buttons) > 0: extras['action_buttons'] = list() for item in self.action_buttons: if isinstance(item, dict): label = item['label'].text(user_dict).strip() given_arguments = item.get('arguments', dict()) arguments = dict() forget_prior = item.get('forget_prior', False) for key, val in given_arguments.items(): if isinstance(val, TextObject): arguments[key] = val.text(user_dict).strip() else: arguments[key] = val action = item['action'].text(user_dict).strip() if not (re.search(r'^https?://', action) or action.startswith('javascript:') or action.startswith('/') or action.startswith('?')): if forget_prior: arguments = {'_action': action, '_arguments': arguments} action = '_da_priority_action' action = docassemble.base.functions.url_action(action, **arguments) color = item['color'].text(user_dict).strip() if item['target'] is not None: target = item['target'].text(user_dict).strip() else: target = None if item['icon'] is not None: icon = item['icon'].text(user_dict).strip() else: icon = None if item['placement'] is not None: placement = item['placement'].text(user_dict).strip() else: placement = None extras['action_buttons'].append(dict(action=action, label=label, color=color, icon=icon, placement=placement, forget_prior=forget_prior, target=target)) else: action_buttons = eval(item, user_dict) if hasattr(action_buttons, 'instanceName') and hasattr(action_buttons, 'elements'): action_buttons = action_buttons.elements if not isinstance(action_buttons, list): raise DAError("action buttons code did not evaluate to a list") for button in action_buttons: if not (isinstance(button, dict) and 'label' in button and 'action' in button and isinstance(button['label'], str) and isinstance(button['action'], str)): raise DAError("action buttons code did not evaluate to a list of dictionaries with label and action items") if 'new window' in button and not isinstance(button['new window'], (str, bool, NoneType)): raise DAError("action buttons code included a new window item that was not boolean, text, or None") if 'color' in button and not isinstance(button['color'], (str, NoneType)): raise DAError("action buttons code included a color item that was not text or None") if 'icon' in button and not isinstance(button['icon'], (str, NoneType)): raise DAError("action buttons code included an icon item that was not text or None") color = button.get('color', 'primary') if color is None: color = 'primary' icon = button.get('icon', None) placement = button.get('placement', None) target = button.get('new window', None) if target is True: target = '_blank' elif target is False: target = None arguments = button.get('arguments', dict()) forget_prior = button.get('forget_prior', False) if arguments is None: arguments = dict() if not isinstance(arguments, dict): raise DAError("action buttons code included an arguments item that was not a dictionary") action = button['action'] if not (re.search(r'^https?://', action) or action.startswith('javascript:') or action.startswith('/') or action.startswith('?')): if forget_prior: arguments = {'_action': action, '_arguments': arguments} action = '_da_priority_action' action = docassemble.base.functions.url_action(action, **arguments) label = button['label'] extras['action_buttons'].append(dict(action=action, label=label, color=color, icon=icon, placement=placement, target=target)) for item in extras['action_buttons']: if color not in ('primary', 'secondary', 'success', 'danger', 'warning', 'info', 'light', 'dark', 'link'): raise DAError("color in action buttons not valid: " + repr(color)) if hasattr(self, 'question_metadata'): extras['questionMetadata'] = recursive_eval_textobject_or_primitive(self.question_metadata, user_dict) if hasattr(self, 'css_class') and self.css_class is not None: extras['cssClass'] = self.css_class.text(user_dict) elif 'css class' in user_dict['_internal'] and user_dict['_internal']['css class'] is not None: extras['cssClass'] = user_dict['_internal']['css class'] elif self.language in self.interview.default_screen_parts and 'css class' in self.interview.default_screen_parts[self.language]: extras['cssClass'] = self.interview.default_screen_parts[self.language]['css class'].text(user_dict) elif 'css class' in the_default_titles: extras['cssClass'] = the_default_titles['css class'] if hasattr(self, 'table_css_class') and self.table_css_class is not None: extras['tableCssClass'] = self.table_css_class.text(user_dict) elif 'table css class' in user_dict['_internal'] and user_dict['_internal']['table css class'] is not None: extras['tableCssClass'] = user_dict['_internal']['table css class'] elif self.language in self.interview.default_screen_parts and 'table css class' in self.interview.default_screen_parts[self.language]: extras['tableCssClass'] = self.interview.default_screen_parts[self.language]['table css class'].text(user_dict) elif 'table css class' in the_default_titles: extras['tableCssClass'] = the_default_titles['table css class'] if hasattr(self, 'undertext') and self.undertext is not None: extras['underText'] = self.undertext.text(user_dict) elif 'under' in user_dict['_internal'] and user_dict['_internal']['under'] is not None: extras['underText'] = user_dict['_internal']['under'] elif self.language in self.interview.default_screen_parts and 'under' in self.interview.default_screen_parts[self.language]: extras['underText'] = self.interview.default_screen_parts[self.language]['under'].text(user_dict) elif 'under' in the_default_titles: extras['underText'] = the_default_titles['under'] if hasattr(self, 'pretext') and self.pretext is not None: extras['pre text'] = self.pretext.text(user_dict) elif 'pre' in user_dict['_internal'] and user_dict['_internal']['pre'] is not None: extras['pre text'] = user_dict['_internal']['pre'] elif self.language in self.interview.default_screen_parts and 'pre' in self.interview.default_screen_parts[self.language]: extras['pre text'] = self.interview.default_screen_parts[self.language]['pre'].text(user_dict) elif 'pre' in the_default_titles: extras['pre text'] = the_default_titles['pre'] if hasattr(self, 'posttext') and self.posttext is not None: extras['post text'] = self.posttext.text(user_dict) elif 'post' in user_dict['_internal'] and user_dict['_internal']['post'] is not None: extras['post text'] = user_dict['_internal']['post'] elif self.language in self.interview.default_screen_parts and 'post' in self.interview.default_screen_parts[self.language]: extras['post text'] = self.interview.default_screen_parts[self.language]['post'].text(user_dict) elif 'post' in the_default_titles: extras['post text'] = the_default_titles['post'] if hasattr(self, 'righttext') and self.righttext is not None: extras['rightText'] = self.righttext.text(user_dict) elif 'right' in user_dict['_internal'] and user_dict['_internal']['right'] is not None: extras['rightText'] = user_dict['_internal']['right'] elif self.language in self.interview.default_screen_parts and 'right' in self.interview.default_screen_parts[self.language]: extras['rightText'] = self.interview.default_screen_parts[self.language]['right'].text(user_dict) elif 'right' in the_default_titles: extras['rightText'] = the_default_titles['right'] for screen_part in ('footer', 'submit', 'exit link', 'exit label', 'exit url', 'full', 'logo', 'title', 'subtitle', 'tab title', 'short title', 'logo', 'title url', 'title url opens in other window'): if screen_part in user_dict['_internal'] and user_dict['_internal'][screen_part] is not None: extras[screen_part + ' text'] = user_dict['_internal'][screen_part] if self.language in self.interview.default_screen_parts: for screen_part in self.interview.default_screen_parts[self.language]: if screen_part in ('footer', 'submit', 'exit link', 'exit label', 'exit url', 'full', 'logo', 'title', 'subtitle', 'tab title', 'short title', 'logo', 'title url', 'title url opens in other window') and (screen_part + ' text') not in extras: extras[screen_part + ' text'] = self.interview.default_screen_parts[self.language][screen_part].text(user_dict) for key, val in the_default_titles.items(): if key in ('pre', 'post', 'footer', 'submit', 'exit link', 'exit label', 'exit url', 'full', 'logo', 'title', 'subtitle', 'tab title', 'short title', 'logo', 'title url', 'title url opens in other window') and (key + ' text') not in extras: extras[key + ' text'] = val if len(self.terms): lang = docassemble.base.functions.get_language() extras['terms'] = dict() for termitem, definition in self.terms.items(): if lang in definition['alt_terms']: extras['terms'][definition['alt_terms'][lang].lower()] = dict(definition=definition['definition'].text(user_dict)) else: extras['terms'][termitem] = dict(definition=definition['definition'].text(user_dict)) if len(self.autoterms): lang = docassemble.base.functions.get_language() extras['autoterms'] = dict() for termitem, definition in self.autoterms.items(): if lang in definition['alt_terms']: extras['autoterms'][definition['alt_terms'][lang].lower()] = dict(definition=definition['definition'].text(user_dict)) else: extras['autoterms'][termitem] = dict(definition=definition['definition'].text(user_dict)) for term_type in ('terms', 'autoterms'): if term_type in user_dict['_internal']: extras['interview_' + term_type] = dict() for lang, termdefs in getattr(self.interview, term_type).items(): if lang not in extras['interview_' + term_type]: extras['interview_' + term_type][lang] = dict() for term, term_info in termdefs.items(): extras['interview_' + term_type][lang][term] = term_info for lang, termdefs in user_dict['_internal'][term_type].items(): if lang not in extras['interview_' + term_type]: extras['interview_' + term_type][lang] = dict() for term, term_info in termdefs.items(): extras['interview_' + term_type][lang][term] = term_info if self.css is not None: extras['css'] = self.css.text(user_dict) if self.script is not None: extras['script'] = self.script.text(user_dict) if self.continuelabel is not None: continuelabel = self.continuelabel.text(user_dict) elif self.question_type == 'review': if 'resume button label' in user_dict['_internal'] and user_dict['_internal']['resume button label'] is not None: continuelabel = user_dict['_internal']['resume button label'] elif self.language in self.interview.default_screen_parts and 'resume button label' in self.interview.default_screen_parts[self.language]: continuelabel = self.interview.default_screen_parts[self.language]['resume button label'].text(user_dict) elif 'resume button label' in the_default_titles: continuelabel = the_default_titles['resume button label'] else: continuelabel = None else: if 'continue button label' in user_dict['_internal'] and user_dict['_internal']['continue button label'] is not None: continuelabel = user_dict['_internal']['continue button label'] elif self.language in self.interview.default_screen_parts and 'continue button label' in self.interview.default_screen_parts[self.language]: continuelabel = self.interview.default_screen_parts[self.language]['continue button label'].text(user_dict) elif 'continue button label' in the_default_titles: continuelabel = the_default_titles['continue button label'] else: continuelabel = None if self.backbuttonlabel is not None: extras['back button label text'] = self.backbuttonlabel.text(user_dict) elif 'back button label' in user_dict['_internal'] and user_dict['_internal']['back button label'] is not None: extras['back button label text'] = user_dict['_internal']['back button label'] elif self.language in self.interview.default_screen_parts and 'back button label' in self.interview.default_screen_parts[self.language]: extras['back button label text'] = self.interview.default_screen_parts[self.language]['back button label'].text(user_dict) elif 'back button label' in the_default_titles: extras['back button label text'] = the_default_titles['back button label'] else: extras['back button label text'] = None if self.cornerbackbuttonlabel is not None: extras['corner back button label text'] = self.cornerbackbuttonlabel.text(user_dict) elif 'corner back button label' in user_dict['_internal'] and user_dict['_internal']['corner back button label'] is not None: extras['corner back button label text'] = user_dict['_internal']['corner back button label'] elif self.language in self.interview.default_screen_parts and 'corner back button label' in self.interview.default_screen_parts[self.language]: extras['corner back button label text'] = self.interview.default_screen_parts[self.language]['corner back button label'].text(user_dict) elif 'corner back button label' in the_default_titles: extras['corner back button label text'] = the_default_titles['corner back button label'] else: extras['corner back button label text'] = None if self.helptext is not None: if self.helplabel is not None: helplabel = self.helplabel.text(user_dict) elif 'help label' in user_dict['_internal'] and user_dict['_internal']['help label'] is not None: helplabel = user_dict['_internal']['help label'] elif self.language in self.interview.default_screen_parts and 'help label' in self.interview.default_screen_parts[self.language]: helplabel = self.interview.default_screen_parts[self.language]['help label'].text(user_dict) elif 'help label' in the_default_titles: helplabel = the_default_titles['help label'] else: helplabel = None if self.audiovideo is not None and 'help' in self.audiovideo: the_audio_video = process_audio_video_list(self.audiovideo['help'], user_dict) else: the_audio_video = None help_content = self.helptext.text(user_dict) if re.search(r'[^\s]', help_content) or the_audio_video is not None: help_text_list = [{'heading': None, 'content': help_content, 'audiovideo': the_audio_video, 'label': helplabel, 'from': 'question'}] else: help_text_list = list() else: help_text_list = list() if self.language in self.interview.default_screen_parts and 'help label' in self.interview.default_screen_parts[self.language]: extras['help label text'] = self.interview.default_screen_parts[self.language]['help label'].text(user_dict) elif 'help label' in the_default_titles: extras['help label text'] = the_default_titles['help label'] interview_help_text_list = self.interview.processed_helptext(user_dict, self.language) if len(interview_help_text_list) > 0: help_text_list.extend(interview_help_text_list) if self.audiovideo is not None and 'question' in self.audiovideo: audiovideo = process_audio_video_list(self.audiovideo['question'], user_dict) else: audiovideo = None if self.decorations is not None: decorations = list() for decoration_item in self.decorations: processed_item = dict() for key, value in decoration_item.items(): processed_item[key] = value.text(user_dict).strip() decorations.append(processed_item) else: decorations = None selectcompute = dict() defaults = dict() defined = dict() hints = dict() helptexts = dict() labels = dict() extras['required'] = dict() if hasattr(self, 'back_button'): if isinstance(self.back_button, (bool, NoneType)): extras['back_button'] = self.back_button else: extras['back_button'] = eval(self.back_button, user_dict) if hasattr(self, 'allowed_to_set'): if isinstance(self.allowed_to_set, list): extras['allowed_to_set'] = self.allowed_to_set else: extras['allowed_to_set'] = eval(self.allowed_to_set, user_dict) if not isinstance(extras['allowed_to_set'], list): raise DAError("allowed to set code did not evaluate to a list") for item in extras['allowed_to_set']: if not isinstance(item, str): raise DAError("allowed to set code did not evaluate to a list of text items") if self.reload_after is not None: number = str(self.reload_after.text(user_dict)) if number not in ("False", "false", "Null", "None", "none", "null"): if number in ("True", "true"): number = "10" if number: number = re.sub(r'[^0-9]', r'', number) else: number = "10" if int(number) < 4: number = "4" extras['reload_after'] = number if hasattr(self, 'allow_downloading'): if isinstance(self.allow_downloading, bool): extras['allow_downloading'] = self.allow_downloading else: extras['allow_downloading'] = eval(self.allow_downloading, user_dict) if hasattr(self, 'always_include_editable_files'): if isinstance(self.always_include_editable_files, bool): extras['always_include_editable_files'] = self.always_include_editable_files else: extras['always_include_editable_files'] = eval(self.always_include_editable_files, user_dict) if hasattr(self, 'attachment_notice'): if isinstance(self.attachment_notice, bool): extras['attachment_notice'] = self.attachment_notice else: extras['attachment_notice'] = eval(self.attachment_notice, user_dict) if hasattr(self, 'download_tab'): if isinstance(self.download_tab, bool): extras['download_tab'] = self.download_tab else: extras['download_tab'] = eval(self.download_tab, user_dict) if hasattr(self, 'manual_attachment_list'): if isinstance(self.manual_attachment_list, bool): extras['manual_attachment_list'] = self.manual_attachment_list else: extras['manual_attachment_list'] = eval(self.manual_attachment_list, user_dict) if hasattr(self, 'allow_emailing'): if isinstance(self.allow_emailing, bool): extras['allow_emailing'] = self.allow_emailing else: extras['allow_emailing'] = eval(self.allow_emailing, user_dict) if hasattr(self, 'zip_filename'): extras['zip_filename'] = docassemble.base.functions.single_paragraph(self.zip_filename.text(user_dict)) if hasattr(self, 'ga_id'): extras['ga_id'] = self.ga_id.text(user_dict) if hasattr(self, 'segment') and 'id' in self.segment: extras['segment'] = dict(arguments=dict()) extras['segment']['id'] = self.segment['id'].text(user_dict) if 'arguments' in self.segment: for key, val in self.segment['arguments'].items(): extras['segment']['arguments'][key] = self.segment['arguments'][key].text(user_dict) if self.question_type == 'response': extras['content_type'] = self.content_type.text(user_dict) # if hasattr(self, 'binaryresponse'): # extras['binaryresponse'] = self.binaryresponse elif self.question_type == 'sendfile': # if self.response_file: # extras['response_filename'] = self.response_file.path() # else: # extras['response_filename'] = None extras['content_type'] = self.content_type.text(user_dict) elif self.question_type == 'review': if hasattr(self, 'skip_undefined') and not self.skip_undefined: skip_undefined = False else: skip_undefined = True extras['ok'] = dict() for field in self.fields: docassemble.base.functions.this_thread.misc['current_field'] = field.number extras['ok'][field.number] = False if hasattr(field, 'saveas_code'): failed = False for (expression, is_showif) in field.saveas_code: if skip_undefined: try: the_val = eval(expression, user_dict) except LazyNameError: raise except Exception as err: if self.interview.debug: logmessage("Exception in review block: " + err.__class__.__name__ + ": " + str(err)) failed = True break if is_showif and not the_val: failed = True break else: the_val = eval(expression, user_dict) if is_showif and not the_val: failed = True break if failed: continue if hasattr(field, 'action'): if 'action' not in extras: extras['action'] = dict() extras['action'][field.number] = json.dumps(substitute_vars_action(field.action, self.is_generic, the_x, iterators)) if hasattr(field, 'extras'): if 'show_if_js' in field.extras: if 'show_if_js' not in extras: extras['show_if_js'] = dict() extras['show_if_js'][field.number] = dict(expression=field.extras['show_if_js']['expression'].text(user_dict), vars=copy.deepcopy(field.extras['show_if_js']['vars']), sign=field.extras['show_if_js']['sign'], mode=field.extras['show_if_js']['mode']) if 'field metadata' in field.extras: if 'field metadata' not in extras: extras['field metadata'] = dict() if skip_undefined: try: extras['field metadata'][field.number] = recursive_eval_textobject_or_primitive(field.extras['field metadata'], user_dict) except LazyNameError: raise except Exception as err: if self.interview.debug: logmessage("Exception in field metadata: " + err.__class__.__name__ + ": " + str(err)) continue else: extras['field metadata'][field.number] = recursive_eval_textobject_or_primitive(field.extras['field metadata'], user_dict) for key in ('note', 'html', 'min', 'max', 'minlength', 'maxlength', 'step', 'scale', 'inline', 'inline width', 'currency symbol'): # 'script', 'css', if key in field.extras: if key not in extras: extras[key] = dict() if skip_undefined: try: extras[key][field.number] = field.extras[key].text(user_dict).strip() except LazyNameError: raise except Exception as err: if self.interview.debug: logmessage("Exception in review block: " + err.__class__.__name__ + ": " + str(err)) continue else: extras[key][field.number] = field.extras[key].text(user_dict) if isinstance(extras[key][field.number], str): extras[key][field.number] = extras[key][field.number].strip() if extras[key][field.number] == '': del extras[key][field.number] if hasattr(field, 'helptext'): if skip_undefined: try: helptexts[field.number] = field.helptext.text(user_dict) except LazyNameError: raise except Exception as err: if self.interview.debug: logmessage("Exception in review block: " + err.__class__.__name__ + ": " + str(err)) continue else: helptexts[field.number] = field.helptext.text(user_dict) if hasattr(field, 'label'): if skip_undefined: try: labels[field.number] = field.label.text(user_dict) except LazyNameError: raise except Exception as err: if self.interview.debug: logmessage("Exception in review block: " + err.__class__.__name__ + ": " + str(err)) continue else: labels[field.number] = field.label.text(user_dict) extras['ok'][field.number] = True if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] else: if hasattr(self, 'list_collect') and process_list_collect and eval(self.list_collect, user_dict): fields_to_scan = self.get_fields_and_sub_fields(user_dict) indexno = 0 common_var = None for field in fields_to_scan: if not hasattr(field, 'saveas'): continue the_saveas = from_safeid(field.saveas) if common_var is None: common_var = the_saveas continue mismatch = False for char_index in range(len(common_var)): if the_saveas[char_index] != common_var[char_index]: mismatch = True break if mismatch: common_var = common_var[0:char_index] common_var = re.sub(r'[^\]]*$', '', common_var) m = re.search(r'^(.*)\[([ijklmn])\]$', common_var) if not m: raise DAError("Cannot use list collect on these fields. " + common_var) the_list_varname = m.group(1) if hasattr(self, 'list_collect_is_final'): extras['list_collect_is_final'] = eval(self.list_collect_is_final, user_dict) else: extras['list_collect_is_final'] = True if hasattr(self, 'list_collect_allow_append'): extras['list_collect_allow_append'] = eval(self.list_collect_allow_append, user_dict) else: extras['list_collect_allow_append'] = True if hasattr(self, 'list_collect_allow_delete'): extras['list_collect_allow_delete'] = eval(self.list_collect_allow_delete, user_dict) else: extras['list_collect_allow_delete'] = True if hasattr(self, 'list_collect_add_another_label'): extras['list_collect_add_another_label'] = self.list_collect_add_another_label.text(user_dict) else: extras['list_collect_add_another_label'] = None extras['list_iterator'] = m.group(2) the_list = eval(the_list_varname, user_dict) if not hasattr(the_list, 'elements') or not isinstance(the_list.elements, list): raise DAError("Cannot use list collect on a variable that is not a DAList.") extras['list_collect'] = the_list extras['list_message'] = dict() if hasattr(the_list, 'minimum_number') and the_list.minimum_number: extras['list_minimum'] = the_list.minimum_number iterator_index = list_of_indices.index(extras['list_iterator']) length_to_use = len(the_list.elements) if hasattr(the_list, 'minimum_number') and the_list.minimum_number is not None and the_list.minimum_number > length_to_use: length_to_use = the_list.minimum_number if length_to_use == 0: length_to_use = 1 if the_list.ask_object_type or not extras['list_collect_allow_append']: extra_amount = 0 else: extra_amount = get_config('list collect extra count', 15) for list_indexno in range(length_to_use + extra_amount): new_iterators = copy.copy(iterators) new_iterators[iterator_index] = str(list_indexno) ask_result = self.ask(user_dict, old_user_dict, the_x, new_iterators, sought, orig_sought, process_list_collect=False, test_for_objects=(list_indexno < length_to_use)) if hasattr(self, 'list_collect_label'): extras['list_message'][list_indexno] = self.list_collect_label.text(user_dict) else: extras['list_message'][list_indexno] = '' for key in ('selectcompute', 'defaults', 'hints', 'helptexts', 'labels'): for field_num, val in ask_result[key].items(): if key == 'selectcompute': selectcompute[str(list_indexno) + '_' + str(field_num)] = val if list_indexno == length_to_use - 1: selectcompute[str(list_indexno + 1) + '_' + str(field_num)] = val #for ii in range(1, extra_amount + 1): # selectcompute[str(list_indexno + ii) + '_' + str(field_num)] = val elif key == 'defaults': defaults[str(list_indexno) + '_' + str(field_num)] = val #if list_indexno == length_to_use - 1: #for ii in range(1, extra_amount + 1): # defaults[str(list_indexno + ii) + '_' + str(field_num)] = val elif key == 'hints': hints[str(list_indexno) + '_' + str(field_num)] = val #if list_indexno == length_to_use - 1: #for ii in range(1, extra_amount + 1): # hints[str(list_indexno + ii) + '_' + str(field_num)] = val elif key == 'helptexts': helptexts[str(list_indexno) + '_' + str(field_num)] = val #if list_indexno == length_to_use - 1: #for ii in range(1, extra_amount + 1): # helptexts[str(list_indexno + ii) + '_' + str(field_num)] = val elif key == 'labels': labels[str(list_indexno) + '_' + str(field_num)] = val #if list_indexno == length_to_use - 1: #for ii in range(1, extra_amount + 1): # labels[str(list_indexno + ii) + '_' + str(field_num)] = val for key, possible_dict in ask_result['extras'].items(): if isinstance(possible_dict, dict): if key not in extras: extras[key] = dict() for field_num, val in possible_dict.items(): extras[key][str(list_indexno) + '_' + str(field_num)] = val #if list_indexno == length_to_use - 1: #for ii in range(1, extra_amount + 1): # extras[key][str(list_indexno + ii) + '_' + str(field_num)] = val if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], user_dict) else: if hasattr(self, 'fields_saveas'): only_empty_fields_exist = False else: only_empty_fields_exist = True commands_to_run = list() for field in self.fields: if hasattr(field, 'inputtype') and field.inputtype == 'combobox': only_empty_fields_exist = False docassemble.base.functions.this_thread.misc['current_field'] = field.number if hasattr(field, 'has_code') and field.has_code: # standalone multiple-choice questions selectcompute[field.number] = list() for choice in field.choices: if 'compute' in choice and isinstance(choice['compute'], CodeType): selectcompute[field.number].extend(process_selections(eval(choice['compute'], user_dict))) else: new_item = dict() if 'image' in choice: new_item['image'] = choice['image'] if 'help' in choice: new_item['help'] = choice['help'].text(user_dict) if 'default' in choice: new_item['default'] = choice['default'] if isinstance(choice['key'], TextObject): new_item['key'] = choice['key'].text(user_dict) else: new_item['key'] = choice['key'] new_item['label'] = choice['label'].text(user_dict) selectcompute[field.number].append(new_item) if len(selectcompute[field.number]) > 0: only_empty_fields_exist = False elif test_for_objects: if hasattr(field, 'datatype') and field.datatype in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): ensure_object_exists(from_safeid(field.saveas), field.datatype, user_dict, commands=commands_to_run) commands_to_run.append(from_safeid(field.saveas) + ".gathered = True") else: if not (hasattr(field, 'inputtype') and field.inputtype == 'combobox'): commands_to_run.append(from_safeid(field.saveas) + ' = None') elif hasattr(field, 'choicetype') and field.choicetype == 'compute': # multiple choice field in choices if hasattr(field, 'datatype') and field.datatype in ('object', 'object_radio', 'object_multiselect', 'object_checkboxes', 'multiselect', 'checkboxes'): exec("from docassemble.base.core import selections as docassemble_base_core_selections", user_dict) if hasattr(field, 'object_labeler'): labeler_func = eval(field.object_labeler['compute'], user_dict) if not isinstance(labeler_func, types.FunctionType): raise DAError("The object labeler was not a function") user_dict['_DAOBJECTLABELER'] = labeler_func else: labeler_func = None if hasattr(field, 'help_generator'): help_generator_func = eval(field.help_generator['compute'], user_dict) if not isinstance(help_generator_func, types.FunctionType): raise DAError("The help generator was not a function") user_dict['_DAHELPGENERATOR'] = help_generator_func else: help_generator_func = None if hasattr(field, 'image_generator'): image_generator_func = eval(field.image_generator['compute'], user_dict) if not isinstance(image_generator_func, types.FunctionType): raise DAError("The image generator was not a function") user_dict['_DAIMAGEGENERATOR'] = image_generator_func else: image_generator_func = None to_compute = field.selections['compute'] if field.datatype in ('object_multiselect', 'object_checkboxes'): default_exists = False #logmessage("Testing for " + from_safeid(field.saveas)) try: assert test_for_objects eval(from_safeid(field.saveas), user_dict) default_to_use = from_safeid(field.saveas) except: default_to_use = 'None' #logmessage("Running " + '_DAOBJECTDEFAULTDA = ' + default_to_use) exec('_DAOBJECTDEFAULTDA = ' + default_to_use, user_dict) if 'exclude' in field.selections: exclude_list = list() for x in field.selections['exclude']: exclude_list.append(eval(x, user_dict)) selectcompute[field.number] = process_selections(eval(to_compute, user_dict), exclude=exclude_list) else: #logmessage("Doing " + field.selections.get('sourcecode', "No source code")) selectcompute[field.number] = process_selections(eval(to_compute, user_dict)) if field.datatype in ('object_multiselet', 'object_checkboxes') and '_DAOBJECTDEFAULTDA' in user_dict: del user_dict['_DAOBJECTDEFAULTDA'] if labeler_func is not None: del user_dict['_DAOBJECTLABELER'] if help_generator_func is not None: del user_dict['_DAHELPGENERATOR'] if image_generator_func is not None: del user_dict['_DAIMAGEGENERATOR'] if len(selectcompute[field.number]) > 0: only_empty_fields_exist = False elif test_for_objects: if hasattr(field, 'datatype') and field.datatype in ('multiselect', 'object_multiselect', 'checkboxes', 'object_checkboxes'): ensure_object_exists(from_safeid(field.saveas), field.datatype, user_dict, commands=commands_to_run) commands_to_run.append(from_safeid(field.saveas) + '.gathered = True') else: if not (hasattr(field, 'inputtype') and field.inputtype == 'combobox'): commands_to_run.append(from_safeid(field.saveas) + ' = None') elif hasattr(field, 'choicetype') and field.choicetype == 'manual': if 'exclude' in field.selections: to_exclude = list() for x in field.selections['exclude']: to_exclude.append(eval(x, user_dict)) to_exclude = unpack_list(to_exclude) selectcompute[field.number] = list() for candidate in field.selections['values']: if isinstance(candidate['key'], TextObject): new_item = dict(key=candidate['key'].text(user_dict), label=candidate['label'].text(user_dict)) else: new_item = dict(key=candidate['key'], label=candidate['label'].text(user_dict)) if 'image' in candidate: new_item['image'] = candidate['image'] if 'help' in candidate: new_item['help'] = candidate['help'].text(user_dict) if 'default' in candidate: new_item['default'] = candidate['default'] if new_item['key'] not in to_exclude: selectcompute[field.number].append(new_item) else: selectcompute[field.number] = list() for item in field.selections['values']: if isinstance(item['key'], TextObject): new_item = dict(key=item['key'].text(user_dict), label=item['label'].text(user_dict)) else: new_item = dict(key=item['key'], label=item['label'].text(user_dict)) if 'image' in item: new_item['image'] = item['image'] if 'help' in item: new_item['help'] = item['help'].text(user_dict) if 'default' in item: new_item['default'] = item['default'] selectcompute[field.number].append(new_item) if len(selectcompute[field.number]) > 0: only_empty_fields_exist = False else: if not (hasattr(field, 'inputtype') and field.inputtype == 'combobox'): commands_to_run.append(from_safeid(field.saveas) + ' = None') elif hasattr(field, 'saveas') and self.question_type == "multiple_choice": selectcompute[field.number] = list() for item in field.choices: new_item = dict() if 'image' in item: new_item['image'] = item['image'] if 'help' in item: new_item['help'] = item['help'].text(user_dict) if 'default' in item: new_item['default'] = item['default'] if isinstance(item['key'], TextObject): new_item['key'] = item['key'].text(user_dict) else: new_item['key'] = item['key'] new_item['label'] = item['label'].text(user_dict) selectcompute[field.number].append(new_item) if len(selectcompute[field.number]) > 0: only_empty_fields_exist = False else: if not (hasattr(field, 'inputtype') and field.inputtype == 'combobox'): commands_to_run.append(from_safeid(field.saveas) + ' = None') elif self.question_type == "multiple_choice": selectcompute[field.number] = list() for item in field.choices: new_item = dict() if 'image' in item: new_item['image'] = item['image'] if 'help' in item: new_item['help'] = item['help'].text(user_dict) if 'default' in item: new_item['default'] = item['default'] new_item['label'] = item['label'].text(user_dict) new_item['key'] = item['key'] selectcompute[field.number].append(new_item) only_empty_fields_exist = False else: only_empty_fields_exist = False if len(self.fields) > 0 and only_empty_fields_exist: if test_for_objects: assumed_objects = set() for field in self.fields: if hasattr(field, 'saveas'): parse_result = parse_var_name(from_safeid(field.saveas)) if not parse_result['valid']: raise DAError("Variable name " + from_safeid(field.saveas) + " is invalid: " + parse_result['reason']) if len(parse_result['objects']): assumed_objects.add(parse_result['objects'][-1]) if len(parse_result['bracket_objects']): assumed_objects.add(parse_result['bracket_objects'][-1]) for var in assumed_objects: if complications.search(var) or var not in user_dict: eval(var, user_dict) raise CodeExecute(commands_to_run, self) if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] extras['ok'] = dict() for field in self.fields: docassemble.base.functions.this_thread.misc['current_field'] = field.number if hasattr(field, 'showif_code'): result = eval(field.showif_code, user_dict) if hasattr(field, 'extras') and 'show_if_sign_code' in field.extras and field.extras['show_if_sign_code'] == 0: if result: extras['ok'][field.number] = False continue else: if not result: extras['ok'][field.number] = False continue extras['ok'][field.number] = True if hasattr(field, 'nota'): if 'nota' not in extras: extras['nota'] = dict() if isinstance(field.nota, bool): extras['nota'][field.number] = field.nota else: extras['nota'][field.number] = field.nota.text(user_dict) if hasattr(field, 'permissions'): if 'permissions' not in extras: extras['permissions'] = dict() extras['permissions'][field.number] = dict() if isinstance(field.permissions['private'], bool): extras['permissions'][field.number]['private'] = field.permissions['private'] elif field.permissions['private'] is not None: extras['permissions'][field.number]['private'] = True if eval(field.permissions['private']['compute'], user_dict) else False if isinstance(field.permissions['persistent'], bool): extras['permissions'][field.number]['persistent'] = field.permissions['persistent'] elif field.permissions['persistent'] is not None: extras['permissions'][field.number]['persistent'] = True if eval(field.permissions['persistent']['compute'], user_dict) else False if field.permissions['allow_users'] is not None: if isinstance(field.permissions['allow_users'], list): extras['permissions'][field.number]['allow_users'] = allow_users_list(field.permissions['allow_users']) else: extras['permissions'][field.number]['allow_users'] = allow_users_list(eval(field.permissions['allow_users']['compute'], user_dict)) if field.permissions['allow_privileges'] is not None: if isinstance(field.permissions['allow_privileges'], list): extras['permissions'][field.number]['allow_privileges'] = allow_privileges_list(field.permissions['allow_privileges']) else: extras['permissions'][field.number]['allow_privileges'] = allow_privileges_list(eval(field.permissions['allow_privileges']['compute'], user_dict)) if isinstance(field.required, bool): extras['required'][field.number] = field.required else: extras['required'][field.number] = eval(field.required['compute'], user_dict) if hasattr(field, 'max_image_size') and hasattr(field, 'datatype') and field.datatype in ('file', 'files', 'camera', 'user', 'environment'): extras['max_image_size'] = eval(field.max_image_size['compute'], user_dict) if hasattr(field, 'image_type') and hasattr(field, 'datatype') and field.datatype in ('file', 'files', 'camera', 'user', 'environment'): extras['image_type'] = eval(field.image_type['compute'], user_dict) if hasattr(field, 'accept') and hasattr(field, 'datatype') and field.datatype in ('file', 'files', 'camera', 'user', 'environment'): if 'accept' not in extras: extras['accept'] = dict() extras['accept'][field.number] = eval(field.accept['compute'], user_dict) if hasattr(field, 'rows') and ((hasattr(field, 'inputtype') and field.inputtype == 'area') or (hasattr(field, 'datatype') and field.datatype in ('multiselect', 'object_multiselect'))): if 'rows' not in extras: extras['rows'] = dict() extras['rows'][field.number] = eval(field.rows['compute'], user_dict) if hasattr(field, 'validation_messages'): if 'validation messages' not in extras: extras['validation messages'] = dict() extras['validation messages'][field.number] = dict() for validation_key, validation_message_template in field.validation_messages.items(): extras['validation messages'][field.number][validation_key] = validation_message_template.text(user_dict) if hasattr(field, 'validate'): the_func = eval(field.validate['compute'], user_dict) try: if hasattr(field, 'datatype'): if field.datatype in ('number', 'integer', 'currency', 'range'): the_func(0) elif field.datatype in ('text', 'password', 'email'): the_func('') elif field.datatype == 'date': the_func('01/01/1970') elif field.datatype == 'time': the_func('12:00 AM') elif field.datatype == 'datetime': the_func('01/01/1970 12:00 AM') elif field.datatype.startswith('yesno') or field.datatype.startswith('noyes'): the_func(True) else: the_func('') except DAValidationError as err: pass if hasattr(field, 'datatype') and field.datatype in ('object', 'object_radio', 'object_multiselect', 'object_checkboxes'): if process_list_collect: saveas_to_use = from_safeid(field.saveas) else: saveas_to_use = substitute_vars(from_safeid(field.saveas), self.is_generic, the_x, iterators, last_only=True) if field.number not in selectcompute: raise DAError("datatype was set to object but no code or selections was provided") string = "_internal['objselections'][" + repr(saveas_to_use) + "] = dict()" # logmessage("Doing " + string) try: exec(string, user_dict) for selection in selectcompute[field.number]: key = selection['key'] #logmessage("key is " + str(key)) real_key = from_safeid(key) string = "_internal['objselections'][" + repr(saveas_to_use) + "][" + repr(key) + "] = " + real_key #logmessage("Doing " + string) exec(string, user_dict) except Exception as err: raise DAError("Failure while processing field with datatype of object: " + err.__class__.__name__ + " " + str(err)) if hasattr(field, 'label'): labels[field.number] = field.label.text(user_dict) if hasattr(field, 'extras'): if 'fields_code' in field.extras: the_question = self.get_question_for_field_with_sub_fields(field, user_dict) ask_result = the_question.ask(user_dict, old_user_dict, the_x, iterators, sought, orig_sought) for key in ('selectcompute', 'defaults', 'hints', 'helptexts', 'labels'): for field_num, val in ask_result[key].items(): if key == 'selectcompute': selectcompute[str(field.number) + '_' + str(field_num)] = val elif key == 'defaults': defaults[str(field.number) + '_' + str(field_num)] = val elif key == 'hints': hints[str(field.number) + '_' + str(field_num)] = val elif key == 'helptexts': helptexts[str(field.number) + '_' + str(field_num)] = val elif key == 'labels': labels[str(field.number) + '_' + str(field_num)] = val for key, possible_dict in ask_result['extras'].items(): #logmessage(repr("key is " + str(key) + " and possible dict is " + repr(possible_dict))) if isinstance(possible_dict, dict): #logmessage("key points to a dict") if key not in extras: extras[key] = dict() for field_num, val in possible_dict.items(): #logmessage("Setting " + str(field.number) + '_' + str(field_num)) extras[key][str(field.number) + '_' + str(field_num)] = val for sub_field in the_question.fields: sub_field.number = str(field.number) + '_' + str(sub_field.number) if 'sub_fields' not in extras: extras['sub_fields'] = dict() extras['sub_fields'][field.number] = the_question.fields if 'show_if_js' in field.extras: if 'show_if_js' not in extras: extras['show_if_js'] = dict() extras['show_if_js'][field.number] = dict(expression=field.extras['show_if_js']['expression'].text(user_dict), vars=copy.deepcopy(field.extras['show_if_js']['vars']), sign=field.extras['show_if_js']['sign'], mode=field.extras['show_if_js']['mode']) if 'field metadata' in field.extras: if 'field metadata' not in extras: extras['field metadata'] = dict() extras['field metadata'][field.number] = recursive_eval_textobject_or_primitive(field.extras['field metadata'], user_dict) for key in ('note', 'html', 'min', 'max', 'minlength', 'maxlength', 'show_if_val', 'step', 'scale', 'inline', 'inline width', 'ml_group', 'currency symbol'): # , 'textresponse', 'content_type' #'script', 'css', if key in field.extras: if key not in extras: extras[key] = dict() extras[key][field.number] = field.extras[key].text(user_dict) if isinstance(extras[key][field.number], str): extras[key][field.number] = extras[key][field.number].strip() if extras[key][field.number] == '': del extras[key][field.number] for key in ('ml_train',): if key in field.extras: if key not in extras: extras[key] = dict() if isinstance(field.extras[key], bool): extras[key][field.number] = field.extras[key] else: extras[key][field.number] = eval(field.extras[key]['compute'], user_dict) if hasattr(field, 'saveas'): try: if not test_for_objects: raise Exception('not setting defaults now') if old_user_dict is not None: for varname in ('x', 'i', 'j', 'k', 'l', 'm', 'n'): if varname in user_dict: old_user_dict[varname] = user_dict[varname] elif varname in old_user_dict: del old_user_dict[varname] try: defaults[field.number] = eval(from_safeid(field.saveas), old_user_dict) except: defaults[field.number] = eval(from_safeid(field.saveas), user_dict) else: defaults[field.number] = eval(from_safeid(field.saveas), user_dict) except: try: defaults[field.number] = user_dict['_internal']['dirty'][substitute_vars(from_safeid(field.saveas), self.is_generic, the_x, iterators)] except: if hasattr(field, 'default'): if isinstance(field.default, TextObject): defaults[field.number] = field.default.text(user_dict).strip() else: defaults[field.number] = field.default elif hasattr(field, 'extras') and 'default' in field.extras: defaults[field.number] = eval(field.extras['default']['compute'], user_dict) if hasattr(field, 'hint'): hints[field.number] = field.hint.text(user_dict) if hasattr(field, 'helptext'): helptexts[field.number] = field.helptext.text(user_dict) if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] if len(self.attachments) or self.compute_attachment is not None: if hasattr(self, 'email_default'): the_email_address = self.email_default.text(user_dict).strip() if '@' in the_email_address and not re.search(r'\s', the_email_address): extras['email_default'] = the_email_address if hasattr(self, 'email_subject'): extras['email_subject'] = re.sub(r'[\n\r]+', ' ', self.email_subject.text(user_dict).strip()) if hasattr(self, 'email_body'): extras['email_html'] = '<html><body>' + docassemble.base.filter.markdown_to_html(self.email_body.text(user_dict), status=docassemble.base.functions.this_thread.interview_status, question=self, external=True) + '</body></html>' extras['email_body'] = BeautifulSoup(extras['email_html'], "html.parser").get_text('\n') if hasattr(self, 'email_template') and ('email_subject' not in extras or 'email_html' not in extras): template = eval(self.email_template, user_dict) if 'email_subject' not in extras: the_subject = re.sub(r'[\n\r]+', ' ', template.subject.strip()) if the_subject: extras['email_subject'] = the_subject if 'email_html' not in extras: extras['email_html'] = '<html><body>' + template.content_as_html(external=True) + '</body></html>' extras['email_body'] = BeautifulSoup(extras['email_html'], "html.parser").get_text('\n') attachment_text = self.processed_attachments(user_dict) # , the_x=the_x, iterators=iterators else: attachment_text = [] if test_for_objects: assumed_objects = set() for field in self.fields: if field.number in extras['ok'] and not extras['ok'][field.number]: continue docassemble.base.functions.this_thread.misc['current_field'] = field.number if hasattr(field, 'saveas'): # m = re.match(r'(.*)\.[^\.]+', from_safeid(field.saveas)) # if m and m.group(1) != 'x': # assumed_objects.add(m.group(1)) parse_result = parse_var_name(from_safeid(field.saveas)) if not parse_result['valid']: raise DAError("Variable name " + from_safeid(field.saveas) + " is invalid: " + parse_result['reason']) if len(parse_result['objects']): assumed_objects.add(parse_result['objects'][-1]) if len(parse_result['bracket_objects']): assumed_objects.add(parse_result['bracket_objects'][-1]) if 'current_field' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['current_field'] for var in assumed_objects: if complications.search(var) or var not in user_dict: eval(var, user_dict) if 'menu_items' in user_dict: extras['menu_items'] = user_dict['menu_items'] if 'track_location' in user_dict: extras['track_location'] = user_dict['track_location'] if 'speak_text' in user_dict: extras['speak_text'] = user_dict['speak_text'] if 'role' in user_dict: current_role = user_dict['role'] if len(self.role) > 0: if current_role not in self.role and 'role_event' not in self.fields_used and self.question_type not in ('exit', 'logout', 'exit_logout', 'continue', 'restart', 'leave', 'refresh', 'signin', 'register', 'new_session'): # logmessage("Calling role_event with " + ", ".join(self.fields_used)) user_dict['role_needed'] = self.role raise NameError("name 'role_event' is not defined") elif self.interview.default_role is not None and current_role not in self.interview.default_role and 'role_event' not in self.fields_used and self.question_type not in ('exit', 'logout', 'exit_logout', 'continue', 'restart', 'leave', 'refresh', 'signin', 'register', 'new_session'): # logmessage("Calling role_event with " + ", ".join(self.fields_used)) user_dict['role_needed'] = self.interview.default_role raise NameError("name 'role_event' is not defined") if self.question_type == 'review' and sought is not None and not hasattr(self, 'review_saveas'): if 'event_stack' not in user_dict['_internal']: user_dict['_internal']['event_stack'] = dict() session_uid = docassemble.base.functions.this_thread.current_info['user']['session_uid'] if session_uid not in user_dict['_internal']['event_stack']: user_dict['_internal']['event_stack'][session_uid] = list() already_there = False for event_item in user_dict['_internal']['event_stack'][session_uid]: if event_item['action'] in (sought, orig_sought): already_there = True break if not already_there: user_dict['_internal']['event_stack'][session_uid].insert(0, dict(action=orig_sought, arguments=dict(), context=dict())) if self.need_post is not None: for need_code in self.need_post: eval(need_code, user_dict) return({'type': 'question', 'question_text': question_text, 'subquestion_text': subquestion, 'continue_label': continuelabel, 'audiovideo': audiovideo, 'decorations': decorations, 'help_text': help_text_list, 'attachments': attachment_text, 'question': self, 'selectcompute': selectcompute, 'defaults': defaults, 'hints': hints, 'helptexts': helptexts, 'extras': extras, 'labels': labels, 'sought': sought, 'orig_sought': orig_sought}) #'defined': defined, def processed_attachments(self, the_user_dict, **kwargs): use_cache = kwargs.get('use_cache', True) if self.compute_attachment is not None: use_cache = False seeking_var = kwargs.get('seeking_var', '__novar') steps = the_user_dict['_internal'].get('steps', -1) #logmessage("processed_attachments: steps is " + str(steps)) if use_cache and self.interview.cache_documents and hasattr(self, 'name') and self.name + '__SEEKING__' + seeking_var in the_user_dict['_internal']['doc_cache']: if steps in the_user_dict['_internal']['doc_cache'][self.name + '__SEEKING__' + seeking_var]: #logmessage("processed_attachments: result was in document cache") return the_user_dict['_internal']['doc_cache'][self.name + '__SEEKING__' + seeking_var][steps] the_user_dict['_internal']['doc_cache'][self.name + '__SEEKING__' + seeking_var].clear() result_list = list() items = list() for x in self.attachments: items.append([x, self.prepare_attachment(x, the_user_dict, **kwargs), None]) for item in items: result_list.append(self.finalize_attachment(item[0], item[1], the_user_dict)) if self.compute_attachment is not None: computed_attachment_list = eval(self.compute_attachment, the_user_dict) if not (isinstance(computed_attachment_list, list) or (hasattr(computed_attachment_list, 'elements') and isinstance(computed_attachment_list.elements, list))): computed_attachment_list = [computed_attachment_list] for the_att in computed_attachment_list: if the_att.__class__.__name__ == 'DAFileCollection': file_dict = dict() for doc_format in ('pdf', 'rtf', 'docx', 'rtf to docx', 'tex', 'html', 'raw'): if hasattr(the_att, doc_format): the_dafile = getattr(the_att, doc_format) if hasattr(the_dafile, 'number'): file_dict[doc_format] = the_dafile.number if 'formats' not in the_att.info: the_att.info['formats'] = list(file_dict.keys()) if 'valid_formats' not in the_att.info: the_att.info['valid_formats'] = list(file_dict.keys()) result_list.append({'name': the_att.info['name'], 'filename': the_att.info['filename'], 'description': the_att.info['description'], 'valid_formats': the_att.info.get('valid_formats', ['*']), 'formats_to_use': the_att.info['formats'], 'markdown': the_att.info.get('markdown', dict()), 'content': the_att.info.get('content', dict()), 'extension': the_att.info.get('extension', dict()), 'mimetype': the_att.info.get('mimetype', dict()), 'file': file_dict, 'metadata': the_att.info.get('metadata', dict()), 'variable_name': '', 'orig_variable_name': getattr(the_att, 'instanceName', ''), 'raw': the_att.info.get('raw', False)}) #convert_to_pdf_a #file is dict of file numbers # if the_att.__class__.__name__ == 'DAFileCollection' and 'attachment' in the_att.info and isinstance(the_att.info, dict) and 'name' in the_att.info['attachment'] and 'number' in the_att.info['attachment'] and len(self.interview.questions_by_name[the_att.info['attachment']['name']].attachments) > the_att.info['attachment']['number']: # attachment = self.interview.questions_by_name[the_att.info['attachment']['name']].attachments[the_att.info['attachment']['number']] # items.append([attachment, self.prepare_attachment(attachment, the_user_dict, **kwargs)]) if self.interview.cache_documents and hasattr(self, 'name'): if self.name + '__SEEKING__' + seeking_var not in the_user_dict['_internal']['doc_cache']: the_user_dict['_internal']['doc_cache'][self.name + '__SEEKING__' + seeking_var] = dict() the_user_dict['_internal']['doc_cache'][self.name + '__SEEKING__' + seeking_var][steps] = result_list return result_list #return(list(map((lambda x: self.make_attachment(x, the_user_dict, **kwargs)), self.attachments))) def parse_fields(self, the_list, register_target, uses_field): result_list = list() has_code = False if isinstance(the_list, dict): new_list = list() for key, value in the_list.items(): new_item = dict() new_item[key] = value new_list.append(new_item) the_list = new_list if not isinstance(the_list, list): raise DAError("Multiple choices need to be provided in list form. " + self.idebug(the_list)) for the_dict in the_list: if not isinstance(the_dict, (dict, list)): the_dict = {str(the_dict): the_dict} elif not isinstance(the_dict, dict): raise DAError("Unknown data type for the_dict in parse_fields. " + self.idebug(the_list)) result_dict = dict() for key, value in the_dict.items(): if len(the_dict) > 1: if key == 'image': result_dict['image'] = value continue if key == 'help': result_dict['help'] = TextObject(value, question=self) continue if key == 'default': result_dict['default'] = value continue if uses_field: if key == 'code': has_code = True result_dict['compute'] = compile(value, '<expression>', 'eval') self.find_fields_in(value) else: result_dict['label'] = TextObject(key, question=self) result_dict['key'] = TextObject(value, question=self, translate=False) elif isinstance(value, dict): result_dict['label'] = TextObject(key, question=self) self.embeds = True result_dict['key'] = Question(value, self.interview, register_target=register_target, source=self.from_source, package=self.package, source_code=codecs.decode(bytearray(yaml.safe_dump(value, default_flow_style=False, default_style = '|', allow_unicode=True), encoding='utf-8'), 'utf-8')) elif isinstance(value, str): if value in ('exit', 'logout', 'exit_logout', 'leave') and 'url' in the_dict: self.embeds = True result_dict['label'] = TextObject(key, question=self) result_dict['key'] = Question({'command': value, 'url': the_dict['url']}, self.interview, register_target=register_target, source=self.from_source, package=self.package) elif value in ('continue', 'restart', 'refresh', 'signin', 'register', 'exit', 'logout', 'exit_logout', 'leave', 'new_session'): self.embeds = True result_dict['label'] = TextObject(key, question=self) result_dict['key'] = Question({'command': value}, self.interview, register_target=register_target, source=self.from_source, package=self.package) elif key == 'url': pass else: result_dict['label'] = TextObject(key, question=self) result_dict['key'] = TextObject(key, question=self, translate=False) elif isinstance(value, bool): result_dict['label'] = TextObject(key, question=self) result_dict['key'] = value else: raise DAError("Unknown data type in parse_fields:" + str(type(value)) + ". " + self.idebug(the_list)) result_list.append(result_dict) return(has_code, result_list) def mark_as_answered(self, the_user_dict): if self.is_mandatory or self.mandatory_code is not None: the_user_dict['_internal']['answered'].add(self.name) def sub_fields_used(self): all_fields_used = set() for var_name in self.fields_used: all_fields_used.add(var_name) if len(self.fields) > 0 and hasattr(self.fields[0], 'choices'): for choice in self.fields[0].choices: if isinstance(choice['key'], Question): all_fields_used.update(choice['key'].sub_fields_used()) return all_fields_used def extended_question_name(self, the_user_dict): if not self.name: return self.name the_name = self.name uses = set() for var_name in self.sub_fields_used(): if re.search(r'^x\b', var_name): uses.add('x') for iterator in re.findall(r'\[([ijklmn])\]', var_name): uses.add(iterator) if len(uses) > 0: ok_to_use_extra = True for var_name in uses: if var_name not in the_user_dict: ok_to_use_extra = False if ok_to_use_extra and 'x' in uses and not hasattr(the_user_dict['x'], 'instanceName'): ok_to_use_extra = False if ok_to_use_extra: extras = [] if 'x' in uses: extras.append(the_user_dict['x'].instanceName) for var_name in ['i', 'j', 'k', 'l', 'm', 'n']: if var_name in uses: extras.append(str(the_user_dict[var_name])) the_name += "|WITH|" + '|'.join(extras) return the_name def follow_multiple_choice(self, the_user_dict, interview_status, is_generic, the_x, iterators): if not self.embeds: return(self) if is_generic: if the_x != 'None': exec("x = " + the_x, the_user_dict) if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], the_user_dict) the_name = self.extended_question_name(the_user_dict) if the_name and the_name in the_user_dict['_internal']['answers']: interview_status.followed_mc = True interview_status.tentatively_answered.add(self) qtarget = self.fields[0].choices[the_user_dict['_internal']['answers'][the_name]].get('key', False) if isinstance(qtarget, Question): return(qtarget.follow_multiple_choice(the_user_dict, interview_status, is_generic, the_x, iterators)) return(self) def finalize_attachment(self, attachment, result, the_user_dict): if self.interview.cache_documents and attachment['variable_name']: try: existing_object = eval(attachment['variable_name'], the_user_dict) for doc_format in ('pdf', 'rtf', 'docx', 'rtf to docx', 'tex', 'html', 'raw'): if hasattr(existing_object, doc_format): the_file = getattr(existing_object, doc_format) for key in ('extension', 'mimetype', 'content', 'markdown', 'raw'): if hasattr(the_file, key): result[key][doc_format] = getattr(the_file, key) if hasattr(the_file, 'number'): result['file'][doc_format] = the_file.number #logmessage("finalize_attachment: returning " + attachment['variable_name'] + " from cache") for key in ('template', 'field_data', 'images', 'data_strings', 'convert_to_pdf_a', 'convert_to_tagged_pdf', 'password', 'template_password', 'update_references', 'permissions'): if key in result: del result[key] return result except: pass #logmessage("finalize_attachment: " + attachment['variable_name'] + " was not in cache") #logmessage("In finalize where redact is " + repr(result['redact'])) docassemble.base.functions.this_thread.misc['redact'] = result['redact'] if 'language' in attachment['options']: old_language = docassemble.base.functions.get_language() docassemble.base.functions.set_language(attachment['options']['language']) else: old_language = None try: for doc_format in result['formats_to_use']: if doc_format == 'raw': the_temp = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=result['raw'], delete=False) with open(the_temp.name, 'w', encoding='utf-8') as the_file: the_file.write(result['markdown'][doc_format].lstrip("\n")) result['file'][doc_format], result['extension'][doc_format], result['mimetype'][doc_format] = docassemble.base.functions.server.save_numbered_file(result['filename'] + result['raw'], the_temp.name, yaml_file_name=self.interview.source.path) result['content'][doc_format] = result['markdown'][doc_format].lstrip("\n") elif doc_format in ('pdf', 'rtf', 'rtf to docx', 'tex', 'docx'): if 'fields' in attachment['options']: if doc_format == 'pdf' and 'pdf_template_file' in attachment['options']: if 'checkbox_export_value' in attachment['options']: default_export_value = attachment['options']['checkbox_export_value'].text(the_user_dict).strip() else: default_export_value = None docassemble.base.functions.set_context('pdf') the_pdf_file = docassemble.base.pdftk.fill_template(attachment['options']['pdf_template_file'].path(the_user_dict=the_user_dict), data_strings=result['data_strings'], images=result['images'], editable=result['editable'], pdfa=result['convert_to_pdf_a'], password=result['password'], template_password=result['template_password'], default_export_value=default_export_value) result['file'][doc_format], result['extension'][doc_format], result['mimetype'][doc_format] = docassemble.base.functions.server.save_numbered_file(result['filename'] + '.' + extension_of_doc_format[doc_format], the_pdf_file, yaml_file_name=self.interview.source.path) for key in ('images', 'data_strings', 'convert_to_pdf_a', 'convert_to_tagged_pdf', 'password', 'template_password', 'update_references', 'permissions'): if key in result: del result[key] docassemble.base.functions.reset_context() elif (doc_format == 'docx' or (doc_format == 'pdf' and 'docx' not in result['formats_to_use'])) and 'docx_template_file' in attachment['options']: #logmessage("field_data is " + repr(result['field_data'])) if result['template'].current_rendering_part is None: result['template'].current_rendering_part = result['template'].docx._part docassemble.base.functions.set_context('docx', template=result['template']) docassemble.base.functions.this_thread.misc['docx_subdocs'] = [] try: the_template = result['template'] template_loop_count = 0 while True: # Rerender if there's a subdoc using include_docx_template old_count = docassemble.base.functions.this_thread.misc.get('docx_include_count', 0) the_template.render(result['field_data'], jinja_env=custom_jinja_env()) if docassemble.base.functions.this_thread.misc.get('docx_include_count', 0) > old_count and template_loop_count < 10: # There's another template included new_template_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=".docx", delete=False) the_template.save(new_template_file.name) # Save and refresh the template the_template = docassemble.base.file_docx.DocxTemplate(new_template_file.name) if result['hyperlink_style'] and result['hyperlink_style'] in the_template.docx.styles: the_template.da_hyperlink_style = result['hyperlink_style'] elif 'Hyperlink' in result['template'].docx.styles: the_template.da_hyperlink_style = 'Hyperlink' elif 'InternetLink' in result['template'].docx.styles: the_template.da_hyperlink_style = 'InternetLink' else: the_template.da_hyperlink_style = None docassemble.base.functions.this_thread.misc['docx_template'] = the_template template_loop_count += 1 else: break # Copy over images, etc from subdoc to master template subdocs = docassemble.base.functions.this_thread.misc.get('docx_subdocs', []) # Get the subdoc file list the_template_docx = the_template.docx for subdoc in subdocs: docassemble.base.file_docx.fix_subdoc(the_template_docx, subdoc) except TemplateError as the_error: if (not hasattr(the_error, 'filename')) or the_error.filename is None: docx_paths = [] for item in attachment['options']['docx_template_file']: for subitem in item.paths(the_user_dict=the_user_dict): docx_paths.append(os.path.basename(subitem)) the_error.filename = ', '.join(docx_paths) #logmessage("TemplateError:\n" + traceback.format_exc()) raise the_error docassemble.base.functions.reset_context() docx_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=".docx", delete=False) the_template.save(docx_file.name) if result['update_references']: docassemble.base.pandoc.update_references(docx_file.name) if 'docx' in result['formats_to_use']: result['file']['docx'], result['extension']['docx'], result['mimetype']['docx'] = docassemble.base.functions.server.save_numbered_file(result['filename'] + '.docx', docx_file.name, yaml_file_name=self.interview.source.path) if 'pdf' in result['formats_to_use']: pdf_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=".pdf", delete=False) docassemble.base.pandoc.word_to_pdf(docx_file.name, 'docx', pdf_file.name, pdfa=result['convert_to_pdf_a'], password=result['password'], update_refs=result['update_references'], tagged=result['convert_to_tagged_pdf'], filename=result['filename']) result['file']['pdf'], result['extension']['pdf'], result['mimetype']['pdf'] = docassemble.base.functions.server.save_numbered_file(result['filename'] + '.pdf', pdf_file.name, yaml_file_name=self.interview.source.path) for key in ['template', 'field_data', 'images', 'data_strings', 'convert_to_pdf_a', 'convert_to_tagged_pdf', 'password', 'template_password', 'update_references', 'permissions']: if key in result: del result[key] else: converter = MyPandoc(pdfa=result['convert_to_pdf_a'], password=result['password']) converter.output_format = doc_format converter.input_content = result['markdown'][doc_format] if 'initial_yaml' in attachment['options']: converter.initial_yaml = [x.path(the_user_dict=the_user_dict) for x in attachment['options']['initial_yaml']] elif 'initial_yaml' in self.interview.attachment_options: converter.initial_yaml = [x.path(the_user_dict=the_user_dict) for x in self.interview.attachment_options['initial_yaml']] if 'additional_yaml' in attachment['options']: converter.additional_yaml = [x.path(the_user_dict=the_user_dict) for x in attachment['options']['additional_yaml']] elif 'additional_yaml' in self.interview.attachment_options: converter.additional_yaml = [x.path(the_user_dict=the_user_dict) for x in self.interview.attachment_options['additional_yaml']] if doc_format in ('rtf', 'rtf to docx'): if 'rtf_template_file' in attachment['options']: converter.template_file = attachment['options']['rtf_template_file'].path(the_user_dict=the_user_dict) elif 'rtf_template_file' in self.interview.attachment_options: converter.template_file = self.interview.attachment_options['rtf_template_file'].path(the_user_dict=the_user_dict) elif doc_format == 'docx': if 'docx_reference_file' in attachment['options']: converter.reference_file = attachment['options']['docx_reference_file'].path(the_user_dict=the_user_dict) elif 'docx_reference_file' in self.interview.attachment_options: converter.reference_file = self.interview.attachment_options['docx_reference_file'].path(the_user_dict=the_user_dict) else: if 'template_file' in attachment['options']: converter.template_file = attachment['options']['template_file'].path(the_user_dict=the_user_dict) elif 'template_file' in self.interview.attachment_options: converter.template_file = self.interview.attachment_options['template_file'].path(the_user_dict=the_user_dict) converter.metadata = result['metadata'] converter.convert(self) result['file'][doc_format], result['extension'][doc_format], result['mimetype'][doc_format] = docassemble.base.functions.server.save_numbered_file(result['filename'] + '.' + extension_of_doc_format[doc_format], converter.output_filename, yaml_file_name=self.interview.source.path) result['content'][doc_format] = result['markdown'][doc_format] elif doc_format in ['html']: result['content'][doc_format] = docassemble.base.filter.markdown_to_html(result['markdown'][doc_format], use_pandoc=True, question=self) if attachment['variable_name']: string = "from docassemble.base.core import DAFile, DAFileCollection" exec(string, the_user_dict) variable_name = attachment['variable_name'] m = re.search(r'^(.*)\.([A-Za-z0-9\_]+)$', attachment['variable_name']) if m: base_var = m.group(1) attrib = m.group(2) the_var = eval(base_var, the_user_dict) if hasattr(the_var, 'instanceName'): variable_name = the_var.instanceName + '.' + attrib string = variable_name + " = DAFileCollection(" + repr(variable_name) + ")" # logmessage("Executing " + string + "\n") exec(string, the_user_dict) the_name = attachment['name'].text(the_user_dict).strip() the_filename = attachment['filename'].text(the_user_dict).strip() if the_filename == '': the_filename = docassemble.base.functions.space_to_underscore(the_name) the_user_dict['_attachment_info'] = dict(name=the_name, filename=the_filename, description=attachment['description'].text(the_user_dict), valid_formats=result['valid_formats'], formats=result['formats_to_use'], attachment=dict(name=attachment['question_name'], number=attachment['indexno']), extension=result.get('extension', dict()), mimetype=result.get('mimetype', dict()), content=result.get('content', dict()), markdown=result.get('markdown', dict()), metadata=result.get('metadata', dict()), convert_to_pdf_a=result.get('convert_to_pdf_a', False), convert_to_tagged_pdf=result.get('convert_to_tagged_pdf', False), orig_variable_name=result.get('orig_variable_name', None), raw=result['raw'], permissions=result.get('permissions', None)) exec(variable_name + '.info = _attachment_info', the_user_dict) del the_user_dict['_attachment_info'] for doc_format in result['file']: if doc_format == 'raw': variable_string = variable_name + '.raw' else: variable_string = variable_name + '.' + extension_of_doc_format[doc_format] # filename = result['filename'] + '.' + doc_format # file_number, extension, mimetype = docassemble.base.functions.server.save_numbered_file(filename, result['file'][doc_format], yaml_file_name=self.interview.source.path) if result['file'][doc_format] is None: raise Exception("Could not save numbered file") if 'content' in result and doc_format in result['content']: content_string = ', content=' + repr(result['content'][doc_format]) else: content_string = '' if 'markdown' in result and doc_format in result['markdown']: markdown_string = ', markdown=' + repr(result['markdown'][doc_format]) else: markdown_string = '' if result['raw']: the_ext = result['raw'] else: the_ext = '.' + extension_of_doc_format[doc_format] string = variable_string + " = DAFile(" + repr(variable_string) + ", filename=" + repr(str(result['filename']) + the_ext) + ", number=" + str(result['file'][doc_format]) + ", mimetype='" + str(result['mimetype'][doc_format]) + "', extension='" + str(result['extension'][doc_format]) + "'" + content_string + markdown_string + ")" #logmessage("Executing " + string + "\n") exec(string, the_user_dict) for doc_format in result['content']: # logmessage("Considering " + doc_format) if doc_format not in result['file']: variable_string = variable_name + '.' + extension_of_doc_format[doc_format] # logmessage("Setting " + variable_string) string = variable_string + " = DAFile(" + repr(variable_string) + ', markdown=' + repr(result['markdown'][doc_format]) + ', content=' + repr(result['content'][doc_format]) + ")" exec(string, the_user_dict) if 'permissions' in result: if result['permissions']['private'] is not None or result['permissions']['persistent'] is not None: params = list() if 'private' in result['permissions']: params.append('private=' + repr(result['permissions']['private'])) if 'persistent' in result['permissions']: params.append('persistent=' + repr(result['permissions']['persistent'])) string = variable_name + '.set_attributes(' + ','.join(params) + ')' exec(string, the_user_dict) if len(result['permissions']['allow users']): string = variable_name + '.user_access(' + ', '.join([repr(y) for y in result['permissions']['allow users']]) + ')' exec(string, the_user_dict) if len(result['permissions']['allow privileges']): string = variable_name + '.privilege_access(' + ', '.join([repr(y) for y in result['permissions']['allow privileges']]) + ')' exec(string, the_user_dict) except: if old_language is not None: docassemble.base.functions.set_language(old_language) raise if old_language is not None: docassemble.base.functions.set_language(old_language) return(result) def prepare_attachment(self, attachment, the_user_dict, **kwargs): if 'language' in attachment['options']: old_language = docassemble.base.functions.get_language() docassemble.base.functions.set_language(attachment['options']['language']) else: old_language = None try: the_name = attachment['name'].text(the_user_dict).strip() the_filename = attachment['filename'].text(the_user_dict).strip() the_filename = docassemble.base.functions.secure_filename(the_filename) if the_filename == '': the_filename = docassemble.base.functions.secure_filename(docassemble.base.functions.space_to_underscore(the_name)) result = {'name': the_name, 'filename': the_filename, 'description': attachment['description'].text(the_user_dict), 'valid_formats': attachment['valid_formats']} actual_extension = attachment['raw'] if attachment['content'] is None and 'content file code' in attachment['options']: raw_content = '' the_filenames = eval(attachment['options']['content file code'], the_user_dict) if not isinstance(the_filenames, list): if hasattr(the_filenames, 'instanceName') and hasattr(the_filenames, 'elements') and isinstance(the_filenames.elements, list): the_filenames = the_filenames.elements else: the_filenames = [the_filenames] for the_filename in the_filenames: the_orig_filename = the_filename if the_filename.__class__.__name__ in ('DAFile', 'DAFileList', 'DAFileCollection', 'DAStaticFile'): the_filename = the_filename.path() elif isinstance(the_filename, str): if re.search(r'^https?://', str(the_filename)): temp_template_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) try: urlretrieve(url_sanitize(str(the_filename)), temp_template_file.name) except Exception as err: raise DAError("prepare_attachment: error downloading " + str(the_filename) + ": " + str(err)) the_filename = temp_template_file.name else: the_filename = docassemble.base.functions.package_template_filename(the_filename, package=self.package) else: the_filename = None if the_filename is None or not os.path.isfile(the_filename): raise DAError("prepare_attachment: error obtaining template file from code: " + repr(the_orig_filename)) (the_base, actual_extension) = os.path.splitext(the_filename) with open(the_filename, 'r', encoding='utf-8') as the_file: raw_content += the_file.read() the_content = TextObject(raw_content, question=self) else: the_content = attachment['content'] if 'redact' in attachment['options']: if isinstance(attachment['options']['redact'], CodeType): result['redact'] = eval(attachment['options']['redact'], the_user_dict) else: result['redact'] = attachment['options']['redact'] else: result['redact'] = True if 'editable' in attachment['options']: result['editable'] = eval(attachment['options']['editable'], the_user_dict) else: result['editable'] = True docassemble.base.functions.this_thread.misc['redact'] = result['redact'] result['markdown'] = dict(); result['content'] = dict(); result['extension'] = dict(); result['mimetype'] = dict(); result['file'] = dict(); if attachment['raw']: result['raw'] = actual_extension result['formats_to_use'] = ['raw'] else: result['raw'] = False if '*' in attachment['valid_formats']: result['formats_to_use'] = ['pdf', 'rtf', 'html'] else: result['formats_to_use'] = attachment['valid_formats'] result['metadata'] = dict() if len(attachment['metadata']) > 0: for key in attachment['metadata']: data = attachment['metadata'][key] if isinstance(data, bool): result['metadata'][key] = data elif isinstance(data, list): result['metadata'][key] = textify(data, the_user_dict) else: result['metadata'][key] = data.text(the_user_dict) if 'pdf_a' in attachment['options']: if isinstance(attachment['options']['pdf_a'], bool): result['convert_to_pdf_a'] = attachment['options']['pdf_a'] else: result['convert_to_pdf_a'] = eval(attachment['options']['pdf_a'], the_user_dict) else: result['convert_to_pdf_a'] = self.interview.use_pdf_a if 'hyperlink_style' in attachment['options']: result['hyperlink_style'] = attachment['options']['hyperlink_style'].text(the_user_dict).strip() else: result['hyperlink_style'] = None result['permissions'] = dict() if 'persistent' in attachment['options']: if isinstance(attachment['options']['persistent'], bool): result['permissions']['persistent'] = attachment['options']['persistent'] else: result['permissions']['persistent'] = eval(attachment['options']['persistent'], the_user_dict) else: result['permissions']['persistent'] = None if 'private' in attachment['options']: if isinstance(attachment['options']['private'], bool): result['permissions']['private'] = attachment['options']['private'] else: result['permissions']['private'] = eval(attachment['options']['private'], the_user_dict) else: result['permissions']['private'] = None if 'allow users' in attachment['options']: if isinstance(attachment['options']['allow users'], list): result['permissions']['allow users'] = allow_users_list(attachment['options']['allow users']) else: result['permissions']['allow users'] = eval(attachment['options']['allow users'], the_user_dict) result['permissions']['allow users'] = allow_users_list(result['permissions']['allow users']) else: result['permissions']['allow users'] = [] if 'allow privileges' in attachment['options']: if isinstance(attachment['options']['allow privileges'], list): result['permissions']['allow privileges'] = allow_privileges_list(attachment['options']['allow privileges']) else: result['permissions']['allow privileges'] = allow_privileges_list(eval(attachment['options']['allow privileges'], the_user_dict)) else: result['permissions']['allow privileges'] = [] if 'tagged_pdf' in attachment['options']: if isinstance(attachment['options']['tagged_pdf'], bool): result['convert_to_tagged_pdf'] = attachment['options']['tagged_pdf'] else: result['convert_to_tagged_pdf'] = eval(attachment['options']['tagged_pdf'], the_user_dict) else: result['convert_to_tagged_pdf'] = self.interview.use_tagged_pdf if 'orig_variable_name' in attachment and attachment['orig_variable_name']: result['orig_variable_name'] = attachment['orig_variable_name'] if 'update_references' in attachment['options']: if isinstance(attachment['options']['update_references'], bool): result['update_references'] = attachment['options']['update_references'] else: result['update_references'] = eval(attachment['options']['update_references'], the_user_dict) else: result['update_references'] = False if 'password' in attachment['options']: result['password'] = attachment['options']['password'].text(the_user_dict) else: result['password'] = None if 'template_password' in attachment['options']: result['template_password'] = attachment['options']['template_password'].text(the_user_dict) else: result['template_password'] = None for doc_format in result['formats_to_use']: if doc_format in ['pdf', 'rtf', 'rtf to docx', 'tex', 'docx', 'raw']: if 'decimal_places' in attachment['options']: try: float_formatter = '%.' + str(int(attachment['options']['decimal_places'].text(the_user_dict).strip())) + 'f' except: logmessage("prepare_attachment: error in float_formatter") float_formatter = None else: float_formatter = None if 'fields' in attachment['options'] and 'docx_template_file' in attachment['options']: if doc_format == 'docx' or ('docx' not in result['formats_to_use'] and doc_format == 'pdf'): docx_paths = [] for docx_reference in attachment['options']['docx_template_file']: for docx_path in docx_reference.paths(the_user_dict=the_user_dict): if not os.path.isfile(docx_path): raise DAError("Missing docx template file " + os.path.basename(docx_path)) docx_paths.append(docx_path) if len(docx_paths) == 1: docx_path = docx_paths[0] else: docx_path = docassemble.base.file_docx.concatenate_files(docx_paths) result['template'] = docassemble.base.file_docx.DocxTemplate(docx_path) if result['hyperlink_style'] and result['hyperlink_style'] in result['template'].docx.styles: result['template'].da_hyperlink_style = result['hyperlink_style'] elif 'Hyperlink' in result['template'].docx.styles: result['template'].da_hyperlink_style = 'Hyperlink' elif 'InternetLink' in result['template'].docx.styles: result['template'].da_hyperlink_style = 'InternetLink' else: result['template'].da_hyperlink_style = None if result['template'].current_rendering_part is None: result['template'].current_rendering_part = result['template'].docx._part docassemble.base.functions.set_context('docx', template=result['template']) if isinstance(attachment['options']['fields'], str): result['field_data'] = the_user_dict else: the_field_data = recursive_eval_textobject(attachment['options']['fields'], the_user_dict, self, result['template'], attachment['options']['skip_undefined']) new_field_data = dict() if isinstance(the_field_data, list): for item in the_field_data: if isinstance(item, dict): new_field_data.update(item) the_field_data = new_field_data result['field_data'] = copy.deepcopy(pickleable_objects(the_user_dict)) self.interview.populate_non_pickleable(result['field_data']) if 'alpha' not in result['field_data']: raise Exception("fuck this") result['field_data'].update(the_field_data) result['field_data']['_codecs'] = codecs result['field_data']['_array'] = array if 'code' in attachment['options']: if attachment['options']['skip_undefined']: try: additional_dict = eval(attachment['options']['code'], the_user_dict) except: additional_dict = {} else: additional_dict = eval(attachment['options']['code'], the_user_dict) if isinstance(additional_dict, dict): for key, val in additional_dict.items(): if isinstance(val, float) and float_formatter is not None: result['field_data'][key] = float_formatter % val elif isinstance(val, RawValue): result['field_data'][key] = val.value else: result['field_data'][key] = docassemble.base.file_docx.transform_for_docx(val, self, result['template']) else: raise DAError("code in an attachment returned something other than a dictionary") if 'raw code dict' in attachment['options']: for varname, var_code in attachment['options']['raw code dict'].items(): if attachment['options']['skip_undefined']: try: val = eval(var_code, the_user_dict) except: val = '' else: val = eval(var_code, the_user_dict) if isinstance(val, float) and float_formatter is not None: result['field_data'][varname] = float_formatter % val else: result['field_data'][varname] = val if 'code dict' in attachment['options']: for varname, var_code in attachment['options']['code dict'].items(): if attachment['options']['skip_undefined']: try: val = eval(var_code, the_user_dict) except: val = '' else: val = eval(var_code, the_user_dict) if isinstance(val, float) and float_formatter is not None: result['field_data'][varname] = float_formatter % val elif isinstance(val, RawValue): result['field_data'][varname] = val.value else: result['field_data'][varname] = docassemble.base.file_docx.transform_for_docx(val, self, result['template']) docassemble.base.functions.reset_context() elif doc_format == 'pdf' and 'fields' in attachment['options'] and 'pdf_template_file' in attachment['options']: docassemble.base.functions.set_context('pdf') result['data_strings'] = [] result['images'] = [] if isinstance(attachment['options']['fields'], dict): the_fields = [attachment['options']['fields']] else: the_fields = attachment['options']['fields'] for item in the_fields: for key, val in item.items(): if attachment['options']['skip_undefined']: try: answer = val.text(the_user_dict).rstrip() except: answer = '' else: answer = val.text(the_user_dict).rstrip() if answer == 'True': answer = 'Yes' elif answer == 'False': answer = 'No' elif answer == 'None': answer = '' answer = re.sub(r'\[(NEWLINE|BR)\]', r'\n', answer) answer = re.sub(r'\[(BORDER|NOINDENT|FLUSHLEFT|FLUSHRIGHT|BOLDCENTER|CENTER)\]', r'', answer) #logmessage("Found a " + str(key) + " with a |" + str(answer) + '|') m = re.search(r'\[FILE ([^\]]+)\]', answer) if m: file_reference = re.sub(r'[ ,].*', '', m.group(1)) file_info = docassemble.base.functions.server.file_finder(file_reference, convert={'svg': 'png'}) result['images'].append((key, file_info)) else: m = re.search(r'\[QR ([^\]]+)\]', answer) if m: im = qrcode.make(re.sub(r' *,.*', '', m.group(1))) the_image = tempfile.NamedTemporaryFile(prefix="datemp", suffix=".png", delete=False) im.save(the_image.name) result['images'].append((key, {'fullpath': the_image.name})) else: result['data_strings'].append((key, answer)) if 'code' in attachment['options']: if attachment['options']['skip_undefined']: try: additional_fields = eval(attachment['options']['code'], the_user_dict) except: additional_fields = [] else: additional_fields = eval(attachment['options']['code'], the_user_dict) if not isinstance(additional_fields, list): additional_fields = [additional_fields] for item in additional_fields: if not isinstance(item, dict): raise DAError("code in an attachment returned something other than a dictionary or a list of dictionaries") for key, val in item.items(): if val is True: val = 'Yes' elif val is False: val = 'No' elif val is None: val = '' elif isinstance(val, float) and float_formatter is not None: val = float_formatter % val else: val = str(val) val = re.sub(r'\s*\[(NEWLINE|BR)\]\s*', r'\n', val) val = re.sub(r'\s*\[(BORDER|NOINDENT|FLUSHLEFT|FLUSHRIGHT|BOLDCENTER|CENTER)\]\s*', r'', val) m = re.search(r'\[FILE ([^\]]+)\]', val) if m: file_reference = re.sub(r'[ ,].*', '', m.group(1)) file_info = docassemble.base.functions.server.file_finder(file_reference, convert={'svg': 'png'}) result['images'].append((key, file_info)) else: result['data_strings'].append((key, val)) if 'code dict' in attachment['options']: additional_fields = attachment['options']['code dict'] if not isinstance(additional_fields, list): additional_fields = [additional_fields] for item in additional_fields: if not isinstance(item, dict): raise DAError("code dict in an attachment returned something other than a dictionary or a list of dictionaries") for key, var_code in item.items(): if attachment['options']['skip_undefined']: try: val = eval(var_code, the_user_dict) except: val = '' else: val = eval(var_code, the_user_dict) if val is True: val = 'Yes' elif val is False: val = 'No' elif val is None: val = '' elif isinstance(val, float) and float_formatter is not None: val = float_formatter % val else: val = str(val) val = re.sub(r'\[(NEWLINE|BR)\]', r'\n', val) val = re.sub(r'\[(BORDER|NOINDENT|FLUSHLEFT|FLUSHRIGHT|BOLDCENTER|CENTER)\]', r'', val) m = re.search(r'\[FILE ([^\]]+)\]', val) if m: file_reference = re.sub(r'[ ,].*', '', m.group(1)) file_info = docassemble.base.functions.server.file_finder(file_reference, convert={'svg': 'png'}) result['images'].append((key, file_info)) else: result['data_strings'].append((key, val)) if 'raw code dict' in attachment['options']: additional_fields = attachment['options']['raw code dict'] if not isinstance(additional_fields, list): additional_fields = [additional_fields] for item in additional_fields: if not isinstance(item, dict): raise DAError("raw code dict in an attachment returned something other than a dictionary or a list of dictionaries") for key, var_code in item.items(): if attachment['options']['skip_undefined']: try: val = eval(var_code, the_user_dict) except: val = '' else: val = eval(var_code, the_user_dict) if val is True: val = 'Yes' elif val is False: val = 'No' elif isinstance(val, float) and float_formatter is not None: val = float_formatter % val elif val is None: val = '' val = re.sub(r'\[(NEWLINE|BR)\]', r'\n', val) val = re.sub(r'\[(BORDER|NOINDENT|FLUSHLEFT|FLUSHRIGHT|BOLDCENTER|CENTER)\]', r'', val) m = re.search(r'\[FILE ([^\]]+)\]', val) if m: file_reference = re.sub(r'[ ,].*', '', m.group(1)) file_info = docassemble.base.functions.server.file_finder(file_reference, convert={'svg': 'png'}) result['images'].append((key, file_info)) else: result['data_strings'].append((key, val)) docassemble.base.functions.reset_context() elif doc_format == 'raw': docassemble.base.functions.set_context('raw') the_markdown = the_content.text(the_user_dict) result['markdown'][doc_format] = the_markdown docassemble.base.functions.reset_context() else: the_markdown = "" if len(result['metadata']): modified_metadata = dict() for key, data in result['metadata'].items(): if re.search(r'Footer|Header', key) and 'Lines' not in key: #modified_metadata[key] = docassemble.base.filter.metadata_filter(data, doc_format) + str('[END]') modified_metadata[key] = data + str('[END]') else: modified_metadata[key] = data the_markdown += '---\n' + codecs.decode(bytearray(yaml.safe_dump(modified_metadata, default_flow_style=False, default_style = '|', allow_unicode=False), encoding='utf-8'), 'utf-8') + "...\n" docassemble.base.functions.set_context('pandoc') the_markdown += the_content.text(the_user_dict) #logmessage("Markdown is:\n" + repr(the_markdown) + "END") if emoji_match.search(the_markdown) and len(self.interview.images) > 0: the_markdown = emoji_match.sub(emoji_matcher_insert(self), the_markdown) result['markdown'][doc_format] = the_markdown docassemble.base.functions.reset_context() elif doc_format in ['html']: result['markdown'][doc_format] = the_content.text(the_user_dict) if emoji_match.search(result['markdown'][doc_format]) and len(self.interview.images) > 0: result['markdown'][doc_format] = emoji_match.sub(emoji_matcher_html(self), result['markdown'][doc_format]) #logmessage("output was:\n" + repr(result['content'][doc_format])) except: if old_language is not None: docassemble.base.functions.set_language(old_language) raise if old_language is not None: docassemble.base.functions.set_language(old_language) return(result) def process_selections_manual(self, data): result = [] if isinstance(data, list): for entry in data: if isinstance(entry, dict): the_item = dict() for key in entry: if len(entry) > 1: if key in ['default', 'help', 'image']: continue if 'key' in entry and 'label' in entry and key != 'key': continue if 'default' in entry: the_item['default'] = entry['default'] if 'help' in entry: the_item['help'] = TextObject(entry['help'], question=self) if 'image' in entry: if entry['image'].__class__.__name__ == 'DAFile': entry['image'].retrieve() if entry['image'].mimetype is not None and entry['image'].mimetype.startswith('image'): the_item['image'] = dict(type='url', value=entry['image'].url_for()) elif entry['image'].__class__.__name__ == 'DAFileList': entry['image'][0].retrieve() if entry['image'][0].mimetype is not None and entry['image'][0].mimetype.startswith('image'): the_item['image'] = dict(type='url', value=entry['image'][0].url_for()) elif entry['image'].__class__.__name__ == 'DAStaticFile': the_item['image'] = dict(type='url', value=entry['image'].url_for()) else: the_item['image'] = dict(type='decoration', value=entry['image']) if 'key' in entry and 'label' in entry: the_item['key'] = TextObject(entry['key'], question=self, translate=False) the_item['label'] = TextObject(entry['label'], question=self) result.append(the_item) continue the_item['key'] = TextObject(entry[key], question=self, translate=False) the_item['label'] = TextObject(key, question=self) result.append(the_item) if isinstance(entry, (list, tuple)): result.append(dict(key=TextObject(entry[0], question=self), label=TextObject(entry[1], question=self))) elif isinstance(entry, str): result.append(dict(key=TextObject(entry, question=self), label=TextObject(entry, question=self))) elif isinstance(entry, (int, float, bool, NoneType)): result.append(dict(key=TextObject(str(entry), question=self), label=TextObject(str(entry), question=self))) elif isinstance(data, dict): for key, value in sorted(data.items(), key=operator.itemgetter(1)): result.append(dict(key=TextObject(value, question=self), label=TextObject(key, question=self))) else: raise DAError("Unknown data type in manual choices selection: " + re.sub(r'[<>]', '', repr(data))) return(result) def emoji_matcher_insert(obj): return (lambda x: docassemble.base.filter.emoji_insert(x.group(1), images=obj.interview.images)) def emoji_matcher_html(obj): return (lambda x: docassemble.base.filter.emoji_html(x.group(1), images=obj.interview.images)) def interview_source_from_string(path, **kwargs): if path is None: raise DAError("Passed None to interview_source_from_string") #sys.stderr.write("Trying to find " + path + "\n") for the_filename in [docassemble.base.functions.package_question_filename(path), docassemble.base.functions.standard_question_filename(path), docassemble.base.functions.server.absolute_filename(path)]: #sys.stderr.write("Trying " + str(the_filename) + " with path " + str(path) + "\n") if the_filename is not None: new_source = InterviewSourceFile(filepath=the_filename, path=path) if new_source.update(): return(new_source) raise DANotFoundError("Interview " + str(path) + " not found") def is_boolean(field_data): if 'choices' not in field_data: return False if 'has_code' in field_data: return False for entry in field_data['choices']: if 'key' in entry and 'label' in entry: if isinstance(entry['key'], TextObject): if not isinstance(entry['key'].original_text, bool): return False else: if not isinstance(entry['key'], bool): return False return True def is_threestate(field_data): if 'choices' not in field_data: return False if 'has_code' in field_data: return False for entry in field_data['choices']: if 'key' in entry and 'label' in entry: if isinstance(entry['key'], TextObject): if not (isinstance(entry['key'].original_text, (bool, NoneType)) or (isinstance(entry['key'].original_text, str) and entry['key'].original_text == 'None')): return False else: if not (isinstance(entry['key'], (bool, NoneType)) or (isinstance(entry['key'], str) and entry['key'].original_text == 'None')): return False return True class TableInfo: pass def recursive_update(base, target): for key, val in target.items(): if isinstance(val, abc.Mapping): base[key] = recursive_update(base.get(key, {}), val) else: base[key] = val return base def recursive_add_classes(class_list, the_class): for cl in the_class.__bases__: class_list.append(cl.__name__) recursive_add_classes(class_list, cl) def unqualified_name(variable, the_user_dict): if variable == 'x' or variable.startswith('x[') or variable.startswith('x.') and 'x' in the_user_dict and hasattr(the_user_dict['x'], 'instanceName'): variable = re.sub(r'^x', the_user_dict['x'].instanceName, variable) for index_var in ['i', 'j', 'k', 'l', 'm', 'n']: if '[' + index_var + ']' in variable and index_var in the_user_dict: variable = re.sub(r'\[' + index_var + '\]', '[' + repr(the_user_dict[index_var]) + ']', variable) return variable def make_backup_vars(the_user_dict): backups = dict() for var in ['x', 'i', 'j', 'k', 'l', 'm', 'n']: if var in the_user_dict: backups[var] = the_user_dict[var] return backups def restore_backup_vars(the_user_dict, backups): for var, val in backups.items(): the_user_dict[var] = val def illegal_variable_name(var): if re.search(r'[\n\r]', var): return True try: t = ast.parse(var) except: return True detector = docassemble.base.astparser.detectIllegal() detector.visit(t) return detector.illegal class Interview: def __init__(self, **kwargs): self.source = None self.questions = dict() self.generic_questions = dict() self.questions_by_id = dict() self.questions_by_name = dict() self.questions_list = list() self.all_questions = list() self.progress_points = set() self.ids_in_use = set() self.id_orderings = list() self.invalidation = dict() self.invalidation_todo = dict() self.onchange = dict() self.onchange_todo = dict() self.orderings = list() self.orderings_by_question = dict() self.images = dict() self.metadata = list() self.helptext = dict() self.defs = dict() self.terms = dict() self.mlfields = dict() self.autoterms = dict() self.includes = set() self.reconsider = set() self.reconsider_generic = dict() self.question_index = 0 self.block_index = 0 self.translating = False self.default_role = None self.default_validation_messages = dict() self.default_screen_parts = dict() self.title = None self.debug = get_config('debug', True) self.use_progress_bar = False self.question_back_button = False self.question_help_button = False self.navigation_back_button = True self.force_fullscreen = False self.use_pdf_a = get_config('pdf/a', False) self.use_tagged_pdf = get_config('tagged pdf', False) self.loop_limit = get_config('loop limit', 500) self.recursion_limit = get_config('recursion limit', 500) self.cache_documents = True self.use_navigation = False self.use_navigation_on_small_screens = True self.flush_left = False self.max_image_size = get_config('maximum image size', None) self.image_type = get_config('image upload type', None) self.bootstrap_theme = get_config('bootstrap theme', None) self.sections = dict() self.names_used = set() self.attachment_options = dict() self.attachment_index = 0 self.external_files = dict() self.options = dict() self.calls_process_action = False self.uses_action = False self.imports_util = False self.table_width = 65 self.success = True self.translation_dict = dict() self.translations = list() self.scan_for_emojis = False self.consolidated_metadata = dict() self.issue = dict() if 'source' in kwargs: self.read_from(kwargs['source']) self.cross_reference_dependencies() def cross_reference_dependencies(self): to_listen_for = set(self.invalidation.keys()).union(set(self.onchange.keys())) todo = dict() for question in self.questions_list: for field_name in question.fields_used.union(question.other_fields_used): totry = list() variants = list() level_dict = dict() generic_dict = dict() expression_as_list = [x for x in match_brackets_or_dot.split(field_name) if x != ''] expression_as_list.append('') recurse_indices(expression_as_list, list_of_indices, [], variants, level_dict, [], generic_dict, []) for variant in variants: if variant in to_listen_for: totry.append({'real': field_name, 'vari': variant, 'iterators': level_dict[variant], 'generic': generic_dict[variant], 'is_generic': 0 if generic_dict[variant] == '' else 1, 'num_dots': variant.count('.'), 'num_iterators': variant.count('[')}) totry = sorted(sorted(sorted(sorted(totry, key=lambda x: len(x['iterators'])), key=lambda x: x['num_iterators'], reverse=True), key=lambda x: x['num_dots'], reverse=True), key=lambda x: x['is_generic']) for attempt in totry: if field_name not in todo: todo[field_name] = [] found = False for existing_item in todo[field_name]: if attempt['vari'] == existing_item['vari']: found = True if not found: todo[field_name].append(attempt) if attempt['vari'] in self.invalidation: for var in self.invalidation[attempt['vari']]: if field_name not in self.invalidation_todo: self.invalidation_todo[field_name] = [] if not found: self.invalidation_todo[field_name].append({'target': var, 'context': attempt}) question.fields_for_invalidation.add(field_name) if attempt['vari'] in self.onchange: if field_name not in self.onchange_todo: self.onchange_todo[field_name] = [] if not found: self.onchange_todo[field_name].append({'target': self.onchange[attempt['vari']], 'context': attempt}) question.fields_for_onchange.add(field_name) def ordered(self, the_list): if len(the_list) <= 1: return the_list def invalidate_dependencies(self, field_name, the_user_dict, old_values): try: current_value = eval(field_name, the_user_dict) except: return try: if current_value == old_values[field_name]: return do_invalidation = True except: do_invalidation = False if do_invalidation: if field_name in self.invalidation_todo: for info in self.invalidation_todo[field_name]: unqualified_variable = info['target'] if info['context']['is_generic'] or len(info['context']['iterators']) > 0: if info['context']['is_generic']: unqualified_variable = re.sub('^x', info['context']['generic'], info['target']) for index_num, index_var in enumerate(['i', 'j', 'k', 'l', 'm', 'n']): if index_num >= len(info['context']['iterators']): break unqualified_variable = re.sub(r'\[' + index_var + '\]', '[' + info['context']['iterators'][index_num] + ']', unqualified_variable) unqualified_variable = unqualified_name(unqualified_variable, the_user_dict) try: exec("_internal['dirty'][" + repr(unqualified_variable) + "] = " + unqualified_variable, the_user_dict) except: continue try: exec("del " + unqualified_variable, the_user_dict) #logmessage("Interview.invalidate_dependencies: deleted " + unqualified_variable) except: pass if field_name in self.onchange_todo: if 'alpha' not in the_user_dict: self.load_util(the_user_dict) for info in self.onchange_todo[field_name]: if info['context']['is_generic'] or len(info['context']['iterators']) > 0: backup_vars = make_backup_vars(the_user_dict) if info['context']['is_generic']: try: the_user_dict['x'] = eval(info['context']['generic'], the_user_dict) except: restore_backup_vars(the_user_dict, backup_vars) continue failed = False for index_num, index_var in enumerate(['i', 'j', 'k', 'l', 'm', 'n']): if index_num >= len(info['context']['iterators']): break if index_var == info['context']['iterators'][index_num]: continue try: the_user_dict[index_var] = eval(info['context']['iterators'][index_num], the_user_dict) except: failed = True break if failed: restore_backup_vars(the_user_dict, backup_vars) continue else: backup_vars = None for code_to_run in info['target']: try: exec(code_to_run, the_user_dict) except Exception as err: logmessage("Exception raised by on change code: " + err.__class__.__name__ + ": " + str(err)) if backup_vars: restore_backup_vars(the_user_dict, backup_vars) def get_ml_store(self): if hasattr(self, 'ml_store'): return self.ml_store else: return self.standard_ml_store() def set_ml_store(self, ml_store): self.ml_store = ml_store def standard_ml_store(self): if self.source is None: ml_store = None else: ml_store = self.source.get_package() if ml_store is None: ml_store = '' else: ml_store += ':data/sources/' if self.source and self.source.path is not None: ml_store += 'ml-' + re.sub(r'\..*', '', re.sub(r'.*[/:]', '', self.source.path)) + '.json' else: ml_store += 'ml-default.json' return ml_store def get_bootstrap_theme(self): if self.bootstrap_theme is None: return None result = docassemble.base.functions.server.url_finder(self.bootstrap_theme, _package=self.source.package) return result def get_tags(self, the_user_dict): if 'tags' in the_user_dict['_internal']: return the_user_dict['_internal']['tags'] else: tags = set() for metadata in self.metadata: if 'tags' in metadata and isinstance(metadata['tags'], list): for tag in metadata['tags']: tags.add(tag) return tags def get_title(self, the_user_dict, status=None, converter=None): if converter is None: converter = lambda y: y mapping = (('title', 'full'), ('logo', 'logo'), ('short title', 'short'), ('tab title', 'tab'), ('subtitle', 'sub'), ('exit link', 'exit link'), ('exit label', 'exit label'), ('exit url', 'exit url'), ('submit', 'submit'), ('pre', 'pre'), ('post', 'post'), ('footer', 'footer'), ('continue button label', 'continue button label'), ('resume button label', 'resume button label'), ('back button label', 'back button label'), ('corner back button label', 'corner back button label'), ('under', 'under'), ('right', 'right'), ('logo', 'logo'), ('css class', 'css class'), ('table css class', 'table css class'), ('date format', 'date format'), ('time format', 'time format'), ('datetime format', 'datetime format'), ('title url', 'title url'), ('title url opens in other window', 'title url opens in other window')) title = dict() for title_name, title_abb in mapping: if '_internal' in the_user_dict and title_name in the_user_dict['_internal'] and the_user_dict['_internal'][title_name] is not None: title[title_abb] = str(the_user_dict['_internal'][title_name]).strip() elif status is not None and (title_name + ' text') in status.extras and status.extras[title_name + ' text'] is not None: if title_name in ('exit link', 'exit url', ('title url', 'title url'), ('title url opens in other window', 'title url opens in other window')): title[title_abb] = status.extras[title_name + ' text'] else: title[title_abb] = converter(status.extras[title_name + ' text'], title_name) the_user_dict['_internal'][title_name + ' default'] = title[title_abb] elif status is None and (title_name + ' default') in the_user_dict['_internal'] and the_user_dict['_internal'][title_name + ' default'] is not None: title[title_abb] = the_user_dict['_internal'][title_name + ' default'] base_lang = get_language() if base_lang in self.default_title: for key, val in self.default_title[base_lang].items(): if key not in title: title[key] = val if '*' in self.default_title: for key, val in self.default_title['*'].items(): if key not in title: title[key] = val return title def allowed_to_access(self, is_anonymous=False, has_roles=None): if isinstance(has_roles, list) and len(has_roles) == 0: has_roles = ['user'] roles = set() for metadata in self.metadata: if 'required privileges' in metadata: roles = set() privs = metadata['required privileges'] if isinstance(privs, list) or (hasattr(privs, 'instanceName') and hasattr(privs, 'elements') and isinstance(privs.elements, list)): for priv in privs: if isinstance(priv, str): roles.add(priv) elif isinstance(privs, str): roles.add(privs) if len(roles): if is_anonymous: if 'anonymous' in roles: return True return False if has_roles is not None: return len(set(roles).intersection(set(has_roles))) > 0 if is_anonymous: require_login = False for metadata in self.metadata: if 'require login' in metadata: require_login = True if metadata['require login'] else False if require_login: return False return True def allowed_to_initiate(self, is_anonymous=False, has_roles=None): if isinstance(has_roles, list) and len(has_roles) == 0: has_roles = ['user'] if not self.allowed_to_access(is_anonymous=is_anonymous, has_roles=has_roles): return False roles = set() is_none = False for metadata in self.metadata: if 'required privileges for initiating' in metadata: roles = set() is_none = False privs = metadata['required privileges for initiating'] if isinstance(privs, list) or (hasattr(privs, 'instanceName') and hasattr(privs, 'elements') and isinstance(privs.elements, list)): if len(privs) == 0: is_none = True else: for priv in privs: if isinstance(priv, str): roles.add(priv) elif isinstance(privs, str): roles.add(privs) elif isinstance(privs, NoneType): is_none = True if is_none: return False if len(roles): if is_anonymous: if 'anonymous' in roles: return True return False if has_roles is not None: return len(set(roles).intersection(set(has_roles))) > 0 return True def allowed_to_see_listed(self, is_anonymous=False, has_roles=None): if isinstance(has_roles, list) and len(has_roles) == 0: has_roles = ['user'] if not self.allowed_to_access(is_anonymous=is_anonymous, has_roles=has_roles): return False roles = set() for metadata in self.metadata: if 'required privileges for listing' in metadata: roles = set() privs = metadata['required privileges for listing'] if isinstance(privs, list) or (hasattr(privs, 'instanceName') and hasattr(privs, 'elements') and isinstance(privs.elements, list)): for priv in privs: if isinstance(priv, str): roles.add(priv) elif isinstance(privs, str): roles.add(privs) if len(roles): if is_anonymous: if 'anonymous' in roles: return True return False if has_roles is not None: return len(set(roles).intersection(set(has_roles))) > 0 if is_anonymous: require_login = False for metadata in self.metadata: if 'require login' in metadata: require_login = True if metadata['require login'] else False if require_login: return False return True def is_unlisted(self): unlisted = False for metadata in self.metadata: if 'unlisted' in metadata: unlisted = metadata['unlisted'] return unlisted def next_attachment_number(self): self.attachment_index += 1 return(self.attachment_index - 1) def next_number(self): self.question_index += 1 return(self.question_index - 1) def next_block_number(self): self.block_index += 1 return(self.block_index - 1) def read_from(self, source): if self.source is None: self.source = source #self.firstPath = source.path #self.rootDirectory = source.directory if hasattr(source, 'package') and source.package: source_package = source.package if source_package.startswith('docassemble.playground'): self.debug = True else: source_package = None if hasattr(source, 'path'): if source.path in self.includes: logmessage("Interview: source " + str(source.path) + " has already been included. Skipping.") return self.includes.add(source.path) #for document in yaml.safe_load_all(source.content): for source_code in document_match.split(source.content): source_code = remove_trailing_dots.sub('', source_code) source_code = fix_tabs.sub(' ', source_code) if source.testing: try: #logmessage("Package is " + str(source_package)) document = yaml.safe_load(source_code) if document is not None: question = Question(document, self, source=source, package=source_package, source_code=source_code) self.names_used.update(question.fields_used) except Exception as errMess: #sys.stderr.write(str(source_code) + "\n") try: logmessage('Interview: error reading YAML file ' + str(source.path) + '\n\nDocument source code was:\n\n---\n' + str(source_code) + '---\n\nError was:\n\n' + str(errMess)) except: try: logmessage('Interview: error reading YAML file ' + str(source.path) + '. Error was:\n\n' + str(errMess)) except: if isinstance(errMess, yaml.error.MarkedYAMLError): logmessage('Interview: error reading YAML file ' + str(source.path) + '. Error type was:\n\n' + errMess.problem) else: logmessage('Interview: error reading YAML file ' + str(source.path) + '. Error type was:\n\n' + errMess.__class__.__name__) self.success = False pass else: try: document = yaml.safe_load(source_code) except Exception as errMess: self.success = False #sys.stderr.write("Error: " + str(source_code) + "\n") #str(source_code) try: raise DAError('Error reading YAML file ' + str(source.path) + '\n\nDocument source code was:\n\n---\n' + str(source_code) + '---\n\nError was:\n\n' + str(errMess)) except (UnicodeDecodeError, UnicodeEncodeError): raise DAError('Error reading YAML file ' + str(source.path) + '\n\nDocument source code was:\n\n---\n' + str(source_code) + '---\n\nError was:\n\n' + str(errMess.__class__.__name__)) if document is not None: try: question = Question(document, self, source=source, package=source_package, source_code=source_code) self.names_used.update(question.fields_used) except SyntaxException as qError: self.success = False raise Exception("Syntax Exception: " + str(qError) + "\n\nIn file " + str(source.path) + " from package " + str(source_package) + ":\n" + str(source_code)) except CompileException as qError: self.success = False raise Exception("Compile Exception: " + str(qError) + "\n\nIn file " + str(source.path) + " from package " + str(source_package) + ":\n" + str(source_code)) except SyntaxError as qError: self.success = False raise Exception("Syntax Error: " + str(qError) + "\n\nIn file " + str(source.path) + " from package " + str(source_package) + ":\n" + str(source_code)) for ordering in self.id_orderings: if ordering['type'] == 'supersedes' and hasattr(ordering['question'], 'number'): new_list = [ordering['question'].number] for question_id in ordering['supersedes']: if question_id in self.questions_by_id: new_list.append(self.questions_by_id[question_id].number) else: logmessage("warning: reference in a supersedes directive to an id " + question_id + " that does not exist in interview") elif ordering['type'] == 'order': new_list = list() for question_id in ordering['order']: if question_id in self.questions_by_id and hasattr(self.questions_by_id[question_id], 'number'): new_list.append(self.questions_by_id[question_id].number) else: logmessage("warning: reference in an order directive to id " + question_id + " that does not exist in interview") else: new_list = list() self.orderings.append(new_list) for ordering in self.orderings: for question_a in ordering: mode = 1 for question_b in ordering: if question_a == question_b: mode = -1 continue if question_b not in self.orderings_by_question: self.orderings_by_question[question_b] = dict() self.orderings_by_question[question_b][question_a] = mode #logmessage(repr(self.orderings_by_question)) self.sorter = self.make_sorter() if len(self.images) > 0 or get_config('default icons', 'font awesome') in ('material icons', 'font awesome'): self.scan_for_emojis = True for metadata in self.metadata: if 'social' in metadata and isinstance(metadata['social'], dict): if 'image' in metadata['social'] and isinstance(metadata['social']['image'], str): metadata['social']['image'] = docassemble.base.functions.server.url_finder(metadata['social']['image'], _package=metadata['_origin_package'], _external=True) if metadata['social']['image'] is None: logmessage("Invalid image reference in social meta tags") del metadata['social']['image'] for key, subkey in (('og', 'image'), ('twitter', 'image')): if key in metadata['social'] and isinstance(metadata['social'][key], dict) and subkey in metadata['social'][key] and isinstance(metadata['social'][key][subkey], str): metadata['social'][key][subkey] = docassemble.base.functions.server.url_finder(metadata['social'][key][subkey], _package=metadata['_origin_package'], _external=True) if metadata['social'][key][subkey] is None: logmessage("Invalid image reference in social meta tags") del metadata['social'][key][subkey] for key, val in metadata['social'].items(): if isinstance(val, dict): for subkey, subval in val.items(): if isinstance(subval, str): metadata['social'][key][subkey] = subval.replace('\n', ' ').replace('"', '&quot;').strip() elif isinstance(val, str): metadata['social'][key] = val.replace('\n', ' ').replace('"', '&quot;').strip() for key, val in metadata.items(): if key in self.consolidated_metadata and isinstance(self.consolidated_metadata[key], dict) and isinstance(val, dict): recursive_update(self.consolidated_metadata[key], val) else: self.consolidated_metadata[key] = val mapping = (('title', 'full'), ('logo', 'logo'), ('short title', 'short'), ('tab title', 'tab'), ('subtitle', 'sub'), ('exit link', 'exit link'), ('exit label', 'exit label'), ('exit url', 'exit url'), ('submit', 'submit'), ('pre', 'pre'), ('post', 'post'), ('footer', 'footer'), ('help label', 'help label'), ('continue button label', 'continue button label'), ('resume button label', 'resume button label'), ('back button label', 'back button label'), ('corner back button label', 'corner back button label'), ('right', 'right'), ('under', 'under'), ('submit', 'submit'), ('css class', 'css class'), ('table css class', 'table css class'), ('date format', 'date format'), ('time format', 'time format'), ('datetime format', 'datetime format'), ('title url', 'title url'), ('title url opens in other window', 'title url opens in other window')) self.default_title = {'*': dict()} for metadata in self.metadata: for title_name, title_abb in mapping: if metadata.get(title_name, None) is not None: if isinstance(metadata[title_name], dict): for lang, val in metadata[title_name].items(): if lang not in self.default_title: self.default_title[lang] = dict() self.default_title[lang][title_abb] = str(val).strip() else: self.default_title['*'][title_abb] = str(metadata[title_name]).strip() for lang, parts in docassemble.base.functions.server.main_page_parts.items(): if lang not in self.default_title: self.default_title[lang] = dict() for title_name, title_abb in mapping: if title_abb in self.default_title[lang]: continue if parts.get('main page ' + title_name, '') != '': self.default_title[lang][title_abb] = parts['main page ' + title_name].strip() def make_sorter(self): lookup_dict = self.orderings_by_question class K: def __init__(self, obj, *args): self.obj = obj.number self.lookup = lookup_dict def __lt__(self, other): if self.obj == other.obj: return False if self.obj in self.lookup and other.obj in self.lookup[self.obj] and self.lookup[self.obj][other.obj] == -1: return True return False def __gt__(self, other): if self.obj == other.obj: return False if self.obj in self.lookup and other.obj in self.lookup[self.obj] and self.lookup[self.obj][other.obj] == 1: return True return False def __eq__(self, other): if self.obj == other.obj or self.obj not in self.lookup or other.obj not in self.lookup: return True return False def __le__(self, other): if self.obj == other.obj or self.obj not in self.lookup or other.obj not in self.lookup: return True if self.lookup[self.obj][other.obj] == -1: return True return False def __ge__(self, other): if self.obj == other.obj or self.obj not in self.lookup or other.obj not in self.lookup: return True if self.lookup[self.obj][other.obj] == 1: return True return False def __ne__(self, other): if self.obj == other.obj or self.obj not in self.lookup or other.obj not in self.lookup: return False return True return K def sort_with_orderings(self, the_list): if len(the_list) <= 1: return the_list result = sorted(the_list, key=self.sorter) # logmessage(repr([y for y in reversed([x.number for x in result])])) return reversed(result) def processed_helptext(self, the_user_dict, language): result = list() if language in self.helptext: for source in self.helptext[language]: help_item = dict() help_item['from'] = source['from'] if source['label'] is None: help_item['label'] = None else: help_item['label'] = source['label'].text(the_user_dict) if source['heading'] is None: help_item['heading'] = None else: help_item['heading'] = source['heading'].text(the_user_dict) if source['audiovideo'] is None: help_item['audiovideo'] = None else: help_item['audiovideo'] = process_audio_video_list(source['audiovideo'], the_user_dict) help_item['content'] = source['content'].text(the_user_dict) result.append(help_item) return result def populate_non_pickleable(self, user_dict_copy): if not self.imports_util and not self.consolidated_metadata.get('suppress loading util', False): exec(import_util, user_dict_copy) for question in self.questions_list: if question.question_type == 'imports': for module_name in question.module_list: if module_name.startswith('.'): exec('import ' + str(question.package) + module_name, user_dict_copy) else: exec('import ' + module_name, user_dict_copy) if question.question_type == 'modules': for module_name in question.module_list: if module_name.startswith('.'): exec('from ' + str(question.package) + module_name + ' import *', user_dict_copy) else: exec('from ' + module_name + ' import *', user_dict_copy) def assemble(self, user_dict, interview_status=None, old_user_dict=None, force_question=None): #sys.stderr.write("assemble\n") user_dict['_internal']['tracker'] += 1 if interview_status is None: interview_status = InterviewStatus() #if interview_status.current_info['url'] is not None: # user_dict['_internal']['url'] = interview_status.current_info['url'] interview_status.set_tracker(user_dict['_internal']['tracker']) #docassemble.base.functions.reset_local_variables() interview_status.current_info.update({'default_role': self.default_role}) docassemble.base.functions.this_thread.misc['reconsidered'] = set() docassemble.base.functions.this_thread.current_package = self.source.package docassemble.base.functions.this_thread.current_info = interview_status.current_info docassemble.base.functions.this_thread.interview = self docassemble.base.functions.this_thread.interview_status = interview_status docassemble.base.functions.this_thread.internal = user_dict['_internal'] if user_dict['nav'].sections is None: user_dict['nav'].sections = self.sections if hasattr(self, 'sections_progressive'): user_dict['nav'].progressive = self.sections_progressive if hasattr(self, 'sections_auto_open'): user_dict['nav'].auto_open = self.sections_auto_open for question in self.questions_list: if question.question_type == 'imports': for module_name in question.module_list: if module_name.startswith('.'): exec('import ' + str(question.package) + module_name, user_dict) else: exec('import ' + module_name, user_dict) if question.question_type == 'modules': for module_name in question.module_list: if module_name.startswith('.'): exec('from ' + str(question.package) + module_name + ' import *', user_dict) else: exec('from ' + module_name + ' import *', user_dict) if question.question_type == 'reset': for var in question.reset_list: if complications.search(var): try: exec('del ' + str(var), user_dict) except: pass elif var in user_dict: del user_dict[var] if 'x' in user_dict and user_dict['x'].__class__.__name__ in self.reconsider_generic: for var in self.reconsider_generic[user_dict['x'].__class__.__name__]: try: exec('del ' + str(var), user_dict) except: pass for var in self.reconsider: if complications.search(var): try: exec('del ' + str(var), user_dict) except: pass elif var in user_dict: del user_dict[var] session_uid = interview_status.current_info['user']['session_uid'] device_id = interview_status.current_info['user']['device_id'] user_id = str(interview_status.current_info['user']['the_user_id']) if 'session_local' not in user_dict['_internal']: ### take out after a time user_dict['_internal']['session_local'] = dict() user_dict['_internal']['device_local'] = dict() user_dict['_internal']['user_local'] = dict() if session_uid not in user_dict['_internal']['session_local'] or device_id not in user_dict['_internal']['device_local'] or user_id not in user_dict['_internal']['user_local']: exec('from docassemble.base.core import DASessionLocal, DADeviceLocal, DAUserLocal') if session_uid not in user_dict['_internal']['session_local']: user_dict['_internal']['session_local'][session_uid] = eval("DASessionLocal()") if device_id not in user_dict['_internal']['device_local']: user_dict['_internal']['device_local'][device_id] = eval("DADeviceLocal()") if user_id not in user_dict['_internal']['user_local']: user_dict['_internal']['user_local'][user_id] = eval("DAUserLocal()") user_dict['session_local'] = user_dict['_internal']['session_local'][session_uid] user_dict['device_local'] = user_dict['_internal']['device_local'][device_id] user_dict['user_local'] = user_dict['_internal']['user_local'][user_id] number_loops = 0 variables_sought = set() try: while True: number_loops += 1 if number_loops > self.loop_limit: docassemble.base.functions.wrap_up(user_dict) raise DAError("There appears to be a circularity. Variables involved: " + ", ".join(variables_sought) + ".") docassemble.base.functions.reset_gathering_mode() if 'action' in interview_status.current_info: #logmessage("assemble: there is an action in the current_info: " + repr(interview_status.current_info['action'])) if interview_status.current_info['action'] in ('_da_list_remove', '_da_list_add', '_da_list_complete'): for the_key in ('list', 'item', 'items'): if the_key in interview_status.current_info['arguments']: if illegal_variable_name(interview_status.current_info['arguments'][the_key]): raise DAError("Invalid name " + interview_status.current_info['arguments'][the_key]) interview_status.current_info['action_' + the_key] = eval(interview_status.current_info['arguments'][the_key], user_dict) if interview_status.current_info['action'] in ('_da_dict_remove', '_da_dict_add', '_da_dict_complete'): for the_key in ('dict', 'item', 'items'): if the_key in interview_status.current_info['arguments']: if illegal_variable_name(interview_status.current_info['arguments'][the_key]): raise DAError("Invalid name " + interview_status.current_info['arguments'][the_key]) interview_status.current_info['action_' + the_key] = eval(interview_status.current_info['arguments'][the_key], user_dict) #else: # logmessage("assemble: there is no action in the current_info") try: if not self.imports_util: if self.consolidated_metadata.get('suppress loading util', False): exec(import_process_action, user_dict) elif 'alpha' not in user_dict: exec(import_util, user_dict) if force_question is not None: if self.debug: interview_status.seeking.append({'question': question, 'reason': 'multiple choice question', 'time': time.time()}) docassemble.base.functions.this_thread.current_question = force_question interview_status.populate(force_question.ask(user_dict, old_user_dict, 'None', [], None, None)) raise MandatoryQuestion() if not self.calls_process_action: exec(run_process_action, user_dict) for question in self.questions_list: if question.question_type == 'code' and (question.is_initial or (question.initial_code is not None and eval(question.initial_code, user_dict))): #logmessage("Running some initial code:\n\n" + question.sourcecode) if self.debug: interview_status.seeking.append({'question': question, 'reason': 'initial', 'time': time.time()}) docassemble.base.functions.this_thread.current_question = question exec_with_trap(question, user_dict) continue if question.name and question.name in user_dict['_internal']['answered']: #logmessage("Skipping " + question.name + " because answered") continue if question.question_type in ("objects_from_file", "objects_from_file_da"): if self.debug: interview_status.seeking.append({'question': question, 'reason': 'objects from file', 'time': time.time()}) if question.question_type == "objects_from_file_da": use_objects = True else: use_objects = False for keyvalue in question.objects_from_file: for variable, the_file in keyvalue.items(): exec(import_core, user_dict) command = variable + ' = objects_from_file("' + str(the_file) + '", name=' + repr(variable) + ', use_objects=' + repr(use_objects) + ', package=' + repr(question.package) + ')' #logmessage("Running " + command) exec(command, user_dict) question.mark_as_answered(user_dict) if question.is_mandatory or (question.mandatory_code is not None and eval(question.mandatory_code, user_dict)): if question.question_type == "data": if self.debug: interview_status.seeking.append({'question': question, 'reason': 'data', 'time': time.time()}) string = from_safeid(question.fields[0].saveas) + ' = ' + repr(recursive_eval_dataobject(question.fields[0].data, user_dict)) exec(string, user_dict) question.mark_as_answered(user_dict) if question.question_type == "data_da": if self.debug: interview_status.seeking.append({'question': question, 'reason': 'data', 'time': time.time()}) exec(import_core, user_dict) string = from_safeid(question.fields[0].saveas) + ' = objects_from_structure(' + repr(recursive_eval_dataobject(question.fields[0].data, user_dict)) + ', root=' + repr(from_safeid(question.fields[0].saveas)) + ')' exec(string, user_dict) question.mark_as_answered(user_dict) if question.question_type == "data_from_code": if self.debug: interview_status.seeking.append({'question': question, 'reason': 'data', 'time': time.time()}) string = from_safeid(question.fields[0].saveas) + ' = ' + repr(recursive_eval_data_from_code(question.fields[0].data, user_dict)) exec(string, user_dict) question.mark_as_answered(user_dict) if question.question_type == "data_from_code_da": if self.debug: interview_status.seeking.append({'question': question, 'reason': 'data', 'time': time.time()}) exec(import_core, user_dict) string = from_safeid(question.fields[0].saveas) + ' = objects_from_structure(' + repr(recursive_eval_data_from_code(question.fields[0].data, user_dict)) + ', root=' + repr(from_safeid(question.fields[0].saveas)) + ')' exec(string, user_dict) question.mark_as_answered(user_dict) if question.question_type == "objects": if self.debug: interview_status.seeking.append({'question': question, 'reason': 'objects', 'time': time.time()}) #logmessage("Going into objects") docassemble.base.functions.this_thread.current_question = question for keyvalue in question.objects: for variable in keyvalue: object_type_name = keyvalue[variable] user_dict["__object_type"] = eval(object_type_name, user_dict) if False and re.search(r"\.", variable): m = re.search(r"(.*)\.(.*)", variable) variable = m.group(1) attribute = m.group(2) command = variable + ".initializeAttribute(" + repr(attribute) + ", __object_type)" #command = variable + "." + attribute + " = " + object_type + "()" #logmessage("Running " + command) exec(command, user_dict) else: if user_dict["__object_type"].__class__.__name__ == 'DAObjectPlusParameters': command = variable + ' = __object_type.object_type(' + repr(variable) + ', **__object_type.parameters)' else: command = variable + ' = __object_type(' + repr(variable) + ')' # command = variable + ' = ' + object_type + '(' + repr(variable) + ')' #logmessage("Running " + command) exec(command, user_dict) if "__object_type" in user_dict: del user_dict["__object_type"] question.mark_as_answered(user_dict) if question.question_type == 'code': if self.debug: interview_status.seeking.append({'question': question, 'reason': 'mandatory code', 'time': time.time()}) #logmessage("Running some code:\n\n" + question.sourcecode) #logmessage("Question name is " + question.name) docassemble.base.functions.this_thread.current_question = question exec_with_trap(question, user_dict) #logmessage("Code completed") if question.name: user_dict['_internal']['answered'].add(question.name) #logmessage("Question " + str(question.name) + " marked as answered") elif hasattr(question, 'content') and question.name: if self.debug: interview_status.seeking.append({'question': question, 'reason': 'mandatory question', 'time': time.time()}) if question.name and question.name in user_dict['_internal']['answers']: the_question = question.follow_multiple_choice(user_dict, interview_status, False, 'None', []) if self.debug and the_question is not question: interview_status.seeking.append({'question': the_question, 'reason': 'result of multiple choice', 'time': time.time()}) if the_question.question_type in ["code", "event_code"]: docassemble.base.functions.this_thread.current_question = the_question exec_with_trap(the_question, user_dict) interview_status.mark_tentative_as_answered(user_dict) continue elif hasattr(the_question, 'content'): interview_status.populate(the_question.ask(user_dict, old_user_dict, 'None', [], None, None)) interview_status.mark_tentative_as_answered(user_dict) else: raise DAError("An embedded question can only be a code block or a regular question block. The question type was " + getattr(the_question, 'question_type', 'unknown')) else: interview_status.populate(question.ask(user_dict, old_user_dict, 'None', [], None, None)) if interview_status.question.question_type == 'continue': user_dict['_internal']['answered'].add(question.name) else: raise MandatoryQuestion() except ForcedReRun as the_exception: continue except (NameError, DAAttributeError, DAIndexError) as the_exception: if 'pending_error' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['pending_error'] #logmessage("Error in " + the_exception.__class__.__name__ + " is " + str(the_exception)) if self.debug and docassemble.base.functions.this_thread.evaluation_context == 'docx': logmessage("NameError exception during document assembly: " + str(the_exception)) docassemble.base.functions.reset_context() seeking_question = False if isinstance(the_exception, ForcedNameError): #logmessage("assemble: got a ForcedNameError for " + str(the_exception.name)) follow_mc = False seeking_question = True #logmessage("next action is " + repr(the_exception.next_action)) if the_exception.next_action is not None and not interview_status.checkin: if 'event_stack' not in user_dict['_internal']: user_dict['_internal']['event_stack'] = dict() if session_uid not in user_dict['_internal']['event_stack']: user_dict['_internal']['event_stack'][session_uid] = list() new_items = list() for new_item in the_exception.next_action: already_there = False for event_item in user_dict['_internal']['event_stack'][session_uid]: if (isinstance(new_item, dict) and event_item['action'] == new_item['action']) or (isinstance(new_item, str) and event_item['action'] == new_item): already_there = True break if not already_there: new_items.append(new_item) if len(new_items): user_dict['_internal']['event_stack'][session_uid] = new_items + user_dict['_internal']['event_stack'][session_uid] #interview_status.next_action.extend(the_exception.next_action) if the_exception.name.startswith('_da_'): continue docassemble.base.functions.this_thread.misc['forgive_missing_question'] = [the_exception.name] if the_exception.arguments is not None: docassemble.base.functions.this_thread.current_info.update(dict(action=the_exception.name, arguments=the_exception.arguments)) missingVariable = the_exception.name else: follow_mc = True missingVariable = extract_missing_name(the_exception) variables_sought.add(missingVariable) question_result = self.askfor(missingVariable, user_dict, old_user_dict, interview_status, seeking=interview_status.seeking, follow_mc=follow_mc, seeking_question=seeking_question) if question_result['type'] in ('continue', 're_run'): continue elif question_result['type'] == 'refresh': pass else: interview_status.populate(question_result) break except UndefinedError as the_exception: #logmessage("UndefinedError") if self.debug and docassemble.base.functions.this_thread.evaluation_context == 'docx': #logmessage(the_exception.__class__.__name__ + " exception during document assembly: " + str(the_exception) + "\n" + traceback.format_exc()) logmessage(the_exception.__class__.__name__ + " exception during document assembly: " + str(the_exception) + "\n") docassemble.base.functions.reset_context() missingVariable = extract_missing_name(the_exception) #logmessage("extracted " + missingVariable) variables_sought.add(missingVariable) question_result = self.askfor(missingVariable, user_dict, old_user_dict, interview_status, seeking=interview_status.seeking, follow_mc=True) if question_result['type'] in ('continue', 're_run'): continue elif question_result['type'] == 'refresh': pass else: interview_status.populate(question_result) break except CommandError as qError: #logmessage("CommandError") docassemble.base.functions.reset_context() question_data = dict(command=qError.return_type, url=qError.url, sleep=qError.sleep) new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" interview_status.populate(new_question.ask(user_dict, old_user_dict, 'None', [], None, None)) break except ResponseError as qError: docassemble.base.functions.reset_context() #logmessage("Trapped ResponseError") question_data = dict(extras=dict()) if hasattr(qError, 'response') and qError.response is not None: question_data['response'] = qError.response elif hasattr(qError, 'binaryresponse') and qError.binaryresponse is not None: question_data['binaryresponse'] = qError.binaryresponse elif hasattr(qError, 'filename') and qError.filename is not None: question_data['response filename'] = qError.filename elif hasattr(qError, 'url') and qError.url is not None: question_data['redirect url'] = qError.url elif hasattr(qError, 'all_variables') and qError.all_variables: if hasattr(qError, 'include_internal'): question_data['include_internal'] = qError.include_internal question_data['content type'] = 'application/json' question_data['all_variables'] = True elif hasattr(qError, 'nullresponse') and qError.nullresponse: question_data['null response'] = qError.nullresponse elif hasattr(qError, 'sleep') and qError.sleep: question_data['sleep'] = qError.sleep if hasattr(qError, 'content_type') and qError.content_type: question_data['content type'] = qError.content_type if hasattr(qError, 'response_code') and qError.response_code: question_data['response code'] = qError.response_code # new_interview = copy.deepcopy(self) # if self.source is None: # new_interview_source = InterviewSourceString(content='') # else: # new_interview_source = self.source new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" #the_question = new_question.follow_multiple_choice(user_dict) interview_status.populate(new_question.ask(user_dict, old_user_dict, 'None', [], None, None)) break except BackgroundResponseError as qError: docassemble.base.functions.reset_context() #logmessage("Trapped BackgroundResponseError") question_data = dict(extras=dict()) if hasattr(qError, 'backgroundresponse'): question_data['backgroundresponse'] = qError.backgroundresponse if hasattr(qError, 'sleep'): question_data['sleep'] = qError.sleep new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" interview_status.populate(new_question.ask(user_dict, old_user_dict, 'None', [], None, None)) break except BackgroundResponseActionError as qError: docassemble.base.functions.reset_context() #logmessage("Trapped BackgroundResponseActionError") question_data = dict(extras=dict()) if hasattr(qError, 'action'): question_data['action'] = qError.action new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" interview_status.populate(new_question.ask(user_dict, old_user_dict, 'None', [], None, None)) break # except SendFileError as qError: # #logmessage("Trapped SendFileError") # question_data = dict(extras=dict()) # if hasattr(qError, 'filename') and qError.filename is not None: # question_data['response filename'] = qError.filename # if hasattr(qError, 'content_type') and qError.content_type: # question_data['content type'] = qError.content_type # new_interview_source = InterviewSourceString(content='') # new_interview = new_interview_source.get_interview() # new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) # new_question.name = "Question_Temp" # interview_status.populate(new_question.ask(user_dict, old_user_dict, 'None', [], None)) # break except QuestionError as qError: #logmessage("QuestionError") docassemble.base.functions.reset_context() question_data = dict() if qError.question: question_data['question'] = qError.question if qError.subquestion: question_data['subquestion'] = qError.subquestion if qError.reload: question_data['reload'] = qError.reload if qError.dead_end: pass elif qError.buttons: question_data['buttons'] = qError.buttons else: buttons = list() if qError.show_exit is not False and not (qError.show_leave is True and qError.show_exit is None): exit_button = {word('Exit'): 'exit'} if qError.url: exit_button.update(dict(url=qError.url)) buttons.append(exit_button) if qError.show_leave: leave_button = {word('Leave'): 'leave'} if qError.url: leave_button.update(dict(url=qError.url)) buttons.append(leave_button) if qError.show_restart is not False: buttons.append({word('Restart'): 'restart'}) if len(buttons): question_data['buttons'] = buttons new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" new_question.embeds = True # will this be a problem? Maybe, since the question name can vary by thread. the_question = new_question.follow_multiple_choice(user_dict, interview_status, False, 'None', []) interview_status.populate(the_question.ask(user_dict, old_user_dict, 'None', [], None, None)) break except AttributeError as the_error: #logmessage("Regular attributeerror") docassemble.base.functions.reset_context() #logmessage(str(the_error.args)) docassemble.base.functions.wrap_up(user_dict) raise DAError('Got error ' + str(the_error) + " " + traceback.format_exc() + "\nHistory was " + pprint.pformat(interview_status.seeking)) except MandatoryQuestion: #logmessage("MandatoryQuestion") docassemble.base.functions.reset_context() break except CodeExecute as code_error: #logmessage("CodeExecute") docassemble.base.functions.reset_context() #if self.debug: # interview_status.seeking.append({'question': question, 'reason': 'mandatory code'}) exec(code_error.compute, user_dict) code_error.question.mark_as_answered(user_dict) except SyntaxException as qError: #logmessage("SyntaxException") docassemble.base.functions.reset_context() the_question = None try: the_question = question except: pass docassemble.base.functions.wrap_up(user_dict) if the_question is not None: raise DAError(str(qError) + "\n\n" + str(self.idebug(self.data_for_debug))) raise DAError("no question available: " + str(qError)) except CompileException as qError: #logmessage("CompileException") docassemble.base.functions.reset_context() the_question = None try: the_question = question except: pass docassemble.base.functions.wrap_up(user_dict) if the_question is not None: raise DAError(str(qError) + "\n\n" + str(self.idebug(self.data_for_debug))) raise DAError("no question available: " + str(qError)) else: docassemble.base.functions.wrap_up(user_dict) raise DAErrorNoEndpoint('Docassemble has finished executing all code blocks marked as initial or mandatory, and finished asking all questions marked as mandatory (if any). It is a best practice to end your interview with a question that says goodbye and offers an Exit button.') except Exception as the_error: #logmessage("Untrapped exception") if self.debug: the_error.interview = self the_error.interview_status = interview_status the_error.user_dict = docassemble.base.functions.serializable_dict(user_dict) if not hasattr(the_error, '__traceback__'): cl, exc, tb = sys.exc_info() the_error.__traceback__ = tb del cl del exc del tb raise the_error if docassemble.base.functions.this_thread.prevent_going_back: interview_status.can_go_back = False docassemble.base.functions.wrap_up(user_dict) if self.debug: interview_status.seeking.append({'done': True, 'time': time.time()}) #return(pickleable_objects(user_dict)) def load_util(self, the_user_dict): if not self.imports_util: if not self.consolidated_metadata.get('suppress loading util', False): exec(import_util, the_user_dict) def askfor(self, missingVariable, user_dict, old_user_dict, interview_status, **kwargs): seeking_question = kwargs.get('seeking_question', False) variable_stack = kwargs.get('variable_stack', set()) questions_tried = kwargs.get('questions_tried', dict()) recursion_depth = kwargs.get('recursion_depth', 0) recursion_depth += 1 language = get_language() current_question = None follow_mc = kwargs.get('follow_mc', True) seeking = kwargs.get('seeking', list()) if self.debug: seeking.append({'variable': missingVariable, 'time': time.time()}) if recursion_depth > self.recursion_limit: raise DAError("There appears to be an infinite loop. Variables in stack are " + ", ".join(sorted(variable_stack)) + ".") #logmessage("askfor: I don't have " + str(missingVariable) + " for language " + str(language)) #sys.stderr.write("I don't have " + str(missingVariable) + " for language " + str(language) + "\n") origMissingVariable = missingVariable docassemble.base.functions.set_current_variable(origMissingVariable) # if missingVariable in variable_stack: # raise DAError("Infinite loop: " + missingVariable + " already looked for, where stack is " + str(variable_stack)) # variable_stack.add(missingVariable) found_generic = False realMissingVariable = missingVariable totry = list() variants = list() level_dict = dict() generic_dict = dict() expression_as_list = [x for x in match_brackets_or_dot.split(missingVariable) if x != ''] expression_as_list.append('') recurse_indices(expression_as_list, list_of_indices, [], variants, level_dict, [], generic_dict, []) #logmessage("variants: " + repr(variants)) for variant in variants: totry.append({'real': missingVariable, 'vari': variant, 'iterators': level_dict[variant], 'generic': generic_dict[variant], 'is_generic': 0 if generic_dict[variant] == '' else 1, 'num_dots': variant.count('.'), 'num_iterators': variant.count('[')}) totry = sorted(sorted(sorted(sorted(totry, key=lambda x: len(x['iterators'])), key=lambda x: x['num_iterators'], reverse=True), key=lambda x: x['num_dots'], reverse=True), key=lambda x: x['is_generic']) #logmessage("ask_for: totry is " + "\n".join([x['vari'] for x in totry])) questions_to_try = list() for mv in totry: realMissingVariable = mv['real'] missingVariable = mv['vari'] #logmessage("Trying missingVariable " + missingVariable + " and realMissingVariable " + realMissingVariable) if mv['is_generic']: #logmessage("Testing out generic " + mv['generic']) try: root_evaluated = eval(mv['generic'], user_dict) #logmessage("Root was evaluated") classes_to_look_for = [type(root_evaluated).__name__] recursive_add_classes(classes_to_look_for, type(root_evaluated)) for generic_object in classes_to_look_for: #logmessage("Looking for generic object " + generic_object + " for " + missingVariable) if generic_object in self.generic_questions and missingVariable in self.generic_questions[generic_object] and (language in self.generic_questions[generic_object][missingVariable] or '*' in self.generic_questions[generic_object][missingVariable]): for lang in [language, '*']: if lang in self.generic_questions[generic_object][missingVariable]: for the_question_to_use in self.sort_with_orderings(self.generic_questions[generic_object][missingVariable][lang]): questions_to_try.append((the_question_to_use, True, mv['generic'], mv['iterators'], missingVariable, generic_object)) except: pass continue # logmessage("askfor: questions to try is " + str(questions_to_try)) if missingVariable in self.questions: for lang in [language, '*']: # logmessage("lang is " + lang) if lang in self.questions[missingVariable]: for the_question in self.sort_with_orderings(self.questions[missingVariable][lang]): questions_to_try.append((the_question, False, 'None', mv['iterators'], missingVariable, None)) # logmessage("askfor: questions to try is " + str(questions_to_try)) num_cycles = 0 missing_var = "_unknown" while True: num_cycles += 1 if num_cycles > self.loop_limit: raise DAError("Infinite loop detected while looking for " + missing_var) a_question_was_skipped = False docassemble.base.functions.reset_gathering_mode(origMissingVariable) #logmessage("Starting the while loop") try: for the_question, is_generic, the_x, iterators, missing_var, generic_object in questions_to_try: #logmessage("In for loop with question " + the_question.name) if missing_var in questions_tried and the_question in questions_tried[missing_var]: a_question_was_skipped = True # logmessage("Skipping question " + the_question.name) continue current_question = the_question if self.debug: seeking.append({'question': the_question, 'reason': 'considering', 'time': time.time()}) question = current_question if len(question.condition) > 0: if is_generic: if the_x != 'None': exec("x = " + the_x, user_dict) if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], user_dict) condition_success = True for condition in question.condition: if not eval(condition, user_dict): condition_success = False break if not condition_success: continue if follow_mc: question = the_question.follow_multiple_choice(user_dict, interview_status, is_generic, the_x, iterators) else: question = the_question if question is not current_question: if len(question.condition) > 0: if is_generic: if the_x != 'None': exec("x = " + the_x, user_dict) if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], user_dict) condition_success = True for condition in question.condition: if not eval(condition, user_dict): condition_success = False break if not condition_success: continue if question.question_type == 'fields': field_id = safeid(missing_var) if is_generic: if the_x != 'None': exec("x = " + the_x, user_dict) if len(iterators): for indexno in range(len(iterators)): exec(list_of_indices[indexno] + " = " + iterators[indexno], user_dict) skip_question = None for field in question.fields: if hasattr(field, 'showif_code') and hasattr(field, 'saveas') and field.saveas == field_id: docassemble.base.functions.this_thread.misc['current_field'] = field.number result = eval(field.showif_code, user_dict) if hasattr(field, 'extras') and 'show_if_sign_code' in field.extras and field.extras['show_if_sign_code'] == 0: if result: if skip_question is not False: skip_question = True else: skip_question = False else: if not result: if skip_question is not False: skip_question = True else: skip_question = False if skip_question: continue if self.debug: if question.question_type in ('signature', 'yesno', 'noyes', 'yesnomaybe', 'noyesmaybe', 'multiple_choice', 'settrue', 'fields', 'review', 'deadend'): seeking.append({'question': question, 'reason': 'asking', 'time': time.time()}) else: seeking.append({'question': question, 'reason': 'running', 'time': time.time()}) if question.question_type == "data": question.exec_setup(is_generic, the_x, iterators, user_dict) old_values = question.get_old_values(user_dict) string = from_safeid(question.fields[0].saveas) + ' = ' + repr(recursive_eval_dataobject(question.fields[0].data, user_dict)) exec(string, user_dict) question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "data_da": question.exec_setup(is_generic, the_x, iterators, user_dict) old_values = question.get_old_values(user_dict) exec(import_core, user_dict) string = from_safeid(question.fields[0].saveas) + ' = objects_from_structure(' + repr(recursive_eval_dataobject(question.fields[0].data, user_dict)) + ', root=' + repr(from_safeid(question.fields[0].saveas)) + ')' exec(string, user_dict) question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "data_from_code": question.exec_setup(is_generic, the_x, iterators, user_dict) old_values = question.get_old_values(user_dict) string = from_safeid(question.fields[0].saveas) + ' = ' + repr(recursive_eval_data_from_code(question.fields[0].data, user_dict)) exec(string, user_dict) question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "data_from_code_da": question.exec_setup(is_generic, the_x, iterators, user_dict) old_values = question.get_old_values(user_dict) exec(import_core, user_dict) string = from_safeid(question.fields[0].saveas) + ' = objects_from_structure(' + repr(recursive_eval_data_from_code(question.fields[0].data, user_dict)) + ', root=' + repr(from_safeid(question.fields[0].saveas)) + ')' exec(string, user_dict) question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "objects": question.exec_setup(is_generic, the_x, iterators, user_dict) success = False old_variable = None docassemble.base.functions.this_thread.current_question = question for keyvalue in question.objects: # logmessage("In a for loop for keyvalue") for variable, object_type_name in keyvalue.items(): if variable != missing_var: continue was_defined = False try: exec("__oldvariable__ = " + str(missing_var), user_dict) old_variable = user_dict['__oldvariable__'] exec("del " + str(missing_var), user_dict) was_defined = True except: pass user_dict["__object_type"] = eval(object_type_name, user_dict) if re.search(r"\.", variable): m = re.search(r"(.*)\.(.*)", variable) variable = m.group(1) attribute = m.group(2) # command = variable + "." + attribute + " = " + object_type + "()" command = variable + ".initializeAttribute(" + repr(attribute) + ", __object_type)" # logmessage("Running " + command) exec(command, user_dict) else: if user_dict["__object_type"].__class__.__name__ == 'DAObjectPlusParameters': command = variable + ' = __object_type.object_type(' + repr(variable) + ', **__object_type.parameters)' else: command = variable + ' = __object_type(' + repr(variable) + ')' # logmessage("Running " + command) exec(command, user_dict) if "__object_type" in user_dict: del user_dict["__object_type"] if missing_var in variable_stack: variable_stack.remove(missing_var) try: eval(missing_var, user_dict) success = True # logmessage("the variable was defined") break except: # logmessage("the variable was not defined") if was_defined: try: exec(str(missing_var) + " = __oldvariable__", user_dict) #exec("__oldvariable__ = " + str(missing_var), user_dict) exec("del __oldvariable__", user_dict) except: pass continue if success: # logmessage("success, break") break # logmessage("testing for success") if not success: # logmessage("no success, continue") continue #question.mark_as_answered(user_dict) # logmessage("pop current variable") question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() if old_variable is not None: question.invalidate_dependencies_of_variable(user_dict, missing_var, old_variable) # logmessage("Returning") return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "template": question.exec_setup(is_generic, the_x, iterators, user_dict) temp_vars = dict() if is_generic: if the_x != 'None': temp_vars['x'] = user_dict['x'] if len(iterators): for indexno in range(len(iterators)): temp_vars[list_of_indices[indexno]] = user_dict[list_of_indices[indexno]] if question.target is not None: return({'type': 'template', 'question_text': question.content.text(user_dict).rstrip(), 'subquestion_text': None, 'continue_label': None, 'audiovideo': None, 'decorations': None, 'help_text': None, 'attachments': None, 'question': question, 'selectcompute': dict(), 'defaults': dict(), 'hints': dict(), 'helptexts': dict(), 'extras': dict(), 'labels': dict(), 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.decorations is None: decoration_list = [] else: decoration_list = question.decorations actual_saveas = substitute_vars(from_safeid(question.fields[0].saveas), is_generic, the_x, iterators) #docassemble.base.functions.this_thread.template_vars.append(actual_saveas) found_object = False try: the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ == 'DALazyTemplate': found_object = True except: pass if not found_object: string = "from docassemble.base.core import DALazyTemplate" exec(string, user_dict) string = from_safeid(question.fields[0].saveas) + ' = DALazyTemplate(' + repr(actual_saveas) + ')' exec(string, user_dict) the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ != 'DALazyTemplate': raise DAError("askfor: failure to define template object") the_object.source_content = question.content the_object.source_subject = question.subcontent the_object.source_decorations = [dec['image'] for dec in decoration_list] the_object.userdict = user_dict the_object.tempvars = temp_vars question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "template_code": question.exec_setup(is_generic, the_x, iterators, user_dict) the_filenames = eval(question.compute, user_dict) if not isinstance(the_filenames, list): if hasattr(the_filenames, 'instanceName') and hasattr(the_filenames, 'elements') and isinstance(the_filenames.elements, list): the_filenames = the_filenames.elements else: the_filenames = [the_filenames] raw_content = '' for the_filename in the_filenames: the_orig_filename = the_filename if the_filename.__class__.__name__ in ('DAFile', 'DAFileList', 'DAFileCollection', 'DAStaticFile'): the_filename = the_filename.path() elif isinstance(the_filename, str): if re.search(r'^https?://', str(the_filename)): temp_template_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) try: urlretrieve(url_sanitize(str(the_filename)), temp_template_file.name) except Exception as err: raise DAError("askfor: error downloading " + str(the_filename) + ": " + str(err)) the_filename = temp_template_file.name else: the_filename = docassemble.base.functions.package_template_filename(the_filename, package=question.package) else: the_filename = None if the_filename is None or not os.path.isfile(the_filename): raise DAError("askfor: error obtaining template file from code: " + repr(the_orig_filename)) with open(the_filename, 'r', encoding='utf-8') as the_file: raw_content += the_file.read() temp_vars = dict() if is_generic: if the_x != 'None': temp_vars['x'] = user_dict['x'] if len(iterators): for indexno in range(len(iterators)): temp_vars[list_of_indices[indexno]] = user_dict[list_of_indices[indexno]] if question.decorations is None: decoration_list = [] else: decoration_list = question.decorations actual_saveas = substitute_vars(from_safeid(question.fields[0].saveas), is_generic, the_x, iterators) found_object = False try: the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ == 'DALazyTemplate': found_object = True except: pass if not found_object: string = "from docassemble.base.core import DALazyTemplate" exec(string, user_dict) string = from_safeid(question.fields[0].saveas) + ' = DALazyTemplate(' + repr(actual_saveas) + ')' exec(string, user_dict) the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ != 'DALazyTemplate': raise DAError("askfor: failure to define template object") the_object.source_content = TextObject(raw_content, question=question) the_object.source_subject = question.subcontent the_object.source_decorations = [dec['image'] for dec in decoration_list] the_object.userdict = user_dict the_object.tempvars = temp_vars question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == "table": question.exec_setup(is_generic, the_x, iterators, user_dict) temp_vars = dict() if is_generic: if the_x != 'None': temp_vars['x'] = user_dict['x'] if len(iterators): for indexno in range(len(iterators)): temp_vars[list_of_indices[indexno]] = user_dict[list_of_indices[indexno]] table_info = TableInfo() table_info.header = question.fields[0].extras['header'] table_info.is_editable = question.fields[0].extras['is_editable'] table_info.require_gathered = question.fields[0].extras['require_gathered'] table_info.show_incomplete = question.fields[0].extras['show_incomplete'] table_info.not_available_label = question.fields[0].extras['not_available_label'] table_info.row = question.fields[0].extras['row'] table_info.column = question.fields[0].extras['column'] table_info.indent = " " * (4 * int(question.fields[0].extras['indent'])) table_info.table_width = self.table_width table_info.empty_message = question.fields[0].extras['empty_message'] table_info.saveas = from_safeid(question.fields[0].saveas) actual_saveas = substitute_vars(table_info.saveas, is_generic, the_x, iterators) #docassemble.base.functions.this_thread.template_vars.append(actual_saveas) string = "from docassemble.base.core import DALazyTableTemplate" exec(string, user_dict) found_object = False try: the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ == 'DALazyTableTemplate': found_object = True except: pass if not found_object: string = from_safeid(question.fields[0].saveas) + ' = DALazyTableTemplate(' + repr(actual_saveas) + ')' exec(string, user_dict) the_object = eval(actual_saveas, user_dict) if the_object.__class__.__name__ != 'DALazyTableTemplate': raise DAError("askfor: failure to define template object") the_object.table_info = table_info the_object.userdict = user_dict the_object.tempvars = temp_vars #logmessage("Pop variable for table") question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type == 'attachments': question.exec_setup(is_generic, the_x, iterators, user_dict) old_values = question.get_old_values(user_dict) #logmessage("original missing variable is " + origMissingVariable) attachment_text = question.processed_attachments(user_dict, seeking_var=origMissingVariable, use_cache=False) if missing_var in variable_stack: variable_stack.remove(missing_var) try: eval(missing_var, user_dict) #question.mark_as_answered(user_dict) except Exception as err: logmessage("Problem with attachments block: " + err.__class__.__name__ + ": " + str(err)) continue question.post_exec(user_dict) docassemble.base.functions.pop_current_variable() question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) if question.question_type in ["code", "event_code"]: question.exec_setup(is_generic, the_x, iterators, user_dict) was_defined = False old_values = question.get_old_values(user_dict) try: exec("__oldvariable__ = " + str(missing_var), user_dict) exec("del " + str(missing_var), user_dict) was_defined = True except: pass if question.question_type == 'event_code': docassemble.base.functions.pop_event_stack(origMissingVariable) docassemble.base.functions.this_thread.current_question = question if was_defined: exec_with_trap(question, user_dict, old_variable=missing_var) else: exec_with_trap(question, user_dict) interview_status.mark_tentative_as_answered(user_dict) if missing_var in variable_stack: variable_stack.remove(missing_var) if question.question_type == 'event_code': docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) question.invalidate_dependencies(user_dict, old_values) if was_defined: exec("del __oldvariable__", user_dict) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) try: eval(missing_var, user_dict) if was_defined: exec("del __oldvariable__", user_dict) if seeking_question: continue #question.mark_as_answered(user_dict) docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) question.invalidate_dependencies(user_dict, old_values) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) except: if was_defined: try: exec(str(missing_var) + " = __oldvariable__", user_dict) #exec("__oldvariable__ = " + str(missing_var), user_dict) exec("del __oldvariable__", user_dict) except: pass continue else: interview_status.mark_tentative_as_answered(user_dict) if question.question_type == 'continue': continue return question.ask(user_dict, old_user_dict, the_x, iterators, missing_var, origMissingVariable) if a_question_was_skipped: raise DAError("Infinite loop: " + missingVariable + " already looked for, where stack is " + str(variable_stack)) if 'forgive_missing_question' in docassemble.base.functions.this_thread.misc and origMissingVariable in docassemble.base.functions.this_thread.misc['forgive_missing_question']: docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) if 'action' in docassemble.base.functions.this_thread.current_info and docassemble.base.functions.this_thread.current_info['action'] == origMissingVariable: del docassemble.base.functions.this_thread.current_info['action'] return({'type': 'continue', 'sought': origMissingVariable, 'orig_sought': origMissingVariable}) if self.options.get('use catchall', False) and not origMissingVariable.endswith('.value'): string = "from docassemble.base.core import DACatchAll" exec(string, user_dict) string = origMissingVariable + ' = DACatchAll(' + repr(origMissingVariable) + ')' exec(string, user_dict) docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) return({'type': 'continue', 'sought': origMissingVariable, 'orig_sought': origMissingVariable}) raise DAErrorMissingVariable("Interview has an error. There was a reference to a variable '" + origMissingVariable + "' that could not be looked up in the question file (for language '" + str(language) + "') or in any of the files incorporated by reference into the question file.", variable=origMissingVariable) except ForcedReRun as the_exception: docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) return({'type': 're_run', 'sought': origMissingVariable, 'orig_sought': origMissingVariable}) except (NameError, DAAttributeError, DAIndexError) as the_exception: if 'pending_error' in docassemble.base.functions.this_thread.misc: del docassemble.base.functions.this_thread.misc['pending_error'] #logmessage("Error in " + the_exception.__class__.__name__ + " is " + str(the_exception)) if self.debug and docassemble.base.functions.this_thread.evaluation_context == 'docx': logmessage("NameError exception during document assembly: " + str(the_exception)) docassemble.base.functions.reset_context() seeking_question = False if isinstance(the_exception, ForcedNameError): #logmessage("askfor: got a ForcedNameError for " + str(the_exception.name)) follow_mc = False seeking_question = True #logmessage("Seeking question is True") newMissingVariable = the_exception.name #logmessage("next action is " + repr(the_exception.next_action)) if the_exception.next_action is not None and not interview_status.checkin: if 'event_stack' not in user_dict['_internal']: user_dict['_internal']['event_stack'] = dict() session_uid = interview_status.current_info['user']['session_uid'] if session_uid not in user_dict['_internal']['event_stack']: user_dict['_internal']['event_stack'][session_uid] = list() new_items = list() for new_item in the_exception.next_action: already_there = False for event_item in user_dict['_internal']['event_stack'][session_uid]: if event_item['action'] == new_item: already_there = True break if not already_there: new_items.append(new_item) if len(new_items): user_dict['_internal']['event_stack'][session_uid] = new_items + user_dict['_internal']['event_stack'][session_uid] #interview_status.next_action.extend(the_exception.next_action) if the_exception.arguments is not None: docassemble.base.functions.this_thread.current_info.update(dict(action=the_exception.name, arguments=the_exception.arguments)) if the_exception.name.startswith('_da_'): docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) return({'type': 're_run', 'sought': origMissingVariable, 'orig_sought': origMissingVariable}) docassemble.base.functions.this_thread.misc['forgive_missing_question'] = [the_exception.name] else: #logmessage("regular nameerror") follow_mc = True newMissingVariable = extract_missing_name(the_exception) if newMissingVariable == 'file': raise #newMissingVariable = str(the_exception).split("'")[1] #if newMissingVariable in questions_tried and newMissingVariable in variable_stack: # raise DAError("Infinite loop: " + missingVariable + " already looked for, where stack is " + str(variable_stack)) if newMissingVariable not in questions_tried: questions_tried[newMissingVariable] = set() else: variable_stack.add(missingVariable) if current_question.question_type != 'objects': questions_tried[newMissingVariable].add(current_question) try: eval(origMissingVariable, user_dict) was_defined = True except: was_defined = False question_result = self.askfor(newMissingVariable, user_dict, old_user_dict, interview_status, variable_stack=variable_stack, questions_tried=questions_tried, seeking=seeking, follow_mc=follow_mc, recursion_depth=recursion_depth, seeking_question=seeking_question) if question_result['type'] == 'continue' and missing_var != newMissingVariable: if not was_defined: try: eval(origMissingVariable, user_dict) now_defined = True except: now_defined = False if now_defined: docassemble.base.functions.pop_current_variable() return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) # logmessage("Continuing after asking for newMissingVariable " + str(newMissingVariable)) continue docassemble.base.functions.pop_current_variable() return(question_result) except UndefinedError as the_exception: #logmessage("UndefinedError") if self.debug and docassemble.base.functions.this_thread.evaluation_context == 'docx': #logmessage(the_exception.__class__.__name__ + " exception during document assembly: " + str(the_exception) + "\n" + traceback.format_exc()) logmessage(the_exception.__class__.__name__ + " exception during document assembly: " + str(the_exception) + "\n") docassemble.base.functions.reset_context() newMissingVariable = extract_missing_name(the_exception) if newMissingVariable not in questions_tried: questions_tried[newMissingVariable] = set() else: variable_stack.add(missingVariable) if current_question.question_type != 'objects': questions_tried[newMissingVariable].add(current_question) question_result = self.askfor(newMissingVariable, user_dict, old_user_dict, interview_status, variable_stack=variable_stack, questions_tried=questions_tried, seeking=seeking, follow_mc=True, recursion_depth=recursion_depth, seeking_question=seeking_question) if question_result['type'] == 'continue': continue docassemble.base.functions.pop_current_variable() return(question_result) except CommandError as qError: #logmessage("CommandError: " + str(qError)) docassemble.base.functions.reset_context() question_data = dict(command=qError.return_type, url=qError.url, sleep=qError.sleep) new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" return(new_question.ask(user_dict, old_user_dict, 'None', [], missing_var, origMissingVariable)) except ResponseError as qError: #logmessage("ResponseError") docassemble.base.functions.reset_context() #logmessage("Trapped ResponseError2") question_data = dict(extras=dict()) if hasattr(qError, 'response') and qError.response is not None: question_data['response'] = qError.response elif hasattr(qError, 'binaryresponse') and qError.binaryresponse is not None: question_data['binaryresponse'] = qError.binaryresponse elif hasattr(qError, 'filename') and qError.filename is not None: question_data['response filename'] = qError.filename elif hasattr(qError, 'url') and qError.url is not None: question_data['redirect url'] = qError.url elif hasattr(qError, 'all_variables') and qError.all_variables: if hasattr(qError, 'include_internal'): question_data['include_internal'] = qError.include_internal question_data['content type'] = 'application/json' question_data['all_variables'] = True elif hasattr(qError, 'nullresponse') and qError.nullresponse: question_data['null response'] = qError.nullresponse elif hasattr(qError, 'sleep') and qError.sleep: question_data['sleep'] = qError.sleep if hasattr(qError, 'content_type') and qError.content_type: question_data['content type'] = qError.content_type if hasattr(qError, 'response_code') and qError.response_code: question_data['response code'] = qError.response_code new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" #the_question = new_question.follow_multiple_choice(user_dict) docassemble.base.functions.pop_event_stack(origMissingVariable) return(new_question.ask(user_dict, old_user_dict, 'None', [], missing_var, origMissingVariable)) except BackgroundResponseError as qError: # logmessage("BackgroundResponseError") docassemble.base.functions.reset_context() #logmessage("Trapped BackgroundResponseError2") question_data = dict(extras=dict()) if hasattr(qError, 'backgroundresponse'): question_data['backgroundresponse'] = qError.backgroundresponse if hasattr(qError, 'sleep'): question_data['sleep'] = qError.sleep new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" docassemble.base.functions.pop_event_stack(origMissingVariable) return(new_question.ask(user_dict, old_user_dict, 'None', [], missing_var, origMissingVariable)) except BackgroundResponseActionError as qError: # logmessage("BackgroundResponseActionError") docassemble.base.functions.reset_context() #logmessage("Trapped BackgroundResponseActionError2") question_data = dict(extras=dict()) if hasattr(qError, 'action'): question_data['action'] = qError.action new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" docassemble.base.functions.pop_event_stack(origMissingVariable) return(new_question.ask(user_dict, old_user_dict, 'None', [], missing_var, origMissingVariable)) except QuestionError as qError: #logmessage("QuestionError") docassemble.base.functions.reset_context() #logmessage("Trapped QuestionError") question_data = dict() if qError.question: question_data['question'] = qError.question if qError.subquestion: question_data['subquestion'] = qError.subquestion if qError.dead_end: pass elif qError.buttons: question_data['buttons'] = qError.buttons else: buttons = list() if qError.show_exit is not False and not (qError.show_leave is True and qError.show_exit is None): exit_button = {word('Exit'): 'exit'} if qError.url: exit_button.update(dict(url=qError.url)) buttons.append(exit_button) if qError.show_leave: leave_button = {word('Leave'): 'leave'} if qError.url: leave_button.update(dict(url=qError.url)) buttons.append(leave_button) if qError.show_restart is not False: buttons.append({word('Restart'): 'restart'}) if len(buttons): question_data['buttons'] = buttons new_interview_source = InterviewSourceString(content='') new_interview = new_interview_source.get_interview() reproduce_basics(self, new_interview) new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) new_question.name = "Question_Temp" new_question.embeds = True # will this be a problem? yup the_question = new_question.follow_multiple_choice(user_dict, interview_status, False, 'None', []) return(the_question.ask(user_dict, old_user_dict, 'None', [], missing_var, origMissingVariable)) except CodeExecute as code_error: #logmessage("CodeExecute") docassemble.base.functions.reset_context() #if self.debug: # interview_status.seeking.append({'question': question, 'reason': 'mandatory code'}) #logmessage("Going to execute " + str(code_error.compute) + " where missing_var is " + str(missing_var)) exec(code_error.compute, user_dict) try: eval(missing_var, user_dict) code_error.question.mark_as_answered(user_dict) #logmessage("Got here 1") #logmessage("returning from running code") docassemble.base.functions.pop_current_variable() #logmessage("Got here 2") return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) except: #raise DAError("Problem setting that variable") continue except SyntaxException as qError: #logmessage("SyntaxException") docassemble.base.functions.reset_context() the_question = None try: the_question = question except: pass if the_question is not None: raise DAError(str(qError) + "\n\n" + str(self.idebug(self.data_for_debug))) raise DAError("no question available in askfor: " + str(qError)) except CompileException as qError: #logmessage("CompileException") docassemble.base.functions.reset_context() the_question = None try: the_question = question except: pass if the_question is not None: raise DAError(str(qError) + "\n\n" + str(self.idebug(self.data_for_debug))) raise DAError("no question available in askfor: " + str(qError)) # except SendFileError as qError: # #logmessage("Trapped SendFileError2") # question_data = dict(extras=dict()) # if hasattr(qError, 'filename') and qError.filename is not None: # question_data['response filename'] = qError.filename # if hasattr(qError, 'content_type') and qError.content_type: # question_data['content type'] = qError.content_type # new_interview_source = InterviewSourceString(content='') # new_interview = new_interview_source.get_interview() # new_question = Question(question_data, new_interview, source=new_interview_source, package=self.source.package) # new_question.name = "Question_Temp" # return(new_question.ask(user_dict, old_user_dict, 'None', [], None, None)) if 'forgive_missing_question' in docassemble.base.functions.this_thread.misc and origMissingVariable in docassemble.base.functions.this_thread.misc['forgive_missing_question']: docassemble.base.functions.pop_current_variable() docassemble.base.functions.pop_event_stack(origMissingVariable) return({'type': 'continue', 'sought': missing_var, 'orig_sought': origMissingVariable}) raise DAErrorMissingVariable("Interview has an error. There was a reference to a variable '" + origMissingVariable + "' that could not be found in the question file (for language '" + str(language) + "') or in any of the files incorporated by reference into the question file.", variable=origMissingVariable) def substitute_vars(var, is_generic, the_x, iterators, last_only=False): if is_generic: if the_x != 'None': var = re.sub(r'^x\b', the_x, var) if len(iterators): if last_only: indexno = len(iterators) - 1 var = re.sub(r'\[' + list_of_indices[indexno] + r'\]', '[' + str(iterators[indexno]) + ']', var) else: for indexno in range(len(iterators)): #the_iterator = iterators[indexno] #if isinstance(the_iterator, str) and re.match(r'^-?[0-9]+$', the_iterator): # the_iterator = int(the_iterator) #var = re.sub(r'\[' + list_of_indices[indexno] + r'\]', '[' + repr(the_iterator) + ']', var) var = re.sub(r'\[' + list_of_indices[indexno] + r'\]', '[' + str(iterators[indexno]) + ']', var) return var def substitute_vars_action(action, is_generic, the_x, iterators): if isinstance(action, str): return substitute_vars(action, is_generic, the_x, iterators) elif isinstance(action, dict): new_dict = dict() for key, val in action.items(): if key == 'action' and not key.startswith('_da_'): new_dict[key] = substitute_vars_action(val, is_generic, the_x, iterators) elif key == 'arguments' and isinstance(val, dict) and 'variables' in val and len(val) == 1: new_dict[key] = substitute_vars_action(val, is_generic, the_x, iterators) elif key == 'variables' and isinstance(val, list): new_dict[key] = substitute_vars_action(val, is_generic, the_x, iterators) else: new_dict[key] = val return new_dict elif isinstance(action, list): new_list = list() for item in action: new_list.append(substitute_vars_action(item, is_generic, the_x, iterators)) return new_list else: return action def reproduce_basics(interview, new_interview): new_interview.metadata = interview.metadata new_interview.external_files = interview.external_files def unpack_list(item, target_list=None): if target_list is None: target_list = list() if not isinstance(item, (list, dict)): target_list.append(item) else: for subitem in item: unpack_list(subitem, target_list) return target_list def process_selections(data, manual=False, exclude=None): if exclude is None: to_exclude = list() else: to_exclude = unpack_list(exclude) result = [] if (isinstance(data, abc.Iterable) and not isinstance(data, (str, dict)) and not (hasattr(data, 'elements') and isinstance(data.elements, dict))) or (hasattr(data, 'elements') and isinstance(data.elements, (list, set))): for entry in data: if isinstance(entry, dict) or (hasattr(entry, 'elements') and isinstance(entry.elements, dict)): the_item = dict() for key in entry: if len(entry) > 1: if key in ['default', 'help', 'image', 'label']: continue if 'default' in entry: the_item['default'] = entry['default'] if 'help' in entry: the_item['help'] = entry['help'] if 'image' in entry: if entry['image'].__class__.__name__ == 'DAFile': entry['image'].retrieve() if entry['image'].mimetype is not None and entry['image'].mimetype.startswith('image'): the_item['image'] = dict(type='url', value=entry['image'].url_for()) elif entry['image'].__class__.__name__ == 'DAFileList': entry['image'][0].retrieve() if entry['image'][0].mimetype is not None and entry['image'][0].mimetype.startswith('image'): the_item['image'] = dict(type='url', value=entry['image'][0].url_for()) elif entry['image'].__class__.__name__ == 'DAFileCollection': the_file = entry['image']._first_file() the_file.retrieve() if the_file.mimetype is not None and the_file.mimetype.startswith('image'): the_item['image'] = dict(type='url', value=entry['image'][0].url_for()) elif entry['image'].__class__.__name__ == 'DAStaticFile': the_item['image'] = dict(type='url', value=entry['image'].url_for()) else: the_item['image'] = dict(type='decoration', value=entry['image']) if key == 'value' and 'label' in entry: the_item['key'] = entry[key] the_item['label'] = entry['label'] if entry[key] not in to_exclude and ((not isinstance(entry['label'], bool)) or entry['label'] is True): result.append(the_item) else: the_item['key'] = key the_item['label'] = entry[key] is_not_boolean = False for key, val in entry.items(): if key in ['default', 'help', 'image', 'label']: continue if val not in (True, False): is_not_boolean = True if key not in to_exclude and (is_not_boolean or entry[key] is True): result.append(the_item) if (isinstance(entry, (list, tuple)) or (hasattr(entry, 'elements') and isinstance(entry.elements, list))) and len(entry) > 0: if entry[0] not in to_exclude: if len(entry) >= 4: result.append(dict(key=entry[0], label=entry[1], default=entry[2], help=entry[3])) elif len(entry) == 3: result.append(dict(key=entry[0], label=entry[1], default=entry[2])) elif len(entry) == 1: result.append(dict(key=entry[0], label=entry[0])) else: result.append(dict(key=entry[0], label=entry[1])) elif isinstance(entry, (str, bool, int, float)): if entry not in to_exclude: result.append(dict(key=entry, label=entry)) elif hasattr(entry, 'instanceName'): if entry not in to_exclude: result.append(dict(key=str(entry), label=str(entry))) elif isinstance(data, dict) or (hasattr(data, 'elements') and isinstance(data.elements, dict)): if isinstance(data, OrderedDict) or (hasattr(data, 'elements') and isinstance(data.elements, OrderedDict)): the_items = data.items() else: the_items = sorted(data.items(), key=operator.itemgetter(1)) for key, value in the_items: if key not in to_exclude: if isinstance(value, (str, bool, int, float)): result.append(dict(key=key, label=value)) elif hasattr(value, 'instanceName'): result.append(dict(key=key, label=str(value))) else: logmessage("process_selections: non-label passed as label in dictionary") else: raise DAError("Unknown data type in choices selection: " + re.sub(r'[<>]', '', repr(data))) return(result) def extract_missing_name(the_error): #logmessage("extract_missing_name: string was " + str(string)) m = nameerror_match.search(str(the_error)) if m: return m.group(1) else: raise the_error def auto_determine_type(field_info, the_value=None): types = dict() if 'selections' in field_info: for item in field_info['selections']: the_type = type(item[0]).__name__ if the_type not in types: types[the_type] = 0 types[the_type] += 1 if the_value is not None: the_type = type(the_value).__name__ if the_type not in types: types[the_type] = 0 types[the_type] += 1 if 'str' in types or 'unicode' in types: return if len(types) == 2: if 'int' in types and 'float' in types: field_info['type'] = 'float' return if len(types) > 1: return if 'bool' in types: field_info['type'] = 'boolean' return if 'int' in types: field_info['type'] = 'integer' return if 'float' in types: field_info['type'] = 'float' return return def get_mimetype(filename): if filename is None: return 'text/plain; charset=utf-8' mimetype, encoding = mimetypes.guess_type(filename) extension = filename.lower() extension = re.sub('.*\.', '', extension) if extension == '3gpp': mimetype = 'audio/3gpp' if mimetype is None: mimetype = 'text/plain' return mimetype def interpret_label(text): if text is None: return 'no label' return str(text) def recurse_indices(expression_array, variable_list, pre_part, final_list, var_subs_dict, var_subs, generic_dict, generic): if len(expression_array) == 0: return the_expr = "".join(pre_part) + "".join(expression_array) if the_expr not in final_list and the_expr != 'x': final_list.append(the_expr) var_subs_dict[the_expr] = var_subs generic_dict[the_expr] = "".join(generic) first_part = expression_array.pop(0) if match_brackets.match(first_part) and len(variable_list) > 0: new_var_subs = copy.copy(var_subs) new_var_subs.append(re.sub(r'^\[|\]$', r'', first_part)) new_list_of_indices = copy.copy(variable_list) var_to_use = new_list_of_indices.pop(0) new_part = copy.copy(pre_part) new_part.append('[' + var_to_use + ']') recurse_indices(copy.copy(expression_array), new_list_of_indices, new_part, final_list, var_subs_dict, new_var_subs, generic_dict, generic) if len(new_var_subs) == 0 and len(generic) == 0: recurse_indices(copy.copy(expression_array), new_list_of_indices, ['x', '[' + var_to_use + ']'], final_list, var_subs_dict, new_var_subs, generic_dict, copy.copy(pre_part)) pre_part.append(first_part) recurse_indices(copy.copy(expression_array), variable_list, copy.copy(pre_part), final_list, var_subs_dict, var_subs, generic_dict, copy.copy(generic)) if len(var_subs) == 0 and len(generic) == 0: recurse_indices(copy.copy(expression_array), variable_list, ['x'], final_list, var_subs_dict, var_subs, generic_dict, copy.copy(pre_part)) def ensure_object_exists(saveas, datatype, the_user_dict, commands=None): # logmessage("ensure object exists: " + str(saveas)) if commands is None: execute = True commands = list() else: execute = False already_there = False try: eval(saveas, the_user_dict) already_there = True except: pass if already_there: #logmessage("ensure object exists: already there") return use_initialize = False parse_result = parse_var_name(saveas) if not parse_result['valid']: raise DAError("Variable name " + saveas + " is invalid: " + parse_result['reason']) method = None if parse_result['final_parts'][1] != '': if parse_result['final_parts'][1][0] == '.': try: core_key = eval(parse_result['final_parts'][0], the_user_dict) if hasattr(core_key, 'instanceName'): method = 'attribute' except: pass elif parse_result['final_parts'][1][0] == '[': try: core_key = eval(parse_result['final_parts'][0], the_user_dict) if hasattr(core_key, 'instanceName'): method = 'index' except: pass if "from docassemble.base.core import DADict, DAList" not in commands: commands.append("from docassemble.base.core import DADict, DAList") if method == 'attribute': attribute_name = parse_result['final_parts'][1][1:] if datatype in ('multiselect', 'checkboxes'): commands.append(parse_result['final_parts'][0] + ".initializeAttribute(" + repr(attribute_name) + ", DADict, auto_gather=False)") elif datatype in ('object_multiselect', 'object_checkboxes'): commands.append(parse_result['final_parts'][0] + ".initializeAttribute(" + repr(attribute_name) + ", DAList, auto_gather=False)") elif method == 'index': index_name = parse_result['final_parts'][1][1:-1] if datatype in ('multiselect', 'checkboxes'): commands.append(parse_result['final_parts'][0] + ".initializeObject(" + repr(index_name) + ", DADict, auto_gather=False)") elif datatype in ('object_multiselect', 'object_checkboxes'): commands.append(parse_result['final_parts'][0] + ".initializeObject(" + repr(index_name) + ", DAList, auto_gather=False)") else: if datatype in ('multiselect', 'checkboxes'): commands.append(saveas + ' = DADict(' + repr(saveas) + ', auto_gather=False)') elif datatype in ('object_multiselect', 'object_checkboxes'): commands.append(saveas + ' = DAList(' + repr(saveas) + ', auto_gather=False)') if execute: for command in commands: #logmessage("Doing " + command) exec(command, the_user_dict) def invalid_variable_name(varname): if not isinstance(varname, str): return True if re.search(r'[\n\r\(\)\{\}\*\^\#]', varname): return True varname = re.sub(r'[\.\[].*', '', varname) if not valid_variable_match.match(varname): return True return False def exec_with_trap(the_question, the_dict, old_variable=None): try: exec(the_question.compute, the_dict) the_question.post_exec(the_dict) except (NameError, UndefinedError, CommandError, ResponseError, BackgroundResponseError, BackgroundResponseActionError, QuestionError, AttributeError, MandatoryQuestion, CodeExecute, SyntaxException, CompileException): if old_variable is not None: try: exec(str(old_variable) + " = __oldvariable__", the_dict) exec("del __oldvariable__", the_dict) except: pass raise except Exception as e: cl, exc, tb = sys.exc_info() exc.user_dict = docassemble.base.functions.serializable_dict(the_dict) if len(traceback.extract_tb(tb)) == 2: line_with_error = traceback.extract_tb(tb)[-1][1] if isinstance(line_with_error, int) and line_with_error > 0 and hasattr(the_question, 'sourcecode'): exc.da_line_with_error = the_question.sourcecode.splitlines()[line_with_error - 1] exc.__traceback__ = tb del cl del exc del tb raise ok_outside_string = string.ascii_letters + string.digits + '.[]_' ok_inside_string = string.ascii_letters + string.digits + string.punctuation + " " def parse_var_name(var): var_len = len(var) cur_pos = 0 in_bracket = 0 in_quote = 0 the_quote = None dots = list() brackets = list() while cur_pos < var_len: char = var[cur_pos] if char == '[': if cur_pos == 0: return dict(valid=False, reason='bracket at start') if var[cur_pos - 1] == '.': return dict(valid=False, reason='dot before bracket') if not in_quote: if in_bracket: return dict(valid=False, reason='nested brackets') in_bracket = 1 brackets.append(cur_pos) elif char == ']': if cur_pos == 0: return dict(valid=False) if var[cur_pos - 1] == '.': return dict(valid=False, reason='dot before bracket') if not in_quote: if in_bracket: in_bracket = 0 else: return dict(valid=False, reason='unexpected end bracket') elif char in ("'", '"'): if cur_pos == 0 or not in_bracket: return dict(valid=False, reason='unexpected quote mark') if in_quote: if char == the_quote and var[cur_pos - 1] != "\\": in_quote = 0 else: in_quote = 1 the_quote = char else: if not (in_quote or in_bracket): if char not in ok_outside_string: return dict(valid=False, reason='invalid character in variable name') if cur_pos == 0: if char in string.digits or char == '.': return dict(valid=False, reason='starts with digit or dot') else: if var[cur_pos - 1] == '.' and char in string.digits: return dict(valid=False, reason='attribute starts with digit') if in_quote: if char not in ok_inside_string: return dict(valid=False, reason='invalid character in string') else: if char == '.': if in_bracket: return dict(valid=False, reason="dot in bracket") if cur_pos > 0 and var[cur_pos - 1] == '.': return dict(valid=False, reason = 'two dots') dots.append(cur_pos) cur_pos += 1 if in_bracket: return dict(valid=False, reason='dangling bracket part') if in_quote: return dict(valid=False, reason='dangling quote part') objects = [var[0:dot_pos] for dot_pos in dots] bracket_objects = [var[0:bracket_pos] for bracket_pos in brackets] final_cut = 0 if len(dots): final_cut = dots[-1] if len(brackets): if brackets[-1] > final_cut: final_cut = brackets[-1] if final_cut > 0: final_parts = (var[0:final_cut], var[final_cut:]) else: final_parts = (var, '') return dict(valid=True, objects=objects, bracket_objects=bracket_objects, final_parts=final_parts) class DAExtension(Extension): def filter_stream(self, stream): in_var = False met_pipe = False for token in stream: if token.type == 'variable_begin': in_var = True met_pipe = False if token.type == 'variable_end': in_var = False if not met_pipe: yield Token(token.lineno, 'pipe', None) yield Token(token.lineno, 'name', 'ampersand_filter') # if in_var and token.type == 'pipe': # met_pipe = True yield token class DAEnvironment(Environment): def from_string(self, source, **kwargs): source = re.sub(r'({[\%\{].*?[\%\}]})', fix_quotes, source) return super().from_string(source, **kwargs) def getitem(self, obj, argument): try: return obj[argument] except (AttributeError, TypeError, LookupError): return self.undefined(obj=obj, name=argument, accesstype='item') def getattr(self, obj, attribute): try: return getattr(obj, attribute) except AttributeError: pass return self.undefined(obj=obj, name=attribute, accesstype='attribute') def ampersand_filter(value): if value.__class__.__name__ in ('DAFile', 'DALink', 'DAStaticFile', 'DAFileCollection', 'DAFileList'): return value if value.__class__.__name__ in ('InlineImage', 'RichText', 'Listing', 'Document', 'Subdoc', 'DALazyTemplate'): return str(value) if isinstance(value, (int, bool, float, NoneType)): return value if not isinstance(value, str): value = str(value) value = docassemble.base.file_docx.sanitize_xml(value) if '<w:r>' in value or '</w:t>' in value: return re.sub(r'&(?!#?[0-9A-Za-z]+;)', '&amp;', value) return re.sub(r'>', '&gt;', re.sub(r'<', '&lt;', re.sub(r'&(?!#?[0-9A-Za-z]+;)', '&amp;', value))) class DAStrictUndefined(StrictUndefined): __slots__ = ('_undefined_type') def __init__(self, hint=None, obj=missing, name=None, exc=UndefinedError, accesstype=None): self._undefined_hint = hint self._undefined_obj = obj self._undefined_name = name self._undefined_exception = exc self._undefined_type = accesstype @internalcode def __getattr__(self, name): if name[:2] == '__': raise AttributeError(name) return self._fail_with_undefined_error(attribute=True) @internalcode def __getitem__(self, index): if index[:2] == '__': raise IndexError(index) return self._fail_with_undefined_error(item=True) @internalcode def _fail_with_undefined_error(self, *args, **kwargs): if True or self._undefined_hint is None: if self._undefined_obj is missing: hint = "'%s' is undefined" % self._undefined_name elif self._undefined_type == 'item' and hasattr(self._undefined_obj, 'instanceName'): hint = "'%s[%r]' is undefined" % ( self._undefined_obj.instanceName, self._undefined_name ) elif 'attribute' in kwargs or self._undefined_type == 'attribute': if hasattr(self._undefined_obj, 'instanceName'): hint = "'%s.%s' is undefined" % ( self._undefined_obj.instanceName, self._undefined_name ) else: hint = '%r has no attribute %r' % ( object_type_repr(self._undefined_obj), self._undefined_name ) else: if hasattr(self._undefined_obj, 'instanceName'): hint = "'%s[%r]' is undefined" % ( self._undefined_obj.instanceName, self._undefined_name ) else: hint = '%s has no element %r' % ( object_type_repr(self._undefined_obj), self._undefined_name ) else: hint = self._undefined_hint raise self._undefined_exception(hint) __add__ = __radd__ = __mul__ = __rmul__ = __div__ = __rdiv__ = \ __truediv__ = __rtruediv__ = __floordiv__ = __rfloordiv__ = \ __mod__ = __rmod__ = __pos__ = __neg__ = __call__ = \ __getitem__ = __lt__ = __le__ = __gt__ = __ge__ = __int__ = \ __float__ = __complex__ = __pow__ = __rpow__ = __sub__ = \ __rsub__= __iter__ = __str__ = __len__ = __nonzero__ = __eq__ = \ __ne__ = __bool__ = __hash__ = _fail_with_undefined_error def mygetattr(y, attr): for attribute in attr.split('.'): y = getattr(y, attribute) return y def str_or_original(y, case_sensitive): if case_sensitive: if hasattr(y, 'instanceName'): if y.__class__.__name__ in ('Value', 'PeriodicValue'): return y.amount() return str(y) return y if hasattr(y, 'instanceName'): if y.__class__.__name__ in ('Value', 'PeriodicValue'): return y.amount() return str(y).lower() try: return y.lower() except: return y def dictsort_filter(dictionary, case_sensitive=False, by='key', reverse=False): if by == 'value': return sorted(dictionary.items(), key=lambda y: str_or_original(y[1], case_sensitive), reverse=reverse) else: return sorted(dictionary.items(), key=lambda y: str_or_original(y[0], case_sensitive), reverse=reverse) def sort_filter(array, reverse=False, case_sensitive=False, attribute=None): if attribute is None: if not case_sensitive: def key_func(y): return str_or_original(y, case_sensitive) else: key_func = None else: if isinstance(attribute, list): attributes = [str(y).strip() for y in attribute] else: attributes = [y.strip() for y in str(attribute).split(',')] def key_func(y): return [str_or_original(mygetattr(y, attribute), case_sensitive) for attribute in attributes] return sorted(array, key=key_func, reverse=reverse) _GroupTuple = namedtuple('_GroupTuple', ['grouper', 'list']) _GroupTuple.__repr__ = tuple.__repr__ _GroupTuple.__str__ = tuple.__str__ def groupby_filter(array, attr_name): def func(y): return mygetattr(y, attr_name) return [_GroupTuple(key, list(values)) for key, values in groupby(sorted(array, key=func), func)] def max_filter(array, case_sensitive=False, attribute=None): it = iter(array) try: first = next(it) except StopIteration: raise DAError("max: list was empty") if attribute: def key_func(y): return str_or_original(mygetattr(y, attribute), case_sensitive=case_sensitive) else: def key_func(y): return str_or_original(y, case_sensitive=case_sensitive) return max(chain([first], it), key=key_func) def min_filter(array, case_sensitive=False, attribute=None): it = iter(array) try: first = next(it) except StopIteration: raise DAError("min: list was empty") if attribute: def key_func(y): return str_or_original(mygetattr(y, attribute), case_sensitive=case_sensitive) else: def key_func(y): return str_or_original(y, case_sensitive=case_sensitive) return min(chain([first], it), key=key_func) def sum_filter(array, attribute=None, start=0): if attribute is not None: array = [mygetattr(y, attribute) for y in array] return sum(array, start) def unique_filter(array, case_sensitive=False, attribute=None): seen = set() if attribute is None: for item in array: new_item = str_or_original(item, case_sensitive) if new_item not in seen: seen.add(new_item) yield item else: for item in array: new_item = str_or_original(mygetattr(item, attribute), case_sensitive) if new_item not in seen: seen.add(new_item) yield mygetattr(item, attribute) def join_filter(array, d="", attribute=None): if attribute is not None: return d.join([str(mygetattr(y, attribute)) for y in array]) return d.join([str(y) for y in array]) def attr_filter(var, attr_name): return mygetattr(var, attr_name) def selectattr_filter(*pargs, **kwargs): if len(pargs) > 2: array = pargs[0] attr_name = pargs[1] func_name = pargs[2] env = custom_jinja_env() func = lambda item: env.call_test(func_name, item, pargs[3:], kwargs) for item in array: if func(mygetattr(item, attr_name)): yield item else: for item in pargs[0]: if mygetattr(item, pargs[1]): yield item def rejectattr_filter(*pargs, **kwargs): if len(pargs) > 2: array = pargs[0] attr_name = pargs[1] func_name = pargs[2] env = custom_jinja_env() func = lambda item: env.call_test(func_name, item, pargs[3:], kwargs) for item in array: if not func(mygetattr(item, attr_name)): yield item else: for item in pargs[0]: if not mygetattr(item, pargs[1]): yield item def map_filter(*pargs, **kwargs): if len(pargs) >= 2: array = pargs[0] the_filter = pargs[1] env = custom_jinja_env() if the_filter not in env.filters: raise DAError('filter passed to map() does not exist') for item in array: yield env.call_filter(the_filter, item, pargs[2:], kwargs) else: if 'attribute' in kwargs: if 'default' in kwargs: for item in pargs[0]: yield mygetattr(item, kwargs['attribute'], kwargs['default']) else: for item in pargs[0]: yield mygetattr(item, kwargs['attribute']) elif 'index' in kwargs: if 'default' in kwargs: for item in pargs[0]: yield item.get(kwargs['index'], kwargs['default']) else: for item in pargs[0]: yield item[kwargs['index']] elif 'function' in kwargs: the_kwargs = kwargs.get('kwargs', dict()) the_pargs = kwargs.get('pargs', list()) if not isinstance(the_kwargs, dict): raise DAError('kwargs passed to map() must be a dictionary') if not isinstance(the_pargs, list): raise DAError('pargs passed to map() must be a list') for item in pargs[0]: yield kwargs['function'](item, *the_pargs, **the_kwargs) else: raise DAError('map() must refer to a function, index, attribute, or filter') def markdown_filter(text): return docassemble.base.file_docx.markdown_to_docx(text, docassemble.base.functions.this_thread.current_question, docassemble.base.functions.this_thread.misc.get('docx_template', None)) def inline_markdown_filter(text): return docassemble.base.file_docx.inline_markdown_to_docx(text, docassemble.base.functions.this_thread.current_question, docassemble.base.functions.this_thread.misc.get('docx_template', None)) builtin_jinja_filters = { 'ampersand_filter': ampersand_filter, 'markdown': markdown_filter, 'add_separators': docassemble.base.functions.add_separators, 'inline_markdown': inline_markdown_filter, 'paragraphs': docassemble.base.functions.single_to_double_newlines, 'manual_line_breaks': docassemble.base.functions.manual_line_breaks, 'RichText': docassemble.base.file_docx.RichText, 'groupby': groupby_filter, 'max': max_filter, 'min': min_filter, 'sum': sum_filter, 'unique': unique_filter, 'join': join_filter, 'attr': attr_filter, 'selectattr': selectattr_filter, 'rejectattr': rejectattr_filter, 'sort': sort_filter, 'dictsort': dictsort_filter, 'nice_number': docassemble.base.functions.nice_number, 'ordinal': docassemble.base.functions.ordinal, 'ordinal_number': docassemble.base.functions.ordinal_number, 'currency': docassemble.base.functions.currency, 'comma_list': docassemble.base.functions.comma_list, 'comma_and_list': docassemble.base.functions.comma_and_list, 'capitalize': docassemble.base.functions.capitalize, 'salutation': docassemble.base.functions.salutation, 'alpha': docassemble.base.functions.alpha, 'roman': docassemble.base.functions.roman, 'word': docassemble.base.functions.word, 'bold': docassemble.base.functions.bold, 'italic': docassemble.base.functions.italic, 'title_case': docassemble.base.functions.title_case, 'single_paragraph': docassemble.base.functions.single_paragraph, 'phone_number_formatted': docassemble.base.functions.phone_number_formatted, 'phone_number_in_e164': docassemble.base.functions.phone_number_in_e164, 'country_name': docassemble.base.functions.country_name, 'fix_punctuation': docassemble.base.functions.fix_punctuation, 'redact': docassemble.base.functions.redact, 'verbatim': docassemble.base.functions.verbatim, 'map': map_filter } registered_jinja_filters = {} def custom_jinja_env(): env = DAEnvironment(undefined=DAStrictUndefined, extensions=[DAExtension]) env.filters.update(registered_jinja_filters) env.filters.update(builtin_jinja_filters) return env def register_jinja_filter(filter_name, func): if filter_name in builtin_jinja_filters: raise DAError("Cannot register filter with same name as built-in filter %s" % filter_name) registered_jinja_filters[filter_name] = func def get_docx_variables(the_path): import docassemble.base.legal names = set() if not os.path.isfile(the_path): raise DAError("Missing docx template file " + os.path.basename(the_path)) try: docx_template = docassemble.base.file_docx.DocxTemplate(the_path) the_env = custom_jinja_env() the_xml = docx_template.get_xml() the_xml = re.sub(r'<w:p>', '\n<w:p>', the_xml) the_xml = re.sub(r'({[\%\{].*?[\%\}]})', fix_quotes, the_xml) the_xml = docx_template.patch_xml(the_xml) parsed_content = the_env.parse(the_xml) except Exception as the_err: raise DAError("There was an error parsing the docx file: " + the_err.__class__.__name__ + " " + str(the_err)) for key in jinja2meta.find_undeclared_variables(parsed_content): if not key.startswith('_'): names.add(key) for name in docassemble.base.legal.__all__: if name in names: names.remove(name) return sorted(list(names)) def allow_users_list(obj): if not (isinstance(obj, list) or (hasattr(obj, 'instanceName') and hasattr(obj, 'elements') and isinstance(obj.elements, list))): obj = [obj] new_list = list() for item in obj: if isinstance(item, str) and re.search(r'^[0-9]+$', item): item = int(item) if isinstance(item, (int, str)): new_list.append(item) else: email_address_method = getattr(item, 'email_address', None) if callable(email_address_method): new_list.append(item.email) else: new_list.append(str(item)) return new_list def allow_privileges_list(obj): if not (isinstance(obj, list) or (hasattr(obj, 'instanceName') and hasattr(obj, 'elements') and isinstance(obj.elements, list))): obj = [obj] new_list = list() for item in obj: if isinstance(item, str): new_list.append(item) return new_list class MLStripper(HTMLParser): def __init__(self): super().__init__() self.reset() self.strict = False self.convert_charrefs= True self.text = StringIO() def handle_data(self, d): self.text.write(d) def get_data(self): return self.text.getvalue() def strip_tags(html): s = MLStripper() s.feed(html) return s.get_data()
65.172717
2,221
0.538663
01da6c48b603a747e724394760e48018649ccd5a
823
py
Python
meiduo_mall/manage.py
shenhaiyu0923/meiduo_project
0ba91533294c5bb6f8ca54f93eabdff007a3560f
[ "MIT" ]
4
2021-04-30T05:45:32.000Z
2021-04-30T05:56:03.000Z
meiduo_mall/manage.py
shenhaiyu0923/meiduo_project
0ba91533294c5bb6f8ca54f93eabdff007a3560f
[ "MIT" ]
null
null
null
meiduo_mall/manage.py
shenhaiyu0923/meiduo_project
0ba91533294c5bb6f8ca54f93eabdff007a3560f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "meiduo_mall.settings.dev") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2.migrations try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35.782609
79
0.648846
c6f66cabd411594ef2112b6b2bff31855d4c5ca0
1,755
py
Python
server/src/police_lineups/controllers/lineups/queries.py
vabalcar/police-lineups
9c4a17d58e973d6db6e442bd9d5f4313ad4d51b7
[ "MIT" ]
null
null
null
server/src/police_lineups/controllers/lineups/queries.py
vabalcar/police-lineups
9c4a17d58e973d6db6e442bd9d5f4313ad4d51b7
[ "MIT" ]
2
2021-09-24T11:43:58.000Z
2021-09-24T12:00:21.000Z
server/src/police_lineups/controllers/lineups/queries.py
vabalcar/police-lineups
9c4a17d58e973d6db6e442bd9d5f4313ad4d51b7
[ "MIT" ]
null
null
null
from typing import List from swagger_server.models import Lineup, Person from police_lineups.controllers.utils.responses import Responses from police_lineups.db import DbLineup, DbLineupPerson, DbPerson, DbUser from police_lineups.singletons import Context from .utils import owner_auth_guard def get_lineups(): return [ Lineup( lineup_id=db_lineup.lineup_id, name=db_lineup.name, last_edit_date_time=db_lineup.last_edit_date_time, owner_username=db_lineup.owner_id.username) for db_lineup in DbLineup.select().join(DbUser)] def get_lineups_for_current_user(): return [ Lineup( lineup_id=db_lineup.lineup_id, name=db_lineup.name, last_edit_date_time=db_lineup.last_edit_date_time) for db_lineup in DbLineup.select().where( DbLineup.owner_id == Context().user.user_id)] def get_lineup(lineup_id): db_lineup: DbLineup = DbLineup.get_or_none(lineup_id) if db_lineup is None: return Responses.NOT_FOUND owner_auth_guard(db_lineup) lineup_people: List[Person] = [ Person( person_id=db_lineup_person.person_id.person_id, photo_blob_name=db_lineup_person.person_id.photo_blob_name, full_name=db_lineup_person.person_id.full_name, birth_date=db_lineup_person.person_id.birth_date, nationality=db_lineup_person.person_id.nationality) for db_lineup_person in DbLineupPerson.select().join(DbPerson).where( DbLineupPerson.lineup_id == lineup_id)] return Lineup( lineup_id=db_lineup.lineup_id, name=db_lineup.name, last_edit_date_time=db_lineup.last_edit_date_time, people=lineup_people)
33.75
104
0.71567
cd4aa44c97e6f28ebc73dee7a5d8e39402669e51
14,316
py
Python
pyfo/utils/core.py
bradleygramhansen/pyfo
559678080f27e7d9f3f194a0c28e9e8bfe71a7f3
[ "MIT" ]
3
2018-06-11T09:16:13.000Z
2019-03-08T05:22:43.000Z
pyfo/utils/core.py
bradleygramhansen/pyfo
559678080f27e7d9f3f194a0c28e9e8bfe71a7f3
[ "MIT" ]
null
null
null
pyfo/utils/core.py
bradleygramhansen/pyfo
559678080f27e7d9f3f194a0c28e9e8bfe71a7f3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Author: Bradley Gram-Hansen Time created: 10:02 Date created: 10/11/2017 License: MIT ''' import torch import numpy as np import torch.distributions as dists from torch.distributions import constraints, biject_to try: import networkx as _nx except ModuleNotFoundError: _nx = None try: import matplotlib.pyplot as _plt import matplotlib.patches as mpatches except ModuleNotFoundError: _plt = None class DualAveraging(object): """ Dual Averaging is a scheme to solve convex optimization problems. It belongs to a class of subgradient methods which uses subgradients to update parameters (in primal space) of a model. Under some conditions, the averages of generated parameters during the scheme are guaranteed to converge to an optimal value. However, a counter-intuitive aspect of traditional subgradient methods is "new subgradients enter the model with decreasing weights" (see :math:`[1]`). Dual Averaging scheme solves that phenomenon by updating parameters using weights equally for subgradients (which lie in a dual space), hence we have the name "dual averaging". This class implements a dual averaging scheme which is adapted for Markov chain Monte Carlo (MCMC) algorithms. To be more precise, we will replace subgradients by some statistics calculated during an MCMC trajectory. In addition, introducing some free parameters such as ``t0`` and ``kappa``is helpful and still guarantees the convergence of the scheme. References [1] `Primal-dual subgradient methods for convex problems`, Yurii Nesterov [2] `The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo`, Matthew D. Hoffman, Andrew Gelman :param float prox_center: A "prox-center" parameter introduced in :math:`[1]` which pulls the primal sequence towards it. :param float t0: A free parameter introduced in :math:`[2]` that stabilizes the initial steps of the scheme. :param float kappa: A free parameter introduced in :math:`[2]` that controls the weights of steps of the scheme. For a small ``kappa``, the scheme will quickly forget states from early steps. This should be a number in :math:`(0.5, 1]`. :param float gamma: A free parameter which controls the speed of the convergence of the scheme. """ def __init__(self, prox_center=0, t0=10, kappa=0.75, gamma=0.05): self.prox_center = prox_center self.t0 = t0 self.kappa = kappa self.gamma = gamma self._x_avg = 0 # average of primal sequence self._g_avg = 0 # average of dual sequence self._t = 0 def step(self, g): """ Updates states of the scheme given a new statistic/subgradient ``g``. :param float g: A statistic calculated during an MCMC trajectory or subgradient. """ self._t += 1 # g_avg = (g_1 + ... + g_t) / t self._g_avg = (1 - 1/(self._t + self.t0)) * self._g_avg + g / (self._t + self.t0) # According to formula (3.4) of [1], we have # x_t = argmin{ g_avg . x + loc_t . |x - x0|^2 }, # where loc_t := beta_t / t, beta_t := (gamma/2) * sqrt(t) self._x_t = self.prox_center - (self._t ** 0.5) / self.gamma * self._g_avg # weight for the new x_t weight_t = self._t ** (-self.kappa) self._x_avg = (1 - weight_t) * self._x_avg + weight_t * self._x_t def get_state(self): r""" Returns the latest :math:`x_t` and average of :math:`\left\{x_i\right\}_{i=1}^t` in primal space. """ return self._x_t, self._x_avg def create_network_graph(vertices): """ Create a `networkx` graph. Used by the method `display_graph()`. :return: Either a `networkx.DiGraph` instance or `None`. """ if _nx: G = _nx.DiGraph() for v in vertices: G.add_node(v.display_name) for a in v.ancestors: G.add_edge(a.display_name, v.display_name) return G else: return None def display_graph(vertices): """ Transform the graph to a `networkx.DiGraph`-structure and display it using `matplotlib` -- if the necessary libraries are installed. :return: `True` if the graph was drawn, `False` otherwise. """ G =create_network_graph(vertices) _is_conditioned = None if _nx and _plt and G: try: from networkx.drawing.nx_agraph import graphviz_layout pos = graphviz_layout(G, prog='dot') except ModuleNotFoundError: from networkx.drawing.layout import shell_layout pos = shell_layout(G) except ImportError: from networkx.drawing.layout import shell_layout pos = shell_layout(G) _plt.subplot(111) _plt.axis('off') _nx.draw_networkx_nodes(G, pos, node_color='r', node_size=1250, nodelist=[v.display_name for v in vertices if v.is_sampled]) _nx.draw_networkx_nodes(G, pos, node_color='b', node_size=1250, nodelist=[v.display_name for v in vertices if v.is_observed]) for v in vertices: _nx.draw_networkx_edges(G, pos, arrows=True, edgelist=[(a.display_name, v.display_name) for a in v.ancestors]) if v.condition_ancestors is not None and len(v.condition_ancestors) > 0: _is_conditioned = 1 _nx.draw_networkx_edges(G, pos, arrows=True, style='dashed', edge_color='g', edgelist=[(a.display_name, v.display_name) for a in v.condition_ancestors]) _nx.draw_networkx_labels(G, pos, font_color='w', font_weight='bold') # for node, _ in G.nodes(): red_patch = mpatches.Circle((0,0), radius=2, color='r', label='Sampled Variables') blue_patch = mpatches.Circle((0,0), radius=2, color='b', label='Observed Variables') green_patch = mpatches.Circle((0,0), radius=2, color='g', label='Conditioned Variables') if _is_conditioned else 0 if _is_conditioned: _plt.legend(handles=[red_patch, blue_patch, green_patch]) else: _plt.legend(handles=[red_patch, blue_patch]) _plt.show() return True else: return False def VariableCast(value, grad = False): '''casts an input to torch.tensor object :param value Type: scalar, torch.Tensor object, torch.Tensor, numpy ndarray :param grad Type: bool . If true then we require the gradient of that object output ------ torch.tensor object ''' dtype = torch.float if value is None: return None elif isinstance(value,torch.Tensor): return torch.tensor(value,dtype=dtype,requires_grad=grad) elif isinstance(value, np.ndarray): tensor = torch.from_numpy(value).float() return torch.tensor(tensor, dtype=dtype, requires_grad = grad) elif isinstance(value,list): return torch.tensor(value,dtype=dtype, requires_grad=grad).unsqueeze(-1) else: return torch.tensor([value],dtype=dtype, requires_grad = grad).unsqueeze(-1) def tensor_to_list(self,values): ''' Converts a tensor to a list values = torch.FloatTensor or torch.tensor''' params = [] for value in values: if isinstance(value, torch.tensor): temp = torch.tensor(value.data, requires_grad=True) params.append(temp) else: temp = VariableCast(value) temp = torch.tensor(value.data, requires_grad=True) params.append(value) return params def TensorCast(value): if isinstance(value, torch.tensor): return value else: return torch.tensor([value]) def list_to_tensor(self, params): ''' Unpacks the parameters list tensors and converts it to list returns tensor of num_rows = len(values) and num_cols = 1 problem: if there are col dimensions greater than 1, then this will not work ''' print('Warning ---- UNSTABLE FUNCTION ----') assert(isinstance(params, list)) temp = torch.tensor(torch.Tensor(len(params)).unsqueeze(-1)) for i in range(len(params)): temp[i,:] = params[i] return temp def logical_trans(var): """ Returns logical 0 or 1 for given variable. :param var: Is a 1-d torch.Tensor, float or np.array :return: Bool """ print("Warning: logoical_trans() has not been tested on tensors of dimension greater than 1") value = VariableCast(var) if value.data[0]: return True else: return False def get_tensor_data(t): """ Returns data of torch.Tensor.autograd.Variable :param t: torch.tensor :return: torch.Tensor """ if isinstance(t, torch.tensor): return t.data return t def my_import(name): ''' Helper function for extracting the whole module and not just the package. See answer by clint miller for details: htorch.tensorps://stackoverflow.com/questions/951124/dynamic-loading-of-python-modules :param name :type string :return module ''' mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = torch.tensorr(mod, comp) return mod def transform_latent_support(latent_vars, dist_to_latent): """ Returns a new state with the required transformations for the log pdf. It checks the support of each continuous distribution and if that support does not encompass the whole real line, the required bijector is added to a transform list. TODO: Ensure that only continuous latent variables are beingpassed through this function for now. :param latent_vars: dictionary of {latent_var: distribution_name} :param dist_to_latent: dictionary that maps latent_variable names to distribution name :return: transform: dictionary of {latent_var: bijector_for_latent} """ transforms = {} for latent in latent_vars: # print('Debug statement: latent vars: {0} and type: {1}'.format(dist_to_latent[latent], type(dist_to_latent[latent]))) temp_support = getattr(dists,dist_to_latent[latent]).support # print('Debug statement temp_support {0}'.format(temp_support)) if temp_support is not constraints.real: transforms[latent] = biject_to(temp_support).inv else: transforms[latent] = constraints.real return transforms def convert_dict_vars_to_numpy(self, state, latent_vars ): """ :param state: Information on the whole state. Likely to be torch objects :param latent_vars: type: str descript: A list of the latent variables in the state. :return: the torch latent variables converted to numpy arrays Converts variables in stat to numpy arrays for plotting purposes """ for latent in self.all_vars: state[latent] = state[latent].numpy() # state[i] = state[i].data.numpy() return state def _grad_logp(input, parameters, latents): """ Returns the gradient of the log pdf, with respect for each parameter. Note the double underscore, this is to ensure that if this method is overwritten, then no problems occur when overidded. :param state: :return: torch.autograd.Variable """ # print(50 *'=') # print('Debug statement in _grad_logp \n '+50*'='+'\nChecking gradient flag. \n Printing input : {0} \n Printing parameters : {1} \n Checking if gradient turned on: {2} '.format(input, parameters, parameters.requires_grad)) gradient_of_params = {} # dict([[key, torch.autograd.grad(outputs=input.sum(), inputs=parameters[key], retain_graph=True)][0] for key in # latents]) for key in latents: gradient_of_params[key] = torch.autograd.grad(outputs=input.sum(), inputs=parameters[key], retain_graph=True)[0] # For debugging only, when using simple normal model . # -log(N(0,1)) = -log(c1) + (x^{2}/ 2) # dlog / d true_gradient = {} for key in latents: true_gradient[key] = parameters[key] # print(50*'=') # print('Debug statement in _grad_logp. Printing torch gradient : {0} \n and True gradient {1}'.format(gradient_of_params, true_gradient)) # print(50 * '=') return gradient_of_params def _to_leaf(state, latent_vars): """ Ensures that all latent parameters are reset to leaf nodes, before calling :param state: :return: """ for key in latent_vars: state[key] = torch.tensor(state[key], requires_grad=True) return state def _generate_log_pdf(model, state): """ The compiled pytorch function, log_pdf, should automatically return the pdf. :param keys type: list of discrete embedded discrete parameters :return: log_pdf Maybe overidden in other methods, that require dynamic pdfs. For example if you have a model called my mymodel, you could write the following: Model = compile_model(mymodel) # returns class class MyNewModel(Model): def gen_log_pdf(self, state): for vertex in self.vertices: pass return "Whatever you fancy" # This overrides the base method. # Then all you have to do is pass # My model into kernel of choice, i.e kernel = MCMC(MyNewModel,kernel=HMC) kernel.run_inference() If you require gradients, ensure that you have used the the core._to_leaf() function on the 'state' """ # if set_leafs: # # only sets the gradients of the latent variables. # _state = _to_leaf(state=state, latent_vars=latents) # else: # _state = state # print(50*'=') # for key in state: # print('Debug statement in _generate_log_p \n',50*'='+ '\n Printing set_leafs : {0} \n Printing latents : {1} \n gradient: {2} \n key: {3} '.format(set_leafs, latents, state[key].requires_grad, key)) return model.gen_log_pdf(state)
38.796748
228
0.644873
d564eb8478e4a7a274690bf29d71055ec6de75ab
565
py
Python
Solucion_taller_selevtivos/ejercicio14.py
ItsZeus03/Algoritmos-y-Programaciaon
caeddc442f76e4a4b428d668a6730c8096b38ae0
[ "MIT" ]
null
null
null
Solucion_taller_selevtivos/ejercicio14.py
ItsZeus03/Algoritmos-y-Programaciaon
caeddc442f76e4a4b428d668a6730c8096b38ae0
[ "MIT" ]
null
null
null
Solucion_taller_selevtivos/ejercicio14.py
ItsZeus03/Algoritmos-y-Programaciaon
caeddc442f76e4a4b428d668a6730c8096b38ae0
[ "MIT" ]
null
null
null
""" entradas lectura_antigua-->float-->lan lectura_actual-->float-->lac salida pago-->float-->pa """ fa=input("Ingrese los klivatios consumidos en el mes pasado y el actual (mespasado mesactual) ") (lan,lac)=fa.split(" ") lan=float(lan) lac=float(lac) kv=lac-lan if(kv>=0 and kv<=100): pa=kv*4600 print("Total a pagar "+str(pa)+" COP") elif(kv>=101 and kv<=300): pa=kv*8000 print("Total a pagar "+str(pa)+" COP") elif(kv>=301 and kv<=500): pa=kv*100000 print("Total a pagar "+str(pa)+" COP") else: pa=kv*120000 print("Total a pagar "+str(pa)+" COP")
23.541667
96
0.658407
c4f1b5398efacc33eea11303718a89d623a7edfc
11,295
py
Python
lib/JumpScale/sal/openvswitch/VXNet/utils.py
Jumpscale/jumpscale_core8
f80ac9b1ab99b833ee7adb17700dcf4ef35f3734
[ "Apache-2.0" ]
8
2016-04-14T14:04:57.000Z
2020-06-09T00:24:34.000Z
lib/JumpScale/sal/openvswitch/VXNet/utils.py
Jumpscale/jumpscale_core8
f80ac9b1ab99b833ee7adb17700dcf4ef35f3734
[ "Apache-2.0" ]
418
2016-01-25T10:30:00.000Z
2021-09-08T12:29:13.000Z
lib/JumpScale/sal/openvswitch/VXNet/utils.py
Jumpscale/jumpscale_core8
f80ac9b1ab99b833ee7adb17700dcf4ef35f3734
[ "Apache-2.0" ]
9
2016-04-21T07:21:17.000Z
2022-01-24T10:35:54.000Z
__author__ = 'delandtj' from JumpScale import j import os import os.path import subprocess import sys import time command_name = sys.argv[0] vsctl = "/usr/bin/ovs-vsctl" ofctl = "/usr/bin/ovs-ofctl" ip = "/sbin/ip" ethtool = "/sbin/ethtool" PHYSMTU = 2000 # TODO : errorhandling def send_to_syslog(msg): pass # print msg # pid = os.getpid() # print ("%s[%d] - %s" % (command_name, pid, msg)) # syslog.syslog("%s[%d] - %s" % (command_name, pid, msg)) def doexec(args): """Execute a subprocess, then return its return code, stdout and stderr""" send_to_syslog(args) proc = subprocess.Popen(args, stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, bufsize=-1) rc = proc.wait() # rc = proc.communicate() stdout = proc.stdout stderr = proc.stderr return rc, stdout, stderr def dobigexec(args): """Execute a subprocess, then return its return code, stdout and stderr""" send_to_syslog(args) proc = subprocess.Popen(args, stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, bufsize=-1) rc = proc.communicate() return rc def get_all_namespaces(): cmd = '%s netns ls' % ip r, s, e = doexec(cmd.split()) return [line.strip() for line in s.readlines()] def get_all_ifaces(): """ List of network interfaces @rtype : dict """ netpath = '/sys/class/net' ifaces = {} for i in os.listdir(netpath): addresspath = os.path.join(netpath, i, "address") if os.path.exists(addresspath): with open(addresspath) as f: addr = f.readline().strip() ifaces[i] = addr return ifaces def get_all_bridges(): cmd = '%s list-br' % vsctl r, s, e = doexec(cmd.split()) l = [line.strip() for line in s.readlines()] return l def ip_link_set(device, args): cmd = "ip l set " + device + " " + args doexec(cmd.split()) def limit_interface_rate(limit, interface, burst): cmd = "%s set interface %s ingress_policing_rate=%s" r, s, e = doexec(cmd.split()) if r: raise j.exception.RuntimeError( "Problem with setting rate on interface: %s , problem was : %s " % (interface, e)) cmd = "%s set interface %s ingress_policing_burst=%s" r, s, e = doexec(cmd.split()) if r: raise j.exception.RuntimeError( "Problem with setting burst on interface: %s , problem was : %s " % (interface, e)) def createBridge(name): cmd = '%s --may-exist add-br %s' % (vsctl, name) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Problem with creation of bridge %s, err was: %s" % (name, e)) if name == "public": cmd = '%s set Bridge %s stp_enable=true' % (vsctl, name) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Problem setting STP on bridge %s, err was: %s" % (name, e)) def destroyBridge(name): cmd = '%s --if-exists del-br %s' % (vsctl, name) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Problem with destruction of bridge %s, err was: %s" % (name, e)) def listBridgePorts(name): cmd = '%s list-ports %s' % (vsctl, name) r, s, e = doexec(cmd.split()) if r: raise j.exception.RuntimeError("Problem with listing of bridge %s's ports , err was: %s " % (name, e)) return s.read() def VlanPatch(parentbridge, vlanbridge, vlanid): parentpatchport = '%s-%s' % (vlanbridge, str(vlanid)) bridgepatchport = '%s-%s' % (parentbridge, str(vlanid)) cmd = '%s add-port %s %s tag=%s -- set Interface %s type=patch options:peer=%s' % ( vsctl, parentbridge, parentpatchport, vlanid, parentpatchport, bridgepatchport) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Add extra vlan pair failed %s" % (e.readlines())) cmd = '%s add-port %s %s -- set Interface %s type=patch options:peer=%s' % ( vsctl, vlanbridge, bridgepatchport, bridgepatchport, parentpatchport) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Add extra vlan pair failed %s" % (e.readlines())) def addVlanPatch(parbr, vlbr, id, mtu=None): def bridge_exists(br): brexist = "{0} br-exists {1}".format(vsctl, br) r, s, e = doexec(brexist.split()) return r == 0 def port_exists(br, port): listprts = "{0} list-ports {1}".format(vsctl, br) r, s, e = doexec(listprts.split()) return port in s.read() parport = "{}-{!s}".format(vlbr, id) brport = "{}-{!s}".format(parbr, id) if not bridge_exists(vlbr): brcreate = "{0} add-br {1}".format(vsctl, vlbr) r, s, e = doexec(brcreate.split()) if not port_exists(vlbr, brport): addport = "{0} add-port {1} {3} -- set Interface {3} type=patch options:peer={2}".format( vsctl, vlbr, parport, brport) r, s, e = doexec(addport.split()) if not port_exists(parbr, parport): c = "{4} add-port {0} {2} tag={3!s} -- set Interface {2} type=patch options:peer={1}".format( parbr, brport, parport, id, vsctl) r, s, e = doexec(c.split()) if mtu: ip_link_set(vlbr, 'mtu {0}'.format(mtu)) def createNameSpace(name): if name not in get_all_namespaces(): cmd = '%s netns add %s' % (ip, name) r, s, e = doexec(cmd.split()) else: send_to_syslog('Namespace %s already exists, not creating' % name) def destroyNameSpace(name): if name in get_all_namespaces(): cmd = '%s netns delete %s' % (ip, name) r, s, e = doexec(cmd.split()) else: send_to_syslog('Namespace %s doesn\'t exist, nothing done ' % name) def createVethPair(left, right): cmd = '%s link add %s type veth peer name %s' % (ip, left, right) allifaces = get_all_ifaces() if left in allifaces or right in allifaces: # one of them already exists send_to_syslog("Problem with creation of vet pair %s, %s :one of them exists" % (left, right)) r, s, e = doexec(cmd.split()) # wait for it to come up time.sleep(.2) ip_link_set(left, 'up') ip_link_set(right, 'up') # when sent into namespace, it'll be down again disable_ipv6(left) # not right, as it can be used in a namespace def destroyVethPair(left): cmd = '%s link del %s ' % (ip, left) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Problem with destruction of Veth pair %s, err was: %s" % (left, e)) def createVXlan(vxname, vxid, multicast, vxbackend): """ Always brought up too Created with no protocol, and upped (no ipv4, no ipv6) Fixed standard : 239.0.x.x, id # 0000-fe99 for customer vxlans, ff00-ffff for environments MTU of VXLAN = 1500 """ cmd = 'ip link add %s type vxlan id %s group %s ttl 60 dev %s' % (vxname, vxid, multicast, vxbackend) r, s, e = doexec(cmd.split()) disable_ipv6(vxname) setMTU(vxname, 1500) ip_link_set(vxname, 'up') if r: send_to_syslog("Problem with creation of vxlan %s, err was: %s" % (vxname, e.readlines())) def destroyVXlan(name): cmd = '%s link del %s ' % (ip, name) r, s, e = doexec(cmd.split()) if r: send_to_syslog("Problem with destruction of Veth pair %s, err was: %s" % (name, e.readlines())) exit(1) def addIPv4(interface, ipobj, namespace=None): netmask = ipobj.prefixlen ipv4addr = ipobj.ip # if ip existst on interface, we assume all ok if namespace is not None: cmd = '%s netns exec %s ip addr add %s/%s dev %s' % (ip, namespace, ipv4addr, netmask, interface) else: cmd = '%s addr add %s/%s dev %s' % (ip, ipv4addr, netmask, interface) r, s, e = doexec(cmd.split()) if r: send_to_syslog('Could not add IP %s to interface %s ' % (ipv4addr, interface)) return r, e def addIPv6(interface, ipobj, namespace=None): netmask = ipobj.prefixlen ipv6addr = ipobj.ip # if ip existst on interface, we assume all ok if namespace is not None and namespace in allnamespaces: cmd = '%s netns exec %s ip addr add %s/%s dev %s' % (ip, namespace, ipv6addr, netmask, interface) else: cmd = '%s addr add %s/%s dev %s' % (ip, ipv6addr, netmask, interface) r, s, e = doexec(cmd.split()) if r: send_to_syslog('Could not add IP %s to interface %s ' % (ipv6addr, interface)) return r, e def connectIfToBridge(bridge, interfaces): for interface in interfaces: cmd = '%s --if-exists del-port %s %s' % (vsctl, bridge, interface) r, s, e = doexec(cmd.split()) cmd = '%s --may-exist add-port %s %s' % (vsctl, bridge, interface) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError('Error adding port %s to bridge %s' % (interface, bridge)) def removeIfFromBridge(bridge, interfaces): for interface in interfaces: cmd = '%s --if-exists del-port %s %s' % (vsctl, bridge, interface) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError('Error adding port %s to bridge %s' % (interface, bridge)) def connectIfToNameSpace(nsname, interface): cmd = '%s link set %s netns %s' % (ip, interface, nsname) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError("Error moving %s to namespace %s" % (interface, nsname)) def disable_ipv6(interface): if interface in get_all_ifaces(): cmd = 'sysctl -w net.ipv6.conf.%s.disable_ipv6=1' % interface r, s, e = doexec(cmd.split()) def setMTU(interface, mtu): cmd = 'ip link set %s mtu %s' % (interface, mtu) r, s, e = doexec(cmd.split()) if r: raise j.exceptions.RuntimeError('Could not set %s to MTU %s' % (interface, mtu)) def addBond(bridge, bondname, iflist, lacp="active", lacp_time="fast", mode="balance-tcp", trunks=None): # bond_mode=balance-tcp lacp=active bond_fake_iface=false # other_config:lacp-time=fast bond_updelay=2000 bond_downdelay=400 """ Add a bond to a bridge :param bridge: BridgeName (string) :param bondname: Bondname (string) :param iflist: list or tuple :param lacp: "active" or "passive" :param lacp_time: mode "fast" or "slow" :param mode: balance-tcp, balance-slb, active-passive :param trunks: allowed VLANS (list or tuple) """ intf = re.split('\W+', iflist) if isinstance(trunks, str): tr = re.split('\W+', trunks) buildup = "add-bond %s %s " % (bridge, bondname) + " ".join(e for e in list(set(intf))) + " lacp=%s " % lacp buildup = buildup + " -- set Port %s bond_mode=%s bond_fake_iface=false " % (bondname, mode) buildup = buildup + "other_config:lacp-time=%s bond_updelay=2000 bond_downdelay=400 " % lacp_time if trunks is not None: trlist = ",".join(str(e) for e in list(set(tr))) buildup = buildup + "trunks=" + trlist # no use to autoconf ipv6, as this won't work anyway for i in iflist: disable_ipv6(i) r, s, e = doexec(buildup.split()) if e: raise j.exceptions.RuntimeError("Could not create bond %s for bridge %s" % (bondname, bridge))
34.753846
112
0.612749
bcd0263f00274b0f10e9c41b45040b999796b429
2,730
py
Python
smqtk_classifier/interfaces/classify_image_supervised.py
bardkw/SMQTK-Classifier
68022a0be089ace123d20c1c080fb84e103a50da
[ "BSD-3-Clause" ]
1
2021-04-09T20:52:55.000Z
2021-04-09T20:52:55.000Z
smqtk_classifier/interfaces/classify_image_supervised.py
bardkw/SMQTK-Classifier
68022a0be089ace123d20c1c080fb84e103a50da
[ "BSD-3-Clause" ]
14
2021-04-06T14:22:34.000Z
2022-02-23T15:12:55.000Z
smqtk_classifier/interfaces/classify_image_supervised.py
bardkw/SMQTK-Classifier
68022a0be089ace123d20c1c080fb84e103a50da
[ "BSD-3-Clause" ]
3
2021-04-02T20:35:41.000Z
2021-11-09T20:13:46.000Z
import abc from typing import Mapping, Hashable from .classify_image import ClassifyImage, IMAGE_ITER_T from smqtk_classifier.exceptions import ExistingModelError class ClassifyImageSupervised(ClassifyImage): """ Class of classifiers that are trainable via supervised training, i.e. are given specific Image examples for class labels. """ @abc.abstractmethod def has_model(self) -> bool: """ :return: If this instance currently has a model loaded. If no model is present, classification of images cannot happen (needs to be trained). """ def train( self, class_examples: Mapping[Hashable, IMAGE_ITER_T] ) -> None: """ Train the supervised classifier model. If a model is already loaded, we will raise an exception in order to prevent accidental overwrite. If the same label is provided to both ``class_examples`` and ``kwds``, the examples given to the reference in ``kwds`` will prevail. :param class_examples: Dictionary mapping class labels to iterables of Image training examples. :raises ValueError: There were no class examples provided. :raises ValueError: Less than 2 classes were given. :raises RuntimeError: A model already exists in this instance. Following through with training would overwrite this model. Throwing an exception for information protection. """ if self.has_model(): raise ExistingModelError("Instance currently has a model. Halting " "training to prevent overwrite of " "existing trained model.") if not class_examples: raise ValueError("No class examples were provided.") elif len(class_examples) < 2: raise ValueError("Need 2 or more classes for training. Given %d." % len(class_examples)) return self._train(class_examples) @abc.abstractmethod def _train( self, class_examples: Mapping[Hashable, IMAGE_ITER_T] ) -> None: """ Internal method that trains the classifier implementation. This method is called after checking that there is not already a model trained, thus it can be assumed that no model currently exists. The class labels will have already been checked before entering this method, so it can be assumed that the ``class_examples`` will container at least two classes. :param class_examples: Dictionary mapping class labels to iterables of Image training examples. """
36.891892
79
0.645421
d2526c0b411ca1179907990347ed5a3b9487c292
19,972
py
Python
utility/entity/character.py
DrLarck/DragonBotZ
eab773d6e55f7f5f325828fe249800193120abaf
[ "MIT" ]
3
2020-05-01T07:38:38.000Z
2020-06-02T12:03:40.000Z
utility/entity/character.py
DrLarck/DragonBotZ
eab773d6e55f7f5f325828fe249800193120abaf
[ "MIT" ]
19
2020-11-01T22:15:57.000Z
2021-09-08T15:28:30.000Z
utility/entity/character.py
DrLarck/DragonBotZ
eab773d6e55f7f5f325828fe249800193120abaf
[ "MIT" ]
1
2021-03-05T04:51:21.000Z
2021-03-05T04:51:21.000Z
""" Character object -- Author : Drlarck Last update : 1/11/20 by DrLarck """ import asyncio # util from utility.graphic.embed import CustomEmbed from utility.graphic.icon import GameIcon from utility.graphic.color import GameColor from utility.entity.ability import Ability class Character: def __init__(self, client): # Public self.client = client self.name = "" self.id = 0 self.unique_id = "" self.level = 1 self.npc = False # Tells if it's a non playable character self.posture = 0 self.image = CharacterImage() self.type = CharacterType() self.rarity = CharacterRarity() self.health = CharacterHealth() self.ki = CharacterKi() self.damage = CharacterDamage() self.critical = CharacterCritical() self.armor = CharacterDefense() self.spirit = CharacterDefense() # Items self.training_item = CharacterTrainingItem(self) # Abilities self.ability = [] # Private self.__embed = CustomEmbed() # Public method async def generate(self, name="", char_id=0, level=1, card="", thumbnail="", type_value=0, rarity_value=0, health=0, ki=100, physical=0, ki_power=0, crit_chance=0, crit_bonus=0, armor_fixed=0, armor_floating=0, spirit_fixed=0, spirit_floating=0, ability=[]): """ Generate a character instance. :param name: (`str`) :param char_id: (`int`) :param level: (`int`) :param card: (`url`) :param thumbnail: (`url`) :param type_value: (`int`) :param rarity_value: (`int`) :param health: (`int`) :param ki: (`int`) :param physical: (`int`) :param ki_power: (`int`) :param crit_chance: (`int`) :param crit_bonus: (`int`) :param armor_fixed: (`int`) :param armor_floating: (`int`) :param spirit_fixed: (`int`) :param spirit_floating: (`int`) :param ability: (`list`) -- :return: `Character` """ # New character instance new_char = Character(self.client) # Init all the attributes new_char.name = name new_char.id = char_id new_char.level = level # Set bonus per lvl level_bonus = pow(1.02, new_char.level-1) # Default +5 % stat per level new_char.image.card = card new_char.image.thumbnail = thumbnail new_char.type.value = type_value new_char.rarity.value = rarity_value new_char.health.maximum = int(health * level_bonus) new_char.ki.maximum = ki new_char.damage.physical = int(physical * level_bonus) new_char.damage.ki = int(ki_power * level_bonus) new_char.critical.chance = crit_chance new_char.critical.bonus = crit_bonus new_char.armor.fixed = int(armor_fixed * level_bonus) new_char.armor.floating = armor_floating new_char.spirit.fixed = int(spirit_fixed * level_bonus) new_char.spirit.floating = spirit_floating # Get the character's abilities ability_ref = Ability(self.client) for ability_id in ability: await asyncio.sleep(0) # If the ability id is not an actual ability if not isinstance(ability_id, Ability): # Get the id as int ability_id = int(ability_id) # Get the ability instance ability = await ability_ref.get_ability_data(ability_id) # If the ability has been found, add it to the character if ability is not None: new_char.ability.append(ability) # If the char has no abilities, add passed abilities as parameter if len(new_char.ability) == 0: new_char.ability = ability # Get the icons new_char.rarity.icon = await GameIcon().get_rarity_icon(new_char.rarity.value) new_char.type.icon = await GameIcon().get_type_icon(new_char.type.value) # Return the character return new_char async def get_display_card(self, client): """ Generate a display card of this character :param client: (`discord.ext.commands.Bot`) -- :return: `discord.Embed` """ # Init color = await GameColor().get_rarity_color(self.rarity.value) embed = await self.__embed.setup(client, color=color) # Info info = f""" __Name__ : **{self.name}**{self.type.icon} __Reference__ : `#{self.id}` __Rarity__ : {self.rarity.icon} """ embed.add_field(name="Info :", value=info, inline=False) embed.set_image(url=self.image.card) return embed async def get_combat_card(self, client, team_index): """ Return the combat format display card :param client: (`discord.ext.commands.Bot`) :param team_index: (`int`) -- :return: `Embed` """ # Init color = GameColor() if team_index == 0: color = color.player_a else: color = color.player_b # Thumbnail # If the thumbnail is not defined, use the card image if self.image.thumbnail == "": thumb = self.image.card # Use the defined thumbnail image else: thumb = self.image.thumbnail embed = await self.__embed.setup(client, color=color, thumbnail_url=thumb) # Setting up the character display display_info = f""" __Name__ : {self.image.icon}**{self.name}**{self.type.icon} __Level__ : {self.level:,} __Health__ : **{self.health.current:,}**/{self.health.maximum:,} :hearts: __Ki__ : **{self.ki.current}**/{self.ki.maximum} :fire: """ # Damage phy_min = await self.damage.get_physical_min() ki_min = await self.damage.get_ki_min() display_damage = f""" __Physical__ : **{phy_min:,}** - **{self.damage.physical:,}** :punch: __Ki power__ : **{ki_min:,}** - **{self.damage.ki:,}** ☄️ """ # Defense display_defense = f""" __Armor__ : **{self.armor.fixed:,}** | **{self.armor.floating:,} %** :shield: __Spirit__ : **{self.spirit.fixed:,}** | **{self.spirit.floating:,} %** 🏵️ """ # Fields embed.add_field(name=f"**{self.name}** info", value=display_info, inline=False) embed.add_field(name="Damage", value=display_damage, inline=False) embed.add_field(name="Defense", value=display_defense, inline=False) return embed async def init(self): """ Init the character for combat purpose. -- :return: `None` """ # Init health await self.health.init() # Init abilities for ability in self.ability: await asyncio.sleep(0) await ability.init(self) return async def is_playable(self): """ Tells if the character is playable or not -- :return: `bool` """ # Init playable = True # If the character is stunned if self.posture == 3: playable = False # If the character is dead elif self.health.current <= 0: playable = False # If the character has posture a normal posture else: playable = True return playable class CharacterImage: def __init__(self): # Public self.card = "" self.thumbnail = "" self.icon = "" class CharacterType: def __init__(self): # Public self.value = 0 self.icon = "" class CharacterRarity: def __init__(self): # Public self.value = 0 self.icon = "" class CharacterHealth: def __init__(self): # Public self.maximum = 0 self.current = 0 # Public method async def init(self): """ Init the current health -- :return: `None` """ self.current = self.maximum return async def limit(self): """ Avoid the current health to reach a value that is < 0 or higher than the max health -- :return: `None` """ if self.current < 0: self.current = 0 if self.current > self.maximum: self.current = self.maximum return class CharacterKi: def __init__(self): # Public self.maximum = 0 self.current = 0 # Public method async def limit(self): """ Avoid the current ki value to reach a value that is < 0 or higher than maximum -- :return: `None` """ if self.current < 0: self.current = 0 if self.current > self.maximum: self.current = self.maximum return class CharacterDamage: def __init__(self): # Public self.physical = 0 self.ki = 0 # Private # This represents the difference in % between the max value and the min value # For example, if the range is set to 10 and the max value is 100 # The min value would be 90 and max 100 self.__physical_range = 10 self.__ki_range = 10 # Public method async def get_physical_min(self): """ Return the minimal value of the physical damage range -- :return: `int` """ minimal = self.physical * (1 - (self.__physical_range / 100)) return int(minimal) async def get_ki_min(self): """ Return the minimal value of the ki damage range -- :return: `None` """ minimal = self.ki * (1 - (self.__ki_range / 100)) return int(minimal) class CharacterCritical: def __init__(self): # Public self.chance = 0 self.bonus = 0 class CharacterDefense: def __init__(self): # Public self.fixed = 0 self.floating = 0 class CharacterTrainingItem: def __init__(self, character): """ :param character: (`Character`) """ # Public self.character = character self.equipped = [] # Private self.__database = self.character.client.database # Private async def __get_equipped(self): """ Get the equipped training items -- :return: `None` """ # Get the equipped items' unique id unique_items = await self.__database.fetch_value(""" SELECT training_item FROM character_unique WHERE character_unique_id = $1; """, [self.character.unique_id]) # Get the list of items unique_items = unique_items.split() # Set the equipped list self.equipped = unique_items return # Public async def apply_effect(self): """ Apply the equipped items effects on the character -- :return: `None` """ # Apply the effect of each items for item in self.equipped: await asyncio.sleep(0) await item.apply_effect(self) return class CharacterGetter: # Private __cache = [] __cache_ok = False # Indicates if the cache has already been filled # Public async def get_cache_size(self): """Return the cache size -- @return int""" return len(self.__cache) async def set_cache(self, client): """ Set the character cache :param client: object discord.Bot :param context: object discord.ext.commands.Context -- :return: `None` """ if self.__cache_ok is False: data = await client.database.fetch_row(""" SELECT * FROM character_reference ORDER BY reference; """) if len(data) > 0: # Storing each character in the cache as Character objects for character in data: await asyncio.sleep(0) # Get the set of character's abilities ability_set = character[15] ability_set = ability_set.split() character = await Character(client).generate( char_id=character[0], name=character[1], type_value=character[2], rarity_value=character[3], card=character[4], thumbnail=character[4], health=character[5], ki=character[6], physical=character[7], ki_power=character[8], armor_fixed=character[9], armor_floating=character[10], spirit_fixed=character[11], spirit_floating=character[12], ability=ability_set ) self.__cache.append(character) # Cache has been filled self.__cache_ok = True print("Character Cache : DONE") else: # The cache has already been filled print("Character Cache : The cache has already been filled.") return async def get_reference_character(self, reference, client, level=1): """ Get a base character :param reference: (`int`) @param int level @param object discord.ext.commands.Bot client -- :return: `Character` or `None` """ # Get the character from the cache if reference > 0 and reference - 1 < len(self.__cache): char = self.__cache[reference - 1] copy = await Character(client).generate( char_id=char.id, level=level, name=char.name, card=char.image.card, thumbnail=char.image.thumbnail, type_value=char.type.value, rarity_value=char.rarity.value, health=char.health.maximum, ki=char.ki.maximum, physical=char.damage.physical, ki_power=char.damage.ki, armor_fixed=char.armor.fixed, armor_floating=char.armor.floating, spirit_fixed=char.spirit.fixed, spirit_floating=char.spirit.floating, ability=char.ability ) await copy.init() return copy else: print(f"Character {reference} not found.") return None async def get_from_unique(self, client, database, unique_id): """ Get a Character object from a unique id :param client: discord.ext.commands.Bot :param database: (`Database`) :param unique_id: (`str`) -- :return: `Character` or `None` if not found """ character_row = await database.fetch_row(""" SELECT * FROM character_unique WHERE character_unique_id = $1; """, [unique_id]) # If the character exists if len(character_row) > 0: character_row = character_row[0] # If the character doesn't exist else: return if character_row is not None: # Get the character object according to the character's reference character = await self.get_reference_character(character_row[1], client) # Create a copy of the character copy = await character.generate( name=character.name, char_id=character.id, level=character_row[6], card=character.image.card, thumbnail=character.image.thumbnail, type_value=character.type.value, rarity_value=character.rarity.value, health=character.health.maximum, ki=character.ki.maximum, physical=character.damage.physical, ki_power=character.damage.ki, armor_fixed=character.armor.fixed, armor_floating=character.armor.floating, spirit_fixed=character.spirit.fixed, spirit_floating=character.spirit.floating, ability=character.ability ) await copy.init() return copy return class CharacterExperience: def __init__(self, client): self.client = client self.__database = self.client.database async def add_experience(self, unique_id, amount): """Add experience points to the character @param str unique_id @param int amount -- @return int or None as new character level""" # Get the character's experience get_exp = """SELECT character_experience FROM character_unique WHERE character_unique_id = $1;""" character_exp = await self.__database.fetch_value(get_exp, [unique_id]) # Add the amount of exp to the character experience character_exp += amount # Check if the character levels up # returns the updated amount of exp # and the nex character level if it has changed character_exp, new_level = await self.level_up(unique_id, character_exp) # Update character xp update_exp = """UPDATE character_unique SET character_experience = $1 WHERE character_unique_id = $2;""" await self.__database.execute(update_exp, [character_exp, unique_id]) return new_level async def level_up(self, unique_id, experience): """Update the character level according to its current level and the amount of exp that it has @param str unique_id @param int experience -- @return int new amount of experience""" # Level up formula # level 1 character has to collect 100 exp points # to level up to the level 2 # the amount of exp needed is increased by 10 % per level # formula is : # next_level : level -> 100 * (1.1) ^ level # Get the character's informations character_level = """SELECT character_level FROM character_unique WHERE character_unique_id = $1;""" level = await self.__database.fetch_value(character_level, [unique_id]) old_level = level # Get the required amount of exp to reach the next level next_level = int(100 * pow(1.1, level)) # Check if the character has enough exp to reach the next level # repeat it until the character experience is inferior to the # next level while experience >= next_level and level < 150: await asyncio.sleep(0) level += 1 experience -= next_level # Get the required amount of exp to reach the next level next_level = int(100 * pow(1.1, level)) # Update the character level update_level = """UPDATE character_unique SET character_level = $1 WHERE character_unique_id = $2;""" await self.__database.execute(update_level, [level, unique_id]) # Check if the character has leveled up new_level = None if level != old_level: new_level = level return experience, new_level
26.558511
102
0.553775
4bcc2351ed984ebbc31c6c94f0486411722de37b
3,630
py
Python
redis_client.py
jinserk/pytorch-redis
0b0bfabc9241f941bc39a2e695943b5ebd6b4fcb
[ "MIT" ]
4
2020-04-27T00:47:35.000Z
2021-04-12T07:52:20.000Z
redis_client.py
jinserk/pytorch-redis
0b0bfabc9241f941bc39a2e695943b5ebd6b4fcb
[ "MIT" ]
null
null
null
redis_client.py
jinserk/pytorch-redis
0b0bfabc9241f941bc39a2e695943b5ebd6b4fcb
[ "MIT" ]
1
2020-04-26T17:51:12.000Z
2020-04-26T17:51:12.000Z
import sys import io import redis import torch from tqdm.auto import tqdm ver = sys.version_info if ver >= (3, 8): PICKLE_VERSION = 5 else: PICKLE_VERSION = 4 CXN = redis.ConnectionPool(host='localhost', port=6379, db=0) class RedisListObject: def __init__(self, name): self.name = name def __len__(self): with redis.StrictRedis(connection_pool=CXN) as rdb: return rdb.llen(self.name) def __setitem__(self, index, value): with redis.StrictRedis(connection_pool=CXN) as rdb: if index >= rdb.llen(self.name): raise IndexError with io.BytesIO() as buf: torch.save(value, buf, pickle_protocol=PICKLE_VERSION, _use_new_zipfile_serialization=True) if PICKLE_VERSION >= 5: rdb.lset(self.name, index, buf.getbuffer()) else: rdb.lset(self.name, index, buf.getvalue()) def __getitem__(self, index): with redis.StrictRedis(connection_pool=CXN) as rdb: if not rdb.exists(self.name): raise redis.DataError(f'Dataset named {self.name} does not exist') if index >= rdb.llen(self.name): raise IndexError with io.BytesIO(rdb.lindex(self.name, index)) as buf: return torch.load(buf) def append(self, value): with io.BytesIO() as buf: torch.save(value, buf, pickle_protocol=PICKLE_VERSION, _use_new_zipfile_serialization=True) #print(len(buf.getvalue())) with redis.StrictRedis(connection_pool=CXN) as rdb: func = rdb.rpush if rdb.exists(self.name) else rdb.lpush if PICKLE_VERSION >= 5: func(self.name, buf.getbuffer()) else: func(self.name, buf.getvalue()) def delete(self): with redis.StrictRedis(connection_pool=CXN) as rdb: if rdb.exists(self.name): rdb.delete(self.name) else: raise redis.DataError(f'Dataset named {self.name} does not exist') class RedisClient: def get(self, key): with redis.StrictRedis(connection_pool=CXN) as rdb: if rdb.exists(key): return RedisListObject(key) else: raise redis.DataError(f'Dataset named {key} does not exist') def set_data_list(self, key, values): try: obj = self.get(key) obj.delete() except: obj = RedisListObject(key) for item in tqdm(values, desc=f"storing {key}", dynamic_ncols=True): obj.append(item) def keys(self): with redis.StrictRedis(connection_pool=CXN) as rdb: return rdb.keys() def stats(self): with redis.StrictRedis(connection_pool=CXN) as rdb: try: return rdb.memory_stats() except: return rdb.execute_command('MEMORY STATS') def check_lens(self, nums): try: for k, v in nums.items(): obj = self.get(k) if v != 0 and len(obj): return False except: return False def flushdb(self): with redis.StrictRedis(connection_pool=CXN) as rdb: rdb.flushdb() if __name__ == "__main__": c = RedisClient() print(c.stats()) data_list = [tuple(torch.rand(10, 10) for _ in range(10)) for _ in range(10)] c.set_data_list("test", data_list) print(c.get("test")[0], c.get("test")[1]) c.flushdb() print(c.stats())
30.25
107
0.570799
40b9f37281ab453ec80fdbfb793fdeb4eb4fa22c
385
py
Python
squid/squid/wsgi.py
DjangoNYC/squid
e9776df722d6c4d8e43738c053c610475f73f0db
[ "MIT" ]
null
null
null
squid/squid/wsgi.py
DjangoNYC/squid
e9776df722d6c4d8e43738c053c610475f73f0db
[ "MIT" ]
null
null
null
squid/squid/wsgi.py
DjangoNYC/squid
e9776df722d6c4d8e43738c053c610475f73f0db
[ "MIT" ]
null
null
null
""" WSGI config for squid project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "squid.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
25.666667
78
0.787013
db52ca4f3f3c18c1766ac7c1d8ba45ca69e7c21b
504
py
Python
custom_components/samsungtv_custom/samsungctl_080b/upnp/UPNP_Device/instance_singleton.py
AdamOttvar/ha-samsungtv-custom
da6bf9349d1e33bf143a115b4f2a3754d6754472
[ "Apache-2.0" ]
117
2019-10-08T05:39:44.000Z
2022-01-31T15:43:08.000Z
custom_components/samsungtv_custom/samsungctl_080b/upnp/UPNP_Device/instance_singleton.py
AdamOttvar/ha-samsungtv-custom
da6bf9349d1e33bf143a115b4f2a3754d6754472
[ "Apache-2.0" ]
76
2019-10-08T06:04:08.000Z
2022-02-26T18:47:22.000Z
custom_components/samsungtv_custom/samsungctl_080b/upnp/UPNP_Device/instance_singleton.py
AdamOttvar/ha-samsungtv-custom
da6bf9349d1e33bf143a115b4f2a3754d6754472
[ "Apache-2.0" ]
59
2019-10-08T06:32:37.000Z
2022-03-14T23:14:07.000Z
# -*- coding: utf-8 -*- class InstanceSingleton(type): _objects = {} def __call__(cls, id, *args, **kwargs): if id not in InstanceSingleton._objects: InstanceSingleton._objects[id] = ( super(InstanceSingleton, cls).__call__(id, *args, **kwargs) ) else: try: InstanceSingleton._objects[id](id, *args, **kwargs) except TypeError: pass return InstanceSingleton._objects[id]
25.2
75
0.543651
9a507658b9e6ee9a2fe51fc1c8bc6f45cd44fa28
813
py
Python
reddit/processing/features.py
yusueliu/reddit
e598a7ba783fa0b67063355e61c2017a5e58a6f5
[ "MIT" ]
null
null
null
reddit/processing/features.py
yusueliu/reddit
e598a7ba783fa0b67063355e61c2017a5e58a6f5
[ "MIT" ]
null
null
null
reddit/processing/features.py
yusueliu/reddit
e598a7ba783fa0b67063355e61c2017a5e58a6f5
[ "MIT" ]
null
null
null
import spacy from sklearn.base import BaseEstimator, TransformerMixin nlp = spacy.load('en_core_web_sm') class TextTokenizer(BaseEstimator, TransformerMixin): def __init__(self, variable=None, stopword_exceptions=None): self.variable = variable if stopword_exceptions: nlp.Defaults.stop_words -= set(list(stopword_exceptions)) def _lemmatize_and_remove_stop_words(self, text): return [t.lemma_ for t in nlp(text) if not t.is_stop and len(t.lemma_) > 1] def _normalize(self, text): words = self._lemmatize_and_remove_stop_words(text) return ' '.join(words) def fit(self, X, y=None): return self def transform(self, X): X = X.copy() X = X[self.variable].apply(self._normalize) return X
32.52
83
0.661747
acad58b07a967d64f187f382f9f5da23a6ebd327
7,663
py
Python
webexteamssdk/docs/conf.py
Steeve135/WebexBot
6188ca2cfccd8885c5c2e492f17a6e935dee416e
[ "MIT" ]
null
null
null
webexteamssdk/docs/conf.py
Steeve135/WebexBot
6188ca2cfccd8885c5c2e492f17a6e935dee416e
[ "MIT" ]
4
2020-03-24T16:20:45.000Z
2021-06-01T22:56:24.000Z
webexteamssdk/docs/conf.py
Steeve135/WebexBot
6188ca2cfccd8885c5c2e492f17a6e935dee416e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath('..')) from webexteamssdk._version import get_versions project = u'webexteamssdk' copyright = u'Copyright (c) 2016-2018 Cisco and/or its affiliates.' author = u'Chris Lunsford' version = get_versions()['version'] release = get_versions()['version'] language = None extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', ] master_doc = 'index' source_suffix = '.rst' exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] templates_path = ['_templates'] pygments_style = 'sphinx' add_module_names = False autodoc_member_order = 'bysource' # autodoc_default_flags = ['members', 'undoc-members'] autodoc_default_options = { 'members': None, 'undoc-members': None, } todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # #html_theme = 'alabaster' on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'collapse_navigation': False } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'webexteamssdk vv0.3' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'webexteamssdkdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'webexteamssdk.tex', u'webexteamssdk Documentation', u'Chris Lunsford', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'webexteamssdk', u'webexteamssdk Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'webexteamssdk', u'webexteamssdk Documentation', author, 'webexteamssdk', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
26.424138
80
0.693984
47dce01e1c6fa7a4a3e9f5d7456def5096257256
20,915
py
Python
tests/python/test_ast_refactor.py
Aaronoooooo/taichi
4ed04254f1cbf6f99628e2ee32464f821837c5ff
[ "MIT" ]
1
2021-11-25T11:05:27.000Z
2021-11-25T11:05:27.000Z
tests/python/test_ast_refactor.py
kuangzihan/taichi
5d1122ff126893dc1f2fd3950eddb1600711c137
[ "MIT" ]
null
null
null
tests/python/test_ast_refactor.py
kuangzihan/taichi
5d1122ff126893dc1f2fd3950eddb1600711c137
[ "MIT" ]
null
null
null
import numpy as np import pytest import taichi as ti from taichi import approx @ti.test() def test_binop(): @ti.kernel def foo(x: ti.i32, y: ti.i32, a: ti.template()): a[0] = x + y a[1] = x - y a[2] = x * y a[3] = ti.ti_float(x) / y a[4] = x // y a[5] = x % y a[6] = x**y a[7] = x << y a[8] = x >> y a[9] = x | y a[10] = x ^ y a[11] = x & y x = 37 y = 3 a = ti.field(ti.f32, shape=(12, )) b = ti.field(ti.f32, shape=(12, )) a[0] = x + y a[1] = x - y a[2] = x * y a[3] = x / y a[4] = x // y a[5] = x % y a[6] = x**y a[7] = x << y a[8] = x >> y a[9] = x | y a[10] = x ^ y a[11] = x & y foo(x, y, b) for i in range(12): assert a[i] == approx(b[i]) @ti.test() def test_augassign(): @ti.kernel def foo(x: ti.i32, y: ti.i32, a: ti.template(), b: ti.template()): for i in a: a[i] = x a[0] += y a[1] -= y a[2] *= y a[3] //= y a[4] %= y a[5] **= y a[6] <<= y a[7] >>= y a[8] |= y a[9] ^= y a[10] &= y b[0] = x b[0] /= y x = 37 y = 3 a = ti.field(ti.i32, shape=(11, )) b = ti.field(ti.i32, shape=(11, )) c = ti.field(ti.f32, shape=(1, )) d = ti.field(ti.f32, shape=(1, )) a[0] = x + y a[1] = x - y a[2] = x * y a[3] = x // y a[4] = x % y a[5] = x**y a[6] = x << y a[7] = x >> y a[8] = x | y a[9] = x ^ y a[10] = x & y c[0] = x / y foo(x, y, b, d) for i in range(11): assert a[i] == b[i] assert c[0] == approx(d[0]) @ti.test() def test_unaryop(): @ti.kernel def foo(x: ti.i32, a: ti.template()): a[0] = +x a[1] = -x a[2] = not x a[3] = ~x x = 1234 a = ti.field(ti.i32, shape=(4, )) b = ti.field(ti.i32, shape=(4, )) a[0] = +x a[1] = -x a[2] = not x a[3] = ~x foo(x, b) for i in range(4): assert a[i] == b[i] @ti.test() def test_boolop(): @ti.kernel def foo(a: ti.template()): a[0] = 0 and 0 a[1] = 0 and 1 a[2] = 1 and 0 a[3] = 1 and 1 a[4] = 0 or 0 a[5] = 0 or 1 a[6] = 1 or 0 a[7] = 1 or 1 a[8] = 1 and 1 and 1 and 1 a[9] = 1 and 1 and 1 and 0 a[10] = 0 or 0 or 0 or 0 a[11] = 0 or 0 or 1 or 0 a = ti.field(ti.i32, shape=(12, )) b = ti.field(ti.i32, shape=(12, )) a[0] = 0 and 0 a[1] = 0 and 1 a[2] = 1 and 0 a[3] = 1 and 1 a[4] = 0 or 0 a[5] = 0 or 1 a[6] = 1 or 0 a[7] = 1 or 1 a[8] = 1 and 1 and 1 and 1 a[9] = 1 and 1 and 1 and 0 a[10] = 0 or 0 or 0 or 0 a[11] = 0 or 0 or 1 or 0 foo(b) for i in range(12): assert a[i] == b[i] @ti.test() def test_compare_fail(): with pytest.raises(ti.TaichiSyntaxError) as e: @ti.kernel def foo(): 1 in [1] foo() assert e.value.args[0] == '"In" is not supported in Taichi kernels.' @ti.test() def test_single_compare(): @ti.kernel def foo(a: ti.template(), b: ti.template(), c: ti.template()): for i in ti.static(range(3)): c[i * 6] = a[i] == b[i] c[i * 6 + 1] = a[i] != b[i] c[i * 6 + 2] = a[i] < b[i] c[i * 6 + 3] = a[i] <= b[i] c[i * 6 + 4] = a[i] > b[i] c[i * 6 + 5] = a[i] >= b[i] a = ti.Vector([1, 1, 2]) b = ti.Vector([2, 1, 1]) c = ti.field(ti.i32, shape=(18, )) d = ti.field(ti.i32, shape=(18, )) for i in range(3): c[i * 6] = a[i] == b[i] c[i * 6 + 1] = a[i] != b[i] c[i * 6 + 2] = a[i] < b[i] c[i * 6 + 3] = a[i] <= b[i] c[i * 6 + 4] = a[i] > b[i] c[i * 6 + 5] = a[i] >= b[i] foo(a, b, d) for i in range(18): assert c[i] == d[i] @ti.test() def test_chain_compare(): @ti.kernel def foo(a: ti.i32, b: ti.i32, c: ti.template()): c[0] = a == b == a c[1] = a == b != a c[2] = a != b == a c[3] = a < b > a c[4] = a > b < a c[5] = a < b < a c[6] = a > b > a c[7] = a == a == a == a c[8] = a == a == a != a c[9] = a < b > a < b c[10] = a > b > a < b a = 1 b = 2 c = ti.field(ti.i32, shape=(11, )) d = ti.field(ti.i32, shape=(11, )) c[0] = a == b == a c[1] = a == b != a c[2] = a != b == a c[3] = a < b > a c[4] = a > b < a c[5] = a < b < a c[6] = a > b > a c[7] = a == a == a == a c[8] = a == a == a != a c[9] = a < b > a < b c[10] = a > b > a < b foo(a, b, d) for i in range(11): assert c[i] == d[i] @ti.test() def test_return(): @ti.kernel def foo(x: ti.i32) -> ti.i32: return x + 1 assert foo(1) == 2 @ti.test() def test_format_print(): a = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(): a[0] = 1.0 a[5] = 2.0 print('Test if the string.format and fstring print works') print('string.format: a[0]={}, a[5]={}'.format(a[0], a[5])) print(f'fstring: a[0]={a[0]}, a[5]={a[5]}') @ti.test(print_preprocessed_ir=True) def test_if(): @ti.kernel def foo(x: ti.i32) -> ti.i32: ret = 0 if x: ret = 1 else: ret = 0 return ret assert foo(1) assert not foo(0) @ti.test(print_preprocessed_ir=True) def test_static_if(): @ti.kernel def foo(x: ti.template()) -> ti.i32: ret = 0 if ti.static(x): ret = 1 else: ret = 0 return ret assert foo(1) assert not foo(0) @ti.test(print_preprocessed_ir=True) def test_struct_for(): a = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(x: ti.i32): for i in a: a[i] = x x = 5 foo(x) for i in range(10): assert a[i] == 5 @ti.test(print_preprocessed_ir=True) def test_grouped_struct_for(): a = ti.field(ti.i32, shape=(4, 4)) @ti.kernel def foo(x: ti.i32): for I in ti.grouped(a): a[I] = x x = 5 foo(x) for i in range(4): for j in range(4): assert a[i, j] == 5 @ti.test(print_preprocessed_ir=True) def test_static_for(): a = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(x: ti.i32): for i in ti.static(range(10)): a[i] = x x = 5 foo(x) for i in range(10): assert a[i] == 5 @ti.test(print_preprocessed_ir=True) def test_static_grouped_for(): a = ti.field(ti.i32, shape=(4, 4)) @ti.kernel def foo(x: ti.i32): for i in ti.static(ti.grouped(ti.ndrange((1, 3), (1, 3)))): a[i] = x x = 5 foo(x) for i in range(4): for j in range(4): if 1 <= i < 3 and 1 <= j < 3: assert a[i, j] == 5 else: assert a[i, j] == 0 @ti.test(print_preprocessed_ir=True) def test_range_for_single_argument(): a = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(x: ti.i32): for i in range(5): a[i] = x x = 5 foo(x) for i in range(10): if i < 5: assert a[i] == 5 else: assert a[i] == 0 @ti.test(print_preprocessed_ir=True) def test_range_for_two_arguments(): a = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(x: ti.i32): for i in range(3, 7): a[i] = x x = 5 foo(x) for i in range(10): if 3 <= i < 7: assert a[i] == 5 else: assert a[i] == 0 @ti.test() def test_range_for_three_arguments(): a = ti.field(ti.i32, shape=(10, )) with pytest.raises(ti.TaichiSyntaxError) as e: @ti.kernel def foo(x: ti.i32): for i in range(3, 7, 2): a[i] = x x = 5 foo(x) assert e.value.args[0] == "Range should have 1 or 2 arguments, found 3" @ti.test(print_preprocessed_ir=True) def test_ndrange_for(): x = ti.field(ti.f32, shape=(16, 32, 64)) @ti.kernel def func(): for i, j, k in ti.ndrange((4, 10), (3, 8), 17): x[i, j, k] = i + j * 10 + k * 100 func() for i in range(16): for j in range(32): for k in range(64): if 4 <= i < 10 and 3 <= j < 8 and k < 17: assert x[i, j, k] == i + j * 10 + k * 100 else: assert x[i, j, k] == 0 @ti.test(print_preprocessed_ir=True) def test_grouped_ndrange_for(): x = ti.field(ti.i32, shape=(6, 6, 6)) y = ti.field(ti.i32, shape=(6, 6, 6)) @ti.kernel def func(): lower = ti.Vector([0, 1, 2]) upper = ti.Vector([3, 4, 5]) for I in ti.grouped( ti.ndrange((lower[0], upper[0]), (lower[1], upper[1]), (lower[2], upper[2]))): x[I] = I[0] + I[1] + I[2] for i in range(0, 3): for j in range(1, 4): for k in range(2, 5): y[i, j, k] = i + j + k func() for i in range(6): for j in range(6): for k in range(6): assert x[i, j, k] == y[i, j, k] @ti.test(print_preprocessed_ir=True) def test_static_for_break(): n = 10 @ti.kernel def foo(a: ti.template()): for i in ti.static(range(n)): a[i] = 3 if ti.static(i >= 5): break a[i] = 10 a[i] = 5 a = ti.field(ti.i32, shape=(n, )) foo(a) for i in range(n): if i < 5: assert a[i] == 5 elif i == 5: assert a[i] == 3 else: assert a[i] == 0 @ti.test(print_preprocessed_ir=True) def test_static_grouped_for_break(): n = 4 @ti.kernel def foo(a: ti.template()): for I in ti.static(ti.grouped(ti.ndrange(n, n))): a[I] = 3 if ti.static(I[0] >= 3): break a[I] = 10 a[I] = 5 a = ti.field(ti.i32, shape=(n, n)) foo(a) for i in range(n): for j in range(n): if i < 3: assert a[i, j] == 5 elif i == 3 and j == 0: assert a[i, j] == 3 else: assert a[i, j] == 0 @ti.test(print_preprocessed_ir=True) def test_static_for_continue(): n = 10 @ti.kernel def foo(a: ti.template()): for i in ti.static(range(n)): a[i] = 3 if ti.static(i >= 5): continue a[i] = 10 a[i] = 5 a = ti.field(ti.i32, shape=(n, )) foo(a) for i in range(n): if i < 5: assert a[i] == 5 else: assert a[i] == 3 @ti.test(print_preprocessed_ir=True) def test_static_grouped_for_continue(): n = 4 @ti.kernel def foo(a: ti.template()): for I in ti.static(ti.grouped(ti.ndrange(n, n))): a[I] = 3 if ti.static(I[0] >= 3): continue a[I] = 10 a[I] = 5 a = ti.field(ti.i32, shape=(n, n)) foo(a) for i in range(n): for j in range(n): if i < 3: assert a[i, j] == 5 else: assert a[i, j] == 3 @ti.test(print_preprocessed_ir=True) def test_for_break(): n = 4 @ti.kernel def foo(a: ti.template()): for i in range(n): for j in range(n): a[i, j] = 3 if i >= 3: break a[i, j] = 10 a[i, j] = 5 a = ti.field(ti.i32, shape=(n, n)) foo(a) for i in range(n): for j in range(n): if i < 3: assert a[i, j] == 5 elif i == 3 and j == 0: assert a[i, j] == 3 else: assert a[i, j] == 0 @ti.test(print_preprocessed_ir=True) def test_for_continue(): n = 4 @ti.kernel def foo(a: ti.template()): for i in range(n): for j in range(n): a[i, j] = 3 if i >= 3: continue a[i, j] = 10 a[i, j] = 5 a = ti.field(ti.i32, shape=(n, n)) foo(a) for i in range(n): for j in range(n): if i < 3: assert a[i, j] == 5 else: assert a[i, j] == 3 @ti.test() def test_while(): x = ti.field(ti.f32) N = 1 ti.root.dense(ti.i, N).place(x) @ti.kernel def func(): i = 0 s = 0 while i < 10: s += i i += 1 x[0] = s func() assert x[0] == 45 @ti.test() def test_while_break(): ret = ti.field(ti.i32, shape=()) @ti.kernel def func(): i = 0 s = 0 while True: s += i i += 1 if i > 10: break ret[None] = s func() assert ret[None] == 55 @ti.test() def test_while_continue(): ret = ti.field(ti.i32, shape=()) @ti.kernel def func(): i = 0 s = 0 while i < 10: i += 1 if i % 2 == 0: continue s += i ret[None] = s func() assert ret[None] == 25 @ti.test(print_preprocessed_ir=True) def test_func(): @ti.func def bar(x): return x * x, -x a = ti.field(ti.i32, shape=(10, )) b = ti.field(ti.i32, shape=(10, )) @ti.kernel def foo(): for i in a: a[i], b[i] = bar(i) foo() for i in range(10): assert a[i] == i * i assert b[i] == -i @ti.test(print_preprocessed_ir=True) def test_func_in_python_func(): @ti.func def bar(x: ti.template()): if ti.static(x): mat = bar(x // 2) mat = mat @ mat if ti.static(x % 2): mat = mat @ ti.Matrix([[1, 1], [1, 0]]) return mat else: return ti.Matrix([[1, 0], [0, 1]]) def fibonacci(x): return ti.subscript(bar(x), 1, 0) @ti.kernel def foo(x: ti.template()) -> ti.i32: return fibonacci(x) fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] for i in range(10): assert foo(i) == fib[i] @ti.test(print_preprocessed_ir=True) def test_ifexp(): @ti.kernel def foo(x: ti.i32) -> ti.i32: return 1 if x else 0 assert foo(1) == 1 assert foo(0) == 0 @ti.test(print_preprocessed_ir=True) def test_static_ifexp(): @ti.kernel def foo(x: ti.template()) -> ti.i32: return 1 if ti.static(x) else 0 assert foo(1) == 1 assert foo(0) == 0 @ti.test() def test_static_assign(): a = ti.field(ti.i32, shape=(1, )) b = ti.field(ti.i32, shape=(1, )) @ti.kernel def foo(xx: ti.template(), yy: ti.template()) -> ti.i32: x, y = ti.static(xx, yy) x[0] -= 1 y[0] -= 1 return x[0] + y[0] a[0] = 2 b[0] = 3 assert foo(a, b) == 3 @ti.test() def test_static_assign_element(): with pytest.raises(ti.TaichiSyntaxError) as e: @ti.kernel def foo(): a = ti.static([1, 2, 3]) a[0] = ti.static(2) foo() assert e.value.args[ 0] == "Static assign cannot be used on elements in arrays" @ti.test() def test_recreate_variable(): with pytest.raises(ti.TaichiSyntaxError) as e: @ti.kernel def foo(): a = 1 a = ti.static(2) foo() assert e.value.args[0] == "Recreating variables is not allowed" @ti.test() def test_taichi_other_than_ti(): import taichi as tc @tc.func def bar(x: tc.template()): if tc.static(x): mat = bar(x // 2) mat = mat @ mat if tc.static(x % 2): mat = mat @ tc.Matrix([[1, 1], [1, 0]]) return mat else: return tc.Matrix([[1, 0], [0, 1]]) def fibonacci(x): return tc.subscript(bar(x), 1, 0) @tc.kernel def foo(x: tc.template()) -> tc.i32: return fibonacci(x) fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] for i in range(10): assert foo(i) == fib[i] @ti.test(require=ti.extension.assertion, debug=True, gdb_trigger=False) def test_assert_message(): @ti.kernel def func(): x = 20 assert 10 <= x < 20, 'Foo bar' with pytest.raises(RuntimeError, match='Foo bar'): func() @ti.test(require=ti.extension.assertion, debug=True, gdb_trigger=False) def test_assert_message_formatted(): x = ti.field(dtype=int, shape=16) x[10] = 42 @ti.kernel def assert_formatted(): for i in x: assert x[i] == 0, 'x[%d] expect=%d got=%d' % (i, 0, x[i]) @ti.kernel def assert_float(): y = 0.5 assert y < 0, 'y = %f' % y with pytest.raises(RuntimeError, match=r'x\[10\] expect=0 got=42'): assert_formatted() # TODO: note that we are not fully polished to be able to recover from # assertion failures... with pytest.raises(RuntimeError, match=r'y = 0.5'): assert_float() # success case x[10] = 0 assert_formatted() @ti.test() def test_dict(): @ti.kernel def foo(x: ti.template()) -> ti.i32: a = {1: 2, 3: 4} b = {5: 6, **a} return b[x] assert foo(1) == 2 with pytest.raises(KeyError): foo(2) @ti.test() def test_listcomp(): @ti.func def identity(dt, n: ti.template()): return ti.Matrix([[ti.cast(int(i == j), dt) for j in range(n)] for i in range(n)]) @ti.kernel def foo(n: ti.template()) -> ti.i32: a = identity(ti.i32, n) b = [j for i in a for j in i] ret = 0 for i in ti.static(range(n)): for j in ti.static(range(n)): ret += i * j * b[i * n + j] return ret assert foo(5) == 1 + 4 + 9 + 16 @ti.test() def test_dictcomp(): @ti.kernel def foo(n: ti.template()) -> ti.i32: a = {i: i * i for i in range(n) if i % 3 if i % 2} ret = 0 for i in ti.static(range(n)): if ti.static(i % 3): if ti.static(i % 2): ret += a[i] return ret assert foo(10) == 1 * 1 + 5 * 5 + 7 * 7 @ti.test() def test_dictcomp_fail(): @ti.kernel def foo(n: ti.template(), m: ti.template()) -> ti.i32: a = {i: i * i for i in range(n) if i % 3 if i % 2} return a[m] with pytest.raises(KeyError): foo(5, 2) with pytest.raises(KeyError): foo(5, 3) @pytest.mark.skipif(not ti.has_pytorch(), reason='Pytorch not installed.') @ti.test(arch=[ti.cpu, ti.cuda, ti.opengl]) def test_ndarray(): n = 4 m = 7 @ti.kernel def run(x: ti.any_arr(element_dim=2, layout=ti.Layout.AOS), y: ti.any_arr()): for i in ti.static(range(n)): for j in ti.static(range(m)): x[i, j][0, 0] += i + j + y[i, j] a = ti.Matrix.ndarray(1, 1, ti.i32, shape=(n, m)) for i in range(n): for j in range(m): a[i, j][0, 0] = i * j b = np.ones((n, m), dtype=np.int32) run(a, b) for i in range(n): for j in range(m): assert a[i, j][0, 0] == i * j + i + j + 1 @ti.test(arch=ti.cpu) def test_sparse_matrix_builder(): n = 8 Abuilder = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=100) @ti.kernel def fill(Abuilder: ti.linalg.sparse_matrix_builder()): for i, j in ti.static(ti.ndrange(n, n)): Abuilder[i, j] += i + j fill(Abuilder) A = Abuilder.build() for i in range(n): for j in range(n): assert A[i, j] == i + j @ti.test() def test_func_default_value(): @ti.func def bar(s, t=1): return s + t @ti.kernel def foo() -> ti.i32: return bar(1) assert foo() == 2 @ti.test() def test_func_default_value_fail(): with pytest.raises(ti.TaichiSyntaxError): @ti.func def bar(s, t=1): return s + t @ti.kernel def foo() -> ti.i32: return bar(1, 2, 3) foo() @ti.test() def test_raise(): dim = 1 m = ti.Matrix.field(dim, dim, ti.f32) ti.root.place(m) with pytest.raises(Exception) as e: @ti.kernel def foo(): ti.polar_decompose(m, ti.f32) foo() assert e.value.args[ 0] == "Polar decomposition only supports 2D and 3D matrices." @ti.test() def test_scalar_argument(): @ti.kernel def add(a: ti.f32, b: ti.f32) -> ti.f32: a = a + b return a assert add(1.0, 2.0) == approx(3.0)
21.126263
75
0.448721
ae3b6fd7e45b1a0443006038ba007fe4226472e0
2,770
py
Python
doc/scripts/simplify_cmake_depsgraph.py
tiferrei/astrobee
a9aa0a7e9a7dd5a28c264acfd06ccde18103190a
[ "Apache-2.0" ]
629
2017-08-31T23:09:00.000Z
2022-03-30T11:55:40.000Z
doc/scripts/simplify_cmake_depsgraph.py
tiferrei/astrobee
a9aa0a7e9a7dd5a28c264acfd06ccde18103190a
[ "Apache-2.0" ]
269
2018-05-05T12:31:16.000Z
2022-03-30T22:04:11.000Z
doc/scripts/simplify_cmake_depsgraph.py
tiferrei/astrobee
a9aa0a7e9a7dd5a28c264acfd06ccde18103190a
[ "Apache-2.0" ]
248
2017-08-31T23:20:56.000Z
2022-03-30T22:29:16.000Z
#!/usr/bin/python3 # # Simplify a cmake generated dependency graph. # # Cmake has the capability to generate executable/librairies dependency graph. # However, the generated graphs are unreadable because every library file is # represented as a unique node. This script groups the libraries files by # package name. # The 'groups' variable list the patterns used to re-group the various nodes # from a same package into a single node. The groups list is specifically # crafted for ARS: it mostly address the ROS and Gazebo libs, plus some # key other dependencies. # # Usage: # 1. Generate the dependency graphs with something like # cd $BUILD_PATH # cmake --graphviz=deps/ars . # 2. Simplify the desired graphs with something like # cd deps # $SOURCE_PATH/doc/scripts/simplify_cmake_depsgraph.py ars.executive \ # > executive.dot # dot -Teps executive.dot -o executive.eps # import re import sys groups = [ ("nodeROS", "ROS Libraries", "/opt/ros/.+"), ("nodeGazebo", "gazebo", "/usr/lib/.+/libgazebo[_a-z0-9]*.so"), ("nodeBoost", "boost", "/usr/lib/.+/libboost.+\.so"), ("nodeOpenCV", "Open CV", "opencv_[_a-z0-9]+"), ("nodeLua", "lua", "/usr/lib/.+/liblua.+\.so"), ("nodeTinyXML", "tinyxml", "/usr/lib/.+/libtinyxml.*\.so"), ("nodeGflags", "gflags", "/usr/lib/.+/libgflag.*\.so"), ("nodeGlog", "glog", "/usr/lib/.+/libglog.*\.so"), ("nodeLinux", "Linux System Libraries", "/usr/lib/.*.so") # Not sure if libPocoFoundation should be listed individually # ("nodeLinux", "Linux System Libraries", "/usr/lib/libPoco.*.so"), # ("nodeLinux", "Linux System Libraries", "/usr/lib/.+linux-gnu/.+\.so") ] nodes = list() def process_dot(file): global nodes lines = file.readlines() # Identify groups of libraries # outer loop is groups: this way the order of the group list is respected # and it allows to glob larger pattern after more specific patterns # have already been processed for g in groups: for i, l in enumerate(lines): pattern = re.compile('\s"(node[0-9]+)"\s\[\slabel="(' + g[2] + ')"\s.+') result = re.search(pattern, l) if result: lines.pop(i) lines.insert(i, l.replace(result.group(2), g[1])) nodes.append((result.group(1), g[0])) # Replace nodes with common group node name for n in nodes: lines = [l.replace(n[0], n[1]) for l in lines] # Add strict to avoid multiple edges lines[0] = "strict " + lines[0] # Output the new file for l in lines: print(l, end=" ") if len(sys.argv) < 2: print("provide input file as first arg") exit f = open(sys.argv[1], "r") process_dot(f) # print(nodes)
32.97619
84
0.627798
9da61494bf7a3757ff2974ede68b4309cc6adbde
1,849
py
Python
src/urls.py
orlowdev/aite
6fcb02211d9fcb6be84de99deebc2aabe8075f61
[ "Apache-2.0" ]
1
2021-04-13T15:44:05.000Z
2021-04-13T15:44:05.000Z
src/urls.py
orlowdev/aite
6fcb02211d9fcb6be84de99deebc2aabe8075f61
[ "Apache-2.0" ]
null
null
null
src/urls.py
orlowdev/aite
6fcb02211d9fcb6be84de99deebc2aabe8075f61
[ "Apache-2.0" ]
null
null
null
"""src URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic.base import TemplateView from rest_framework_jwt.views import obtain_jwt_token from src.angular_js.views import AngularTemplateView urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^api/auth/token', obtain_jwt_token), url(r'^api/comments/', include("comments.api.urls", namespace="api-comments")), url(r'^api/contact-forms/', include("contact_forms.api.urls", namespace="api-contact-forms")), url(r'^api/calendar/', include("calendars.api.urls", namespace="api-calendars")), url(r'^api/posts/', include("posts.api.urls", namespace="api-posts")), url(r'^api/users/', include("accounts.api.urls", namespace="api-users")), url(r'^api/templates/(?P<item>[A-Za-z0-9\_\-\.\/]+)\.html$', AngularTemplateView.as_view()), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += [ url(r'', TemplateView.as_view(template_name='angular/main.html')), ]
39.340426
98
0.718767
18848600e1b67b67f6ce985da532897e614de92e
1,622
py
Python
uber_agent/city.py
hotpxl/uber-agent
70729f9b09a17336af3a8bc6f51e0b27b10e3fc3
[ "MIT" ]
null
null
null
uber_agent/city.py
hotpxl/uber-agent
70729f9b09a17336af3a8bc6f51e0b27b10e3fc3
[ "MIT" ]
null
null
null
uber_agent/city.py
hotpxl/uber-agent
70729f9b09a17336af3a8bc6f51e0b27b10e3fc3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import pickle import math import random class City(): def __init__(self, locations, travel_times, fare_estimates, coordinates): self._locations = locations self._travel_times = travel_times self._fare_estimates = fare_estimates self._coordinates = coordinates def save(self, filename='city.p'): with open(filename, 'wb') as f: pickle.dump(self, f) @staticmethod def load(filename='city.p'): with open(filename, 'rb') as f: return pickle.load(f) def locations(self): return self._locations[:] def travel_time(self, a, b): return self._travel_times[a][b] def fare_estimate(self, a, b): return self._fare_estimates[a][b] def coordinate(self, a): return self._coordinates[a] def distance(self, a, b): return math.sqrt( sum( map(lambda i, j: (i - j)**2, self._coordinates[a], self._coordinates[b]))) class TripGenerator(): def __init__(self, city): self._city = city def driver_at(self, l): locations = self._city.locations() assert l in locations, 'Invalid location.' weights = reversed(list(range(1, len(locations) + 1))) return self.start_from(random.choices(locations, weights=weights)[0]) def start_from(self, l): locations = self._city.locations() assert l in locations, 'Invalid location.' locations.remove(l) destination = random.choice(locations) return (l, destination)
27.491525
77
0.610358
4386c6d34a371af0d7fd77faa363f547f2c35884
935
py
Python
py/codeforces/883E.py
shhuan/algorithms
2830c7e2ada8dfd3dcdda7c06846116d4f944a27
[ "MIT" ]
null
null
null
py/codeforces/883E.py
shhuan/algorithms
2830c7e2ada8dfd3dcdda7c06846116d4f944a27
[ "MIT" ]
null
null
null
py/codeforces/883E.py
shhuan/algorithms
2830c7e2ada8dfd3dcdda7c06846116d4f944a27
[ "MIT" ]
1
2022-03-09T04:52:55.000Z
2022-03-09T04:52:55.000Z
# -*- coding: utf-8 -*- import math import collections import bisect import heapq import time import random import itertools import sys """ created by shhuan at 2017/10/22 17:36 """ N = int(input()) W = input() M = int(input()) words = set() for i in range(M): words.add(input()) revealed = set(W) - {'*'} idx = [i for i, w in enumerate(W) if w == '*'] badwords = set() guesses = set() for i in idx: for u in words: if u[i] in revealed: badwords.add(u) for i, w in enumerate(W): if w != '*': for u in words: if u[i] != w: badwords.add(u) words -= badwords for i in idx: w = W[i] for u in words: c = u[i] guesses.add(c) ans = 0 for g in guesses: left = {v for v in words} for i in idx: for w in {v for v in left}: if w[i] == g: left.remove(w) if not left: ans += 1 print(ans)
15.583333
46
0.522995
668df73ebc1e3b3bdeeba0ba60594ce79d63373b
7,766
py
Python
docs/conf.py
psreddy85/mlops_wafer
c3c2ac00ee55bf90956b25d4bd2054de6afa8287
[ "MIT" ]
null
null
null
docs/conf.py
psreddy85/mlops_wafer
c3c2ac00ee55bf90956b25d4bd2054de6afa8287
[ "MIT" ]
null
null
null
docs/conf.py
psreddy85/mlops_wafer
c3c2ac00ee55bf90956b25d4bd2054de6afa8287
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # MLOps_Wafer documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'MLOps_Wafer' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'mlops_maindoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'mlops_main.tex', u'MLOps_Wafer Documentation', u"sharath", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'mlops_main', u'MLOps_Wafer Documentation', [u"sharath"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'mlops_main', u'MLOps_Wafer Documentation', u"sharath", 'MLOps_Wafer', 'wafer project using mlops', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
31.697959
80
0.707185
bd2afbe0d87a261631e10f6ea0924928d49f20d4
37
py
Python
.history/chapter01/python_03_list_20201124211540.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
.history/chapter01/python_03_list_20201124211540.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
.history/chapter01/python_03_list_20201124211540.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
"""[リストについて] リストの構文とリストの使い方について """
7.4
18
0.675676
01ddd92c72ffd60c0d5e6ba79af60629466754c9
1,979
py
Python
test/sst/7.1.0/goblin_singlestream1-trace.py
tactcomplabs/gc64-hmcsim
79bf4ffae74dc52bb605adb3e0e1eb84649f9624
[ "BSD-2-Clause" ]
10
2018-02-26T02:39:36.000Z
2020-10-20T14:55:56.000Z
test/sst/7.1.0/goblin_singlestream1-trace.py
tactcomplabs/gc64-hmcsim
79bf4ffae74dc52bb605adb3e0e1eb84649f9624
[ "BSD-2-Clause" ]
5
2017-09-07T11:41:35.000Z
2020-10-12T14:35:39.000Z
test/sst/6.1.0/goblin_singlestream1-trace.py
tactcomplabs/gc64-hmcsim
79bf4ffae74dc52bb605adb3e0e1eb84649f9624
[ "BSD-2-Clause" ]
4
2017-09-07T06:03:43.000Z
2021-09-10T13:44:19.000Z
import sst # Define SST core options sst.setProgramOption("timebase", "1ps") sst.setProgramOption("stopAtCycle", "0 ns") # Define the simulation components comp_cpu = sst.Component("cpu", "miranda.BaseCPU") comp_cpu.addParams({ "verbose" : 0, "generator" : "miranda.SingleStreamGenerator", "generatorParams.verbose" : 0, "generatorParams.startat" : 3, "generatorParams.count" : 500000, "generatorParams.max_address" : 512000, "printStats" : 1, }) # Tell SST what statistics handling we want sst.setStatisticLoadLevel(4) # Enable statistics outputs comp_cpu.enableAllStatistics({"type":"sst.AccumulatorStatistic"}) comp_l1cache = sst.Component("l1cache", "memHierarchy.Cache") comp_l1cache.addParams({ "access_latency_cycles" : "2", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MESI", "associativity" : "4", "cache_line_size" : "64", "prefetcher" : "cassini.StridePrefetcher", "debug" : "1", "L1" : "1", "cache_size" : "2KB" }) # Enable statistics outputs comp_l1cache.enableAllStatistics({"type":"sst.AccumulatorStatistic"}) comp_memory = sst.Component("memory", "memHierarchy.MemController") comp_memory.addParams({ "coherence_protocol" : "MESI", "backend.access_time" : "1000 ns", "backend.mem_size" : "512MiB", "clock" : "1GHz", "backend" : "memHierarchy.goblinHMCSim", "backend.trace-banks" : "1", "backend.trace-queue" : "1", "backend.trace-cmds" : "1", "backend.trace-latency" : "1", "backend.trace-stalls" : "1" }) # Define the simulation links link_cpu_cache_link = sst.Link("link_cpu_cache_link") link_cpu_cache_link.connect( (comp_cpu, "cache_link", "1000ps"), (comp_l1cache, "high_network_0", "1000ps") ) link_cpu_cache_link.setNoCut() link_mem_bus_link = sst.Link("link_mem_bus_link") link_mem_bus_link.connect( (comp_l1cache, "low_network_0", "50ps"), (comp_memory, "direct_link", "50ps") )
30.921875
109
0.688732
fefca61b9687f183494d5e9db51d39bf34cb5bdb
5,009
py
Python
samples/fcd_create_vdisk_from_snapshot.py
whchoi98/whchoi_pyvmomi-community-samples
4bc90d0780267d9c14382ae72b50ef3475a96e46
[ "Apache-2.0" ]
null
null
null
samples/fcd_create_vdisk_from_snapshot.py
whchoi98/whchoi_pyvmomi-community-samples
4bc90d0780267d9c14382ae72b50ef3475a96e46
[ "Apache-2.0" ]
null
null
null
samples/fcd_create_vdisk_from_snapshot.py
whchoi98/whchoi_pyvmomi-community-samples
4bc90d0780267d9c14382ae72b50ef3475a96e46
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Written by Chris Arceneaux # GitHub: https://github.com/carceneaux # Email: carceneaux@thinksis.com # Website: http://arsano.ninja # # Note: Example code For testing purposes only # # This code has been released under the terms of the Apache-2.0 license # http://opensource.org/licenses/Apache-2.0 """ Python program for creating a first class disk (fcd) from a snapshot """ import atexit import ssl ssl._create_default_https_context = ssl._create_unverified_context from tools import cli, tasks, disk, pbmhelper from pyVim import connect from pyVmomi import vmodl, vim, pbm, VmomiSupport def get_args(): """ Adds additional args for creating a fcd from a snapshot -d source_datastore -v source_vdisk -n snapshot -D dest_datastore -V dest_vdisk """ parser = cli.build_arg_parser() parser.add_argument('-d', '--source_datastore', required=True, action='store', help='Datastore name where source disk is located') parser.add_argument('-v', '--source_vdisk', required=True, action='store', help='First Class Disk name with specified snapshot') # because -s is reserved for 'service', we use -n for snapshot name parser.add_argument('-n', '--snapshot', required=True, action='store', help='Snapshot name to be cloned') parser.add_argument('-D', '--dest_datastore', required=True, action='store', help='Datastore name where new disk is located') parser.add_argument('-V', '--dest_vdisk', required=True, action='store', help='First Class Disk name to be created') # because -s is reserved for 'service' and -p is reserved for 'password' parser.add_argument('-e', '--policy', action='store', help='Storage Policy name for new disk. If unset, ' 'the default policy of the datastore specified ' 'will apply.') my_args = parser.parse_args() return cli.prompt_for_password(my_args) def main(): """ Simple command-line program for creating a new vdisk from a snapshot """ args = get_args() try: if args.disable_ssl_verification: service_instance = connect.SmartConnectNoSSL(host=args.host, user=args.user, pwd=args.password, port=int(args.port)) else: service_instance = connect.SmartConnect(host=args.host, user=args.user, pwd=args.password, port=int(args.port)) atexit.register(connect.Disconnect, service_instance) content = service_instance.RetrieveContent() # Connect to SPBM Endpoint pbmSi = pbmhelper.create_pbm_session(service_instance._stub) pbmContent = pbmSi.RetrieveContent() # Retrieving Storage Policy if args.policy: p = pbmhelper.retrieve_storage_policy(pbmContent, args.policy) policy = [vim.vm.DefinedProfileSpec( profileId=p.profileId.uniqueId)] else: policy = None # Retrieve Source Datastore Object source_datastore = disk.get_obj( content, [vim.Datastore], args.source_datastore) # Retrieve Source FCD Object source_vdisk = disk.retrieve_fcd( content, source_datastore, args.source_vdisk) # Retrieve Snapshot Object snapshot = disk.retrieve_fcd_snapshot( content, source_datastore, source_vdisk, args.snapshot) # Retrieve Destination Datastore Object dest_datastore = disk.get_obj( content, [vim.Datastore], args.dest_datastore) # Create FCD from Snapshot storage = content.vStorageObjectManager if policy: task = storage.CreateDiskFromSnapshot_Task( source_vdisk.config.id, dest_datastore, snapshot, args.dest_vdisk, policy) else: task = storage.CreateDiskFromSnapshot_Task( source_vdisk.config.id, dest_datastore, snapshot, args.dest_vdisk) tasks.wait_for_tasks(service_instance, [task]) except vmodl.MethodFault as error: print("Caught vmodl fault : " + error.msg) return -1 return 0 # Start program if __name__ == "__main__": main()
32.738562
77
0.558994
33b681373543e2fe5d697beb91667b32e6e8320b
510
py
Python
plotly/validators/heatmap/colorbar/_tickmode.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/heatmap/colorbar/_tickmode.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/heatmap/colorbar/_tickmode.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class TickmodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='tickmode', parent_name='heatmap.colorbar', **kwargs ): super(TickmodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='colorbars', implied_edits={}, role='info', values=['auto', 'linear', 'array'], **kwargs )
28.333333
78
0.609804
91d2bafb054360811b97406c3179dffde9cdd7f6
555
py
Python
ordenacao/quicksort.py
GustavoCunhaLacerda/algoritmos-python
6799ab02bce3971728ce3503b48e8fda339c7b7c
[ "MIT" ]
1
2020-09-19T04:42:29.000Z
2020-09-19T04:42:29.000Z
ordenacao/quicksort.py
GustavoCunhaLacerda/AlgoritmosPython
6799ab02bce3971728ce3503b48e8fda339c7b7c
[ "MIT" ]
null
null
null
ordenacao/quicksort.py
GustavoCunhaLacerda/AlgoritmosPython
6799ab02bce3971728ce3503b48e8fda339c7b7c
[ "MIT" ]
null
null
null
def quick_sort(list, start=0, end=None): if end is None: end = len(list)-1 if start < end: pivot = partition(list, start, end) quick_sort(list, start, pivot-1) quick_sort(list, pivot+1, end) def partition(list, start, end): pivot = list[end] smaller = start for bigger in range(start, end): if list[bigger] <= pivot: list[bigger], list[smaller] = list[smaller], list[bigger] smaller += 1 list[end], list[smaller] = list[smaller], list[end] return smaller
26.428571
69
0.583784
7817b8f6b2688dfaad857c114446d1dcf5d1b5fc
39,232
py
Python
sdk/python/pulumi_aws/ec2/eip.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/ec2/eip.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/ec2/eip.py
aamir-locus/pulumi-aws
3e234b050129bde35d8e072a88bd608562f02142
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['EipArgs', 'Eip'] @pulumi.input_type class EipArgs: def __init__(__self__, *, associate_with_private_ip: Optional[pulumi.Input[str]] = None, customer_owned_ipv4_pool: Optional[pulumi.Input[str]] = None, instance: Optional[pulumi.Input[str]] = None, network_border_group: Optional[pulumi.Input[str]] = None, network_interface: Optional[pulumi.Input[str]] = None, public_ipv4_pool: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a Eip resource. :param pulumi.Input[str] associate_with_private_ip: A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. :param pulumi.Input[str] customer_owned_ipv4_pool: The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) :param pulumi.Input[str] instance: EC2 instance ID. :param pulumi.Input[str] network_border_group: The location from which the IP address is advertised. Use this parameter to limit the address to this location. :param pulumi.Input[str] network_interface: Network interface ID to associate with. :param pulumi.Input[str] public_ipv4_pool: EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. :param pulumi.Input[bool] vpc: Boolean if the EIP is in a VPC or not. """ if associate_with_private_ip is not None: pulumi.set(__self__, "associate_with_private_ip", associate_with_private_ip) if customer_owned_ipv4_pool is not None: pulumi.set(__self__, "customer_owned_ipv4_pool", customer_owned_ipv4_pool) if instance is not None: pulumi.set(__self__, "instance", instance) if network_border_group is not None: pulumi.set(__self__, "network_border_group", network_border_group) if network_interface is not None: pulumi.set(__self__, "network_interface", network_interface) if public_ipv4_pool is not None: pulumi.set(__self__, "public_ipv4_pool", public_ipv4_pool) if tags is not None: pulumi.set(__self__, "tags", tags) if vpc is not None: pulumi.set(__self__, "vpc", vpc) @property @pulumi.getter(name="associateWithPrivateIp") def associate_with_private_ip(self) -> Optional[pulumi.Input[str]]: """ A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. """ return pulumi.get(self, "associate_with_private_ip") @associate_with_private_ip.setter def associate_with_private_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "associate_with_private_ip", value) @property @pulumi.getter(name="customerOwnedIpv4Pool") def customer_owned_ipv4_pool(self) -> Optional[pulumi.Input[str]]: """ The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) """ return pulumi.get(self, "customer_owned_ipv4_pool") @customer_owned_ipv4_pool.setter def customer_owned_ipv4_pool(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "customer_owned_ipv4_pool", value) @property @pulumi.getter def instance(self) -> Optional[pulumi.Input[str]]: """ EC2 instance ID. """ return pulumi.get(self, "instance") @instance.setter def instance(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance", value) @property @pulumi.getter(name="networkBorderGroup") def network_border_group(self) -> Optional[pulumi.Input[str]]: """ The location from which the IP address is advertised. Use this parameter to limit the address to this location. """ return pulumi.get(self, "network_border_group") @network_border_group.setter def network_border_group(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network_border_group", value) @property @pulumi.getter(name="networkInterface") def network_interface(self) -> Optional[pulumi.Input[str]]: """ Network interface ID to associate with. """ return pulumi.get(self, "network_interface") @network_interface.setter def network_interface(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network_interface", value) @property @pulumi.getter(name="publicIpv4Pool") def public_ipv4_pool(self) -> Optional[pulumi.Input[str]]: """ EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. """ return pulumi.get(self, "public_ipv4_pool") @public_ipv4_pool.setter def public_ipv4_pool(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "public_ipv4_pool", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter def vpc(self) -> Optional[pulumi.Input[bool]]: """ Boolean if the EIP is in a VPC or not. """ return pulumi.get(self, "vpc") @vpc.setter def vpc(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "vpc", value) @pulumi.input_type class _EipState: def __init__(__self__, *, allocation_id: Optional[pulumi.Input[str]] = None, associate_with_private_ip: Optional[pulumi.Input[str]] = None, association_id: Optional[pulumi.Input[str]] = None, carrier_ip: Optional[pulumi.Input[str]] = None, customer_owned_ip: Optional[pulumi.Input[str]] = None, customer_owned_ipv4_pool: Optional[pulumi.Input[str]] = None, domain: Optional[pulumi.Input[str]] = None, instance: Optional[pulumi.Input[str]] = None, network_border_group: Optional[pulumi.Input[str]] = None, network_interface: Optional[pulumi.Input[str]] = None, private_dns: Optional[pulumi.Input[str]] = None, private_ip: Optional[pulumi.Input[str]] = None, public_dns: Optional[pulumi.Input[str]] = None, public_ip: Optional[pulumi.Input[str]] = None, public_ipv4_pool: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc: Optional[pulumi.Input[bool]] = None): """ Input properties used for looking up and filtering Eip resources. :param pulumi.Input[str] associate_with_private_ip: A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. :param pulumi.Input[str] carrier_ip: The carrier IP address. :param pulumi.Input[str] customer_owned_ip: Customer owned IP. :param pulumi.Input[str] customer_owned_ipv4_pool: The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) :param pulumi.Input[str] domain: Indicates if this EIP is for use in VPC (`vpc`) or EC2 Classic (`standard`). :param pulumi.Input[str] instance: EC2 instance ID. :param pulumi.Input[str] network_border_group: The location from which the IP address is advertised. Use this parameter to limit the address to this location. :param pulumi.Input[str] network_interface: Network interface ID to associate with. :param pulumi.Input[str] private_dns: The Private DNS associated with the Elastic IP address (if in VPC). :param pulumi.Input[str] private_ip: Contains the private IP address (if in VPC). :param pulumi.Input[str] public_dns: Public DNS associated with the Elastic IP address. :param pulumi.Input[str] public_ip: Contains the public IP address. :param pulumi.Input[str] public_ipv4_pool: EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. :param pulumi.Input[bool] vpc: Boolean if the EIP is in a VPC or not. """ if allocation_id is not None: pulumi.set(__self__, "allocation_id", allocation_id) if associate_with_private_ip is not None: pulumi.set(__self__, "associate_with_private_ip", associate_with_private_ip) if association_id is not None: pulumi.set(__self__, "association_id", association_id) if carrier_ip is not None: pulumi.set(__self__, "carrier_ip", carrier_ip) if customer_owned_ip is not None: pulumi.set(__self__, "customer_owned_ip", customer_owned_ip) if customer_owned_ipv4_pool is not None: pulumi.set(__self__, "customer_owned_ipv4_pool", customer_owned_ipv4_pool) if domain is not None: pulumi.set(__self__, "domain", domain) if instance is not None: pulumi.set(__self__, "instance", instance) if network_border_group is not None: pulumi.set(__self__, "network_border_group", network_border_group) if network_interface is not None: pulumi.set(__self__, "network_interface", network_interface) if private_dns is not None: pulumi.set(__self__, "private_dns", private_dns) if private_ip is not None: pulumi.set(__self__, "private_ip", private_ip) if public_dns is not None: pulumi.set(__self__, "public_dns", public_dns) if public_ip is not None: pulumi.set(__self__, "public_ip", public_ip) if public_ipv4_pool is not None: pulumi.set(__self__, "public_ipv4_pool", public_ipv4_pool) if tags is not None: pulumi.set(__self__, "tags", tags) if vpc is not None: pulumi.set(__self__, "vpc", vpc) @property @pulumi.getter(name="allocationId") def allocation_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "allocation_id") @allocation_id.setter def allocation_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "allocation_id", value) @property @pulumi.getter(name="associateWithPrivateIp") def associate_with_private_ip(self) -> Optional[pulumi.Input[str]]: """ A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. """ return pulumi.get(self, "associate_with_private_ip") @associate_with_private_ip.setter def associate_with_private_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "associate_with_private_ip", value) @property @pulumi.getter(name="associationId") def association_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "association_id") @association_id.setter def association_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "association_id", value) @property @pulumi.getter(name="carrierIp") def carrier_ip(self) -> Optional[pulumi.Input[str]]: """ The carrier IP address. """ return pulumi.get(self, "carrier_ip") @carrier_ip.setter def carrier_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "carrier_ip", value) @property @pulumi.getter(name="customerOwnedIp") def customer_owned_ip(self) -> Optional[pulumi.Input[str]]: """ Customer owned IP. """ return pulumi.get(self, "customer_owned_ip") @customer_owned_ip.setter def customer_owned_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "customer_owned_ip", value) @property @pulumi.getter(name="customerOwnedIpv4Pool") def customer_owned_ipv4_pool(self) -> Optional[pulumi.Input[str]]: """ The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) """ return pulumi.get(self, "customer_owned_ipv4_pool") @customer_owned_ipv4_pool.setter def customer_owned_ipv4_pool(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "customer_owned_ipv4_pool", value) @property @pulumi.getter def domain(self) -> Optional[pulumi.Input[str]]: """ Indicates if this EIP is for use in VPC (`vpc`) or EC2 Classic (`standard`). """ return pulumi.get(self, "domain") @domain.setter def domain(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "domain", value) @property @pulumi.getter def instance(self) -> Optional[pulumi.Input[str]]: """ EC2 instance ID. """ return pulumi.get(self, "instance") @instance.setter def instance(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance", value) @property @pulumi.getter(name="networkBorderGroup") def network_border_group(self) -> Optional[pulumi.Input[str]]: """ The location from which the IP address is advertised. Use this parameter to limit the address to this location. """ return pulumi.get(self, "network_border_group") @network_border_group.setter def network_border_group(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network_border_group", value) @property @pulumi.getter(name="networkInterface") def network_interface(self) -> Optional[pulumi.Input[str]]: """ Network interface ID to associate with. """ return pulumi.get(self, "network_interface") @network_interface.setter def network_interface(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network_interface", value) @property @pulumi.getter(name="privateDns") def private_dns(self) -> Optional[pulumi.Input[str]]: """ The Private DNS associated with the Elastic IP address (if in VPC). """ return pulumi.get(self, "private_dns") @private_dns.setter def private_dns(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_dns", value) @property @pulumi.getter(name="privateIp") def private_ip(self) -> Optional[pulumi.Input[str]]: """ Contains the private IP address (if in VPC). """ return pulumi.get(self, "private_ip") @private_ip.setter def private_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_ip", value) @property @pulumi.getter(name="publicDns") def public_dns(self) -> Optional[pulumi.Input[str]]: """ Public DNS associated with the Elastic IP address. """ return pulumi.get(self, "public_dns") @public_dns.setter def public_dns(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "public_dns", value) @property @pulumi.getter(name="publicIp") def public_ip(self) -> Optional[pulumi.Input[str]]: """ Contains the public IP address. """ return pulumi.get(self, "public_ip") @public_ip.setter def public_ip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "public_ip", value) @property @pulumi.getter(name="publicIpv4Pool") def public_ipv4_pool(self) -> Optional[pulumi.Input[str]]: """ EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. """ return pulumi.get(self, "public_ipv4_pool") @public_ipv4_pool.setter def public_ipv4_pool(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "public_ipv4_pool", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter def vpc(self) -> Optional[pulumi.Input[bool]]: """ Boolean if the EIP is in a VPC or not. """ return pulumi.get(self, "vpc") @vpc.setter def vpc(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "vpc", value) class Eip(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, associate_with_private_ip: Optional[pulumi.Input[str]] = None, customer_owned_ipv4_pool: Optional[pulumi.Input[str]] = None, instance: Optional[pulumi.Input[str]] = None, network_border_group: Optional[pulumi.Input[str]] = None, network_interface: Optional[pulumi.Input[str]] = None, public_ipv4_pool: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc: Optional[pulumi.Input[bool]] = None, __props__=None): """ Provides an Elastic IP resource. > **Note:** EIP may require IGW to exist prior to association. Use `depends_on` to set an explicit dependency on the IGW. > **Note:** Do not use `network_interface` to associate the EIP to `lb.LoadBalancer` or `ec2.NatGateway` resources. Instead use the `allocation_id` available in those resources to allow AWS to manage the association, otherwise you will see `AuthFailure` errors. ## Example Usage Single EIP associated with an instance: ```python import pulumi import pulumi_aws as aws lb = aws.ec2.Eip("lb", instance=aws_instance["web"]["id"], vpc=True) ``` Multiple EIPs associated with a single network interface: ```python import pulumi import pulumi_aws as aws multi_ip = aws.ec2.NetworkInterface("multi-ip", subnet_id=aws_subnet["main"]["id"], private_ips=[ "10.0.0.10", "10.0.0.11", ]) one = aws.ec2.Eip("one", vpc=True, network_interface=multi_ip.id, associate_with_private_ip="10.0.0.10") two = aws.ec2.Eip("two", vpc=True, network_interface=multi_ip.id, associate_with_private_ip="10.0.0.11") ``` Attaching an EIP to an Instance with a pre-assigned private ip (VPC Only): ```python import pulumi import pulumi_aws as aws default = aws.ec2.Vpc("default", cidr_block="10.0.0.0/16", enable_dns_hostnames=True) gw = aws.ec2.InternetGateway("gw", vpc_id=default.id) tf_test_subnet = aws.ec2.Subnet("tfTestSubnet", vpc_id=default.id, cidr_block="10.0.0.0/24", map_public_ip_on_launch=True, opts=pulumi.ResourceOptions(depends_on=[gw])) foo = aws.ec2.Instance("foo", ami="ami-5189a661", instance_type="t2.micro", private_ip="10.0.0.12", subnet_id=tf_test_subnet.id) bar = aws.ec2.Eip("bar", vpc=True, instance=foo.id, associate_with_private_ip="10.0.0.12", opts=pulumi.ResourceOptions(depends_on=[gw])) ``` Allocating EIP from the BYOIP pool: ```python import pulumi import pulumi_aws as aws byoip_ip = aws.ec2.Eip("byoip-ip", public_ipv4_pool="ipv4pool-ec2-012345", vpc=True) ``` ## Import EIPs in a VPC can be imported using their Allocation ID, e.g. ```sh $ pulumi import aws:ec2/eip:Eip bar eipalloc-00a10e96 ``` EIPs in EC2 Classic can be imported using their Public IP, e.g. ```sh $ pulumi import aws:ec2/eip:Eip bar 52.0.0.0 ``` [1]https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateAddress.html :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] associate_with_private_ip: A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. :param pulumi.Input[str] customer_owned_ipv4_pool: The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) :param pulumi.Input[str] instance: EC2 instance ID. :param pulumi.Input[str] network_border_group: The location from which the IP address is advertised. Use this parameter to limit the address to this location. :param pulumi.Input[str] network_interface: Network interface ID to associate with. :param pulumi.Input[str] public_ipv4_pool: EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. :param pulumi.Input[bool] vpc: Boolean if the EIP is in a VPC or not. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[EipArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Provides an Elastic IP resource. > **Note:** EIP may require IGW to exist prior to association. Use `depends_on` to set an explicit dependency on the IGW. > **Note:** Do not use `network_interface` to associate the EIP to `lb.LoadBalancer` or `ec2.NatGateway` resources. Instead use the `allocation_id` available in those resources to allow AWS to manage the association, otherwise you will see `AuthFailure` errors. ## Example Usage Single EIP associated with an instance: ```python import pulumi import pulumi_aws as aws lb = aws.ec2.Eip("lb", instance=aws_instance["web"]["id"], vpc=True) ``` Multiple EIPs associated with a single network interface: ```python import pulumi import pulumi_aws as aws multi_ip = aws.ec2.NetworkInterface("multi-ip", subnet_id=aws_subnet["main"]["id"], private_ips=[ "10.0.0.10", "10.0.0.11", ]) one = aws.ec2.Eip("one", vpc=True, network_interface=multi_ip.id, associate_with_private_ip="10.0.0.10") two = aws.ec2.Eip("two", vpc=True, network_interface=multi_ip.id, associate_with_private_ip="10.0.0.11") ``` Attaching an EIP to an Instance with a pre-assigned private ip (VPC Only): ```python import pulumi import pulumi_aws as aws default = aws.ec2.Vpc("default", cidr_block="10.0.0.0/16", enable_dns_hostnames=True) gw = aws.ec2.InternetGateway("gw", vpc_id=default.id) tf_test_subnet = aws.ec2.Subnet("tfTestSubnet", vpc_id=default.id, cidr_block="10.0.0.0/24", map_public_ip_on_launch=True, opts=pulumi.ResourceOptions(depends_on=[gw])) foo = aws.ec2.Instance("foo", ami="ami-5189a661", instance_type="t2.micro", private_ip="10.0.0.12", subnet_id=tf_test_subnet.id) bar = aws.ec2.Eip("bar", vpc=True, instance=foo.id, associate_with_private_ip="10.0.0.12", opts=pulumi.ResourceOptions(depends_on=[gw])) ``` Allocating EIP from the BYOIP pool: ```python import pulumi import pulumi_aws as aws byoip_ip = aws.ec2.Eip("byoip-ip", public_ipv4_pool="ipv4pool-ec2-012345", vpc=True) ``` ## Import EIPs in a VPC can be imported using their Allocation ID, e.g. ```sh $ pulumi import aws:ec2/eip:Eip bar eipalloc-00a10e96 ``` EIPs in EC2 Classic can be imported using their Public IP, e.g. ```sh $ pulumi import aws:ec2/eip:Eip bar 52.0.0.0 ``` [1]https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateAddress.html :param str resource_name: The name of the resource. :param EipArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(EipArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, associate_with_private_ip: Optional[pulumi.Input[str]] = None, customer_owned_ipv4_pool: Optional[pulumi.Input[str]] = None, instance: Optional[pulumi.Input[str]] = None, network_border_group: Optional[pulumi.Input[str]] = None, network_interface: Optional[pulumi.Input[str]] = None, public_ipv4_pool: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc: Optional[pulumi.Input[bool]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = EipArgs.__new__(EipArgs) __props__.__dict__["associate_with_private_ip"] = associate_with_private_ip __props__.__dict__["customer_owned_ipv4_pool"] = customer_owned_ipv4_pool __props__.__dict__["instance"] = instance __props__.__dict__["network_border_group"] = network_border_group __props__.__dict__["network_interface"] = network_interface __props__.__dict__["public_ipv4_pool"] = public_ipv4_pool __props__.__dict__["tags"] = tags __props__.__dict__["vpc"] = vpc __props__.__dict__["allocation_id"] = None __props__.__dict__["association_id"] = None __props__.__dict__["carrier_ip"] = None __props__.__dict__["customer_owned_ip"] = None __props__.__dict__["domain"] = None __props__.__dict__["private_dns"] = None __props__.__dict__["private_ip"] = None __props__.__dict__["public_dns"] = None __props__.__dict__["public_ip"] = None super(Eip, __self__).__init__( 'aws:ec2/eip:Eip', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, allocation_id: Optional[pulumi.Input[str]] = None, associate_with_private_ip: Optional[pulumi.Input[str]] = None, association_id: Optional[pulumi.Input[str]] = None, carrier_ip: Optional[pulumi.Input[str]] = None, customer_owned_ip: Optional[pulumi.Input[str]] = None, customer_owned_ipv4_pool: Optional[pulumi.Input[str]] = None, domain: Optional[pulumi.Input[str]] = None, instance: Optional[pulumi.Input[str]] = None, network_border_group: Optional[pulumi.Input[str]] = None, network_interface: Optional[pulumi.Input[str]] = None, private_dns: Optional[pulumi.Input[str]] = None, private_ip: Optional[pulumi.Input[str]] = None, public_dns: Optional[pulumi.Input[str]] = None, public_ip: Optional[pulumi.Input[str]] = None, public_ipv4_pool: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc: Optional[pulumi.Input[bool]] = None) -> 'Eip': """ Get an existing Eip resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] associate_with_private_ip: A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. :param pulumi.Input[str] carrier_ip: The carrier IP address. :param pulumi.Input[str] customer_owned_ip: Customer owned IP. :param pulumi.Input[str] customer_owned_ipv4_pool: The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) :param pulumi.Input[str] domain: Indicates if this EIP is for use in VPC (`vpc`) or EC2 Classic (`standard`). :param pulumi.Input[str] instance: EC2 instance ID. :param pulumi.Input[str] network_border_group: The location from which the IP address is advertised. Use this parameter to limit the address to this location. :param pulumi.Input[str] network_interface: Network interface ID to associate with. :param pulumi.Input[str] private_dns: The Private DNS associated with the Elastic IP address (if in VPC). :param pulumi.Input[str] private_ip: Contains the private IP address (if in VPC). :param pulumi.Input[str] public_dns: Public DNS associated with the Elastic IP address. :param pulumi.Input[str] public_ip: Contains the public IP address. :param pulumi.Input[str] public_ipv4_pool: EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. :param pulumi.Input[bool] vpc: Boolean if the EIP is in a VPC or not. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _EipState.__new__(_EipState) __props__.__dict__["allocation_id"] = allocation_id __props__.__dict__["associate_with_private_ip"] = associate_with_private_ip __props__.__dict__["association_id"] = association_id __props__.__dict__["carrier_ip"] = carrier_ip __props__.__dict__["customer_owned_ip"] = customer_owned_ip __props__.__dict__["customer_owned_ipv4_pool"] = customer_owned_ipv4_pool __props__.__dict__["domain"] = domain __props__.__dict__["instance"] = instance __props__.__dict__["network_border_group"] = network_border_group __props__.__dict__["network_interface"] = network_interface __props__.__dict__["private_dns"] = private_dns __props__.__dict__["private_ip"] = private_ip __props__.__dict__["public_dns"] = public_dns __props__.__dict__["public_ip"] = public_ip __props__.__dict__["public_ipv4_pool"] = public_ipv4_pool __props__.__dict__["tags"] = tags __props__.__dict__["vpc"] = vpc return Eip(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="allocationId") def allocation_id(self) -> pulumi.Output[str]: return pulumi.get(self, "allocation_id") @property @pulumi.getter(name="associateWithPrivateIp") def associate_with_private_ip(self) -> pulumi.Output[Optional[str]]: """ A user specified primary or secondary private IP address to associate with the Elastic IP address. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. """ return pulumi.get(self, "associate_with_private_ip") @property @pulumi.getter(name="associationId") def association_id(self) -> pulumi.Output[str]: return pulumi.get(self, "association_id") @property @pulumi.getter(name="carrierIp") def carrier_ip(self) -> pulumi.Output[str]: """ The carrier IP address. """ return pulumi.get(self, "carrier_ip") @property @pulumi.getter(name="customerOwnedIp") def customer_owned_ip(self) -> pulumi.Output[str]: """ Customer owned IP. """ return pulumi.get(self, "customer_owned_ip") @property @pulumi.getter(name="customerOwnedIpv4Pool") def customer_owned_ipv4_pool(self) -> pulumi.Output[Optional[str]]: """ The ID of a customer-owned address pool. For more on customer owned IP addressed check out [Customer-owned IP addresses guide](https://docs.aws.amazon.com/outposts/latest/userguide/outposts-networking-components.html#ip-addressing) """ return pulumi.get(self, "customer_owned_ipv4_pool") @property @pulumi.getter def domain(self) -> pulumi.Output[str]: """ Indicates if this EIP is for use in VPC (`vpc`) or EC2 Classic (`standard`). """ return pulumi.get(self, "domain") @property @pulumi.getter def instance(self) -> pulumi.Output[str]: """ EC2 instance ID. """ return pulumi.get(self, "instance") @property @pulumi.getter(name="networkBorderGroup") def network_border_group(self) -> pulumi.Output[str]: """ The location from which the IP address is advertised. Use this parameter to limit the address to this location. """ return pulumi.get(self, "network_border_group") @property @pulumi.getter(name="networkInterface") def network_interface(self) -> pulumi.Output[str]: """ Network interface ID to associate with. """ return pulumi.get(self, "network_interface") @property @pulumi.getter(name="privateDns") def private_dns(self) -> pulumi.Output[str]: """ The Private DNS associated with the Elastic IP address (if in VPC). """ return pulumi.get(self, "private_dns") @property @pulumi.getter(name="privateIp") def private_ip(self) -> pulumi.Output[str]: """ Contains the private IP address (if in VPC). """ return pulumi.get(self, "private_ip") @property @pulumi.getter(name="publicDns") def public_dns(self) -> pulumi.Output[str]: """ Public DNS associated with the Elastic IP address. """ return pulumi.get(self, "public_dns") @property @pulumi.getter(name="publicIp") def public_ip(self) -> pulumi.Output[str]: """ Contains the public IP address. """ return pulumi.get(self, "public_ip") @property @pulumi.getter(name="publicIpv4Pool") def public_ipv4_pool(self) -> pulumi.Output[str]: """ EC2 IPv4 address pool identifier or `amazon`. This option is only available for VPC EIPs. """ return pulumi.get(self, "public_ipv4_pool") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of tags to assign to the resource. Tags can only be applied to EIPs in a VPC. """ return pulumi.get(self, "tags") @property @pulumi.getter def vpc(self) -> pulumi.Output[bool]: """ Boolean if the EIP is in a VPC or not. """ return pulumi.get(self, "vpc")
42.970427
292
0.643811
bdc874f10fe3f84ce85e218a408890c53bd42e18
4,133
py
Python
course_retrieval/course_retrieval.py
neelkapadia/WolfPal
5a5b2b37285acc56338383b90c39ea3ac755fed3
[ "MIT" ]
1
2018-03-25T17:32:07.000Z
2018-03-25T17:32:07.000Z
course_retrieval/course_retrieval.py
neelkapadia/WolfPal
5a5b2b37285acc56338383b90c39ea3ac755fed3
[ "MIT" ]
14
2018-04-02T00:32:10.000Z
2018-04-25T20:15:16.000Z
course_retrieval/course_retrieval.py
neelkapadia/WolfPal
5a5b2b37285acc56338383b90c39ea3ac755fed3
[ "MIT" ]
3
2018-04-25T20:04:02.000Z
2018-06-27T00:47:14.000Z
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time from bs4 import BeautifulSoup import requests from pymongo import MongoClient import json import script_db import pickle # def get_credentials(): # pkl_file = open('.cred.pkl', 'rb') # data = pickle.load(pkl_file) # return data[0], data[1], data[2], data[3] # username, password, db_name, collection_name = get_credentials() # client = MongoClient("ds239359.mlab.com", 39359, connectTimeoutMS=30000, socketTimeoutMS=None, socketKeepAlive=True) # db = client["wolfpal"] # db.authenticate("paylot","wolfpal123") url = 'https://www.acs.ncsu.edu/php/coursecat/directory.php' driver = webdriver.Chrome() driver.get(url) driver.find_element_by_xpath("//select[@name='course-career']/option[text()='Graduate']").click() code = driver.find_element_by_id("auto-subject") code.send_keys("CSC") #code.send_keys(Keys.DOWN) #code.send_keys(Keys.ENTER) driver.find_element_by_id("subject-search-button").click() time.sleep(10) print driver.current_url page = requests.get(driver.current_url) #print page.text #durlsoup = BeautifulSoup(page.text,"html.parser") html_list = driver.find_element_by_id("course-search-results") items = html_list.find_elements_by_tag_name("li") # list_of_courses = [] # fp = open("CSC-course-list.txt","w") # for item in items: # text = item.text # fp.write(text) # fp.write('\n') # fp.close() prereqs = [] #days = [] descriptions = [] unit = [] title = [] names = [] ids = [] timings = [] schedule = [] courses = [] i = 1 # for item in items: # print item.text for item in items: days = [] print item.text driver.find_element_by_link_text(item.text).click() time.sleep(10) description = (driver.find_element_by_id("course-descr").text) descriptions.append(description) unit.append(driver.find_element_by_id("course-units").text) print unit prereq = driver.find_element_by_id("course-reqs").text prereqs.append(prereq) print prereqs t = driver.find_element_by_id("modalTitle").text print t id_name = t.split(":") id_name[0] = id_name[0].replace(" ","") id_name[1]= id_name[1].lstrip() title.append(driver.find_element_by_id("modalTitle").text) print title ids.append(id_name[0]) names.append(id_name[1]) print ids print names sem = driver.find_element_by_tag_name("em").text if "Fall" and "Spring" in sem: semester = "Fall,Spring" elif "Fall" in sem: semester = "Fall" elif "Spring" in sem: semester = "Spring" print semester if " future" in driver.find_element_by_id("course-sem").text: days.append("NA") else: term = driver.find_element_by_partial_link_text("2018").click() time.sleep(10) dayl = driver.find_elements_by_css_selector('li.meet.hidden-xs') for day in dayl: days.append(day.text) timing = driver.find_element_by_xpath("""//*[@id="search-results"]/table/tbody/tr/td[5]""").text.split('\n') if "TBD" not in timing: times = timing[1].split("-") timeslot = times[0].split(" ") ftime = timeslot[0] else: ftime = "TBD" days.append("NA") print days print ftime #script_db.db_insert(username,password,db_name,collection_name,id_name[0],id_name[1],"Fall",description) driver.find_element_by_xpath("""//*[@id="details-modal"]/div/div/div[3]/button""").click() time.sleep(10) json_schedule = json.dumps( { 'course_id': str(i), 'semester': semester, 'day':days, 'time':ftime, 'project': True, 'fieldwork': True, 'ratings': "4" }) entry_s = json.loads(json_schedule) schedule.append(entry_s) #print schedule json_courses = json.dumps( { 'code': id_name[0], 'syllabus_id': str(i), 'course_name': id_name[1], 'description':description, 'core': True, 'channel_id': str(i) }) entry_c = json.loads(json_courses) courses.append(entry_c) #print courses i = i+1 fp1 = open("courses.txt","w") fp1.write(str(courses)) fp1.close() fp2 = open("schedule.txt","w") fp2.write(str(schedule)) fp2.close() #button.click() #print urlsoup.prettify() # print urlsoup # description = urlsoup.find("p",id="course-descr").text # print description #print description
23.350282
118
0.701669
3048e1d24fa8803198fe729ea2defb299803ef1e
8,155
py
Python
docs/conf.py
ashish2py/django-postman
1cd1ce446912fbd179594f1ed1b535d74e1f891f
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
ashish2py/django-postman
1cd1ce446912fbd179594f1ed1b535d74e1f891f
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
ashish2py/django-postman
1cd1ce446912fbd179594f1ed1b535d74e1f891f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # complexity documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) cwd = os.getcwd() parent = os.path.dirname(cwd) sys.path.append(parent) import postman # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'django postman' copyright = u'2017, Ashish Tiwari' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = postman.__version__ # The full version, including alpha/beta/rc tags. release = postman.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-postmandoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-postman.tex', u'django postman Documentation', u'Ashish Tiwari', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-postman', u'django postman Documentation', [u'Ashish Tiwari'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'django-postman', u'django postman Documentation', u'Ashish Tiwari', 'django-postman', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
31.980392
80
0.717964
3c7f175bca1ae3b29c32bc4e309ecb19aaf7134a
2,766
py
Python
demo/tensorflow/nn_tensorboard.py
zhengxin2016/corpus
c33574cf195bfe4aa57def95349f6baa4cd8200c
[ "Apache-2.0" ]
null
null
null
demo/tensorflow/nn_tensorboard.py
zhengxin2016/corpus
c33574cf195bfe4aa57def95349f6baa4cd8200c
[ "Apache-2.0" ]
null
null
null
demo/tensorflow/nn_tensorboard.py
zhengxin2016/corpus
c33574cf195bfe4aa57def95349f6baa4cd8200c
[ "Apache-2.0" ]
1
2018-07-04T05:38:09.000Z
2018-07-04T05:38:09.000Z
#!/usr/bin/env python3 import os, sys import tensorflow as tf import numpy as np #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' #all info os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #warning, error #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #error def add_layer(inputs, in_size, out_size, activation_function=None): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size])) tf.summary.histogram('weights', Weights) with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) tf.summary.histogram('biases', biases) with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, Weights) + biases keep_prob = 1 Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob) tf.summary.histogram('Wx_plus_b', Wx_plus_b) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) tf.summary.histogram('outputs', outputs) return outputs x_data = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise with tf.name_scope('input_x'): xs = tf.placeholder(tf.float32, [None, 1]) with tf.name_scope('input_y'): ys = tf.placeholder(tf.float32, [None, 1]) with tf.name_scope('L1'): l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) with tf.name_scope('outputs'): prediction = add_layer(l1, 10, 1, activation_function=None) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1])) tf.summary.scalar('loss', loss) with tf.name_scope('train_step'): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() saver = tf.train.Saver() sess = tf.Session() merged = tf.summary.merge_all() writer = tf.summary.FileWriter('logs/', sess.graph) sess.run(init) for i in range(1000): sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) if i % 100 == 0: print(sess.run(loss, feed_dict={xs:x_data, ys:y_data})) result = sess.run(merged, feed_dict={xs:x_data, ys:y_data}) writer.add_summary(result, i) save_path = saver.save(sess, "save/save.ckpt") print("Save to path:", save_path) sess.close() ########################## print('\n\nrestore....\n') saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, 'save/save.ckpt') for i in range(1000): sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) if i % 100 == 0: print(sess.run(loss, feed_dict={xs:x_data, ys:y_data})) while 1: x = input('input:') x = float(x.strip()) y = sess.run(prediction, feed_dict={xs:[[x]]}) print(x, y)
31.431818
70
0.661605
cbe7ef700346235eadb1ca0e379ade3421f45b33
7,543
py
Python
examples/dmri_group_connectivity_mrtrix.py
dPys/nipype
75030b29297808e7c9a9e91b411b685154dff60b
[ "Apache-2.0" ]
1
2020-02-24T15:44:50.000Z
2020-02-24T15:44:50.000Z
examples/dmri_group_connectivity_mrtrix.py
dPys/nipype
75030b29297808e7c9a9e91b411b685154dff60b
[ "Apache-2.0" ]
null
null
null
examples/dmri_group_connectivity_mrtrix.py
dPys/nipype
75030b29297808e7c9a9e91b411b685154dff60b
[ "Apache-2.0" ]
null
null
null
""" ================================================== dMRI: Group connectivity - MRtrix, FSL, FreeSurfer ================================================== Introduction ============ This script, dmri_group_connectivity_mrtrix.py, runs group-based connectivity analysis using the dmri.mrtrix.connectivity_mapping Nipype workflow. Further detail on the processing can be found in :doc:`dmri_connectivity_advanced`. This tutorial can be run using:: python dmri_group_connectivity_mrtrix.py We perform this analysis using one healthy subject and two subjects who suffer from Parkinson's disease. The whole package (960 mb as .tar.gz / 1.3 gb uncompressed) including the Freesurfer directories for these subjects, can be acquired from here: * http://db.tt/b6F1t0QV A data package containing the outputs of this pipeline can be obtained from here: * http://db.tt/elmMnIt1 Along with MRtrix, FSL, and Freesurfer, you must also have the Connectome File Format library installed as well as the Connectome Mapper (cmp). * MRtrix: http://www.brain.org.au/software/mrtrix/ * FSL: http://www.fmrib.ox.ac.uk/fsl/ * Freesurfer: http://surfer.nmr.mgh.harvard.edu/ * CTMK: http://www.cmtk.org/ * CFF: sudo apt-get install python-cfflib Or on github at: * CFFlib: https://github.com/LTS5/cfflib * CMP: https://github.com/LTS5/cmp Output data can be visualized in ConnectomeViewer, TrackVis, Gephi, the MRtrix Viewer (mrview), and anything that can view Nifti files. * ConnectomeViewer: https://github.com/LTS5/connectomeviewer * TrackVis: http://trackvis.org/ * Gephi: http://gephi.org/ The fiber data is available in Numpy arrays, and the connectivity matrix is also produced as a MATLAB matrix. Import the workflows -------------------- First, we import the necessary modules from nipype. """ import nipype.interfaces.fsl as fsl import nipype.interfaces.freesurfer as fs # freesurfer import os.path as op # system functions import cmp from niflow.nipype1.workflows.dmri.mrtrix.group_connectivity import create_group_connectivity_pipeline from niflow.nipype1.workflows.dmri.connectivity.group_connectivity import ( create_merge_network_results_by_group_workflow, create_merge_group_network_results_workflow, create_average_networks_by_group_workflow) """ Set the proper directories -------------------------- First, we import the necessary modules from nipype. """ subjects_dir = op.abspath('groupcondatapackage/subjects/') data_dir = op.abspath('groupcondatapackage/data/') fs.FSCommand.set_default_subjects_dir(subjects_dir) fsl.FSLCommand.set_default_output_type('NIFTI') """ Define the groups ----------------- Here we define the groups for this study. We would like to search for differences between the healthy subject and the two vegetative patients. The group list is defined as a Python dictionary (see http://docs.python.org/tutorial/datastructures.html), with group IDs ('controls', 'parkinsons') as keys, and subject/patient names as values. We set the main output directory as 'groupcon'. """ group_list = {} group_list['controls'] = ['cont17'] group_list['parkinsons'] = ['pat10', 'pat20'] """ The output directory must be named as well. """ global output_dir output_dir = op.abspath('dmri_group_connectivity_mrtrix') """ Main processing loop ==================== The title for the final grouped-network connectome file is dependent on the group names. The resulting file for this example is 'parkinsons-controls.cff'. The following code implements the format a-b-c-...x.cff for an arbitary number of groups. .. warning:: The 'info' dictionary below is used to define the input files. In this case, the diffusion weighted image contains the string 'dti'. The same applies to the b-values and b-vector files, and this must be changed to fit your naming scheme. The workflow is created given the information input about the groups and subjects. .. seealso:: * nipype/workflows/dmri/mrtrix/group_connectivity.py * nipype/workflows/dmri/mrtrix/connectivity_mapping.py * :doc:`dmri_connectivity_advanced` We set values for absolute threshold used on the fractional anisotropy map. This is done in order to identify single-fiber voxels. In brains with more damage, however, it may be necessary to reduce the threshold, since their brains are have lower average fractional anisotropy values. We invert the b-vectors in the encoding file, and set the maximum harmonic order of the pre-tractography spherical deconvolution step. This is done to show how to set inputs that will affect both groups. Next we create and run the second-level pipeline. The purpose of this workflow is simple: It is used to merge each subject's CFF file into one, so that there is a single file containing all of the networks for each group. This can be useful for performing Network Brain Statistics using the NBS plugin in ConnectomeViewer. .. seealso:: http://www.connectomeviewer.org/documentation/users/tutorials/tut_nbs.html """ title = '' for idx, group_id in enumerate(group_list.keys()): title += group_id if not idx == len(list(group_list.keys())) - 1: title += '-' info = dict( dwi=[['subject_id', 'dti']], bvecs=[['subject_id', 'bvecs']], bvals=[['subject_id', 'bvals']]) l1pipeline = create_group_connectivity_pipeline( group_list, group_id, data_dir, subjects_dir, output_dir, info) # Here with invert the b-vectors in the Y direction and set the maximum harmonic order of the # spherical deconvolution step l1pipeline.inputs.connectivity.mapping.fsl2mrtrix.invert_y = True l1pipeline.inputs.connectivity.mapping.csdeconv.maximum_harmonic_order = 6 # Here we define the parcellation scheme and the number of tracks to produce parcellation_name = 'scale500' l1pipeline.inputs.connectivity.mapping.Parcellate.parcellation_name = parcellation_name cmp_config = cmp.configuration.PipelineConfiguration() cmp_config.parcellation_scheme = "Lausanne2008" l1pipeline.inputs.connectivity.mapping.inputnode_within.resolution_network_file = cmp_config._get_lausanne_parcellation( 'Lausanne2008')[parcellation_name]['node_information_graphml'] l1pipeline.inputs.connectivity.mapping.probCSDstreamtrack.desired_number_of_tracks = 100000 l1pipeline.run() l1pipeline.write_graph(format='eps', graph2use='flat') # The second-level pipeline is created here l2pipeline = create_merge_network_results_by_group_workflow( group_list, group_id, data_dir, subjects_dir, output_dir) l2pipeline.inputs.l2inputnode.network_file = cmp_config._get_lausanne_parcellation( 'Lausanne2008')[parcellation_name]['node_information_graphml'] l2pipeline.run() l2pipeline.write_graph(format='eps', graph2use='flat') """ Now that the for loop is complete there are two grouped CFF files each containing the appropriate subjects. It is also convenient to have every subject in a single CFF file, so that is what the third-level pipeline does. """ l3pipeline = create_merge_group_network_results_workflow( group_list, data_dir, subjects_dir, output_dir, title) l3pipeline.run() l3pipeline.write_graph(format='eps', graph2use='flat') """ The fourth and final workflow averages the networks and saves them in another CFF file """ l4pipeline = create_average_networks_by_group_workflow( group_list, data_dir, subjects_dir, output_dir, title) l4pipeline.run() l4pipeline.write_graph(format='eps', graph2use='flat')
40.772973
143
0.750497
5a9dbb3f70b5cf6cc5984c74e08a0aa42f6e26d6
650
py
Python
sandbox/lib/jumpscale/Jumpscale/servers/gedis_websocket/GedisWebsocketFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
sandbox/lib/jumpscale/Jumpscale/servers/gedis_websocket/GedisWebsocketFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
sandbox/lib/jumpscale/Jumpscale/servers/gedis_websocket/GedisWebsocketFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
import socket from Jumpscale import j from .GedisWebsocketServer import GedisWebsocketServer JSConfigClient = j.baseclasses.object_config_collection class GedisWebsocketFactory(JSConfigClient): __jslocation__ = "j.servers.gedis_websocket" _CHILDCLASS = GedisWebsocketServer def _init(self, **kwargs): self._default = None @property def default(self): if not self._default: self._default = self.get("default") return self._default def test(self): self.client_gedis = j.clients.gedis.get("main", port=8900) self.client_gedis.actors.chatbot.ping() return "DONE"
25
66
0.7
54cdc6416ab2b295c3bee8ad2be0912c7318ef0f
239
py
Python
frappe/core/doctype/patch_log/test_patch_log.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
frappe/core/doctype/patch_log/test_patch_log.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
frappe/core/doctype/patch_log/test_patch_log.py
oryxsolutions/frappe
d193ea22d17ca40d57432040a8afad72287d9e23
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: MIT. See LICENSE import unittest # test_records = frappe.get_test_records('Patch Log') class TestPatchLog(unittest.TestCase): pass
21.727273
68
0.736402
473eae16743c94d7aeab444891b5853e47a1f072
7,627
py
Python
cr-errands.py
bryant81/cr-statics
bde0cd75ed3cb2dd03eb8eca3d585ba92f0155fc
[ "MIT" ]
null
null
null
cr-errands.py
bryant81/cr-statics
bde0cd75ed3cb2dd03eb8eca3d585ba92f0155fc
[ "MIT" ]
1
2018-01-30T06:32:17.000Z
2018-01-30T08:53:38.000Z
cr-errands.py
bryant81/cr-statics
bde0cd75ed3cb2dd03eb8eca3d585ba92f0155fc
[ "MIT" ]
null
null
null
#!/usr/bin/env python #encoding=utf-8 import sys import login_client import argparse import xlrd, xlwt from pyecharts import Pie, Page rd_departments_list = ['嵌入部', '系统部', '软件部', '项目管理部', '硬件部', '结构部', '测试部', '研发中心'] cities = ("阿坝","阿拉善","阿里","安康","安庆","鞍山","安顺","安阳","澳门","北京","白银", "保定","宝鸡","保山","包头","巴中","北海","蚌埠","本溪","毕节","滨州","百色","亳州", "重庆","成都","长沙","长春","沧州","常德","昌都","长治","常州","巢湖","潮州","承德", "郴州","赤峰","池州","崇左","楚雄","滁州","朝阳","大连","东莞","大理","丹东","大庆", "大同","大兴安岭","德宏","德阳","德州","定西","迪庆","东营","鄂尔多斯","恩施","鄂州", "福州","防城港","佛山","抚顺","抚州","阜新","阜阳","广州","桂林","贵阳","甘南", "赣州","甘孜","广安","广元","贵港","果洛","杭州","哈尔滨","合肥","海口","呼和浩特", "海北","海东","海南","海西","邯郸","汉中","鹤壁","河池","鹤岗","黑河","衡水","衡阳", "河源","贺州","红河","淮安","淮北","怀化","淮南","黄冈","黄南","黄山","黄石","惠州", "葫芦岛","呼伦贝尔","湖州","菏泽","济南","佳木斯","吉安","江门","焦作","嘉兴","嘉峪关", "揭阳","吉林","金昌","晋城","景德镇","荆门","荆州","金华","济宁","晋中","锦州","九江", "酒泉","昆明","开封","兰州","拉萨","来宾","莱芜","廊坊","乐山","凉山","连云港", "聊城","辽阳","辽源","丽江","临沧","临汾","临夏","临沂","林芝","丽水","六安","六盘水", "柳州","陇南","龙岩","娄底","漯河","洛阳","泸州","吕梁","马鞍山","茂名","眉山","梅州", "绵阳","牡丹江","南京","南昌","南宁","宁波","南充","南平","南通","南阳","那曲","内江", "宁德","怒江","盘锦","攀枝花","平顶山","平凉","萍乡","莆田","濮阳","青岛","黔东南", "黔南","黔西南","庆阳","清远","秦皇岛","钦州","齐齐哈尔","泉州","曲靖","衢州","日喀则", "日照","上海","深圳","苏州","沈阳","石家庄","三门峡","三明","三亚","商洛","商丘","上饶", "山南","汕头","汕尾","韶关","绍兴","邵阳","十堰","朔州","四平","绥化","遂宁","随州","宿迁", "宿州","天津","太原","泰安","泰州","台州","唐山","天水","铁岭","铜川","通化","通辽", "铜陵","铜仁","台湾","武汉","乌鲁木齐","无锡","威海","潍坊","文山","温州","乌海","芜湖", "乌兰察布","武威","梧州","厦门","西安","西宁","襄樊","湘潭","湘西","咸宁","咸阳","孝感", "邢台","新乡","信阳","新余","忻州","西双版纳","宣城","许昌","徐州","香港","锡林郭勒","兴安", "银川","雅安","延安","延边","盐城","阳江","阳泉","扬州","烟台","宜宾","宜昌","宜春", "营口","益阳","永州","岳阳","榆林","运城","云浮","玉树","玉溪","玉林","杂多县","赞皇县", "枣强县","枣阳市","枣庄","泽库县","增城市","曾都区","泽普县","泽州县","札达县","扎赉特旗", "扎兰屯市","扎鲁特旗","扎囊县","张北县","张店区","章贡区","张家港","张家界","张家口","漳平市", "漳浦县","章丘市","樟树市","张湾区","彰武县","漳县","张掖","漳州","长子县","湛河区","湛江", "站前区","沾益县","诏安县","召陵区","昭平县","肇庆","昭通","赵县","昭阳区","招远市","肇源县", "肇州县","柞水县","柘城县","浙江","镇安县","振安区","镇巴县","正安县","正定县","正定新区", "正蓝旗","正宁县","蒸湘区","正镶白旗","正阳县","郑州","镇海区","镇江","浈江区","镇康县", "镇赉县","镇平县","振兴区","镇雄县","镇原县","志丹县","治多县","芝罘区","枝江市", "芷江侗族自治县","织金县","中方县","中江县","钟楼区","中牟县","中宁县","中山","中山区", "钟山区","钟山县","中卫","钟祥市","中阳县","中原区","周村区","周口","周宁县","舟曲县","舟山", "周至县","庄河市","诸城市","珠海","珠晖区","诸暨市","驻马店","准格尔旗","涿鹿县","卓尼", "涿州市","卓资县","珠山区","竹山县","竹溪县","株洲","株洲县","淄博","子长县","淄川区","自贡", "秭归县","紫金县","自流井区","资溪县","资兴市","资阳") def get_city_from_remark(remark): if remark.find('展') != -1: return '展会' if remark.find('训') != -1 or remark.find('招聘') != -1: return '培训' for city in cities: if remark.find(city) != -1: return city spec_city = [('一所', '北京'),('通广', '济南'), ('西藏', '拉萨'), ('鲁软', '济南'), ('5000','合肥'), ('天地伟业','天津'), ('东电','重庆'), ('南瑞','南京'), ('山东','济南')] for spec in spec_city: if remark.find(spec[0]) != -1: return spec[1] print(remark) return '未知' parser = argparse.ArgumentParser() parser.add_argument('url', type=str, help='the website address of erp') parser.add_argument('username', type=str, help='the username login with') parser.add_argument('password', type=str, help='the password login with') parser.add_argument('inputfile', type=str, help='the employee need static') parser.add_argument('outputfile', type=str, help='the statics datasheet') parser.add_argument('year', type=int, help='the year of the statics') args = parser.parse_args() input_sheet = xlrd.open_workbook(args.inputfile).sheets()[0] output_workbook = xlwt.Workbook(encoding='utf-8') output_sheet = output_workbook.add_sheet('2017-statics') SHEET_NAME_INDEX = 0 SHEET_EMAIL_INDEX = 1 SHEET_ARRANDS_TIME = 2 SHEET_ARRANDS_CITY = 3 SHEET_ARRANDS_REMARK = 4 output_sheet.write(0, SHEET_NAME_INDEX, '姓名') output_sheet.write(0, SHEET_EMAIL_INDEX, '邮箱') output_sheet.write(0, SHEET_ARRANDS_TIME, '出差时间') output_sheet.write(0, SHEET_ARRANDS_REMARK, '出差是由') employees_list = [] for index in range(0, input_sheet.nrows): items = input_sheet.row(index) name = items[0].value email = items[1].value employees_list.append([name, email]) client = login_client.LoginClient(args.url, args.username, args.password) login_result, login_description = client.login_in() if login_result: print('登录成功') else: print('登录失败:', login_description) sys.exit(-1) output_row_index = 1 statics_count = 0 sales_errands_list = [] tranning_errands_list = [] exhibition_errands_list = [] for employee in employees_list: name = employee[0] email = employee[1] employee_info = client.get_employee_info(name, email) department_name = employee_info.department_name if department_name in rd_departments_list: errands_list = client.get_employee_errands(employee_info, args.year) for errands in errands_list: city = get_city_from_remark(errands[1]) if city == '展会': exhibition_errands_list.append(errands) elif city == '培训' or city == '招聘': tranning_errands_list.append(errands) else: sales_errands_list.append((errands[0], city, errands[1])) output_sheet.write(output_row_index, SHEET_NAME_INDEX, name) output_sheet.write(output_row_index, SHEET_EMAIL_INDEX, email) output_sheet.write(output_row_index, SHEET_ARRANDS_TIME, int(errands[0])) output_sheet.write(output_row_index, SHEET_ARRANDS_CITY, city) output_sheet.write(output_row_index, SHEET_ARRANDS_REMARK, errands[1]) output_row_index = output_row_index + 1 statics_count = statics_count + 1 #print('姓名:%s 出差时间:%s 出差原因:%s'%(name, errands[0], errands[1])) #print(exhibition_errands_list) #print(tranning_errands_list) #print(sales_errands_list) city_errands_count = {} errands_count = 0 city_errands_time = {} errands_time = 0 for errands in sales_errands_list: city = errands[1] if city not in city_errands_count: city_errands_count[city] = 1 else: city_errands_count[city] = city_errands_count[city] + 1 errands_count = errands_count + 1 if city not in city_errands_time: city_errands_time[city] = int(errands[0]) else: city_errands_time[city] = city_errands_time[city] + int(errands[0]) errands_time = errands_time + int(errands[0]) #print(city_errands_count) #print(city_errands_time) page = Page() pie_errands_count = Pie('2017研发出差次数统计(单位:次) 累计:%d次'% errands_count, width=1280, height=720, title_top='bootom') pie_errands_count.add('', city_errands_count.keys(), city_errands_count.values(), is_label_show=True, label_text_color='#F00', legend_top='bottom') pie_errands_time = Pie('2017研发出差时间统计(单位:工作小时/每个工作日7.5小时) 累计: %d 小时'% errands_time, width=1280, height=720, title_top='bootom') pie_errands_time.add('', city_errands_time.keys(), city_errands_time.values(), is_label_show=True, label_text_color='#F00', legend_top='bottom') page.add(pie_errands_count) page.add(pie_errands_time) page.render('2017研发出差统计.html') output_workbook.save(args.outputfile)
39.112821
147
0.5748
c615a44852de414106dd329a0287a1b581f395dd
1,486
py
Python
signac/core/json.py
Carreau/signac
7086d8981c926703a023654d1c59bbedcfae6298
[ "BSD-3-Clause" ]
1
2020-12-28T18:00:24.000Z
2020-12-28T18:00:24.000Z
signac/core/json.py
Carreau/signac
7086d8981c926703a023654d1c59bbedcfae6298
[ "BSD-3-Clause" ]
81
2020-12-28T20:23:57.000Z
2022-03-01T06:03:40.000Z
signac/core/json.py
admdev8/signac
d639e682ca7ebaff781d68621a2d86cc26de04b9
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2018 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. """Wrapper around json parsing library.""" import logging from json import load, loads, JSONEncoder from json.decoder import JSONDecodeError from typing import Any, Dict, Optional logger = logging.getLogger(__name__) try: import numpy NUMPY = True except ImportError: NUMPY = False class CustomJSONEncoder(JSONEncoder): """Attempt to JSON-encode objects beyond the default supported types. This encoder will attempt to obtain a JSON-serializable representation of an object that is otherwise not serializable, by calling the object's `_as_dict()` method. """ def default(self, o: Any) -> Dict[str, Any]: if NUMPY: if isinstance(o, numpy.number): return o.item() elif isinstance(o, numpy.ndarray): return o.tolist() try: return o._as_dict() except AttributeError: # Call the super method, which raises a TypeError if it cannot # encode the object. return super(CustomJSONEncoder, self).default(o) def dumps(o: Any, sort_keys: bool = False, indent: Optional[int] = None) -> str: """Convert a JSON-compatible mapping into a string.""" return CustomJSONEncoder(sort_keys=sort_keys, indent=indent).encode(o) __all__ = ['loads', 'load', 'dumps', 'JSONDecodeError']
32.304348
80
0.674966
20c0e9cb6a2271abe5d5eaf76fd28f36518fa5b9
55,089
py
Python
mathchem/mathchem.py
Pshemysuaf/mathchem-package
e084a838fc836325872f37e3f638a0e13fd368f8
[ "MIT" ]
null
null
null
mathchem/mathchem.py
Pshemysuaf/mathchem-package
e084a838fc836325872f37e3f638a0e13fd368f8
[ "MIT" ]
null
null
null
mathchem/mathchem.py
Pshemysuaf/mathchem-package
e084a838fc836325872f37e3f638a0e13fd368f8
[ "MIT" ]
null
null
null
import numpy as np class Mol(): r""" Molecule. """ __g6_string = '' # Adjacency matrix __A = [] # Incidence matrix __B = [] # Laplacian matrix __L = [] # Normalized laplacian matrix __NL = [] # Signless laplacian matrix __Q = [] # Distance matrix __D = [] # Resistance Distance matrix __RD = [] __Order = 0 __Edges = [] __Sage_graph = None __NX_graph = None __Degrees = [] __Spectrum = [] __Laplacian_spectrum = [] __Distance_spectrum = [] __Norm_laplacian_spectrum = [] __Signless_laplacian_spectrum = [] __RD_spectrum = [] __Is_connected = None # Switch it to False when we know that the graph is connected. Useful for big calculations __Check_connectedness = True def _reset_(self): """ Reset all attributes """ self.__g6_string = '' # Adjacency matrix self.__A = [] # Incidence matrix self.__B = [] # Laplacian matrix self.__L = [] # Normalized laplacian matrix self.__NL = [] # Signless laplacian matrix self.__Q = [] # Distance matrix self.__D = [] # Resistance Distance matrix self.__RD = [] self.__Order = 0 self.__Edges = [] self.__Sage_graph = None self.__NX_graph = None self.__Degrees = [] self.__Spectrum = [] self.__Laplacian_spectrum = [] self.__Distance_spectrum = [] self.__Norm_laplacian_spectrum = [] self.__Signless_laplacian_spectrum = [] self.__RD_spectrum = [] self.__Is_connected = None # allow to set structure from somewhere # used in utilites def _set_A(self, A): self.__A = A def _set_Edges(self, edges): self.__Edges = edges def _set_Order(self, order): self.__Order = order # native method to initialize Mol class is to provide g6 string def __init__(self, string=None, check_connectedness=True): """ Molecular graph class """ self.__Check_connectedness = check_connectedness if string != None: if string[0] == '>': if string.startswith('>>graph6<<'): string = string[10:] elif string.startswith('>>sparse6<<'): string = string[11:] if string[0] == ':': self.read_s6(string) else: self.read_g6(string) def __repr__(self): if self.__A != None: return 'Molecular graph on ' + str(self.__Order) + ' vertices and ' + str( self.size()) + ' edges' return 'Empty Molecular graph' def __len__(self): if self.__A != None: return len(self.__A) else: return 0 def set_check_connectedness(self, c): """ Switch on/off of checking connectedness for the graph. Might be useful in batch calculations to economy time. args: c (True/False) """ self.check_connectedness = c def g6_string(self): """ Return a graph6 string representation of the graph Alias: graph6_string """ return self.__g6_string # alias like in Sage: graph6_string = g6_string def order(self): """ Return number of vertices """ return self.__Order # alias for order n = order def edges(self): """ Return list of edges """ return self.__Edges def size(self): """ Return number of edges""" return len(self.__Edges) # alias for size m = size def vertices(self): """ Return list of vertices """ return range(self.__Order) def sage_graph(self): """ Return Sage Graph object """ if self.__Sage_graph is None: self._init_sage_graph_() return self.__Sage_graph def NX_graph(self): """ Return NetworkX graph object """ if self.__NX_graph is None: import networkx as nx self.__NX_graph = nx.Graph(self.__Edges) return self.__NX_graph nx_graph = NX_graph def _init_sage_graph_(self): """ Initialize SAGE graph from Adjacency matrix""" from sage.graphs.graph import Graph self.__Sage_graph = Graph(self.__Edges) def read_g6(self, s): """ Initialize graph from graph6 string """ def graph_bit(pos, off): return ((ord(s[off + 1 + pos / 6]) - 63) & (2 ** (5 - pos % 6))) != 0 if s.startswith('>>graph6<<'): s = s[10:] # reset all the attributes before changing the structure self._reset_() n = ord(s[0]) - 63 off = 0 if n == 63: if ord(s[1]) - 63 != 63: n = ((ord(s[1]) - 63) << 12) + ((ord(s[2]) - 63) << 6) + ord(s[3]) - 63 off = 3 else: n = ((ord(s[2]) - 63) << 30) + ((ord(s[3]) - 63) << 24) + ((ord(s[4]) - 63) << 18) + ( (ord(s[5]) - 63) << 12) + ((ord(s[6]) - 63) << 6) + ord(s[7]) - 63 off = 7 self.__Order = n self.__A = [[0 for col in range(n)] for row in range(n)] i = 0; j = 1 self.__Edges = []; for x in range(n * (n - 1) / 2): if graph_bit(x, off): self.__A[i][j] = 1 self.__A[j][i] = 1 self.__Edges.append((i, j)) if j - i == 1: i = 0 j += 1 else: i += 1 self.__g6_string = s read_graph6 = read_g6 def read_s6(self, s): """ Initialize graph from sparse6 string """ def graph_bit(pos, off): return ((ord(s[off + 1 + pos / 6]) - 63) & (2 ** (5 - pos % 6))) != 0 if s.startswith('>>sparse6<<'): s = s[11:] if not s[0] == ':': print('This is not a sparse6 format!') return False # reset all the attributes before changing the structure self._reset_() s = s[1:] n = ord(s[0]) - 63 off = 0 if n == 63: if ord(s[1]) - 63 != 63: n = ((ord(s[1]) - 63) << 12) + ((ord(s[2]) - 63) << 6) + ord(s[3]) - 63 off = 3 else: n = ((ord(s[2]) - 63) << 30) + ((ord(s[3]) - 63) << 24) + ((ord(s[4]) - 63) << 18) + ( (ord(s[5]) - 63) << 12) + ((ord(s[6]) - 63) << 6) + ord(s[7]) - 63 off = 7 self.__Order = n k = 1 while 1 << k < n: k += 1 data = s[off + 1:] # print n,k # print data def parseData(): """Return stream of pairs b[i], x[i] for sparse6 format.""" chunks = iter(data) d = None # partial data word dLen = 0 # how many unparsed bits are left in d while 1: if dLen < 1: d = ord(next(chunks)) - 63 dLen = 6 dLen -= 1 b = (d >> dLen) & 1 # grab top remaining bit x = d & ((1 << dLen) - 1) # partially built up value of x xLen = dLen # how many bits included so far in x while xLen < k: # now grab full chunks until we have enough d = ord(next(chunks)) - 63 dLen = 6 x = (x << 6) + d xLen += 6 x = (x >> (xLen - k)) # shift back the extra bits dLen = xLen - k yield b, x self.__A = [[0 for col in range(n)] for row in range(n)] self.__Edges = []; v = 0 for b, x in parseData(): if b: v += 1 if x >= n: break # padding with ones can cause overlarge number here elif x > v: v = x else: self.__A[x][v] = 1 self.__A[v][x] = 1 self.__Edges.append((x, v)) self.__g6_string = '' read_sparse6 = read_s6 def read_matrix(self, matrix): """Initialize graph from adjacency matrix including numpy.matrix""" if type(matrix) == np.matrix: matrix = matrix.astype(int).tolist() self._reset_() self.__Order = len(matrix) self.__A = matrix for i in range(self.__Order): for j in range(i): if matrix[i][j] == 1: self.__Edges.append((i, j)) def read_edgelist(self, edges): """Initialize graph from list of edges. Example: m = mathchem.Mol() m.read_edgelist( [(4,3),(3,1),(1,4))] )""" # first relabel nodes nodes = [] for e in edges: if not e[0] in nodes: nodes.append(e[0]) if not e[1] in nodes: nodes.append(e[1]) self._reset_() self.__Order = len(nodes) d = dict(zip(nodes, range(len(nodes)))) self.__Edges = [(d[e[0]], d[e[1]]) for e in edges] self.__A = [[0 for col in range(self.__Order)] for row in range(self.__Order)] for i, j in self.__Edges: self.__A[i][j] = 1 self.__A[j][i] = 1 def write_dot_file(self, filename): f_out = open(filename, 'w') f_out.writelines('graph Mol {\n') for (i, j) in self.edges(): f_out.writelines(' ' + str(i) + ' -- ' + str(j) + ';\n') f_out.writelines('}') f_out.close() # # # matrices # # def adjacency_matrix(self): """ Return Adjacency matrix Alias : A """ return self.__A A = adjacency_matrix def incidence_matrix(self): """ Return Incidence matrix Alias: B """ if self.__B == []: def func(u_v): u, v = u_v col = [0] * self.__Order col[u] = 1 col[v] = 1 return col # apply func to each edge b = map(lambda e: func(e), self.edges()) # transpose the result self.__B = map(list, zip(*b)) return self.__B B = incidence_matrix def laplacian_matrix(self): """ Return Laplacian matrix L = D-A where D - matrix whose diagonal elements are the degrees of the corresponding vertices A - adjacency matrix Alias : L """ if self.__L == []: self.__L = np.diag(self.degrees()) - np.matrix(self.__A); return self.__L L = laplacian_matrix def signless_laplacian_matrix(self): """ Return Signless Laplacian matrix Q = D+A Alias : Q """ if self.__Q == []: self.__Q = np.diag(self.degrees()) + np.matrix(self.__A); return self.__Q Q = signless_laplacian_matrix def normalized_laplacian_matrix(self): """ Return Normalized Laplacian matrix NL = deg^(-1/2) * L * deg(1/2) Alias : NL """ ## TODO: check if we have zeros in degrees() if self.__NL == []: d1 = np.diag(np.power(self.degrees(), -.5)) d2 = np.diag(np.power(self.degrees(), .5)) self.__NL = d1 * self.laplacian_matrix() * d2 return self.__NL NL = normalized_laplacian_matrix def distance_matrix(self): """ Return Distance matrix Alias : D """ if self.__Order == 0: return [] if self.__D == []: # use here float only for using np.inf - infinity A = np.matrix(self.__A, dtype=float) n, m = A.shape I = np.identity(n) A[A == 0] = np.inf # set zero entries to inf A[I == 1] = 0 # except diagonal which should be zero for i in range(n): r = A[i, :] A = np.minimum(A, r + r.T) self.__D = np.matrix(A, dtype=int) return self.__D D = distance_matrix def reciprocal_distance_matrix(self): """ Return Reciprocal Distance matrix """ rd = np.matrix(self.distance_matrix(), dtype=float) # probably there exists more python way to apply a function to each element of matrix for i in range(self.__Order): for j in range(self.__Order): if not rd[i, j] == 0: rd[i, j] = 1 / rd[i, j] return rd def resistance_distance_matrix(self): """ Return Resistance Distance matrix """ if not self.is_connected() or self.__Order == 0: return False if self.__RD == []: # from numpy import linalg as la n = self.__Order s = n * self.laplacian_matrix() + 1 sn = n * np.linalg.inv(s) RD = np.ndarray((n, n)) for i in range(n): for j in range(n): RD[i, j] = np.float64( np.longdouble(sn[i, i]) + np.longdouble(sn[j, j]) - 2 * np.longdouble(sn[i, j])) self.__RD = RD return self.__RD def seidel_matrix(self): """ Return Seidel matrix S = J - I - 2A Alias: S """ n = self.__Order return np.ones((n, n)) - np.identity(n) - 2 * np.matrix(self.__A) S = seidel_matrix # # # Graph invariants # # def diameter(self): """ Return diameter of the graph Diameter is the maximum value of distance matrix """ if self.__Order == 0: return 0 return self.distance_matrix().max() def degrees(self): """ Return degree of the vertex Alias : deg """ if self.__Degrees == []: self.__Degrees = map(lambda r: sum(r), self.__A) ## calcuate degrees for all vertices return self.__Degrees deg = degrees def eccentricity(self): """ Eccentricity of the graph for all its vertices""" if self.__Order == 0: return None return self.distance_matrix().max(axis=0).tolist()[0] def distances_from_vertex(self, v): """ Return list of all distances from a given vertex to all others""" # used to test graph where it is connected or not seen = {} level = 0 nextlevel = [v] while nextlevel: thislevel = nextlevel nextlevel = [] for v in thislevel: if v not in seen: seen[v] = level nb = [i for (i, j) in zip(range(len(self.__A[v])), self.__A[v]) if j != 0] nextlevel.extend(nb) # if (cutoff is not None and cutoff <= level): break level = level + 1 return seen def is_connected(self): """ Return True/False depends on the graph is connected or not """ if self.__Order == 0: return False if not self.__Check_connectedness: return True if self.__Is_connected is None: # we take vertex 0 and check whether we can reach all other vertices self.__Is_connected = len(self.distances_from_vertex(0)) == self.order() return self.__Is_connected # # # Graph spectra # # def spectrum(self, matrix="adjacency"): r""" Spectrum of the graph args: matrix (str or matrix) 'adjacency' or 'A' : default 'laplacian' or 'L' 'distance' or 'D' 'signless_laplacian' or 'Q' 'normalized_laplacian' or 'NL' 'resistance_distance' or 'RD' 'reciprocal_distance' arbitrary matrix """ from numpy import linalg as la if type(matrix) is str: if self.__Order == 0: return [] if matrix == "adjacency" or matrix == "A": if self.__Spectrum == []: s = la.eigvalsh(self.__A).tolist() s.sort(reverse=True) self.__Spectrum = s return self.__Spectrum elif matrix == "laplacian" or matrix == "L": if self.__Laplacian_spectrum == []: s = la.eigvalsh(self.laplacian_matrix()).tolist() s.sort(reverse=True) self.__Laplacian_spectrum = map(lambda x: x if x > 0 else 0, s) return self.__Laplacian_spectrum elif matrix == "distance" or matrix == "D": if self.__Distance_spectrum == []: s = la.eigvalsh(self.distance_matrix()).tolist() s.sort(reverse=True) self.__Distance_spectrum = s return self.__Distance_spectrum elif matrix == "signless_laplacian" or matrix == "Q": if self.__Signless_laplacian_spectrum == []: ## TODO: check if we have zeros in degrees() s = la.eigvalsh(self.signless_laplacian_matrix()).tolist() s.sort(reverse=True) self.__Signless_laplacian_spectrum = map(lambda x: x if x > 0 else 0, s) return self.__Signless_laplacian_spectrum elif matrix == "normalized_laplacian" or matrix == "NL": if self.__Norm_laplacian_spectrum == []: ## TODO: check if we have zeros in degrees() s = la.eigvalsh(self.normalized_laplacian_matrix()).tolist() s.sort(reverse=True) self.__Norm_laplacian_spectrum = s return self.__Norm_laplacian_spectrum elif matrix == "resistance_distance" or matrix == "RD": if self.__RD_spectrum == []: s = la.eigvalsh(self.resistance_distance_matrix()).tolist() s.sort(reverse=True) self.__RD_spectrum = s return self.__RD_spectrum # NO CACHE elif matrix == "reciprocal_distance": s = la.eigvalsh(self.reciprocal_distance_matrix()).tolist() s.sort(reverse=True) return s else: return False # if the parameter is an arbitrary matrix # DEPRECATED: # use mathchem.spectrum(matrix) for arbitrary matrices # else: s = la.eigvalsh(matrix).tolist() s.sort(reverse=True) return s # for arbitrary matrices use: # mathchem.spectral_moment(matrix) def spectral_moment(self, k, matrix="adjacency"): """ Return k-th spectral moment parameters: matrix - see spectrum help """ return np.sum(np.power(self.spectrum(matrix), k)) # for arbitrary matrices use: # mathchem.spectral_radius(matrix) def spectral_radius(self, matrix="adjacency"): s = self.spectrum(matrix) return max(abs(s[0]), abs(s[len(s) - 1])) # for arbitrary matrices use: # mathchem.energy(matrix) def energy(self, matrix="adjacency"): """ Return energy of the graph parameters: matrix - see spectrum help """ if self.__Order == 0: return False s = self.spectrum(matrix) a = np.sum(s, dtype=np.longdouble) / len(s) return np.float64(np.sum(map(lambda x: abs(x - a), s), dtype=np.longdouble)) def incidence_energy(self): """ Return incidence energy (IE) Incidence energy is the sum of singular values of incidence matrix """ if self.__Order == 0: return False from numpy.linalg import svd return np.float64(np.sum(svd(self.incidence_matrix(), compute_uv=False), dtype=np.longdouble)) # # # Chemical indices # # def zagreb_m1_index(self): """ Zagreb M1 Index """ return sum(map(lambda d: d ** 2, self.degrees())) def zagreb_m2_index(self): """ Zagreb M2 Index The molecular graph must contain at least one edge, otherwise the function Return False Zagreb M2 Index is a special case of Connectivity Index with power = 1""" return sum(map(lambda e: self.degrees()[e[0]] * self.degrees()[e[1]], self.edges())) def zagreb_m1_coindex(self): """ Zagreb M1 Coindex """ return 2 * self.size() * (self.__Order - 1) - self.zagreb_m1_index() def zagreb_m2_coindex(self): """ Zagreb M2 Coindex """ return 2 * (self.size() ** 2) - self.zagreb_m2_index() - self.zagreb_m1_index() * .5 def connectivity_index(self, power): """ Connectivity index (R)""" E = self.edges() # E - all edges if len(E) == 0: return 0 return np.float64( np.sum(map(lambda e: (self.degrees()[e[0]] * self.degrees()[e[1]]) ** power, E), dtype=np.longdouble)) def augmented_zagreb_index(self): """ Augmented Zagreb Index""" E = self.edges() # E - all edges d = self.degrees() if len(E) < 2: return 0 return np.float64(np.sum(map(lambda e: (np.longdouble(d[e[0] * d[e[1]]]) / (d[e1] + d[e2] - 2)) ** 3, E), dtype=np.longdouble)) def sum_connectivity_index(self): """ Sum-Connectivity index""" E = self.edges() # E - all edges if len(E) == 0: return 0 return np.float64( np.sum(map(lambda e: (self.degrees()[e[0]] + self.degrees()[e[1]]) ** (-0.5), E), dtype=np.longdouble)) def geometric_arithmetic_index(self): """ Geometric-Arithmetic index""" E = self.edges() # E - all edges if len(E) == 0: return 0 return np.float64(np.sum(map(lambda e: 2.0 * np.sqrt(self.degrees()[e[0]] * self.degrees()[e[1]]) / ( self.degrees()[e1] + self.degrees()[e2]), E), dtype=np.longdouble)) def eccentric_connectivity_index(self): """ Eccentric Connectivity Index The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False return sum(map(lambda a, b: a * b, self.degrees(), self.eccentricity())) def randic_index(self): """ Randic Index The molecular graph must contain at least one edge, otherwise the function Return False Randic Index is a special case of Connectivity Index with power = -1/2""" return self.connectivity_index(-0.5) def atom_bond_connectivity_index(self): """ Atom-Bond Connectivity Index (ABC) """ s = np.longdouble(0) # summator for (u, v) in self.edges(): d1 = np.float64(self.degrees()[u]) d2 = np.float64(self.degrees()[v]) s += np.longdouble(((d1 + d2 - 2) / (d1 * d2)) ** .5) return np.float64(s) def estrada_index(self, matrix="adjacency"): """ Estrada Index (EE) args: matrix -- see spectrum for help, default value is 'adjacency' There is an alias 'distance_estrada_index' for distance matrix """ return np.float64(np.sum(map(lambda x: np.exp(x.real), self.spectrum(matrix)), dtype=np.longdouble)) def distance_estrada_index(self): """ Distance Estrada Index (DEE) Special case of Estrada index with distance matrix """ return self.estrada_index('distance') def degree_distance(self): """ Degree Distance (DD) The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False dd = np.matrix(self.degrees()) * self.distance_matrix().sum(axis=1) return dd[0, 0] def reverse_degree_distance(self): """ Reverse Distance Degree (rDD) The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False return 2 * (self.order() - 1) * len(self.edges()) * self.diameter() - self.degree_distance() def molecular_topological_index(self): """ (Schultz) Molecular Topological Index (MTI) The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False # (A+D)*d A = np.matrix(self.__A) d = np.matrix(self.degrees()) return np.float64(((A + self.distance_matrix()) * d.T).sum(dtype=np.longdouble)) def eccentric_distance_sum(self): """ Distance Sum The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False return (self.eccentricity() * self.distance_matrix().sum(axis=1))[0, 0] # strange - it is slow (( def balaban_j_index(self): """ Balaban J index The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False ds = self.distance_matrix().sum(axis=1) m = len(self.edges()) k = (m / (m - self.__Order + 2.0)) return np.float64(k * np.sum(map(lambda u: 1 / np.sqrt((ds[u[0][0, 0] * ds[u[1]]][0, 0])), self.edges()), dtype=np.longdouble)) def sum_balaban_index(self): """ Sum Balaban index The molecuar graph must be connected, otherwise the function Return False""" if not self.is_connected(): return False ds = self.distance_matrix().sum(axis=1) m = len(self.edges()) k = (m / (m - self.__Order + 2.0)) return np.float64(k * np.sum(map(lambda u: 1 / np.sqrt((ds[u[0]][0, 0] + ds[u[1]][0, 0])), self.edges()), dtype=np.longdouble)) def kirchhoff_index(self): """ Kirchhoff Index (Kf) Kf = 1/2 * sum_i sum_j RD[i,j] Based on resistance distance matrix RD Alias: resistance The molecuar graph must be connected, otherwise the function Return False """ if not self.is_connected(): return False return np.float64(self.resistance_distance_matrix().sum(dtype=np.longdouble) / 2) resistance = kirchhoff_index def wiener_index(self): """ Wiener Index (W) W = 1/2 * sum_i sum_j D[i,j] where D is distance matrix The molecuar graph must be connected, otherwise the function Return False """ if not self.is_connected(): return False return self.distance_matrix().sum(dtype=np.float64) / 2 def terminal_wiener_index(self): """ Calculate Terminal Wiener Index (TW) TW = Sum of all distances between pendent vertices (with degree = 1) """ if not self.is_connected(): return False s = 0 for u in range(self.order()): if self.degrees()[u] != 1: continue for v in range(u + 1, self.order()): if self.degrees()[v] == 1: s = s + self.distance_matrix()[u, v] return s def reverse_wiener_index(self): """ Reverse Wiener Index (RW) RW = 1/2 * sum_i!=j ( d - D[i,j] ) where D is distance matrix and d is diameter The molecuar graph must be connected, otherwise the function Return False """ if not self.is_connected(): return False # here we use formula: RW = 1/2 * n * (n-1) * d - W return self.diameter() * (self.__Order * (self.__Order - 1)) / 2 - self.wiener_index() def hyper_wiener_index(self): """ Hyper-Wiener Index (WW) WW = 1/2 * ( sum_ij d(i,j)^2 + sum_i_j d(i,j) ) where D is distance matrix The molecuar graph must be connected, otherwise the function Return False """ if not self.is_connected(): return False return (np.power(self.distance_matrix(), 2).sum() + self.distance_matrix().sum()) / 4 # since we have symmetric matrix def harary_index(self): """ Harary Index (H) H = 1/2 sum_i sum_j Rd[i,j] where Rd is reciprocal distance matrix Rd[i,j] = 1 / D[i,j] for D[i,j] != 0 Rd[i,j] = 0 otherwise The molecuar graph must be connected, otherwise the function Return False """ if not self.is_connected(): return False return np.float64(self.reciprocal_distance_matrix().sum(dtype=np.longdouble)) / 2 def LEL(self): """ Return Laplacian-like energy (LEL) """ return np.float64(np.sum(map(lambda x: np.sqrt(x), self.spectrum('laplacian')), dtype=np.longdouble)) def multiplicative_sum_zagreb_index(self): """ Log( Multiplicative Sum Zagreb index )""" d = self.degrees() return np.float64( np.sum(map(lambda u: np.log(np.float64(d[u[0]] + d[u[1]])), self.edges()), dtype=np.longdouble)) def multiplicative_p2_zagreb_index(self): """Calculates Log( Multiplicative P2 Zagreb index )""" d = self.degrees() return np.float64( np.sum(map(lambda u: np.log(np.float64(d[u[0]] * d[u[1]])), self.edges()), dtype=np.longdouble)) def multiplicative_p1_zagreb_index(self): """Calculates Log( Multiplicative P1 Zagreb index )""" d = self.degrees() return np.float64(np.sum(map(lambda v: np.log(np.float64(d[v] ** 2)), self.vertices()), dtype=np.longdouble)) def szeged_index(self): """Calculates Szeged index""" if not self.is_connected(): return False s = 0 D = self.distance_matrix() for u, v in self.edges(): diff = D[u, :] - D[v, :] s += (diff > 0).sum() * (diff < 0).sum() return float(s) def revised_szeged_index(self): """Calculates Revised Szeged index""" if not self.is_connected(): return False s = 0.0 D = self.distance_matrix() for u, v in self.edges(): diff = D[u, :] - D[v, :] o = (diff == 0).sum() s += ((diff > 0).sum() + .5 * o) * ((diff < 0).sum() + .5 * o) return s def homo_lumo_index(self): """Calculates HOMO-LUMO index""" if not self.is_connected(): return False n = self.order() if n % 2 == 0: h = int(n / 2 - 1) # because array indices start from 0 instead of 1 l = int(h + 1) return max([abs(self.spectrum()[h]), abs(self.spectrum()[l])]) # else: h = int((n - 1) / 2) return abs(self.spectrum()[h]) HL_index = homo_lumo_index # Adriatic indices # DEPRECATED # use mathchem.all_adriatic() def all_adriatic(self): """ Generate all possible parameters sets for adriatic indices""" r = [] for p in [0, 1]: for i in [1, 2, 3]: for j in range(1, 9): if i == 3: for a in [0.5, 2]: r.append((p, i, j, a)) elif i == 2 and j in range(1, 6): for a in [-1, -0.5, 0.5, 1, 2]: r.append((p, i, j, a)) elif i == 2 or i == 1: for a in [0.5, 1, 2]: r.append((p, i, j, a)) return r def adriatic_name(self, p, i, j, a): """ Return the name for given parameters of Adriatic indices""" # (j) name1 = {1: 'Randic type ', \ 2: 'sum ', \ 3: 'inverse sum ', \ 4: 'misbalance ', \ 5: 'inverse misbalance ', \ 6: 'min-max ', \ 7: 'max-min ', \ 8: 'symmetric division '} # (i,a) name2 = {(1, 0.5): 'lor', \ (1, 1): 'lo', \ (1, 2): 'los', \ (2, -1): 'in', \ (2, -0.5): 'ir', \ (2, 0.5): 'ro', \ (2, 1): '', \ (2, 2): 's', \ (3, 0.5): 'ha', \ (3, 2): 'two'} # (p) name3 = {0: 'deg', 1: 'di'} return (name1[j] + name2[(i, a)] + name3[p]) def _adriatic_entry_(self, du, dv, i, j, a): """ Return an individual edge contribution for Adriatic indices and matrices""" # phi(x,a) phi = {1: lambda x, a: np.log(x) ** a, 2: lambda x, a: x ** a, 3: lambda x, a: a ** x} # gamma (x,y) gamma = { \ 1: lambda x, y: x * y, \ 2: lambda x, y: x + y, \ 3: lambda x, y: 0 if x + y == 0 else 1.0 / (x + y), \ 4: lambda x, y: abs(x - y), \ 5: lambda x, y: 0 if x == y else 1.0 / abs(x - y), \ 6: lambda x, y: 0 if max(x, y) == 0 else min(x, y) / max(x, y), \ 7: lambda x, y: 0 if min(x, y) == 0 else max(x, y) / min(x, y), \ 8: lambda x, y: 0 if x == 0 or y == 0 else x / y + y / x} return gamma[j](phi[i](du, a), phi[i](dv, a)) def adriatic_matrix(self, p, i, j, a): """ Return the Adriatic matrix with given parameters""" if p == 0: d = self.degrees() else: d = self.distance_matrix().sum(axis=0).tolist()[0] AM = [[0] * self.order() for k in range(self.order())] for (u, v) in self.edges(): AM[u][v] = AM[v][u] = self._adriatic_entry_(np.float64(d[u]), np.float64(d[v]), i, j, a) return AM def adriatic_index(self, p, i, j, a): """ Return the Adriatic index with given parameters""" if p == 0: d = self.degrees() else: d = self.distance_matrix().sum(axis=0).tolist()[0] func = lambda u: self._adriatic_entry_(np.float64(d[u[0]]), np.float64(d[u[1]]), i, j, a) return np.float64(np.sum(map(func, self.edges()), dtype=np.longdouble)) # Adriatic indices by names def randic_type_lordeg_index(self): """ Adriatic index: Randic type lordeg index""" return self.adriatic_index(0, 1, 1, 0.5) def randic_type_lodeg_index(self): """ Adriatic index: Randic type lodeg index""" return self.adriatic_index(0, 1, 1, 1) def randic_type_losdeg_index(self): """ Adriatic index: Randic type losdeg index""" return self.adriatic_index(0, 1, 1, 2) def sum_lordeg_index(self): """ Adriatic index: sum lordeg index""" return self.adriatic_index(0, 1, 2, 0.5) def sum_lodeg_index(self): """ Adriatic index: sum lodeg index""" return self.adriatic_index(0, 1, 2, 1) def sum_losdeg_index(self): """ Adriatic index: sum losdeg index""" return self.adriatic_index(0, 1, 2, 2) def inverse_sum_lordeg_index(self): """ Adriatic index: inverse sum lordeg index""" return self.adriatic_index(0, 1, 3, 0.5) def inverse_sum_lodeg_index(self): """ Adriatic index: inverse sum lodeg index""" return self.adriatic_index(0, 1, 3, 1) def inverse_sum_losdeg_index(self): """ Adriatic index: inverse sum losdeg index""" return self.adriatic_index(0, 1, 3, 2) def misbalance_lordeg_index(self): """ Adriatic index: misbalance lordeg index""" return self.adriatic_index(0, 1, 4, 0.5) def misbalance_lodeg_index(self): """ Adriatic index: misbalance lodeg index""" return self.adriatic_index(0, 1, 4, 1) def misbalance_losdeg_index(self): """ Adriatic index: misbalance losdeg index""" return self.adriatic_index(0, 1, 4, 2) def inverse_misbalance_lordeg_index(self): """ Adriatic index: inverse misbalance lordeg index""" return self.adriatic_index(0, 1, 5, 0.5) def inverse_misbalance_lodeg_index(self): """ Adriatic index: inverse misbalance lodeg index""" return self.adriatic_index(0, 1, 5, 1) def inverse_misbalance_losdeg_index(self): """ Adriatic index: inverse misbalance losdeg index""" return self.adriatic_index(0, 1, 5, 2) def min_max_lordeg_index(self): """ Adriatic index: min-max lordeg index""" return self.adriatic_index(0, 1, 6, 0.5) def min_max_lodeg_index(self): """ Adriatic index: min-max lodeg index""" return self.adriatic_index(0, 1, 6, 1) def min_max_losdeg_index(self): """ Adriatic index: min-max losdeg index""" return self.adriatic_index(0, 1, 6, 2) def max_min_lordeg_index(self): """ Adriatic index: max-min lordeg index""" return self.adriatic_index(0, 1, 7, 0.5) def max_min_lodeg_index(self): """ Adriatic index: max-min lodeg index""" return self.adriatic_index(0, 1, 7, 1) def max_min_losdeg_index(self): """ Adriatic index: max-min losdeg index""" return self.adriatic_index(0, 1, 7, 2) def symmetric_division_lordeg_index(self): """ Adriatic index: symmetric division lordeg index""" return self.adriatic_index(0, 1, 8, 0.5) def symmetric_division_lodeg_index(self): """ Adriatic index: symmetric division lodeg index""" return self.adriatic_index(0, 1, 8, 1) def symmetric_division_losdeg_index(self): """ Adriatic index: symmetric division losdeg index""" return self.adriatic_index(0, 1, 8, 2) def randic_type_indeg_index(self): """ Adriatic index: Randic type indeg index""" return self.adriatic_index(0, 2, 1, -1) def randic_type_irdeg_index(self): """ Adriatic index: Randic type irdeg index""" return self.adriatic_index(0, 2, 1, -0.5) def randic_type_rodeg_index(self): """ Adriatic index: Randic type rodeg index""" return self.adriatic_index(0, 2, 1, 0.5) def randic_type_deg_index(self): """ Adriatic index: Randic type deg index""" return self.adriatic_index(0, 2, 1, 1) def randic_type_sdeg_index(self): """ Adriatic index: Randic type sdeg index""" return self.adriatic_index(0, 2, 1, 2) def sum_indeg_index(self): """ Adriatic index: sum indeg index""" return self.adriatic_index(0, 2, 2, -1) def sum_irdeg_index(self): """ Adriatic index: sum irdeg index""" return self.adriatic_index(0, 2, 2, -0.5) def sum_rodeg_index(self): """ Adriatic index: sum rodeg index""" return self.adriatic_index(0, 2, 2, 0.5) def sum_deg_index(self): """ Adriatic index: sum deg index""" return self.adriatic_index(0, 2, 2, 1) def sum_sdeg_index(self): """ Adriatic index: sum sdeg index""" return self.adriatic_index(0, 2, 2, 2) def inverse_sum_indeg_index(self): """ Adriatic index: inverse sum indeg index""" return self.adriatic_index(0, 2, 3, -1) def inverse_sum_irdeg_index(self): """ Adriatic index: inverse sum irdeg index""" return self.adriatic_index(0, 2, 3, -0.5) def inverse_sum_rodeg_index(self): """ Adriatic index: inverse sum rodeg index""" return self.adriatic_index(0, 2, 3, 0.5) def inverse_sum_deg_index(self): """ Adriatic index: inverse sum deg index""" return self.adriatic_index(0, 2, 3, 1) def inverse_sum_sdeg_index(self): """ Adriatic index: inverse sum sdeg index""" return self.adriatic_index(0, 2, 3, 2) def misbalance_indeg_index(self): """ Adriatic index: misbalance indeg index""" return self.adriatic_index(0, 2, 4, -1) def misbalance_irdeg_index(self): """ Adriatic index: misbalance irdeg index""" return self.adriatic_index(0, 2, 4, -0.5) def misbalance_rodeg_index(self): """ Adriatic index: misbalance rodeg index""" return self.adriatic_index(0, 2, 4, 0.5) def misbalance_deg_index(self): """ Adriatic index: misbalance deg index""" return self.adriatic_index(0, 2, 4, 1) def misbalance_sdeg_index(self): """ Adriatic index: misbalance sdeg index""" return self.adriatic_index(0, 2, 4, 2) def inverse_misbalance_indeg_index(self): """ Adriatic index: inverse misbalance indeg index""" return self.adriatic_index(0, 2, 5, -1) def inverse_misbalance_irdeg_index(self): """ Adriatic index: inverse misbalance irdeg index""" return self.adriatic_index(0, 2, 5, -0.5) def inverse_misbalance_rodeg_index(self): """ Adriatic index: inverse misbalance rodeg index""" return self.adriatic_index(0, 2, 5, 0.5) def inverse_misbalance_deg_index(self): """ Adriatic index: inverse misbalance deg index""" return self.adriatic_index(0, 2, 5, 1) def inverse_misbalance_sdeg_index(self): """ Adriatic index: inverse misbalance sdeg index""" return self.adriatic_index(0, 2, 5, 2) def min_max_rodeg_index(self): """ Adriatic index: min-max rodeg index""" return self.adriatic_index(0, 2, 6, 0.5) def min_max_deg_index(self): """ Adriatic index: min-max deg index""" return self.adriatic_index(0, 2, 6, 1) def min_max_sdeg_index(self): """ Adriatic index: min-max sdeg index""" return self.adriatic_index(0, 2, 6, 2) def max_min_rodeg_index(self): """ Adriatic index: max-min rodeg index""" return self.adriatic_index(0, 2, 7, 0.5) def max_min_deg_index(self): """ Adriatic index: max-min deg index""" return self.adriatic_index(0, 2, 7, 1) def max_min_sdeg_index(self): """ Adriatic index: max-min sdeg index""" return self.adriatic_index(0, 2, 7, 2) def symmetric_division_rodeg_index(self): """ Adriatic index: symmetric division rodeg index""" return self.adriatic_index(0, 2, 8, 0.5) def symmetric_division_deg_index(self): """ Adriatic index: symmetric division deg index""" return self.adriatic_index(0, 2, 8, 1) def symmetric_division_sdeg_index(self): """ Adriatic index: symmetric division sdeg index""" return self.adriatic_index(0, 2, 8, 2) def randic_type_hadeg_index(self): """ Adriatic index: Randic type hadeg index""" return self.adriatic_index(0, 3, 1, 0.5) def randic_type_twodeg_index(self): """ Adriatic index: Randic type twodeg index""" return self.adriatic_index(0, 3, 1, 2) def sum_hadeg_index(self): """ Adriatic index: sum hadeg index""" return self.adriatic_index(0, 3, 2, 0.5) def sum_twodeg_index(self): """ Adriatic index: sum twodeg index""" return self.adriatic_index(0, 3, 2, 2) def inverse_sum_hadeg_index(self): """ Adriatic index: inverse sum hadeg index""" return self.adriatic_index(0, 3, 3, 0.5) def inverse_sum_twodeg_index(self): """ Adriatic index: inverse sum twodeg index""" return self.adriatic_index(0, 3, 3, 2) def misbalance_hadeg_index(self): """ Adriatic index: misbalance hadeg index""" return self.adriatic_index(0, 3, 4, 0.5) def misbalance_twodeg_index(self): """ Adriatic index: misbalance twodeg index""" return self.adriatic_index(0, 3, 4, 2) def inverse_misbalance_hadeg_index(self): """ Adriatic index: inverse misbalance hadeg index""" return self.adriatic_index(0, 3, 5, 0.5) def inverse_misbalance_twodeg_index(self): """ Adriatic index: inverse misbalance twodeg index""" return self.adriatic_index(0, 3, 5, 2) def min_max_hadeg_index(self): """ Adriatic index: min-max hadeg index""" return self.adriatic_index(0, 3, 6, 0.5) def min_max_twodeg_index(self): """ Adriatic index: min-max twodeg index""" return self.adriatic_index(0, 3, 6, 2) def max_min_hadeg_index(self): """ Adriatic index: max-min hadeg index""" return self.adriatic_index(0, 3, 7, 0.5) def max_min_twodeg_index(self): """ Adriatic index: max-min twodeg index""" return self.adriatic_index(0, 3, 7, 2) def symmetric_division_hadeg_index(self): """ Adriatic index: symmetric division hadeg index""" return self.adriatic_index(0, 3, 8, 0.5) def symmetric_division_twodeg_index(self): """ Adriatic index: symmetric division twodeg index""" return self.adriatic_index(0, 3, 8, 2) def randic_type_lordi_index(self): """ Adriatic index: Randic type lordi index""" return self.adriatic_index(1, 1, 1, 0.5) def randic_type_lodi_index(self): """ Adriatic index: Randic type lodi index""" return self.adriatic_index(1, 1, 1, 1) def randic_type_losdi_index(self): """ Adriatic index: Randic type losdi index""" return self.adriatic_index(1, 1, 1, 2) def sum_lordi_index(self): """ Adriatic index: sum lordi index""" return self.adriatic_index(1, 1, 2, 0.5) def sum_lodi_index(self): """ Adriatic index: sum lodi index""" return self.adriatic_index(1, 1, 2, 1) def sum_losdi_index(self): """ Adriatic index: sum losdi index""" return self.adriatic_index(1, 1, 2, 2) def inverse_sum_lordi_index(self): """ Adriatic index: inverse sum lordi index""" return self.adriatic_index(1, 1, 3, 0.5) def inverse_sum_lodi_index(self): """ Adriatic index: inverse sum lodi index""" return self.adriatic_index(1, 1, 3, 1) def inverse_sum_losdi_index(self): """ Adriatic index: inverse sum losdi index""" return self.adriatic_index(1, 1, 3, 2) def misbalance_lordi_index(self): """ Adriatic index: misbalance lordi index""" return self.adriatic_index(1, 1, 4, 0.5) def misbalance_lodi_index(self): """ Adriatic index: misbalance lodi index""" return self.adriatic_index(1, 1, 4, 1) def misbalance_losdi_index(self): """ Adriatic index: misbalance losdi index""" return self.adriatic_index(1, 1, 4, 2) def inverse_misbalance_lordi_index(self): """ Adriatic index: inverse misbalance lordi index""" return self.adriatic_index(1, 1, 5, 0.5) def inverse_misbalance_lodi_index(self): """ Adriatic index: inverse misbalance lodi index""" return self.adriatic_index(1, 1, 5, 1) def inverse_misbalance_losdi_index(self): """ Adriatic index: inverse misbalance losdi index""" return self.adriatic_index(1, 1, 5, 2) def min_max_lordi_index(self): """ Adriatic index: min-max lordi index""" return self.adriatic_index(1, 1, 6, 0.5) def min_max_lodi_index(self): """ Adriatic index: min-max lodi index""" return self.adriatic_index(1, 1, 6, 1) def min_max_losdi_index(self): """ Adriatic index: min-max losdi index""" return self.adriatic_index(1, 1, 6, 2) def max_min_lordi_index(self): """ Adriatic index: max-min lordi index""" return self.adriatic_index(1, 1, 7, 0.5) def max_min_lodi_index(self): """ Adriatic index: max-min lodi index""" return self.adriatic_index(1, 1, 7, 1) def max_min_losdi_index(self): """ Adriatic index: max-min losdi index""" return self.adriatic_index(1, 1, 7, 2) def symmetric_division_lordi_index(self): """ Adriatic index: symmetric division lordi index""" return self.adriatic_index(1, 1, 8, 0.5) def symmetric_division_lodi_index(self): """ Adriatic index: symmetric division lodi index""" return self.adriatic_index(1, 1, 8, 1) def symmetric_division_losdi_index(self): """ Adriatic index: symmetric division losdi index""" return self.adriatic_index(1, 1, 8, 2) def randic_type_indi_index(self): """ Adriatic index: Randic type indi index""" return self.adriatic_index(1, 2, 1, -1) def randic_type_irdi_index(self): """ Adriatic index: Randic type irdi index""" return self.adriatic_index(1, 2, 1, -0.5) def randic_type_rodi_index(self): """ Adriatic index: Randic type rodi index""" return self.adriatic_index(1, 2, 1, 0.5) def randic_type_di_index(self): """ Adriatic index: Randic type di index""" return self.adriatic_index(1, 2, 1, 1) def randic_type_sdi_index(self): """ Adriatic index: Randic type sdi index""" return self.adriatic_index(1, 2, 1, 2) def sum_indi_index(self): """ Adriatic index: sum indi index""" return self.adriatic_index(1, 2, 2, -1) def sum_irdi_index(self): """ Adriatic index: sum irdi index""" return self.adriatic_index(1, 2, 2, -0.5) def sum_rodi_index(self): """ Adriatic index: sum rodi index""" return self.adriatic_index(1, 2, 2, 0.5) def sum_di_index(self): """ Adriatic index: sum di index""" return self.adriatic_index(1, 2, 2, 1) def sum_sdi_index(self): """ Adriatic index: sum sdi index""" return self.adriatic_index(1, 2, 2, 2) def inverse_sum_indi_index(self): """ Adriatic index: inverse sum indi index""" return self.adriatic_index(1, 2, 3, -1) def inverse_sum_irdi_index(self): """ Adriatic index: inverse sum irdi index""" return self.adriatic_index(1, 2, 3, -0.5) def inverse_sum_rodi_index(self): """ Adriatic index: inverse sum rodi index""" return self.adriatic_index(1, 2, 3, 0.5) def inverse_sum_di_index(self): """ Adriatic index: inverse sum di index""" return self.adriatic_index(1, 2, 3, 1) def inverse_sum_sdi_index(self): """ Adriatic index: inverse sum sdi index""" return self.adriatic_index(1, 2, 3, 2) def misbalance_indi_index(self): """ Adriatic index: misbalance indi index""" return self.adriatic_index(1, 2, 4, -1) def misbalance_irdi_index(self): """ Adriatic index: misbalance irdi index""" return self.adriatic_index(1, 2, 4, -0.5) def misbalance_rodi_index(self): """ Adriatic index: misbalance rodi index""" return self.adriatic_index(1, 2, 4, 0.5) def misbalance_di_index(self): """ Adriatic index: misbalance di index""" return self.adriatic_index(1, 2, 4, 1) def misbalance_sdi_index(self): """ Adriatic index: misbalance sdi index""" return self.adriatic_index(1, 2, 4, 2) def inverse_misbalance_indi_index(self): """ Adriatic index: inverse misbalance indi index""" return self.adriatic_index(1, 2, 5, -1) def inverse_misbalance_irdi_index(self): """ Adriatic index: inverse misbalance irdi index""" return self.adriatic_index(1, 2, 5, -0.5) def inverse_misbalance_rodi_index(self): """ Adriatic index: inverse misbalance rodi index""" return self.adriatic_index(1, 2, 5, 0.5) def inverse_misbalance_di_index(self): """ Adriatic index: inverse misbalance di index""" return self.adriatic_index(1, 2, 5, 1) def inverse_misbalance_sdi_index(self): """ Adriatic index: inverse misbalance sdi index""" return self.adriatic_index(1, 2, 5, 2) def min_max_rodi_index(self): """ Adriatic index: min-max rodi index""" return self.adriatic_index(1, 2, 6, 0.5) def min_max_di_index(self): """ Adriatic index: min-max di index""" return self.adriatic_index(1, 2, 6, 1) def min_max_sdi_index(self): """ Adriatic index: min-max sdi index""" return self.adriatic_index(1, 2, 6, 2) def max_min_rodi_index(self): """ Adriatic index: max-min rodi index""" return self.adriatic_index(1, 2, 7, 0.5) def max_min_di_index(self): """ Adriatic index: max-min di index""" return self.adriatic_index(1, 2, 7, 1) def max_min_sdi_index(self): """ Adriatic index: max-min sdi index""" return self.adriatic_index(1, 2, 7, 2) def symmetric_division_rodi_index(self): """ Adriatic index: symmetric division rodi index""" return self.adriatic_index(1, 2, 8, 0.5) def symmetric_division_di_index(self): """ Adriatic index: symmetric division di index""" return self.adriatic_index(1, 2, 8, 1) def symmetric_division_sdi_index(self): """ Adriatic index: symmetric division sdi index""" return self.adriatic_index(1, 2, 8, 2) def randic_type_hadi_index(self): """ Adriatic index: Randic type hadi index""" return self.adriatic_index(1, 3, 1, 0.5) def randic_type_twodi_index(self): """ Adriatic index: Randic type twodi index""" return self.adriatic_index(1, 3, 1, 2) def sum_hadi_index(self): """ Adriatic index: sum hadi index""" return self.adriatic_index(1, 3, 2, 0.5) def sum_twodi_index(self): """ Adriatic index: sum twodi index""" return self.adriatic_index(1, 3, 2, 2) def inverse_sum_hadi_index(self): """ Adriatic index: inverse sum hadi index""" return self.adriatic_index(1, 3, 3, 0.5) def inverse_sum_twodi_index(self): """ Adriatic index: inverse sum twodi index""" return self.adriatic_index(1, 3, 3, 2) def misbalance_hadi_index(self): """ Adriatic index: misbalance hadi index""" return self.adriatic_index(1, 3, 4, 0.5) def misbalance_twodi_index(self): """ Adriatic index: misbalance twodi index""" return self.adriatic_index(1, 3, 4, 2) def inverse_misbalance_hadi_index(self): """ Adriatic index: inverse misbalance hadi index""" return self.adriatic_index(1, 3, 5, 0.5) def inverse_misbalance_twodi_index(self): """ Adriatic index: inverse misbalance twodi index""" return self.adriatic_index(1, 3, 5, 2) def min_max_hadi_index(self): """ Adriatic index: min-max hadi index""" return self.adriatic_index(1, 3, 6, 0.5) def min_max_twodi_index(self): """ Adriatic index: min-max twodi index""" return self.adriatic_index(1, 3, 6, 2) def max_min_hadi_index(self): """ Adriatic index: max-min hadi index""" return self.adriatic_index(1, 3, 7, 0.5) def max_min_twodi_index(self): """ Adriatic index: max-min twodi index""" return self.adriatic_index(1, 3, 7, 2) def symmetric_division_hadi_index(self): """ Adriatic index: symmetric division hadi index""" return self.adriatic_index(1, 3, 8, 0.5) def symmetric_division_twodi_index(self): """ Adriatic index: symmetric division twodi index""" return self.adriatic_index(1, 3, 8, 2)
33.186145
121
0.560802
6365b052af1cd0b1cbf4a3b7f82e8915ae433561
511
py
Python
url.py
tekonrust/urlshortener
d5696a1209c06047af2e301bbaea019a0490d6bf
[ "Unlicense" ]
1
2021-01-28T06:48:31.000Z
2021-01-28T06:48:31.000Z
url.py
tekonrust/urlshortener
d5696a1209c06047af2e301bbaea019a0490d6bf
[ "Unlicense" ]
null
null
null
url.py
tekonrust/urlshortener
d5696a1209c06047af2e301bbaea019a0490d6bf
[ "Unlicense" ]
null
null
null
def LongOrShort(): mode= input("ENTER 'S' TO SHORTEN OR 'E' TO EXPAND :-") if mode.upper() =='S' : import pyshorteners p = pyshorteners.Shortener() url=input("enter url to be shortened : ") chota=(p.tinyurl.short(url)) print("shortened url :-",chota) if mode.upper() =='E': import pyshorteners p = pyshorteners.Shortener() url=input("enter url to be expanded : ") print("expanded url :-",p.tinyurl.expand(url)) LongOrShort()
31.9375
60
0.581213
dcfc3040efec4059e86e486a60fd9cb69740de30
6,426
py
Python
ironic/drivers/modules/ovhapi/ovh_base.py
yanndegat/ironic
8857ec76443dea7778bb9c0d66568304e52495e5
[ "Apache-2.0" ]
null
null
null
ironic/drivers/modules/ovhapi/ovh_base.py
yanndegat/ironic
8857ec76443dea7778bb9c0d66568304e52495e5
[ "Apache-2.0" ]
null
null
null
ironic/drivers/modules/ovhapi/ovh_base.py
yanndegat/ironic
8857ec76443dea7778bb9c0d66568304e52495e5
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020, OVH SAS. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import json import re import time from oslo_log import log import requests LOG = log.getLogger(__file__) # Regex to obfuscate log requests when debugging OBFUSCATE_REGEX = re.compile( 'X-Ovh-Application|password|Signature|X-Ovh-Consumer', flags=re.IGNORECASE ) # Mapping between OVH API region names and corresponding endpoints ENDPOINTS = { 'ovh-eu': 'https://eu.api.ovh.com/1.0', 'ovh-us': 'https://api.us.ovhcloud.com/1.0', 'ovh-ca': 'https://ca.api.ovh.com/1.0', 'kimsufi-eu': 'https://eu.api.kimsufi.com/1.0', 'kimsufi-ca': 'https://ca.api.kimsufi.com/1.0', 'soyoustart-eu': 'https://eu.api.soyoustart.com/1.0', 'soyoustart-ca': 'https://ca.api.soyoustart.com/1.0', } class Api(object): def __init__(self, endpoint_url, application_key, application_secret, consumer_key="", debug=False): """Initializes an OVH API client. :param endpoint_url: the OVH endpoint you want to call :param application_key: your application key given by OVH on application registration :param application_secret: your application secret given by OVH on application registration :param consumer_key: the consumer key you want to use, if any, given after a credential request :param debug: whether or not to log requests """ self.endpoint_url = endpoint_url self.application_key = application_key self.application_secret = application_secret self.consumer_key = consumer_key self.debug = debug self.session = requests.Session() self._time_delta = None def time_delta(self): """Retrieves the API's time delta. Retrieves the time delta between this computer and the OVH cluster to sign further queries. :returns: the time delta in seconds. """ if self._time_delta is None: result = self.session.get(self.endpoint_url + "/auth/time") result.raise_for_status() self._time_delta = int(result.text) - int(time.time()) return self._time_delta def _call(self, method, path, content=None): """Calls the API with the given parameters. The request will be signed if the consumer key has been set. :param method: the HTTP method of the request (get/post/put/delete) :param path: the url you want to request :param content: the object you want to send in your request (will be automatically serialized to JSON) :raises: requests.exceptions.HTTPError if the API return an error """ target_url = self.endpoint_url + path now = str(int(time.time()) + self.time_delta()) body = "" if content is not None: body = json.dumps(content) headers = { "Content-type": "application/json", "X-Ovh-Application": self.application_key, "X-Ovh-Timestamp": now, } if self.consumer_key != "": # Compute the call signature for authentication s1 = hashlib.sha1() s1.update("+".join([ self.application_secret, self.consumer_key, method.upper(), target_url, body, now ]).encode('utf-8')) headers["X-Ovh-Consumer"] = self.consumer_key headers["X-Ovh-Signature"] = "$1$" + s1.hexdigest() # Re-use the session init at startup req = getattr(self.session, method.lower()) self._log_request(method.upper(), target_url, headers, body) try: result = req(target_url, stream=False, headers=headers, data=body) result.raise_for_status() except requests.exceptions.HTTPError as e: LOG.error("Error querying OVH API: %(error)s", {'error': e}) # TODO(pgaxatte): convert exception to a custom Ironic exception raise e return result def _log_request(self, method, target_url, headers, data): """Logs the request made for debugging purposes. :param method: the HTTP method of the request (get/post/put/delete) :param target_url: the url requested :param headers: the headers passed in the request :param data: the data passed in the request """ if not self.debug: return string_parts = [ "curl -g -i", "-X '%s'" % method, "'%s'" % target_url, ] for k, v in headers.items(): if OBFUSCATE_REGEX.search(k): v = 'OBFUSCATED' header = "-H '{}: {}'".format(k, v) string_parts.append(header) LOG.debug("OVH API REQ: %(req)s", {'req': " ".join(string_parts)}) if data: LOG.debug("OVH API REQ BODY: %(body)s", {'body': data}) def get(self, path): """Wraps call to _call("get") :param path: the url of the resource you want to get """ return self._call("get", path) def put(self, path, content): """Wraps a call to _call("put") :param path: the url of the resource you want to modify :param content: the object you want to modify """ return self._call("put", path, content) def post(self, path, content): """Wraps a call to _call("post") :param path: the url of the resource you want to create :param content: the object you want to create """ return self._call("post", path, content) def delete(self, path): """Wraps a call to _call("delete") :param path: the url of the resource you want to delete """ return self._call("delete", path)
34
78
0.606287
8f63695b93046d2daef41b7cddd0d6ba197a17da
3,222
py
Python
node.py
succa/adversarial-ml-text-classification
1efce8e198c2825dea2f50148e83864a1b6a6fd1
[ "MIT" ]
null
null
null
node.py
succa/adversarial-ml-text-classification
1efce8e198c2825dea2f50148e83864a1b6a6fd1
[ "MIT" ]
null
null
null
node.py
succa/adversarial-ml-text-classification
1efce8e198c2825dea2f50148e83864a1b6a6fd1
[ "MIT" ]
null
null
null
from data_utils import extract_features from paraphrase import perturb_text import numpy as np import spacy import math import random nlp = spacy.load('en_core_web_lg') # Node class class Node: def __init__(self, text, root=None, grad_guide=None, parent=None, candidates_dict=None, chosen_index=None, indexes_already_used=None, level=0): self.text = text self.root = root if root != None else self self.grad_guide = grad_guide self.parent = parent if parent != None else self self.candidates_dict = candidates_dict self.chosen_index = chosen_index self.indexes_already_used = indexes_already_used if indexes_already_used != None else [] self.level = level #These will be updated in the goal and expand function self.features = [] self.prob = None self.cl = None def expand(self, n_changes_per_level=None, max_depth_level=None, most_salient=True, use_typos=False, use_homoglyphs=False, max_length=1000, verbose=False): if max_depth_level == None: max_depth_level=7 if self.level > max_depth_level: return [] # Compute the Forward Gradient model = self.grad_guide.model if not len(self.features): self.features = extract_features([self.text], max_length=max_length)[0].reshape(1, -1) grads = self.grad_guide.wordwise_grads(self.features).squeeze() indexes_to_use = sorted(np.setdiff1d(range(len(self.text)), self.indexes_already_used), key=lambda k: grads[k], reverse=most_salient) n_changes = 0 perturbed_texts = [] for index in indexes_to_use: if index in self.candidates_dict: n_changes += 1 perturbed_texts += perturb_text(self.text, index, self.candidates_dict[index]) if n_changes == n_changes_per_level: break if verbose: print("Level: {} Npert: {} Text: {}".format(self.level, len(perturbed_texts), self.text)) children = np.empty([len(perturbed_texts)], dtype=Node) for index, perturbed_text in enumerate(perturbed_texts): indexes_already_used=self.indexes_already_used.copy() indexes_already_used.append(perturbed_text[1]) children[index] = Node(nlp(perturbed_text[0]), self.root, self.grad_guide, self, #parent of the child self.candidates_dict, perturbed_text[1], indexes_already_used, self.level+1) return children def __repr__(self): return '{}'.format(self.text)
34.645161
101
0.534451
c7a90f6d271819078412c0703ab1e301f1f33794
322
py
Python
aqua_guard/config/docs.py
pooja586/aqua_guard
4968b5006a8187f72d1d1394251d140d94c2b74f
[ "MIT" ]
null
null
null
aqua_guard/config/docs.py
pooja586/aqua_guard
4968b5006a8187f72d1d1394251d140d94c2b74f
[ "MIT" ]
null
null
null
aqua_guard/config/docs.py
pooja586/aqua_guard
4968b5006a8187f72d1d1394251d140d94c2b74f
[ "MIT" ]
null
null
null
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/aqua_guard" # docs_base_url = "https://[org_name].github.io/aqua_guard" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Aqua Guard"
26.833333
68
0.726708
053374f211fcf0a93af4ec15538cf54e6beaacd2
3,362
py
Python
scripts/generate_config.py
AgileCloudLab/single-threaded-rlnc-benchmark
914c18cf408d62f7294f796f386e98740d6fc83d
[ "MIT" ]
null
null
null
scripts/generate_config.py
AgileCloudLab/single-threaded-rlnc-benchmark
914c18cf408d62f7294f796f386e98740d6fc83d
[ "MIT" ]
null
null
null
scripts/generate_config.py
AgileCloudLab/single-threaded-rlnc-benchmark
914c18cf408d62f7294f796f386e98740d6fc83d
[ "MIT" ]
null
null
null
import sys one_kb = 1024 one_mb = 1024 * one_kb one_gb = 1024 * one_mb def generate_file_name(data_size, data_unit, iterations, finite_field, threads, generation_sizes, file_format): # TODO: Update to new formating name = '{!s}_{!s}_{!s}_{!s}_{!s}_{!s}.{!s}'.format(data_size, data_unit, iterations, finite_field, threads, "_".join(str(gen) for gen in generation_sizes), file_format) return name def convert_data_size_to_bytes(data_size, unit): if unit == 'b': return data_size elif unit == 'k': return data_size * one_kb elif unit == 'm': return data_size * one_mb elif unit == 'g': return data_size * one_gb else: print('Unsupported data unit, falling back to bytes') return data_size def assert_valid_generation_size(generation_sizes, data_size): for gen in generation_sizes: if not gen < data_size and data_size % gen == 0: return False return True def calculate_symbol_size(generation_sizes, data_size): obj = {} for gen in generation_sizes: obj[gen] = int(data_size / gen) return obj def mk_config(iterations, data_size, finite_field, threads, systematic_on, gen_conf): obj = {} obj['iterations'] = iterations obj['data_size'] = data_size obj['finite_field'] = finite_field obj['threads'] = threads obj['systematic_on'] = systematic_on obj['gens'] = gen_conf print(obj) return obj def write_csv(path, file_name, exp_config): config_lines = list() print(type(exp_config['gens'])) for key, value in exp_config['gens'].items(): config_lines.append('{!s},{!s},{!s},{!s},{!s},{!s}\n'.format(exp_config['iterations'], exp_config['threads'], key, value, exp_config['finite_field'], exp_config['systematic_on'])) temp = config_lines.pop() temp = temp[:-1] config_lines.append(temp) with open(path + file_name, 'w') as file: file.writelines(config_lines) file.close() def write_config(path, file_name, exp_config): if file_name.endswith('.csv'): write_csv(path, file_name, exp_config) config_path = input("output path: ") file_format = input("file format [csv]: ") iterations = int(input("iterations: ")) threads = int(input("Number of threads: ")) finite_field = input('finite field [1,2]: ') data_size = int(input("Data size in number: ")) data_unit = input("data unit [b,k,m,g]: ") while (not data_unit in ['b','k','m','g']): data_unit = input("data unit [b,k,m,g]: ") generation_sizes = input("generation size [command seperated list]: ") systematic_on = int(input("Systematic on [0,1]: ")) generation_sizes = [int(gen) for gen in generation_sizes.split(',')] data_size = convert_data_size_to_bytes(data_size, data_unit) if not assert_valid_generation_size(generation_sizes, data_size): sys.exit() gen_conf = calculate_symbol_size(generation_sizes, data_size) file_name = generate_file_name(data_size, data_unit, iterations, finite_field, threads, generation_sizes, file_format) exp_config = mk_config(iterations, data_size, finite_field, threads, systematic_on, gen_conf) write_config(config_path, file_name, exp_config)
30.288288
172
0.651398
896f59715a6a512763f9c3a86132ea45168c9157
2,227
py
Python
lambda/lambda_function.py
rafty/Tool_DeleteCloudWatchStreams
a322f99dff5341dcd4e09f10bc1ff372a6ee8bb3
[ "Apache-2.0" ]
null
null
null
lambda/lambda_function.py
rafty/Tool_DeleteCloudWatchStreams
a322f99dff5341dcd4e09f10bc1ff372a6ee8bb3
[ "Apache-2.0" ]
null
null
null
lambda/lambda_function.py
rafty/Tool_DeleteCloudWatchStreams
a322f99dff5341dcd4e09f10bc1ff372a6ee8bb3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import datetime import logging import boto3 logger = logging.getLogger() logger.setLevel(level=logging.INFO) logs = boto3.client('logs') def delete_stream(log_stream_name, log_group_name): logger.info('delete_stream: {}'.format(log_stream_name)) logs.delete_log_stream(logGroupName=log_group_name, logStreamName=log_stream_name) return log_stream_name def extract_streams_to_delete(log_streams): # datetime to unixtime and to milliseconds three_days_ago = int((datetime.datetime.utcnow() - datetime.timedelta(days=3)).timestamp()*1000) now = int(datetime.datetime.utcnow().timestamp()*1000) streams_to_delete = [ stream.get('logStreamName') for stream in log_streams.get('logStreams') if stream.get('lastEventTimestamp', now) <= three_days_ago] logger.info('streams_to_delete: {}'.format(streams_to_delete)) return streams_to_delete def describe_log_streams(log_group_name, next_token): if next_token: log_streams = logs.describe_log_streams( logGroupName=log_group_name, nextToken=next_token ) else: log_streams = logs.describe_log_streams( logGroupName=log_group_name, ) return log_streams def lambda_handler(event, context): logger.info('lambda_handler(event): {}'.format(event)) log_groups = logs.describe_log_groups() for log_group in log_groups.get('logGroups'): log_group_name = log_group.get('logGroupName') if log_group['storedBytes'] == 0: logs.delete_log_group(logGroupName=log_group_name) logger.info('delete log group: {}'.format(log_group_name)) continue next_token = None while True: log_streams = describe_log_streams(log_group_name, next_token) next_token = log_streams.get('nextToken', None) streams_to_delete = extract_streams_to_delete(log_streams) list(map(lambda x: delete_stream(x, log_group_name), streams_to_delete)) if not next_token or len(log_streams.get('logStreams')): break
30.930556
74
0.668163
82d7dad39a157081c29ea65df03b70ba04caac5e
2,677
py
Python
docs/conf.py
noahkw/acmetk
4bf6202babbfa1cf91801a8f1bd3ae3a02737799
[ "MIT" ]
3
2021-03-15T11:25:22.000Z
2021-04-01T09:05:07.000Z
docs/conf.py
noahkw/acmetk
4bf6202babbfa1cf91801a8f1bd3ae3a02737799
[ "MIT" ]
60
2021-03-16T13:28:56.000Z
2021-04-03T14:07:31.000Z
docs/conf.py
noahkw/acmetk
4bf6202babbfa1cf91801a8f1bd3ae3a02737799
[ "MIT" ]
1
2021-03-15T11:25:05.000Z
2021-03-15T11:25:05.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("..")) # -- Variables --------------------------------------------------------------- rst_prolog = """ .. |GIT_URL| replace:: https://github.com/noahkw/acmetk.git """ # -- Project information ----------------------------------------------------- project = "ACME Toolkit" copyright = "2020, Noah Wöhler" author = "Noah Wöhler" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx-prompt", "sphinx_substitution_extensions", ] intersphinx_mapping = { "aiohttp": ("https://docs.aiohttp.org/en/latest/", None), "acme": ("https://acme-python.readthedocs.io/en/latest/", None), "cryptography": ("https://cryptography.io/en/latest/", None), "dns": ("https://dnspython.readthedocs.io/en/latest/", None), "josepy": ("https://python-jose.readthedocs.io/en/latest/", None), "python": ("https://docs.python.org/3", None), } autodoc_default_options = {"private-members": True} # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_glpi_theme html_theme = "glpi" html_theme_path = sphinx_glpi_theme.get_html_themes_path() # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"]
34.766234
79
0.650355
d45a9fa6099adddbf89fceabad24be3fddfeaf03
4,141
py
Python
MIDI Remote Scripts/pushbase/select_playing_clip_component.py
aarkwright/ableton_devices
fe5df3bbd64ccbc136bba722ba1e131a02969798
[ "MIT" ]
null
null
null
MIDI Remote Scripts/pushbase/select_playing_clip_component.py
aarkwright/ableton_devices
fe5df3bbd64ccbc136bba722ba1e131a02969798
[ "MIT" ]
null
null
null
MIDI Remote Scripts/pushbase/select_playing_clip_component.py
aarkwright/ableton_devices
fe5df3bbd64ccbc136bba722ba1e131a02969798
[ "MIT" ]
null
null
null
# uncompyle6 version 3.3.5 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] # Embedded file name: c:\Jenkins\live\output\win_64_static\Release\python-bundle\MIDI Remote Scripts\pushbase\select_playing_clip_component.py # Compiled at: 2018-11-30 15:48:12 """ Component that automatically selects the playing clip in the selected track. """ from __future__ import absolute_import, print_function, unicode_literals from functools import partial from ableton.v2.base import index_if, nop, listens, task from ableton.v2.control_surface.control import ButtonControl from ableton.v2.control_surface.mode import AddLayerMode from .consts import MessageBoxText from .messenger_mode_component import MessengerModesComponent class SelectPlayingClipComponent(MessengerModesComponent): action_button = ButtonControl(color=b'DefaultButton.Alert') def __init__(self, playing_clip_above_layer=None, playing_clip_below_layer=None, *a, **k): super(SelectPlayingClipComponent, self).__init__(*a, **k) self._update_mode_task = self._tasks.add(task.sequence(task.delay(1), task.run(self._update_mode))) self._update_mode_task.kill() self.add_mode(b'default', None) self.add_mode(b'above', [ AddLayerMode(self, playing_clip_above_layer)], message=MessageBoxText.PLAYING_CLIP_ABOVE_SELECTED_CLIP) self.add_mode(b'below', [ AddLayerMode(self, playing_clip_below_layer)], message=MessageBoxText.PLAYING_CLIP_BELOW_SELECTED_CLIP) self.selected_mode = b'default' self.notify_when_enabled = True self._on_detail_clip_changed.subject = self.song.view self._on_playing_slot_index_changed.subject = self.song.view.selected_track self._notification_reference = partial(nop, None) return @action_button.pressed def action_button(self, button): self._go_to_playing_clip() @listens(b'detail_clip') def _on_detail_clip_changed(self): self._update_mode_task.restart() @listens(b'playing_slot_index') def _on_playing_slot_index_changed(self): self._update_mode_task.restart() def _go_to_playing_clip(self): song_view = self.song.view playing_clip_slot = self._playing_clip_slot() if playing_clip_slot: song_view.highlighted_clip_slot = playing_clip_slot song_view.detail_clip = playing_clip_slot.clip self._hide_notification() def _hide_notification(self): if self._notification_reference() is not None: self._notification_reference().hide() return def show_notification(self, display_text): self._notification_reference = super(SelectPlayingClipComponent, self).show_notification(display_text, blink_text=MessageBoxText.SELECTED_CLIP_BLINK, notification_time=-1) def _selected_track_clip_is_playing(self): playing_clip_slot = self._playing_clip_slot() return not (playing_clip_slot and playing_clip_slot.clip != self.song.view.detail_clip) def _playing_clip_slot(self): track = self.song.view.selected_track try: playing_slot_index = track.playing_slot_index slot = track.clip_slots[playing_slot_index] if 0 <= playing_slot_index < len(track.clip_slots) else None return slot except RuntimeError: pass return def _selected_track_clip_is_above_playing_clip(self): song_view = self.song.view track = song_view.selected_track playing_slot_index = track.playing_slot_index selected_index = index_if(lambda slot: slot == song_view.highlighted_clip_slot, track.clip_slots) return playing_slot_index <= selected_index def _update_mode(self): if not self._selected_track_clip_is_playing(): if self._selected_track_clip_is_above_playing_clip(): self.selected_mode = b'above' else: self.selected_mode = b'below' else: self.selected_mode = b'default' self._hide_notification()
44.053191
179
0.725429
8f7cf23993a8603c1740a080c60588dbf81f24ca
22,008
py
Python
qa/rpc-tests/replace-by-fee.py
kazucoin/kazusilver
fc81623ed5fd5f9f9fd9ce85139201ece6a2332e
[ "MIT" ]
1
2019-06-02T17:21:08.000Z
2019-06-02T17:21:08.000Z
qa/rpc-tests/replace-by-fee.py
kazucoin/kazusilver
fc81623ed5fd5f9f9fd9ce85139201ece6a2332e
[ "MIT" ]
null
null
null
qa/rpc-tests/replace-by-fee.py
kazucoin/kazusilver
fc81623ed5fd5f9f9fd9ce85139201ece6a2332e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test replace by fee code # from test_framework.test_framework import KazuSilverTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * MAX_REPLACEMENT_LIMIT = 100 def txToHex(tx): return bytes_to_hex_str(tx.serialize()) def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])): """Create a txout with a given amount and scriptPubKey Mines coins as needed. confirmed - txouts created will be confirmed in the blockchain; unconfirmed otherwise. """ fee = 1*COIN while node.getbalance() < satoshi_round((amount + fee)/COIN): node.generate(100) #print (node.getbalance(), amount, fee) new_addr = node.getnewaddress() #print new_addr txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN)) tx1 = node.getrawtransaction(txid, 1) txid = int(txid, 16) i = None for i, txout in enumerate(tx1['vout']): #print i, txout['scriptPubKey']['addresses'] if txout['scriptPubKey']['addresses'] == [new_addr]: #print i break assert i is not None tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(txid, i))] tx2.vout = [CTxOut(amount, scriptPubKey)] tx2.rehash() signed_tx = node.signrawtransaction(txToHex(tx2)) txid = node.sendrawtransaction(signed_tx['hex'], True) # If requested, ensure txouts are confirmed. if confirmed: mempool_size = len(node.getrawmempool()) while mempool_size > 0: node.generate(1) new_size = len(node.getrawmempool()) # Error out if we have something stuck in the mempool, as this # would likely be a bug. assert(new_size < mempool_size) mempool_size = new_size return COutPoint(int(txid, 16), 0) class ReplaceByFeeTest(KazuSilverTestFramework): def __init__(self): super().__init__() self.num_nodes = 1 self.setup_clean_chain = False def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-maxorphantx=1000", "-debug", "-relaypriority=0", "-whitelist=127.0.0.1", "-limitancestorcount=50", "-limitancestorsize=101", "-limitdescendantcount=200", "-limitdescendantsize=101" ])) self.is_network_split = False def run_test(self): make_utxo(self.nodes[0], 1*COIN) print("Running test simple doublespend...") self.test_simple_doublespend() print("Running test doublespend chain...") self.test_doublespend_chain() print("Running test doublespend tree...") self.test_doublespend_tree() print("Running test replacement feeperkb...") self.test_replacement_feeperkb() print("Running test spends of conflicting outputs...") self.test_spends_of_conflicting_outputs() print("Running test new unconfirmed inputs...") self.test_new_unconfirmed_inputs() print("Running test too many replacements...") self.test_too_many_replacements() print("Running test opt-in...") self.test_opt_in() print("Running test prioritised transactions...") self.test_prioritised_transactions() print("Passed\n") def test_simple_doublespend(self): """Simple doublespend""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Should fail because we haven't changed the fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # Extra 0.1 KSLV fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) mempool = self.nodes[0].getrawmempool() assert (tx1a_txid not in mempool) assert (tx1b_txid in mempool) assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid)) def test_doublespend_chain(self): """Doublespend of a long chain""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) prevout = tx0_outpoint remaining_value = initial_nValue chain_txids = [] while remaining_value > 10*COIN: remaining_value -= 1*COIN tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = [CTxOut(remaining_value, CScript([1]))] tx_hex = txToHex(tx) txid = self.nodes[0].sendrawtransaction(tx_hex, True) chain_txids.append(txid) prevout = COutPoint(int(txid, 16), 0) # Whether the double-spend is allowed is evaluated by including all # child fees - 40 KSLV - so this attempt is rejected. dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 30*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # transaction mistakenly accepted! # Accepted with sufficient fee dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for doublespent_txid in chain_txids: assert(doublespent_txid not in mempool) def test_doublespend_tree(self): """Doublespend of a big tree of transactions""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None): if _total_txs is None: _total_txs = [0] if _total_txs[0] >= max_txs: return txout_value = (initial_value - fee) // tree_width if txout_value < fee: return vout = [CTxOut(txout_value, CScript([i+1])) for i in range(tree_width)] tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = vout tx_hex = txToHex(tx) assert(len(tx.serialize()) < 100000) txid = self.nodes[0].sendrawtransaction(tx_hex, True) yield tx _total_txs[0] += 1 txid = int(txid, 16) for i, txout in enumerate(tx.vout): for x in branch(COutPoint(txid, i), txout_value, max_txs, tree_width=tree_width, fee=fee, _total_txs=_total_txs): yield x fee = int(0.0001*COIN) n = MAX_REPLACEMENT_LIMIT tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) # Attempt double-spend, will fail because too little fee paid dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # 1 KSLV fee is enough dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n - 1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for tx in tree_txs: tx.rehash() assert (tx.hash not in mempool) # Try again, but with more total transactions than the "max txs # double-spent at once" anti-DoS limit. for n in (MAX_REPLACEMENT_LIMIT+1, MAX_REPLACEMENT_LIMIT*2): fee = int(0.0001*COIN) tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 2*fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) for tx in tree_txs: tx.rehash() self.nodes[0].getrawtransaction(tx.hash) def test_replacement_feeperkb(self): """Replacement requires fee-per-KB to be higher""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the fee per KB is much lower, so the replacement is # rejected. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) def test_spends_of_conflicting_outputs(self): """Replacements that spend conflicting tx outputs are rejected""" utxo1 = make_utxo(self.nodes[0], int(1.2*COIN)) utxo2 = make_utxo(self.nodes[0], 3*COIN) tx1a = CTransaction() tx1a.vin = [CTxIn(utxo1, nSequence=0)] tx1a.vout = [CTxOut(int(1.1*COIN), CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) tx1a_txid = int(tx1a_txid, 16) # Direct spend an output of the transaction we're replacing. tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)] tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)) tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Spend tx1a's output to test the indirect case. tx1b = CTransaction() tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) tx1b_txid = int(tx1b_txid, 16) tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0), CTxIn(COutPoint(tx1b_txid, 0))] tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_new_unconfirmed_inputs(self): """Replacements that add new unconfirmed inputs are rejected""" confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN)) unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False) tx1 = CTransaction() tx1.vin = [CTxIn(confirmed_utxo)] tx1.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1_hex = txToHex(tx1) tx1_txid = self.nodes[0].sendrawtransaction(tx1_hex, True) tx2 = CTransaction() tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)] tx2.vout = tx1.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_too_many_replacements(self): """Replacements that evict too many transactions are rejected""" # Try directly replacing more than MAX_REPLACEMENT_LIMIT # transactions # Start by creating a single transaction with many outputs initial_nValue = 10*COIN utxo = make_utxo(self.nodes[0], initial_nValue) fee = int(0.0001*COIN) split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1)) actual_fee = initial_nValue - split_value*(MAX_REPLACEMENT_LIMIT+1) outputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): outputs.append(CTxOut(split_value, CScript([1]))) splitting_tx = CTransaction() splitting_tx.vin = [CTxIn(utxo, nSequence=0)] splitting_tx.vout = outputs splitting_tx_hex = txToHex(splitting_tx) txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, True) txid = int(txid, 16) # Now spend each of those outputs individually for i in range(MAX_REPLACEMENT_LIMIT+1): tx_i = CTransaction() tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)] tx_i.vout = [CTxOut(split_value-fee, CScript([b'a']))] tx_i_hex = txToHex(tx_i) self.nodes[0].sendrawtransaction(tx_i_hex, True) # Now create doublespend of the whole lot; should fail. # Need a big enough fee to cover all spending transactions and have # a higher fee rate double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1) inputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): inputs.append(CTxIn(COutPoint(txid, i), nSequence=0)) double_tx = CTransaction() double_tx.vin = inputs double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) try: self.nodes[0].sendrawtransaction(double_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) # If we remove an input, it should pass double_tx = CTransaction() double_tx.vin = inputs[0:-1] double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) self.nodes[0].sendrawtransaction(double_tx_hex, True) def test_opt_in(self): """ Replacing should only work if orig tx opted in """ tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a non-opting in transaction tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0xffffffff)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Shouldn't be able to double-spend tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: print(tx1b_txid) assert(False) tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a different non-opting in transaction tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0xfffffffe)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Still shouldn't be able to double-spend tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx2b_hex = txToHex(tx2b) try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now create a new transaction that spends from tx1a and tx2a # opt-in on one of the inputs # Transaction should be replaceable on either input tx1a_txid = int(tx1a_txid, 16) tx2a_txid = int(tx2a_txid, 16) tx3a = CTransaction() tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0xffffffff), CTxIn(COutPoint(tx2a_txid, 0), nSequence=0xfffffffd)] tx3a.vout = [CTxOut(int(0.9*COIN), CScript([b'c'])), CTxOut(int(0.9*COIN), CScript([b'd']))] tx3a_hex = txToHex(tx3a) self.nodes[0].sendrawtransaction(tx3a_hex, True) tx3b = CTransaction() tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx3b.vout = [CTxOut(int(0.5*COIN), CScript([b'e']))] tx3b_hex = txToHex(tx3b) tx3c = CTransaction() tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), nSequence=0)] tx3c.vout = [CTxOut(int(0.5*COIN), CScript([b'f']))] tx3c_hex = txToHex(tx3c) self.nodes[0].sendrawtransaction(tx3b_hex, True) # If tx3b was accepted, tx3c won't look like a replacement, # but make sure it is accepted anyway self.nodes[0].sendrawtransaction(tx3c_hex, True) def test_prioritised_transactions(self): # Ensure that fee deltas used via prioritisetransaction are # correctly used by replacement logic # 1. Check that feeperkb uses modified fees tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the actual fee per KB is much lower. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))] tx1b_hex = txToHex(tx1b) # Verify tx1b cannot replace tx1a. try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Use prioritisetransaction to set tx1a's fee to 0. self.nodes[0].prioritisetransaction(tx1a_txid, 0, int(-0.1*COIN)) # Now tx1b should be able to replace tx1a tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) assert(tx1b_txid in self.nodes[0].getrawmempool()) # 2. Check that absolute fee checks use modified fee. tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Lower fee, but we'll prioritise it tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(1.01*COIN), CScript([b'a']))] tx2b.rehash() tx2b_hex = txToHex(tx2b) # Verify tx2b cannot replace tx2a. try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now prioritise tx2b to have a higher modified fee self.nodes[0].prioritisetransaction(tx2b.hash, 0, int(0.1*COIN)) # tx2b should now be accepted tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) assert(tx2b_txid in self.nodes[0].getrawmempool()) if __name__ == '__main__': ReplaceByFeeTest().main()
37.238579
105
0.601145
e8fe83bd571027b047b469e8a4ecfcce78e64de0
201
py
Python
labsys/auth/__init__.py
gems-uff/labsys
b8990d7ef6377b6d34f66c277684af1ef94bd5c3
[ "MIT" ]
1
2017-05-04T17:32:17.000Z
2017-05-04T17:32:17.000Z
labsys/auth/__init__.py
gems-uff/labsys
b8990d7ef6377b6d34f66c277684af1ef94bd5c3
[ "MIT" ]
19
2017-06-05T22:52:45.000Z
2018-06-02T18:17:26.000Z
labsys/auth/__init__.py
gems-uff/labsys
b8990d7ef6377b6d34f66c277684af1ef94bd5c3
[ "MIT" ]
null
null
null
from flask import Blueprint from .models import Permission blueprint = Blueprint('auth', __name__) @blueprint.app_context_processor def inject_permissions(): return dict(Permission=Permission)
18.272727
39
0.800995
9d6f0988f77643aac9c4eb6613c281c28d9e50fc
7,950
py
Python
tests/py_dss_interface/test_loadshapes.py
davilamds/py_dss_interface
a447c97787aeac962381db88dd622ccb235eef4b
[ "MIT" ]
8
2020-08-15T12:56:03.000Z
2022-01-04T15:51:14.000Z
tests/py_dss_interface/test_loadshapes.py
eniovianna/py_dss_interface
db1c5ee2ae04d525bfd77ecd9ff41028da6ac31a
[ "MIT" ]
24
2021-04-24T18:33:19.000Z
2021-11-13T14:59:54.000Z
tests/py_dss_interface/test_loadshapes.py
eniovianna/py_dss_interface
db1c5ee2ae04d525bfd77ecd9ff41028da6ac31a
[ "MIT" ]
7
2020-08-15T12:56:04.000Z
2021-10-04T16:14:30.000Z
# -*- coding: utf-8 -*- # @Time : 7/30/2021 02:01 PM # @Author : Rodolfo Londero # @Email : rodolfpl@gmail.com # @File : test_loadshapes.py # @Software: PyCharm import pytest class TestLoadShapes13Bus: @pytest.fixture(autouse=True) def _request(self, solve_snap_13bus): self.dss = solve_snap_13bus self.dss.loadshapes_write_name('default') def new_loadshape(self, activate: bool = False): self.dss.text("New Loadshape.Test npts=24 interval=1 Pbase=100 Qbase=50 " "mult= " "(0.18000001 0.19000000 0.23999999 0.33000001 0.38999999 0.41000000 " "0.64999998 1.23000002 1.88999999 1.88999999 1.96000004 1.98000002 " "1.45000005 1.62000000 1.88999999 1.79999995 1.78999996 1.19000006 " "0.80000001 0.66000003 0.51999998 0.40000001 0.28000000 0.23000000)") if activate: self.dss.loadshapes_write_name('test') # =================================================================== # Integer methods # =================================================================== def test_loadshapes_count(self): expected = 1 actual = self.dss.loadshapes_count() assert actual == expected self.new_loadshape() expected = 2 actual = self.dss.loadshapes_count() assert actual == expected def test_loadshapes_first(self): expected = 1 actual = self.dss.loads_first() assert actual == expected def test_loadshapes_next(self): expected = 0 actual = self.dss.loadshapes_next() assert actual == expected def test_loadshapes_read_npts(self): expected = 24 actual = self.dss.loadshapes_read_npts() assert actual == expected def test_loadshapes_write_npts(self): expected = 48 self.dss.loadshapes_write_npts(expected) actual = self.dss.loadshapes_read_npts() assert actual == expected def test_loadshapes_normalize(self): expected = 0 actual = self.dss.loadshapes_normalize() assert actual == expected def test_loadshapes_read_use_actual(self): expected = 0 actual = self.dss.loadshapes_read_use_actual() assert actual == expected def test_loadshapes_write_use_actual(self): expected = 1 self.dss.loadshapes_write_use_actual(expected) actual = self.dss.loadshapes_read_use_actual() assert actual == expected # =================================================================== # String methods # =================================================================== def test_loadshapes_read_name(self): expected = 'default' actual = self.dss.loadshapes_read_name() assert actual == expected def test_loadshapes_write_name(self): self.new_loadshape() expected = 'test' self.dss.loadshapes_write_name(expected) actual = self.dss.loadshapes_read_name() assert actual == expected # =================================================================== # Float methods # =================================================================== def test_loadshapes_read_hr_interval(self): self.new_loadshape(True) expected = 1 actual = self.dss.loadshapes_read_hr_interval() assert actual == expected # TODO: method not writing def test_loadshapes_write_hr_interval(self): self.new_loadshape(True) expected = 0.5 self.dss.loadshapes_write_hr_interval(expected) actual = self.dss.loadshapes_read_hr_interval() assert actual == expected def test_loadshapes_read_min_interval(self): self.new_loadshape(True) expected = 60 actual = self.dss.loadshapes_read_min_interval() assert actual == expected # TODO: method not writing def test_loadshapes_write_min_interval(self): self.new_loadshape(True) expected = 120 self.dss.loadshapes_write_min_interval(expected) actual = self.dss.loadshapes_read_min_interval() assert actual == expected def test_loadshapes_read_s_interval(self): self.new_loadshape(True) expected = 3600 actual = self.dss.loadshapes_read_s_interval() assert actual == expected def test_loadshapes_write_s_interval(self): self.new_loadshape(True) expected = 4800 self.dss.loadshapes_write_s_interval(expected) actual = self.dss.loadshapes_read_s_interval() assert actual == expected def test_loadshapes_read_p_base(self): self.new_loadshape(True) expected = 100 actual = self.dss.loadshapes_read_p_base() assert actual == expected # TODO: method not writing def test_loadshapes_write_p_base(self): self.new_loadshape(True) expected = 50.0 self.dss.loadshapes_write_p_base(expected) actual = self.dss.loadshapes_read_p_base() assert actual == expected def test_loadshapes_read_q_base(self): self.new_loadshape(True) expected = 50 actual = self.dss.loadshapes_read_q_base() assert actual == expected # TODO: method not writing def test_loadshapes_write_q_base(self): self.new_loadshape(True) expected = 100 self.dss.loadshapes_write_q_base(expected) actual = self.dss.loadshapes_read_q_base() assert actual == expected # =================================================================== # Variant methods # =================================================================== def test_loadshapes_all_names(self): expected = ['default'] actual = self.dss.loadshapes_all_names() assert actual == expected self.new_loadshape() expected = ['default', 'test'] actual = self.dss.loadshapes_all_names() assert actual == expected def test_loadshapes_read_p_mult(self): self.new_loadshape(True) expected = [0.18000001, 0.19, 0.23999999, 0.33000001, 0.38999999, 0.41, 0.64999998, 1.23000002, 1.88999999, 1.88999999, 1.96000004, 1.98000002, 1.45000005, 1.62, 1.88999999, 1.79999995, 1.78999996, 1.19000006, 0.80000001, 0.66000003, 0.51999998, 0.40000001, 0.28, 0.23] actual = self.dss.loadshapes_read_p_mult() assert actual == expected def test_loadshapes_write_p_mult(self): self.new_loadshape(True) expected = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] self.dss.loadshapes_write_p_mult(expected) actual = self.dss.loadshapes_read_p_mult() assert actual == expected def test_loadshapes_read_q_mult(self): self.new_loadshape(True) expected = [0] actual = self.dss.loadshapes_read_q_mult() assert actual == expected def test_loadshapes_write_q_mult(self): self.new_loadshape(True) expected = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] self.dss.loadshapes_write_q_mult(expected) actual = self.dss.loadshapes_read_q_mult() assert actual == expected def test_loadshapes_read_time_array(self): self.new_loadshape(True) expected = [0] actual = self.dss.loadshapes_read_time_array() assert actual == expected # TODO: method not writing def test_loadshapes_write_time_array(self): self.new_loadshape(True) expected = [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] self.dss.loadshapes_write_time_array(expected) actual = self.dss.loadshapes_read_time_array() assert actual == expected
35.810811
109
0.592704
b7625931fb1ae04b472a0c7f8b6435b8b6756b6a
11,460
py
Python
test/python/algorithms/test_phase_estimator.py
Drinion/qiskit-terra
c73c2bfe98a436b04afb77d8e39f59e02a8ff1ac
[ "Apache-2.0" ]
1
2021-10-05T11:56:53.000Z
2021-10-05T11:56:53.000Z
test/python/algorithms/test_phase_estimator.py
Drinion/qiskit-terra
c73c2bfe98a436b04afb77d8e39f59e02a8ff1ac
[ "Apache-2.0" ]
24
2021-01-27T08:20:27.000Z
2021-07-06T09:42:28.000Z
test/python/algorithms/test_phase_estimator.py
Drinion/qiskit-terra
c73c2bfe98a436b04afb77d8e39f59e02a8ff1ac
[ "Apache-2.0" ]
4
2021-10-05T12:07:27.000Z
2022-01-28T18:37:28.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test phase estimation""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from ddt import ddt, data import numpy as np from qiskit.algorithms.phase_estimators import PhaseEstimation, HamiltonianPhaseEstimation from qiskit.opflow.evolutions import PauliTrotterEvolution, MatrixEvolution import qiskit from qiskit.opflow import (H, X, Y, Z, I, StateFn) @ddt class TestHamiltonianPhaseEstimation(QiskitAlgorithmsTestCase): """Tests for obtaining eigenvalues from phase estimation""" def hamiltonian_pe(self, hamiltonian, state_preparation=None, num_evaluation_qubits=6, backend=None, evolution=None, bound=None): """Run HamiltonianPhaseEstimation and return result with all phases.""" if backend is None: backend = qiskit.BasicAer.get_backend('statevector_simulator') quantum_instance = qiskit.utils.QuantumInstance(backend=backend, shots=10000) phase_est = HamiltonianPhaseEstimation( num_evaluation_qubits=num_evaluation_qubits, quantum_instance=quantum_instance) result = phase_est.estimate( hamiltonian=hamiltonian, state_preparation=state_preparation, evolution=evolution, bound=bound) return result @data(MatrixEvolution(), PauliTrotterEvolution('suzuki', 4)) def test_pauli_sum_1(self, evolution): """Two eigenvalues from Pauli sum with X, Z""" hamiltonian = 0.5 * X + Z state_preparation = StateFn(H.to_circuit()) result = self.hamiltonian_pe(hamiltonian, state_preparation, evolution=evolution) phase_dict = result.filter_phases(0.162, as_float=True) phases = list(phase_dict.keys()) phases.sort() self.assertAlmostEqual(phases[0], -1.125, delta=0.001) self.assertAlmostEqual(phases[1], 1.125, delta=0.001) @data(MatrixEvolution(), PauliTrotterEvolution('suzuki', 3)) def test_pauli_sum_2(self, evolution): """Two eigenvalues from Pauli sum with X, Y, Z""" hamiltonian = 0.5 * X + Y + Z state_preparation = None result = self.hamiltonian_pe(hamiltonian, state_preparation, evolution=evolution) phase_dict = result.filter_phases(0.1, as_float=True) phases = list(phase_dict.keys()) phases.sort() self.assertAlmostEqual(phases[0], -1.484, delta=0.001) self.assertAlmostEqual(phases[1], 1.484, delta=0.001) def test_single_pauli_op(self): """Two eigenvalues from Pauli sum with X, Y, Z""" hamiltonian = Z state_preparation = None result = self.hamiltonian_pe(hamiltonian, state_preparation, evolution=None) eigv = result.most_likely_eigenvalue with self.subTest('First eigenvalue'): self.assertAlmostEqual(eigv, 1.0, delta=0.001) state_preparation = StateFn(X.to_circuit()) result = self.hamiltonian_pe(hamiltonian, state_preparation, bound=1.05) eigv = result.most_likely_eigenvalue with self.subTest('Second eigenvalue'): self.assertAlmostEqual(eigv, -0.98, delta=0.01) def test_H2_hamiltonian(self): """Test H2 hamiltonian""" hamiltonian = (-1.0523732457728587 * (I ^ I)) + (0.3979374248431802 * (I ^ Z)) \ + (-0.3979374248431802 * (Z ^ I)) + (-0.011280104256235324 * (Z ^ Z)) \ + (0.18093119978423147 * (X ^ X)) state_preparation = StateFn((I ^ H).to_circuit()) evo = PauliTrotterEvolution(trotter_mode='suzuki', reps=4) result = self.hamiltonian_pe(hamiltonian, state_preparation, evolution=evo) with self.subTest('Most likely eigenvalues'): self.assertAlmostEqual(result.most_likely_eigenvalue, -1.855, delta=.001) with self.subTest('Most likely phase'): self.assertAlmostEqual(result.phase, 0.5937, delta=.001) with self.subTest('All eigenvalues'): phase_dict = result.filter_phases(0.1) phases = list(phase_dict.keys()) self.assertAlmostEqual(phases[0], -0.8979, delta=0.001) self.assertAlmostEqual(phases[1], -1.8551, delta=0.001) self.assertAlmostEqual(phases[2], -1.2376, delta=0.001) def test_matrix_evolution(self): """1Q Hamiltonian with MatrixEvolution""" hamiltonian = ((0.5 * X) + (0.6 * Y) + (0.7 * I)) state_preparation = None result = self.hamiltonian_pe(hamiltonian, state_preparation, evolution=MatrixEvolution()) phase_dict = result.filter_phases(0.2, as_float=True) phases = list(phase_dict.keys()) self.assertAlmostEqual(phases[0], 1.490, delta=0.001) self.assertAlmostEqual(phases[1], -0.090, delta=0.001) def _setup_from_bound(self, evolution, op_class): hamiltonian = 0.5 * X + Y + Z state_preparation = None bound = 1.2 * sum([abs(hamiltonian.coeff * coeff) for coeff in hamiltonian.coeffs]) if op_class == 'MatrixOp': hamiltonian = hamiltonian.to_matrix_op() backend = qiskit.BasicAer.get_backend('statevector_simulator') qi = qiskit.utils.QuantumInstance(backend=backend, shots=10000) phase_est = HamiltonianPhaseEstimation(num_evaluation_qubits=6, quantum_instance=qi) result = phase_est.estimate(hamiltonian=hamiltonian, bound=bound, evolution=evolution, state_preparation=state_preparation) return result def test_from_bound(self): """HamiltonianPhaseEstimation with bound""" for op_class in ('SummedOp', 'MatrixOp'): result = self._setup_from_bound(MatrixEvolution(), op_class) cutoff = 0.01 phases = result.filter_phases(cutoff) with self.subTest(f'test phases has the correct length: {op_class}'): self.assertEqual(len(phases), 2) with self.subTest(f'test scaled phases are correct: {op_class}'): self.assertEqual(list(phases.keys()), [1.5, -1.5]) phases = result.filter_phases(cutoff, scaled=False) with self.subTest(f'test unscaled phases are correct: {op_class}'): self.assertEqual(list(phases.keys()), [0.25, 0.75]) def test_trotter_from_bound(self): """HamiltonianPhaseEstimation with bound and Trotterization""" result = self._setup_from_bound(PauliTrotterEvolution(trotter_mode='suzuki', reps=3), op_class='SummedOp') phase_dict = result.filter_phases(0.1) phases = list(phase_dict.keys()) with self.subTest('test phases has the correct length'): self.assertEqual(len(phases), 2) with self.subTest('test phases has correct values'): self.assertAlmostEqual(phases[0], 1.5, delta=0.001) self.assertAlmostEqual(phases[1], -1.5, delta=0.001) @ddt class TestPhaseEstimation(QiskitAlgorithmsTestCase): """Evolution tests.""" # pylint: disable=invalid-name def one_phase(self, unitary_circuit, state_preparation=None, n_eval_qubits=6, backend=None): """Run phase estimation with operator, eigenvalue pair `unitary_circuit`, `state_preparation`. Return the bit string with the largest amplitude. """ if backend is None: backend = qiskit.BasicAer.get_backend('qasm_simulator') qi = qiskit.utils.QuantumInstance(backend=backend, shots=10000) p_est = PhaseEstimation(num_evaluation_qubits=n_eval_qubits, quantum_instance=qi) result = p_est.estimate(unitary=unitary_circuit, state_preparation=state_preparation) phase = result.phase return phase @data('qasm_simulator', 'statevector_simulator') def test_qpe_Z0(self, backend_type): """eigenproblem Z, |0>""" backend = qiskit.BasicAer.get_backend(backend_type) unitary_circuit = Z.to_circuit() state_preparation = None # prepare |0> phase = self.one_phase(unitary_circuit, state_preparation, backend=backend) self.assertEqual(phase, 0.0) @data('qasm_simulator', 'statevector_simulator') def test_qpe_Z1(self, backend_type): """eigenproblem Z, |1>""" backend = qiskit.BasicAer.get_backend(backend_type) unitary_circuit = Z.to_circuit() state_preparation = X.to_circuit() # prepare |1> phase = self.one_phase(unitary_circuit, state_preparation, backend=backend) self.assertEqual(phase, 0.5) @data('plus', 'minus') def test_qpe_Xplus(self, state): """eigenproblem X, |+>""" unitary_circuit = X.to_circuit() if state == 'minus': # prepare |-> state_preparation = X.to_circuit() state_preparation.h(0) else: # prepare |+> state_preparation = H.to_circuit() phase = self.one_phase(unitary_circuit, state_preparation) if state == 'minus': self.assertEqual(phase, 0.5) else: self.assertEqual(phase, 0.0) def phase_estimation(self, unitary_circuit, state_preparation=None, num_evaluation_qubits=6, backend=None): """Run phase estimation with operator, eigenvalue pair `unitary_circuit`, `state_preparation`. Return all results """ if backend is None: backend = qiskit.BasicAer.get_backend('statevector_simulator') qi = qiskit.utils.QuantumInstance(backend=backend, shots=10000) phase_est = PhaseEstimation(num_evaluation_qubits=num_evaluation_qubits, quantum_instance=qi) result = phase_est.estimate(unitary=unitary_circuit, state_preparation=state_preparation) return result def test_qpe_Zplus(self): """superposition eigenproblem Z, |+>""" unitary_circuit = Z.to_circuit() state_preparation = H.to_circuit() # prepare |+> result = self.phase_estimation( unitary_circuit, state_preparation, backend=qiskit.BasicAer.get_backend('statevector_simulator')) phases = result.filter_phases(1e-15, as_float=True) with self.subTest('test phases has correct values'): self.assertEqual(list(phases.keys()), [0.0, 0.5]) with self.subTest('test phases has correct probabilities'): np.testing.assert_allclose(list(phases.values()), [0.5, 0.5]) with self.subTest('test bitstring representation'): phases = result.filter_phases(1e-15, as_float=False) self.assertEqual(list(phases.keys()), ['000000', '100000']) if __name__ == '__main__': unittest.main()
44.941176
97
0.644154
40e440287ec31f09f3ae90a99de3a69ffbdacc67
536
py
Python
sentimentAnalyzer/util/FetchTweets.py
myneuronews/analyzer
43e9474a45f6bdb861b8a6dbc965c3f9a418f1bf
[ "MIT" ]
2
2020-07-22T15:37:47.000Z
2021-04-06T03:37:15.000Z
sentimentAnalyzer/util/FetchTweets.py
myneuronews/analyzer
43e9474a45f6bdb861b8a6dbc965c3f9a418f1bf
[ "MIT" ]
1
2019-05-10T15:35:43.000Z
2021-12-19T09:19:44.000Z
sentimentAnalyzer/util/FetchTweets.py
Amrindersingh1/Twitter-Sentiment-Analyzer
43e9474a45f6bdb861b8a6dbc965c3f9a418f1bf
[ "MIT" ]
null
null
null
import tweepy consumer_key = "" consumer_secret = "" access_token = "" access_token_secret = "" class FetchData(): def getTwitterData(self, tag): try: auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) public_tweets = api.search( q = tag, count=100,language = 'en' ) return public_tweets except tweepy.TweepError as e: print("Error : " + str(e))
19.851852
76
0.613806
cecfb71e9f304578c208fa1decd583c60bc9a23e
465
py
Python
security/tests/test_models.py
josylad/RoomScout
a3d067dd67dfdd43702ea2e89064213dbd469157
[ "MIT" ]
null
null
null
security/tests/test_models.py
josylad/RoomScout
a3d067dd67dfdd43702ea2e89064213dbd469157
[ "MIT" ]
null
null
null
security/tests/test_models.py
josylad/RoomScout
a3d067dd67dfdd43702ea2e89064213dbd469157
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.test import TestCase, Client # TODO: Write tests for security models class SecurityModelTests(TestCase): def setUp(self): self.client = Client() User = get_user_model() self.user = User.objects.create_user(username='FredFlintstone', email='aaron@xnovax.net', password='babadoo') self.user2 = User.objects.create_user(username='JackyFlintstone', email='jacky@flintstone.com', password='lovefred')
42.272727
118
0.778495
9ff4101ab0c31c9ccfe448b0a7c10624d8b61434
10,866
py
Python
tests/test_template.py
slicelife/shpkpr
2fd8874f2b7dc44de309fb6466f7320fa8e0b3a5
[ "MIT" ]
17
2015-11-17T17:12:29.000Z
2021-12-14T15:30:43.000Z
tests/test_template.py
slicelife/shpkpr
2fd8874f2b7dc44de309fb6466f7320fa8e0b3a5
[ "MIT" ]
86
2015-11-18T15:59:52.000Z
2020-10-01T10:19:36.000Z
tests/test_template.py
slicelife/shpkpr
2fd8874f2b7dc44de309fb6466f7320fa8e0b3a5
[ "MIT" ]
2
2017-11-14T14:10:05.000Z
2020-04-07T19:46:41.000Z
# third-party imports import pytest # local imports from shpkpr.template import InvalidJSONError from shpkpr.template import MissingTemplateError from shpkpr.template import UndefinedError from shpkpr.template import load_values_from_environment from shpkpr.template import render_json_template from shpkpr.template_filters import IntegerRequired from shpkpr.template_filters import IntegerTooLarge from shpkpr.template_filters import IntegerTooSmall from shpkpr.template_filters import FloatRequired from shpkpr.template_filters import FloatTooLarge from shpkpr.template_filters import FloatTooSmall def _write_template_to_disk(tmpdir, template_name, template_data): """shpkpr loads template files from disk normally. This convenience function writes a template file to disk and returns a (directory, name) tuple. """ with tmpdir.join(template_name).open("w") as f: f.write(template_data) return (tmpdir.strpath, template_name) def test_load_environment_vars_without_prefix(monkeypatch): monkeypatch.setenv('BANANA', 'bread') monkeypatch.setenv('STRAWBERRY', 'cheesecake') monkeypatch.setenv('APPLE_AND_BLACKCURRANT', 'crumble') values = load_values_from_environment() assert 'BANANA' in values assert values['BANANA'] == 'bread' assert 'STRAWBERRY' in values assert values['STRAWBERRY'] == 'cheesecake' assert 'APPLE_AND_BLACKCURRANT' in values assert values['APPLE_AND_BLACKCURRANT'] == 'crumble' def test_load_environment_vars_with_prefix(monkeypatch): monkeypatch.setenv('BANANA', 'bread') monkeypatch.setenv('SHPKPR_STRAWBERRY', 'cheesecake') monkeypatch.setenv('SHPKPR_APPLE_AND_BLACKCURRANT', 'crumble') monkeypatch.setenv('SHPKPR_SHPKPR_APPLE_AND_BLACKCURRANT', 'crumble') values = load_values_from_environment("SHPKPR") assert 'BANANA' not in values assert 'STRAWBERRY' in values assert values['STRAWBERRY'] == 'cheesecake' assert 'APPLE_AND_BLACKCURRANT' in values assert values['APPLE_AND_BLACKCURRANT'] == 'crumble' assert 'SHPKPR_APPLE_AND_BLACKCURRANT' in values assert values['SHPKPR_APPLE_AND_BLACKCURRANT'] == 'crumble' def test_load_environment_vars_with_prefix_with_trailing_underscore(monkeypatch): monkeypatch.setenv('BANANA', 'bread') monkeypatch.setenv('SHPKPR_STRAWBERRY', 'cheesecake') monkeypatch.setenv('SHPKPR_APPLE_AND_BLACKCURRANT', 'crumble') monkeypatch.setenv('SHPKPR_SHPKPR_APPLE_AND_BLACKCURRANT', 'crumble') values = load_values_from_environment("SHPKPR_") assert 'BANANA' not in values assert 'STRAWBERRY' in values assert values['STRAWBERRY'] == 'cheesecake' assert 'APPLE_AND_BLACKCURRANT' in values assert values['APPLE_AND_BLACKCURRANT'] == 'crumble' assert 'SHPKPR_APPLE_AND_BLACKCURRANT' in values assert values['SHPKPR_APPLE_AND_BLACKCURRANT'] == 'crumble' def test_render_json_template_valid(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"type_of_muffin": "{{ MUFFIN_TYPE }}"}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_TYPE": "banana"}) assert "type_of_muffin" in rendered_template assert rendered_template["type_of_muffin"] == "banana" def test_render_json_template_invalid_json_unquoted_string(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"type_of_muffin": {{ MUFFIN_TYPE }}}', ) with pytest.raises(InvalidJSONError): render_json_template(template_path, template_name, **{"MUFFIN_TYPE": "banana"}) def test_render_json_template_invalid_json_missing_value(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"type_of_muffin": {{ MUFFIN_TYPE }}}', ) with pytest.raises(InvalidJSONError): render_json_template(template_path, template_name, **{"MUFFIN_TYPE": ""}) def test_render_json_template_missing_value_raises(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"type_of_muffin": "{{ MUFFIN_TYPE }}"}', ) with pytest.raises(UndefinedError): render_json_template(template_path, template_name, **{}) def test_render_json_template_all_env(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', ''' { "types_of_muffin": { {% for k, v in _all_env|filter_items("MUFFIN_", True) %} "{{ k.lower() }}": {{ v }}{% if loop.last == False %},{% endif %} {% endfor %} } } ''', ) rendered_template = render_json_template(template_path, template_name, **{ "MUFFIN_BLUEBERRY": 4, "MUFFIN_BANANA": 7, "MUFFIN_CHOCOLATE": 12, "DONUT_STRAWBERRY": 9, }) assert "types_of_muffin" in rendered_template assert rendered_template["types_of_muffin"]["blueberry"] == 4 assert rendered_template["types_of_muffin"]["banana"] == 7 assert rendered_template["types_of_muffin"]["chocolate"] == 12 def test_render_json_template_require_int(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "1"}) assert rendered_template['muffin_count'] == 1 def test_render_json_template_require_int_requires_int(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int }}}', ) with pytest.raises(IntegerRequired): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "one muffin"}) def test_render_json_template_require_int_min_constraint(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int(min=50) }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "60"}) assert rendered_template['muffin_count'] == 60 def test_render_json_template_require_int_min_constraint_raises(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int(min=50) }}}', ) with pytest.raises(IntegerTooSmall): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "40"}) def test_render_json_template_require_int_max_constraint(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int(max=50) }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "-60"}) assert rendered_template['muffin_count'] == -60 def test_render_json_template_require_int_max_constraint_raises(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_int(max=50) }}}', ) with pytest.raises(IntegerTooLarge): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "60"}) def test_render_json_template_require_float(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "1.01"}) assert rendered_template['muffin_count'] == 1.01 def test_render_json_template_require_float_requires_float(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float }}}', ) with pytest.raises(FloatRequired): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "one muffin"}) def test_render_json_template_require_float_min_constraint(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float(min=50) }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "60"}) assert rendered_template['muffin_count'] == 60 def test_render_json_template_require_float_min_constraint_raises(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float(min=50) }}}', ) with pytest.raises(FloatTooSmall): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "40"}) def test_render_json_template_require_float_max_constraint(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float(max=50) }}}', ) rendered_template = render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "-60"}) assert rendered_template['muffin_count'] == -60 def test_render_json_template_require_float_max_constraint_raises(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', '{"muffin_count": {{ MUFFIN_COUNT|require_float(max=50) }}}', ) with pytest.raises(FloatTooLarge): render_json_template(template_path, template_name, **{"MUFFIN_COUNT": "60"}) def test_render_json_template_with_inheritance_valid(tmpdir): _write_template_to_disk( tmpdir.mkdir('bases'), 'base.json', '{"type_of_muffin": "{% block MUFFIN_TYPE_PLACEHOLDER %}{{ MUFFIN_TYPE }}{% endblock %}"}', ) template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', ''' {% extends "bases/base.json" %} {% block MUFFIN_TYPE_PLACEHOLDER %}{{ ALT_MUFFIN_TYPE }}{% endblock %} ''', ) rendered_template = render_json_template(template_path, template_name, **{ "MUFFIN_TYPE": "banana", "ALT_MUFFIN_TYPE": "blueberry", }) assert "type_of_muffin" in rendered_template assert rendered_template["type_of_muffin"] == "blueberry" def test_render_json_template_with_inheritance_no_parent(tmpdir): template_path, template_name = _write_template_to_disk( tmpdir, 'template.json', ''' {% extends "bases/base.json" %} {% block MUFFIN_TYPE_PLACEHOLDER %}{{ ALT_MUFFIN_TYPE }}{% endblock %} ''', ) with pytest.raises(MissingTemplateError): render_json_template(template_path, template_name, **{})
36.709459
103
0.716731
36e3cfcde64df8f2cd9fd9f672706ac16b906d47
15,043
py
Python
afk-q-babyai/babyai/utils/wrapper.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
1
2022-03-12T03:10:29.000Z
2022-03-12T03:10:29.000Z
afk-q-babyai/babyai/utils/wrapper.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
null
null
null
afk-q-babyai/babyai/utils/wrapper.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
null
null
null
from gym import RewardWrapper import gym import numpy as np from ..info_seeking.knowledge_graph import KG import random class TransformReward(gym.Wrapper): def __init__(self, env): super(TransformReward, self).__init__(env) self.count = 0 def step(self, action): self.count += 1 obs, rewrd, done, info = super().step(action) if action == 5: if self.env.room_grid[0][2].objs: if (self.env.front_pos[0], self.env.front_pos[1]) == self.env.room_grid[0][0].door_pos[0]: rewrd = -0.05 else: if (self.env.front_pos[0], self.env.front_pos[1]) == self.env.room_grid[0][2].door_pos[2]: rewrd = -0.05 return obs, rewrd, done, info class TargetLocationWrapper(gym.ObservationWrapper): def __init__(self, env): super(TargetLocationWrapper, self).__init__(env) self.count = 0 self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 4), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) def observation(self, observation): if 'Room2' in self.env.mission: obs = np.concatenate((observation['image'], np.ones((7, 7, 1))), axis=2) else: obs = np.concatenate((observation['image'], np.zeros((7, 7, 1))), axis=2) observation['image'] = obs return observation class DirectionWrapper(gym.ObservationWrapper): def __init__(self, env): super(DirectionWrapper, self).__init__(env) self.count = 0 self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 4), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) def observation(self, observation): size = observation['image'].shape[0] obs = np.concatenate((observation['image'], self.env.agent_dir * np.ones((size, size, 1))), axis=2) observation['image'] = obs return observation class XYLocationWrapper(gym.ObservationWrapper): def __init__(self, env): super(XYLocationWrapper, self).__init__(env) self.count = 0 self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 5), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) def observation(self, observation): obs = np.concatenate((observation['image'], self.env.agent_pos[0] * np.ones((7, 7, 1)), self.env.agent_pos[1] * np.ones((7, 7, 1))), axis=2) observation['image'] = obs return observation import re class AnsWrapper(gym.ObservationWrapper): def __init__(self, env): super(AnsWrapper, self).__init__(env) self.tokens = ['none', 'blue box', 'green box', 'grey box', 'blue key', 'green key', 'grey key', ] n_channel = env.observation_space['image'].shape[-1] + len(self.tokens) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, n_channel), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) def observation(self, observation): ans = re.findall("([a-z0-9]+)", observation['ans'].lower()) ans_channel = None ans_channel = np.zeros((7, 7, len(self.tokens))) for i, token in enumerate(self.tokens): if token in ans: ans_channel[:, :, i] = 1 break if ans_channel is None: raise ValueError obs = np.concatenate((observation['image'], ans_channel), axis=2) observation['image'] = obs return observation class InstrWrapper(gym.ObservationWrapper): def __init__(self, env): super(InstrWrapper, self).__init__(env) self.tokens = ['blue ball', 'green ball', 'grey ball', 'mary', 'jack'] n_channel = env.observation_space['image'].shape[-1] + len(self.tokens) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, n_channel), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) def observation(self, observation): ans = observation['mission'].lower() ans_channel = None for i, token in enumerate(self.tokens): if token in ans: ans_channel = np.zeros((7, 7, len(self.tokens))) ans_channel[:, :, i] = 1 break if ans_channel is None: raise ValueError obs = np.concatenate((observation['image'], ans_channel), axis=2) observation['image'] = obs return observation from collections import defaultdict import math class CountRewardWrapper(gym.Wrapper): def __init__(self, env, alpha=1, count_action=False): super(CountRewardWrapper, self).__init__(env) self.memory = defaultdict(int) self.alpha = alpha self.count_action = count_action self.mini_grid_actions_map = {'left': 0, 'right': 1, 'forward': 2, 'pickup': 3, 'drop': 4, 'toggle': 5, 'done': 6} def step(self, action): obs, reward, done, info = super().step(action) tuple_obs = tuple(obs['image'].reshape(1, -1)[0]) self.memory[tuple_obs] += 1 reward += self.alpha / math.sqrt(self.memory[tuple_obs]) return obs, reward, done, info class KGWrapper(gym.Wrapper): """ A wrapper that returns the connected component of the KG in observation. kg_repr = [one_hot, raw] one_hot: each sentence is encoded as an onehot channel of the image raw: return all raw sentences as a list in observation['kg_cc'] """ def __init__(self, env, penalize_query=False, cc_bonus=0.05, weighted_bonus=False, kg_repr='one_hot', mode='graph', n_gram=2, distractor_file_path=None, n_distractors=0, node_sample_mode='fixed', args=None): super(KGWrapper, self).__init__(env) self.kg_repr = kg_repr n_channel = env.observation_space['image'].shape[-1] self.moving_actions = ['left', 'right', 'forward', 'pickup', 'drop', 'toggle', 'done'] self.colors = ['red', 'green', 'blue', 'purple', 'yellow', 'grey'] self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, n_channel), dtype='uint8' ) self.observation_space = gym.spaces.Dict({ 'image': self.observation_space }) mode = 'set' if mode == 'no_kg' else mode self.KG = KG(mode=mode, n_gram=n_gram) self.cc_bonus = cc_bonus self.penalize_query = penalize_query if self.penalize_query: self.query_penalty = -0.01 self.weighted_bonus = weighted_bonus if distractor_file_path: # Generate on the fly self.distractors = True else: self.distractors = False self.total_frames_per_proc = args.frames // args.procs self.cur_total_frames = 0 self.decrease_bonus = args.decrease_bonus def bonus_coef(self): if not self.decrease_bonus: return 1 anneal_th = 0.6 * self.total_frames_per_proc if self.cur_total_frames <= anneal_th: return 1 else: return 1.05 - (self.cur_total_frames - anneal_th) / (self.total_frames_per_proc - anneal_th) def step(self, action): obs, reward, done, info = super().step(action) if isinstance(action, list) and len(action) > 1 and action[0] not in self.moving_actions: for ans in obs['ans'].split(','): is_CC_increase, overlap = self.KG.update(self.pre_proc_asn(ans)) if is_CC_increase: if self.weighted_bonus: reward += self.bonus_coef() * self.cc_bonus * overlap else: reward += self.bonus_coef() * self.cc_bonus if self.penalize_query: reward += self.query_penalty obs = self.observation(obs, self.KG.getCC()) self.cur_total_frames += 1 return obs, reward, done, info def reset(self, **kwargs): obs = super().reset(**kwargs) self.KG.reset(self.pre_proc_asn(obs['mission'])) if self.distractors: new_nodes = self.unwrapped.useful_answers + self.gen_distractors() random.shuffle(new_nodes) for new_node in new_nodes: split_node = new_node.split() if len(self.unwrapped.useful_answers) > 2: split_ans = self.unwrapped.useful_answers[2].split() if len(split_node) == 4 and split_node[0] == split_ans[0] and split_node[1] == split_ans[1]: continue self.KG.update(self.pre_proc_asn(new_node)) obs = self.observation(obs, self.KG.getCC()) return obs def gen_distractors(self): names = ['tim', 'allen', 'tom', 'jack', 'mary'] objs = ['suitcase', 'toy'] colors = ['purple', 'orange', 'blue', 'green', 'gray', 'grey', 'yellow', 'red', 'white', 'pink'] shapes = ['box', 'ball', 'key'] distractors = [] for name in names: for obj in objs: color = random.choice(colors) shape = random.choice(shapes) distractors.append('{} {} {} {}'.format(name, obj, color, shape)) places = ['livingroom', 'kitchen', 'restroom'] rooms = ['room0', 'room1', 'room2', 'room3', 'room4', 'room5', 'room6', 'room7', 'room8'] for name in names: place = random.choice(places) room = random.choice(rooms) distractors.append('{} {} {}'.format(name, place, room)) for name in names: for color in colors: for shape in objs: place = random.choice(places) distractors.append('{} {} {} in {}'.format(name, color, shape, place)) directions = ['east', 'west'] for color in colors: for room in rooms: dir = random.choice(directions) distractors.append('{} {} in {}'.format(color, room, dir)) random.shuffle(distractors) return distractors def observation(self, observation, CC): """ :param observation: dictionary :param CC: list of tuples :return: modified observation """ if self.kg_repr == 'one_hot': ans_channel = np.zeros((7, 7, len(self.tokens))) for ans in CC: for i, token in enumerate(self.tokens): if token == ans: ans_channel[:, :, i] = 1 break obs = np.concatenate((observation['image'], ans_channel), axis=2) observation['image'] = obs elif self.kg_repr == 'raw': raw_repr = [] for node in CC: raw_repr.append(' '.join(node)) observation['kg_cc'] = raw_repr else: raise NotImplementedError return observation def pre_proc_asn(self, ans): ans = re.findall("([a-z0-9]+)", ans.lower()) if 'is' in ans: ans.remove('is') if 'in' in ans: ans.remove('in') return ans class RenderWrapper(gym.Wrapper): def __init__(self, env): self.env = env self.eps_steps = 0 self.action = None def step(self, action): self.action = action self.eps_steps += 1 return super().step(action) def reset(self): self.eps_steps = 0 self.action = None return super().reset() # Size in pixels of a tile in the full-scale human view TILE_PIXELS = 32 def render(self, mode='human', close=False, highlight=True, tile_size=TILE_PIXELS, KG=None): """ Render the whole-grid human view """ if close: if self.window: self.window.close() return if mode == 'human' and not self.window: import gym_minigrid.window self.window = gym_minigrid.window.Window('gym_minigrid') self.window.ax.xaxis.label.set_fontsize(10) self.window.fig.subplots_adjust(top=1.0, bottom=0.3) self.window.show(block=False) # Compute which cells are visible to the agent _, vis_mask = self.gen_obs_grid() # Compute the world coordinates of the bottom-left corner # of the agent's view area f_vec = self.dir_vec r_vec = self.right_vec top_left = self.agent_pos + f_vec * (self.agent_view_size - 1) - r_vec * (self.agent_view_size // 2) # Mask of which cells to highlight highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool) # For each cell in the visibility mask for vis_j in range(0, self.agent_view_size): for vis_i in range(0, self.agent_view_size): # If this cell is not visible, don't highlight it if not vis_mask[vis_i, vis_j]: continue # Compute the world coordinates of this cell abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i) if abs_i < 0 or abs_i >= self.width: continue if abs_j < 0 or abs_j >= self.height: continue # Mark this cell to be highlighted highlight_mask[abs_i, abs_j] = True # Render the whole grid img = self.grid.render( tile_size, self.agent_pos, self.agent_dir, highlight_mask=highlight_mask if highlight else None ) if mode == 'human': prev_query = self.prev_query if hasattr(self, 'prev_query') else "" prev_ans = self.prev_ans if hasattr(self, 'prev_ans') else "" caption = 'Instr: {} step: {} action: {}\n'.format(self.mission, self.eps_steps, self.action) in_bos = 'Q: ' + prev_query + ' A: ' + prev_ans + "\n" self.window.set_caption(caption + in_bos) self.window.show_img(img) return img
35.902148
148
0.56385
27b6d11a29c6def4e0fed4e69122760a340d7ec9
4,799
py
Python
scripts/python/meta/tasks/proteomics/001_data_preparation.py
AaronBlare/dnam
4d97c879cb24447eee0852eaf48fc5b3ef8e159b
[ "MIT" ]
null
null
null
scripts/python/meta/tasks/proteomics/001_data_preparation.py
AaronBlare/dnam
4d97c879cb24447eee0852eaf48fc5b3ef8e159b
[ "MIT" ]
null
null
null
scripts/python/meta/tasks/proteomics/001_data_preparation.py
AaronBlare/dnam
4d97c879cb24447eee0852eaf48fc5b3ef8e159b
[ "MIT" ]
null
null
null
import pandas as pd from scripts.python.pheno.datasets.filter import filter_pheno, get_passed_fields from scripts.python.pheno.datasets.features import get_column_name, get_default_statuses_ids, get_status_dict, get_default_statuses, get_sex_dict from scripts.python.preprocessing.serialization.routines.pheno_betas_checking import get_pheno_betas_with_common_subjects from scripts.python.routines.betas import betas_drop_na import plotly.graph_objects as go from scripts.python.routines.manifest import get_manifest from scripts.python.routines.plot.save import save_figure from scripts.python.routines.plot.histogram import add_histogram_trace from scripts.python.routines.plot.layout import add_layout import json from pathlib import Path path = f"E:/YandexDisk/Work/pydnameth/datasets" datasets_info = pd.read_excel(f"{path}/datasets.xlsx", index_col='dataset') folder_name = f"proteomics" path_save = f"{path}/meta/tasks/{folder_name}" Path(f"{path_save}/figs").mkdir(parents=True, exist_ok=True) tissue_datasets = { 'Brain': ['GSE74193'], 'Liver': ['GSE48325', 'GSE61258', 'GSE61446'], 'Blood': ['GSE87571'] } target_features = ['Status', 'Age', 'Sex'] for tissue, datasets in tissue_datasets.items(): tmp_path = f"{path_save}/{tissue}" Path(f"{tmp_path}/figs").mkdir(parents=True, exist_ok=True) pheno_all = pd.DataFrame(columns=target_features + ['Dataset']) pheno_all.index.name = 'subject_id' for d_id, dataset in enumerate(datasets): platform = datasets_info.loc[dataset, 'platform'] manifest = get_manifest(platform) statuses = get_default_statuses(dataset) status_col = get_column_name(dataset, 'Status').replace(' ', '_') statuses_ids = get_default_statuses_ids(dataset) status_dict = get_status_dict(dataset) status_passed_fields = get_passed_fields(status_dict, statuses) controls_status_vals = [status_dict['Control'][x].column for x in statuses_ids['Control']] controls_labels = ', '.join([status_dict['Control'][x].label for x in statuses_ids['Control']]) age_col = get_column_name(dataset, 'Age').replace(' ', '_') sex_col = get_column_name(dataset, 'Sex').replace(' ', '_') sex_dict = get_sex_dict(dataset) continuous_vars = {'Age': age_col} categorical_vars = { status_col: [x.column for x in status_passed_fields], sex_col: [sex_dict[x] for x in sex_dict] } pheno = pd.read_pickle(f"{path}/{platform}/{dataset}/pheno.pkl") pheno = filter_pheno(dataset, pheno, continuous_vars, categorical_vars) betas = pd.read_pickle(f"{path}/{platform}/{dataset}/betas.pkl") betas = betas_drop_na(betas) df = pd.merge(pheno, betas, left_index=True, right_index=True) df = df.loc[df[status_col].isin(controls_status_vals), :] pheno = df.loc[:, [status_col, sex_col, age_col]] status_dict_inverse = dict((x.column, x.label) for x in status_passed_fields) pheno[status_col].replace(status_dict_inverse, inplace=True) pheno.rename(columns={status_col: 'Status'}, inplace=True) sex_dict_inverse = {v: k for k, v in sex_dict.items()} pheno[sex_col].replace(sex_dict_inverse, inplace=True) pheno.rename(columns={sex_col: 'Sex'}, inplace=True) pheno.rename(columns={age_col: 'Age'}, inplace=True) pheno.loc[:, 'Dataset'] = dataset pheno_all = pheno_all.append(pheno, verify_integrity=True) cpgs = betas.columns.values betas = df[cpgs].T if d_id == 0: betas_all = betas else: betas_all = betas_all.merge(betas, how='inner', left_index=True, right_index=True) print(f"Number of remaining subjects: {pheno_all.shape[0]}") betas_all = betas_all.T betas_all.index.name = "subject_id" pheno_all, betas_all = get_pheno_betas_with_common_subjects(pheno_all, betas_all) pheno_all.to_pickle(f"{tmp_path}/pheno.pkl") pheno_all.to_excel(f"{tmp_path}/pheno.xlsx", index=True) betas_all.to_pickle(f"{tmp_path}/betas.pkl") info = {tissue: datasets, "betas.shape": betas_all.shape} with open(f"{tmp_path}/info.json", 'w', encoding='utf-8') as f: json.dump(info, f, ensure_ascii=False, indent=4) pheno_f = pheno_all.loc[pheno_all['Sex'].isin(['F']), :] pheno_m = pheno_all.loc[pheno_all['Sex'].isin(['M']), :] fig = go.Figure() add_histogram_trace(fig, pheno_f['Age'].values, f"Female ({pheno_f.shape[0]})", 5.0) add_histogram_trace(fig, pheno_m['Age'].values, f"Male ({pheno_m.shape[0]})", 5.0) add_layout(fig, "Age", "Count", f"{tissue}") fig.update_layout(colorway=['red', 'blue'], barmode='overlay') save_figure(fig, f"{tmp_path}/figs/histogram_Age_Sex")
44.435185
145
0.695562
7b9fef049c3b11477096b36c50ecd18d053b9054
1,487
py
Python
setup.py
lilwebsite/bigwebsite-public
4178f3cfb0d5575907fef0916c04c975687a48a5
[ "MIT" ]
1
2019-05-09T13:23:43.000Z
2019-05-09T13:23:43.000Z
setup.py
lilwebsite/bigwebsite-public
4178f3cfb0d5575907fef0916c04c975687a48a5
[ "MIT" ]
null
null
null
setup.py
lilwebsite/bigwebsite-public
4178f3cfb0d5575907fef0916c04c975687a48a5
[ "MIT" ]
null
null
null
import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) requires = [ 'passlib', 'bcrypt', 'pyramid', 'pyramid_jinja2', 'pyramid_tm', 'SQLAlchemy', 'transaction', 'zope.sqlalchemy', 'zope.interface', 'waitress', 'gevent', 'gunicorn', 'Pillow', 'PyPDF2' ] dev_requires = [ 'pyramid_debugtoolbar', 'pytest', 'WebTest' ] setup( name='bigwebsite', version='1.0', description='Dylans Website', long_description='Bigwebsite is a website for Dylan Boroqhuez and his projects. The site is programmed by me (Carl Gessau) and can be managed by either dylan or me thanks to pyramid\'s framework.', classifiers=[ "Programming Language :: Python", "Framework :: Pyramid", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI :: Application", ], author='Carl Gessau', author_email='carl@bigwebsite.cool', url='www.bigwebsite.cool', keywords='', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=requires, extras_require={ 'dev': dev_requires }, #entry_points="""\ #[paste.app_factory] #main = bigwebsite:main #[console_scripts] #initialize_bigwebsite_db = bigwebsite.scripts.initializedb:main #""" entry_points={ 'paste.app_factory': [ 'main = bigwebsite:main' ], 'console_scripts': [ 'initialize_bigwebsite_db = bigwebsite.init_scripts.initializedb:main' ] } )
22.19403
199
0.675857
3ee7b43ffb373d0c20082d7b251228b6d0e26484
2,909
py
Python
models/object_detection/pytorch/maskrcnn/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/box_head/box_head.py
Pandinosaurus/models-intelai
60f5712d79a363bdb7624e3116a66a4f1a7fe208
[ "Apache-2.0" ]
357
2019-01-23T23:54:30.000Z
2022-03-31T05:32:25.000Z
models/object_detection/pytorch/maskrcnn/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/box_head/box_head.py
Pandinosaurus/models-intelai
60f5712d79a363bdb7624e3116a66a4f1a7fe208
[ "Apache-2.0" ]
65
2019-02-06T15:35:35.000Z
2022-03-25T09:56:48.000Z
models/object_detection/pytorch/maskrcnn/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/box_head/box_head.py
Pandinosaurus/models-intelai
60f5712d79a363bdb7624e3116a66a4f1a7fe208
[ "Apache-2.0" ]
164
2019-02-06T15:05:57.000Z
2022-03-31T11:48:14.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from .roi_box_feature_extractors import make_roi_box_feature_extractor from .roi_box_predictors import make_roi_box_predictor from .inference import make_roi_box_post_processor from .loss import make_roi_box_loss_evaluator class ROIBoxHead(torch.nn.Module): """ Generic Box Head class. """ def __init__(self, cfg, in_channels): super(ROIBoxHead, self).__init__() self.feature_extractor = make_roi_box_feature_extractor(cfg, in_channels) self.predictor = make_roi_box_predictor( cfg, self.feature_extractor.out_channels) self.post_processor = make_roi_box_post_processor(cfg) self.loss_evaluator = make_roi_box_loss_evaluator(cfg) def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the subsampled proposals are returned. During testing, the predicted boxlists are returned losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training: # Faster R-CNN subsamples during training the proposals with a fixed # positive / negative ratio with torch.no_grad(): proposals = self.loss_evaluator.subsample(proposals, targets) # extract features that will be fed to the final classifier. The # feature_extractor generally corresponds to the pooler + heads x = self.feature_extractor(features, proposals) # final classifier that converts the features into predictions class_logits, box_regression = self.predictor(x) x = x.to(torch.float32) class_logits = class_logits.to(torch.float32) box_regression = box_regression.to(torch.float32) if not self.training: result = self.post_processor((class_logits, box_regression), proposals) return x, result, {} loss_classifier, loss_box_reg = self.loss_evaluator( [class_logits], [box_regression] ) return ( x, proposals, dict(loss_classifier=loss_classifier, loss_box_reg=loss_box_reg), ) def build_roi_box_head(cfg, in_channels): """ Constructs a new box head. By default, uses ROIBoxHead, but if it turns out not to be enough, just register a new class and make it a parameter in the config """ return ROIBoxHead(cfg, in_channels)
38.786667
96
0.673771
348be9f78d0fb3e33122f6112552792f6f2adf78
1,899
py
Python
tests/test_init.py
openefsa/asreview
aec14fcad0532a3989befe577ceb369a9dbba243
[ "Apache-2.0" ]
null
null
null
tests/test_init.py
openefsa/asreview
aec14fcad0532a3989befe577ceb369a9dbba243
[ "Apache-2.0" ]
1
2020-04-16T09:01:40.000Z
2020-04-16T09:01:40.000Z
tests/test_init.py
openefsa/asreview
aec14fcad0532a3989befe577ceb369a9dbba243
[ "Apache-2.0" ]
1
2020-03-04T12:16:53.000Z
2020-03-04T12:16:53.000Z
from pathlib import Path import numpy as np from asreview.review.factory import get_reviewer from asreview.data import ASReviewData data_fp = Path("tests", "demo_data", "generic_labels.csv") def test_init_seed(): base_start_idx = None n_test = 4 seeds = np.random.randint(0, 2**63, 5) for _ in range(n_test): all_start_idx = [] for seed in seeds: reviewer = get_reviewer( data_fp, mode="simulate", model="nb", state_file=None, init_seed=seed, n_prior_excluded=1, n_prior_included=1) assert len(reviewer.start_idx) == 2 all_start_idx.append(reviewer.start_idx) if base_start_idx is None: base_start_idx = all_start_idx continue assert np.all(np.array(base_start_idx) == np.array(all_start_idx)) def test_no_seed(): n_test_max = 100 as_data = ASReviewData.from_file(data_fp) n_priored = np.zeros(len(as_data), dtype=int) for _ in range(n_test_max): reviewer = get_reviewer( data_fp, mode="simulate", model="nb", state_file=None, init_seed=None, n_prior_excluded=1, n_prior_included=1) assert len(reviewer.start_idx) == 2 n_priored[reviewer.start_idx] += 1 if np.all(n_priored > 0): return raise ValueError(f"Error getting all priors in {n_test_max} iterations.") def test_model_seed(): n_test = 4 seed = 192874123 last_train_idx = None for _ in range(n_test): reviewer = get_reviewer( data_fp, mode="simulate", model="rf", query_strategy="random", state_file=None, init_seed=seed, seed=seed, n_prior_excluded=1, n_prior_included=1) reviewer.review() if last_train_idx is None: last_train_idx = reviewer.train_idx assert np.all(last_train_idx == reviewer.train_idx)
31.65
78
0.644023
244b4be9184e340f7b1a2b9411b2f5eb202b066d
3,762
py
Python
venv/lib/python3.6/site-packages/ansible_collections/inspur/sm/plugins/modules/edit_ad_group.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/inspur/sm/plugins/modules/edit_ad_group.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/inspur/sm/plugins/modules/edit_ad_group.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding:utf-8 -*- # Copyright (C) 2020 Inspur Inc. All Rights Reserved. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' --- module: edit_ad_group version_added: "0.1.0" author: - WangBaoshan (@ISIB-group) short_description: Set active directory group information. description: - Set active directory group information on Inspur server. deprecated: removed_in: 3.0.0 why: Merge functions into the M(inspur.sm.ad_group) module. alternative: Use M(inspur.sm.ad_group) instead. removed_from_collection: inspur.sm options: id: description: - Group id. choices: ['1', '2', '3', '4', '5'] type: str required: true name: description: - Group name. type: str domain: description: - Group domain. type: str pri: description: - Group privilege. choices: ['administrator', 'user', 'operator', 'oem', 'none'] type: str kvm: description: - Kvm privilege. choices: ['enable', 'disable'] type: str vm: description: - Vmedia privilege. choices: ['enable', 'disable'] type: str extends_documentation_fragment: - inspur.sm.ism ''' EXAMPLES = ''' - name: Ad group test hosts: ism connection: local gather_facts: no vars: ism: host: "{{ ansible_ssh_host }}" username: "{{ username }}" password: "{{ password }}" tasks: - name: "Edit active directory group information" inspur.sm.edit_ad_group: id: "1" name: "wbs" domain: "inspur.com" pri: "administrator" kvm: "enable" vm: "disable" provider: "{{ ism }}" ''' RETURN = ''' message: description: Messages returned after module execution. returned: always type: str state: description: Status after module execution. returned: always type: str changed: description: Check to see if a change was made on the device. returned: always type: bool ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.inspur.sm.plugins.module_utils.ism import (ism_argument_spec, get_connection) class AD(object): def __init__(self, argument_spec): self.spec = argument_spec self.module = None self.init_module() self.results = dict() def init_module(self): """Init module object""" self.module = AnsibleModule( argument_spec=self.spec, supports_check_mode=False) def run_command(self): self.module.params['subcommand'] = 'setadgroup' self.results = get_connection(self.module) if self.results['State'] == 'Success': self.results['changed'] = True def show_result(self): """Show result""" self.module.exit_json(**self.results) def work(self): """Worker""" self.run_command() self.show_result() def main(): argument_spec = dict( id=dict(type='str', required=True, choices=['1', '2', '3', '4', '5']), name=dict(type='str', required=False), domain=dict(type='str', required=False), pri=dict(type='str', required=False, choices=['administrator', 'user', 'operator', 'oem', 'none']), kvm=dict(type='str', required=False, choices=['enable', 'disable']), vm=dict(type='str', required=False, choices=['enable', 'disable']), ) argument_spec.update(ism_argument_spec) ad_obj = AD(argument_spec) ad_obj.work() if __name__ == '__main__': main()
25.591837
107
0.611909
cd0379251e4f9d33859ac89dba5b176ee45808ed
3,845
py
Python
telegrambot/handlers/dispatcher.py
StudentiUniMi/backend
7915de730b273ef36f1adca10b1c3cacff820faa
[ "MIT" ]
5
2021-08-09T20:37:28.000Z
2022-03-08T12:25:49.000Z
telegrambot/handlers/dispatcher.py
StudentiUniMi/backend
7915de730b273ef36f1adca10b1c3cacff820faa
[ "MIT" ]
4
2021-08-14T12:36:44.000Z
2021-12-12T01:25:08.000Z
telegrambot/handlers/dispatcher.py
StudentiUniMi/backend
7915de730b273ef36f1adca10b1c3cacff820faa
[ "MIT" ]
2
2021-08-09T19:57:16.000Z
2021-08-11T20:19:30.000Z
import logging as logg from telegram import Update from telegram.ext import ( MessageHandler, Filters, CommandHandler, ChatMemberHandler, CallbackQueryHandler, Updater, ChatJoinRequestHandler ) from telegrambot.handlers import messages, members, moderation, errors, memes LOG = logg.getLogger(__name__) dispatchers = {} def setup_dispatcher(dispatcher): dispatcher.add_error_handler(errors.telegram_error_handler) # Pre-processing dispatcher.add_handler(MessageHandler( filters=Filters.chat_type.groups, callback=messages.handle_group_messages, ), group=0) # Groups dispatcher.add_handler(ChatJoinRequestHandler( callback=members.handle_join_request, ), group=1) dispatcher.add_handler(CallbackQueryHandler( callback=members.handle_join_approval, pattern="^join_chat=" )) dispatcher.add_handler(ChatMemberHandler( callback=members.handle_chat_member_updates, chat_member_types=ChatMemberHandler.ANY_CHAT_MEMBER, ), group=1) dispatcher.add_handler(MessageHandler( filters=Filters.status_update, callback=members.handle_left_chat_member_updates, ), group=1) dispatcher.add_handler(MessageHandler( filters=Filters.chat_type.groups, callback=messages.handle_admin_tagging, ), group=1) # Admin commands dispatcher.add_handler(CommandHandler( command="warn", callback=moderation.handle_warn_command, ), group=2) dispatcher.add_handler(CommandHandler( command="kick", callback=moderation.handle_kick_command, ), group=2) dispatcher.add_handler(CommandHandler( command="ban", callback=moderation.handle_ban_command, ), group=2) dispatcher.add_handler(CommandHandler( command="superban", callback=moderation.handle_global_ban_command, ), group=2) dispatcher.add_handler(CommandHandler( command="mute", callback=moderation.handle_mute_command, ), group=2) dispatcher.add_handler(CommandHandler( command="free", callback=moderation.handle_free_command, ), group=2) dispatcher.add_handler(CommandHandler( command="superfree", callback=moderation.handle_global_free_command, ), group=2) dispatcher.add_handler(CommandHandler( command="info", callback=moderation.handle_info_command, ), group=2) dispatcher.add_handler(CommandHandler( command="claim", callback=members.claim_command, ), group=2) dispatcher.add_handler(CommandHandler( command="creation", callback=moderation.handle_creation_command, ), group=2) dispatcher.add_handler(CommandHandler( command="whitelistbot", callback=moderation.handle_whitelisting_command, ), group=2) dispatcher.add_handler(CommandHandler( command="ignore_admin", callback=moderation.handle_toggle_admin_tagging, ), group=2) dispatcher.add_handler(CommandHandler( command="delete", callback=moderation.handle_delete_command, ), group=2) # User commands dispatcher.add_handler(CommandHandler( command="respects", callback=memes.init_respects, ), group=3) dispatcher.add_handler(CallbackQueryHandler( callback=memes.add_respect, pattern="^press_f$", ), group=3) # Tokens that are sent to this function have been already checked againts the DB def dispatch_telegram_update(json_update: dict, token: str) -> None: if token not in dispatchers.keys(): dispatchers[token] = Updater(token=token).dispatcher setup_dispatcher(dispatchers[token]) update = Update.de_json(json_update, dispatchers[token].bot) dispatchers[token].process_update(update)
31.008065
80
0.706112
e9d63a9caabec7b8383885025a20cef0ffad3c58
7,076
py
Python
python/http_client/v1/polyaxon_sdk/models/v1_event_video.py
polyaxon/polyaxon-client
d3cafc87428f3a55f12aac8ffe93dc0e1776f379
[ "Apache-2.0" ]
13
2017-11-22T21:45:15.000Z
2021-03-09T16:35:03.000Z
python/http_client/v1/polyaxon_sdk/models/v1_event_video.py
polyaxon/polyaxon-client
d3cafc87428f3a55f12aac8ffe93dc0e1776f379
[ "Apache-2.0" ]
38
2017-12-18T15:42:26.000Z
2020-07-01T18:09:15.000Z
python/http_client/v1/polyaxon_sdk/models/v1_event_video.py
polyaxon/polyaxon-client
d3cafc87428f3a55f12aac8ffe93dc0e1776f379
[ "Apache-2.0" ]
20
2017-12-11T12:48:53.000Z
2021-12-03T07:11:43.000Z
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.14.0 Contact: contact@polyaxon.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1EventVideo(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'height': 'int', 'width': 'int', 'colorspace': 'int', 'path': 'str', 'content_type': 'str' } attribute_map = { 'height': 'height', 'width': 'width', 'colorspace': 'colorspace', 'path': 'path', 'content_type': 'content_type' } def __init__(self, height=None, width=None, colorspace=None, path=None, content_type=None, local_vars_configuration=None): # noqa: E501 """V1EventVideo - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._height = None self._width = None self._colorspace = None self._path = None self._content_type = None self.discriminator = None if height is not None: self.height = height if width is not None: self.width = width if colorspace is not None: self.colorspace = colorspace if path is not None: self.path = path if content_type is not None: self.content_type = content_type @property def height(self): """Gets the height of this V1EventVideo. # noqa: E501 Height of the video. # noqa: E501 :return: The height of this V1EventVideo. # noqa: E501 :rtype: int """ return self._height @height.setter def height(self, height): """Sets the height of this V1EventVideo. Height of the video. # noqa: E501 :param height: The height of this V1EventVideo. # noqa: E501 :type height: int """ self._height = height @property def width(self): """Gets the width of this V1EventVideo. # noqa: E501 Width of the video. # noqa: E501 :return: The width of this V1EventVideo. # noqa: E501 :rtype: int """ return self._width @width.setter def width(self, width): """Sets the width of this V1EventVideo. Width of the video. # noqa: E501 :param width: The width of this V1EventVideo. # noqa: E501 :type width: int """ self._width = width @property def colorspace(self): """Gets the colorspace of this V1EventVideo. # noqa: E501 :return: The colorspace of this V1EventVideo. # noqa: E501 :rtype: int """ return self._colorspace @colorspace.setter def colorspace(self, colorspace): """Sets the colorspace of this V1EventVideo. :param colorspace: The colorspace of this V1EventVideo. # noqa: E501 :type colorspace: int """ self._colorspace = colorspace @property def path(self): """Gets the path of this V1EventVideo. # noqa: E501 :return: The path of this V1EventVideo. # noqa: E501 :rtype: str """ return self._path @path.setter def path(self, path): """Sets the path of this V1EventVideo. :param path: The path of this V1EventVideo. # noqa: E501 :type path: str """ self._path = path @property def content_type(self): """Gets the content_type of this V1EventVideo. # noqa: E501 :return: The content_type of this V1EventVideo. # noqa: E501 :rtype: str """ return self._content_type @content_type.setter def content_type(self, content_type): """Sets the content_type of this V1EventVideo. :param content_type: The content_type of this V1EventVideo. # noqa: E501 :type content_type: str """ self._content_type = content_type def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1EventVideo): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1EventVideo): return True return self.to_dict() != other.to_dict()
27.533074
140
0.588327
7560e61c111f934562d8f781ebdf194f7d83637e
12,912
py
Python
draw_card/handles/prts_handle.py
NumberSir/nonebot_plugin_gamedraw
bc7a90703ec02d866e587453a92f1109c00bfab6
[ "MIT" ]
null
null
null
draw_card/handles/prts_handle.py
NumberSir/nonebot_plugin_gamedraw
bc7a90703ec02d866e587453a92f1109c00bfab6
[ "MIT" ]
null
null
null
draw_card/handles/prts_handle.py
NumberSir/nonebot_plugin_gamedraw
bc7a90703ec02d866e587453a92f1109c00bfab6
[ "MIT" ]
null
null
null
import random import re from datetime import datetime from typing import List, Optional, Tuple from urllib.parse import unquote import dateparser from PIL import ImageDraw from lxml import etree from nonebot.adapters.onebot.v11 import Message, MessageSegment from nonebot.log import logger from pydantic import ValidationError try: import ujson as json except ModuleNotFoundError: import json from .base_handle import BaseHandle, BaseData, UpChar, UpEvent from ..config import draw_config from ..util import remove_prohibited_str, cn2py, load_font from ..build_image import BuildImage class Operator(BaseData): recruit_only: bool # 公招限定 event_only: bool # 活动获得干员 # special_only: bool # 升变/异格干员 class PrtsHandle(BaseHandle[Operator]): def __init__(self): super().__init__(game_name="prts", game_name_cn="明日方舟") self.max_star = 6 self.game_card_color = "#eff2f5" self.config = draw_config.prts self.ALL_OPERATOR: List[Operator] = [] self.UP_EVENT: Optional[UpEvent] = None def get_card(self, add: float) -> Operator: star = self.get_star( star_list=[6, 5, 4, 3], probability_list=[ self.config.PRTS_SIX_P + add, self.config.PRTS_FIVE_P, self.config.PRTS_FOUR_P, self.config.PRTS_THREE_P, ], ) all_operators = [ x for x in self.ALL_OPERATOR if x.star == star and not any([x.limited, x.recruit_only, x.event_only]) ] acquire_operator = None if self.UP_EVENT: up_operators = [x for x in self.UP_EVENT.up_char if x.star == star] # UPs try: zooms = [x.zoom for x in up_operators] zoom_sum = sum(zooms) if random.random() < zoom_sum: up_name = random.choices(up_operators, weights=zooms, k=1)[0].name acquire_operator = [ x for x in self.ALL_OPERATOR if x.name == up_name ][0] except IndexError: pass if not acquire_operator: acquire_operator = random.choice(all_operators) return acquire_operator def get_cards(self, count: int, **kwargs) -> List[Tuple[Operator, int]]: card_list = [] # 获取所有角色 add = 0.0 count_idx = 0 for i in range(count): count_idx += 1 card = self.get_card(add) if card.star == self.max_star: add = 0.0 count_idx = 0 elif count_idx > 50: add += 0.02 card_list.append((card, i + 1)) return card_list def format_pool_info(self) -> str: info = "" if self.UP_EVENT: star6_list = [x.name for x in self.UP_EVENT.up_char if x.star == 6] star5_list = [x.name for x in self.UP_EVENT.up_char if x.star == 5] star4_list = [x.name for x in self.UP_EVENT.up_char if x.star == 4] if star6_list: info += f"六星UP:{' '.join(star6_list)}\n" if star5_list: info += f"五星UP:{' '.join(star5_list)}\n" if star4_list: info += f"四星UP:{' '.join(star4_list)}\n" info = f"当前up池: {self.UP_EVENT.title}\n{info}" return info.strip() def draw(self, count: int, **kwargs) -> Message: index2card = self.get_cards(count) """这里cards修复了抽卡图文不符的bug""" cards = [card[0] for card in index2card] up_list = [x.name for x in self.UP_EVENT.up_char] if self.UP_EVENT else [] result = self.format_result(index2card, up_list=up_list) pool_info = self.format_pool_info() return ( pool_info + MessageSegment.image(self.generate_img(cards).pic2bs4()) + result ) def generate_card_img(self, card: Operator) -> BuildImage: sep_w = 5 sep_h = 5 star_h = 15 img_w = 120 img_h = 120 font_h = 20 bg = BuildImage(img_w + sep_w * 2, img_h + font_h + sep_h * 2, color="#EFF2F5") star_path = str(self.img_path / "star.png") star = BuildImage(star_h, star_h, background=star_path) img_path = str(self.img_path / f"{cn2py(card.name)}.png") img = BuildImage(img_w, img_h, background=img_path) bg.paste(img, (sep_w, sep_h), alpha=True) for i in range(card.star): bg.paste(star, (sep_w + img_w - 5 - star_h * (i + 1), sep_h), alpha=True) # 加名字 text = card.name[:7] + "..." if len(card.name) > 8 else card.name font = load_font(fontsize=16) text_w, text_h = font.getsize(text) draw = ImageDraw.Draw(bg.markImg) draw.text( (sep_w + (img_w - text_w) / 2, sep_h + img_h + (font_h - text_h) / 2), text, font=font, fill="gray", ) return bg def _init_data(self): self.ALL_OPERATOR = [ Operator( name=value["名称"], star=int(value["星级"]), limited="干员寻访" not in value["获取途径"], recruit_only=True if "干员寻访" not in value["获取途径"] and "公开招募" in value["获取途径"] else False, event_only=True if "活动获取" in value["获取途径"] else False, ) for key, value in self.load_data().items() if "阿米娅" not in key ] self.load_up_char() def load_up_char(self): try: data = self.load_data(f"draw_card_up/{self.game_name}_up_char.json") """这里的 waring 有点模糊,更新游戏信息时没有up池的情况下也会报错,所以细分了一下""" if not data: logger.warning(f"当前无UP池或 {self.game_name}_up_char.json 文件不存在") else: self.UP_EVENT = UpEvent.parse_obj(data.get("char", {})) except ValidationError: logger.warning(f"{self.game_name}_up_char 解析出错") def dump_up_char(self): if self.UP_EVENT: data = {"char": json.loads(self.UP_EVENT.json())} self.dump_data(data, f"draw_card_up/{self.game_name}_up_char.json") async def _update_info(self): """更新信息""" info = {} url = "https://wiki.biligame.com/arknights/干员数据表" result = await self.get_url(url) if not result: logger.warning(f"更新 {self.game_name_cn} 出错") return dom = etree.HTML(result, etree.HTMLParser()) char_list = dom.xpath("//table[@id='CardSelectTr']/tbody/tr") for char in char_list: try: avatar = char.xpath("./td[1]/div/div/div/a/img/@srcset")[0] name = char.xpath("./td[2]/a/text()")[0] star = char.xpath("./td[5]/text()")[0] """这里sources修好了干员获取标签有问题的bug,如三星只能抽到卡缇就是这个原因""" sources = [_.strip('\n') for _ in char.xpath("./td[8]/text()")] except IndexError: continue member_dict = { "头像": unquote(str(avatar).split(" ")[-2]), "名称": remove_prohibited_str(str(name).strip()), "星级": int(str(star).strip()), "获取途径": sources, } info[member_dict["名称"]] = member_dict self.dump_data(info) logger.info(f"{self.game_name_cn} 更新成功") # 下载头像 for value in info.values(): await self.download_img(value["头像"], value["名称"]) # 下载星星 await self.download_img( "https://patchwiki.biligame.com/images/pcr/0/02/s75ys2ecqhu2xbdw1wf1v9ccscnvi5g.png", "star", ) await self.update_up_char() async def update_up_char(self): """重载卡池""" announcement_url = "https://ak.hypergryph.com/news.html" result = await self.get_url(announcement_url) if not result: logger.warning(f"{self.game_name_cn}获取公告出错") return dom = etree.HTML(result, etree.HTMLParser()) activity_urls = dom.xpath( "//ol[@class='articleList' and @data-category-key='ACTIVITY']/li/a/@href" ) start_time = None end_time = None up_chars = [] pool_img = "" for activity_url in activity_urls[:10]: # 减少响应时间, 10个就够了 activity_url = f"https://ak.hypergryph.com{activity_url}" result = await self.get_url(activity_url) if not result: logger.warning(f"{self.game_name_cn}获取公告 {activity_url} 出错") continue """因为鹰角的前端太自由了,这里重写了匹配规则以尽可能避免因为前端乱七八糟而导致的重载失败""" dom = etree.HTML(result, etree.HTMLParser()) contents = dom.xpath( "//div[@class='article-content']/p/text() | //div[@class='article-content']/p/span/text() | //div[@class='article-content']/div[@class='media-wrap image-wrap']/img/@src" ) title = "" time = "" chars: List[str] = [] for index, content in enumerate(contents): if re.search("(.*)(寻访|复刻).*?开启", content): title = re.split(r"[【】]", content) title = "".join(title[1:-1]) if "-" in title else title[1] lines = [contents[index-2+_] for _ in range(8)] # 从 -2 开始是因为xpath获取的时间有的会在寻访开启这一句之前 lines.append("") # 防止IndexError,加个空字符串 for idx, line in enumerate(lines): match = re.search( r"(\d{1,2}月\d{1,2}日.*?-.*?\d{1,2}月\d{1,2}日.*?$)", line ) if match: time = match.group(1) """因为 <p> 的诡异排版,所以有了下面的一段""" if ("★★" in line and "%" in line) or ("★★" in line and "%" in lines[idx + 1]): chars.append(line) if ("★★" in line and "%" in line) else chars.append(line + lines[idx + 1]) if not time: continue start, end = time.replace("月", "/").replace("日", " ").split("-")[:2] # 日替换为空格是因为有日后面不接空格的情况,导致 split 出问题 start_time = dateparser.parse(start) end_time = dateparser.parse(end) pool_img = contents[index-2] r"""两类格式:用/分割,用\分割;★+(概率)+名字,★+名字+(概率)""" for char in chars: star = char.split("(")[0].count("★") name = re.split(r"[:(]", char)[1] if "★(" not in char else re.split("):", char)[1] # 有的括号在前面有的在后面 if "\\" in name: names = name.split("\\") elif "/" in name: names = name.split("/") else: names = [name] # 既有用/分割的,又有用\分割的 names = [name.replace("[限定]", "").strip() for name in names] if "权值" in char: match = re.search(r"(在.*?以.*?(\d+).*?倍权值.*?)", char) else: match = re.search(r"(占.*?的.*?(\d+).*?%)", char) zoom = 1 if match: zoom = float(match.group(1)) zoom = zoom / 100 if zoom > 10 else zoom for name in names: up_chars.append( UpChar(name=name, star=star, limited=False, zoom=zoom) ) break # 这里break会导致个问题:如果一个公告里有两个池子,会漏掉下面的池子,比如 5.19 的定向寻访。但目前我也没啥好想法解决 if title and start_time and end_time: if start_time <= datetime.now() <= end_time: self.UP_EVENT = UpEvent( title=title, pool_img=pool_img, start_time=start_time, end_time=end_time, up_char=up_chars, ) self.dump_up_char() logger.info(f"成功获取{self.game_name_cn}当前up信息...当前up池: {title}") break async def _reload_pool(self) -> Optional[Message]: await self.update_up_char() self.load_up_char() if self.UP_EVENT: return f"重载成功!\n当前UP池子:{self.UP_EVENT.title}" + MessageSegment.image( self.UP_EVENT.pool_img )
41.252396
186
0.498141
50e7d3fde8fef22733a8646340ab3a5176c68503
7,610
py
Python
autogluon/utils/tabular/ml/models/knn/knn_utils.py
NunoEdgarGFlowHub/autogluon
714894698495ef4352706d3c4250823ad4a43ead
[ "Apache-2.0" ]
1
2020-08-20T08:30:15.000Z
2020-08-20T08:30:15.000Z
autogluon/utils/tabular/ml/models/knn/knn_utils.py
NunoEdgarGFlowHub/autogluon
714894698495ef4352706d3c4250823ad4a43ead
[ "Apache-2.0" ]
null
null
null
autogluon/utils/tabular/ml/models/knn/knn_utils.py
NunoEdgarGFlowHub/autogluon
714894698495ef4352706d3c4250823ad4a43ead
[ "Apache-2.0" ]
null
null
null
import numpy as np from pandas import DataFrame from scipy.stats import mode from sklearn.utils.extmath import weighted_mode from .....try_import import try_import_faiss import logging logger = logging.getLogger(__name__) # Rather than try to import non-public sklearn internals, we implement our own weighting functions here # These support the same operations as the sklearn functions - at least as far as possible with FAISS def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', 'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter weights""" if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', 'distance', or a callable function") class FAISSNeighborsRegressor: def __init__(self, n_neighbors=5, weights='uniform', n_jobs=-1, index_factory_string="Flat"): """ Creates a KNN regressor model based on FAISS. FAISS allows you to compose different near-neighbor search algorithms from several different preprocessing / search algorithms This composition is specified by the string that is passed to the FAISS index_factory. Here are good guidelines for choosing the index string: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index The model itself is a clone of the sklearn one """ try_import_faiss() import faiss self.faiss = faiss self.index_factory_string = index_factory_string self.n_neighbors = n_neighbors self.weights = weights self.n_jobs = n_jobs if n_jobs > 0: # global config, affects all faiss indexes faiss.omp_set_num_threads(n_jobs) def fit(self, X_train, y_train): if isinstance(X_train, DataFrame): X_train = X_train.to_numpy(dtype=np.float32) else: X_train = X_train.astype(np.float32) if not X_train.flags['C_CONTIGUOUS']: X_train = np.ascontiguousarray(X_train) d = X_train.shape[1] self.index = self.faiss.index_factory(d, self.index_factory_string) self.y = np.array(y_train) self.index.train(X_train) self.index.add(X_train) return self def predict(self, X): X = X.astype(np.float32) X = np.ascontiguousarray(X) if X.ndim == 1: X = X[np.newaxis] D, I = self.index.search(X, self.n_neighbors) outputs = np.squeeze(self.y[I]) weights = _get_weights(D, self.weights) if weights is None: y_pred = np.mean(outputs, axis=1) else: denom = np.sum(weights, axis=1) if outputs.ndim == 1: y_pred = np.sum(weights * outputs, axis=1) y_pred /= denom else: y_pred = np.sum(weights * outputs, axis=1) y_pred /= denom return y_pred def __getstate__(self): state = {} for k, v in self.__dict__.items(): if (v is not self.index) and (v is not self.faiss): state[k] = v else: state[k] = self.faiss.serialize_index(self.index) return state def __setstate__(self, state): try_import_faiss() import faiss self.__dict__.update(state) self.faiss = faiss self.index = self.faiss.deserialize_index(self.index) class FAISSNeighborsClassifier: def __init__(self, n_neighbors=5, weights='uniform', n_jobs=-1, index_factory_string="Flat"): """ Creates a KNN classifier model based on FAISS. FAISS allows you to compose different near-neighbor search algorithms from several different preprocessing / search algorithms This composition is specified by the string that is passed to the FAISS index_factory. Here are good guidelines for choosing the index string: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index The model itself is a clone of the sklearn one """ try_import_faiss() import faiss self.faiss = faiss self.index_factory_string = index_factory_string self.n_neighbors = n_neighbors self.weights = weights self.classes = [] self.n_jobs = n_jobs if n_jobs > 0: # global config, affects all faiss indexes faiss.omp_set_num_threads(n_jobs) def fit(self, X_train, y_train): if isinstance(X_train, DataFrame): X_train = X_train.to_numpy(dtype=np.float32) else: X_train = X_train.astype(np.float32) if not X_train.flags['C_CONTIGUOUS']: X_train = np.ascontiguousarray(X_train) d = X_train.shape[1] self.index = self.faiss.index_factory(d, self.index_factory_string) self.labels = np.array(y_train) self.index.train(X_train) self.index.add(X_train) self.classes = np.unique(y_train) return self def predict(self, X): X = X.astype(np.float32) X = np.ascontiguousarray(X) if X.ndim == 1: X = X[np.newaxis] D, I = self.index.search(X, self.n_neighbors) outputs = np.squeeze(self.labels[I]) weights = _get_weights(D, self.weights) if weights is None: y_pred, _ = mode(outputs, axis=1) else: y_pred, _ = weighted_mode(outputs, weights, axis=1) return y_pred def predict_proba(self, X): X = X.astype(np.float32) X = np.ascontiguousarray(X) if X.ndim == 1: X = X[np.newaxis] D, I = self.index.search(X, self.n_neighbors) outputs = np.squeeze(self.labels[I]) weights = _get_weights(D, self.weights) if weights is None: weights = np.ones_like(I) probabilities = np.empty((X.shape[0], len(self.classes)), dtype=np.float64) for k, class_k in enumerate(self.classes): proba_k = np.sum(np.multiply(outputs == class_k, weights), axis=1) probabilities[:, k] = proba_k normalizer = np.sum(probabilities, axis=1) normalizer[normalizer == 0.0] = 1.0 probabilities /= normalizer[:, np.newaxis] return probabilities def __getstate__(self): state = {} for k, v in self.__dict__.items(): if (v is not self.index) and (v is not self.faiss): state[k] = v else: state[k] = self.faiss.serialize_index(self.index) return state def __setstate__(self, state): try_import_faiss() import faiss self.__dict__.update(state) self.faiss = faiss self.index = self.faiss.deserialize_index(self.index)
36.411483
107
0.620368
a4fccbb108b086a5c3150578f474d018c8ea63d8
5,129
py
Python
amazon-ec2/ec2-approved-regions/lambda/index.py
awslabs/aws-lambda-security-controls
c2e64889bc48e68d78664e4741e685c2812f6bbb
[ "MIT-0" ]
46
2018-10-06T20:07:34.000Z
2021-11-08T10:25:48.000Z
amazon-ec2/ec2-approved-regions/lambda/index.py
awslabs/aws-lambda-security-controls
c2e64889bc48e68d78664e4741e685c2812f6bbb
[ "MIT-0" ]
1
2020-03-05T08:09:51.000Z
2020-03-05T08:09:51.000Z
amazon-ec2/ec2-approved-regions/lambda/index.py
awslabs/aws-lambda-security-controls
c2e64889bc48e68d78664e4741e685c2812f6bbb
[ "MIT-0" ]
32
2018-10-15T22:47:01.000Z
2021-11-24T14:10:49.000Z
""" Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Security Control: EC2 Must Be In US Regions Description: Checks for compliance to determine if an EC2 instance is created in a valid region. If not, will invoke an SNS notification Runtime: Python 3.6 """ import logging import os import json import boto3 from botocore.exceptions import ClientError OUTBOUND_TOPIC_ARN = os.environ["outbound_topic_arn"] def lambda_handler(event, context): """ Main Lambda handler. Evaluates the control and makes messaging decisions. """ # print(json.dumps(event)) setup_logging() log.info('Got an event!') log.info('e') Regions = os.environ["Regions"].split(",") # If else statement that determines if stack was created in invalid region or not. # Also handles logic in the event of failed stack creation in invalid region. try: if event["detail"]["awsRegion"] in Regions: print( "No violations found for EC2 Instance(s) being brought up in an invalid region.") elif event["detail"]["awsRegion"] not in Regions: ec2_invalid_region_instance = [] if event["detail"]["eventName"] == "ModifyInstanceAttribute": ec2_invalid_region_instance = event["detail"]["requestParameters"]["instanceId"] elif event["detail"]["eventName"] == "RunInstances": for instance in event["detail"]["responseElements"]["instancesSet"]["items"]: ec2_invalid_region_instance.append(instance["instanceId"]) if ec2_invalid_region_instance: subject = "Violation - EC2 Instance(s) created/modified in invalid region" message = create_non_compliance_message( ec2_invalid_region_instance, event, context) send_violation(OUTBOUND_TOPIC_ARN, message, subject) except KeyError: log.info('Region not found in the event.') # Since it's not a violation if security group rules aren't # in the event, we return true return True def send_violation(OUTBOUND_TOPIC_ARN, message, subject): """ Send Violation Function. Takes in the compiled message and sends to the outbound sns topic """ findsnsregion = OUTBOUND_TOPIC_ARN.split(":") snsregion = findsnsregion[3] sendclient = boto3.client('sns', region_name=snsregion) try: sendclient.publish( TopicArn=OUTBOUND_TOPIC_ARN, Message=message, Subject=subject ) except ClientError as err: print(err) return False def create_non_compliance_message(ec2_invalid_region_instance, event, context): """ Non-Compliance Message. Function that structures the outgoing SNS notification format """ if type(ec2_invalid_region_instance) is list: ec2_invalid_region_instance = ''.join(ec2_invalid_region_instance) message = "Violation - EC2 Instance(s) created/modified in invalid region! \n\n" message += 'EC2 Instance(s): ' + ec2_invalid_region_instance + '\n' message += 'Account: ' + event["account"] + "\n" message += "Region: " + event["detail"]["awsRegion"] + "\n" message += "\n\n" message += "This notification was generated by the Lambda function " + \ context.invoked_function_arn return message def setup_logging(): """ Logging Function. Creates a global log object and sets its level. """ global log log = logging.getLogger() log_levels = {'INFO': 20, 'WARNING': 30, 'ERROR': 40} if 'logging_level' in os.environ: log_level = os.environ['logging_level'].upper() if log_level in log_levels: log.setLevel(log_levels[log_level]) else: log.setLevel(log_levels['ERROR']) log.error("The logging_level environment variable is not set to INFO, WARNING, or \ ERROR. The log level is set to ERROR") else: log.setLevel(log_levels['ERROR']) log.warning('The logging_level environment variable is not set. The log level is set to \ ERROR') log.info('Logging setup complete - set to log level ' + str(log.getEffectiveLevel()))
38.856061
97
0.6783
5939114fd04db953a79fa6f63f2dc246c6172c86
1,791
py
Python
setup.py
hjmjohnson/ITKShape
87faabfee47b17c6355baa2637616c7c7bacf217
[ "Apache-2.0" ]
3
2021-04-18T03:57:44.000Z
2022-03-28T19:47:06.000Z
setup.py
hjmjohnson/ITKShape
87faabfee47b17c6355baa2637616c7c7bacf217
[ "Apache-2.0" ]
11
2021-03-08T13:24:38.000Z
2021-03-19T20:20:34.000Z
setup.py
hjmjohnson/ITKShape
87faabfee47b17c6355baa2637616c7c7bacf217
[ "Apache-2.0" ]
1
2021-12-17T19:16:34.000Z
2021-12-17T19:16:34.000Z
# -*- coding: utf-8 -*- from os import sys try: from skbuild import setup except ImportError: print('scikit-build is required to build from source.', file=sys.stderr) print('Please run:', file=sys.stderr) print('', file=sys.stderr) print(' python -m pip install scikit-build') sys.exit(1) setup( name='itk-shape', version='0.2.1', author='Insight Software Consortium', author_email='itk+community@discourse.itk.org', packages=['itk'], package_dir={'itk': 'itk'}, download_url=r'https://github.com/slicersalt/ITKShape', description=r'A C++ implementation of Procrustes alignment for 3D meshes.', long_description='ITK external module for libraries originally developed in SPHARM-PDM 3D Slicer extension (https://github.com/NIRALUser/SPHARM-PDM).', classifiers=[ "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: C++", "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Healthcare Industry", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Medical Science Apps.", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Software Development :: Libraries", "Operating System :: Android", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Operating System :: MacOS" ], license='Apache', keywords='ITK InsightToolkit', url=r'https://itk.org/', install_requires=[ r'itk>=5.2.0.post2' ] )
36.55102
155
0.634841
d2d5859a664b19dc7783dd5fa31a21d116e7480e
310
py
Python
p1.py
eztwokey/laba6
06a9db939d592b257175dd693d204f1dda972d14
[ "MIT" ]
null
null
null
p1.py
eztwokey/laba6
06a9db939d592b257175dd693d204f1dda972d14
[ "MIT" ]
null
null
null
p1.py
eztwokey/laba6
06a9db939d592b257175dd693d204f1dda972d14
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys if __name__ == '__main__': A = list(map(int, input().split())) if len(A) != 10: print("Неверный размер списка", file=sys.stderr) exit(1) s = 0 for item in A: if abs(item) < 5: s += item print(s)
20.666667
56
0.509677
782f774a25562daf707ae90b9a7ee4cbe1c43381
8,742
py
Python
python/cuxfilter/charts/core/non_aggregate/core_stacked_line.py
jacobtomlinson/cuxfilter
0b88a6b609d993b8d11629763c35dfb2b2581927
[ "Apache-2.0" ]
null
null
null
python/cuxfilter/charts/core/non_aggregate/core_stacked_line.py
jacobtomlinson/cuxfilter
0b88a6b609d993b8d11629763c35dfb2b2581927
[ "Apache-2.0" ]
null
null
null
python/cuxfilter/charts/core/non_aggregate/core_stacked_line.py
jacobtomlinson/cuxfilter
0b88a6b609d993b8d11629763c35dfb2b2581927
[ "Apache-2.0" ]
null
null
null
from typing import Tuple from ..core_chart import BaseChart from ....layouts import chart_view class BaseStackedLine(BaseChart): """ No datatiles support in non_data_tiles plot charts If dataset size is greater than a few thousand points, scatter geos can crash the browser tabs, and is only recommended with cudatashader plugin, in which case an image is rendered instead of points on canvas """ chart_type = "stacked_lines" reset_event = None x_range: Tuple = None y_range: Tuple = None use_data_tiles = False y: list = [] colors: list = [] def __init__( self, x, y=[], data_points=100, add_interaction=True, colors=[], step_size=None, step_size_type=int, width=800, height=400, **library_specific_params, ): """ Description: ------------------------------------------- Input: x y data_points add_interaction aggregate_fn step_size step_size_type x_label_map y_label_map width height **library_specific_params ------------------------------------------- Ouput: """ self.x = x if type(y) != list: raise TypeError("y must be a list of column names") if len(y) == 0: raise ValueError("y must not be empty") self.y = y self.data_points = data_points self.add_interaction = add_interaction self.stride = step_size if type(colors) != list: raise TypeError("colors must be a list of colors") self.colors = colors self.stride_type = step_size_type self.library_specific_params = library_specific_params self.width = width self.height = height def initiate_chart(self, dashboard_cls): """ Description: ------------------------------------------- Input: data: cudf DataFrame ------------------------------------------- """ if self.x_range is None: self.x_range = ( dashboard_cls._data[self.x].min(), dashboard_cls._data[self.x].max(), ) if self.y_range is None: # cudf_df[['a','b','c']].min().min() gives min value # between all values in columns a,b and c self.y_range = ( dashboard_cls._data[self.y].min().min(), dashboard_cls._data[self.y].max().max(), ) self.calculate_source(dashboard_cls._data) self.generate_chart() self.add_events(dashboard_cls) def view(self): return chart_view(self.chart, width=self.width) def calculate_source(self, data): """ Description: ------------------------------------------- Input: data = cudf.DataFrame ------------------------------------------- Ouput: """ self.format_source_data(data) def get_selection_geometry_callback(self, dashboard_cls): """ Description: generate callback for choropleth selection evetn ------------------------------------------- Input: ------------------------------------------- Ouput: """ def selection_callback(xmin, xmax, ymin, ymax): if dashboard_cls._active_view != self.name: # reset previous active view and # set current chart as active view dashboard_cls._reset_current_view(new_active_view=self) self.source = dashboard_cls._data self.x_range = (xmin, xmax) self.y_range = (ymin, ymax) query = str(xmin) + "<=" + self.x + " <= " + str(xmax) dashboard_cls._query_str_dict[self.name] = query temp_data = dashboard_cls._query( dashboard_cls._query_str_dict[self.name] ) # reload all charts with new queried data (cudf.DataFrame only) dashboard_cls._reload_charts(data=temp_data, ignore_cols=[]) # self.reload_chart(temp_data, False) del temp_data return selection_callback def compute_query_dict(self, query_str_dict): """ Description: ------------------------------------------- Input: query_dict = reference to dashboard.__cls__.query_dict ------------------------------------------- Ouput: """ if self.x_range is not None and self.y_range is not None: query_str_dict[self.name] = ( str(self.x_range[0]) + "<=" + self.x + " <= " + str(self.x_range[1]) ) def add_events(self, dashboard_cls): """ Description: ------------------------------------------- Input: ------------------------------------------- Ouput: """ if self.add_interaction: self.add_selection_geometry_event( self.get_selection_geometry_callback(dashboard_cls) ) if self.reset_event is not None: self.add_reset_event(dashboard_cls) def add_reset_event(self, dashboard_cls): """ Description: ------------------------------------------- Input: ------------------------------------------- Ouput: """ def reset_callback(event): if dashboard_cls._active_view != self.name: # reset previous active view and # set current chart as active view dashboard_cls._reset_current_view(new_active_view=self) self.source = dashboard_cls._data self.x_range = None self.y_range = None dashboard_cls._reload_charts() # add callback to reset chart button self.add_event(self.reset_event, reset_callback) def query_chart_by_range( self, active_chart: BaseChart, query_tuple, datatile=None ): """ Description: ------------------------------------------- Input: 1. active_chart: chart object of active_chart 2. query_tuple: (min_val, max_val) of the query [type: tuple] 3. datatile: None in case of Gpu Geo Scatter charts ------------------------------------------- Ouput: """ min_val, max_val = query_tuple self.reload_chart( self.source.query( str(min_val) + "<=" + active_chart.x + "<=" + str(max_val) ), False, ) def query_chart_by_indices( self, active_chart: BaseChart, old_indices, new_indices, datatile=None ): """ Description: ------------------------------------------- Input: 1. active_chart: chart object of active_chart 2. query_tuple: (min_val, max_val) of the query [type: tuple] 3. datatile: None in case of Gpu Geo Scatter charts ------------------------------------------- Ouput: """ if "" in new_indices: new_indices.remove("") if len(new_indices) == 0: # case: all selected indices were reset # reset the chart self.reload_chart(self.source, False) elif len(new_indices) == 1: # just a single index self.reload_chart( self.source.query( active_chart.x + "==" + str(float(new_indices[0])) ), False, ) else: new_indices_str = ",".join(map(str, new_indices)) self.reload_chart( self.source.query( active_chart.x + " in (" + new_indices_str + ")" ), False, ) def add_selection_geometry_event(self, callback): """ Description: ------------------------------------------- Input: ------------------------------------------- Ouput: """ # ('function to be overridden by library specific extensions') def reset_chart_geometry_ranges(self): """ Description: ------------------------------------------- Input: ------------------------------------------- Ouput: """ # ('function to be overridden by library specific extensions')
28.756579
78
0.469229
905a51ab6d5cd1dba178657af16b4bbef74f0399
52,445
py
Python
venv/Lib/site-packages/matplotlib/__init__.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/matplotlib/__init__.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/matplotlib/__init__.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
""" An object-oriented plotting library. A procedural interface is provided by the companion pyplot module, which may be imported directly, e.g.:: import matplotlib.pyplot as plt or using ipython:: ipython at your terminal, followed by:: In [1]: %matplotlib In [2]: import matplotlib.pyplot as plt at the ipython shell prompt. For the most part, direct use of the object-oriented library is encouraged when programming; pyplot is primarily for working interactively. The exceptions are the pyplot functions `.pyplot.figure`, `.pyplot.subplot`, `.pyplot.subplots`, and `.pyplot.savefig`, which can greatly simplify scripting. Modules include: :mod:`matplotlib.axes` The `~.axes.Axes` class. Most pyplot functions are wrappers for `~.axes.Axes` methods. The axes module is the highest level of OO access to the library. :mod:`matplotlib.figure` The `.Figure` class. :mod:`matplotlib.artist` The `.Artist` base class for all classes that draw things. :mod:`matplotlib.lines` The `.Line2D` class for drawing lines and markers. :mod:`matplotlib.patches` Classes for drawing polygons. :mod:`matplotlib.text` The `.Text` and `.Annotation` classes. :mod:`matplotlib.image` The `.AxesImage` and `.FigureImage` classes. :mod:`matplotlib.collections` Classes for efficient drawing of groups of lines or polygons. :mod:`matplotlib.colors` Color specifications and making colormaps. :mod:`matplotlib.cm` Colormaps, and the `.ScalarMappable` mixin class for providing color mapping functionality to other classes. :mod:`matplotlib.ticker` Calculation of tick mark locations and formatting of tick labels. :mod:`matplotlib.backends` A subpackage with modules for various GUI libraries and output formats. The base matplotlib namespace includes: `~matplotlib.rcParams` Default configuration settings; their defaults may be overridden using a :file:`matplotlibrc` file. `~matplotlib.use` Setting the Matplotlib backend. This should be called before any figure is created, because it is not possible to switch between different GUI backends after that. Matplotlib was initially written by John D. Hunter (1968-2012) and is now developed and maintained by a host of others. Occasionally the internal documentation (python docstrings) will refer to MATLAB&reg;, a registered trademark of The MathWorks, Inc. """ import atexit from collections import namedtuple from collections.abc import MutableMapping import contextlib import functools import importlib import inspect from inspect import Parameter import locale import logging import os from pathlib import Path import pprint import re import shutil import subprocess import sys import tempfile import warnings import numpy from packaging.version import parse as parse_version # cbook must import matplotlib only within function # definitions, so it is safe to import from it here. from . import _api, _version, cbook, docstring, rcsetup from matplotlib.cbook import MatplotlibDeprecationWarning, sanitize_sequence from matplotlib.cbook import mplDeprecation # deprecated from matplotlib.rcsetup import validate_backend, cycler _log = logging.getLogger(__name__) __bibtex__ = r"""@Article{Hunter:2007, Author = {Hunter, J. D.}, Title = {Matplotlib: A 2D graphics environment}, Journal = {Computing in Science \& Engineering}, Volume = {9}, Number = {3}, Pages = {90--95}, abstract = {Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.}, publisher = {IEEE COMPUTER SOC}, year = 2007 }""" # modelled after sys.version_info _VersionInfo = namedtuple('_VersionInfo', 'major, minor, micro, releaselevel, serial') def _parse_to_version_info(version_str): """ Parse a version string to a namedtuple analogous to sys.version_info. See: https://packaging.pypa.io/en/latest/version.html#packaging.version.parse https://docs.python.org/3/library/sys.html#sys.version_info """ v = parse_version(version_str) if v.pre is None and v.post is None and v.dev is None: return _VersionInfo(v.major, v.minor, v.micro, 'final', 0) elif v.dev is not None: return _VersionInfo(v.major, v.minor, v.micro, 'alpha', v.dev) elif v.pre is not None: releaselevel = { 'a': 'alpha', 'b': 'beta', 'rc': 'candidate'}.get(v.pre[0], 'alpha') return _VersionInfo(v.major, v.minor, v.micro, releaselevel, v.pre[1]) else: # fallback for v.post: guess-next-dev scheme from setuptools_scm return _VersionInfo(v.major, v.minor, v.micro + 1, 'alpha', v.post) def _get_version(): """Return the version string used for __version__.""" # Only shell out to a git subprocess if really needed, and not on a # shallow clone, such as those used by CI, as the latter would trigger # a warning from setuptools_scm. root = Path(__file__).resolve().parents[2] if (root / ".git").exists() and not (root / ".git/shallow").exists(): import setuptools_scm return setuptools_scm.get_version( root=root, version_scheme="release-branch-semver", local_scheme="node-and-date", fallback_version=_version.version, ) else: # Get the version from the _version.py setuptools_scm file. return _version.version @_api.caching_module_getattr class __getattr__: __version__ = property(lambda self: _get_version()) __version_info__ = property( lambda self: _parse_to_version_info(self.__version__)) # module-level deprecations URL_REGEX = _api.deprecated("3.5", obj_type="")(property( lambda self: re.compile(r'^http://|^https://|^ftp://|^file:'))) def _check_versions(): # Quickfix to ensure Microsoft Visual C++ redistributable # DLLs are loaded before importing kiwisolver from . import ft2font for modname, minver in [ ("cycler", "0.10"), ("dateutil", "2.7"), ("kiwisolver", "1.0.1"), ("numpy", "1.17"), ("pyparsing", "2.2.1"), ]: module = importlib.import_module(modname) if parse_version(module.__version__) < parse_version(minver): raise ImportError(f"Matplotlib requires {modname}>={minver}; " f"you have {module.__version__}") _check_versions() # The decorator ensures this always returns the same handler (and it is only # attached once). @functools.lru_cache() def _ensure_handler(): """ The first time this function is called, attach a `StreamHandler` using the same format as `logging.basicConfig` to the Matplotlib root logger. Return this handler every time this function is called. """ handler = logging.StreamHandler() handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) _log.addHandler(handler) return handler def set_loglevel(level): """ Set Matplotlib's root logger and root logger handler level, creating the handler if it does not exist yet. Typically, one should call ``set_loglevel("info")`` or ``set_loglevel("debug")`` to get additional debugging information. Parameters ---------- level : {"notset", "debug", "info", "warning", "error", "critical"} The log level of the handler. Notes ----- The first time this function is called, an additional handler is attached to Matplotlib's root handler; this handler is reused every time and this function simply manipulates the logger and handler's level. """ _log.setLevel(level.upper()) _ensure_handler().setLevel(level.upper()) def _logged_cached(fmt, func=None): """ Decorator that logs a function's return value, and memoizes that value. After :: @_logged_cached(fmt) def func(): ... the first call to *func* will log its return value at the DEBUG level using %-format string *fmt*, and memoize it; later calls to *func* will directly return that value. """ if func is None: # Return the actual decorator. return functools.partial(_logged_cached, fmt) called = False ret = None @functools.wraps(func) def wrapper(**kwargs): nonlocal called, ret if not called: ret = func(**kwargs) called = True _log.debug(fmt, ret) return ret return wrapper _ExecInfo = namedtuple("_ExecInfo", "executable version") class ExecutableNotFoundError(FileNotFoundError): """ Error raised when an executable that Matplotlib optionally depends on can't be found. """ pass @functools.lru_cache() def _get_executable_info(name): """ Get the version of some executable that Matplotlib optionally depends on. .. warning:: The list of executables that this function supports is set according to Matplotlib's internal needs, and may change without notice. Parameters ---------- name : str The executable to query. The following values are currently supported: "dvipng", "gs", "inkscape", "magick", "pdftops". This list is subject to change without notice. Returns ------- tuple A namedtuple with fields ``executable`` (`str`) and ``version`` (`packaging.Version`, or ``None`` if the version cannot be determined). Raises ------ ExecutableNotFoundError If the executable is not found or older than the oldest version supported by Matplotlib. ValueError If the executable is not one that we know how to query. """ def impl(args, regex, min_ver=None, ignore_exit_code=False): # Execute the subprocess specified by args; capture stdout and stderr. # Search for a regex match in the output; if the match succeeds, the # first group of the match is the version. # Return an _ExecInfo if the executable exists, and has a version of # at least min_ver (if set); else, raise ExecutableNotFoundError. try: output = subprocess.check_output( args, stderr=subprocess.STDOUT, universal_newlines=True, errors="replace") except subprocess.CalledProcessError as _cpe: if ignore_exit_code: output = _cpe.output else: raise ExecutableNotFoundError(str(_cpe)) from _cpe except OSError as _ose: raise ExecutableNotFoundError(str(_ose)) from _ose match = re.search(regex, output) if match: version = parse_version(match.group(1)) if min_ver is not None and version < parse_version(min_ver): raise ExecutableNotFoundError( f"You have {args[0]} version {version} but the minimum " f"version supported by Matplotlib is {min_ver}") return _ExecInfo(args[0], version) else: raise ExecutableNotFoundError( f"Failed to determine the version of {args[0]} from " f"{' '.join(args)}, which output {output}") if name == "dvipng": return impl(["dvipng", "-version"], "(?m)^dvipng(?: .*)? (.+)", "1.6") elif name == "gs": execs = (["gswin32c", "gswin64c", "mgs", "gs"] # "mgs" for miktex. if sys.platform == "win32" else ["gs"]) for e in execs: try: return impl([e, "--version"], "(.*)", "9") except ExecutableNotFoundError: pass message = "Failed to find a Ghostscript installation" raise ExecutableNotFoundError(message) elif name == "inkscape": try: # Try headless option first (needed for Inkscape version < 1.0): return impl(["inkscape", "--without-gui", "-V"], "Inkscape ([^ ]*)") except ExecutableNotFoundError: pass # Suppress exception chaining. # If --without-gui is not accepted, we may be using Inkscape >= 1.0 so # try without it: return impl(["inkscape", "-V"], "Inkscape ([^ ]*)") elif name == "magick": if sys.platform == "win32": # Check the registry to avoid confusing ImageMagick's convert with # Windows's builtin convert.exe. import winreg binpath = "" for flag in [0, winreg.KEY_WOW64_32KEY, winreg.KEY_WOW64_64KEY]: try: with winreg.OpenKeyEx( winreg.HKEY_LOCAL_MACHINE, r"Software\Imagemagick\Current", 0, winreg.KEY_QUERY_VALUE | flag) as hkey: binpath = winreg.QueryValueEx(hkey, "BinPath")[0] except OSError: pass path = None if binpath: for name in ["convert.exe", "magick.exe"]: candidate = Path(binpath, name) if candidate.exists(): path = str(candidate) break if path is None: raise ExecutableNotFoundError( "Failed to find an ImageMagick installation") else: path = "convert" info = impl([path, "--version"], r"^Version: ImageMagick (\S*)") if info.version == parse_version("7.0.10-34"): # https://github.com/ImageMagick/ImageMagick/issues/2720 raise ExecutableNotFoundError( f"You have ImageMagick {info.version}, which is unsupported") return info elif name == "pdftops": info = impl(["pdftops", "-v"], "^pdftops version (.*)", ignore_exit_code=True) if info and not ( 3 <= info.version.major or # poppler version numbers. parse_version("0.9") <= info.version < parse_version("1.0")): raise ExecutableNotFoundError( f"You have pdftops version {info.version} but the minimum " f"version supported by Matplotlib is 3.0") return info else: raise ValueError("Unknown executable: {!r}".format(name)) def checkdep_usetex(s): if not s: return False if not shutil.which("tex"): _log.warning("usetex mode requires TeX.") return False try: _get_executable_info("dvipng") except ExecutableNotFoundError: _log.warning("usetex mode requires dvipng.") return False try: _get_executable_info("gs") except ExecutableNotFoundError: _log.warning("usetex mode requires ghostscript.") return False return True def _get_xdg_config_dir(): """ Return the XDG configuration directory, according to the XDG base directory spec: https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html """ return os.environ.get('XDG_CONFIG_HOME') or str(Path.home() / ".config") def _get_xdg_cache_dir(): """ Return the XDG cache directory, according to the XDG base directory spec: https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html """ return os.environ.get('XDG_CACHE_HOME') or str(Path.home() / ".cache") def _get_config_or_cache_dir(xdg_base_getter): configdir = os.environ.get('MPLCONFIGDIR') if configdir: configdir = Path(configdir).resolve() elif sys.platform.startswith(('linux', 'freebsd')): # Only call _xdg_base_getter here so that MPLCONFIGDIR is tried first, # as _xdg_base_getter can throw. configdir = Path(xdg_base_getter(), "matplotlib") else: configdir = Path.home() / ".matplotlib" try: configdir.mkdir(parents=True, exist_ok=True) except OSError: pass else: if os.access(str(configdir), os.W_OK) and configdir.is_dir(): return str(configdir) # If the config or cache directory cannot be created or is not a writable # directory, create a temporary one. tmpdir = os.environ["MPLCONFIGDIR"] = \ tempfile.mkdtemp(prefix="matplotlib-") atexit.register(shutil.rmtree, tmpdir) _log.warning( "Matplotlib created a temporary config/cache directory at %s because " "the default path (%s) is not a writable directory; it is highly " "recommended to set the MPLCONFIGDIR environment variable to a " "writable directory, in particular to speed up the import of " "Matplotlib and to better support multiprocessing.", tmpdir, configdir) return tmpdir @_logged_cached('CONFIGDIR=%s') def get_configdir(): """ Return the string path of the configuration directory. The directory is chosen as follows: 1. If the MPLCONFIGDIR environment variable is supplied, choose that. 2. On Linux, follow the XDG specification and look first in ``$XDG_CONFIG_HOME``, if defined, or ``$HOME/.config``. On other platforms, choose ``$HOME/.matplotlib``. 3. If the chosen directory exists and is writable, use that as the configuration directory. 4. Else, create a temporary directory, and use it as the configuration directory. """ return _get_config_or_cache_dir(_get_xdg_config_dir) @_logged_cached('CACHEDIR=%s') def get_cachedir(): """ Return the string path of the cache directory. The procedure used to find the directory is the same as for _get_config_dir, except using ``$XDG_CACHE_HOME``/``$HOME/.cache`` instead. """ return _get_config_or_cache_dir(_get_xdg_cache_dir) @_logged_cached('matplotlib data path: %s') def get_data_path(): """Return the path to Matplotlib data.""" return str(Path(__file__).with_name("mpl-data")) def matplotlib_fname(): """ Get the location of the config file. The file location is determined in the following order - ``$PWD/matplotlibrc`` - ``$MATPLOTLIBRC`` if it is not a directory - ``$MATPLOTLIBRC/matplotlibrc`` - ``$MPLCONFIGDIR/matplotlibrc`` - On Linux, - ``$XDG_CONFIG_HOME/matplotlib/matplotlibrc`` (if ``$XDG_CONFIG_HOME`` is defined) - or ``$HOME/.config/matplotlib/matplotlibrc`` (if ``$XDG_CONFIG_HOME`` is not defined) - On other platforms, - ``$HOME/.matplotlib/matplotlibrc`` if ``$HOME`` is defined - Lastly, it looks in ``$MATPLOTLIBDATA/matplotlibrc``, which should always exist. """ def gen_candidates(): # rely on down-stream code to make absolute. This protects us # from having to directly get the current working directory # which can fail if the user has ended up with a cwd that is # non-existent. yield 'matplotlibrc' try: matplotlibrc = os.environ['MATPLOTLIBRC'] except KeyError: pass else: yield matplotlibrc yield os.path.join(matplotlibrc, 'matplotlibrc') yield os.path.join(get_configdir(), 'matplotlibrc') yield os.path.join(get_data_path(), 'matplotlibrc') for fname in gen_candidates(): if os.path.exists(fname) and not os.path.isdir(fname): return fname raise RuntimeError("Could not find matplotlibrc file; your Matplotlib " "install is broken") # rcParams deprecated and automatically mapped to another key. # Values are tuples of (version, new_name, f_old2new, f_new2old). _deprecated_map = {} # rcParams deprecated; some can manually be mapped to another key. # Values are tuples of (version, new_name_or_None). _deprecated_ignore_map = { 'mpl_toolkits.legacy_colorbar': ('3.4', None), } # rcParams deprecated; can use None to suppress warnings; remain actually # listed in the rcParams (not included in _all_deprecated). # Values are tuples of (version,) _deprecated_remain_as_none = { 'animation.avconv_path': ('3.3',), 'animation.avconv_args': ('3.3',), 'animation.html_args': ('3.3',), } _all_deprecated = {*_deprecated_map, *_deprecated_ignore_map} @docstring.Substitution( "\n".join(map("- {}".format, sorted(rcsetup._validators, key=str.lower))) ) class RcParams(MutableMapping, dict): """ A dictionary object including validation. Validating functions are defined and associated with rc parameters in :mod:`matplotlib.rcsetup`. The list of rcParams is: %s See Also -------- :ref:`customizing-with-matplotlibrc-files` """ validate = rcsetup._validators # validate values on the way in def __init__(self, *args, **kwargs): self.update(*args, **kwargs) def __setitem__(self, key, val): try: if key in _deprecated_map: version, alt_key, alt_val, inverse_alt = _deprecated_map[key] _api.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) key = alt_key val = alt_val(val) elif key in _deprecated_remain_as_none and val is not None: version, = _deprecated_remain_as_none[key] _api.warn_deprecated(version, name=key, obj_type="rcparam") elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] _api.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return elif key == 'backend': if val is rcsetup._auto_backend_sentinel: if 'backend' in self: return try: cval = self.validate[key](val) except ValueError as ve: raise ValueError(f"Key {key}: {ve}") from None dict.__setitem__(self, key, cval) except KeyError as err: raise KeyError( f"{key} is not a valid rc parameter (see rcParams.keys() for " f"a list of valid parameters)") from err def __getitem__(self, key): if key in _deprecated_map: version, alt_key, alt_val, inverse_alt = _deprecated_map[key] _api.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return inverse_alt(dict.__getitem__(self, alt_key)) elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] _api.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return dict.__getitem__(self, alt_key) if alt_key else None # In theory, this should only ever be used after the global rcParams # has been set up, but better be safe e.g. in presence of breakpoints. elif key == "backend" and self is globals().get("rcParams"): val = dict.__getitem__(self, key) if val is rcsetup._auto_backend_sentinel: from matplotlib import pyplot as plt plt.switch_backend(rcsetup._auto_backend_sentinel) return dict.__getitem__(self, key) def __repr__(self): class_name = self.__class__.__name__ indent = len(class_name) + 1 with _api.suppress_matplotlib_deprecation_warning(): repr_split = pprint.pformat(dict(self), indent=1, width=80 - indent).split('\n') repr_indented = ('\n' + ' ' * indent).join(repr_split) return '{}({})'.format(class_name, repr_indented) def __str__(self): return '\n'.join(map('{0[0]}: {0[1]}'.format, sorted(self.items()))) def __iter__(self): """Yield sorted list of keys.""" with _api.suppress_matplotlib_deprecation_warning(): yield from sorted(dict.__iter__(self)) def __len__(self): return dict.__len__(self) def find_all(self, pattern): """ Return the subset of this RcParams dictionary whose keys match, using :func:`re.search`, the given ``pattern``. .. note:: Changes to the returned dictionary are *not* propagated to the parent RcParams dictionary. """ pattern_re = re.compile(pattern) return RcParams((key, value) for key, value in self.items() if pattern_re.search(key)) def copy(self): return {k: dict.__getitem__(self, k) for k in self} def rc_params(fail_on_error=False): """Construct a `RcParams` instance from the default Matplotlib rc file.""" return rc_params_from_file(matplotlib_fname(), fail_on_error) @_api.deprecated("3.5") def is_url(filename): """Return whether *filename* is an http, https, ftp, or file URL path.""" return __getattr__("URL_REGEX").match(filename) is not None @functools.lru_cache() def _get_ssl_context(): try: import certifi except ImportError: _log.debug("Could not import certifi.") return None import ssl return ssl.create_default_context(cafile=certifi.where()) @contextlib.contextmanager def _open_file_or_url(fname): if (isinstance(fname, str) and fname.startswith(('http://', 'https://', 'ftp://', 'file:'))): import urllib.request ssl_ctx = _get_ssl_context() if ssl_ctx is None: _log.debug( "Could not get certifi ssl context, https may not work." ) with urllib.request.urlopen(fname, context=ssl_ctx) as f: yield (line.decode('utf-8') for line in f) else: fname = os.path.expanduser(fname) encoding = locale.getpreferredencoding(do_setlocale=False) if encoding is None: encoding = "utf-8" with open(fname, encoding=encoding) as f: yield f def _rc_params_in_file(fname, transform=lambda x: x, fail_on_error=False): """ Construct a `RcParams` instance from file *fname*. Unlike `rc_params_from_file`, the configuration class only contains the parameters specified in the file (i.e. default values are not filled in). Parameters ---------- fname : path-like The loaded file. transform : callable, default: the identity function A function called on each individual line of the file to transform it, before further parsing. fail_on_error : bool, default: False Whether invalid entries should result in an exception or a warning. """ import matplotlib as mpl rc_temp = {} with _open_file_or_url(fname) as fd: try: for line_no, line in enumerate(fd, 1): line = transform(line) strippedline = line.split('#', 1)[0].strip() if not strippedline: continue tup = strippedline.split(':', 1) if len(tup) != 2: _log.warning('Missing colon in file %r, line %d (%r)', fname, line_no, line.rstrip('\n')) continue key, val = tup key = key.strip() val = val.strip() if key in rc_temp: _log.warning('Duplicate key in file %r, line %d (%r)', fname, line_no, line.rstrip('\n')) rc_temp[key] = (val, line, line_no) except UnicodeDecodeError: _log.warning('Cannot decode configuration file %s with encoding ' '%s, check LANG and LC_* variables.', fname, locale.getpreferredencoding(do_setlocale=False) or 'utf-8 (default)') raise config = RcParams() for key, (val, line, line_no) in rc_temp.items(): if key in rcsetup._validators: if fail_on_error: config[key] = val # try to convert to proper type or raise else: try: config[key] = val # try to convert to proper type or skip except Exception as msg: _log.warning('Bad value in file %r, line %d (%r): %s', fname, line_no, line.rstrip('\n'), msg) elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] _api.warn_deprecated( version, name=key, alternative=alt_key, obj_type='rcparam', addendum="Please update your matplotlibrc.") else: # __version__ must be looked up as an attribute to trigger the # module-level __getattr__. version = ('master' if '.post' in mpl.__version__ else f'v{mpl.__version__}') _log.warning(""" Bad key %(key)s in file %(fname)s, line %(line_no)s (%(line)r) You probably need to get an updated matplotlibrc file from https://github.com/matplotlib/matplotlib/blob/%(version)s/matplotlibrc.template or from the matplotlib source distribution""", dict(key=key, fname=fname, line_no=line_no, line=line.rstrip('\n'), version=version)) return config def rc_params_from_file(fname, fail_on_error=False, use_default_template=True): """ Construct a `RcParams` from file *fname*. Parameters ---------- fname : str or path-like A file with Matplotlib rc settings. fail_on_error : bool If True, raise an error when the parser fails to convert a parameter. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the configuration class only contains the parameters specified in the file. (Useful for updating dicts.) """ config_from_file = _rc_params_in_file(fname, fail_on_error=fail_on_error) if not use_default_template: return config_from_file with _api.suppress_matplotlib_deprecation_warning(): config = RcParams({**rcParamsDefault, **config_from_file}) if "".join(config['text.latex.preamble']): _log.info(""" ***************************************************************** You have the following UNSUPPORTED LaTeX preamble customizations: %s Please do not ask for support with these customizations active. ***************************************************************** """, '\n'.join(config['text.latex.preamble'])) _log.debug('loaded rc file %s', fname) return config # When constructing the global instances, we need to perform certain updates # by explicitly calling the superclass (dict.update, dict.items) to avoid # triggering resolution of _auto_backend_sentinel. rcParamsDefault = _rc_params_in_file( cbook._get_data_path("matplotlibrc"), # Strip leading comment. transform=lambda line: line[1:] if line.startswith("#") else line, fail_on_error=True) dict.update(rcParamsDefault, rcsetup._hardcoded_defaults) # Normally, the default matplotlibrc file contains *no* entry for backend (the # corresponding line starts with ##, not #; we fill on _auto_backend_sentinel # in that case. However, packagers can set a different default backend # (resulting in a normal `#backend: foo` line) in which case we should *not* # fill in _auto_backend_sentinel. dict.setdefault(rcParamsDefault, "backend", rcsetup._auto_backend_sentinel) rcParams = RcParams() # The global instance. dict.update(rcParams, dict.items(rcParamsDefault)) dict.update(rcParams, _rc_params_in_file(matplotlib_fname())) with _api.suppress_matplotlib_deprecation_warning(): rcParamsOrig = RcParams(rcParams.copy()) # This also checks that all rcParams are indeed listed in the template. # Assigning to rcsetup.defaultParams is left only for backcompat. defaultParams = rcsetup.defaultParams = { # We want to resolve deprecated rcParams, but not backend... key: [(rcsetup._auto_backend_sentinel if key == "backend" else rcParamsDefault[key]), validator] for key, validator in rcsetup._validators.items()} if rcParams['axes.formatter.use_locale']: locale.setlocale(locale.LC_ALL, '') def rc(group, **kwargs): """ Set the current `.rcParams`. *group* is the grouping for the rc, e.g., for ``lines.linewidth`` the group is ``lines``, for ``axes.facecolor``, the group is ``axes``, and so on. Group may also be a list or tuple of group names, e.g., (*xtick*, *ytick*). *kwargs* is a dictionary attribute name/value pairs, e.g.,:: rc('lines', linewidth=2, color='r') sets the current `.rcParams` and is equivalent to:: rcParams['lines.linewidth'] = 2 rcParams['lines.color'] = 'r' The following aliases are available to save typing for interactive users: ===== ================= Alias Property ===== ================= 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' ===== ================= Thus you could abbreviate the above call as:: rc('lines', lw=2, c='r') Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g., you can customize the font rc as follows:: font = {'family' : 'monospace', 'weight' : 'bold', 'size' : 'larger'} rc('font', **font) # pass in the font dict as kwargs This enables you to easily switch between several configurations. Use ``matplotlib.style.use('default')`` or :func:`~matplotlib.rcdefaults` to restore the default `.rcParams` after changes. Notes ----- Similar functionality is available by using the normal dict interface, i.e. ``rcParams.update({"lines.linewidth": 2, ...})`` (but ``rcParams.update`` does not support abbreviations or grouping). """ aliases = { 'lw': 'linewidth', 'ls': 'linestyle', 'c': 'color', 'fc': 'facecolor', 'ec': 'edgecolor', 'mew': 'markeredgewidth', 'aa': 'antialiased', } if isinstance(group, str): group = (group,) for g in group: for k, v in kwargs.items(): name = aliases.get(k) or k key = '%s.%s' % (g, name) try: rcParams[key] = v except KeyError as err: raise KeyError(('Unrecognized key "%s" for group "%s" and ' 'name "%s"') % (key, g, name)) from err def rcdefaults(): """ Restore the `.rcParams` from Matplotlib's internal default style. Style-blacklisted `.rcParams` (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. See Also -------- matplotlib.rc_file_defaults Restore the `.rcParams` from the rc file originally loaded by Matplotlib. matplotlib.style.use Use a specific style file. Call ``style.use('default')`` to restore the default style. """ # Deprecation warnings were already handled when creating rcParamsDefault, # no need to reemit them here. with _api.suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rcParams.clear() rcParams.update({k: v for k, v in rcParamsDefault.items() if k not in STYLE_BLACKLIST}) def rc_file_defaults(): """ Restore the `.rcParams` from the original rc file loaded by Matplotlib. Style-blacklisted `.rcParams` (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. """ # Deprecation warnings were already handled when creating rcParamsOrig, no # need to reemit them here. with _api.suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rcParams.update({k: rcParamsOrig[k] for k in rcParamsOrig if k not in STYLE_BLACKLIST}) def rc_file(fname, *, use_default_template=True): """ Update `.rcParams` from file. Style-blacklisted `.rcParams` (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. Parameters ---------- fname : str or path-like A file with Matplotlib rc settings. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the current configuration persists and only the parameters specified in the file are updated. """ # Deprecation warnings were already handled in rc_params_from_file, no need # to reemit them here. with _api.suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rc_from_file = rc_params_from_file( fname, use_default_template=use_default_template) rcParams.update({k: rc_from_file[k] for k in rc_from_file if k not in STYLE_BLACKLIST}) @contextlib.contextmanager def rc_context(rc=None, fname=None): """ Return a context manager for temporarily changing rcParams. Parameters ---------- rc : dict The rcParams to temporarily set. fname : str or path-like A file with Matplotlib rc settings. If both *fname* and *rc* are given, settings from *rc* take precedence. See Also -------- :ref:`customizing-with-matplotlibrc-files` Examples -------- Passing explicit values via a dict:: with mpl.rc_context({'interactive': False}): fig, ax = plt.subplots() ax.plot(range(3), range(3)) fig.savefig('example.png') plt.close(fig) Loading settings from a file:: with mpl.rc_context(fname='print.rc'): plt.plot(x, y) # uses 'print.rc' """ orig = rcParams.copy() try: if fname: rc_file(fname) if rc: rcParams.update(rc) yield finally: dict.update(rcParams, orig) # Revert to the original rcs. def use(backend, *, force=True): """ Select the backend used for rendering and GUI integration. Parameters ---------- backend : str The backend to switch to. This can either be one of the standard backend names, which are case-insensitive: - interactive backends: GTK3Agg, GTK3Cairo, GTK4Agg, GTK4Cairo, MacOSX, nbAgg, QtAgg, QtCairo, TkAgg, TkCairo, WebAgg, WX, WXAgg, WXCairo, Qt5Agg, Qt5Cairo - non-interactive backends: agg, cairo, pdf, pgf, ps, svg, template or a string of the form: ``module://my.module.name``. Switching to an interactive backend is not possible if an unrelated event loop has already been started (e.g., switching to GTK3Agg if a TkAgg window has already been opened). Switching to a non-interactive backend is always possible. force : bool, default: True If True (the default), raise an `ImportError` if the backend cannot be set up (either because it fails to import, or because an incompatible GUI interactive framework is already running); if False, silently ignore the failure. See Also -------- :ref:`backends` matplotlib.get_backend """ name = validate_backend(backend) # we need to use the base-class method here to avoid (prematurely) # resolving the "auto" backend setting if dict.__getitem__(rcParams, 'backend') == name: # Nothing to do if the requested backend is already set pass else: # if pyplot is not already imported, do not import it. Doing # so may trigger a `plt.switch_backend` to the _default_ backend # before we get a chance to change to the one the user just requested plt = sys.modules.get('matplotlib.pyplot') # if pyplot is imported, then try to change backends if plt is not None: try: # we need this import check here to re-raise if the # user does not have the libraries to support their # chosen backend installed. plt.switch_backend(name) except ImportError: if force: raise # if we have not imported pyplot, then we can set the rcParam # value which will be respected when the user finally imports # pyplot else: rcParams['backend'] = backend # if the user has asked for a given backend, do not helpfully # fallback rcParams['backend_fallback'] = False if os.environ.get('MPLBACKEND'): rcParams['backend'] = os.environ.get('MPLBACKEND') def get_backend(): """ Return the name of the current backend. See Also -------- matplotlib.use """ return rcParams['backend'] def interactive(b): """ Set whether to redraw after every plotting command (e.g. `.pyplot.xlabel`). """ rcParams['interactive'] = b def is_interactive(): """ Return whether to redraw after every plotting command. .. note:: This function is only intended for use in backends. End users should use `.pyplot.isinteractive` instead. """ return rcParams['interactive'] default_test_modules = [ 'matplotlib.tests', 'mpl_toolkits.tests', ] def _init_tests(): # The version of FreeType to install locally for running the # tests. This must match the value in `setupext.py` LOCAL_FREETYPE_VERSION = '2.6.1' from matplotlib import ft2font if (ft2font.__freetype_version__ != LOCAL_FREETYPE_VERSION or ft2font.__freetype_build_type__ != 'local'): _log.warning( f"Matplotlib is not built with the correct FreeType version to " f"run tests. Rebuild without setting system_freetype=1 in " f"mplsetup.cfg. Expect many image comparison failures below. " f"Expected freetype version {LOCAL_FREETYPE_VERSION}. " f"Found freetype version {ft2font.__freetype_version__}. " "Freetype build type is {}local".format( "" if ft2font.__freetype_build_type__ == 'local' else "not ")) @_api.deprecated("3.5", alternative='pytest') def test(verbosity=None, coverage=False, **kwargs): """Run the matplotlib test suite.""" try: import pytest except ImportError: print("matplotlib.test requires pytest to run.") return -1 if not os.path.isdir(os.path.join(os.path.dirname(__file__), 'tests')): print("Matplotlib test data is not installed") return -1 old_backend = get_backend() old_recursionlimit = sys.getrecursionlimit() try: use('agg') args = kwargs.pop('argv', []) provide_default_modules = True use_pyargs = True for arg in args: if any(arg.startswith(module_path) for module_path in default_test_modules): provide_default_modules = False break if os.path.exists(arg): provide_default_modules = False use_pyargs = False break if use_pyargs: args += ['--pyargs'] if provide_default_modules: args += default_test_modules if coverage: args += ['--cov'] if verbosity: args += ['-' + 'v' * verbosity] retcode = pytest.main(args, **kwargs) finally: if old_backend.lower() != 'agg': use(old_backend) return retcode test.__test__ = False # pytest: this function is not a test def _replacer(data, value): """ Either returns ``data[value]`` or passes ``data`` back, converts either to a sequence. """ try: # if key isn't a string don't bother if isinstance(value, str): # try to use __getitem__ value = data[value] except Exception: # key does not exist, silently fall back to key pass return sanitize_sequence(value) def _label_from_arg(y, default_name): try: return y.name except AttributeError: if isinstance(default_name, str): return default_name return None def _add_data_doc(docstring, replace_names): """ Add documentation for a *data* field to the given docstring. Parameters ---------- docstring : str The input docstring. replace_names : list of str or None The list of parameter names which arguments should be replaced by ``data[name]`` (if ``data[name]`` does not throw an exception). If None, replacement is attempted for all arguments. Returns ------- str The augmented docstring. """ if (docstring is None or replace_names is not None and len(replace_names) == 0): return docstring docstring = inspect.cleandoc(docstring) data_doc = ("""\ If given, all parameters also accept a string ``s``, which is interpreted as ``data[s]`` (unless this raises an exception).""" if replace_names is None else f"""\ If given, the following parameters also accept a string ``s``, which is interpreted as ``data[s]`` (unless this raises an exception): {', '.join(map('*{}*'.format, replace_names))}""") # using string replacement instead of formatting has the advantages # 1) simpler indent handling # 2) prevent problems with formatting characters '{', '%' in the docstring if _log.level <= logging.DEBUG: # test_data_parameter_replacement() tests against these log messages # make sure to keep message and test in sync if "data : indexable object, optional" not in docstring: _log.debug("data parameter docstring error: no data parameter") if 'DATA_PARAMETER_PLACEHOLDER' not in docstring: _log.debug("data parameter docstring error: missing placeholder") return docstring.replace(' DATA_PARAMETER_PLACEHOLDER', data_doc) def _preprocess_data(func=None, *, replace_names=None, label_namer=None): """ A decorator to add a 'data' kwarg to a function. When applied:: @_preprocess_data() def func(ax, *args, **kwargs): ... the signature is modified to ``decorated(ax, *args, data=None, **kwargs)`` with the following behavior: - if called with ``data=None``, forward the other arguments to ``func``; - otherwise, *data* must be a mapping; for any argument passed in as a string ``name``, replace the argument by ``data[name]`` (if this does not throw an exception), then forward the arguments to ``func``. In either case, any argument that is a `MappingView` is also converted to a list. Parameters ---------- replace_names : list of str or None, default: None The list of parameter names for which lookup into *data* should be attempted. If None, replacement is attempted for all arguments. label_namer : str, default: None If set e.g. to "namer" (which must be a kwarg in the function's signature -- not as ``**kwargs``), if the *namer* argument passed in is a (string) key of *data* and no *label* kwarg is passed, then use the (string) value of the *namer* as *label*. :: @_preprocess_data(label_namer="foo") def func(foo, label=None): ... func("key", data={"key": value}) # is equivalent to func.__wrapped__(value, label="key") """ if func is None: # Return the actual decorator. return functools.partial( _preprocess_data, replace_names=replace_names, label_namer=label_namer) sig = inspect.signature(func) varargs_name = None varkwargs_name = None arg_names = [] params = list(sig.parameters.values()) for p in params: if p.kind is Parameter.VAR_POSITIONAL: varargs_name = p.name elif p.kind is Parameter.VAR_KEYWORD: varkwargs_name = p.name else: arg_names.append(p.name) data_param = Parameter("data", Parameter.KEYWORD_ONLY, default=None) if varkwargs_name: params.insert(-1, data_param) else: params.append(data_param) new_sig = sig.replace(parameters=params) arg_names = arg_names[1:] # remove the first "ax" / self arg assert {*arg_names}.issuperset(replace_names or []) or varkwargs_name, ( "Matplotlib internal error: invalid replace_names ({!r}) for {!r}" .format(replace_names, func.__name__)) assert label_namer is None or label_namer in arg_names, ( "Matplotlib internal error: invalid label_namer ({!r}) for {!r}" .format(label_namer, func.__name__)) @functools.wraps(func) def inner(ax, *args, data=None, **kwargs): if data is None: return func(ax, *map(sanitize_sequence, args), **kwargs) bound = new_sig.bind(ax, *args, **kwargs) auto_label = (bound.arguments.get(label_namer) or bound.kwargs.get(label_namer)) for k, v in bound.arguments.items(): if k == varkwargs_name: for k1, v1 in v.items(): if replace_names is None or k1 in replace_names: v[k1] = _replacer(data, v1) elif k == varargs_name: if replace_names is None: bound.arguments[k] = tuple(_replacer(data, v1) for v1 in v) else: if replace_names is None or k in replace_names: bound.arguments[k] = _replacer(data, v) new_args = bound.args new_kwargs = bound.kwargs args_and_kwargs = {**bound.arguments, **bound.kwargs} if label_namer and "label" not in args_and_kwargs: new_kwargs["label"] = _label_from_arg( args_and_kwargs.get(label_namer), auto_label) return func(*new_args, **new_kwargs) inner.__doc__ = _add_data_doc(inner.__doc__, replace_names) inner.__signature__ = new_sig return inner _log.debug('interactive is %s', is_interactive()) _log.debug('platform is %s', sys.platform) _log.debug('loaded modules: %s', list(sys.modules)) # workaround: we must defer colormaps import to after loading rcParams, because # colormap creation depends on rcParams from matplotlib.cm import _colormaps as colormaps
36.094288
81
0.608256
f52aaf184804047ec2df5b7e73354adcabe7f807
44,921
py
Python
crossenv/__init__.py
xhochy/crossenv
56ddd69bf0c81d0c494bc1ecc502eec784e0e50f
[ "MIT" ]
null
null
null
crossenv/__init__.py
xhochy/crossenv
56ddd69bf0c81d0c494bc1ecc502eec784e0e50f
[ "MIT" ]
null
null
null
crossenv/__init__.py
xhochy/crossenv
56ddd69bf0c81d0c494bc1ecc502eec784e0e50f
[ "MIT" ]
null
null
null
import venv import os import sysconfig import glob import sys import shutil from textwrap import dedent import subprocess import logging import importlib import types from configparser import ConfigParser import random import shlex import platform import pprint import re from .utils import F from . import utils __version__ = '1.1.4' logger = logging.getLogger(__name__) class CrossEnvBuilder(venv.EnvBuilder): """ A class to build a cross-compiling virtual environment useful for cross compiling wheels or developing firmware images. Here the `host` is the device on which the final code will run, such as an embedded system of some sort. `build` is the machine doing the compiling, usually a desktop or server. Usually the `host` Python executables won't run on the `build` machine. When we refer to `build-python`, we mean the current interpreter. (It is *always* the current interpreter.) When we refer to `host-pytohn`, we mean the interpreter that will run on the host. When we refer to `cross-python`, we mean an interpreter that runs on `build` but reports system information as if it were running on `host`. In other words, `cross-python` does the cross compiling, and is what this class will create for us. You must have the toolchain used to compile the host Python binary available when using this virtual environment. The virtual environment will pick the correct compiler based on info recorded when the host Python binary was compiled. :param host_python: The path to the host Python binary. This may be in a build directory (i.e., after `make`), or in an install directory (after `make install`). It *must* be the exact same version as build-python. :param extra_env_vars: When cross-python starts, this is an iterable of (name, op, value) tuples. op may be one of '=' to indicate that the variable will be set unconditionally, or '?=' to indicate that the variable will be set only if not already set by the environment. :param build_system_site_packages: Whether or not build-python's virtual environment will have access to the system site packages. cross-python never has access, for obvious reasons. :param clear: Whether to delete the contents of the environment directories if they already exist, before environment creation. May be a false value, or one of 'default', 'cross', 'build', or 'both'. 'default' means to clear cross only when cross_prefix is None. :param cross_prefix: Explicitly set the location of the cross-python virtual environment. :param with_cross_pip: If True, ensure pip is installed in the cross-python virtual environment. :param with_build_pip: If True, ensure pip is installed in the build-python virtual environment. :param host_sysroot: If given, the cross-compiler toolchain's sysroot. If not given, an attempt will be made to guess. These will be added (redundantly) to the default search paths to help trick some packages. :param host_cc: If given, override CC and related variables with this value. :param host_cxx: If given, override CXX and related variables with this value. :param host_ar: If given, override AR and related variables with this value. :param host_relativize: If True, convert absolute paths in CC, CXX, and related variables to use the base name. Tools must be in $PATH for this to work. :param host_config_vars: Extra config_vars (build_time_vars) to override, such as CC, CCSHARED, etc. :param host_sysconfigdata_file: Explicitly set the sysconfigdata file path. If not given, all sysconfigdata files will be searched and will error if there are multiple files that have different values. :param manylinux_tags: Manylinux tags that are acceptable when downloading from PyPI. :param host_machine: Host machine override seen by cross-python at runtime. Default is guessed from host-python. """ def __init__(self, *, host_python, extra_env_vars=(), build_system_site_packages=False, clear=False, cross_prefix=None, with_cross_pip=False, with_build_pip=False, host_sysroot=None, host_cc=None, host_cxx=None, host_ar=None, host_relativize=False, host_config_vars=(), host_sysconfigdata_file=None, manylinux_tags=(), host_machine=None): self.host_sysroot = host_sysroot self.host_cc = None self.host_cxx = None self.host_ar = None if host_cc: self.host_cc = shlex.split(host_cc) if host_cxx: self.host_cxx = shlex.split(host_cxx) if host_ar: self.host_ar = shlex.split(host_ar) self.host_relativize = host_relativize self.host_config_vars = host_config_vars self.host_sysconfigdata_file = host_sysconfigdata_file self.build_system_site_packages = build_system_site_packages self.extra_env_vars = extra_env_vars self.clear_build = clear in ('default', 'build', 'both') if with_cross_pip and not with_build_pip: raise ValueError("Cannot have cross-pip without build-pip") self.with_cross_pip = with_cross_pip self.with_build_pip = with_build_pip if cross_prefix: self.cross_prefix = os.path.abspath(cross_prefix) self.clear_cross = clear in ('cross', 'both') else: self.cross_prefix = None self.clear_cross = clear in ('default', 'cross', 'both') self.manylinux_tags = manylinux_tags self.host_machine = host_machine self.find_host_python(host_python) self.find_compiler_info() self.get_uname_info() self.expand_manylinux_tags() super().__init__( system_site_packages=False, clear=False, symlinks=True, upgrade=False, with_pip=False) def find_installed_host_home(self): # Assume host_project_base == {prefix}/bin and that this Python # mirrors the host Python's install paths. # On caveat: on native host Python (for testing) this might be a # virtualenv. home = os.path.dirname(self.host_project_base) pyvenv = os.path.join(home, 'pyvenv.cfg') if os.path.exists(pyvenv): with open(pyvenv) as fp: for line in fp: key, _, val = line.partition('=') key = key.strip() val = val.strip() if key == 'home': return os.path.dirname(val) return home def find_sysconfig_data(self, paths): maybe = [] for path in paths: pattern = os.path.join(path, '_sysconfigdata*.py*') maybe.extend(glob.glob(pattern)) sysconfig_paths = set() for filename in maybe: if (os.path.isfile(filename) and os.path.splitext(filename)[1] in ('.py', '.pyc')): sysconfig_paths.add(filename) # Multiples can happen, but so long as they all have the same # info we should be okay. Seen in buildroot # When choosing the correct one, prefer, in order: # 1) The .py file # 2) The .pyc file # 3) Any .opt-*.pyc files # so sort by the length of the longest extension sysconfig_paths = sorted(sysconfig_paths, key=lambda x: len(x.split('.',1)[1])) if self.host_sysconfigdata_file is not None: sysconfig_paths = [self.host_sysconfigdata_file] self.host_sysconfigdata = None for path in sysconfig_paths: basename = os.path.basename(path) name, _ = os.path.splitext(basename) spec = importlib.util.spec_from_file_location(name, path) syscfg = importlib.util.module_from_spec(spec) spec.loader.exec_module(syscfg) if self.host_sysconfigdata is None: self.host_sysconfigdata = syscfg self.host_sysconfigdata_file = path self.host_sysconfigdata_name = name elif (self.host_sysconfigdata.build_time_vars != syscfg.build_time_vars): logger.error("Conflicting build info in %s and %s", self.host_sysconfigdata_file, path) raise ValueError("Malformed Python installation!") if not self.host_sysconfigdata: logger.error("Cannot find _sysconfigdata*.py. Looked in %s", ', '.join(paths)) raise FileNotFoundError("No _sysconfigdata*.py found in host lib") def find_host_python(self, host): """ Find Python paths and other info based on a path. :param host: Path to the host Python executable. """ build_version = sysconfig.get_config_var('VERSION') host = os.path.abspath(host) if not os.path.exists(host): raise FileNotFoundError("%s does not exist" % host) elif not os.path.isfile(host): raise ValueError("Expected a path to a Python executable. " "Got %s" % host) else: self.host_project_base = os.path.dirname(host) if sysconfig._is_python_source_dir(self.host_project_base): self.host_makefile = os.path.join(self.host_project_base, 'Makefile') pybuilddir = os.path.join(self.host_project_base, 'pybuilddir.txt') try: with open(pybuilddir, 'r') as fp: build_dir = fp.read().strip() except IOError: raise IOError( "Cannot read %s: Build the host Python first " % s) from None self.host_home = self.host_project_base sysconfig_paths = [os.path.join(self.host_project_base, build_dir)] else: self.host_home = self.find_installed_host_home() python_ver = 'python' + sysconfig.get_config_var('py_version_short') libdir = os.path.join(self.host_home, 'lib', python_ver) sysconfig_paths = [ libdir, # Ubuntu puts it in libdir/plat-<arch> os.path.join(libdir, '*'), # Below might be a version mismatch, but try to use it #os.path.join(self.host_home, 'lib', 'python*'), #os.path.join(self.host_home, 'lib', 'python*', '*'), ] makefile = glob.glob(os.path.join(libdir, '*', 'Makefile')) if not makefile: self.host_makefile = '' # fail later else: self.host_makefile = makefile[0] # We need paths to sysconfig data, and we need to import it to ask # a few questions. self.find_sysconfig_data(sysconfig_paths) # If the user wants to override host_cc, that takes precedence. host_cc = self.host_sysconfigdata.build_time_vars['CC'] self.real_host_cc = shlex.split(host_cc) if not self.host_cc: self.host_cc = self.real_host_cc if self.host_relativize: self.host_cc[0] = os.path.basename(self.host_cc[0]) # CC could be compound command, like 'gcc --sysroot=...' (Issue #5) # but that can cause issues (#7) so let the user know. if len(self.host_cc) > 1: logger.warning("CC is a compound command (%s)", self.host_cc) logger.warning("This can cause issues for modules that don't " "expect it.") logger.warning("Consider setting CC='%s' and CFLAGS='%s'", self.host_cc[0], ' '.join(self.host_cc[1:])) host_cxx = self.host_sysconfigdata.build_time_vars['CXX'] self.real_host_cxx = shlex.split(host_cxx) if not self.host_cxx: self.host_cxx = self.real_host_cxx if self.host_relativize: self.host_cxx[0] = os.path.basename(self.host_cxx[0]) if len(self.host_cxx) > 1: logger.warning("CXX is a compound command (%s)", self.host_cxx) logger.warning("This can cause issues for modules that don't " "expect it.") logger.warning("Consider setting CXX='%s' and CXXFLAGS='%s'", self.host_cxx[0], ' '.join(self.host_cxx[1:])) host_ar = self.host_sysconfigdata.build_time_vars['AR'] self.real_host_ar = shlex.split(host_ar) if not self.host_ar: self.host_ar = self.real_host_ar if self.host_relativize: self.host_ar[0] = os.path.basename(self.host_ar[0]) self.host_version = self.host_sysconfigdata.build_time_vars['VERSION'] self.host_gnu_type = self.host_sysconfigdata.build_time_vars['HOST_GNU_TYPE'] self.host_platform = None # Ask the makefile a few questions too if os.path.exists(self.host_makefile): with open(self.host_makefile, 'r') as fp: lines = list(fp.readlines()) for line in lines: line = line.strip() if line.startswith('_PYTHON_HOST_PLATFORM='): host_platform = line.split('=',1)[-1].strip() if host_platform: self.host_platform = host_platform break if self.host_platform is None: # It was probably natively compiled, but not necessarily for this # architecture. Guess from HOST_GNU_TYPE. host = self.host_gnu_type.split('-') if len(host) == 4: # i.e., aarch64-unknown-linux-gnu self.host_platform = '-'.join([host[2], host[0]]) elif len(host) == 3: # i.e., aarch64-linux-gnu, unlikely. self.host_platform = '-'.join([host[1], host[0]]) else: logger.warning("Cannot determine platform. Using build.") self.host_platform = sysconfig.get_platform() self.macosx_deployment_target = '' for line in lines: line = line.strip() if line.startswith('MACOSX_DEPLOYMENT_TARGET='): self.macosx_deployment_target = line.split('=',1)[-1] break # Sanity checks if self.host_version != build_version: raise ValueError("Version mismatch: host=%s, build=%s" % ( self.host_version, build_version)) def find_compiler_info(self): """ Query the compiler for extra info useful for cross-compiling, and also check that it exists. """ def run_compiler(arg): cmdline = self.host_cc + [arg] return subprocess.run(cmdline, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if not shutil.which(self.host_cc[0]): raise RuntimeError( "Cannot find cross-compiler (%r)! Extension modules won't " "build! Use --cc to correct." % ' '.join(self.host_cc)) # Check that it runs, but failing this is a warning. Some compilers, # like QNX's qcc, do not have useful arguments we can pass to get a # successful return value. res = run_compiler('--version') if res.returncode != 0: logger.warning( "Test run of %r exited with code %d: %s" % ( self.host_cc, res.returncode, res.stderr)) # If it doesn't have --version, it certainly won't have # -print-sysroot or -dumpmachine return # TODO: Clang doesn't have this option if self.host_sysroot is None: res = run_compiler('-print-sysroot') if res.returncode == 0: self.host_sysroot = res.stdout.strip() # Sanity check that this is the right compiler. (See #24, #27.) res = run_compiler('-dumpmachine') found_triple = res.stdout.strip() if res.returncode == 0 and found_triple: expected = self.host_sysconfigdata.build_time_vars['HOST_GNU_TYPE'] if not self._compare_triples(found_triple, expected): logger.warning("The cross-compiler (%r) does not appear to be " "for the correct architecture (got %s, expected " "%s). Use --cc to correct, if necessary.", ' '.join(self.host_cc), found_triple, expected) def _compare_triples(self, x, y): # They are in the form cpu-vendor-kernel-system or cpu-kernel-system. # So we'll get something like: x86_64-linux-gnu or x86_64-pc-linux-gnu. # We won't overcomplicate this, since it's just to generate a warning. # # We return True if we can't make sense of anything and wish to skip # the warning. parts_x = x.split('-') if len(parts_x) == 4: del parts_x[1] elif len(parts_x) != 3: return True # Some other form? Bail out. parts_y = y.split('-') if len(parts_y) == 4: del parts_y[1] elif len(parts_y) != 3: return True # Some other form? Bail out. return parts_x == parts_y def create(self, env_dir): """ Create a cross virtual environment in a directory :param env_dir: The target directory to create an environment in. """ env_dir = os.path.abspath(env_dir) context = self.ensure_directories(env_dir) self.make_build_python(context) self.make_cross_python(context) self.post_setup(context) def ensure_directories(self, env_dir): """ Create the directories for the environment. Returns a context object which holds paths in the environment, for use by subsequent logic. """ # Directory structure: # # ENV_DIR/ # cross/ cross-python venv # build/ build-python venv # lib/ libs for setting up cross-python # bin/ holds activate scripts. if os.path.exists(env_dir) and (self.clear_cross or self.clear_build): subdirs = os.listdir(env_dir) for sub in subdirs: if sub in ('cross', 'build'): continue utils.remove_path(os.path.join(env_dir, sub)) context = super().ensure_directories(env_dir) context.lib_path = os.path.join(env_dir, 'lib') context.exposed_libs = os.path.join(context.lib_path, 'exposed.txt') utils.mkdir_if_needed(context.lib_path) return context def get_uname_info(self): """ What should uname() return? """ # host_platform is _probably_ something like linux-x86_64, but it can # vary. host_info = self.host_platform.split('-') if not host_info: self.host_sysname = sys.platform elif len(host_info) >= 1: self.host_sysname = host_info[0] if self.host_machine is None: if len(host_info) > 1 and host_info[-1] == "powerpc64le": # Test that this is still a special case when we can. # On uname.machine=ppc64le, _PYTHON_HOST_PLATFORM is linux-powerpc64le self.host_machine = "ppc64le" else: self.host_machine = self.host_gnu_type.split('-')[0] self.host_release = '' if self.macosx_deployment_target: try: major, minor = self.macosx_deployment_target.split(".") major, minor = int(major), int(minor) except ValueError: raise ValueError("Unexpected value %s for MACOSX_DEPLOYMENT_TARGET" % self.macosx_deployment_target) if major == 10: self.host_release = "%s.0.0" % (minor + 4) elif major == 11: self.host_release = "%s.0.0" % (minor + 20) else: raise ValueError("Unexpected major version %s for MACOSX_DEPLOYMENT_TARGET" % major) def expand_manylinux_tags(self): """ Convert legacy manylinux tags to PEP600, because pip only looks for one or the other """ manylinux_tags = set(self.manylinux_tags) extra_tags = set() effective_glibc = None # we'll be very strict here: don't assume that manylinux2014 implies # manylinux1 and so on. if 'manylinux1' in manylinux_tags: extra_tags.add('manylinux_2_5') effective_glibc = (2, 5) if 'manylinux2010' in manylinux_tags: extra_tags.add('manylinux_2_12') effective_glibc = (2, 12) if 'manylinux2014' in manylinux_tags: extra_tags.add('manylinux_2_17') effective_glibc = (2, 17) if 'manylinux_2_5' in manylinux_tags: extra_tags.add('manylinux1') if 'manylinux_2_12' in manylinux_tags: extra_tags.add('manylinux2010') if 'manylinux_2_17' in manylinux_tags: extra_tags.add('manylinux2014') manylinux_tags.update(extra_tags) self.manylinux_tags = manylinux_tags for tag in manylinux_tags: # I know *I* mistype it alot. if not re.search(r'manylinux', tag): logger.warning("Tag %r does not contain 'manylinux'") m = re.match(r'manylinux_(\d+)_(\d+)', tag) if not m: continue glibc = (int(m.group(1)), int(m.group(2))) if effective_glibc is None or glibc > effective_glibc: effective_glibc = glibc self.effective_glibc = effective_glibc def make_build_python(self, context): """ Assemble the build-python virtual environment """ context.build_env_dir = os.path.join(context.env_dir, 'build') logger.info("Creating build-python environment") env = venv.EnvBuilder( system_site_packages=self.build_system_site_packages, clear=self.clear_build, with_pip=self.with_build_pip, symlinks=True) env.create(context.build_env_dir) context.build_bin_path = os.path.join(context.build_env_dir, 'bin') context.build_env_exe = os.path.join( context.build_bin_path, context.python_exe) # What is build-python's sys.path? out = subprocess.check_output( [context.build_env_exe, '-c', r"import sys; print('\n'.join(sys.path))"], universal_newlines=True).splitlines() context.build_sys_path = [] for line in out: line = line.strip() if line: context.build_sys_path.append(line) if self.with_build_pip: # Make sure we install the same version of pip and setuptools to # prevent errors (#1). reqs = subprocess.check_output([context.build_env_exe, '-m', 'pip', '--disable-pip-version-check', 'freeze', '--all'], universal_newlines=True) all_reqs = reqs.split() context.build_pip_reqs = [] for req in all_reqs: package = req.split('==')[0] if package == 'pip': context.build_pip_version = req context.build_pip_reqs.append(req) elif package == 'setuptools': context.build_pip_reqs.append(req) # Many distributions use a patched, 'unbundled' version of pip, # where the vendored packages aren't stored within pip itself, but # elsewhere on the system. This breaks cross-pip, which won't be # able to find them after the modifications we made. Fix this by # downloading a stock version of pip (Issue #6). if self._build_pip_is_unbundled(context): logger.info("Redownloading stock pip") subprocess.check_output([context.build_env_exe, '-m', 'pip', '--disable-pip-version-check', 'install', '--ignore-installed', context.build_pip_version]) def _build_pip_is_unbundled(self, context): pyver = 'python' + sysconfig.get_config_var('py_version_short') bundled_module = os.path.join(context.build_env_dir, 'lib', pyver, 'site-packages', 'pip', '_vendor', 'six.py') return not os.path.exists(bundled_module) def make_cross_python(self, context): """ Assemble the cross-python virtual environment """ logger.info("Creating cross-python environment") if self.cross_prefix: context.cross_env_dir = self.cross_prefix else: context.cross_env_dir = os.path.join(context.env_dir, 'cross') clear_cross = self.clear in ('default', 'cross-only', 'both') env = venv.EnvBuilder( system_site_packages=False, clear=self.clear_cross, symlinks=True, upgrade=False, with_pip=False) env.create(context.cross_env_dir) context.cross_bin_path = os.path.join(context.cross_env_dir, 'bin') context.cross_lib_path = os.path.join(context.cross_env_dir, 'lib') context.cross_env_exe = os.path.join( context.cross_bin_path, context.python_exe) context.cross_cfg_path = os.path.join(context.cross_env_dir, 'pyvenv.cfg') context.cross_activate = os.path.join(context.cross_bin_path, 'activate') pyver = 'python' + sysconfig.get_config_var('py_version_short') context.cross_site_lib_path = os.path.join(context.cross_lib_path, pyver, 'site-packages') # Remove binaries. We'll run from elsewhere for exe in os.listdir(context.cross_bin_path): if not exe.startswith('activate'): utils.remove_path(os.path.join(context.cross_bin_path, exe)) # Alter pyvenv.cfg with utils.overwrite_file(context.cross_cfg_path) as out: with open(context.cross_cfg_path) as inp: for line in inp: if line.split()[0:2] == ['home', '=']: line = 'home = %s\n' % self.host_project_base out.write(line) # make a script that sets the environment variables and calls Python. # Don't do this in bin/activate, because it's a pain to set/unset # properly (and for csh, fish as well). # Note that env_exe hasn't actually been created yet. # If this venv is generated from a cross-python still in its # build directory, rather than installed, then our modifications # prevent build-python from finding its pure-Python libs, which # will cause a crash on startup. Add them back to PYTHONPATH. # Also: 'stdlib' might not be accurate if build-python is in a build # directory. stdlib = os.path.abspath(os.path.dirname(os.__file__)) context.sentinel = random.randint(0,0xffffffff) extra_envs = list(self.extra_env_vars) # Add sysroot to various environment variables. This doesn't help # compiling, but some packages try to do manual checks for existence # of headers and libraries. This will help them find things. if self.host_sysroot: if os.path.isdir(os.path.join(self.host_sysroot, 'usr')): libs = os.path.join(self.host_sysroot, 'usr', 'lib*') inc = os.path.join(self.host_sysroot, 'usr', 'include') elif os.path.isdir(os.path.join(self.host_sysroot, 'lib')): libs = os.path.join(self.host_sysroot, 'lib*') inc = os.path.join(self.host_sysroot, 'include') else: libs = '' inc = '' libs = glob.glob(libs) if not libs: logger.warning("No libs in sysroot. Does it exist?") else: libs = os.pathsep.join(libs) extra_envs.insert(0, ('LIBRARY_PATH', ':=', libs)) if not os.path.isdir(inc): logger.warning("No include/ in sysroot. Does it exist?") else: extra_envs.insert(0, ('CPATH', ':=', inc)) # Put a few things in locals to make templating marginally less gross macosx_deployment_target = self.macosx_deployment_target host_sysconfigdata = self.host_sysconfigdata host_build_time_vars = self.host_sysconfigdata.build_time_vars sysconfig_name = self.host_sysconfigdata_name # Install patches to environment self.copy_and_patch_sysconfigdata(context) tmpl = utils.TemplateContext() tmpl.update(locals()) utils.install_script('pywrapper.py.tmpl', context.cross_env_exe, tmpl) # Everything in lib_path follows the same pattern site_scripts = [ 'site.py', 'sys-patch.py', 'os-patch.py', 'importlib-machinery-patch.py', 'platform-patch.py', 'sysconfig-patch.py', 'distutils-sysconfig-patch.py', 'pkg_resources-patch.py', ] for script in site_scripts: src = script + '.tmpl' dst = os.path.join(context.lib_path, script) utils.install_script(src, dst, tmpl) utils.install_script('_manylinux.py.tmpl', os.path.join(context.cross_site_lib_path, '_manylinux.py'), tmpl) # Symlink alternate names to our wrapper for exe in ('python', 'python3'): exe = os.path.join(context.cross_bin_path, exe) if not os.path.exists(exe): utils.symlink(context.python_exe, exe) # cross-python is ready. We will use build-pip to install cross-pip # because 'python -m ensurepip' is likely to get confused and think # that there's nothing to do. if self.with_cross_pip: logger.info("Installing cross-pip") # Make sure we install the same version of pip and setuptools to logger.debug("Installing: %s", context.build_pip_reqs) subprocess.check_output([context.cross_env_exe, '-m', 'pip', '--disable-pip-version-check', 'install', '--ignore-installed', '--prefix='+context.cross_env_dir] + context.build_pip_reqs) def copy_and_patch_sysconfigdata(self, context): """ Put sysconfigdata file in the crossenv/lib directory. We will transform CC, CXX, and related variables as requested. """ sysconfig_name = os.path.basename(self.host_sysconfigdata_file) # we always write a .py, but we might be reading from a .pyc # (i.e., from buildroot). sysconfig_name = self.host_sysconfigdata_name + '.py' context.cross_sysconfig = os.path.join(context.lib_path, sysconfig_name) # Patch all instances of CC, etc. We'll do a global search and # replace host_cc = self.real_host_cc[0] host_cxx = self.real_host_cxx[0] host_ar = self.real_host_ar[0] repl_cc = self.host_cc[0] repl_cxx = self.host_cxx[0] repl_ar = self.host_ar[0] find_cc = re.compile(r'(?:^|(?<=\s))%s(?=\s|$)' % re.escape(host_cc)) find_cxx = re.compile(r'(?:^|(?<=\s))%s(?=\s|$)' % re.escape(host_cxx)) find_ar = re.compile(r'(?:^|(?<=\s))%s(?=\s|$)' % re.escape(host_ar)) cross_sysconfig_data = {} for key, value in self.host_sysconfigdata.__dict__.items(): if key.startswith('__'): continue # misc module stuff like __name__, __builtins__ cross_sysconfig_data[key] = value build_time_vars = {} for key, value in cross_sysconfig_data['build_time_vars'].items(): if isinstance(value, str): value = find_ar.sub(repl_ar, value) value = find_cxx.sub(repl_cxx, value) value = find_cc.sub(repl_cc, value) build_time_vars[key] = value # Handle the case where host-python was natively compiled on another # architecture. This is only needed because someone (me) thought it was # a good idea to compare BUILD_GNU_TYPE to HOST_GNU_TYPE to detect # cross compiling. build_time_vars['BUILD_GNU_TYPE'] = \ sysconfig.get_config_var('BUILD_GNU_TYPE') # Overrides from --config_var options for key, value in self.host_config_vars.items(): build_time_vars[key] = value cross_sysconfig_data['build_time_vars'] = build_time_vars with open(context.cross_sysconfig, 'w') as fp: fp.write("# generated from %s\n" % self.host_sysconfigdata_file) for key, value in cross_sysconfig_data.items(): fp.write("%s = " % key) pprint.pprint(value, stream=fp, compact=True) def post_setup(self, context): """ Extra processing. Put scripts/binaries in the right place. """ tmpl = utils.TemplateContext() tmpl.update(locals()) utils.install_script('cross-expose.py.tmpl', os.path.join(context.bin_path, 'cross-expose'), tmpl) # Don't trust these to be symlinks. A symlink to Python will mess up # the virtualenv. # Add cross-python alias to the path. This is just for # convenience and clarity. for exe in os.listdir(context.cross_bin_path): target = os.path.join(context.cross_bin_path, exe) if not os.path.isfile(target) or not os.access(target, os.X_OK): continue dest = os.path.join(context.bin_path, 'cross-' + exe) utils.make_launcher(target, dest) # Add build-python and build-pip to the path. for exe in os.listdir(context.build_bin_path): target = os.path.join(context.build_bin_path, exe) if not os.path.isfile(target) or not os.access(target, os.X_OK): continue dest = os.path.join(context.bin_path, 'build-' + exe) utils.make_launcher(target, dest) logger.info("Finishing up...") activate = os.path.join(context.bin_path, 'activate') with open(activate, 'w') as fp: fp.write(dedent(F('''\ . %(context.cross_activate)s export PATH=%(context.bin_path)s:$PATH ''', locals()))) def parse_env_vars(env_vars): """Convert string descriptions of environment variable assignment into something that CrossEnvBuilder understands. :param env_vars: An iterable of strings in the form 'FOO=BAR' or 'FOO?=BAR' :returns: A list of (name, op, value) """ parsed = [] for spec in env_vars: spec = spec.lstrip() assign = '=' try: name, value = spec.split('=',1) except IndexError: raise ValueError("Invalid variable %r. Must be in the form " "NAME=VALUE" % spec) if name[-1:] in '?+:': assign = name[-1] + '=' name = name[:-1] if not name.isidentifier(): raise ValueError("Invalid variable name %r" % name) parsed.append((name, assign, value)) return parsed def parse_config_vars(config_vars): """Convert string descriptions of config variable assignment into something that CrossEnvBuilder understands. :param config_vars: An iterable of strings in the form 'FOO=BAR' :returns: A dictionary of name:value pairs. """ result = {} for val in config_vars: try: name, value = val.split('=', 1) except ValueError: raise ValueError("--config-var must be of the form FOO=BAR") result[name] = value return result def main(): import argparse parser = argparse.ArgumentParser(description=""" Create virtual Python environments for cross compiling """) parser.add_argument('--cross-prefix', action='store', help="""Specify the directory where cross-python files will be stored. By default, this is within <ENV_DIR>/cross. You can override this to have host packages installed in an existing sysroot, for example. Watch out though: this will write to bin.""") parser.add_argument('--system-site-packages', action='store_true', help="""Give the *build* python environment access to the system site-packages dir.""") parser.add_argument('--clear', action='store_const', const='default', help="""Delete the contents of the environment directory if it already exists. This clears build-python, but cross-python will be cleared only if --cross-prefix was not set. See also --clear-both, --clear-cross, and --clear-build.""") parser.add_argument('--clear-cross', action='store_const', const='cross', dest='clear', help="""This clears cross-python only. See also --clear, --clear-both, and --clear-build.""") parser.add_argument('--clear-build', action='store_const', const='build', dest='clear', help="""This clears build-python only. See also --clear, --clear-both, and --clear-cross.""") parser.add_argument('--clear-both', action='store_const', const='both', dest='clear', help="""This clears both cross-python and build-python. See also --clear, --clear-both, and --clear-cross.""") parser.add_argument('--without-pip', action='store_true', help="""Skips installing or upgrading pip in both the build and cross virtual environments. (Pip is bootstrapped by default.)""") parser.add_argument('--without-cross-pip', action='store_true', help="""Skips installing or upgrading pip in the cross virtual environment. Note that you cannot have cross-pip without build-pip.""") parser.add_argument('--relative-toolchain', action='store_true', help="""If the C/C++ compiler, etc. are stored with absolute paths, make them relative. Useful for when host-python was build with absolute paths in, e.g., a Docker image. The tools must be in $PATH for this to work.""") parser.add_argument('--cc', action='store', help="""Override the C compiler from what host-python was built with.""") parser.add_argument('--cxx', action='store', help="""Override the C++ compiler from what host-python was built with.""") parser.add_argument('--ar', action='store', help="""Override ar (static archive) from what host-python was built with.""") parser.add_argument('--config-var', action='append', default=[], help="""Override a specific config-time variable for host-python, such as CC, CCSHARED, etc. Usage: --config-var=FOO=BAR. All values are strings.""") parser.add_argument('--env', action='append', default=[], help="""An environment variable that will be added to the environment just before executing the python build executable. May be given multiple times. May be one of the following forms: 'FOO=BAR' to unconditionally set the value. 'FOO+=BAR' to append a value. 'FOO?=BAR' to set a value only if not already set 'FOO:=BAR' to append to a PATH-like variable, with colons between each element.""") parser.add_argument('--sysroot', action='store', help="""Explicitly set the sysroot for the cross-complier toolchain. If not given, an attempt will be made to guess. This is used to trick some packages into finding required headers and is optional.""") parser.add_argument('--sysconfigdata-file', action='store', help="""Explicitly set the sysconfigdata file path. If not given, all sysconfigdata files will be searched and will error if there are multiple files that have different values. This option is a workaround for specifically conda python where multiple sysconfigdata files exist.""") parser.add_argument('--manylinux', action='append', default=[], help="""Declare compatibility with the given manylinux platform tag to enable pre-compiled wheels. This argument may be given multiple times.""") parser.add_argument('--machine', action='store', help="""Override the value of os.uname().machine if cross-python is unable to guess correctly.""") parser.add_argument('-v', '--verbose', action='count', default=0, help="""Verbose mode. May be specified multiple times to increase verbosity.""") parser.add_argument('--version', action='version', version='crossenv %s' % __version__) parser.add_argument('HOST_PYTHON', help="""The host Python to use. This should be the path to the Python executable, which may be in the source directory or an installed directory structure.""") parser.add_argument('ENV_DIR', nargs='+', help="""A directory to create the environment in.""") args = parser.parse_args() if args.verbose == 1: level = logging.INFO elif args.verbose > 1: level = logging.DEBUG else: level = logging.WARNING logging.basicConfig(level=level, format='%(levelname)s: %(message)s') try: if args.without_pip: args.without_cross_pip = True env = parse_env_vars(args.env) config_vars = parse_config_vars(args.config_var) builder = CrossEnvBuilder(host_python=args.HOST_PYTHON, cross_prefix=args.cross_prefix, build_system_site_packages=args.system_site_packages, clear=args.clear, extra_env_vars=env, with_cross_pip=not args.without_cross_pip, with_build_pip=not args.without_pip, host_sysroot=args.sysroot, host_cc=args.cc, host_cxx=args.cxx, host_ar=args.ar, host_relativize=args.relative_toolchain, host_config_vars = config_vars, host_sysconfigdata_file=args.sysconfigdata_file, manylinux_tags=args.manylinux, host_machine=args.machine, ) for env_dir in args.ENV_DIR: builder.create(env_dir) except Exception as e: logger.error('%s', e) logger.debug('Traceback:', exc_info=True) sys.exit(1)
42.458412
93
0.583046
83431e6fd30e1f50a5c51e21bd56b46e1fad95cb
10,747
py
Python
doc/sphinxext/autosummary/generate.py
thorstenkranz/eegpy
0f9461456999874abbb774896ca832eb27740a9d
[ "BSD-2-Clause-FreeBSD" ]
10
2015-05-12T10:42:51.000Z
2021-07-20T02:08:03.000Z
doc/sphinxext/autosummary/generate.py
thomastweets/PyMVPA
a9c05acd7569639bb636aed3c22a13b21559ca02
[ "MIT" ]
2
2015-11-19T11:36:30.000Z
2018-03-21T05:00:09.000Z
doc/sphinxext/autosummary/generate.py
thomastweets/PyMVPA
a9c05acd7569639bb636aed3c22a13b21559ca02
[ "MIT" ]
2
2016-09-21T22:41:34.000Z
2019-01-28T13:55:19.000Z
# -*- coding: utf-8 -*- """ sphinx.ext.autosummary.generate ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Usable as a library or script to generate automatic RST source files for items referred to in autosummary:: directives. Each generated RST file contains a single auto*:: directive which extracts the docstring of the referred item. Example Makefile rule:: generate: sphinx-autogen source/*.rst source/generated :copyright: Copyright 2007-2010 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import re import sys import pydoc import optparse from jinja2 import FileSystemLoader, TemplateNotFound from jinja2.sandbox import SandboxedEnvironment from sphinx.ext.autosummary import import_by_name, get_documenter from sphinx.jinja2glue import BuiltinTemplateLoader from sphinx.util.osutil import ensuredir def main(argv=sys.argv): usage = """%prog [OPTIONS] SOURCEFILE ...""" p = optparse.OptionParser(usage.strip()) p.add_option("-o", "--output-dir", action="store", type="string", dest="output_dir", default=None, help="Directory to place all output in") p.add_option("-s", "--suffix", action="store", type="string", dest="suffix", default="rst", help="Default suffix for files (default: %default)") p.add_option("-t", "--templates", action="store", type="string", dest="templates", default=None, help="Custom template directory (default: %default)") options, args = p.parse_args(argv[1:]) if len(args) < 1: p.error('no input files given') generate_autosummary_docs(args, options.output_dir, "." + options.suffix, template_dir=options.templates) def _simple_info(msg): print msg def _simple_warn(msg): print >> sys.stderr, 'WARNING: ' + msg # -- Generating output --------------------------------------------------------- def generate_autosummary_docs(sources, output_dir=None, suffix='.rst', warn=_simple_warn, info=_simple_info, base_path=None, builder=None, template_dir=None): showed_sources = list(sorted(sources)) if len(showed_sources) > 20: showed_sources = showed_sources[:10] + ['...'] + showed_sources[-10:] info('[autosummary] generating autosummary for: %s' % ', '.join(showed_sources)) if output_dir: info('[autosummary] writing to %s' % output_dir) if base_path is not None: sources = [os.path.join(base_path, filename) for filename in sources] # create our own templating environment template_dirs = [os.path.join(os.path.dirname(__file__), 'templates')] if builder is not None: # allow the user to override the templates template_loader = BuiltinTemplateLoader() template_loader.init(builder, dirs=template_dirs) else: if template_dir: template_dirs.insert(0, template_dir) template_loader = FileSystemLoader(template_dirs) template_env = SandboxedEnvironment(loader=template_loader) # read items = find_autosummary_in_files(sources) # remove possible duplicates items = dict([(item, True) for item in items]).keys() # keep track of new files new_files = [] # write for name, path, template_name in sorted(items): if path is None: # The corresponding autosummary:: directive did not have # a :toctree: option continue path = output_dir or os.path.abspath(path) ensuredir(path) try: obj, name = import_by_name(name) except ImportError, e: warn('[autosummary] failed to import %r: %s' % (name, e)) continue fn = os.path.join(path, name + suffix) # skip it if it exists if os.path.isfile(fn): continue new_files.append(fn) f = open(fn, 'w') try: doc = get_documenter(obj) if template_name is not None: template = template_env.get_template(template_name) else: try: template = template_env.get_template('autosummary/%s.rst' % doc.objtype) except TemplateNotFound: template = template_env.get_template('autosummary/base.rst') def get_members(obj, typ, include_public=[]): items = [] for name in dir(obj): try: if get_documenter(getattr(obj, name)).objtype == typ: items.append(name) except AttributeError: warn("[autosummary] problem accessing attribute " "'%s' in '%s'." % (name, obj)) public = [x for x in items if x in include_public or not x.startswith('_')] return public, items ns = {} if doc.objtype == 'module': ns['members'] = dir(obj) ns['functions'], ns['all_functions'] = \ get_members(obj, 'function') ns['classes'], ns['all_classes'] = \ get_members(obj, 'class') ns['exceptions'], ns['all_exceptions'] = \ get_members(obj, 'exception') elif doc.objtype == 'class': ns['members'] = dir(obj) ns['methods'], ns['all_methods'] = \ get_members(obj, 'method', ['__init__']) ns['attributes'], ns['all_attributes'] = \ get_members(obj, 'attribute') parts = name.split('.') if doc.objtype in ('method', 'attribute'): mod_name = '.'.join(parts[:-2]) cls_name = parts[-2] obj_name = '.'.join(parts[-2:]) ns['class'] = cls_name else: mod_name, obj_name = '.'.join(parts[:-1]), parts[-1] ns['fullname'] = name ns['module'] = mod_name ns['objname'] = obj_name ns['name'] = parts[-1] ns['objtype'] = doc.objtype ns['underline'] = len(name) * '=' rendered = template.render(**ns) f.write(rendered) finally: f.close() # descend recursively to new files if new_files: generate_autosummary_docs(new_files, output_dir=output_dir, suffix=suffix, warn=warn, info=info, base_path=base_path, builder=builder, template_dir=template_dir) # -- Finding documented entries in files --------------------------------------- def find_autosummary_in_files(filenames): """ Find out what items are documented in source/*.rst. See `find_autosummary_in_lines`. """ documented = [] for filename in filenames: f = open(filename, 'r') lines = f.read().splitlines() documented.extend(find_autosummary_in_lines(lines, filename=filename)) f.close() return documented def find_autosummary_in_docstring(name, module=None, filename=None): """ Find out what items are documented in the given object's docstring. See `find_autosummary_in_lines`. """ try: obj, real_name = import_by_name(name) lines = pydoc.getdoc(obj).splitlines() return find_autosummary_in_lines(lines, module=name, filename=filename) except AttributeError: pass except ImportError, e: print "Failed to import '%s': %s" % (name, e) return [] def find_autosummary_in_lines(lines, module=None, filename=None): """ Find out what items appear in autosummary:: directives in the given lines. Returns a list of (name, toctree, template) where *name* is a name of an object and *toctree* the :toctree: path of the corresponding autosummary directive (relative to the root of the file name), and *template* the value of the :template: option. *toctree* and *template* ``None`` if the directive does not have the corresponding options set. """ autosummary_re = re.compile(r'^\s*\.\.\s+autosummary::\s*') automodule_re = re.compile( r'^\s*\.\.\s+automodule::\s*([A-Za-z0-9_.]+)\s*$') module_re = re.compile( r'^\s*\.\.\s+(current)?module::\s*([a-zA-Z0-9_.]+)\s*$') autosummary_item_re = re.compile(r'^\s+(~?[_a-zA-Z][a-zA-Z0-9_.]*)\s*.*?') toctree_arg_re = re.compile(r'^\s+:toctree:\s*(.*?)\s*$') template_arg_re = re.compile(r'^\s+:template:\s*(.*?)\s*$') documented = [] toctree = None template = None current_module = module in_autosummary = False for line in lines: if in_autosummary: m = toctree_arg_re.match(line) if m: toctree = m.group(1) if filename: toctree = os.path.join(os.path.dirname(filename), toctree) continue m = template_arg_re.match(line) if m: template = m.group(1).strip() continue if line.strip().startswith(':'): continue # skip options m = autosummary_item_re.match(line) if m: name = m.group(1).strip() if name.startswith('~'): name = name[1:] if current_module and \ not name.startswith(current_module + '.'): name = "%s.%s" % (current_module, name) documented.append((name, toctree, template)) continue if not line.strip(): continue in_autosummary = False m = autosummary_re.match(line) if m: in_autosummary = True toctree = None template = None continue m = automodule_re.search(line) if m: current_module = m.group(1).strip() # recurse into the automodule docstring documented.extend(find_autosummary_in_docstring( current_module, filename=filename)) continue m = module_re.match(line) if m: current_module = m.group(2) continue return documented if __name__ == '__main__': main()
34.335463
80
0.546757
654c44fb6dfeb35bcdf8b2fca71b6ae82c08c48c
11,068
py
Python
testing/test_browser.py
digitronik/widgetastic.core
f60bf150b8126cf5f7ce9aa81e10abdb380261ad
[ "Apache-2.0" ]
null
null
null
testing/test_browser.py
digitronik/widgetastic.core
f60bf150b8126cf5f7ce9aa81e10abdb380261ad
[ "Apache-2.0" ]
2
2020-09-02T08:58:30.000Z
2020-09-02T11:55:39.000Z
testing/test_browser.py
digitronik/widgetastic.core
f60bf150b8126cf5f7ce9aa81e10abdb380261ad
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import tempfile from datetime import datetime from pathlib import Path import pytest from widgetastic.browser import BrowserParentWrapper from widgetastic.browser import WebElement from widgetastic.exceptions import LocatorNotImplemented from widgetastic.exceptions import NoSuchElementException from widgetastic.widget import Text from widgetastic.widget import View @pytest.fixture() def current_and_new_handle(request, browser, testing_page_url): """fixture return current and newly open window handle""" handle = browser.new_window(url=testing_page_url) @request.addfinalizer def _close_window(): if handle in browser.window_handles: browser.close_window(handle) return browser.current_window_handle, handle @pytest.fixture() def invoke_alert(browser): """fixture to invoke sample alert.""" alert_btn = browser.element("#alert_button") alert_btn.click() yield if browser.alert_present: alert = browser.get_alert() alert.dismiss() def test_is_displayed(browser): assert browser.is_displayed("#hello") def test_is_displayed_negative(browser): assert not browser.is_displayed("#invisible") def test_elements_bad_locator(browser): with pytest.raises(LocatorNotImplemented): browser.element(1) def test_elements_string_locator_xpath(browser): assert len(browser.elements("//h1")) == 1 def test_elements_string_locator_css(browser): # TODO: Why this doesnt work properly? # assert len(browser.elements('h1')) == 1 assert len(browser.elements("#hello")) == 1 assert len(browser.elements("h1#hello")) == 1 assert len(browser.elements("h1#hello.foo")) == 1 assert len(browser.elements("h1#hello.foo.bar")) == 1 assert len(browser.elements("h1.foo.bar")) == 1 assert len(browser.elements(".foo.bar")) == 1 def test_elements_dict(browser): assert len(browser.elements({"xpath": "//h1"})) == 1 def test_elements_webelement(browser): element = browser.element("#hello") assert browser.elements(element)[0] is element def test_elements_locatable_locator(browser): class Object(object): def __locator__(self): return "#hello" assert len(browser.elements(Object())) == 1 def test_elements_with_parent(browser): parent = browser.elements("#random_visibility")[0] assert len(browser.elements("./p", parent=parent, check_visibility=False)) == 5 def test_elements_check_visibility(browser): assert len(browser.elements('//div[@id="random_visibility"]/p', check_visibility=True)) == 3 assert len(browser.elements('//div[@id="random_visibility"]/p', check_visibility=False)) == 5 def test_wait_for_element_visible(browser): # Click on the button browser.click("#invisible_appear_button") try: assert isinstance(browser.wait_for_element("#invisible_appear_p", visible=True), WebElement) except NoSuchElementException: pytest.fail("NoSuchElementException raised when webelement expected") @pytest.mark.parametrize("exception", [True, False], ids=["with_exception", "without_exception"]) def test_wait_for_element_exception_control(browser, exception): # Click on the button, element will not appear browser.click("#invisible_appear_button") wait_for_args = dict( locator="#invisible_appear_p", visible=True, timeout=1.5, exception=exception ) if exception: with pytest.raises(NoSuchElementException): browser.wait_for_element(**wait_for_args) else: assert browser.wait_for_element(**wait_for_args) is None def test_element_only_invisible(browser): browser.element("#hello", check_visibility=False) def test_element_only_visible(browser): browser.element("#invisible", check_visibility=False) def test_element_visible_after_invisible_and_classes_and_execute_script(browser): assert "invisible" in browser.classes( '//div[@id="visible_invisible"]/p', check_visibility=False ) def test_element_nonexisting(browser): with pytest.raises(NoSuchElementException): browser.element("#badger", check_visibility=False) def test_move_to_element_option(browser): assert browser.move_to_element("#myoption").tag_name == "option" def test_click(browser): assert len(browser.classes("#a_button")) == 0 browser.click("#a_button") assert "clicked" in browser.classes("#a_button") def test_raw_click(browser): assert len(browser.classes("#a_button")) == 0 browser.raw_click("#a_button") assert "clicked" in browser.classes("#a_button") def test_tag(browser): assert browser.tag("#hello") == "h1" def test_text_visible(browser): assert browser.text("#hello") == "Hello" def test_text_invisible(browser): assert browser.text("#invisible") == "This is invisible" def test_get_attribute(browser): assert browser.get_attribute("id", "//h1") == "hello" def test_set_attribute(browser): browser.set_attribute("foo", "bar", "//h1") assert browser.get_attribute("foo", "//h1") == "bar" def test_simple_input_send_keys_clear(browser): browser.send_keys("test!", "#input") assert browser.get_attribute("value", "#input") == "test!" browser.clear("#input") assert browser.get_attribute("value", "#input") == "" def test_copy_paste(browser): t = "copy and paste text" browser.send_keys(t, "#input") assert browser.get_attribute("value", "#input") == t browser.copy("#input") browser.paste("#input_paste") assert browser.get_attribute("value", "#input_paste") == t def test_nested_views_parent_injection(browser): class MyView(View): ROOT = "#proper" class c1(View): # noqa ROOT = ".c1" w = Text(".lookmeup") class c2(View): # noqa ROOT = ".c2" w = Text(".lookmeup") class c3(View): # noqa ROOT = ".c3" w = Text(".lookmeup") class without(View): # noqa # This one receives the parent browser wrapper class nested(View): # noqa # and it should work in multiple levels pass view = MyView(browser) assert isinstance(view.browser, BrowserParentWrapper) assert len(view.c1.browser.elements(".lookmeup")) == 1 assert view.c1.w.text == "C1" assert view.c1.browser.text(".lookmeup") == "C1" assert len(view.c2.browser.elements(".lookmeup")) == 1 assert view.c2.w.text == "C2" assert view.c2.browser.text(".lookmeup") == "C2" assert len(view.c3.browser.elements(".lookmeup")) == 1 assert view.c3.w.text == "C3" assert view.c3.browser.text(".lookmeup") == "C3" assert len(view.browser.elements(".lookmeup")) == 3 assert view.c3.browser.text(".lookmeup") == "C3" assert view.c1.locatable_parent is view assert view.c1.w.locatable_parent is view.c1 assert view.without.nested.locatable_parent is view def test_element_force_visibility_check_by_locator(browser): class MyLocator(object): CHECK_VISIBILITY = True # Always check visibility no matter what def __locator__(self): return "#invisible" loc = MyLocator() with pytest.raises(NoSuchElementException): browser.element(loc) with pytest.raises(NoSuchElementException): browser.element(loc, check_visibility=False) loc.CHECK_VISIBILITY = False # Never check visibility no matter what browser.element(loc) browser.element(loc, check_visibility=True) def test_size(browser): width, height = browser.size_of("#exact_dimensions") assert width == 42 assert height == 69 def test_title(browser): """Test title of current window""" assert browser.title == "Test page" def test_current_window_handle(browser): """Test current window handle property""" assert browser.current_window_handle @pytest.mark.parametrize("focus", [False, True], ids=["no_focus", "focus"]) def test_new_window(request, browser, focus, testing_page_url): """Test open new window with and without focus""" # main window handle main_handle = browser.current_window_handle # open new window focus/no-focus handle = browser.new_window(url=testing_page_url, focus=focus) @request.addfinalizer def _close_window(): browser.close_window(handle) assert handle if focus: assert handle == browser.current_window_handle @request.addfinalizer def _back_to_main(): browser.switch_to_window(main_handle) else: assert handle != browser.current_window_handle def test_window_handles(browser, current_and_new_handle): """Test window handles property""" assert len(browser.window_handles) == 2 assert set(browser.window_handles) == set(current_and_new_handle) def test_close_window(browser, current_and_new_handle): """Test close window""" main_handle, new_handle = current_and_new_handle assert new_handle in browser.window_handles browser.close_window(new_handle) assert new_handle not in browser.window_handles def test_switch_to_window(browser, current_and_new_handle): """Test switch to other window""" main_handle, new_handle = current_and_new_handle # switch to new window browser.switch_to_window(new_handle) assert new_handle == browser.current_window_handle browser.switch_to_window(main_handle) assert main_handle == browser.current_window_handle def test_alert(browser): """Test alert_present, get_alert object""" assert not browser.alert_present alert_btn = browser.element("#alert_button") alert_btn.click() assert browser.alert_present alert = browser.get_alert() assert alert.text == "Please enter widget name:" alert.dismiss() assert not browser.alert_present def test_dismiss_any_alerts(browser, invoke_alert): """Test dismiss_any_alerts""" assert browser.alert_present browser.dismiss_any_alerts() assert not browser.alert_present @pytest.mark.parametrize( "cancel_text", [(True, "User dismissed alert."), (False, "User accepted alert:")], ids=["dismiss", "accept"], ) @pytest.mark.parametrize("prompt", [None, "Input"], ids=["without_prompt", "with_prompt"]) def test_handle_alert(browser, cancel_text, prompt, invoke_alert): """Test handle_alert method with cancel and prompt""" cancel, alert_out_text = cancel_text assert browser.alert_present assert browser.handle_alert(cancel=cancel, prompt=prompt) if not cancel: alert_out_text = alert_out_text + ("Input" if prompt else "TextBox") assert browser.text("#alert_out") == alert_out_text assert not browser.alert_present def test_save_screenshot(browser): """Test browser save screenshot method.""" tmp_dir = tempfile._get_default_tempdir() filename = Path(tmp_dir) / f"{datetime.now()}.png" assert not filename.exists() browser.save_screenshot(filename=filename.as_posix()) assert filename.exists()
30.240437
100
0.704825
30a1e0aa5664658562f4e7a10de0514f14875f83
4,346
py
Python
serialization/annotate.py
BookLaugh/serialization
a3ff87aa2cd5b3322daee7ebee1e025783438b46
[ "MIT" ]
12
2016-03-01T15:04:08.000Z
2020-11-23T14:49:32.000Z
serialization/annotate.py
BookLaugh/serialization
a3ff87aa2cd5b3322daee7ebee1e025783438b46
[ "MIT" ]
1
2020-11-23T15:31:24.000Z
2020-11-23T19:46:50.000Z
serialization/annotate.py
BookLaugh/serialization
a3ff87aa2cd5b3322daee7ebee1e025783438b46
[ "MIT" ]
2
2020-11-23T14:45:38.000Z
2020-11-23T17:03:48.000Z
# F3AT - Flumotion Asynchronous Autonomous Agent Toolkit # Copyright (C) 2010,2011 Flumotion Services, S.A. # All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # See "LICENSE.GPL" in the source distribution for more information. # Headers in this file shall remain intact. from __future__ import absolute_import from future.utils import PY3 from six import with_metaclass from . import reflect _CLASS_ANNOTATIONS_ATTR = "_class_annotations" _ATTRIBUTE_INJECTIONS_ATTR = "_attribute_injections" _ANNOTATIONS_PROCESSED = "_annotations_processed" class AnnotationError(Exception): pass class MetaAnnotable(type): def __init__(cls, name, bases, dct): klasses = list(reversed(cls.mro())) # Class Initialization method = getattr(cls, "__class__init__", None) if method is not None: method(name, bases, dct) # Attribute Injection for k in klasses: injections = k.__dict__.get(_ATTRIBUTE_INJECTIONS_ATTR, None) if injections is not None: for attr, value in injections: setattr(k, attr, value) del injections[:] pending_annotations = list() # Class Annotations for k in klasses: if k.__dict__.get(_ANNOTATIONS_PROCESSED, False): continue is_annotable = issubclass(type(k), MetaAnnotable) annotations = k.__dict__.get(_CLASS_ANNOTATIONS_ATTR, list()) if annotations or pending_annotations: if is_annotable: to_process = pending_annotations + annotations for name, methodName, args, kwargs in to_process: method = getattr(cls, methodName, None) if method is None: raise AnnotationError( "Bad annotation %s set on class " "%s, method %s not found" % (name, k, methodName)) method(*args, **kwargs) pending_annotations = list() setattr(k, _ANNOTATIONS_PROCESSED, True) else: pending_annotations.extend(annotations) super(MetaAnnotable, cls).__init__(name, bases, dct) class Annotable(with_metaclass(MetaAnnotable, object)): __slots__ = () # To support sub-classes without __dict__ def injectClassCallback(annotationName, depth, methodName, *args, **kwargs): """ Inject an annotation for a class method to be called after class initialization without dealing with metaclass. depth parameter specify the stack depth from the class definition. """ locals = reflect.class_locals(depth, annotationName) annotations = locals.get(_CLASS_ANNOTATIONS_ATTR, None) if annotations is None: annotations = list() locals[_CLASS_ANNOTATIONS_ATTR] = annotations annotation = (annotationName, methodName, args, kwargs) annotations.append(annotation) def injectAttribute(annotationName, depth, attr, value): """ Inject an attribute in a class from it's class frame. Use in class annnotation to create methods/properties dynamically at class creation time without dealing with metaclass. depth parameter specify the stack depth from the class definition. """ locals = reflect.class_locals(depth, annotationName) injections = locals.get(_ATTRIBUTE_INJECTIONS_ATTR, None) if injections is None: injections = list() locals[_ATTRIBUTE_INJECTIONS_ATTR] = injections injections.append((attr, value))
36.521008
76
0.664289
0c0d63be32a4257fa129d779096909a016b30efb
3,471
py
Python
rgb_to_pointcloud.py
wassimea/rgbd_pointcloud
5b27ca1b28b545668cf29e0a93783ffa66d93335
[ "MIT" ]
null
null
null
rgb_to_pointcloud.py
wassimea/rgbd_pointcloud
5b27ca1b28b545668cf29e0a93783ffa66d93335
[ "MIT" ]
null
null
null
rgb_to_pointcloud.py
wassimea/rgbd_pointcloud
5b27ca1b28b545668cf29e0a93783ffa66d93335
[ "MIT" ]
null
null
null
from utils_camera import * import os import math import cv2 import numpy as np import pyrealsense2 as rs def colorize_depthmap(img_depth): ## colorize depth map for easy visualization img_depth_normalized = cv2.normalize(img_depth.astype(np.float32), None, 0.0, 1.0, cv2.NORM_MINMAX) # convert to normalized floating point img_depth_grayscale = img_depth_normalized * 255 # now to grayscale img_depth_clr = cv2.applyColorMap(img_depth_grayscale.astype(np.uint8), cv2.COLORMAP_JET) # apply the color mapping return img_depth_clr def image_fusion(camera_params, depthData, clrImg=None): """ Given a depth image and its corresponding color image, return a colored point cloud as a vector of (x, y, z, r, g, b). Assume only depth and color. The output format is a PLY (required to view it in color in MeshLab). """ numberOfVertices = depthData.size h, w = depthData.shape # generate point cloud via numpy array functions coords = np.indices((h, w)) # geometry xcoords = (((coords[1] - camera_params.cx)/camera_params.fx)*depthData).flatten() ycoords = (((coords[0] - camera_params.cy)/camera_params.fy)*depthData).flatten() zcoords = depthData.flatten() # color chan_red = chan_blue = chan_green = None chan_red = clrImg[..., 2].flatten() chan_blue = clrImg[..., 1].flatten() chan_green = clrImg[..., 0].flatten() ptcloud = None ptcloud = np.dstack((xcoords, ycoords, zcoords, chan_red, chan_blue, chan_green))[0] return ptcloud, numberOfVertices def output_pointcloud(nVertices, ptcloud, strOutputPath): """ Given a point cloud produced from image_fusion, output it to a PLY file. """ # open the file and write out the standard ply header outputFile = open(strOutputPath + ".ply", "w") outputFile.write("ply\n") outputFile.write("format ascii 1.0\n") outputFile.write("comment generated via python script Process3DImage\n") outputFile.write("element vertex %d\n" %(nVertices)) outputFile.write("property float x\n") outputFile.write("property float y\n") outputFile.write("property float z\n") outputFile.write("property uchar red\n") outputFile.write("property uchar green\n") outputFile.write("property uchar blue\n") outputFile.write("element face 0\n") outputFile.write("property list uchar int vertex_indices\n") outputFile.write("end_header\n") # output the actual points for pt in ptcloud: dx, dy, dz = pt[0:3] dx *= 0.001 dy *= 0.001 dz *= 0.001 r, g, b = pt[3:] outputFile.write("%10.6f %10.6f %10.6f %d %d %d\n" %(dx, dy, dz, r, g, b)) outputFile.close() def get_color_depth_frames(): pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.color, width=640, height=480) config.enable_stream(rs.stream.depth, width=640, height=480) pipeline.start(config) for i in range(100): frames = pipeline.wait_for_frames() color = frames.first(rs.stream.color) depth = frames.first(rs.stream.depth) color = np.asanyarray(color.get_data()) color = color[...,::-1] depth = np.asanyarray(depth.get_data()) depth_vis = colorize_depthmap(depth) cv2.imshow("color", color) cv2.imshow("depth_vis", depth_vis) cv2.waitKey(1) return color, depth if __name__ == "__main__": out = "/home/wassimea/Desktop/cloud" img_color, img_depth = get_color_depth_frames() params = GetCameraParameters("RealSenseD435", 1.0) ptcloud, nVertices = image_fusion(params, img_depth, img_color) output_pointcloud(nVertices, ptcloud, out)
28.68595
142
0.723423
081f99291a27e826b09f5bfc6df65577ffb91666
8,034
py
Python
scan/test/fetch/link_finders/test_data/test_find_implicit_links.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
scan/test/fetch/link_finders/test_data/test_find_implicit_links.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
scan/test/fetch/link_finders/test_data/test_find_implicit_links.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
############################################################################### # Copyright (c) 2017-2020 Koren Lev (Cisco Systems), # # Yaron Yogev (Cisco Systems), Ilia Abashin (Cisco Systems) and others # # # # All rights reserved. This program and the accompanying materials # # are made available under the terms of the Apache License, Version 2.0 # # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # ############################################################################### ENV = 'env1' CLIQUE_CONSTRAINTS = [ { 'focal_point_type': 'instance', 'constraints': ['network'] }, { 'focal_point_type': 'dummy1', 'constraints': [] }, { 'focal_point_type': 'dummy2', 'constraints': ['network', 'dummy_constraint'] }, { 'focal_point_type': 'dummy3', 'constraints': ['dummy_constraint2'] } ] CONSTRAINTS = ['network', 'dummy_constraint', 'dummy_constraint2'] LINK_ATTRIBUTES_NONE = {} LINK_ATTRIBUTES_NONE_2 = {} LINK_ATTRIBUTES_EMPTY = {'attributes': []} LINK_ATTR_V1 = {'attributes': {'network': 'v1'}} LINK_ATTR_V1_2 = {'attributes': {'network': 'v1'}} LINK_ATTR_V2 = {'attributes': {'network': 'v2'}} LINK_ATTR_V1_AND_A2V2 = {'attributes': {'network': 'v1', 'attr2': 'v2'}} LINK_TYPE_1 = { 'link_type': 'instance-vnic', 'source_id': 'instance1', 'target_id': 'vnic1' } LINK_TYPE_1_REVERSED = { 'link_type': 'instance-vnic', 'source_id': 'vnic1', 'target_id': 'instance1' } LINK_TYPE_1_2 = { 'link_type': 'instance-vnic', 'source_id': 'instance1', 'target_id': 'vnic2' } LINK_TYPE_2 = { 'link_type': 'vnic-vconnector', 'source_id': 'vnic1', 'target_id': 'vconnector1' } LINK_TYPE_3 = { 'implicit': True, 'link_type': 'instance-vconnector', 'source_id': 'instance1', 'target_id': 'vconnector1' } LINK_TYPE_4_NET1 = { 'environment': ENV, 'implicit': True, 'link_type': 'instance-host_pnic', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'host_pnic1_dbid', 'target_id': 'host_pnic1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_TYPE_5_NET2 = { 'environment': ENV, 'link_type': 'host_pnic-switch', 'source_id': 'host_pnic1', 'target': 'switch1_dbid', 'target_id': 'switch1', 'host': 'host2', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID2'} } LINK_TYPE_6_NET1 = { 'environment': ENV, 'link_type': 'host_pnic-switch', 'source': 'host_pnic1_dbid', 'source_id': 'host_pnic1', 'target': 'switch2_dbid', 'target_id': 'switch2', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_TYPE_7_NET1 = { 'environment': ENV, 'implicit': True, 'link_type': 'instance-switch', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'switch2_dbid', 'target_id': 'switch2', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_A2B_EXPLICIT = { 'environment': ENV, 'link_type': 'instance-vnic', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'vnic1_dbid', 'target_id': 'vnic1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_B2C_EXPLICIT = { 'environment': ENV, 'link_type': 'vnic-vconnector', 'source': 'vnic1_dbid', 'source_id': 'vnic1', 'target': 'vconnector1_dbid', 'target_id': 'vconnector1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_C2D_EXPLICIT = { 'environment': ENV, 'link_type': 'vconnector-vedge', 'source': 'vconnector1_dbid', 'source_id': 'vconnector1', 'target': 'vedge1_dbid', 'target_id': 'vedge1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_D2E_EXPLICIT = { 'environment': ENV, 'link_type': 'vedge-otep', 'source': 'vedge1_dbid', 'source_id': 'vedge1', 'target': 'otep1_dbid', 'target_id': 'otep1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_C2E_EXPLICIT = { 'environment': ENV, 'link_type': 'vconnector-otep', 'source': 'vconnector1_dbid', 'source_id': 'vconnector1', 'target': 'otep1_dbid', 'target_id': 'otep1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_A2C = { 'environment': ENV, 'implicit': True, 'link_type': 'instance-vconnector', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'vconnector1_dbid', 'target_id': 'vconnector1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_B2D = { 'environment': ENV, 'implicit': True, 'link_type': 'vnic-vedge', 'source': 'vnic1_dbid', 'source_id': 'vnic1', 'target': 'vedge1_dbid', 'target_id': 'vedge1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_A2D = { 'environment': ENV, 'implicit': True, 'link_type': 'instance-vedge', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'vedge1_dbid', 'target_id': 'vedge1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_B2E = { 'environment': ENV, 'implicit': True, 'link_type': 'vnic-otep', 'source': 'vnic1_dbid', 'source_id': 'vnic1', 'target': 'otep1_dbid', 'target_id': 'otep1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } LINK_FULL_A2E = { 'environment': ENV, 'implicit': True, 'link_type': 'instance-otep', 'source': 'instance1_dbid', 'source_id': 'instance1', 'target': 'otep1_dbid', 'target_id': 'otep1', 'host': 'host1', 'link_name': '', 'state': 'up', 'source_label': '', 'target_label': '', 'link_weight': 0, 'attributes': {'network': 'netID1'} } BASE_LINKS = [ {'pass': 0, 'link': LINK_FULL_A2B_EXPLICIT}, {'pass': 0, 'link': LINK_FULL_B2C_EXPLICIT}, {'pass': 0, 'link': LINK_FULL_C2D_EXPLICIT}, {'pass': 0, 'link': LINK_FULL_D2E_EXPLICIT}, # this one tests that existing explicit links are not overwritten if # they are also achievable implicitly {'pass': 0, 'link': LINK_FULL_C2E_EXPLICIT}, ] IMPLICIT_LINKS = [ {'pass': 1, 'link': LINK_FULL_A2C}, {'pass': 1, 'link': LINK_FULL_B2D}, {'pass': 1, 'link': LINK_FULL_B2E}, {'pass': 2, 'link': LINK_FULL_A2D}, {'pass': 2, 'link': LINK_FULL_A2E}, ]
26.959732
79
0.55539
966747ef62dd478919880e67dc5e76896574a6e9
4,893
py
Python
noxfile.py
supriome/furo
2be6a9b7843fadb32a34605ec2337074eb623fc1
[ "MIT" ]
null
null
null
noxfile.py
supriome/furo
2be6a9b7843fadb32a34605ec2337074eb623fc1
[ "MIT" ]
null
null
null
noxfile.py
supriome/furo
2be6a9b7843fadb32a34605ec2337074eb623fc1
[ "MIT" ]
null
null
null
"""Development automation """ import datetime import glob import os import tempfile import nox PACKAGE_NAME = "iluvatar" nox.options.sessions = ["lint", "test"] # # Helpers # def _install_this_project_with_flit(session, *, extras=None, editable=False): session.install("flit") args = [] if extras: args.append("--extras") args.append(",".join(extras)) if editable: args.append("--pth-file" if os.name == "nt" else "--symlink") session.run("flit", "install", "--deps=production", *args, silent=True) # # Development Sessions # @nox.session(name="docs-live", reuse_venv=True) def docs_live(session): if session.posargs: docs_dir = session.posargs[0] additional_dependencies = session.posargs[1:] else: docs_dir = "docs/" additional_dependencies = () build_command = "./node_modules/.bin/gulp build" _install_this_project_with_flit(session, extras=["doc"], editable=True) session.install("sphinx-autobuild", *additional_dependencies) with tempfile.TemporaryDirectory() as destination: session.run( "sphinx-autobuild", # for sphinx-autobuild "--port=0", "--watch=src/", f"--pre-build={build_command}", r"--re-ignore=src/.*/theme/iluvatar/static/.*\.(css|js)", # ignore the generated files "--open-browser", # for sphinx "-b=dirhtml", "-a", docs_dir, destination, ) @nox.session(reuse_venv=True) def docs(session): # Generate relevant files prior to installation session.run("gulp", "build", external=True) _install_this_project_with_flit(session, extras=["doc"], editable=False) # Generate documentation into `build/docs` session.run("sphinx-build", "-b", "dirhtml", "-v", "docs/", "build/docs") @nox.session(reuse_venv=True) def lint(session): session.install("pre-commit") args = list(session.posargs) args.append("--all-files") if "CI" in os.environ: args.append("--show-diff-on-failure") session.run("pre-commit", "run", *args) @nox.session def test(session): _install_this_project_with_flit(session, extras=["test"]) args = session.posargs or ["-n", "auto", "--cov", PACKAGE_NAME] session.run("pytest", *args) def get_release_versions(version_file): marker = "__version__ = " with open(version_file) as f: for line in f: if line.startswith(marker): version = line[len(marker) + 1 : -2] current_number = int(version.split(".dev")[-1]) break else: raise RuntimeError("Could not find current version.") today = datetime.date.today() release_version = today.strftime(f"%Y.%m.%d.beta{current_number}") next_version = today.strftime(f"%Y.%m.%d.dev{current_number+1}") return release_version, next_version @nox.session def release(session): version_file = f"src/{PACKAGE_NAME}/__init__.py" allowed_upstreams = [ f"git@github.com:supriome/{PACKAGE_NAME.replace('_', '-')}.git" ] release_version, next_version = get_release_versions(version_file) session.install("flit", "twine", "release-helper") # Sanity Checks session.run("release-helper", "version-check-validity", release_version) session.run("release-helper", "version-check-validity", next_version) session.run("release-helper", "directory-check-empty", "dist") session.run("release-helper", "git-check-branch", "main") session.run("release-helper", "git-check-clean") session.run("release-helper", "git-check-tag", release_version, "--does-not-exist") session.run("release-helper", "git-check-remote", "origin", *allowed_upstreams) # Prepare release commit session.run("release-helper", "version-bump", version_file, release_version) session.run("git", "add", version_file, external=True) session.run( "git", "commit", "-m", f"Prepare release: {release_version}", external=True ) # Build the package session.run("gulp", "build", external=True) session.run("flit", "build") session.run("twine", "check", *glob.glob("dist/*")) # Tag the commit session.run( # fmt: off "git", "tag", release_version, "-m", f"Release {release_version}", "-s", external=True, # fmt: on ) # Prepare back-to-development commit session.run("release-helper", "version-bump", version_file, next_version) session.run("git", "add", version_file, external=True) session.run("git", "commit", "-m", "Back to development", external=True) # Push the commits and tag. session.run("git", "push", "origin", "main", release_version, external=True) # Upload the distributions. session.run("twine", "upload", *glob.glob("dist/*"))
29.835366
99
0.633967
9374e1f74d269d4a23b59718ced33eaba52ad14c
3,919
py
Python
envs/doom/action_space.py
Zhehui-Huang/scalable_agent
505909ad9f2d3e9bce8bb9201e05e780002428df
[ "Apache-2.0" ]
null
null
null
envs/doom/action_space.py
Zhehui-Huang/scalable_agent
505909ad9f2d3e9bce8bb9201e05e780002428df
[ "Apache-2.0" ]
null
null
null
envs/doom/action_space.py
Zhehui-Huang/scalable_agent
505909ad9f2d3e9bce8bb9201e05e780002428df
[ "Apache-2.0" ]
null
null
null
import gym from gym.spaces import Discrete, Box from algorithms.spaces.discretized import Discretized def key_to_action_basic(key): from pynput.keyboard import Key table = {Key.left: 0, Key.right: 1, Key.up: 2, Key.down: 3} return table.get(key, None) def doom_action_space_basic(): """ TURN_LEFT TURN_RIGHT MOVE_FORWARD MOVE_BACKWARD """ space = gym.spaces.Tuple(( Discrete(3), # noop, turn left, turn right Discrete(3), # noop, forward, backward )) space.key_to_action = key_to_action_basic return space def doom_action_space(): """ Standard action space for full-featured Doom environments (e.g. deathmatch). TODO: crouch? TODO: strafe? This should precisely correspond to the available_buttons configuration in the .cfg file. This function assumes: MOVE_FORWARD MOVE_BACKWARD MOVE_RIGHT MOVE_LEFT SELECT_NEXT_WEAPON SELECT_PREV_WEAPON ATTACK SPEED TURN_LEFT_RIGHT_DELTA """ return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(3), # noop, prev_weapon, next_weapon Discrete(2), # noop, attack Discrete(2), # noop, sprint Box(-1.0, 1.0, (1,)), )) def doom_action_space_discretized(): return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(3), # noop, prev_weapon, next_weapon Discrete(2), # noop, attack Discrete(2), # noop, sprint Discretized(11, min_action=-10.0, max_action=10.0), # turning using discretized continuous control )) def doom_action_space_discretized_no_weap(): return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(2), # noop, attack Discrete(2), # noop, sprint Discretized(11, min_action=-10.0, max_action=10.0), # turning using discretized continuous control )) def doom_action_space_continuous_no_weap(): return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(2), # noop, attack Discrete(2), # noop, sprint Box(-1.0, 1.0, (1,)), )) def doom_action_space_discrete(): return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(3), # noop, turn right, turn left Discrete(3), # noop, prev_weapon, next_weapon Discrete(2), # noop, attack Discrete(2), # noop, sprint )) def doom_action_space_discrete_no_weap(): return gym.spaces.Tuple(( Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(3), # noop, turn right, turn left Discrete(2), # noop, attack Discrete(2), # noop, sprint )) def doom_action_space_full_discretized(with_use=False): """ MOVE_FORWARD MOVE_BACKWARD MOVE_RIGHT MOVE_LEFT SELECT_WEAPON1 SELECT_WEAPON2 SELECT_WEAPON3 SELECT_WEAPON4 SELECT_WEAPON5 SELECT_WEAPON6 SELECT_WEAPON7 ATTACK SPEED TURN_LEFT_RIGHT_DELTA """ spaces = [ Discrete(3), # noop, forward, backward Discrete(3), # noop, move right, move left Discrete(8), # noop, select weapons 1-7 Discrete(2), # noop, attack Discrete(2), # noop, sprint ] if with_use: spaces.append(Discrete(2)) # noop, use spaces.append(Discretized(21, min_action=-12.5, max_action=12.5)) # turning using discretized continuous control return gym.spaces.Tuple(spaces)
28.194245
117
0.61776
8e83e4b04d07b9d3c21c925fd61db823f0c08191
2,151
py
Python
gallery/models.py
mary-wan/PhotoBay
1fbfb88e168d40ed5d8e901d0a766041b7a72ae3
[ "Unlicense" ]
1
2022-01-17T13:27:02.000Z
2022-01-17T13:27:02.000Z
gallery/models.py
mary-wan/PhotoBay
1fbfb88e168d40ed5d8e901d0a766041b7a72ae3
[ "Unlicense" ]
null
null
null
gallery/models.py
mary-wan/PhotoBay
1fbfb88e168d40ed5d8e901d0a766041b7a72ae3
[ "Unlicense" ]
null
null
null
from django.db import models class Location(models.Model): name = models.CharField(max_length=100) def save_location(self): self.save() def delete_location(self): self.delete() @classmethod def all_locations(cls): locations = Location.objects.all() return locations @classmethod def update_location(cls, id, name): cls.objects.filter(id=id).update(name=name) def __str__(self): return self.name class Category(models.Model): name = models.CharField(max_length=100) def save_category(self): self.save() def delete_category(self): self.delete() @classmethod def update_category(cls, id, name): cls.objects.filter(id=id).update(name=name) def __str__(self): return self.name class Image(models.Model): image = models.ImageField(upload_to='images/') description = models.TextField() name = models.CharField(max_length=200) upload_date = models.DateTimeField(auto_now_add=True) category = models.ForeignKey(Category,on_delete=models.CASCADE) location = models.ForeignKey(Location,on_delete=models.CASCADE) def save_image(self): self.save() def delete_image(self): self.delete() @classmethod def update_image(cls, id ,image, description , name,category,location): cls.objects.filter(id = id).update(image=image,description=description,name=name,category=category,location=location) # @classmethod # def update_image(cls, id ,image): # cls.objects.filter(id = id).update(image=image) @classmethod def get_image_by_id(cls,id): image =cls.objects.filter(id= id).first() return image @classmethod def search_image(cls, search_category): images = cls.objects.filter(category__name__icontains=search_category) return images @classmethod def filter_by_location(cls,search_location): location = cls.objects.filter(location__name=search_location).all() return location
26.555556
125
0.651325
f1bd98d3171a4b6f2d0bb79e9d9c09e5df10a18c
5,190
py
Python
thermo/__init__.py
tedhyu/thermo
1966c7cba5a603984b49f22c97ff00a144d90812
[ "MIT" ]
1
2021-03-05T23:39:47.000Z
2021-03-05T23:39:47.000Z
thermo/__init__.py
tedhyu/thermo
1966c7cba5a603984b49f22c97ff00a144d90812
[ "MIT" ]
1
2021-12-17T21:28:17.000Z
2021-12-17T21:28:17.000Z
thermo/__init__.py
tedhyu/thermo
1966c7cba5a603984b49f22c97ff00a144d90812
[ "MIT" ]
1
2022-01-18T16:14:59.000Z
2022-01-18T16:14:59.000Z
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from . import acentric from . import activity from . import chemical from . import combustion from . import critical from . import coolprop from . import dipole from . import dippr from . import datasheet from . import electrochem from . import elements from . import environment from . import eos from . import eos_mix from . import heat_capacity from . import identifiers from . import joback from . import law from . import lennard_jones from . import miscdata from . import mixture from . import permittivity from . import phase_change from . import property_package from . import reaction from . import refractivity from . import safety from . import solubility from . import stream from . import interface from . import thermal_conductivity from . import triple from . import unifac from . import utils from . import vapor_pressure from . import virial from . import viscosity from . import volume from .acentric import * from .activity import * from .chemical import * from .combustion import * from .critical import * from .coolprop import * from .dipole import * from .dippr import * from .datasheet import * from .electrochem import * from .elements import * from .environment import * from .eos import * from .eos_mix import * from .heat_capacity import * from .joback import * from .identifiers import * from .law import * from .lennard_jones import * from .miscdata import * from .mixture import * from .permittivity import * from .phase_change import * from .property_package import * from .reaction import * from .refractivity import * from .safety import * from .solubility import * from .stream import * from .interface import * from .thermal_conductivity import * from .triple import * from .unifac import * from .utils import * from .vapor_pressure import * from .virial import * from .viscosity import * from .volume import * __all__ = ['activity', 'chemical', 'combustion', 'critical', 'dipole', 'electrochem', 'elements', 'environment', 'eos', 'eos_mix', 'heat_capacity', 'identifiers', 'joback', 'law', 'lennard_jones', 'miscdata', 'permittivity', 'phase_change', 'property_package', 'reaction', 'refractivity', 'safety', 'solubility', 'interface', 'thermal_conductivity', 'triple', 'utils', 'vapor_pressure', 'virial', 'viscosity', 'volume', 'acentric', 'coolprop', 'datasheet', 'dippr', 'unifac', 'stream', 'mixture'] __all__.extend(acentric.__all__) __all__.extend(activity.__all__) __all__.extend(chemical.__all__) __all__.extend(combustion.__all__) __all__.extend(critical.__all__) __all__.extend(coolprop.__all__) __all__.extend(dipole.__all__) __all__.extend(dippr.__all__) __all__.extend(datasheet.__all__) __all__.extend(electrochem.__all__) __all__.extend(elements.__all__) __all__.extend(environment.__all__) __all__.extend(eos.__all__) __all__.extend(eos_mix.__all__) __all__.extend(heat_capacity.__all__) __all__.extend(identifiers.__all__) __all__.extend(joback.__all__) __all__.extend(law.__all__) __all__.extend(lennard_jones.__all__) __all__.extend(miscdata.__all__) __all__.extend(mixture.__all__) __all__.extend(permittivity.__all__) __all__.extend(phase_change.__all__) __all__.extend(property_package.__all__) __all__.extend(reaction.__all__) __all__.extend(refractivity.__all__) __all__.extend(safety.__all__) __all__.extend(solubility.__all__) __all__.extend(stream.__all__) __all__.extend(interface.__all__) __all__.extend(thermal_conductivity.__all__) __all__.extend(triple.__all__) __all__.extend(utils.__all__) __all__.extend(unifac.__all__) __all__.extend(vapor_pressure.__all__) __all__.extend(virial.__all__) __all__.extend(viscosity.__all__) __all__.extend(volume.__all__) # backwards compatibility hack to allow thermo.chemical.Mixture to still be importable chemical.__dict__['Mixture'] = mixture.Mixture chemical.__dict__['Stream'] = stream.Stream # However, they cannot go in thermo.chemical's __all__ or they will appear in the # documentation and Sphinx currently has no wat to exclude them __version__ = '0.1.39'
32.4375
86
0.787669
b50916b69ad6312c335ba382dff65bf62d6b6f40
21,884
py
Python
sec_groups/classgrps.py
toonsegers/sec_groups
32541f8e365b8ed280133c5f88aafb09c5eb2790
[ "MIT" ]
3
2021-07-21T10:15:46.000Z
2022-01-06T02:12:05.000Z
sec_groups/classgrps.py
toonsegers/sec_groups
32541f8e365b8ed280133c5f88aafb09c5eb2790
[ "MIT" ]
null
null
null
sec_groups/classgrps.py
toonsegers/sec_groups
32541f8e365b8ed280133c5f88aafb09c5eb2790
[ "MIT" ]
null
null
null
"""Form class groups. #TODO: add references to literature. """ import logging from math import floor, sqrt, log, log2 from sec_groups.tools.secgcd import ( extended_euclid_xgcd, secure_gcd, secure_xgcd, secure_binary_xgcd, secure_division, ) from sec_groups.tools.bitlen import bit_length_integrated from sec_groups.tools.repeat import secure_pow from mpyc.runtime import mpc import mpyc.gmpy as gmpy2 from sec_groups.tools.find_primes import find_primes_for_schnorr, _find_ike_prime logger_cg = logging.getLogger("classgroups") logger_cg.setLevel(logging.INFO) def xgcd_(a, b): """Wraps extended euclid from secgcd module.""" return extended_euclid_xgcd(a, b) def discriminant(f): a, b, c = f[0], f[1], f[2] return b ** 2 - 4 * a * c def lincong(a, b, m): """Solve ax = b mod m return mu, nu such that x = mu + nu n for all n in Z. Based on Lipa Long, "Binary Quadratic Forms", 2019. See: https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf """ g, d, e = xgcd_(a, m) logger_cg.debug(f"In lincong, done xgcd: {g}, {d}, {e} = xgcd({a}, {m})") q, r = divmod(b, g) logger_cg.debug(f"In lincong, done {q}, {r} = division({b}, {g}).") # L19 Thm. 7.1: Congruence has a solution iff gcd(a,m) | b. if r != 0: raise ValueError("The linear congruence has no solution") else: mu = (q * d) % m logger_cg.debug(f"In lincong, done _, {mu} = division({q}*{d}, {m}).") nu = m // g return mu, nu def secure_lincong(a, b, m): """Solve ax = b mod m return mu, nu such that x = mu + nu n for all n in Z. """ g, d, e = secure_xgcd(a, m) logger_cg.debug(f"In lincong, done secure_xgcd().") # q = floor(b/g) # q = b // g # r = b % g # q, r = secure_division(b, g) q = b / g r = 0 logger_cg.debug(f"In lincong, done secure_division(b, g).") if isinstance(r, int) and r != 0: raise ValueError("The congruence has no solution") else: # mu = (q * d) % m _, mu = secure_division(q * d, m) logger_cg.debug(f"In lincong, done secure_division(q*d, m).") # nu = m // g # nu, _ = secure_division(m, g) nu = m / g return mu, nu def check_well_formed(f): a, b, c = f[0], f[1], f[2] disc = b ** 2 - 4 * a * c if a > 0 and disc < 0: pass else: raise ValueError( f"Form ({a}, {b}, {c}) does not have a > 0 and discriminant < 0: a={a}, disc={disc} " ) def check_reduced(f): a, b, c = f[0], f[1], f[2] if -a < b and b <= a: # check normalized pass else: return False if a <= c: pass else: return False if a == c: if b >= 0: pass else: return False return True def normalize(f): a, b, c = f[0], f[1], f[2] group = type(f) check_well_formed(f) r = (a - b) // (2 * a) eta = (a, b + 2 * r * a, a * r ** 2 + b * r + c) return group(eta) def reduce_form(f): group = type(f) check_well_formed(f) f = normalize(f) while not check_reduced(f): a, b, c = f[0], f[1], f[2] s = (c + b) // (2 * c) f = group((c, -1 * b + 2 * s * c, c * s ** 2 - b * s + a)) return f @mpc.coroutine async def secure_binary_reduce(f, size_b = None, leak_size_b = True): """Binary reduction algorithm by Agarwal and Frandsen. Based on Algorithm 3 from AF06: 'A New GCD Algorithm for Quadratic Number Rings with Unique Factorization' by Agarwal and Frandsen, 2006 (Aarhus) https://users-cs.au.dk/gudmund/Documents/38870030.pdf Requires: f is positive definite (iff discriminant < 0 and a > 0). NB: Option to open (leak) size(b) is default; to reduce number of iterations of main loop. Alternative is to pass size_b bound. """ def size(a): # Requires non-negative values return bit_length_integrated(mpc, a) def right_action_S_on_f(f): return [f[2], -f[1], f[0]] def right_action_Tm_on_f(m, f): fa, fb, fc = f[0], f[1], f[2] return [fa, fb + 2 * m * fa, (m ** 2) * fa + m * fb + fc] sec_grp = type(f) await mpc.returnType(sec_grp) secint = sec_grp.sectype_of_value a, b, c = f[0], f[1], f[2] if size_b: n = size_b elif not size_b and leak_size_b: n = await mpc.output(size(b)) # TODO: find good bound for for-loop else: raise NotImplementedError for i in range(n): sgn_b = 1 - 2 * mpc.sgn( b, l=n + 3, LT=True ) # TODO: check l; if n + 0, sgn_b produces inccorect values <-1 abs_b_gt_abs_2a = sgn_b * b > 2 * a abs_a_gt_abs_c = a > c # a always postive, because f positive definite ab_gt_0 = (sgn_b * sgn_b + sgn_b) // 2 # a always postive, because f positive definite size_abs_b = size(sgn_b * b) size_a = size(a) # TODO: find bound for (bit-length of) j. j = size_abs_b - size_a - 1 # take |j| to avoid negative secint exponents. 2**j is used when |B|>2|A| and original j is positive sgn_j = 1 - 2 * mpc.sgn(j, l=n, LT=True) abs_j = sgn_j * j abs_j_bits = mpc.to_bits(abs_j, n) m = secure_pow(2, abs_j_bits, secint) m = mpc.if_else(ab_gt_0, -m, m) a, b, c = mpc.if_else( abs_b_gt_abs_2a, right_action_Tm_on_f(m, (a, b, c)), mpc.if_else(abs_a_gt_abs_c, right_action_S_on_f((a, b, c)), [a, b, c]), ) print(f"Secure binary reduction: {round(100*i/n)}%", end="\r") assert f.group.discriminant < 0 m = mpc.if_else(b > 0, secint(-1), secint(1)) abs_b_gt_a = mpc.abs(b) > a a, b, c = mpc.if_else(abs_b_gt_a, right_action_Tm_on_f(m, (a, b, c)), [a, b, c]) a_gt_c = a > c a, b, c = mpc.if_else( abs_b_gt_a * a_gt_c, right_action_S_on_f((a, b, c)), [a, b, c] ) a, b, c = mpc.if_else((b < 0) * (a == c), right_action_S_on_f((a, b, c)), [a, b, c]) a, b, c = mpc.if_else( (b < 0) * (a == -b), right_action_Tm_on_f(1, (a, b, c)), [a, b, c] ) return sec_grp((a, b, c)) def parteucl(a, b, L): """Extended partial Euclides following Cohen Section 5.4. """ # Step 1 Initialize v = 0 d = a v2 = 1 v3 = b z = 0 while abs(v3) > L: # Step 3 Euclidean step q, t3 = d//v3, d%v3 t2 = v - q*v2 v = v2 d = v3 v2 = t2 v3 = t3 z = z+1 # Step 2 Finished? if z % 2: v2 = -v2 v3 = -v3 return d, v, v2, v3, z def nudupl(f): """Square(f) following Cohen, Alg. 5.4.8. """ L = int(((abs(f.discriminant))/4)**(1/4)) a, b, c = f[0], f[1], f[2] # Step 1 Euclidean step d1, u, v = extended_euclid_xgcd(b, a) A = a//d1 B = b//d1 C = (-c*u) % A C1 = A-C if C1 < C: C = -C1 # Step 2 Partial reduction d, v, v2, v3, z = parteucl(A, C, L) # Step 3 Special case if z==0: g = (B*v3+c)//d a2 = d**2 c2 = v3**2 b2 = b + (d+v3)**2 - a2 - c2 c2 = c2 + g*d1 else: # Step 4 Final computations e = (c*v + B*d)//A g = (e*v2 - B)//v b2 = e*v2 + v*g if d1>1: b2 = d1*b2 v = d1*v v2 = d1*v2 a2 = d**2 c2 = v3**2 b2 = b2 + (d+v3)**2 - a2 - c2 a2 = a2 + e*v c2 = c2 + g*v2 f2 = type(f)((a2, b2, c2)) return f2 def square(f): """Square form""" group = type(f) a, b, c = f[0], f[1], f[2] mu, _ = lincong(b, c, a) A = a ** 2 B = b - 2 * a * mu C = mu ** 2 - (b * mu - c) // a return group((A, B, C)) def secure_square(f): sectype = type(f) """Square form""" a, b, c = f[0], f[1], f[2] mu, _ = secure_lincong(b, c, a) A = a ** 2 B = b - 2 * a * mu # C = mu ** 2 - (b * mu - c) // a C = mu ** 2 - (b * mu - c) / a return sectype((A, B, C)) def repeat_square(f, n): new_f = f for i in range(n): new_f = reduce(square(new_f)) return new_f def nucomp(phi1, phi2): """Nucomp algorithm for composition of binary quadratic forms. Per Jacobson and Van der Poorten 'Computational Aspects of NUCOMP', 2002 See: https://link.springer.com/chapter/10.1007%2F3-540-45455-1_10 Alternatively see Cohen 'A course in computational number theory' All divisions are exact (see Cohen, p. 244) """ delta = phi1.discriminant # JV02 uses the following L, which is different from Cohen's L L = int(abs(delta) ** (1 / 4)) # L = int(((abs(delta))/4)**(1/4)) # L used in Cohen's book # Step 1 if phi1[2] < phi2[2]: phi1, phi2 = phi2, phi1 u1, v1, w1 = phi1[0], phi1[1], phi1[2] u2, v2, w2 = phi2[0], phi2[1], phi2[2] s = (v1 + v2) // 2 m = v2 - s # Step 2 F, b, c = extended_euclid_xgcd(u2, u1) if s % F == 0: # F | s G = F A_x = G B_x = m * b B_y = u1 // G C_y = u2 // G D_y = s // G # go to Step 5 else: # F does not divide s # Step 3 G, x, y = extended_euclid_xgcd(F, s) H = F // G B_y = u1 // G C_y = u2 // G D_y = s // G # Step 4 l = y * (b * (w1 % H) + c * (w2 % H)) % H B_x = b * (m // H) + l * (B_y // H) # Step 5 b_x = B_x % B_y b_y = B_y # Step 5a x, y, z = 1, 0, 0 while abs(b_y) > L and b_x != 0: # Step 5c q, t = divmod(b_y, b_x) b_y = b_x b_x = t t = y - q * x y = x x = t z += 1 # Step 5b if not abs(b_y) > L and b_x != 0 if z % 2 == 1: b_y = -b_y y = -y a_x = G * x a_y = G * y # Step 6 if z == 0: Q1 = C_y * b_x c_x = (Q1 - m) // B_y d_x = (b_x * D_y - w2) // B_y u3 = b_y * C_y w3 = b_x * c_x - G * d_x v3 = v2 - 2 * Q1 else: # Step 7 c_x = (C_y * b_x - m * x) // B_y Q1 = b_y * c_x Q2 = Q1 + m d_x = (D_y * b_x - w2 * x) // B_y Q3 = y * d_x Q4 = Q3 + D_y d_y = Q4 // x if b_x != 0: c_y = Q2 // b_x else: c_y = (c_x * d_y - w1) // d_x u3 = b_y * c_y - a_y * d_y w3 = b_x * c_x - a_x * d_x v3 = G * (Q3 + Q4) - Q1 - Q2 return type(phi1)((u3, v3, w3)) def compose(f1, f2): """Composition of binary quadratic forms. Based on Lipa Long, "Binary Quadratic Forms", 2019. See: https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf """ group = type(f1) a1, b1, c1 = f1[0], f1[1], f1[2] a2, b2, c2 = f2[0], f2[1], f2[2] # step 1 g = (b1 + b2) // 2 h = -(b1 - b2) // 2 w, _, _ = xgcd_(a1, a2) w, _, _ = xgcd_(w, g) logger_cg.debug("Done with 2 gcds in compose.") # step 2 j = w s = a1 // w t = a2 // w u = g // w # step 3 logger_cg.debug("Start lincong 1.") mu, nu = lincong(t * u, h * u + s * c1, s * t) # step 4 logger_cg.debug("Start lincong 2.") lmb, _ = lincong(t * nu, h - t * mu, s) # step 5 k = mu + nu * lmb l = (k * t - h) // s m = (t * u * k - h * u - c1 * s) // (s * t) # step 6 A = s * t B = j * u - (k * t + l * s) C = k * l - j * m # step 7 return group((A, B, C)) def secure_compose(f1, f2): sectype = type(f1) a1, b1, c1 = f1[0], f1[1], f1[2] a2, b2, c2 = f2[0], f2[1], f2[2] # step 1 g = (b1 + b2) / 2 h = -(b1 - b2) / 2 w = secure_gcd(a1, a2) w = secure_gcd(w, g) logger_cg.debug("Done with 2 gcds in compose.") # step 2 j = w s = a1 / w t = a2 / w u = g / w # step 3 logger_cg.debug("Start secure_lincong 1.") mu, nu = secure_lincong(t * u, h * u + s * c1, s * t) # step 4 logger_cg.debug("Start secure_lincong 2.") lmb, _ = secure_lincong(t * nu, h - t * mu, s) # step 5 k = mu + nu * lmb l = (k * t - h) / s m = (t * u * k - h * u - c1 * s) / (s * t) # step 6 A = s * t B = j * u - (k * t + l * s) C = k * l - j * m # step 7 return sectype((A, B, C)) def shanks_compose(f1, f2): """Composition of positive definite forms. Originally by Shanks 'Class Number, a theory of factorization, and genera', Proc. Symp. in Pure Maths, 1969. Taken from Coh93, Algorithm 5.4.7. """ # Step 1 if f1[0] > f2[0]: f1, f2 = f2, f1 a1, b1, c1 = f1[0], f1[1], f1[2] a2, b2, c2 = f2[0], f2[1], f2[2] s = (b1 + b2)//2 n = b2 - s # Step 2: First Euclidean step if a2 % a1 == 0: y1 = 0 d = a1 else: d, u, v = extended_euclid_xgcd(a2, a1) y1 = u # Step 3: Second Euclidean step if s % d == 0: y2 = -1 x2 = 0 d1 = d else: d1, u, v = extended_euclid_xgcd(s, d) x2 = u y2 = -v # Step 4: Compose v1 = a1//d1 v2 = a2//d1 r = (y1*y2*n - x2*c2) % v1 b3 = b2 + 2*v2*r a3 = v1*v2 c3 = (c2*d1 + r*(b2+v2*r))//v1 return type(f1)((a3, b3, c3)) def secure_shanks_compose(f1, f2): """Secure protocol for composition of positive definite forms. Originally by Shanks 'Class Number, a theory of factorization, and genera', Proc. Symp. in Pure Maths, 1969. Taken from Coh93, Algorithm 5.4.7. """ # Step 1 a1, b1, c1, a2, b2, c2 = mpc.if_else( f1[0]>f2[0], [f2[0], f2[1], f2[2], f1[0], f1[1], f1[2]], [f1[0], f1[1], f1[2], f2[0], f2[1], f2[2]] ) s = (b1 + b2)/2 n = b2 - s # Step 2: First Euclidean step # Skip case distinction (if a1 | a2 as in Coh93) in the oblivious case. # Case distinction is pure for performance reasons. d, u, v = secure_xgcd(a2, a1) y1 = u # Step 3: Second Euclidean step # Skip case distinction (if d | s as in Coh93) in the oblivious case. d1, u, v = secure_xgcd(s, d) x2 = u y2 = -v # Step 4: Compose v1 = a1/d1 v2 = a2/d1 # r = (y1*y2*n - x2*c2) % v1 r_prep = (y1*y2*n - x2*c2) _, r = secure_division(r_prep, v1) b3 = b2 + 2*v2*r a3 = v1*v2 c3 = (c2*d1 + r*(b2+v2*r))/v1 return type(f1)((a3, b3, c3)) def _compose_with_self(f, n): def composed(arg): for _ in range(n): arg = f(arg) return arg return composed def number2ideal(n, D): def check_a(a, D): try: # print(legendre(D,a) ==1) # print(a % 8 in {3, 5, 7}) return not (gmpy2.legendre(D, a) == 1 and a % 8 in {3, 5, 7}) except: return True # print(f"{n=}") a = max(2, n - 1) # print(f"a at beginning {a=}") # while legendre(D, a) != 1 and a % 8 in {3, 5, 7}: while check_a(a, D): a = int(gmpy2.next_prime(a)) # print(f"next prime {a=}") if a % 4 == 3: # b = D**int(((a+1)/4)) % a b = D ** ((a + 1) // 4) % a else: # if D**int(((a-1)/4)) % a == 1: # b = D**int(((a+3)/8)) % a # else: # b = 2*D*(4*D)**int(((a-5)/8)) % a if D ** ((a - 1) // 4) % a == 1: b = D ** ((a + 3) // 8) % a else: b = 2 * D * (4 * D) ** ((a - 5) // 8) % a if D % 2 != b: b = a - b return (a, b), n - a def ideal2form(ideal, D): a = ideal[0] b = ideal[1] # f = (a, b, int((b**2 - D)/(4*a))) f = (a, b, (b ** 2 - D) // (4 * a)) return reduce(f) def number2form(n, D): ideal, distance = number2ideal(n, D) f = ideal2form(ideal, D) return f, distance def ideal2number(ideal, distance): a, b = ideal return a + distance def form2ideal(f): a, b = f[0], f[1] return (abs(a), b) def forminverse(f): group = type(f) return group((f[0], -f[1], f[2])) def idealinverse(ideal): return (ideal[0], -ideal[1]) def form2number(f, distance): ideal = form2ideal(f) return ideal2number(ideal, distance) def principal_form(disc): """Construct principal form for given discriminant. Follows Def. 5.4 from `Binary quadratic forms` by Lipa Long, 2019: https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf """ assert disc % 4 == 0 or disc % 4 == 1 k = disc % 2 f = (1, k, (k ** 2 - disc) // 4) return f def create_generator_of_subgroup(discriminant): """'Generator' as per Chia VDF competition. See: https://www.chia.net/2018/11/07/chia-vdf-competition-guide.en.html Note: This element generates a cyclic subgroup for given discriminant, not per se the entire group. """ if (1 - discriminant) % 8 == 0: g = (2, 1, (1 - discriminant) // 8) else: g = None return g def find_fundamental_discriminant(bit_length): """Find fundamental discriminant with additional property: 8 | 1 - discriminant. Delta = 1 mod 4 and Delta is square-free, or, Delta = 0 mod 4, Delta/4 = 2 or 3 mod 4 and Delta/4 is square-free. Fundamental discriminants are those values which are discriminants of quadratic fields. Requirement 8 | (1 - discriminant) necessary for create_generator_subgroup method. """ p = gmpy2.next_prime(1 << bit_length - 1) while (-p % 4) != 1 or (1 - -p) % 8 != 0: p = gmpy2.next_prime(p) return int(-p) def prime_form(a, grp): """For prime a, take b square root of discriminant mod 4a. Algorithm 3.3 from Buchmann, Vollmer 'Binary Quadratic Forms' 2007. """ assert gmpy2.is_prime(a) disc = grp.discriminant # Take b square root of disc mod 4a, a prime. if a % 4 == 3: b = disc ** ((a + 1) // 4) % a else: if disc ** ((a - 1) // 4) % a == 1: b = disc ** ((a + 3) // 8) % a else: b = 2 * disc * (4 * disc) ** ((a - 5) // 8) % a if disc % 2 != b: b = a - b return grp((a, b, (b ** 2 - disc) // (4 * a))) def _kronecker(a, b): """Implements Legendre symbol and (m/p) for p = 2 See BV07 Definition 3.4.3. """ if b==2: if a % 2 == 0: return 0 else: return (-1)**((a**2-1)//8) else: return gmpy2.legendre(a, b) def generating_system(grp): """Based on Algorithm 9.1 from BV07. Time: O(|group.discriminant|^(1/2+o(1))), see Section 9.6. BV07: "Based on an idea of H.W. Lenstra. It is the fastest known deterministic class number algorithm." Tested based on examples from: * BV07, Section 9.6.3 * https://math.stackexchange.com/questions/2618232/class-group-of-a-field (requires group.nucomp=True) """ disc = grp.discriminant def c2(disc): # See BV07 Prop. 9.5.1 return int(sqrt(abs(disc) / 3)) def c3(disc): # See BV07 Prop. 9.5.3 return 6*int(abs(log2(abs(disc)))**2) def primes(start=2, stop=c2(disc)): n = start while gmpy2.next_prime(n) <= stop: n = gmpy2.next_prime(n) yield int(n) def update_skip_set(skip_set): # See BV07 Section 9.6.2, p. 199 # Remove p if there exists... for p in p_set: # ... a prime form f = (a,b,c) with a == p skip_set.union(set([a[0] for a in prime_forms if a[0] == p])) # ... reduced form f = (a, b, p) with b <= 0 skip_set.union(set([a[2] for a in grp_set if a[1] <= 0])) # ... reduced form f = (a, b, c) with p=a-b+c en 0<=2a-b<=p for a in grp_set: if a[0] - a[1] + a[2] == p: skip_set.add(p) if 0 <= 2 * a[0] - a[1] and 2 * a[0] - a[1] <= p: skip_set.add(p) return skip_set p_set = [] # c = c2(disc) # Does not work for tiny discriminant = -23 c = c3(disc) # See BV07 Section 9.6.1 and eq (8.16) for definition of P set. p_set = [p for p in primes(1, c) if _kronecker(disc, p) != -1] skip_set = set() grp_set = set() gen_set = set() prime_forms = set() rotor = ["-", "\\", "|", "/", "-", "\\", "|", "/"] for p in p_set: if not p in skip_set: f = prime_form(p, grp) prime_forms.add(f.value) # Add form values to sets, because form instances are not hashable. if f.value not in grp_set: gen_set.add(f.value) fnew = f e = 1 while not fnew.value in grp_set: grp_set.add(fnew.value) e += 1 fnew = reduce_form(f ^ e) print(f"Calculating generating set for {grp}: {rotor[(e//1000) % 8]}", end="\r") # Update set P; P = p_set \ skip_set in this implementation. skip_set = update_skip_set(skip_set) return list(map(grp, grp_set)), list(map(grp, gen_set))
27.151365
111
0.483961
87d5a13d433b07db4fa4546b305b4f8eba62dd4a
7,212
py
Python
audio_visual/train.py
Chilydream/deep_avsr
17c9833145e108333932d0c7e0a9391d20dc16f9
[ "MIT" ]
null
null
null
audio_visual/train.py
Chilydream/deep_avsr
17c9833145e108333932d0c7e0a9391d20dc16f9
[ "MIT" ]
null
null
null
audio_visual/train.py
Chilydream/deep_avsr
17c9833145e108333932d0c7e0a9391d20dc16f9
[ "MIT" ]
1
2022-01-27T07:11:13.000Z
2022-01-27T07:11:13.000Z
""" Author: Smeet Shah Copyright (c) 2020 Smeet Shah File part of 'deep_avsr' GitHub repository available at - https://github.com/lordmartian/deep_avsr """ import torch import torch.optim as optim import torch.nn as nn from torch.utils.data import DataLoader, random_split import numpy as np import matplotlib import matplotlib.pyplot as plt import os, shutil from config import args from models.av_net import AVNet from data.lrs2_dataset import LRS2Main from data.utils import collate_fn from utils.general import num_params, train, evaluate def main(): matplotlib.use("Agg") np.random.seed(args["SEED"]) torch.manual_seed(args["SEED"]) gpuAvailable = torch.cuda.is_available() device = torch.device("cuda" if gpuAvailable else "cpu") kwargs = {"num_workers": args["NUM_WORKERS"], "pin_memory": True} if gpuAvailable else {} torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False #declaring the train and validation datasets and their corresponding dataloaders audioParams = {"stftWindow":args["STFT_WINDOW"], "stftWinLen":args["STFT_WIN_LENGTH"], "stftOverlap":args["STFT_OVERLAP"]} videoParams = {"videoFPS":args["VIDEO_FPS"]} noiseParams = {"noiseFile":args["DATA_DIRECTORY"] + "/noise.wav", "noiseProb":args["NOISE_PROBABILITY"], "noiseSNR":args["NOISE_SNR_DB"]} trainData = LRS2Main("train", args["DATA_DIRECTORY"], args["MAIN_REQ_INPUT_LENGTH"], args["CHAR_TO_INDEX"], args["STEP_SIZE"], audioParams, videoParams, noiseParams) trainLoader = DataLoader(trainData, batch_size=args["BATCH_SIZE"], collate_fn=collate_fn, shuffle=True, **kwargs) noiseParams = {"noiseFile":args["DATA_DIRECTORY"] + "/noise.wav", "noiseProb":0, "noiseSNR":args["NOISE_SNR_DB"]} valData = LRS2Main("val", args["DATA_DIRECTORY"], args["MAIN_REQ_INPUT_LENGTH"], args["CHAR_TO_INDEX"], args["STEP_SIZE"], audioParams, videoParams, noiseParams) valLoader = DataLoader(valData, batch_size=args["BATCH_SIZE"], collate_fn=collate_fn, shuffle=True, **kwargs) #declaring the model, optimizer, scheduler and the loss function model = AVNet(args["TX_NUM_FEATURES"], args["TX_ATTENTION_HEADS"], args["TX_NUM_LAYERS"], args["PE_MAX_LENGTH"], args["AUDIO_FEATURE_SIZE"], args["TX_FEEDFORWARD_DIM"], args["TX_DROPOUT"], args["NUM_CLASSES"]) model.to(device) optimizer = optim.Adam(model.parameters(), lr=args["INIT_LR"], betas=(args["MOMENTUM1"], args["MOMENTUM2"])) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=args["LR_SCHEDULER_FACTOR"], patience=args["LR_SCHEDULER_WAIT"], threshold=args["LR_SCHEDULER_THRESH"], threshold_mode="abs", min_lr=args["FINAL_LR"], verbose=True) loss_function = nn.CTCLoss(blank=0, zero_infinity=False) #removing the checkpoints directory if it exists and remaking it if os.path.exists(args["CODE_DIRECTORY"] + "/train_checkpoints"): while True: ch = input("Continue and remove the 'checkpoints' directory? y/n: ") if ch == "y": break elif ch == "n": exit() else: print("Invalid input") shutil.rmtree(args["CODE_DIRECTORY"] + "/checkpoints") os.mkdir(args["CODE_DIRECTORY"] + "/train_checkpoints") os.mkdir(args["CODE_DIRECTORY"] + "/train_checkpoints/models") os.mkdir(args["CODE_DIRECTORY"] + "/train_checkpoints/plots") #loading the pretrained weights if args["PRETRAINED_MODEL_FILE"] is not None: print("\n\nPre-trained Model File: %s" %(args["PRETRAINED_MODEL_FILE"])) print("\nLoading the pre-trained model .... \n") model.load_state_dict(torch.load(args["CODE_DIRECTORY"] + args["PRETRAINED_MODEL_FILE"], map_location=device)) model.to(device) print("Loading Done.\n") trainingLossCurve = list() validationLossCurve = list() trainingWERCurve = list() validationWERCurve = list() #printing the total and trainable parameters in the model numTotalParams, numTrainableParams = num_params(model) print("\nNumber of total parameters in the model = %d" %(numTotalParams)) print("Number of trainable parameters in the model = %d\n" %(numTrainableParams)) print("\nTraining the model .... \n") trainParams = {"spaceIx":args["CHAR_TO_INDEX"][" "], "eosIx":args["CHAR_TO_INDEX"]["<EOS>"], "aoProb":args["AUDIO_ONLY_PROBABILITY"], "voProb":args["VIDEO_ONLY_PROBABILITY"]} valParams = {"decodeScheme":"greedy", "spaceIx":args["CHAR_TO_INDEX"][" "], "eosIx":args["CHAR_TO_INDEX"]["<EOS>"], "aoProb":0, "voProb":0} for step in range(args["NUM_STEPS"]): #train the model for one step trainingLoss, trainingCER, trainingWER = train(model, trainLoader, optimizer, loss_function, device, trainParams) trainingLossCurve.append(trainingLoss) trainingWERCurve.append(trainingWER) #evaluate the model on validation set validationLoss, validationCER, validationWER = evaluate(model, valLoader, loss_function, device, valParams) validationLossCurve.append(validationLoss) validationWERCurve.append(validationWER) #printing the stats after each step print("Step: %03d || Tr.Loss: %.6f Val.Loss: %.6f || Tr.CER: %.3f Val.CER: %.3f || Tr.WER: %.3f Val.WER: %.3f" %(step, trainingLoss, validationLoss, trainingCER, validationCER, trainingWER, validationWER)) #make a scheduler step scheduler.step(validationWER) #saving the model weights and loss/metric curves in the checkpoints directory after every few steps if ((step%args["SAVE_FREQUENCY"] == 0) or (step == args["NUM_STEPS"]-1)) and (step != 0): savePath = args["CODE_DIRECTORY"] + "/train_checkpoints/models/train-step_{:04d}-wer_{:.3f}.pt".format(step, validationWER) torch.save(model.state_dict(), savePath) plt.figure() plt.title("Loss Curves") plt.xlabel("Step No.") plt.ylabel("Loss value") plt.plot(list(range(1, len(trainingLossCurve)+1)), trainingLossCurve, "blue", label="Train") plt.plot(list(range(1, len(validationLossCurve)+1)), validationLossCurve, "red", label="Validation") plt.legend() plt.savefig(args["CODE_DIRECTORY"] + "/train_checkpoints/plots/train-step_{:04d}-loss.png".format(step)) plt.close() plt.figure() plt.title("WER Curves") plt.xlabel("Step No.") plt.ylabel("WER") plt.plot(list(range(1, len(trainingWERCurve)+1)), trainingWERCurve, "blue", label="Train") plt.plot(list(range(1, len(validationWERCurve)+1)), validationWERCurve, "red", label="Validation") plt.legend() plt.savefig(args["CODE_DIRECTORY"] + "/train_checkpoints/plots/train-step_{:04d}-wer.png".format(step)) plt.close() print("\nTraining Done.\n") return if __name__ == "__main__": main()
44.795031
143
0.660566
b86bf12f27189c74a1d1b457b3db16d21ef4ccb0
11,957
py
Python
ephypype/pipelines/fif_to_inv_sol.py
annapasca/ephypype
6dbacdd6913234a28b690b401862ff062accecc7
[ "BSD-3-Clause" ]
18
2018-04-18T12:14:52.000Z
2022-02-25T19:31:44.000Z
ephypype/pipelines/fif_to_inv_sol.py
annapasca/ephypype
6dbacdd6913234a28b690b401862ff062accecc7
[ "BSD-3-Clause" ]
106
2017-12-09T13:34:30.000Z
2022-03-12T01:02:17.000Z
ephypype/pipelines/fif_to_inv_sol.py
annapasca/ephypype
6dbacdd6913234a28b690b401862ff062accecc7
[ "BSD-3-Clause" ]
13
2017-05-28T20:38:56.000Z
2022-03-06T15:58:02.000Z
""" Inverse Solution Pipeline """ # Author: Annalisa Pascarella <a.pascarella@iac.cnr.it> import nipype.pipeline.engine as pe from nipype.interfaces.utility import IdentityInterface from ..interfaces.mne.LF_computation import LFComputation from ..interfaces.mne.Inverse_solution import NoiseCovariance from ..interfaces.mne.Inverse_solution import InverseSolution from ..interfaces.mne.preproc import DefineEpochs def create_pipeline_source_reconstruction(main_path, subjects_dir, pipeline_name='inv_sol_pipeline', spacing='ico-5', inv_method='MNE', snr=1.0, is_epoched=False, events_id={}, condition=None, decim=1, t_min=None, t_max=None, is_evoked=False, parc='aparc', aseg=False, aseg_labels=[], noise_cov_fname='', all_src_space=False, ROIs_mean=True, save_mixed_src_space=False, is_fixed=False): """Source reconstruction pipeline. Parameters ---------- main_path : str the main path of the workflow subjects_dir : str Freesurfer directory pipeline_name : str (default inv_sol_pipeline) name of the pipeline spacing : str (default 'ico-5') spacing to use to setup a source space inv_method : str (default MNE) the inverse method to use; possible choices: MNE, dSPM, sLORETA is_epoched : bool (default False) if True and events_id = None the input data are epoch data in the format -epo.fif if True and events_id is not None, the raw data are epoched according to events_id and t_min and t_max values is_fixed : bool (default False) if True we use fixed orientation, otherwise the loose orientation is applied events_id: dict (default None) the dict of events t_min, t_max: int (defualt None) define the time interval in which to epoch the raw data is_evoked: bool (default False) if True the raw data will be averaged according to the events contained in the dict events_id parc: str (default 'aparc') the parcellation defining the ROIs atlas in the source space aseg: bool (defualt False) if True a mixed source space will be created and the sub cortical regions defined in aseg_labels will be added to the source space aseg_labels: list (default []) list of substructures we want to include in the mixed source space noise_cov_fname: str (default None) template for the path to either the noise covariance matrix file or the empty room data all_src_space: bool if True we compute the inverse for all points of the source space ROIs_mean: bool if True we compute the mean of estimated time series on ROIs save_mixed_src_space: bool (defualt False) if True the mixed src space will be saved in the FS folder raw (inputnode): str path to raw data in fif format sbj_id (inputnode): str subject id Returns ------- pipeline : instance of Workflow """ pipeline = pe.Workflow(name=pipeline_name) pipeline.base_dir = main_path inputnode = pe.Node(IdentityInterface(fields=['sbj_id', 'raw', 'trans_file', 'events_file']), name='inputnode') # Lead Field computation Node LF_computation = pe.Node(interface=LFComputation(), name='LF_computation') LF_computation.inputs.subjects_dir = subjects_dir LF_computation.inputs.spacing = spacing LF_computation.inputs.aseg = aseg if aseg: LF_computation.inputs.aseg_labels = aseg_labels LF_computation.inputs.save_mixed_src_space = save_mixed_src_space pipeline.connect(inputnode, 'sbj_id', LF_computation, 'sbj_id') pipeline.connect(inputnode, 'raw', LF_computation, 'raw_fname') pipeline.connect(inputnode, 'trans_file', LF_computation, 'trans_file') # Create epochs based on events_id if is_epoched and events_id != {}: define_epochs = pe.Node(interface=DefineEpochs(), name='define_epochs') define_epochs.inputs.events_id = events_id define_epochs.inputs.t_min = t_min define_epochs.inputs.t_max = t_max define_epochs.inputs.decim = decim pipeline.connect(inputnode, 'raw', define_epochs, 'fif_file') pipeline.connect(inputnode, 'events_file', define_epochs, 'events_file') # noqa # Noise Covariance Matrix Node create_noise_cov = pe.Node(interface=NoiseCovariance(), name="create_noise_cov") print('******************** {}', noise_cov_fname) create_noise_cov.inputs.cov_fname_in = noise_cov_fname create_noise_cov.inputs.is_epoched = is_epoched create_noise_cov.inputs.is_evoked = is_evoked if is_epoched and is_evoked: pipeline.connect(define_epochs, 'epo_fif_file', create_noise_cov, 'raw_filename') else: pipeline.connect(inputnode, 'raw', create_noise_cov, 'raw_filename') # Inverse Solution Node inv_solution = pe.Node(interface=InverseSolution(), name='inv_solution') inv_solution.inputs.subjects_dir = subjects_dir inv_solution.inputs.inv_method = inv_method inv_solution.inputs.is_epoched = is_epoched inv_solution.inputs.is_fixed = is_fixed inv_solution.inputs.snr = snr if is_evoked: inv_solution.inputs.events_id = events_id inv_solution.inputs.is_evoked = is_evoked if condition: inv_solution.inputs.condition = condition inv_solution.inputs.parc = parc inv_solution.inputs.aseg = aseg if aseg: inv_solution.inputs.aseg_labels = aseg_labels inv_solution.inputs.all_src_space = all_src_space inv_solution.inputs.ROIs_mean = ROIs_mean pipeline.connect(inputnode, 'sbj_id', inv_solution, 'sbj_id') if is_epoched and is_evoked: pipeline.connect(define_epochs, 'epo_fif_file', inv_solution, 'raw_filename') else: pipeline.connect(inputnode, 'raw', inv_solution, 'raw_filename') pipeline.connect(LF_computation, 'fwd_filename', inv_solution, 'fwd_filename') pipeline.connect(create_noise_cov, 'cov_fname_out', inv_solution, 'cov_filename') return pipeline def create_pipeline_evoked_inverse_solution(main_path, subjects_dir, pipeline_name='evoked_inv_sol_pipeline', # noqa spacing='ico-5', inv_method='MNE', snr=3.0, parc='aparc', aseg=False, aseg_labels=[], all_src_space=False, ROIs_mean=True, save_mixed_src_space=False, is_fixed=False, noise_cov_fname='', events_id={}, condition=None): """Source reconstruction pipeline. Parameters ---------- main_path : str the main path of the workflow subjects_dir : str Freesurfer directory pipeline_name : str (default inv_sol_pipeline) name of the pipeline spacing : str (default 'ico-5') spacing to use to setup a source space inv_method : str (default MNE) the inverse method to use; possible choices: MNE, dSPM, sLORETA is_fixed : bool (default False) if True we use fixed orientation, otherwise the loose orientation is applied parc: str (default 'aparc') the parcellation defining the ROIs atlas in the source space aseg: bool (defualt False) if True a mixed source space will be created and the sub cortical regions defined in aseg_labels will be added to the source space aseg_labels: list (default []) list of substructures we want to include in the mixed source space noise_cov_fname: str (default None) template for the path to either the noise covariance matrix file or the empty room data all_src_space: bool if True we compute the inverse for all points of the source space ROIs_mean: bool if True we compute the mean of estimated time series on ROIs save_mixed_src_space: bool (defualt False) if True the mixed src space will be saved in the FS folder raw (inputnode): str path to raw data in fif format sbj_id (inputnode): str subject id Returns ------- pipeline : instance of Workflow """ pipeline = pe.Workflow(name=pipeline_name) pipeline.base_dir = main_path inputnode = pe.Node(IdentityInterface(fields=['sbj_id', 'raw', 'trans_file', 'cov_filename']), name='inputnode') # Lead Field computation Node LF_computation = pe.Node(interface=LFComputation(), name='LF_computation') LF_computation.inputs.subjects_dir = subjects_dir LF_computation.inputs.spacing = spacing LF_computation.inputs.aseg = aseg if aseg: LF_computation.inputs.aseg_labels = aseg_labels LF_computation.inputs.save_mixed_src_space = save_mixed_src_space pipeline.connect(inputnode, 'sbj_id', LF_computation, 'sbj_id') pipeline.connect(inputnode, 'raw', LF_computation, 'raw_fname') pipeline.connect(inputnode, 'trans_file', LF_computation, 'trans_file') # Noise Covariance Matrix Node ''' create_noise_cov = pe.Node(interface=NoiseCovariance(), name="create_noise_cov") print('******************** {}', noise_cov_fname) create_noise_cov.inputs.cov_fname_in = noise_cov_fname create_noise_cov.inputs.is_epoched = True create_noise_cov.inputs.is_evoked = True pipeline.connect(inputnode, 'raw', create_noise_cov, 'raw_filename') ''' # Inverse Solution Node inv_solution = pe.Node(interface=InverseSolution(), name='inv_solution') inv_solution.inputs.subjects_dir = subjects_dir inv_solution.inputs.inv_method = inv_method inv_solution.inputs.is_fixed = is_fixed inv_solution.inputs.is_ave = True inv_solution.inputs.snr = snr inv_solution.inputs.parc = parc inv_solution.inputs.aseg = aseg if aseg: inv_solution.inputs.aseg_labels = aseg_labels inv_solution.inputs.all_src_space = all_src_space inv_solution.inputs.ROIs_mean = ROIs_mean inv_solution.inputs.events_id = events_id inv_solution.inputs.condition = condition pipeline.connect(inputnode, 'sbj_id', inv_solution, 'sbj_id') pipeline.connect(inputnode, 'raw', inv_solution, 'raw_filename') pipeline.connect(LF_computation, 'fwd_filename', inv_solution, 'fwd_filename') pipeline.connect(inputnode, 'cov_filename', inv_solution, 'cov_filename') return pipeline
40.670068
92
0.60935
d9fa357c209c49bc536c956b8bb6e94c5a3ea2a3
5,300
py
Python
my-src/my_env.py
w121211/rlpyt
9d603a8cbed5bd581c49a4163e342be9708e7bd2
[ "MIT" ]
null
null
null
my-src/my_env.py
w121211/rlpyt
9d603a8cbed5bd581c49a4163e342be9708e7bd2
[ "MIT" ]
null
null
null
my-src/my_env.py
w121211/rlpyt
9d603a8cbed5bd581c49a4163e342be9708e7bd2
[ "MIT" ]
null
null
null
import os from collections import namedtuple import numpy as np import torch import torch.nn.functional as F import atari_py import cv2 from rlpyt.envs.base import Env, EnvStep from rlpyt.spaces.int_box import IntBox from rlpyt.spaces.float_box import FloatBox from rlpyt.spaces.composite import Composite from rlpyt.utils.quick_args import save__init__args from rlpyt.samplers.collections import TrajInfo W, H = (80, 104) # Crop two rows, then downsample by 2x (fast, clean image). ACTION_MEANING = { 0: "NOOP", 1: "FIRE", 2: "UP", 3: "RIGHT", 4: "LEFT", 5: "DOWN", 6: "UPRIGHT", 7: "UPLEFT", 8: "DOWNRIGHT", 9: "DOWNLEFT", 10: "UPFIRE", 11: "RIGHTFIRE", 12: "LEFTFIRE", 13: "DOWNFIRE", 14: "UPRIGHTFIRE", 15: "UPLEFTFIRE", 16: "DOWNRIGHTFIRE", 17: "DOWNLEFTFIRE", } ACTION_INDEX = {v: k for k, v in ACTION_MEANING.items()} # EnvInfo = namedtuple("EnvInfo", ["game_score", "traj_done"]) EnvInfo = namedtuple("EnvInfo", []) Obs = namedtuple("Obs", ["a", "b"]) from rlpyt.agents.pg.categorical import CategoricalPgAgent from rlpyt.models.pg.atari_ff_model import AtariFfModel from rlpyt.models.pg.atari_lstm_model import AtariLstmModel class MyModel(torch.nn.Module): def __init__( self, # image_shape, output_size, # fc_sizes=512, # use_maxpool=False, # channels=None, # None uses default. # kernel_sizes=None, # strides=None, # paddings=None, ): super().__init__() self.fc = torch.nn.Sequential( torch.nn.Linear(1, 16), torch.nn.ReLU(inplace=True), torch.nn.Linear(16, 32), torch.nn.ReLU(inplace=True), torch.nn.Linear(32, 64), torch.nn.ReLU(inplace=True), ) self.pi = torch.nn.Linear(64, output_size) self.value = torch.nn.Linear(64, 1) # self.conv = Conv2dHeadModel( # image_shape=image_shape, # channels=channels or [16, 32], # kernel_sizes=kernel_sizes or [8, 4], # strides=strides or [4, 2], # paddings=paddings or [0, 1], # use_maxpool=use_maxpool, # hidden_sizes=fc_sizes, # Applies nonlinearity at end. # ) # self.pi = torch.nn.Linear(self.conv.output_size, output_size) # self.value = torch.nn.Linear(self.conv.output_size, 1) def forward(self, x, prev_action, prev_reward): """Feedforward layers process as [T*B,H]. Return same leading dims as input, can be [T,B], [B], or [].""" print(x) # img = image.type(torch.float) # Expect torch.uint8 inputs # img = img.mul_(1.0 / 255) # From [0-255] to [0-1], in place. # Infer (presence of) leading dimensions: [T,B], [B], or []. # lead_dim, T, B, img_shape = infer_leading_dims(img, 3) # fc_out = self.conv(img.view(T * B, *img_shape)) # pi = F.softmax(self.pi(fc_out), dim=-1) # v = self.value(fc_out).squeeze(-1) # print(x) # print(x.shape) fc_out = self.fc(x) pi = F.softmax(self.pi(fc_out), dim=-1) v = self.value(fc_out).squeeze(-1) # Restore leading dimensions: [T,B], [B], or [], as input. # pi, v = restore_leading_dims((pi, v), lead_dim, T, B) return pi, v class MyMixin: def make_env_to_model_kwargs(self, env_spaces): return dict( # image_shape=env_spaces.observation.shape, output_size=env_spaces.action.n ) class MyAgent(MyMixin, CategoricalPgAgent): def __init__(self, ModelCls=MyModel, **kwargs): super().__init__(ModelCls=ModelCls, **kwargs) class MyEnv(Env): def __init__(self): self.end_pos = 10 self.cur_pos = 0 # self._action_space = IntBox(low=0, high=2, shape=(2,)) self._action_space = IntBox(low=0, high=2) self._observation_space = Composite( [FloatBox(low=0, high=self.end_pos), FloatBox(low=0, high=self.end_pos)], Obs, ) def reset(self): self._step_counter = 0 self.cur_pos = 0 # return [self.cur_pos] # return {"a": [self.cur_pos], "b": [self.cur_pos]} return self.get_obs() def step(self, action): """ Returns: obs reward done log """ print(type(action)) # assert action in [0, 1], action # if action[0] == 0 and self.cur_pos > 0: # self.cur_pos -= 1 # elif action[0] == 1: # self.cur_pos += 1 if action == 0 and self.cur_pos > 0: self.cur_pos -= 1 elif action == 1: self.cur_pos += 1 done = self.cur_pos >= self.end_pos # info = EnvInfo(game_score=game_score, traj_done=game_over) info = None reward = 1 if done else 0 self._step_counter += 1 return EnvStep(self.get_obs(), reward, done, info) def get_obs(self): # return self._obs.copy() # return np.array([self.cur_pos], dtype=np.float32) return Obs( a=np.array([self.cur_pos], dtype=np.float32), b=np.array([self.cur_pos], dtype=np.float32), )
29.608939
85
0.577358
58640879da77cc68dd52bd6463f5312daa7f2b72
11,253
py
Python
frameworks/cocos2d-x/build/android-build.py
pedrohenriquerls/cocos2d_ruby_binding
52d929ddcd8e4b7f613c98d73477133952b8a7b0
[ "MIT" ]
20
2015-01-23T09:03:56.000Z
2021-08-28T17:19:38.000Z
frameworks/cocos2d-x/build/android-build.py
pedrohenriquerls/cocos2d_ruby_binding
52d929ddcd8e4b7f613c98d73477133952b8a7b0
[ "MIT" ]
3
2015-03-31T06:13:40.000Z
2017-10-04T12:30:29.000Z
frameworks/cocos2d-x/build/android-build.py
pedrohenriquerls/cocos2d_ruby_binding
52d929ddcd8e4b7f613c98d73477133952b8a7b0
[ "MIT" ]
16
2015-06-08T04:10:12.000Z
2021-08-28T17:19:38.000Z
#!/usr/bin/python # android-build.py # Build android import sys import os, os.path import shutil from optparse import OptionParser CPP_SAMPLES = ['cpp-empty-test', 'cpp-tests', 'game-controller-test'] LUA_SAMPLES = ['lua-empty-test', 'lua-tests', 'lua-game-controller-test'] ALL_SAMPLES = CPP_SAMPLES + LUA_SAMPLES class BUILD_CONSTANT: SDK_ROOT = None COCOS_ROOT = None NDK_BUILD_COMMAND = None def initBuildConstant(ndk_build_param, build_mode): ''' Checking the environment NDK_ROOT, which will be used for building ''' try: ndk_root = os.environ['NDK_ROOT'] ndk_build_path = os.path.join(ndk_root, "ndk-build") except Exception: print "NDK_ROOT not defined. Please define NDK_ROOT in your environment" sys.exit(1) toolchainVersion = '4.8' try: versionFile = open(os.path.join(ndk_root, "RELEASE.TXT")) firstLine = versionFile.readline() if firstLine : ndkVersion = firstLine[firstLine.index('r') : firstLine.index(' ')] ndkVersionValue = int(filter(str.isdigit,ndkVersion)) if ndkVersionValue < 10 or cmp(ndkVersion,'r10c') < 0 : print '''Please use NDK r10c above. If you do not,your application may crash or freeze on Android L(5.0) when use BMFont and HttpClient. For More information: https://github.com/cocos2d/cocos2d-x/issues/9114 https://github.com/cocos2d/cocos2d-x/issues/9138\n''' else: toolchainVersion = '4.9' versionFile.close() except Exception: print "Can not be determined your NDK version" if toolchainVersion == '4.8': print 'NDK_TOOLCHAIN_VERSION is 4.8,your application may crash on Androud when use c++ 11 regular\n' current_dir = os.path.dirname(os.path.realpath(__file__)) cocos_root = os.path.join(current_dir, "..") BUILD_CONSTANT.COCOS_ROOT = cocos_root # windows should use ";" to seperate module paths platform = sys.platform if platform == 'win32': ndk_module_path = 'NDK_MODULE_PATH=%s;%s/external;%s/cocos' % (cocos_root, cocos_root, cocos_root) else: ndk_module_path = 'NDK_MODULE_PATH=%s:%s/external:%s/cocos' % (cocos_root, cocos_root, cocos_root) ''' The build process can be accelerated by running multiple concurrent job processes using the -j-option. ''' try: import multiprocessing num_of_cpu = multiprocessing.cpu_count() except Exception: print "Can't know cpuinfo, use default 1 cpu" num_of_cpu = 1 if ndk_build_param == None: BUILD_CONSTANT.NDK_BUILD_COMMAND = '%s -j%d NDK_DEBUG=%d %s NDK_TOOLCHAIN_VERSION=%s' % (ndk_build_path, num_of_cpu, build_mode=='debug', ndk_module_path, toolchainVersion) else: BUILD_CONSTANT.NDK_BUILD_COMMAND = '%s -j%d NDK_DEBUG=%d %s %s NDK_TOOLCHAIN_VERSION=%s' % (ndk_build_path, num_of_cpu, build_mode=='debug', ndk_build_param, ndk_module_path, toolchainVersion) def check_environment_variables_sdk(): ''' Checking the environment ANDROID_SDK_ROOT, which will be used for building ''' try: BUILD_CONSTANT.SDK_ROOT = os.environ['ANDROID_SDK_ROOT'] except Exception: print "ANDROID_SDK_ROOT not defined. Please define ANDROID_SDK_ROOT in your environment" sys.exit(1) def caculate_built_samples(args): ''' Compute the sampels to be built 'cpp' for short of all cpp tests 'lua' for short of all lua tests ''' if 'all' in args: return ALL_SAMPLES targets = [] if 'cpp' in args: targets += CPP_SAMPLES args.remove('cpp') if 'lua' in args: targets += LUA_SAMPLES args.remove('lua') targets += args # remove duplicate elements, for example # python android-build.py cpp hellocpp targets = set(targets) return list(targets) def do_build(app_android_root, android_platform, build_mode): command = '%s -C %s' % (BUILD_CONSTANT.NDK_BUILD_COMMAND, app_android_root) print command if os.system(command) != 0: raise Exception("Build dynamic library for project [ " + app_android_root + " ] fails!") elif android_platform is not None: sdk_tool_path = os.path.join(BUILD_CONSTANT.SDK_ROOT, "tools/android") cocoslib_path = os.path.join(BUILD_CONSTANT.COCOS_ROOT, "cocos/platform/android/java") command = '%s update lib-project -t %s -p %s' % (sdk_tool_path,android_platform,cocoslib_path) if os.system(command) != 0: raise Exception("update cocos lib-project [ " + cocoslib_path + " ] fails!") command = '%s update project -t %s -p %s -s' % (sdk_tool_path,android_platform,app_android_root) if os.system(command) != 0: raise Exception("update project [ " + app_android_root + " ] fails!") buildfile_path = os.path.join(app_android_root, "build.xml") command = 'ant clean %s -f %s -Dsdk.dir=%s' % (build_mode,buildfile_path,BUILD_CONSTANT.SDK_ROOT) os.system(command) def copy_files(src, dst): for item in os.listdir(src): path = os.path.join(src, item) # Android can not package the file that ends with ".gz" if not item.startswith('.') and not item.endswith('.gz') and os.path.isfile(path): shutil.copy(path, dst) if os.path.isdir(path): new_dst = os.path.join(dst, item) os.mkdir(new_dst) copy_files(path, new_dst) def copy_file(src_file, dst): if not src_file.startswith('.') and not src_file.endswith('.gz') and os.path.isfile(src_file): shutil.copy(src_file, dst) def copy_resources(target, app_android_root): # remove app_android_root/assets if it exists assets_dir = os.path.join(app_android_root, "assets") if os.path.isdir(assets_dir): shutil.rmtree(assets_dir) os.mkdir(assets_dir) # copy resources(cpp samples) if target in CPP_SAMPLES: resources_dir = os.path.join(app_android_root, "../Resources") if os.path.isdir(resources_dir): copy_files(resources_dir, assets_dir) # lua samples should copy lua script if target in LUA_SAMPLES: resources_dir = os.path.join(app_android_root, "../../res") assets_res_dir = os.path.join(assets_dir, "res") os.mkdir(assets_res_dir) if target != "lua-tests": copy_files(resources_dir, assets_res_dir) src_dir = os.path.join(app_android_root, "../../src") assets_src_dir = os.path.join(assets_dir, "src") os.mkdir(assets_src_dir) copy_files(src_dir, assets_src_dir) common_script_dir = os.path.join(app_android_root, "../../../../cocos/scripting/lua-bindings/script/") cocos_src_dir = os.path.join(assets_src_dir,"cocos") if os.path.exists(cocos_src_dir): shutil.rmtree(cocos_src_dir) os.mkdir(cocos_src_dir) copy_files(common_script_dir, cocos_src_dir) luasocket_script_dir = os.path.join(app_android_root, "../../../../external/lua/luasocket") for root, dirs, files in os.walk(luasocket_script_dir): for f in files: if os.path.splitext(f)[1] == '.lua': fall = os.path.join(root, f) shutil.copy(fall, assets_dir) # lua-tests shared resources with cpp-tests if target == "lua-tests": resources_cocosbuilder_res_dir = os.path.join(resources_dir, "cocosbuilderRes") assets_cocosbuilder_res_dir = os.path.join(assets_res_dir, "cocosbuilderRes") os.mkdir(assets_cocosbuilder_res_dir) copy_files(resources_cocosbuilder_res_dir, assets_cocosbuilder_res_dir) resources_dir = os.path.join(app_android_root, "../../../cpp-tests/Resources") copy_files(resources_dir, assets_res_dir) if target == "lua-game-controller-test": print("coming generator game controller") resources_dir = os.path.join(app_android_root, "../../../game-controller-test/Resources") copy_files(resources_dir, assets_res_dir) def build_samples(target,ndk_build_param,android_platform,build_mode): if build_mode is None: build_mode = 'debug' elif build_mode != 'release': build_mode = 'debug' initBuildConstant(ndk_build_param, build_mode) build_targets = caculate_built_samples(target) if android_platform is not None: check_environment_variables_sdk() if android_platform.isdigit(): android_platform = 'android-'+android_platform else: print 'please use vaild android platform' exit(1) app_android_root = '' target_proj_path_map = { "cpp-empty-test": "tests/cpp-empty-test/proj.android", "game-controller-test": "tests/game-controller-test/proj.android", "cpp-tests": "tests/cpp-tests/proj.android", "lua-empty-test": "tests/lua-empty-test/project/proj.android", "lua-tests": "tests/lua-tests/project/proj.android", "lua-game-controller-test": "tests/lua-game-controller-test/project/proj.android" } for target in build_targets: if target in target_proj_path_map: app_android_root = os.path.join(BUILD_CONSTANT.COCOS_ROOT, target_proj_path_map[target]) else: print 'unknown target: %s' % target continue copy_resources(target, app_android_root) do_build(app_android_root, android_platform, build_mode) # -------------- main -------------- if __name__ == '__main__': #parse the params usage = """ This script is mainy used for building tests built-in with cocos2d-x. Usage: %prog [options] [cpp-empty-test|cpp-tests|lua-empty-test|lua-tests|cpp|lua|all] If you are new to cocos2d-x, I recommend you start with cpp-empty-test, lua-empty-test. You can combine these targets like this: python android-build.py -p 10 cpp-empty-test lua-empty-test Note: You should install ant to generate apk while building the andriod tests. But it is optional. You can generate apk with eclipse. """ parser = OptionParser(usage=usage) parser.add_option("-n", "--ndk", dest="ndk_build_param", help='Parameter for ndk-build') parser.add_option("-p", "--platform", dest="android_platform", help='Parameter for android-update. Without the parameter,the script just build dynamic library for the projects. Valid android-platform are:[10|11|12|13|14|15|16|17|18|19]') parser.add_option("-b", "--build", dest="build_mode", help='The build mode for java project,debug[default] or release. Get more information,please refer to http://developer.android.com/tools/building/building-cmdline.html') (opts, args) = parser.parse_args() print "We will use cocos console to build tests built-in with cocos2d-x and remove this script next version.\n" if len(args) == 0: parser.print_help() sys.exit(1) else: try: build_samples(args, opts.ndk_build_param,opts.android_platform,opts.build_mode) except Exception as e: print e sys.exit(1)
40.189286
200
0.660713
d81ccc7be06a2f9efba718df0b7f3f9ec8518198
19,622
py
Python
implementations/dscgan/dscgan.py
lidotcircle/PyTorch-GAN
dcb95a05701f28a3b73ada35da4b8e7e72975642
[ "MIT" ]
null
null
null
implementations/dscgan/dscgan.py
lidotcircle/PyTorch-GAN
dcb95a05701f28a3b73ada35da4b8e7e72975642
[ "MIT" ]
null
null
null
implementations/dscgan/dscgan.py
lidotcircle/PyTorch-GAN
dcb95a05701f28a3b73ada35da4b8e7e72975642
[ "MIT" ]
null
null
null
import argparse import os, sys import numpy as np import itertools import datetime import time import signal import torchvision.transforms as transforms from torchvision.transforms.functional import InterpolationMode from torchvision.utils import save_image, make_grid from torch.utils.data import DataLoader from torch.autograd import Variable from models import DomainEncoder, DomainDecoder, DomainDiscriminator from models import DomainStyleExtractor, ContentExtractor, DomainImageGenerator, weights_init_normal from datasets import ImageDataset from utils import ReplayBuffer, LambdaLR import torch parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--dataset_name", type=str, default="monet2photo", help="name of the dataset") parser.add_argument("--batch_size", type=int, default=3, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of second order momentum of gradient") parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay") parser.add_argument("--n_cpu", type=int, default=2, help="number of cpu threads to use during batch generation") parser.add_argument("--img_height", type=int, default=256, help="size of image height") parser.add_argument("--img_width", type=int, default=256, help="size of image width") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs") parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model checkpoints") parser.add_argument("--n_residual_blocks", type=int, default=2, help="number of residual blocks in generator") parser.add_argument("--lambda_ae", type=float, default=5, help="autoencoder identity loss weight") parser.add_argument("--lambda_self", type=float, default=5, help="image self reconstruction loss weight") parser.add_argument("--lambda_cycle", type=float, default=5, help="image cycle consistency loss weight") parser.add_argument("--lambda_style", type=float, default=5, help="style cycle consistency loss weight") parser.add_argument("--lambda_kld", type=float, default=5, help="style code KL divergence loss weight") parser.add_argument("--lambda_gan", type=float, default=5, help="GAN loss weight") opt = parser.parse_args() print(opt) # Create sample and checkpoint directories os.makedirs("images/%s" % opt.dataset_name, exist_ok=True) os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True) # Losses criterion_GAN = torch.nn.MSELoss() criterion_identity = torch.nn.L1Loss() criterion_cycle = torch.nn.L1Loss() cuda = torch.cuda.is_available() input_shape = (opt.channels, opt.img_height, opt.img_width) # Initialize encoder decoder and discriminator DomainEncoder_A = DomainEncoder(3, 2) DomainDecoder_A = DomainDecoder(DomainEncoder_A.out_features, 2) DomainEncoder_B = DomainEncoder(3, 2) DomainDecoder_B = DomainDecoder(DomainEncoder_B.out_features, 2) DomainStyleExtractor_A = DomainStyleExtractor((64, 32, 32), output_channels= 8, heads = 4, expansion = 2, dropout = 0.1, layers=4) DomainStyleExtractor_B = DomainStyleExtractor((64, 32, 32), output_channels= 8, heads = 4, expansion = 2, dropout = 0.1, layers=4) ImageContentExtractor = ContentExtractor((64,32,32), heads = 4, expansion = 2, dropout = 0.1, layers=4) DomainImageGenerator_A = DomainImageGenerator(8, 64, 2) DomainImageGenerator_B = DomainImageGenerator(8, 64, 2) DomainDiscriminator_A = DomainDiscriminator((3, opt.img_height, opt.img_width)) DomainDiscriminator_B = DomainDiscriminator((3, opt.img_height, opt.img_width)) model_components = [ [ DomainEncoder_A, "DomainEncoder_A" ], [ DomainDecoder_A, "DomainDecoder_A" ], [ DomainEncoder_B, "DomainEncoder_B" ], [ DomainDecoder_B, "DomainDecoder_B" ], [ DomainStyleExtractor_A, "DomainStyleExtractor_A" ], [ DomainStyleExtractor_B, "DomainStyleExtractor_B" ], [ ImageContentExtractor, "ImageContentExtractor" ], [ DomainImageGenerator_A, "DomainImageGenerator_A" ], [ DomainImageGenerator_B, "DomainImageGenerator_B" ], [ DomainDiscriminator_A, "DomainDiscriminator_A" ], [ DomainDiscriminator_B, "DomainDiscriminator_B" ], ] if cuda: for model in model_components: model[0].cuda() for model in model_components: model_filename = "saved_models/%s/%s_%d.pth" % (opt.dataset_name, model[1], opt.epoch) be_load = False be_init = False if os.path.exists(model_filename): if __name__ == "__main__": print("loading model %s" % (model_filename)) model[0].load_state_dict(torch.load(model_filename)) be_load = True else: model[0].apply(weights_init_normal) be_init = True if be_load and be_init: print("Inconsistent model, some parts were loaded from previous saved, some not") def save_models(epoch): for model in model_components: torch.save(model[0].state_dict(), "saved_models/%s/%s_%d.pth" % (opt.dataset_name, model[1], epoch)) def clear_gradient(): for model in model_components: for p in model[0].parameters(): if p.grad is not None: del p.grad torch.cuda.empty_cache() # Optimizers optimizer_MainModel = torch.optim.Adam( itertools.chain(DomainEncoder_A.parameters(), DomainDecoder_A.parameters(), DomainStyleExtractor_A.parameters(), DomainImageGenerator_A.parameters(), DomainEncoder_B.parameters(), DomainDecoder_B.parameters(), DomainStyleExtractor_B.parameters(), DomainImageGenerator_B.parameters(),), lr=opt.lr, betas=(opt.b1, opt.b2) ) optimizer_DomainA_Dis = torch.optim.Adam(DomainDiscriminator_A.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_DomainB_Dis = torch.optim.Adam(DomainDiscriminator_B.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # Learning rate update schedulers lr_scheduler_MainModel= torch.optim.lr_scheduler.LambdaLR( optimizer_MainModel, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) lr_scheduler_DomainA_Dis = torch.optim.lr_scheduler.LambdaLR( optimizer_DomainA_Dis, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) lr_scheduler_DomainB_Dis = torch.optim.lr_scheduler.LambdaLR( optimizer_DomainB_Dis, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) Tensor = torch.Tensor if cuda: Tensor = torch.cuda.FloatTensor # Buffers of previously generated samples fake_A_buffer = ReplayBuffer() fake_B_buffer = ReplayBuffer() # Image transformations transforms_ = [ transforms.Resize(int(opt.img_height * 1.12), InterpolationMode.BICUBIC), transforms.RandomCrop((opt.img_height, opt.img_width)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] # Training data loader dataloader = DataLoader( ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, unaligned=True), batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, ) # Test data loader val_dataloader = DataLoader( ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, unaligned=True, mode="test"), batch_size=5, shuffle=True, num_workers=1, ) def sample_images(batches_done): """Saves a generated sample from the test set""" imgs = next(iter(val_dataloader)) DomainEncoder_A.eval() DomainDecoder_A.eval() DomainEncoder_B.eval() DomainDecoder_B.eval() real_A = Variable(imgs["A"].type(Tensor)) real_B = Variable(imgs["B"].type(Tensor)) fake_A = DomainDecoder_A(DomainEncoder_A(real_A)) fake_B = DomainDecoder_B(DomainEncoder_B(real_B)) # Arange images along x-axis real_A = make_grid(real_A, nrow=5, normalize=True) real_B = make_grid(real_B, nrow=5, normalize=True) fake_A = make_grid(fake_A, nrow=5, normalize=True) fake_B = make_grid(fake_B, nrow=5, normalize=True) # Arange images along y-axis image_grid = torch.cat((real_A, fake_A, real_B, fake_B), 1) save_image(image_grid, "images/%s/%s.png" % (opt.dataset_name, batches_done), normalize=False) saved_epoch = opt.epoch is_training_process = False def interrupt_exit(signum, frame): if not is_training_process: sys.exit(1) print("saving models...") save_models(saved_epoch) sys.exit(0) signal.signal(signal.SIGINT, interrupt_exit) def gaussian_reparameterize_sample(mu: Tensor, logvar: Tensor) -> Tensor: """ :param mu: (Tensor) Mean of the latent Gaussian :param logvar: (Tensor) Standard deviation of the latent Gaussian :return: """ std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def image_gaussian_reparameterize_sample(mu: Tensor, logvar: Tensor) -> Tensor: assert len(mu.shape) == 4 and len(logvar.shape) == 4 bs, c, h, w = mu.shape mu = mu.view(bs, c * h * w) logvar = logvar.view(bs, c * h * w) val = gaussian_reparameterize_sample(mu, logvar) val = val.view(bs, c, h, w) return val # ---------- # Training # ---------- def main(): global saved_epoch, is_training_process is_training_process = True epoch_start = saved_epoch prev_time = time.time() for epoch in range(epoch_start, opt.n_epochs): saved_epoch = epoch for i, batch in enumerate(dataloader): # Set model input real_A = Variable(batch["A"].type(Tensor)) real_B = Variable(batch["B"].type(Tensor)) # Adversarial ground truths valid = Variable(Tensor(np.ones((real_A.size(0), *DomainDiscriminator_A.output_shape))), requires_grad=False) fake = Variable(Tensor(np.zeros((real_A.size(0), *DomainDiscriminator_A.output_shape))), requires_grad=False) log_statistics = {} # ------------------ # Train MainModel # ------------------ optimizer_MainModel.zero_grad() DomainEncoder_A.train() DomainDecoder_A.train() DomainStyleExtractor_A.train() DomainImageGenerator_A.train() DomainEncoder_B.train() DomainDecoder_B.train() DomainStyleExtractor_B.train() DomainImageGenerator_B.train() ImageContentExtractor.train() interm_a = DomainEncoder_A(real_A) interm_b = DomainEncoder_B(real_B) fake_A = DomainDecoder_A(interm_a) fake_B = DomainDecoder_B(interm_b) # Autoencoder Identity loss loss_ae_id_A = criterion_identity(fake_A, real_A) loss_ae_id_B = criterion_identity(fake_B, real_B) log_statistics["AE Identity Loss"] = loss_ae_id_A.item() + loss_ae_id_B.item() # Autoencoder GAN loss loss_ae_adv_A = criterion_GAN(DomainDiscriminator_A(fake_A), valid) loss_ae_adv_B = criterion_GAN(DomainDiscriminator_B(fake_B), valid) log_statistics["AE GAN Loss"] = loss_ae_adv_A.mean().item() + loss_ae_adv_B.mean().item() # Self-Translation loss style_code_a_mu, style_code_a_logvar = DomainStyleExtractor_A(interm_a) style_code_b_mu, style_code_b_logvar = DomainStyleExtractor_B(interm_b) loss_kld_a = -0.5 * torch.sum(-style_code_a_logvar.exp() - torch.pow(style_code_a_mu,2) + style_code_a_logvar + 1, dim = (1,2,3)) loss_kld_b = -0.5 * torch.sum(-style_code_b_logvar.exp() - torch.pow(style_code_b_mu,2) + style_code_b_logvar + 1, dim = (1,2,3)) log_statistics["KLDiv"] = loss_kld_a.mean().item() + loss_kld_b.mean().item() style_code_a = image_gaussian_reparameterize_sample(style_code_a_mu, style_code_a_logvar) style_code_b = image_gaussian_reparameterize_sample(style_code_b_mu, style_code_b_logvar) content_a = ImageContentExtractor(interm_a) content_b = ImageContentExtractor(interm_b) self_gen_a = DomainImageGenerator_A(style_code_a, content_a) self_gen_b = DomainImageGenerator_B(style_code_b, content_b) loss_self_a = criterion_identity(self_gen_a, real_A) loss_self_b = criterion_identity(self_gen_b, real_B) log_statistics["Self Translation Loss"] = loss_self_a.mean().item() + loss_self_b.mean().item() # TODO GAN loss of loss_self fake_gen_a = DomainImageGenerator_A(style_code_a, content_b) fake_gen_b = DomainImageGenerator_B(style_code_b, content_a) loss_gen_adv_a = criterion_GAN(DomainDiscriminator_A(fake_gen_a), valid) loss_gen_adv_b = criterion_GAN(DomainDiscriminator_B(fake_gen_b), valid) log_statistics["Self Translation ADV Loss"] = loss_gen_adv_a.mean().item() + loss_gen_adv_b.mean().item() # Image Cycle Consistency loss fake_gen_a_iterm = DomainEncoder_A(fake_gen_a) fake_gen_b_iterm = DomainEncoder_B(fake_gen_b) fake_gen_a_style_mu, fake_gen_a_style_logvar = DomainStyleExtractor_A(fake_gen_a_iterm) fake_gen_b_style_mu, fake_gen_b_style_logvar = DomainStyleExtractor_B(fake_gen_b_iterm) fake_gen_a_style = image_gaussian_reparameterize_sample(fake_gen_a_style_mu, fake_gen_a_style_logvar) fake_gen_b_style = image_gaussian_reparameterize_sample(fake_gen_b_style_mu, fake_gen_b_style_logvar) fake_gen_a_content = ImageContentExtractor(fake_gen_a_iterm) fake_gen_b_content = ImageContentExtractor(fake_gen_b_iterm) cycle_a = DomainImageGenerator_A(fake_gen_a_style, fake_gen_b_content) cycle_b = DomainImageGenerator_B(fake_gen_b_style, fake_gen_a_content) loss_cycle_a = criterion_identity(real_A, cycle_a) loss_cycle_b = criterion_identity(real_B, cycle_b) log_statistics["Cycle Consistency Loss"] = loss_cycle_a.mean().item() + loss_cycle_b.mean().item() loss_cycle_a_adv = criterion_GAN(DomainDiscriminator_A(cycle_a), valid) loss_cycle_b_adv = criterion_GAN(DomainDiscriminator_B(cycle_b), valid) log_statistics["Cycle Consistency ADV Loss"] = loss_cycle_a_adv.mean().item() + loss_cycle_b_adv.mean().item() # Style Self-Translation loss random_style_a = Variable(Tensor(np.random.normal(0, 1, style_code_a_mu.shape))) random_style_b = Variable(Tensor(np.random.normal(0, 1, style_code_a_mu.shape))) s_image_a = DomainImageGenerator_A(random_style_a, content_a) s_image_b = DomainImageGenerator_B(random_style_b, content_b) # TODO GAN loss of s_image s_image_a_iterm = DomainEncoder_A(s_image_a) s_image_b_iterm = DomainEncoder_B(s_image_b) s_image_a_style_mu, _ = DomainStyleExtractor_A(s_image_a_iterm) s_image_b_style_mu, _ = DomainStyleExtractor_B(s_image_b_iterm) loss_style_recons_a = criterion_identity(random_style_a, s_image_a_style_mu) loss_style_recons_b = criterion_identity(random_style_b, s_image_b_style_mu) log_statistics["Style Self-Translation Loss"] = loss_style_recons_a.mean().item() + loss_style_recons_b.mean().item() # total loss loss_sum = (loss_ae_id_A + loss_ae_id_B) * opt.lambda_ae + (loss_ae_adv_A + loss_ae_adv_B) * opt.lambda_gan + \ (loss_kld_a + loss_kld_b) * opt.lambda_kld + \ (loss_self_a + loss_self_b) * opt.lambda_self + (loss_gen_adv_a + loss_gen_adv_b) * opt.lambda_gan + \ (loss_cycle_a + loss_cycle_b) * opt.lambda_cycle + (loss_cycle_a_adv + loss_cycle_b_adv) * opt.lambda_gan + \ (loss_style_recons_a + loss_style_recons_b) * opt.lambda_style loss_sum.backward() optimizer_MainModel.step() # ----------------------- # Train Discriminator A # ----------------------- optimizer_DomainA_Dis.zero_grad() DomainDiscriminator_A.train() loss_real = criterion_GAN(DomainDiscriminator_A(real_A), valid) fake_A_ = fake_A_buffer.push_and_pop(fake_A) loss_fake = criterion_GAN(DomainDiscriminator_A(fake_A_.detach()), fake) loss_D_A = (loss_real + loss_fake) / 2 log_statistics["Discriminator A Loss"] = loss_D_A.mean().item() loss_D_A.backward() optimizer_DomainA_Dis.step() # ----------------------- # Train Discriminator B # ----------------------- optimizer_DomainB_Dis.zero_grad() DomainDiscriminator_B.train() loss_real = criterion_GAN(DomainDiscriminator_B(real_B), valid) fake_B_ = fake_A_buffer.push_and_pop(fake_B) loss_fake = criterion_GAN(DomainDiscriminator_B(fake_B_.detach()), fake) loss_D_B = (loss_real + loss_fake) / 2 log_statistics["Discriminator B Loss"] = loss_D_B.mean().item() loss_D_B.backward() optimizer_DomainB_Dis.step() # -------------- # Log Progress # -------------- # Determine approximate time left batches_done = epoch * len(dataloader) + i batches_left = opt.n_epochs * len(dataloader) - batches_done time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time)) prev_time = time.time() # Print log sys.stdout.write( "\r[Epoch %d/%d] [Batch %d/%d] [%s] ETA: %s" % ( epoch, opt.n_epochs, i, len(dataloader), str(log_statistics), time_left, ) ) # If at sample interval save image if batches_done % opt.sample_interval == 0: sample_images(batches_done) # Update learning rates lr_scheduler_MainModel.step() lr_scheduler_DomainA_Dis.step() lr_scheduler_DomainB_Dis.step() if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0: # Save model checkpoints save_models(epoch) if __name__ == "__main__": while True: try: main() except RuntimeError as e: if 'out of memory' in str(e): print("|Warning: out of memory") clear_gradient() torch.cuda.empty_cache() else: raise e
47.168269
141
0.663184
c414ed5cf409a028adfd79fd29fff24a2361ead3
1,080
py
Python
database/database.py
kurtesy/ibm_phone_book
53b87b6224f73eae7430bba0bed4763197bd9dc0
[ "MIT" ]
null
null
null
database/database.py
kurtesy/ibm_phone_book
53b87b6224f73eae7430bba0bed4763197bd9dc0
[ "MIT" ]
null
null
null
database/database.py
kurtesy/ibm_phone_book
53b87b6224f73eae7430bba0bed4763197bd9dc0
[ "MIT" ]
null
null
null
import os from config.dev import db, meta, session, Base, DB_NAME from data_model.phone_book_model import PhoneBook # Data to initialize database with TEST_DATA = [ {"_id": 1, "sur_name": "Patel", "first_name": "Nishant", "phone_number": 1234567890, "address": "Hyderabad"}, {"_id": 2, "sur_name": "abc", "first_name": "xyz", "phone_number": 9876543210, "address": "Hyderabad"}, {"_id": 3, "sur_name": "Prasad", "first_name": "Ram", "phone_number": 9999999999, "address": "Hyderabad"} ] def main(): # Delete database file if it exists currently if os.path.exists(DB_NAME): os.remove(DB_NAME) # Create the database meta.create_all(db) # Create All Tables Base.metadata.create_all(db) # iterate over the PEOPLE structure and populate the database for data in TEST_DATA: p = PhoneBook(_id=data["_id"] ,sur_name=data["sur_name"], first_name=data["first_name"], phone_number=data["phone_number"], address=data["address"]) session.add(p) session.commit()
37.241379
114
0.643519
efd658e64aefbef24cd9917769c3726292074199
320
py
Python
source/python/Fibonacci.py
JoHyukJun/algorithm-analysis
3eda22ce0eeb52490702206d73c04cff1eb3e72d
[ "Apache-2.0" ]
null
null
null
source/python/Fibonacci.py
JoHyukJun/algorithm-analysis
3eda22ce0eeb52490702206d73c04cff1eb3e72d
[ "Apache-2.0" ]
null
null
null
source/python/Fibonacci.py
JoHyukJun/algorithm-analysis
3eda22ce0eeb52490702206d73c04cff1eb3e72d
[ "Apache-2.0" ]
null
null
null
''' main.py Created by JO HYUK JUN on 2021 Copyright © 2021 JO HYUK JUN. All rights reserved. ''' import sys n = int(sys.stdin.readline()) arr = [0 for _ in range(n + 1)] arr[0] = 0 if n < 1: print(0) arr[1] = 1 for i in range(2, n + 1): arr[i] = arr[i - 1] + arr[i - 2] print(arr[n])
11.851852
54
0.5375
6e5ff50268172c5ad17bacb169b78c3429d47adf
74
py
Python
aiopg/sa/utils.py
arssher/aiopg
ed69a066608ac4788b2bc8a0cdd03690f22adb3a
[ "BSD-2-Clause" ]
1,307
2015-01-06T15:52:21.000Z
2022-03-25T16:04:53.000Z
aiopg/sa/utils.py
arssher/aiopg
ed69a066608ac4788b2bc8a0cdd03690f22adb3a
[ "BSD-2-Clause" ]
765
2015-01-11T10:17:57.000Z
2022-01-29T13:04:30.000Z
aiopg/sa/utils.py
arssher/aiopg
ed69a066608ac4788b2bc8a0cdd03690f22adb3a
[ "BSD-2-Clause" ]
194
2015-02-20T09:29:30.000Z
2022-03-03T19:49:19.000Z
import sqlalchemy SQLALCHEMY_VERSION = sqlalchemy.__version__.split(".")
18.5
54
0.810811
c12f4e5ce07891d645671de7f9d5eb1e358271cc
5,894
py
Python
google/cloud/gsuiteaddons/v1/google-cloud-workspace-add-ons-v1-py/google/cloud/workspace_add_ons_v1/services/g_suite_add_ons/pagers.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
google/cloud/gsuiteaddons/v1/google-cloud-workspace-add-ons-v1-py/google/cloud/workspace_add_ons_v1/services/g_suite_add_ons/pagers.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
google/cloud/gsuiteaddons/v1/google-cloud-workspace-add-ons-v1-py/google/cloud/workspace_add_ons_v1/services/g_suite_add_ons/pagers.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Any, AsyncIterator, Awaitable, Callable, Sequence, Tuple, Optional, Iterator from google.cloud.workspace_add_ons_v1.types import gsuiteaddons class ListDeploymentsPager: """A pager for iterating through ``list_deployments`` requests. This class thinly wraps an initial :class:`google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse` object, and provides an ``__iter__`` method to iterate through its ``deployments`` field. If there are more pages, the ``__iter__`` method will make additional ``ListDeployments`` requests and continue to iterate through the ``deployments`` field on the corresponding responses. All the usual :class:`google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., gsuiteaddons.ListDeploymentsResponse], request: gsuiteaddons.ListDeploymentsRequest, response: gsuiteaddons.ListDeploymentsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.workspace_add_ons_v1.types.ListDeploymentsRequest): The initial request object. response (google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = gsuiteaddons.ListDeploymentsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterator[gsuiteaddons.ListDeploymentsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterator[gsuiteaddons.Deployment]: for page in self.pages: yield from page.deployments def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListDeploymentsAsyncPager: """A pager for iterating through ``list_deployments`` requests. This class thinly wraps an initial :class:`google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse` object, and provides an ``__aiter__`` method to iterate through its ``deployments`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListDeployments`` requests and continue to iterate through the ``deployments`` field on the corresponding responses. All the usual :class:`google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[gsuiteaddons.ListDeploymentsResponse]], request: gsuiteaddons.ListDeploymentsRequest, response: gsuiteaddons.ListDeploymentsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.workspace_add_ons_v1.types.ListDeploymentsRequest): The initial request object. response (google.cloud.workspace_add_ons_v1.types.ListDeploymentsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = gsuiteaddons.ListDeploymentsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterator[gsuiteaddons.ListDeploymentsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterator[gsuiteaddons.Deployment]: async def async_generator(): async for page in self.pages: for response in page.deployments: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response)
41.801418
95
0.685443
8a40acd4ddaeef48f8ce9e810da753a133fe18c9
4,278
py
Python
sdk/python/pulumi_alicloud/cdn/get_real_time_log_deliveries.py
pulumi/pulumi-alicloud
9c34d84b4588a7c885c6bec1f03b5016e5a41683
[ "ECL-2.0", "Apache-2.0" ]
42
2019-03-18T06:34:37.000Z
2022-03-24T07:08:57.000Z
sdk/python/pulumi_alicloud/cdn/get_real_time_log_deliveries.py
pulumi/pulumi-alicloud
9c34d84b4588a7c885c6bec1f03b5016e5a41683
[ "ECL-2.0", "Apache-2.0" ]
152
2019-04-15T21:03:44.000Z
2022-03-29T18:00:57.000Z
sdk/python/pulumi_alicloud/cdn/get_real_time_log_deliveries.py
pulumi/pulumi-alicloud
9c34d84b4588a7c885c6bec1f03b5016e5a41683
[ "ECL-2.0", "Apache-2.0" ]
3
2020-08-26T17:30:07.000Z
2021-07-05T01:37:45.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetRealTimeLogDeliveriesResult', 'AwaitableGetRealTimeLogDeliveriesResult', 'get_real_time_log_deliveries', ] @pulumi.output_type class GetRealTimeLogDeliveriesResult: """ A collection of values returned by getRealTimeLogDeliveries. """ def __init__(__self__, deliveries=None, domain=None, id=None, output_file=None, status=None): if deliveries and not isinstance(deliveries, list): raise TypeError("Expected argument 'deliveries' to be a list") pulumi.set(__self__, "deliveries", deliveries) if domain and not isinstance(domain, str): raise TypeError("Expected argument 'domain' to be a str") pulumi.set(__self__, "domain", domain) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if output_file and not isinstance(output_file, str): raise TypeError("Expected argument 'output_file' to be a str") pulumi.set(__self__, "output_file", output_file) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) @property @pulumi.getter def deliveries(self) -> Sequence['outputs.GetRealTimeLogDeliveriesDeliveryResult']: return pulumi.get(self, "deliveries") @property @pulumi.getter def domain(self) -> str: return pulumi.get(self, "domain") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="outputFile") def output_file(self) -> Optional[str]: return pulumi.get(self, "output_file") @property @pulumi.getter def status(self) -> Optional[str]: return pulumi.get(self, "status") class AwaitableGetRealTimeLogDeliveriesResult(GetRealTimeLogDeliveriesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetRealTimeLogDeliveriesResult( deliveries=self.deliveries, domain=self.domain, id=self.id, output_file=self.output_file, status=self.status) def get_real_time_log_deliveries(domain: Optional[str] = None, output_file: Optional[str] = None, status: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetRealTimeLogDeliveriesResult: """ This data source provides the Cdn Real Time Log Deliveries of the current Alibaba Cloud user. > **NOTE:** Available in v1.134.0+. ## Example Usage Basic Usage ```python import pulumi import pulumi_alicloud as alicloud example = alicloud.cdn.get_real_time_log_deliveries(domain="example_value") pulumi.export("cdnRealTimeLogDelivery1", example.deliveries[0].id) ``` :param str domain: Real-Time Log Service Domain. :param str status: -The status of the real-time log delivery feature. Valid Values: `online` and `offline`. """ __args__ = dict() __args__['domain'] = domain __args__['outputFile'] = output_file __args__['status'] = status if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('alicloud:cdn/getRealTimeLogDeliveries:getRealTimeLogDeliveries', __args__, opts=opts, typ=GetRealTimeLogDeliveriesResult).value return AwaitableGetRealTimeLogDeliveriesResult( deliveries=__ret__.deliveries, domain=__ret__.domain, id=__ret__.id, output_file=__ret__.output_file, status=__ret__.status)
34.780488
164
0.665498
4ccb5f9361c46989c3350698964b0d63e42a4d49
15,020
py
Python
src/8/xor_mlp_td.py
foxtrotmike/dissecting-reinforcement-learning
bee294f41e8a4c152d5dd8730eb2e268a46e6f92
[ "MIT" ]
null
null
null
src/8/xor_mlp_td.py
foxtrotmike/dissecting-reinforcement-learning
bee294f41e8a4c152d5dd8730eb2e268a46e6f92
[ "MIT" ]
null
null
null
src/8/xor_mlp_td.py
foxtrotmike/dissecting-reinforcement-learning
bee294f41e8a4c152d5dd8730eb2e268a46e6f92
[ "MIT" ]
null
null
null
#!/usr/bin/env python #MIT License #Copyright (c) 2017 Massimiliano Patacchiola # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. #In this example I will use the class gridworld to generate a 5x5 world #in which the cleaning robot will move. Rewards are allocated in the 4 #corners of the world following the XOR pattern. I will use an function #approximator based on a paraboloid-like function in order to represent #a TD(0) function approximator. import numpy as np from gridworld import GridWorld import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.animation as animation from matplotlib.patches import Rectangle import mpl_toolkits.mplot3d.art3d as art3d from matplotlib import cm from mlp import MLP def init_env(): '''Init the XOR boolean environment @return the environment gridworld object ''' env = GridWorld(5, 5) #Define the state matrix state_matrix = np.array([[1.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 1.0]]) #Define the index matrix index_matrix = np.array([[(4,0), (4,1), (4,2), (4,3), (4,4)], [(3,0), (3,1), (3,2), (3,3), (3,4)], [(2,0), (2,1), (2,2), (2,3), (2,4)], [(1,0), (1,1), (1,2), (1,3), (1,4)], [(0,0), (0,1), (0,2), (0,3), (0,4)]]) #Define the reward matrix reward_matrix = np.array([[1.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [-1.0, 0.0, 0.0, 0.0, 1.0]]) #Define the transition matrix transition_matrix = np.array([[0.8, 0.1, 0.0, 0.1], [0.1, 0.8, 0.1, 0.0], [0.0, 0.1, 0.8, 0.1], [0.1, 0.0, 0.1, 0.8]]) env.setStateMatrix(state_matrix) env.setIndexMatrix(index_matrix) env.setRewardMatrix(reward_matrix) env.setTransitionMatrix(transition_matrix) return env def update(my_mlp, new_observation, reward, learning_rate, gamma, done): '''Return the updated weights vector w_t1 @param w the weights vector before the update @param x the feauture vector obsrved at t @param x_t1 the feauture vector observed at t+1 @param reward the reward observed after the action @param alpha the ste size (learning rate) @param gamma the discount factor @param done boolean True if the state is terminal @return w_t1 the weights vector at t+1 ''' if done: x = np.array(new_observation, dtype=np.float32) target = np.array([reward], dtype=np.float32) #print(target) my_mlp.train(x, target, learning_rate) else: x = np.array(new_observation, dtype=np.float32) target = np.array((reward + (gamma * my_mlp.forward(x))), dtype=np.float32) #print target my_mlp.train(x, target, learning_rate) #w_t1 = w + alpha * ((reward + (gamma*(np.dot(x_t1,w))) - np.dot(x,w)) * x) return my_mlp def print_utility(my_mlp, tot_rows, tot_cols, decimal=2, flip=True): '''Print on terminal the utility matrix of a discrete state space having states defined by tuples: (0,0); (0,1); (0,2) ... @param my_mlp an MLP object having single output @param tot_rows total number of rows @param tot_cols total number of columns @param decimal is the precision of the printing (default: 2 decimal places) @param flip boolean which defines if vertical flip is applied (default: True) ''' utility_matrix = np.zeros((tot_rows, tot_cols)) for row in range(tot_rows): for col in range(tot_cols): x = np.array([row, col], dtype=np.float32) utility_matrix[row,col] = my_mlp.forward(x) np.set_printoptions(precision=decimal) #set print precision of numpy if flip: print(np.flipud(utility_matrix)) else: print(utility_matrix) np.set_printoptions(precision=8) #reset to default def subplot(my_mlp, world_size, filename="figure.png"): #Define the main figure property fig, ax = plt.subplots(nrows=1, ncols=4, subplot_kw={'projection': '3d', 'autoscale_on':False, 'aspect':'equal'}) #XOR color color_00 = "red" color_11 = "red" color_10 = "green" color_01 = "green" #Quadratic subplot ax[0].clear() #Draw the rectangles p = Rectangle((0, 0), 1, 1, color=color_00, alpha=0.5) ax[0].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, world_size-1), 1, 1, color=color_11, alpha=0.5) ax[0].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((0, world_size-1), 1, 1, color=color_01, alpha=0.5) ax[0].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, 0), 1, 1, color=color_10, alpha=0.5) ax[0].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") #Set the plot ax[0].set_xticks(np.arange(0, world_size+1, 1)) ax[0].set_xticklabels('', fontsize=10) ax[0].set_yticklabels('', fontsize=10) ax[0].set_yticks(np.arange(0, world_size+1, 1)) ax[0].set_zlim(-1.0,1.0) #ax[0].set_zticklabels(['-1.0','','0','','1.0'], fontsize=10) ax[0].view_init(elev=30, azim=-115) x, y = np.meshgrid(np.arange(0.0, world_size-1.0, 0.01), np.arange(0.0, world_size-1.0, 0.01)) grid = np.arange(0.0, world_size-1.0, 0.01) z_matrix = list() for x_i in grid: z_row = list() for y_i in grid: z_row.append(my_mlp.forward(np.array([x_i, y_i]))) z_matrix.append(z_row) z = np.squeeze(np.array(z_matrix)) ax[0].plot_surface(x+0.5,y+0.5,z, color='lightgrey', alpha=0.5, linewidth=0, antialiased=False) # color='lightgrey', alpha=0.5) #Draw a White background x, y = np.meshgrid(np.arange(0, world_size+1, 1), np.arange(0, world_size+1, 1)) z = x*(-1.0) ax[0].plot_surface(x,y,z, color='white', alpha=0.01) #Quadratic subplot ax[1].clear() #Draw the rectangles p = Rectangle((0, 0), 1, 1, color=color_00, alpha=0.5) ax[1].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, world_size-1), 1, 1, color=color_11, alpha=0.5) ax[1].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((0, world_size-1), 1, 1, color=color_01, alpha=0.5) ax[1].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, 0), 1, 1, color=color_10, alpha=0.5) ax[1].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") #Set the plot ax[1].set_xticks(np.arange(0, world_size+1, 1)) ax[1].set_xticklabels('', fontsize=10) ax[1].set_yticklabels('', fontsize=10) ax[1].set_yticks(np.arange(0, world_size+1, 1)) ax[1].set_zlim(-1.0,1.0) ax[1].set_zticklabels([''], fontsize=10) ax[1].view_init(elev=30, azim=-65) x, y = np.meshgrid(np.arange(0.0, world_size-1.0, 0.01), np.arange(0.0, world_size-1.0, 0.01)) grid = np.arange(0.0, world_size-1.0, 0.01) z_matrix = list() for x_i in grid: z_row = list() for y_i in grid: z_row.append(my_mlp.forward(np.array([x_i, y_i]))) z_matrix.append(z_row) z = np.squeeze(np.array(z_matrix)) ax[1].plot_surface(x+0.5,y+0.5,z, color='lightgrey', alpha=0.5, linewidth=0, antialiased=False) # color='lightgrey', alpha=0.5) #Draw a White background x, y = np.meshgrid(np.arange(0, world_size+1, 1), np.arange(0, world_size+1, 1)) z = x*(-1.0) ax[1].plot_surface(x,y,z, color='white', alpha=0.01) #Quadratic subplot ax[2].clear() #Draw the rectangles p = Rectangle((0, 0), 1, 1, color=color_00, alpha=0.5) ax[2].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, world_size-1), 1, 1, color=color_11, alpha=0.5) ax[2].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((0, world_size-1), 1, 1, color=color_01, alpha=0.5) ax[2].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, 0), 1, 1, color=color_10, alpha=0.5) ax[2].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") #Set the plot ax[2].set_xticks(np.arange(0, world_size+1, 1)) ax[2].set_xticklabels('', fontsize=10) ax[2].set_yticklabels('', fontsize=10) ax[2].set_yticks(np.arange(0, world_size+1, 1)) ax[2].set_zlim(-1.0,1.0) ax[2].set_zticklabels([''], fontsize=10) ax[2].view_init(elev=30, azim=-45) x, y = np.meshgrid(np.arange(0.0, world_size-1.0, 0.01), np.arange(0.0, world_size-1.0, 0.01)) grid = np.arange(0.0, world_size-1.0, 0.01) z_matrix = list() for x_i in grid: z_row = list() for y_i in grid: z_row.append(my_mlp.forward(np.array([x_i, y_i]))) z_matrix.append(z_row) z = np.squeeze(np.array(z_matrix)) ax[2].plot_surface(x+0.5,y+0.5,z, color='lightgrey', alpha=0.5, linewidth=0, antialiased=False) # color='lightgrey', alpha=0.5) #Draw a White background x, y = np.meshgrid(np.arange(0, world_size+1, 1), np.arange(0, world_size+1, 1)) z = x*(-1.0) ax[2].plot_surface(x,y,z, color='white', alpha=0.01) #Quadratic subplot ax[3].clear() #Draw the rectangles p = Rectangle((0, 0), 1, 1, color=color_00, alpha=0.5) ax[3].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, world_size-1), 1, 1, color=color_11, alpha=0.5) ax[3].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((0, world_size-1), 1, 1, color=color_01, alpha=0.5) ax[3].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") p = Rectangle((world_size-1, 0), 1, 1, color=color_10, alpha=0.5) ax[3].add_patch(p) art3d.pathpatch_2d_to_3d(p, z=-1.0, zdir="z") #Set the plot ax[3].set_xticks(np.arange(0, world_size+1, 1)) ax[3].set_xticklabels('', fontsize=10) ax[3].set_yticklabels('', fontsize=10) ax[3].set_yticks(np.arange(0, world_size+1, 1)) ax[3].set_zlim(-1.0,1.0) ax[3].set_zticklabels([''], fontsize=10) ax[3].view_init(elev=30, azim=-25) x, y = np.meshgrid(np.arange(0.0, world_size-1.0, 0.01), np.arange(0.0, world_size-1.0, 0.01)) grid = np.arange(0.0, world_size-1.0, 0.01) z_matrix = list() for x_i in grid: z_row = list() for y_i in grid: z_row.append(my_mlp.forward(np.array([x_i, y_i]))) z_matrix.append(z_row) z = np.squeeze(np.array(z_matrix)) ax[3].plot_surface(x+0.5,y+0.5,z, color='lightgrey', alpha=0.5, linewidth=0, antialiased=False) # color='lightgrey', alpha=0.5) #Draw a White background x, y = np.meshgrid(np.arange(0, world_size+1, 1), np.arange(0, world_size+1, 1)) z = x*(-1.0) ax[3].plot_surface(x,y,z, color='white', alpha=0.01) #Save the figure fig.tight_layout() fig.savefig(filename, dpi=300) #, bbox_inches='tight') def main(): env = init_env() my_mlp = MLP(tot_inputs=2, tot_hidden=3, tot_outputs=1, activation="tanh") learning_rate = 0.1 gamma = 0.9 alpha_start = 0.1 alpha_stop = 0.0000001 #constant step size tot_epoch = 10001 alpha_array = np.linspace(alpha_start, alpha_stop, tot_epoch) print_epoch = 100 for epoch in range(tot_epoch): alpha = alpha_array[epoch] #the learning rate is linearly decreased #XOR-world episode observation = env.reset(exploring_starts=True) #The episode starts here for step in range(1000): action = np.random.randint(0,4) new_observation, reward, done = env.step(action) #move in the world and get the state and reward my_mlp = update(my_mlp, new_observation, reward, learning_rate, gamma, done) observation = new_observation if done: break if(epoch % print_epoch == 0): print("") print("Epoch: " + str(epoch+1)) print("Tot steps: " + str(step)) print("Alpha: " + str(alpha)) print_utility(my_mlp, tot_rows=5, tot_cols=5) print("Generating plot, please wait...") subplot(my_mlp, world_size=5, filename="xor_planes.png") print("Done!") if __name__ == "__main__": main()
45.932722
139
0.563981
ee20f70c1b2edb508a4480e802a1a38ed721a53b
9,038
py
Python
yambopy/integration_tests/itest_si_bse.py
QU-XIAO/yambopy
ff65a4f90c1bfefe642ebc61e490efe781709ff9
[ "BSD-3-Clause" ]
21
2016-04-07T20:53:29.000Z
2021-05-14T08:06:02.000Z
yambopy/integration_tests/itest_si_bse.py
alexmoratalla/yambopy
8ec0e1e18868ccaadb3eab36c55e6a47021e257d
[ "BSD-3-Clause" ]
22
2016-06-14T22:29:47.000Z
2021-09-16T15:36:26.000Z
yambopy/integration_tests/itest_si_bse.py
alexmoratalla/yambopy
8ec0e1e18868ccaadb3eab36c55e6a47021e257d
[ "BSD-3-Clause" ]
15
2016-06-14T18:40:57.000Z
2021-08-07T13:17:43.000Z
# # Author: Henrique Pereira Coutada Miranda # Tests for yambopy # Si # from __future__ import print_function import matplotlib import unittest import sys import os import shutil import argparse import subprocess import filecmp import shutil as sh import yambopy from yambopy import * from qepy import * reference_dir = os.path.join(os.path.dirname(yambopy.data.__file__),'refs') class TestPW_Si(unittest.TestCase): """ This class creates the input files for Si and compares them to reference files """ def get_inputfile(self): qe = PwIn() qe.atoms = [['Si',[0.125,0.125,0.125]], ['Si',[-.125,-.125,-.125]]] qe.atypes = {'Si': [28.086,"Si.pbe-mt_fhi.UPF"]} qe.control['prefix'] = "'si'" qe.control['wf_collect'] = '.true.' qe.control['pseudo_dir'] = "'../pseudos'" qe.system['celldm(1)'] = 10.3 qe.system['ecutwfc'] = 40 qe.system['occupations'] = "'fixed'" qe.system['nat'] = 2 qe.system['ntyp'] = 1 qe.system['ibrav'] = 2 qe.kpoints = [4, 4, 4] qe.electrons['conv_thr'] = 1e-8 return qe def test_pw_input_relax(self): """ Generate a silicon pw.x input file for the relaxation cycle """ if not os.path.isdir('relax'): os.mkdir('relax') qe = self.get_inputfile() qe.control['calculation'] = "'vc-relax'" qe.ions['ion_dynamics'] = "'bfgs'" qe.cell['cell_dynamics'] = "'bfgs'" qe.write('relax/si.scf') self.assertEqual(filecmp.cmp('relax/si.scf', '%s/si/relax_si.scf'%reference_dir),True) def test_pw_input_scf(self): """ Generate a silicon pw.x input file for the self consistent cycle """ if not os.path.isdir('scf'): os.mkdir('scf') qe = self.get_inputfile() qe.control['calculation'] = "'scf'" qe.write('scf/si.scf') self.assertEqual(filecmp.cmp('scf/si.scf', '%s/si/scf_si.scf'%reference_dir),True) def test_pw_input_nscf(self): """ Generate a silicon pw.x input file for the non self consistent cycle """ if not os.path.isdir('nscf'): os.mkdir('nscf') qe = self.get_inputfile() qe.control['calculation'] = "'nscf'" qe.electrons['diago_full_acc'] = ".true." qe.electrons['conv_thr'] = 1e-8 qe.system['nbnd'] = 30 qe.system['force_symmorphic'] = ".true." qe.kpoints = [2, 2, 2] qe.write('nscf/si.nscf') self.assertEqual(filecmp.cmp('nscf/si.nscf', '%s/si/nscf_si.nscf'%reference_dir),True) class TestPW_Si_Run(unittest.TestCase): """ This class creates the input files and runs the pw.x code """ def test_pw_si(sef): """ Run relaxation, self consistent cycle and non self consistent cycle """ print("\nstep 1: relax") os.system('cd relax; pw.x < si.scf > si.scf.log') e = PwXML('si',path='relax') pos = e.get_scaled_positions() q = PwIn.from_file('scf/si.scf') print("old celldm(1)", q.system['celldm(1)']) q.system['celldm(1)'] = e.cell[0][2]*2 print("new celldm(1)", q.system['celldm(1)']) q.atoms = list(zip([a[0] for a in q.atoms],pos)) q.write('scf/si.scf') print("step 2: scf") os.system('cd scf; pw.x < si.scf > si.scf.log') os.system('cp -r scf/si.save nscf') print("step 3: nscf") os.system('cd nscf; pw.x < si.nscf > si.nscf.log') class TestYamboPrep_Si(unittest.TestCase): def test_yambo_preparation(self): """ Run p2y and yambo to prepare the database """ if not os.path.isdir('database'): os.mkdir('database') os.system('cd nscf/si.save; p2y 2> ../../database/p2y.log') os.system('cd nscf/si.save; yambo 2> ../../database/yambo.log') os.system('mv nscf/si.save/SAVE database') class TestYamboIn_BSE_Si(unittest.TestCase): def setUp(self): """ Prepare the databases """ if not os.path.isdir('database/SAVE'): os.makedirs('database') os.system('cd database; tar xfz %s/si/yambo_bse_conv/bse_conv.tar.gz'%reference_dir) if not os.path.isdir('bse/SAVE'): sh.copytree('database/SAVE','bse/SAVE') if not os.path.isdir('bse_conv/SAVE'): sh.copytree('database/SAVE','bse_conv/SAVE') def test_bse_input(self): """ Test if we can initialize the YamboIn class for a typical BSE input file """ y = YamboIn.from_runlevel('-b -o b -k sex -y h -V all',folder='bse') def test_bse_convergence(self): """ Test if we can generate multiple input files changing some variables """ y = YamboIn.from_runlevel('-b -o b -k sex -y d -V all',folder='bse_conv') y['BEnSteps'] = 500 conv = { 'FFTGvecs': [[5,10,15],'Ry'], 'NGsBlkXs': [[1,2,5], 'Ry'], 'BndsRnXs': [[1,10],[1,20],[1,30]] } y.optimize(conv,folder='bse_conv') return y class TestYamboIn_BSE_Si_Run(unittest.TestCase): def test_yambo_bse_si(self): """ Run BSE calculation with yambo """ y = YamboIn.from_runlevel('-b -o b -k sex -y d -V all',folder='bse_conv') y['BEnSteps'] = 500 conv = { 'FFTGvecs': [[5,10,15],'Ry'], 'NGsBlkXs': [[1,2,5], 'Ry'], 'BndsRnXs': [[1,10],[1,20],[1,30]] } def run(filename): folder = filename.split('.')[0] os.system('cd bse_conv; yambo -F %s -J %s -C %s 2> %s.log'%(filename,folder,folder,folder)) y.optimize(conv,folder='bse_conv',run=run) class TestYamboOut_BSE_Si(unittest.TestCase): def test_yamboout_bse_si(self): """ Read the yambo BSE output files and write them as .json """ for dirpath,dirnames,filenames in os.walk('bse_conv'): #check if there are some output files in the folder if ([ f for f in filenames if 'o-' in f ]): y = YamboOut(dirpath,save_folder='bse_conv') y.pack() def test_yamboanalyse_bse_si(self): """ Analyse the BSE .json output files """ y = YamboAnalyser('bse_conv') y.plot_bse('eps') def test_yambopy_analysebse(self): """ Test the yambopy analysebse executable """ os.system('yambopy analysebse bse_conv FFTGvecs -nd') out = np.loadtxt('analyse_bse_conv/FFTGvecs_exciton_energies.dat') ref = np.loadtxt('%s/si/analyse_bse_conv/FFTGvecs_exciton_energies.dat'%reference_dir) print("ref:") print(ref) print("out:") print(out) self.assertEqual(np.isclose(ref,out,atol=1e-3).all(),True) os.system('yambopy analysebse bse_conv BndsRnXs -nd') out = np.loadtxt('analyse_bse_conv/BndsRnXs_exciton_energies.dat') ref = np.loadtxt('%s/si/analyse_bse_conv/BndsRnXs_exciton_energies.dat'%reference_dir) print("ref:") print(ref) print("out:") print(out) self.assertEqual(np.isclose(ref,out,atol=1e-3).all(),True) if __name__ == '__main__': #parse options parser = argparse.ArgumentParser(description='Test the yambopy script.') parser.add_argument('-i','--input', action="store_true", help='Generate the input files and compare with the reference ones') parser.add_argument('-f','--full', action="store_true", help='Generate the input files, run them and compare the results') parser.add_argument('-c','--clean', action="store_true", help='Clean all the data from a previous run') args = parser.parse_args() if len(sys.argv)==1: parser.print_help() sys.exit(1) # Count the number of errors nerrors = 0 ul = unittest.TestLoader() tr = unittest.TextTestRunner(verbosity=2) # # Test pw.x # suite = ul.loadTestsFromTestCase(TestPW_Si) nerrors += not tr.run(suite).wasSuccessful() if args.full: suite = ul.loadTestsFromTestCase(TestPW_Si_Run) nerrors += not tr.run(suite).wasSuccessful() # # Test p2y and yambo # if args.full: suite = ul.loadTestsFromTestCase(TestYamboPrep_Si) nerrors += not tr.run(suite).wasSuccessful() # # Test BSE on yambo # suite = ul.loadTestsFromTestCase(TestYamboIn_BSE_Si) nerrors += not tr.run(suite).wasSuccessful() if args.full: suite = ul.loadTestsFromTestCase(TestYamboIn_BSE_Si_Run) nerrors += not tr.run(suite).wasSuccessful() suite = ul.loadTestsFromTestCase(TestYamboOut_BSE_Si) nerrors += not tr.run(suite).wasSuccessful() #clean tests if args.clean or nerrors==0: print("cleaning...") os.system('rm -rf scf bse bse_conv nscf relax database ' 'analyse_bse_conv proj.in') print("done!") sys.exit(nerrors)
35.167315
103
0.590175
d6dc233f813319057836bf1c618cd720e3f231b7
1,150
py
Python
bin/setup_transactionlogs.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
bin/setup_transactionlogs.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
bin/setup_transactionlogs.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ Script to set up report database """ import argparse from sqlalchemy import create_engine from gdcdatamodel.models.submission import Base def setup(host, user, password, database): engine = create_engine( "postgres://{user}:{password}@{host}/{database}".format( user=user, host=host, password=password, database=database ) ) Base.metadata.create_all(engine) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--host", type=str, action="store", default="localhost", help="psql-server host" ) parser.add_argument( "--user", type=str, action="store", default="test", help="psql test user" ) parser.add_argument( "--password", type=str, action="store", default="test", help="psql test password", ) parser.add_argument( "--database", type=str, action="store", default="sheepdog_automated_test", help="psql test database", ) args = parser.parse_args() setup(args.host, args.user, args.password, args.database)
25
88
0.623478
f48b79b25ecf50d954e4c146d713955ec98a605b
5,686
py
Python
tests/server_test.py
strophy/thumbor_dash
54b2ae14b5e8f60a811a7328ff51524f6dc71b1a
[ "MIT" ]
2
2021-09-17T13:17:09.000Z
2021-10-03T14:00:00.000Z
tests/server_test.py
strophy/thumbor_dash
54b2ae14b5e8f60a811a7328ff51524f6dc71b1a
[ "MIT" ]
1
2022-01-24T01:05:00.000Z
2022-02-09T00:35:30.000Z
tests/server_test.py
strophy/thumbor_dash
54b2ae14b5e8f60a811a7328ff51524f6dc71b1a
[ "MIT" ]
2
2021-09-17T13:17:12.000Z
2021-09-22T13:21:57.000Z
from unittest import TestCase import mock from preggy import expect import thumbor_dash.server from tests.fixtures.custom_error_handler import ErrorHandler as CustomErrorHandler from thumbor_dash.app import ThumborDashServiceApp from thumbor.config import Config from thumbor_dash.server import ( configure_log, get_application, get_as_integer, get_config, get_context, get_importer, main, run_server, validate_config, ) class ServerTestCase(TestCase): def test_can_get_value_as_integer(self): expect(get_as_integer("1")).to_equal(1) expect(get_as_integer("a")).to_be_null() expect(get_as_integer("")).to_be_null() expect(get_as_integer(None)).to_be_null() def test_can_get_config_from_path(self): config = get_config("./tests/fixtures/thumbor_config_server_test.conf") with mock.patch.dict("os.environ", {"ENGINE": "test"}): expect(config).not_to_be_null() expect(config.ALLOWED_SOURCES).to_be_like(["mydomain.com"]) expect(config.ENGINE).to_be_like("thumbor.engines.pil") def test_can_get_config_with_env_enabled(self): config = get_config("./tests/fixtures/thumbor_config_server_test.conf", True) with mock.patch.dict("os.environ", {"ENGINE": "test"}): expect(config).not_to_be_null() expect(config.ALLOWED_SOURCES).to_be_like(["mydomain.com"]) expect(config.ENGINE).to_be_like("test") @mock.patch("logging.basicConfig") def test_can_configure_log_from_config(self, basic_config_mock): conf = Config() configure_log(conf, "DEBUG") params = dict( datefmt="%Y-%m-%d %H:%M:%S", level=10, format="%(asctime)s %(name)s:%(levelname)s %(message)s", ) basic_config_mock.assert_called_with(**params) @mock.patch("logging.config.dictConfig") def test_can_configure_log_from_dict_config(self, dict_config_mock): conf = Config(THUMBOR_LOG_CONFIG={"level": "INFO"}) configure_log(conf, "DEBUG") params = dict(level="INFO",) dict_config_mock.assert_called_with(params) def test_can_import_default_modules(self): conf = Config() importer = get_importer(conf) expect(importer).not_to_be_null() expect(importer.filters).not_to_be_empty() def test_can_import_with_custom_error_handler_class(self): conf = Config( USE_CUSTOM_ERROR_HANDLING=True, ERROR_HANDLER_MODULE="tests.fixtures.custom_error_handler", ) importer = get_importer(conf) expect(importer).not_to_be_null() expect(importer.error_handler_class).not_to_be_null() expect(importer.error_handler_class).to_be_instance_of(CustomErrorHandler) def test_validate_config_security_key(self): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY=None) with expect.error_to_happen( RuntimeError, message="No security key was found for this instance of thumbor. " "Please provide one using the conf file or a security key file.", ): validate_config(conf, server_parameters) def test_validate_config_security_key_from_config(self): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY="something", REQUEST_TIME_LIMIT = 1, USAGE_VIOLATION_LIMIT = 5, BAN_DURATION = 10 ) validate_config(conf, server_parameters) expect(server_parameters.security_key).to_equal("something") @mock.patch.object(thumbor_dash.server, "which") def test_validate_gifsicle_path(self, which_mock): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY="test", USE_GIFSICLE_ENGINE=True, REQUEST_TIME_LIMIT = 1, USAGE_VIOLATION_LIMIT = 5, BAN_DURATION = 10 ) which_mock.return_value = "/usr/bin/gifsicle" validate_config(conf, server_parameters) expect(server_parameters.gifsicle_path).to_equal("/usr/bin/gifsicle") @mock.patch.object(thumbor_dash.server, "which") def test_validate_null_gifsicle_path(self, which_mock): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY="test", USE_GIFSICLE_ENGINE=True, REQUEST_TIME_LIMIT = 1, USAGE_VIOLATION_LIMIT = 5, BAN_DURATION = 10 ) which_mock.return_value = None with expect.error_to_happen( RuntimeError, message="If using USE_GIFSICLE_ENGINE configuration to True, " "the `gifsicle` binary must be in the PATH and must be an executable.", ): validate_config(conf, server_parameters) def test_get_context(self): server_parameters = mock.Mock( security_key=None, app_class="thumbor_dash.app.ThumborDashServiceApp" ) conf = Config(SECURITY_KEY="test", REQUEST_TIME_LIMIT = 1, USAGE_VIOLATION_LIMIT = 5, BAN_DURATION = 10 ) importer = get_importer(conf) context = get_context(server_parameters, conf, importer) expect(context).not_to_be_null() def test_get_application(self): server_parameters = mock.Mock( security_key=None, app_class="thumbor_dash.app.ThumborDashServiceApp" ) conf = Config(SECURITY_KEY="test", REQUEST_TIME_LIMIT = 1, USAGE_VIOLATION_LIMIT = 5, BAN_DURATION = 10 ) importer = get_importer(conf) context = get_context(server_parameters, conf, importer) app = get_application(context) expect(app).not_to_be_null() expect(app).to_be_instance_of(ThumborDashServiceApp)
38.161074
139
0.690468
008388e29098a4509cc43b4924630892547a7eb1
708
py
Python
system/migrations/0002_auto_20180601_2250.py
17621368758/tranpathPY
01cf371c260275811e3750de116fa5b95718bafe
[ "MIT" ]
1
2020-06-05T16:01:21.000Z
2020-06-05T16:01:21.000Z
system/migrations/0002_auto_20180601_2250.py
17621368758/tranpathPY
01cf371c260275811e3750de116fa5b95718bafe
[ "MIT" ]
4
2020-02-11T23:27:37.000Z
2021-12-13T19:52:11.000Z
system/migrations/0002_auto_20180601_2250.py
17621368758/tranpathPY
01cf371c260275811e3750de116fa5b95718bafe
[ "MIT" ]
null
null
null
# Generated by Django 2.0.5 on 2018-06-01 22:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('system', '0001_initial'), ] operations = [ migrations.AddField( model_name='excel_import_file_fields_name', name='colType', field=models.CharField(help_text='{"form":"F"}', max_length=50, null=True, verbose_name='段名类型(从excel判断 )'), ), migrations.AlterField( model_name='excel_import_file_fields_name', name='fieldNameNew', field=models.CharField(help_text='{"form":"F"}', max_length=500, verbose_name='新字段名(为空时该字段不导入系统)'), ), ]
29.5
119
0.615819
1d1760600d63e2b9f4229cb928e584b4ca353cd7
2,017
py
Python
dos/inference.py
unhochoi/dos
39969a8761fdfc216f95587e6542b9a3ccbc0f45
[ "Apache-2.0" ]
1
2021-11-20T10:53:32.000Z
2021-11-20T10:53:32.000Z
dos/inference.py
unhochoi/dos
39969a8761fdfc216f95587e6542b9a3ccbc0f45
[ "Apache-2.0" ]
null
null
null
dos/inference.py
unhochoi/dos
39969a8761fdfc216f95587e6542b9a3ccbc0f45
[ "Apache-2.0" ]
1
2022-01-04T05:02:31.000Z
2022-01-04T05:02:31.000Z
# Dense Or Sparse : inference # Load python packages # 1. Basic data processing packages import numpy as np import pickle # 2. Machine learning packages from sklearn.preprocessing import MinMaxScaler # 3. Deep learning package import tensorflow as tf # 4. Other Packages import argparse # Setting Argument parser = argparse.ArgumentParser() parser.add_argument('--nr_l', type=int) parser.add_argument('--nc_l', type=int) parser.add_argument('--nc_r', type=int) parser.add_argument('--d_l', type=float) parser.add_argument('--d_r', type=float) parser.add_argument('--nnz_l', type=int) parser.add_argument('--nnz_r', type=int) args = parser.parse_args() # Convert argument to variable NR_L = args.nr_l NC_L = args.nc_l NC_R = args.nc_r D_L = args.d_l D_R = args.d_r NNZ_L = args.nnz_l NNZ_R = args.nnz_r # Load Model smsm_dnn_model = tf.keras.models.load_model('./model/smsm_dnn_model') smdm_dnn_model = tf.keras.models.load_model('./model/smdm_dnn_model') # Load Scaler minmax_scaler = pickle.load(open('./scaler/minmax_scaler.pkl','rb')) def inference(nr_l, nc_l, nc_r, d_l, d_r, nnz_l, nnz_r): # Create input feature to use as model input input_feature = np.array([[nr_l, nc_l, nc_r, d_l, d_r, nnz_l, nnz_r]]) # Apply minmax scaler to input_feature input_feature_scaler = minmax_scaler.transform(input_feature) # Generate model-specific predictions for input feature smsm_dnn_result = smsm_dnn_model.predict(input_feature_scaler) smdm_dnn_result = smdm_dnn_model.predict(input_feature_scaler) # If sm*dm is better than sm*sm if (smdm_dnn_result[0] <= smsm_dnn_result[0]): optim_method = "Sparse X Dense" # If sm*sm is better than sm*dm else: optim_method = "Sparse X Sparse" # Generate result result = "Sparse X Sparse Latency : " + str(int(smsm_dnn_result[0])) + "ms , " + \ "Sparse X Dense Latency : " + str(int(smdm_dnn_result[0])) + "ms , " + \ "Optimal Method : " + optim_method print(result) # Execute inference inference(NR_L, NC_L, NC_R, D_L, D_R, NNZ_L, NNZ_R)
28.814286
83
0.736738
53298b4f533b85b0a688419045355c9c5a688fa2
6,799
py
Python
data/p3BR/R2/benchmark/startQiskit274.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startQiskit274.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startQiskit274.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=57 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[2]) # number=38 prog.cz(input_qubit[0],input_qubit[2]) # number=39 prog.h(input_qubit[2]) # number=40 prog.h(input_qubit[2]) # number=54 prog.cz(input_qubit[0],input_qubit[2]) # number=55 prog.h(input_qubit[2]) # number=56 prog.h(input_qubit[2]) # number=42 prog.cz(input_qubit[0],input_qubit[2]) # number=43 prog.h(input_qubit[2]) # number=44 prog.h(input_qubit[2]) # number=48 prog.cz(input_qubit[0],input_qubit[2]) # number=49 prog.h(input_qubit[2]) # number=50 prog.x(input_qubit[2]) # number=46 prog.cx(input_qubit[0],input_qubit[2]) # number=47 prog.cx(input_qubit[0],input_qubit[2]) # number=37 prog.h(input_qubit[2]) # number=51 prog.cz(input_qubit[0],input_qubit[2]) # number=52 prog.h(input_qubit[2]) # number=53 prog.h(input_qubit[2]) # number=25 prog.cz(input_qubit[0],input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=27 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[2],input_qubit[1]) # number=8 prog.rx(0.17592918860102857,input_qubit[2]) # number=34 prog.rx(-0.3989822670059037,input_qubit[1]) # number=30 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=18 prog.cz(input_qubit[2],input_qubit[1]) # number=19 prog.h(input_qubit[1]) # number=20 prog.y(input_qubit[1]) # number=14 prog.h(input_qubit[1]) # number=22 prog.cz(input_qubit[2],input_qubit[1]) # number=23 prog.h(input_qubit[1]) # number=24 prog.z(input_qubit[2]) # number=3 prog.z(input_qubit[1]) # number=41 prog.x(input_qubit[1]) # number=17 prog.y(input_qubit[2]) # number=5 prog.x(input_qubit[2]) # number=21 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit274.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('qasm_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
31.331797
140
0.636123
797b5256f945c28fd586b612a1fa3d6f2a7d0beb
3,991
py
Python
alipay/aop/api/request/AlipayEbppInvoiceTitleBatchqueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayEbppInvoiceTitleBatchqueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayEbppInvoiceTitleBatchqueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayEbppInvoiceTitleBatchqueryModel import AlipayEbppInvoiceTitleBatchqueryModel class AlipayEbppInvoiceTitleBatchqueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayEbppInvoiceTitleBatchqueryModel): self._biz_content = value else: self._biz_content = AlipayEbppInvoiceTitleBatchqueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.ebpp.invoice.title.batchquery' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.524138
148
0.646455
898b09dd479a6c3be0ced74c9bdc4d24f2ba0f63
362
py
Python
tests/test_mapped_sequence_declaration.py
lcopey/SimpleTable
61f4ca0a62b5c562e751a12fc83dfeacb47897f4
[ "MIT" ]
null
null
null
tests/test_mapped_sequence_declaration.py
lcopey/SimpleTable
61f4ca0a62b5c562e751a12fc83dfeacb47897f4
[ "MIT" ]
null
null
null
tests/test_mapped_sequence_declaration.py
lcopey/SimpleTable
61f4ca0a62b5c562e751a12fc83dfeacb47897f4
[ "MIT" ]
null
null
null
import unittest from table import MappedSequence class TestMappedSequence(unittest.TestCase): def test_init(self): self.assertIsNotNone(MappedSequence(values=(0, 1, 2), keys=['a', 'b', 'c'])) self.assertIsNotNone(MappedSequence(values=(0, 1, 2))) self.assertRaises(AssertionError, MappedSequence, values=(0, 1, 2), keys=['a', 'b'])
36.2
92
0.685083
a1ef78c62ae6a67f63180d6c6f63ff61ed6480b5
5,349
py
Python
compareSampleSets.py
bsaintjo/mesa
64e2e969c765845ea6259350483008a6400d1bfa
[ "MIT" ]
null
null
null
compareSampleSets.py
bsaintjo/mesa
64e2e969c765845ea6259350483008a6400d1bfa
[ "MIT" ]
null
null
null
compareSampleSets.py
bsaintjo/mesa
64e2e969c765845ea6259350483008a6400d1bfa
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ######################################################################## # File: compareSampleSets.py # executable: # Purpose: # # # Author: Cameron M. Soulette # History: cms 01/08/2020 Created # ######################################################################## ######################################################################## # Hot Imports & Global Variable ######################################################################## import os, sys import numpy as np from scipy.stats import ranksums from statsmodels.stats.multitest import multipletests ######################################################################## # CommandLine ######################################################################## class CommandLine(object) : ''' Handle the command line, usage and help requests. CommandLine uses argparse, now standard in 2.7 and beyond. it implements a standard command line argument parser with various argument options, and a standard usage and help, attributes: myCommandLine.args is a dictionary which includes each of the available command line arguments as myCommandLine.args['option'] methods: ''' def __init__(self, inOpts=None) : ''' CommandLine constructor. Implements a parser to interpret the command line argv string using argparse. ''' import argparse self.parser = argparse.ArgumentParser(description = 'TBD', epilog = 'Please feel free to forward any usage questions or concerns', add_help = True, #default is True prefix_chars = '-', usage = '%(prog)s -m1 manifest1.txt -m2 manifest2.txt') # Add args self.parser.add_argument('--psiMESA', type=str, action = 'store', required=True, help='Compressed NPZ formatted PSI matrix from quantMESA.') self.parser.add_argument('-m1', '--manifest1', type=str, action = 'store', required=True, help='Manifest containing samples for sample set group1') self.parser.add_argument('-m2', '--manifest2' , type=str, action = 'store', required=True, help='Manifest containing samples for sample set group2') self.parser.add_argument('-o', '--out_prefix' , type=str, action = 'store', required=False, help='Prefix for output file.') if inOpts is None : self.args = vars(self.parser.parse_args()) else : self.args = vars(self.parser.parse_args(inOpts)) ######################################################################## # Helper Functions # # ######################################################################## def loadNPZ(x): ''' takes in npz formatted matrix. ''' try: data = np.load(x) except: print("ERR ** Cannot load matrix %s. Check path or format." % x) sys.exit(1) return data def getColIndexFromArray(x,y): ''' takes in list of strings = x and finds list index in array = y ''' return np.nonzero(np.isin(y,x)) def returnSamplesFromManifest(x): ''' reads in mesa formatted manifest returns list of samples ''' s = list() with open(x) as fin: for i in fin: s.append(i.split()[0]) return s ######################################################################## # MAINE # # ######################################################################## def main(): ''' A workflow to compute the significance difference between two distributions of PSI values. Values are assumed to not be normall distributed, thus we invoke the wilcoxon ranksum test as the statistical analysis. ''' myCommandLine = CommandLine() # args pmesa = myCommandLine.args["psiMESA"] group1 = myCommandLine.args["manifest1"] group2 = myCommandLine.args["manifest2"] prefix = myCommandLine.args['out_prefix'] # get sample lists g1 = returnSamplesFromManifest(group1) g2 = returnSamplesFromManifest(group2) if len(g1) < 3 or len(g2) < 3: print("Cannot conduct wilcoxon with less than 3 samples in either group. Exit.", file=sys.stderr) sys.exit(1) #load psi data = loadNPZ(pmesa) #table has 3 arrays, cols, rows and data cols, rows, matrix = data['cols'], data['rows'], data['data'] # get sample indices g1Indices = getColIndexFromArray(g1,cols) g2Indices = getColIndexFromArray(g2,cols) # do the math pvals = list() testedEvents = list() for n,event in enumerate(matrix): d1, d2 = event[g1Indices], event[g2Indices] nonans1 = np.invert(np.isnan(d1)) nonans2 = np.invert(np.isnan(d2)) data1 = d1[nonans1] data2 = d2[nonans2] if len(data1) < 3 or len(data2) < 3: continue D, pval = ranksums(d1, d2) testedEvents.append((rows[n],np.mean(data1)-np.mean(data2))) pvals.append(pval) # correct pvals corrected = multipletests(pvals,method="fdr_bh")[1] for n,i in enumerate(testedEvents): print(pvals[n],corrected[n],i[0],i[1]) if __name__ == "__main__": main()
31.280702
157
0.529632
3d4c3fbbe1bc462bc7133f3c7c96e805357123c9
362
py
Python
usage-advanced.py
kinimesi/dash-cytoscape
ce05beab9330e686b1c279be2a675a78e4f87ae7
[ "MIT" ]
432
2018-10-29T19:57:48.000Z
2022-03-31T21:34:48.000Z
usage-advanced.py
kinimesi/dash-cytoscape
ce05beab9330e686b1c279be2a675a78e4f87ae7
[ "MIT" ]
126
2018-10-29T20:00:10.000Z
2022-03-31T04:01:14.000Z
usage-advanced.py
kinimesi/dash-cytoscape
ce05beab9330e686b1c279be2a675a78e4f87ae7
[ "MIT" ]
107
2018-12-16T08:13:28.000Z
2022-03-31T04:35:18.000Z
import dash from demos.editor.callbacks import assign_callbacks from demos.editor.layout import layout as cytoscape_layout app = dash.Dash(__name__) server = app.server app.scripts.config.serve_locally = True app.css.config.serve_locally = True app.layout = cytoscape_layout assign_callbacks(app) if __name__ == '__main__': app.run_server(debug=True)
19.052632
58
0.792818
585b77be105d5b558282744f0f88da332c903162
17,549
py
Python
geopandas/tests/test_pandas_methods.py
raybellwaves/geopandas
7997837abdad0e312818a3f11027a2df9b685840
[ "BSD-3-Clause" ]
2
2021-10-05T13:43:59.000Z
2022-02-27T14:37:17.000Z
geopandas/tests/test_pandas_methods.py
raybellwaves/geopandas
7997837abdad0e312818a3f11027a2df9b685840
[ "BSD-3-Clause" ]
2
2021-07-09T00:47:43.000Z
2021-07-09T00:49:53.000Z
geopandas/tests/test_pandas_methods.py
Zeroto521/geopandas
592abf7f596ef4cf9b78c2706f69e83d8005821f
[ "BSD-3-Clause" ]
2
2021-09-09T14:38:36.000Z
2021-10-05T13:44:00.000Z
import os import numpy as np from numpy.testing import assert_array_equal import pandas as pd import shapely from shapely.geometry import Point, GeometryCollection import geopandas from geopandas import GeoDataFrame, GeoSeries import geopandas._compat as compat from geopandas.array import from_shapely from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal from pandas.testing import assert_frame_equal, assert_series_equal import pytest @pytest.fixture def s(): return GeoSeries([Point(x, y) for x, y in zip(range(3), range(3))]) @pytest.fixture def df(): return GeoDataFrame( { "geometry": [Point(x, x) for x in range(3)], "value1": np.arange(3, dtype="int64"), "value2": np.array([1, 2, 1], dtype="int64"), } ) def test_repr(s, df): assert "POINT" in repr(s) assert "POINT" in repr(df) assert "POINT" in df._repr_html_() def test_repr_boxed_display_precision(): # geographic coordinates p1 = Point(10.123456789, 50.123456789) p2 = Point(4.123456789, 20.123456789) s1 = GeoSeries([p1, p2, None]) assert "POINT (10.12346 50.12346)" in repr(s1) # geographic coordinates 4326 s3 = GeoSeries([p1, p2], crs=4326) assert "POINT (10.12346 50.12346)" in repr(s3) # projected coordinates p1 = Point(3000.123456789, 3000.123456789) p2 = Point(4000.123456789, 4000.123456789) s2 = GeoSeries([p1, p2, None]) assert "POINT (3000.123 3000.123)" in repr(s2) # projected geographic coordinate s4 = GeoSeries([p1, p2], crs=3857) assert "POINT (3000.123 3000.123)" in repr(s4) geopandas.options.display_precision = 1 assert "POINT (10.1 50.1)" in repr(s1) geopandas.options.display_precision = 9 assert "POINT (10.123456789 50.123456789)" in repr(s1) def test_repr_all_missing(): # https://github.com/geopandas/geopandas/issues/1195 s = GeoSeries([None, None, None]) assert "None" in repr(s) df = GeoDataFrame({"a": [1, 2, 3], "geometry": s}) assert "None" in repr(df) assert "geometry" in df._repr_html_() def test_repr_empty(): # https://github.com/geopandas/geopandas/issues/1195 s = GeoSeries([]) assert repr(s) == "GeoSeries([], dtype: geometry)" df = GeoDataFrame({"a": [], "geometry": s}) assert "Empty GeoDataFrame" in repr(df) # https://github.com/geopandas/geopandas/issues/1184 assert "geometry" in df._repr_html_() def test_indexing(s, df): # accessing scalar from the geometry (colunm) exp = Point(1, 1) assert s[1] == exp assert s.loc[1] == exp assert s.iloc[1] == exp assert df.loc[1, "geometry"] == exp assert df.iloc[1, 0] == exp # multiple values exp = GeoSeries([Point(2, 2), Point(0, 0)], index=[2, 0]) assert_geoseries_equal(s.loc[[2, 0]], exp) assert_geoseries_equal(s.iloc[[2, 0]], exp) assert_geoseries_equal(s.reindex([2, 0]), exp) assert_geoseries_equal(df.loc[[2, 0], "geometry"], exp) # TODO here iloc does not return a GeoSeries assert_series_equal( df.iloc[[2, 0], 0], exp, check_series_type=False, check_names=False ) # boolean indexing exp = GeoSeries([Point(0, 0), Point(2, 2)], index=[0, 2]) mask = np.array([True, False, True]) assert_geoseries_equal(s[mask], exp) assert_geoseries_equal(s.loc[mask], exp) assert_geoseries_equal(df[mask]["geometry"], exp) assert_geoseries_equal(df.loc[mask, "geometry"], exp) # slices s.index = [1, 2, 3] exp = GeoSeries([Point(1, 1), Point(2, 2)], index=[2, 3]) assert_series_equal(s[1:], exp) assert_series_equal(s.iloc[1:], exp) assert_series_equal(s.loc[2:], exp) def test_reindex(s, df): # GeoSeries reindex res = s.reindex([1, 2, 3]) exp = GeoSeries([Point(1, 1), Point(2, 2), None], index=[1, 2, 3]) assert_geoseries_equal(res, exp) # GeoDataFrame reindex index res = df.reindex(index=[1, 2, 3]) assert_geoseries_equal(res.geometry, exp) # GeoDataFrame reindex columns res = df.reindex(columns=["value1", "geometry"]) assert isinstance(res, GeoDataFrame) assert isinstance(res.geometry, GeoSeries) assert_frame_equal(res, df[["value1", "geometry"]]) # TODO df.reindex(columns=['value1', 'value2']) still returns GeoDataFrame, # should it return DataFrame instead ? def test_take(s, df): inds = np.array([0, 2]) # GeoSeries take result = s.take(inds) expected = s.iloc[[0, 2]] assert isinstance(result, GeoSeries) assert_geoseries_equal(result, expected) # GeoDataFrame take axis 0 result = df.take(inds, axis=0) expected = df.iloc[[0, 2], :] assert isinstance(result, GeoDataFrame) assert_geodataframe_equal(result, expected) # GeoDataFrame take axis 1 df = df.reindex(columns=["value1", "value2", "geometry"]) # ensure consistent order result = df.take(inds, axis=1) expected = df[["value1", "geometry"]] assert isinstance(result, GeoDataFrame) assert_geodataframe_equal(result, expected) result = df.take(np.array([0, 1]), axis=1) expected = df[["value1", "value2"]] assert isinstance(result, pd.DataFrame) assert_frame_equal(result, expected) def test_take_empty(s, df): # ensure that index type is preserved in an empty take # https://github.com/geopandas/geopandas/issues/1190 inds = np.array([], dtype="int64") # use non-default index df.index = pd.date_range("2012-01-01", periods=len(df)) result = df.take(inds, axis=0) assert isinstance(result, GeoDataFrame) assert result.shape == (0, 3) assert isinstance(result.index, pd.DatetimeIndex) # the original bug report was an empty boolean mask for result in [df.loc[df["value1"] > 100], df[df["value1"] > 100]]: assert isinstance(result, GeoDataFrame) assert result.shape == (0, 3) assert isinstance(result.index, pd.DatetimeIndex) def test_assignment(s, df): exp = GeoSeries([Point(10, 10), Point(1, 1), Point(2, 2)]) s2 = s.copy() s2[0] = Point(10, 10) assert_geoseries_equal(s2, exp) s2 = s.copy() s2.loc[0] = Point(10, 10) assert_geoseries_equal(s2, exp) s2 = s.copy() s2.iloc[0] = Point(10, 10) assert_geoseries_equal(s2, exp) df2 = df.copy() df2.loc[0, "geometry"] = Point(10, 10) assert_geoseries_equal(df2["geometry"], exp) df2 = df.copy() df2.iloc[0, 0] = Point(10, 10) assert_geoseries_equal(df2["geometry"], exp) def test_assign(df): res = df.assign(new=1) exp = df.copy() exp["new"] = 1 assert isinstance(res, GeoDataFrame) assert_frame_equal(res, exp) def test_astype(s, df): # check geoseries functionality with pytest.raises(TypeError): s.astype(int) assert s.astype(str)[0] == "POINT (0 0)" res = s.astype(object) assert isinstance(res, pd.Series) and not isinstance(res, GeoSeries) assert res.dtype == object df = df.rename_geometry("geom_list") # check whether returned object is a geodataframe res = df.astype({"value1": float}) assert isinstance(res, GeoDataFrame) # check whether returned object is a datafrane res = df.astype(str) assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame) res = df.astype({"geom_list": str}) assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame) res = df.astype(object) assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame) assert res["geom_list"].dtype == object def test_astype_invalid_geodataframe(): # https://github.com/geopandas/geopandas/issues/1144 # a GeoDataFrame without geometry column should not error in astype df = GeoDataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) res = df.astype(object) assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame) assert res["a"].dtype == object def test_to_csv(df): exp = ( "geometry,value1,value2\nPOINT (0 0),0,1\nPOINT (1 1),1,2\nPOINT (2 2),2,1\n" ).replace("\n", os.linesep) assert df.to_csv(index=False) == exp def test_numerical_operations(s, df): # df methods ignore the geometry column exp = pd.Series([3, 4], index=["value1", "value2"]) assert_series_equal(df.sum(), exp) # series methods raise error (not supported for geometry) with pytest.raises(TypeError): s.sum() with pytest.raises(TypeError): s.max() with pytest.raises((TypeError, ValueError)): # TODO: remove ValueError after pandas-dev/pandas#32749 s.idxmax() # numerical ops raise an error with pytest.raises(TypeError): df + 1 with pytest.raises((TypeError, AssertionError)): # TODO(pandas 0.23) remove AssertionError -> raised in 0.23 s + 1 # boolean comparisons work res = df == 100 exp = pd.DataFrame(False, index=df.index, columns=df.columns) assert_frame_equal(res, exp) def test_where(s): res = s.where(np.array([True, False, True])) exp = GeoSeries([Point(0, 0), None, Point(2, 2)]) assert_series_equal(res, exp) def test_select_dtypes(df): res = df.select_dtypes(include=[np.number]) exp = df[["value1", "value2"]] assert_frame_equal(res, exp) def test_equals(s, df): # https://github.com/geopandas/geopandas/issues/1420 s2 = s.copy() assert s.equals(s2) is True s2.iloc[0] = None assert s.equals(s2) is False df2 = df.copy() assert df.equals(df2) is True df2.loc[0, "geometry"] = Point(10, 10) assert df.equals(df2) is False df2 = df.copy() df2.loc[0, "value1"] = 10 assert df.equals(df2) is False # Missing values def test_fillna(s, df): s2 = GeoSeries([Point(0, 0), None, Point(2, 2)]) res = s2.fillna(Point(1, 1)) assert_geoseries_equal(res, s) # allow np.nan although this does not change anything # https://github.com/geopandas/geopandas/issues/1149 res = s2.fillna(np.nan) assert_geoseries_equal(res, s2) # raise exception if trying to fill missing geometry w/ non-geometry df2 = df.copy() df2["geometry"] = s2 res = df2.fillna(Point(1, 1)) assert_geodataframe_equal(res, df) with pytest.raises(NotImplementedError): df2.fillna(0) # allow non-geometry fill value if there are no missing values # https://github.com/geopandas/geopandas/issues/1149 df3 = df.copy() df3.loc[0, "value1"] = np.nan res = df3.fillna(0) assert_geodataframe_equal(res.astype({"value1": "int64"}), df) def test_dropna(): s2 = GeoSeries([Point(0, 0), None, Point(2, 2)]) res = s2.dropna() exp = s2.loc[[0, 2]] assert_geoseries_equal(res, exp) @pytest.mark.parametrize("NA", [None, np.nan]) def test_isna(NA): s2 = GeoSeries([Point(0, 0), NA, Point(2, 2)], index=[2, 4, 5], name="tt") exp = pd.Series([False, True, False], index=[2, 4, 5], name="tt") res = s2.isnull() assert type(res) == pd.Series assert_series_equal(res, exp) res = s2.isna() assert_series_equal(res, exp) res = s2.notnull() assert_series_equal(res, ~exp) res = s2.notna() assert_series_equal(res, ~exp) # Any / all def test_any_all(): empty = GeometryCollection([]) s = GeoSeries([empty, Point(1, 1)]) assert not s.all() assert s.any() s = GeoSeries([Point(1, 1), Point(1, 1)]) assert s.all() assert s.any() s = GeoSeries([empty, empty]) assert not s.all() assert not s.any() # Groupby / algos def test_unique(): s = GeoSeries([Point(0, 0), Point(0, 0), Point(2, 2)]) exp = from_shapely([Point(0, 0), Point(2, 2)]) # TODO should have specialized GeometryArray assert method assert_array_equal(s.unique(), exp) @pytest.mark.xfail def test_value_counts(): # each object is considered unique s = GeoSeries([Point(0, 0), Point(1, 1), Point(0, 0)]) res = s.value_counts() exp = pd.Series([2, 1], index=[Point(0, 0), Point(1, 1)]) assert_series_equal(res, exp) @pytest.mark.xfail(strict=False) def test_drop_duplicates_series(): # duplicated does not yet use EA machinery # (https://github.com/pandas-dev/pandas/issues/27264) # but relies on unstable hashing of unhashable objects in numpy array # giving flaky test (https://github.com/pandas-dev/pandas/issues/27035) dups = GeoSeries([Point(0, 0), Point(0, 0)]) dropped = dups.drop_duplicates() assert len(dropped) == 1 @pytest.mark.xfail(strict=False) def test_drop_duplicates_frame(): # duplicated does not yet use EA machinery, see above gdf_len = 3 dup_gdf = GeoDataFrame( {"geometry": [Point(0, 0) for _ in range(gdf_len)], "value1": range(gdf_len)} ) dropped_geometry = dup_gdf.drop_duplicates(subset="geometry") assert len(dropped_geometry) == 1 dropped_all = dup_gdf.drop_duplicates() assert len(dropped_all) == gdf_len def test_groupby(df): # counts work fine res = df.groupby("value2").count() exp = pd.DataFrame( {"geometry": [2, 1], "value1": [2, 1], "value2": [1, 2]} ).set_index("value2") assert_frame_equal(res, exp) # reductions ignore geometry column res = df.groupby("value2").sum() exp = pd.DataFrame({"value1": [2, 1], "value2": [1, 2]}, dtype="int64").set_index( "value2" ) assert_frame_equal(res, exp) # applying on the geometry column res = df.groupby("value2")["geometry"].apply(lambda x: x.cascaded_union) if compat.PANDAS_GE_11: exp = GeoSeries( [shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)], index=pd.Index([1, 2], name="value2"), name="geometry", ) else: exp = pd.Series( [shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)], index=pd.Index([1, 2], name="value2"), name="geometry", ) assert_series_equal(res, exp) # apply on geometry column not resulting in new geometry res = df.groupby("value2")["geometry"].apply(lambda x: x.unary_union.area) exp = pd.Series([0.0, 0.0], index=pd.Index([1, 2], name="value2"), name="geometry") assert_series_equal(res, exp) def test_groupby_groups(df): g = df.groupby("value2") res = g.get_group(1) assert isinstance(res, GeoDataFrame) exp = df.loc[[0, 2]] assert_frame_equal(res, exp) def test_apply(s): # function that returns geometry preserves GeoSeries class def geom_func(geom): assert isinstance(geom, Point) return geom result = s.apply(geom_func) assert isinstance(result, GeoSeries) assert_geoseries_equal(result, s) # function that returns non-geometry results in Series def numeric_func(geom): assert isinstance(geom, Point) return geom.x result = s.apply(numeric_func) assert not isinstance(result, GeoSeries) assert_series_equal(result, pd.Series([0.0, 1.0, 2.0])) def test_apply_loc_len1(df): # subset of len 1 with loc -> bug in pandas with inconsistent Block ndim # resulting in bug in apply # https://github.com/geopandas/geopandas/issues/1078 subset = df.loc[[0], "geometry"] result = subset.apply(lambda geom: geom.is_empty) expected = subset.is_empty np.testing.assert_allclose(result, expected) def test_apply_convert_dtypes_keyword(s): # ensure the convert_dtypes keyword is accepted res = s.apply(lambda x: x, convert_dtype=True, args=()) assert_geoseries_equal(res, s) @pytest.mark.parametrize("crs", [None, "EPSG:4326"]) def test_apply_no_geometry_result(df, crs): if crs: df = df.set_crs(crs) result = df.apply(lambda col: col.astype(str), axis=0) # TODO this should actually not return a GeoDataFrame assert isinstance(result, GeoDataFrame) expected = df.astype(str) assert_frame_equal(result, expected) result = df.apply(lambda col: col.astype(str), axis=1) assert isinstance(result, GeoDataFrame) assert_frame_equal(result, expected) @pytest.mark.skipif(not compat.PANDAS_GE_10, reason="attrs introduced in pandas 1.0") def test_preserve_attrs(df): # https://github.com/geopandas/geopandas/issues/1654 df.attrs["name"] = "my_name" attrs = {"name": "my_name"} assert df.attrs == attrs # preserve attrs in indexing operations for subset in [df[:2], df[df["value1"] > 2], df[["value2", "geometry"]]]: assert df.attrs == attrs # preserve attrs in methods df2 = df.reset_index() assert df2.attrs == attrs # https://github.com/geopandas/geopandas/issues/1875 df3 = df2.explode() assert df3.attrs == attrs @pytest.mark.skipif(not compat.PANDAS_GE_12, reason="attrs introduced in pandas 1.0") def test_preserve_flags(df): # https://github.com/geopandas/geopandas/issues/1654 df = df.set_flags(allows_duplicate_labels=False) assert df.flags.allows_duplicate_labels is False # preserve flags in indexing operations for subset in [df[:2], df[df["value1"] > 2], df[["value2", "geometry"]]]: assert df.flags.allows_duplicate_labels is False # preserve attrs in methods df2 = df.reset_index() assert df2.flags.allows_duplicate_labels is False # it is honored for operations that introduce duplicate labels with pytest.raises(ValueError): df.reindex([0, 0, 1]) with pytest.raises(ValueError): df[["value1", "value1", "geometry"]] with pytest.raises(ValueError): pd.concat([df, df])
29.998291
88
0.653769
43af19a12518ad21cdb7cc8255d8bba8b05aa1e7
91
py
Python
surfice.app/Contents/Resources/script/startup_track.py
ningfei/surf-ice
11a978d922f53abd02c0aa1b6896443f7f1af9e1
[ "BSD-2-Clause" ]
null
null
null
surfice.app/Contents/Resources/script/startup_track.py
ningfei/surf-ice
11a978d922f53abd02c0aa1b6896443f7f1af9e1
[ "BSD-2-Clause" ]
null
null
null
surfice.app/Contents/Resources/script/startup_track.py
ningfei/surf-ice
11a978d922f53abd02c0aa1b6896443f7f1af9e1
[ "BSD-2-Clause" ]
null
null
null
import gl gl.resetdefaults() gl.trackload('stroke.trk.gz'); gl.trackprefs(15, 3, 0.5);
18.2
31
0.681319