status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) class BaseOpenAI(BaseLLM):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Wrapper around OpenAI large language models.""" client: Any model_name: str = Field("text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None openai_organization: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # ty """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"): warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "request_timeout": self.request_timeout, "logit_bias": self.logit_bias, } # Az # do if self.best_of > 1: normal_params["best_of"] = self.best_of return {**normal_params, **self.model_kwargs} def _generate(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> LLMResult: """Call out to OpenAI's endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output. Example: .. code-block:: python response = openai.generate(["Tell me a joke."]) """ # TO params = self._invocation_params sub_prompts = self.get_sub_prompts(params, prompts, stop)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
choices = [] token_usage: Dict[str, int] = {} # Ge # In _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() for stream_resp in completion_with_retry( self, prompt=_prompts, **params ): if run_manager: run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = completion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Ca update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) async def _agenerate(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> LLMResult: """Call out to OpenAI's endpoint async with k unique prompts.""" params = self._invocation_params sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Ge # In _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() async for stream_resp in await acompletion_with_retry( self, prompt=_prompts, **params ): if run_manager: await run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"])
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
else: response = await acompletion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Ca update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) def get_sub_prompts( self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None, ) -> List[List[str]]: """Get the sub prompts for llm call.""" if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params["max_tokens"] == -1: if len(prompts) != 1: raise ValueError( "max_tokens set to -1 not supported for multiple inputs." ) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts def create_llm_result(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
self, choices: Any, prompts: List[str], token_usage: Dict[str, int] ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i * self.n : (i + 1) * self.n] generations.append( [ Generation( text=choice["text"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) for choice in sub_choices ] ) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return LLMResult(generations=generations, llm_output=llm_output) def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from OpenAI. Example: .. code-block:: python generator = openai.stream("Tell me a joke.") for token in generator: yield token """ params = self.prep_streaming_params(stop) generator = self.client.create(prompt=prompt, **params) return generator def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]: """Prepare the params for streaming.""" params = self._invocation_params if "best_of" in params and params["best_of"] != 1: raise ValueError("OpenAI only supports best_of == 1 for streaming") if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop params["stream"] = True return params @property def _invocation_params(self) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Get the parameters used to invoke the model.""" return self._default_params @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # ti if sys.version_info[1] < 8: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) def modelname_to_contextsize(self, modelname: str) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = openai.modelname_to_contextsize("text-davinci-003") """ model_token_mapping = { "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-32k": 32768, "gpt-4-32k-0314": 32768, "gpt-3.5-turbo": 4096, "gpt-3.5-turbo-0301": 4096, "text-ada-001": 2049, "ada": 2049, "text-babbage-001": 2040, "babbage": 2049, "text-curie-001": 2049, "curie": 2049, "davinci": 2049, "text-davinci-003": 4097, "text-davinci-002": 4097,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } # ha if "ft-" in modelname: modelname = modelname.split(":")[0] context_size = model_token_mapping.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_token_mapping.keys()) ) return context_size def max_tokens_for_prompt(self, prompt: str) -> int: """Calculate the maximum number of tokens possible to generate for a prompt. Args: prompt: The prompt to pass into the model. Returns: The maximum number of tokens to generate for a prompt. Example: .. code-block:: python max_tokens = openai.max_token_for_prompt("Tell me a joke.") """ num_tokens = self.get_num_tokens(prompt) # ge max_size = self.modelname_to_contextsize(self.model_name) return max_size - num_tokens class OpenAI(BaseOpenAI):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Wrapper around OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") """ @property def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} class AzureOpenAI(BaseOpenAI):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Wrapper around Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") """ deployment_name: str = "" """Deployment name to use.""" @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: return {**{"engine": self.deployment_name}, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" class OpenAIChat(BaseLLM):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any model_name: str = "gpt-3.5-turbo" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Configuration for this pydantic object.""" extra = Extra.ignore @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_organization = get_from_dict_or_env(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for Ch del params["max_tokens"] return messages, params def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) if self.streaming: response = "" params["stream"] = True
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
for stream_resp in completion_with_retry(self, messages=messages, **params): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = completion_with_retry(self, messages=messages, **params) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) if self.streaming:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
response = "" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=messages, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: await run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = await acompletion_with_retry( self, messages=messages, **params ) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,243
Add possibility to set a proxy for openai API access
### Feature request For a deployment behind a corporate proxy, it's useful to be able to access the API by specifying an explicit proxy. ### Motivation Currently it's possible to do this by setting the environment variables http_proxy / https_proxy to set a proxy for the whole python interpreter. However this then prevents access to other internal servers. accessing other network resources (e.g. a vector database on a different server, corporate S3 storage etc.) should not go through the proxy. So it's important to be able to just proxy requests for externally hosted APIs. We are working with the OpenAI API and currently we cannot both access those and our qdrant database on another server. ### Your contribution Since the openai python package supports the proxy parameter, this is relatively easy to implement for the OpenAI API. I'll submit a PR.
https://github.com/langchain-ai/langchain/issues/5243
https://github.com/langchain-ai/langchain/pull/5246
9c0cb90997db9eb2e2a736df458d39fd7bec8ffb
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
"2023-05-25T13:00:09Z"
python
"2023-05-25T16:50:25Z"
langchain/llms/openai.py
"""Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai-chat" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # ti if sys.version_info[1] < 8: return super().get_token_ids(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
"""Wrapper around OpenSearch vector database.""" from __future__ import annotations import uuid from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore IMPORT_OPENSEARCH_PY_ERROR = ( "Could not import OpenSearch. Please install it with `pip install opensearch-py`." ) SCRIPT_SCORING_SEARCH = "script_scoring" PAINLESS_SCRIPTING_SEARCH = "painless_scripting" MATCH_ALL_QUERY = {"match_all": {}} def _import_opensearch() -> Any: """Import OpenSearch if available, otherwise raise error.""" try: from opensearchpy import OpenSearch except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return OpenSearch def _import_bulk() -> Any:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
"""Import bulk if available, otherwise raise error.""" try: from opensearchpy.helpers import bulk except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return bulk def _import_not_found_error() -> Any: """Import not found error if available, otherwise raise error.""" try: from opensearchpy.exceptions import NotFoundError except ImportError: raise ValueError(IMPORT_OPENSEARCH_PY_ERROR) return NotFoundError def _get_opensearch_client(opensearch_url: str, **kwargs: Any) -> Any: """Get OpenSearch client from the opensearch_url, otherwise raise error.""" try: opensearch = _import_opensearch() client = opensearch(opensearch_url, **kwargs) except ValueError as e: raise ValueError( f"OpenSearch client string provided is not in proper format. " f"Got error: {e} " ) return client def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
"""Validate Embeddings Length and Bulk Size.""" if embeddings_length == 0: raise RuntimeError("Embeddings size is zero") if bulk_size < embeddings_length: raise RuntimeError( f"The embeddings count, {embeddings_length} is more than the " f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]." ) def _bulk_ingest_embeddings( client: Any, index_name: str, embeddings: List[List[float]], texts: Iterable[str], metadatas: Optional[List[dict]] = None, vector_field: str = "vector_field", text_field: str = "text", mapping: Dict = {}, ) -> List[str]: """Bulk Ingest Embeddings into given index.""" bulk = _import_bulk() not_found_error = _import_not_found_error() requests = [] ids = [] mapping = mapping try: client.indices.get(index=index_name) except not_found_error:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
client.indices.create(index=index_name, body=mapping) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index", "_index": index_name, vector_field: embeddings[i], text_field: text, "metadata": metadata, "_id": _id, } requests.append(request) ids.append(_id) bulk(client, requests) client.indices.refresh(index=index_name) return ids def _default_scripting_text_mapping( dim: int, vector_field: str = "vector_field", ) -> Dict: """For Painless Scripting or Script Scoring,the default mapping to create index.""" return { "mappings": { "properties": { vector_field: {"type": "knn_vector", "dimension": dim}, } } } def _default_text_mapping(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
dim: int, engine: str = "nmslib", space_type: str = "l2", ef_search: int = 512, ef_construction: int = 512, m: int = 16, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, this is the default mapping to create index.""" return { "settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}}, "mappings": { "properties": { vector_field: { "type": "knn_vector", "dimension": dim, "method": { "name": "hnsw", "space_type": space_type, "engine": engine, "parameters": {"ef_construction": ef_construction, "m": m}, }, } } }, } def _default_approximate_search_query(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
query_vector: List[float], size: int = 4, k: int = 4, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, this is the default query.""" return { "size": size, "query": {"knn": {vector_field: {"vector": query_vector, "k": k}}}, } def _approximate_search_query_with_boolean_filter(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
query_vector: List[float], boolean_filter: Dict, size: int = 4, k: int = 4, vector_field: str = "vector_field", subquery_clause: str = "must", ) -> Dict: """For Approximate k-NN Search, with Boolean Filter.""" return { "size": size, "query": { "bool": { "filter": boolean_filter, subquery_clause: [ {"knn": {vector_field: {"vector": query_vector, "k": k}}} ], } }, } def _approximate_search_query_with_lucene_filter(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
query_vector: List[float], lucene_filter: Dict, size: int = 4, k: int = 4, vector_field: str = "vector_field", ) -> Dict: """For Approximate k-NN Search, with Lucene Filter.""" search_query = _default_approximate_search_query( query_vector, size, k, vector_field ) search_query["query"]["knn"][vector_field]["filter"] = lucene_filter return search_query def _default_script_query(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
query_vector: List[float], space_type: str = "l2", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Script Scoring Search, this is the default query.""" return { "query": { "script_score": { "query": pre_filter, "script": { "source": "knn_score", "lang": "knn", "params": { "field": vector_field, "query_value": query_vector, "space_type": space_type, }, }, } } } def __get_painless_scripting_source(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
space_type: str, query_vector: List[float], vector_field: str = "vector_field" ) -> str: """For Painless Scripting, it returns the script source based on space type.""" source_value = ( "(1.0 + " + space_type + "(" + str(query_vector) + ", doc['" + vector_field + "']))" ) if space_type == "cosineSimilarity": return source_value else: return "1/" + source_value def _default_painless_scripting_query(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
query_vector: List[float], space_type: str = "l2Squared", pre_filter: Dict = MATCH_ALL_QUERY, vector_field: str = "vector_field", ) -> Dict: """For Painless Scripting Search, this is the default query.""" source = __get_painless_scripting_source(space_type, query_vector) return { "query": { "script_score": { "query": pre_filter, "script": { "source": source, "params": { "field": vector_field, "query_value": query_vector, }, }, } } } def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any: """Get the value of the key if present. Else get the default_value.""" if key in kwargs: return kwargs.get(key) return default_value class OpenSearchVectorSearch(VectorStore):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
"""Wrapper around OpenSearch as a vector database. Example: .. code-block:: python from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) """ def __init__(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
self, opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any, ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index_name = index_name self.client = _get_opensearch_client(opensearch_url, **kwargs) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. bulk_size: Bulk API request count; Default: 500 Returns: List of ids from adding the texts into the vectorstore.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". """ embeddings = self.embedding_function.embed_documents(list(texts)) _validate_embeddings_and_bulk_size(len(embeddings), bulk_size) text_field = _get_kwargs_value(kwargs, "text_field", "text") dim = len(embeddings[0]) engine = _get_kwargs_value(kwargs, "engine", "nmslib") space_type = _get_kwargs_value(kwargs, "space_type", "l2") ef_search = _get_kwargs_value(kwargs, "ef_search", 512) ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512) m = _get_kwargs_value(kwargs, "m", 16) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") mapping = _default_text_mapping( dim, engine, space_type, ef_search, ef_construction, m, vector_field ) return _bulk_ingest_embeddings( self.client, self.index_name, embeddings, texts, metadatas, vector_field, text_field, mapping, ) def similarity_search(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". metadata_field: Document field that metadata is stored in. Defaults to "metadata". Can be set to a special value "*" to include the entire document. Optional Args for Approximate Search: search_type: "approximate_search"; default: "approximate_search" size: number of results the query actually returns; default: 4 boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: "must" lucene_filter: the Lucene algorithm decides whether to perform an exact
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search: search_type: "script_scoring"; default: "approximate_search" space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct", "hammingbit"; default: "l2" pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} Optional Args for Painless Scripting Search: search_type: "painless_scripting"; default: "approximate_search" space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared" pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {"match_all": {}} """ docs_with_scores = self.similarity_search_with_score(query, k, **kwargs) return [doc[0] for doc in docs_with_scores] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs and it's scores most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents along with its scores most similar to the query. Optional Args: same as `similarity_search` """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
embedding = self.embedding_function.embed_query(query) search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search") text_field = _get_kwargs_value(kwargs, "text_field", "text") metadata_field = _get_kwargs_value(kwargs, "metadata_field", "metadata") vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") if search_type == "approximate_search": size = _get_kwargs_value(kwargs, "size", 4) boolean_filter = _get_kwargs_value(kwargs, "boolean_filter", {}) subquery_clause = _get_kwargs_value(kwargs, "subquery_clause", "must") lucene_filter = _get_kwargs_value(kwargs, "lucene_filter", {}) if boolean_filter != {} and lucene_filter != {}: raise ValueError( "Both `boolean_filter` and `lucene_filter` are provided which " "is invalid" ) if boolean_filter != {}: search_query = _approximate_search_query_with_boolean_filter( embedding, boolean_filter, size, k, vector_field, subquery_clause ) elif lucene_filter != {}: search_query = _approximate_search_query_with_lucene_filter( embedding, lucene_filter, size, k, vector_field ) else: search_query = _default_approximate_search_query( embedding, size, k, vector_field ) elif search_type == SCRIPT_SCORING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
search_query = _default_script_query( embedding, space_type, pre_filter, vector_field ) elif search_type == PAINLESS_SCRIPTING_SEARCH: space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared") pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY) search_query = _default_painless_scripting_query( embedding, space_type, pre_filter, vector_field ) else: raise ValueError("Invalid `search_type` provided as an argument") response = self.client.search(index=self.index_name, body=search_query) hits = [hit for hit in response["hits"]["hits"][:k]] documents_with_scores = [ ( Document( page_content=hit["_source"][text_field], metadata=hit["_source"] if metadata_field == "*" or metadata_field not in hit["_source"] else hit["_source"][metadata_field], ), hit["_score"], ) for hit in hits ] return documents_with_scores @classmethod def from_texts( cls, texts: List[str],
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any, ) -> OpenSearchVectorSearch: """Construct OpenSearchVectorSearch wrapper from raw documents. Example: .. code-block:: python from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args: vector_field: Document field embeddings are stored in. Defaults to "vector_field". text_field: Document field the text of the document is stored in. Defaults to "text". Optional Keyword Args for Approximate Search: engine: "nmslib", "faiss", "lucene"; default: "nmslib" space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2" ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting: is_appx_search: False """ opensearch_url = get_from_dict_or_env( kwargs, "opensearch_url", "OPENSEARCH_URL" ) keys_list = [ "opensearch_url", "index_name", "is_appx_search", "vector_field", "text_field", "engine", "space_type", "ef_search", "ef_construction", "m", ] embeddings = embedding.embed_documents(texts) _validate_embeddings_and_bulk_size(len(embeddings), bulk_size) dim = len(embeddings[0]) index_name = get_from_dict_or_env(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,212
OpenSearch VectorStore cannot return more than 4 retrieved result.
Using the following script, I can only return maximum 4 documents. With k = 1, k= 2, k=3, k = 4, k =5, k=6, ... similarity_search_with_score returns 1, 2, 3, 4, 4, 4... docs. opensearch_url = "xxxxxxxxx.com" docsearch = OpenSearchVectorSearch.from_documents(docs, embedding = HuggingFaceEmbeddings(), opensearch_url=opensearch_url, index_name="my_index_name") retrieved_docs = docsearch.similarity_search_with_score(query, k=10) This only return 4 documents even though I have len(docs) = 90+. Tried various indexes and various queries. Confirmed the issue is persistent. Find a [related issue](https://github.com/hwchase17/langchain/issues/1946) (also max out at 4 regardless of k) for Chroma.
https://github.com/langchain-ai/langchain/issues/5212
https://github.com/langchain-ai/langchain/pull/5216
88ed8e1cd6c7f1b679efe9e80cf6f8c33e3e6217
3be9ba14f319bc5b92c1e516b352f9cafdf51936
"2023-05-24T20:49:47Z"
python
"2023-05-25T16:51:23Z"
langchain/vectorstores/opensearch_vector_search.py
kwargs, "index_name", "OPENSEARCH_INDEX_NAME", default=uuid.uuid4().hex ) is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True) vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field") text_field = _get_kwargs_value(kwargs, "text_field", "text") if is_appx_search: engine = _get_kwargs_value(kwargs, "engine", "nmslib") space_type = _get_kwargs_value(kwargs, "space_type", "l2") ef_search = _get_kwargs_value(kwargs, "ef_search", 512) ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512) m = _get_kwargs_value(kwargs, "m", 16) mapping = _default_text_mapping( dim, engine, space_type, ef_search, ef_construction, m, vector_field ) else: mapping = _default_scripting_text_mapping(dim) [kwargs.pop(key, None) for key in keys_list] client = _get_opensearch_client(opensearch_url, **kwargs) _bulk_ingest_embeddings( client, index_name, embeddings, texts, metadatas, vector_field, text_field, mapping, ) return cls(opensearch_url, index_name, embedding, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/csv/base.py
"""Agent for working with csvs.""" from typing import Any, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.base_language import BaseLanguageModel def create_csv_agent( llm: BaseLanguageModel, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" import pandas as pd _kwargs = pandas_kwargs or {} df = pd.read_csv(path, **_kwargs) return create_pandas_dataframe_agent(llm, df, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
"""Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.prompt import ( PREFIX, SUFFIX_NO_DF, SUFFIX_WITH_DF, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.tools.python.tool import PythonAstREPLTool def create_pandas_dataframe_agent( llm: BaseLanguageModel, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, include_df_in_prompt: Optional[bool] = True, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" try: import pandas as pd except ImportError: raise ImportError( "pandas package not found, please install with `pip install pandas`" ) if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if suffix is not None: suffix_to_use = suffix if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] else: if include_df_in_prompt: suffix_to_use = SUFFIX_WITH_DF input_variables = ["df", "input", "agent_scratchpad"] else: suffix_to_use = SUFFIX_NO_DF input_variables = ["input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) if "df" in input_variables: partial_prompt = prompt.partial(df=str(df.head().to_markdown())) else: partial_prompt = prompt llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/prompt.py
PREFIX = """ You are working with a pandas dataframe in Python. The name of the dataframe is `df`. You should use the tools below to answer the question posed of you:""" SUFFIX_NO_DF = """ Begin! Question: {input} {agent_scratchpad}""" SUFFIX_WITH_DF = """ This is the result of `print(df.head())`: {df} Begin! Question: {input} {agent_scratchpad}"""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,423
Do Q/A with csv agent and multiple txt files at the same time.
### Issue you'd like to raise. I want to do Q/A with csv agent and multiple txt files at the same time. But I do not want to use csv loader and txt loader because they did not perform very well when handling cross file scenario. For example, the model needs to find answers from both the csv and txt file and then return the result. How should I do it? I think I may need to create a custom agent. ### Suggestion: _No response_
https://github.com/langchain-ai/langchain/issues/4423
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-05-09T22:33:44Z"
python
"2023-05-25T21:23:11Z"
tests/integration_tests/agent/test_pandas_agent.py
import re import numpy as np import pytest from pandas import DataFrame from langchain.agents import create_pandas_dataframe_agent from langchain.agents.agent import AgentExecutor from langchain.llms import OpenAI @pytest.fixture(scope="module") def df() -> DataFrame: random_data = np.random.rand(4, 4) df = DataFrame(random_data, columns=["name", "age", "food", "sport"]) return df def test_pandas_agent_creation(df: DataFrame) -> None: agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df) assert isinstance(agent, AgentExecutor) def test_data_reading(df: DataFrame) -> None: agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df) assert isinstance(agent, AgentExecutor) response = agent.run("how many rows in df? Give me a number.") result = re.search(rf".*({df.shape[0]}).*", response) assert result is not None assert result.group(1) is not None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/csv/base.py
"""Agent for working with csvs.""" from typing import Any, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.base_language import BaseLanguageModel def create_csv_agent( llm: BaseLanguageModel, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" import pandas as pd _kwargs = pandas_kwargs or {} df = pd.read_csv(path, **_kwargs) return create_pandas_dataframe_agent(llm, df, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
"""Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.prompt import ( PREFIX, SUFFIX_NO_DF, SUFFIX_WITH_DF, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.tools.python.tool import PythonAstREPLTool def create_pandas_dataframe_agent( llm: BaseLanguageModel, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, include_df_in_prompt: Optional[bool] = True, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" try: import pandas as pd except ImportError: raise ImportError( "pandas package not found, please install with `pip install pandas`" ) if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if suffix is not None: suffix_to_use = suffix if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] else: if include_df_in_prompt: suffix_to_use = SUFFIX_WITH_DF input_variables = ["df", "input", "agent_scratchpad"] else: suffix_to_use = SUFFIX_NO_DF input_variables = ["input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/base.py
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) if "df" in input_variables: partial_prompt = prompt.partial(df=str(df.head().to_markdown())) else: partial_prompt = prompt llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
langchain/agents/agent_toolkits/pandas/prompt.py
PREFIX = """ You are working with a pandas dataframe in Python. The name of the dataframe is `df`. You should use the tools below to answer the question posed of you:""" SUFFIX_NO_DF = """ Begin! Question: {input} {agent_scratchpad}""" SUFFIX_WITH_DF = """ This is the result of `print(df.head())`: {df} Begin! Question: {input} {agent_scratchpad}"""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,958
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
null
https://github.com/langchain-ai/langchain/issues/1958
https://github.com/langchain-ai/langchain/pull/5009
3223a97dc61366f7cbda815242c9354bff25ae9d
7652d2abb01208fd51115e34e18b066824e7d921
"2023-03-24T07:46:39Z"
python
"2023-05-25T21:23:11Z"
tests/integration_tests/agent/test_pandas_agent.py
import re import numpy as np import pytest from pandas import DataFrame from langchain.agents import create_pandas_dataframe_agent from langchain.agents.agent import AgentExecutor from langchain.llms import OpenAI @pytest.fixture(scope="module") def df() -> DataFrame: random_data = np.random.rand(4, 4) df = DataFrame(random_data, columns=["name", "age", "food", "sport"]) return df def test_pandas_agent_creation(df: DataFrame) -> None: agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df) assert isinstance(agent, AgentExecutor) def test_data_reading(df: DataFrame) -> None: agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df) assert isinstance(agent, AgentExecutor) response = agent.run("how many rows in df? Give me a number.") result = re.search(rf".*({df.shape[0]}).*", response) assert result is not None assert result.group(1) is not None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,279
Issue Passing in Credential to VertexAI model
### System Info langchain==0.0.180 google-cloud-aiplatform==1.25.0 Have Google Cloud CLI and ran and logged in using `gcloud auth login` Running locally and online in Google Colab ### Who can help? @hwchase17 @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://colab.research.google.com/drive/19QGMptiCn49fu4i5ZQ0ygfR74ktQFQlb?usp=sharing Unexpected behavior`field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().` seems to only appear if you pass in any credenitial valid or invalid to the vertexai wrapper from langchain. ### The error This code should not throw `field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().`. It should either not throw any errors, if the credentials, project_Id, and location are correct. Or, if there is an issue with one of params, it should throw a specific error from the `vertexai.init` call below but it doesn't seem to be reaching it if a credential is passed in. ``` vertexai.init(project=project_id,location=location,credentials=credentials,) ```
https://github.com/langchain-ai/langchain/issues/5279
https://github.com/langchain-ai/langchain/pull/5297
a669abf16b3ac3dcf10629936d3c58411469bb3c
aa3c7b32715ee22b29aebae763f6183c4609be22
"2023-05-26T04:34:54Z"
python
"2023-05-26T15:31:02Z"
langchain/llms/vertexai.py
"""Wrapper around Google VertexAI models.""" from typing import TYPE_CHECKING, Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utilities.vertexai import ( init_vertexai, raise_vertex_import_error, ) if TYPE_CHECKING: from google.auth.credentials import Credentials from vertexai.language_models._language_models import _LanguageModel class _VertexAICommon(BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,279
Issue Passing in Credential to VertexAI model
### System Info langchain==0.0.180 google-cloud-aiplatform==1.25.0 Have Google Cloud CLI and ran and logged in using `gcloud auth login` Running locally and online in Google Colab ### Who can help? @hwchase17 @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://colab.research.google.com/drive/19QGMptiCn49fu4i5ZQ0ygfR74ktQFQlb?usp=sharing Unexpected behavior`field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().` seems to only appear if you pass in any credenitial valid or invalid to the vertexai wrapper from langchain. ### The error This code should not throw `field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().`. It should either not throw any errors, if the credentials, project_Id, and location are correct. Or, if there is an issue with one of params, it should throw a specific error from the `vertexai.init` call below but it doesn't seem to be reaching it if a credential is passed in. ``` vertexai.init(project=project_id,location=location,credentials=credentials,) ```
https://github.com/langchain-ai/langchain/issues/5279
https://github.com/langchain-ai/langchain/pull/5297
a669abf16b3ac3dcf10629936d3c58411469bb3c
aa3c7b32715ee22b29aebae763f6183c4609be22
"2023-05-26T04:34:54Z"
python
"2023-05-26T15:31:02Z"
langchain/llms/vertexai.py
client: "_LanguageModel" = None model_name: str "Model name to use." temperature: float = 0.0 "Sampling temperature, it controls the degree of randomness in token selection." max_output_tokens: int = 128 "Token limit determines the maximum amount of text output from one prompt." top_p: float = 0.95 "Tokens are selected from most probable to least until the sum of their " "probabilities equals the top-p value." top_k: int = 40 "How the model selects tokens for output, the next token is selected from " "among the top-k most probable tokens." project: Optional[str] = None "The default GCP project to use when making Vertex API calls." location: str = "us-central1" "The default location to use when making API calls." credentials: Optional["Credentials"] = None "The default custom credentials to use when making API calls. If not provided " "credentials will be ascertained from the environment." "" @property def _default_params(self) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,279
Issue Passing in Credential to VertexAI model
### System Info langchain==0.0.180 google-cloud-aiplatform==1.25.0 Have Google Cloud CLI and ran and logged in using `gcloud auth login` Running locally and online in Google Colab ### Who can help? @hwchase17 @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://colab.research.google.com/drive/19QGMptiCn49fu4i5ZQ0ygfR74ktQFQlb?usp=sharing Unexpected behavior`field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().` seems to only appear if you pass in any credenitial valid or invalid to the vertexai wrapper from langchain. ### The error This code should not throw `field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().`. It should either not throw any errors, if the credentials, project_Id, and location are correct. Or, if there is an issue with one of params, it should throw a specific error from the `vertexai.init` call below but it doesn't seem to be reaching it if a credential is passed in. ``` vertexai.init(project=project_id,location=location,credentials=credentials,) ```
https://github.com/langchain-ai/langchain/issues/5279
https://github.com/langchain-ai/langchain/pull/5297
a669abf16b3ac3dcf10629936d3c58411469bb3c
aa3c7b32715ee22b29aebae763f6183c4609be22
"2023-05-26T04:34:54Z"
python
"2023-05-26T15:31:02Z"
langchain/llms/vertexai.py
base_params = { "temperature": self.temperature, "max_output_tokens": self.max_output_tokens, "top_k": self.top_p, "top_p": self.top_k, } return {**base_params} def _predict(self, prompt: str, stop: Optional[List[str]]) -> str: res = self.client.predict(prompt, **self._default_params) return self._enforce_stop_words(res.text, stop) def _enforce_stop_words(self, text: str, stop: Optional[List[str]]) -> str: if stop: return enforce_stop_tokens(text, stop) return text @property def _llm_type(self) -> str: return "vertexai" @classmethod def _try_init_vertexai(cls, values: Dict) -> None: allowed_params = ["project", "location", "credentials"] params = {k: v for k, v in values.items() if v in allowed_params} init_vertexai(**params) return None class VertexAI(_VertexAICommon, LLM): """Wrapper around Google Vertex AI large language models.""" model_name: str = "text-bison" tuned_model_name: Optional[str] = None "The name of a tuned model, if it's provided, model_name is ignored." @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,279
Issue Passing in Credential to VertexAI model
### System Info langchain==0.0.180 google-cloud-aiplatform==1.25.0 Have Google Cloud CLI and ran and logged in using `gcloud auth login` Running locally and online in Google Colab ### Who can help? @hwchase17 @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://colab.research.google.com/drive/19QGMptiCn49fu4i5ZQ0ygfR74ktQFQlb?usp=sharing Unexpected behavior`field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().` seems to only appear if you pass in any credenitial valid or invalid to the vertexai wrapper from langchain. ### The error This code should not throw `field "credentials" not yet prepared so type is still a ForwardRef, you might need to call VertexAI.update_forward_refs().`. It should either not throw any errors, if the credentials, project_Id, and location are correct. Or, if there is an issue with one of params, it should throw a specific error from the `vertexai.init` call below but it doesn't seem to be reaching it if a credential is passed in. ``` vertexai.init(project=project_id,location=location,credentials=credentials,) ```
https://github.com/langchain-ai/langchain/issues/5279
https://github.com/langchain-ai/langchain/pull/5297
a669abf16b3ac3dcf10629936d3c58411469bb3c
aa3c7b32715ee22b29aebae763f6183c4609be22
"2023-05-26T04:34:54Z"
python
"2023-05-26T15:31:02Z"
langchain/llms/vertexai.py
"""Validate that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import TextGenerationModel except ImportError: raise_vertex_import_error() tuned_model_name = values.get("tuned_model_name") if tuned_model_name: values["client"] = TextGenerationModel.get_tuned_model(tuned_model_name) else: values["client"] = TextGenerationModel.from_pretrained(values["model_name"]) return values def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call Vertex model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A Callbackmanager for LLM run, optional. Returns: The string generated by the model. """ return self._predict(prompt, stop)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,304
CohereAPIError thrown when base retriever returns empty documents in ContextualCompressionRetriever using Cohere Rank
### System Info - 5.19.0-42-generic # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2 x86_64 x86_64 x86_64 GNU/Linux - langchain==0.0.180 - Python 3.10.11 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set up a retriever using any type of retriever (for example, I used Pinecone). 2. Pass it into the ContextualCompressionRetriever. 3. If the base retriever returns empty documents, 4. It throws an error: **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/contextual_compression.py", line 37, in get_relevant_documents > compressed_docs = self.base_compressor.compress_documents(docs, query) > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py", line 57, in compress_documents > results = self.client.rerank( > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 633, in rerank > reranking = Reranking(self._request(cohere.RERANK_URL, json=json_body)) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 692, in _request > self._check_response(json_response, response.headers, response.status_code) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 642, in _check_response > raise CohereAPIError( > **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** Code is Like ```python retriever = vectorstore.as_retriever() compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) return compression_retriever ``` ### Expected behavior **no error throws** and return empty list
https://github.com/langchain-ai/langchain/issues/5304
https://github.com/langchain-ai/langchain/pull/5306
1366d070fc656813c0c33cb5733290ade0fddf7c
99a1e3f3a309852da989af080ba47288dcb9a348
"2023-05-26T16:10:47Z"
python
"2023-05-28T20:19:34Z"
langchain/retrievers/document_compressors/cohere_rerank.py
from __future__ import annotations from typing import TYPE_CHECKING, Dict, Sequence from pydantic import Extra, root_validator from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.schema import Document from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from cohere import Client else: try: from cohere import Client except ImportError: pass class CohereRerank(BaseDocumentCompressor):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,304
CohereAPIError thrown when base retriever returns empty documents in ContextualCompressionRetriever using Cohere Rank
### System Info - 5.19.0-42-generic # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2 x86_64 x86_64 x86_64 GNU/Linux - langchain==0.0.180 - Python 3.10.11 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set up a retriever using any type of retriever (for example, I used Pinecone). 2. Pass it into the ContextualCompressionRetriever. 3. If the base retriever returns empty documents, 4. It throws an error: **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/contextual_compression.py", line 37, in get_relevant_documents > compressed_docs = self.base_compressor.compress_documents(docs, query) > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py", line 57, in compress_documents > results = self.client.rerank( > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 633, in rerank > reranking = Reranking(self._request(cohere.RERANK_URL, json=json_body)) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 692, in _request > self._check_response(json_response, response.headers, response.status_code) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 642, in _check_response > raise CohereAPIError( > **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** Code is Like ```python retriever = vectorstore.as_retriever() compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) return compression_retriever ``` ### Expected behavior **no error throws** and return empty list
https://github.com/langchain-ai/langchain/issues/5304
https://github.com/langchain-ai/langchain/pull/5306
1366d070fc656813c0c33cb5733290ade0fddf7c
99a1e3f3a309852da989af080ba47288dcb9a348
"2023-05-26T16:10:47Z"
python
"2023-05-28T20:19:34Z"
langchain/retrievers/document_compressors/cohere_rerank.py
client: Client top_n: int = 3 model: str = "rerank-english-v2.0" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ImportError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values def compress_documents(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,304
CohereAPIError thrown when base retriever returns empty documents in ContextualCompressionRetriever using Cohere Rank
### System Info - 5.19.0-42-generic # 43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2 x86_64 x86_64 x86_64 GNU/Linux - langchain==0.0.180 - Python 3.10.11 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Set up a retriever using any type of retriever (for example, I used Pinecone). 2. Pass it into the ContextualCompressionRetriever. 3. If the base retriever returns empty documents, 4. It throws an error: **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/contextual_compression.py", line 37, in get_relevant_documents > compressed_docs = self.base_compressor.compress_documents(docs, query) > File "/workspaces/example/.venv/lib/python3.10/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py", line 57, in compress_documents > results = self.client.rerank( > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 633, in rerank > reranking = Reranking(self._request(cohere.RERANK_URL, json=json_body)) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 692, in _request > self._check_response(json_response, response.headers, response.status_code) > File "/workspaces/example/.venv/lib/python3.10/site-packages/cohere/client.py", line 642, in _check_response > raise CohereAPIError( > **cohere.error.CohereAPIError: invalid request: list of documents must not be empty** Code is Like ```python retriever = vectorstore.as_retriever() compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) return compression_retriever ``` ### Expected behavior **no error throws** and return empty list
https://github.com/langchain-ai/langchain/issues/5304
https://github.com/langchain-ai/langchain/pull/5306
1366d070fc656813c0c33cb5733290ade0fddf7c
99a1e3f3a309852da989af080ba47288dcb9a348
"2023-05-26T16:10:47Z"
python
"2023-05-28T20:19:34Z"
langchain/retrievers/document_compressors/cohere_rerank.py
self, documents: Sequence[Document], query: str ) -> Sequence[Document]: doc_list = list(documents) _docs = [d.page_content for d in doc_list] results = self.client.rerank( model=self.model, query=query, documents=_docs, top_n=self.top_n ) final_results = [] for r in results: doc = doc_list[r.index] doc.metadata["relevance_score"] = r.relevance_score final_results.append(doc) return final_results async def acompress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: raise NotImplementedError
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
"""Agent that interacts with OpenAPI APIs via a hierarchical planning approach.""" import json import re from functools import partial from typing import Any, Callable, Dict, List, Optional import yaml from pydantic import Field from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.planner_prompt import ( API_CONTROLLER_PROMPT, API_CONTROLLER_TOOL_DESCRIPTION, API_CONTROLLER_TOOL_NAME, API_ORCHESTRATOR_PROMPT, API_PLANNER_PROMPT, API_PLANNER_TOOL_DESCRIPTION, API_PLANNER_TOOL_NAME, PARSING_DELETE_PROMPT, PARSING_GET_PROMPT, PARSING_PATCH_PROMPT, PARSING_POST_PROMPT, REQUESTS_DELETE_TOOL_DESCRIPTION, REQUESTS_GET_TOOL_DESCRIPTION,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
REQUESTS_PATCH_TOOL_DESCRIPTION, REQUESTS_POST_TOOL_DESCRIPTION, ) from langchain.agents.agent_toolkits.openapi.spec import ReducedOpenAPISpec from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.openai import OpenAI from langchain.memory import ReadOnlySharedMemory from langchain.prompts import PromptTemplate from langchain.prompts.base import BasePromptTemplate from langchain.requests import RequestsWrapper from langchain.tools.base import BaseTool from langchain.tools.requests.tool import BaseRequestsTool # # MAX_RESPONSE_LENGTH = 5000 def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain: return LLMChain( llm=OpenAI(), prompt=prompt, ) def _get_default_llm_chain_factory( prompt: BasePromptTemplate, ) -> Callable[[], LLMChain]: """Returns a default LLMChain factory.""" return partial(_get_default_llm_chain, prompt) class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
name = "requests_get" description = REQUESTS_GET_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain: LLMChain = Field( default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT) ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e data_params = data.get("params") response = self.requests_wrapper.get(data["url"], params=data_params) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
name = "requests_post" description = REQUESTS_POST_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain: LLMChain = Field( default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT) ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.post(data["url"], data["data"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_patch" description = REQUESTS_PATCH_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain = LLMChain( llm=OpenAI(), prompt=PARSING_PATCH_PROMPT, ) def _run(self, text: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.patch(data["url"], data["data"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str: raise NotImplementedError() class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool): name = "requests_delete" description = REQUESTS_DELETE_TOOL_DESCRIPTION response_length: Optional[int] = MAX_RESPONSE_LENGTH llm_chain = LLMChain( llm=OpenAI(), prompt=PARSING_DELETE_PROMPT, ) def _run(self, text: str) -> str: try: data = json.loads(text) except json.JSONDecodeError as e: raise e response = self.requests_wrapper.delete(data["url"]) response = response[: self.response_length] return self.llm_chain.predict( response=response, instructions=data["output_instructions"] ).strip() async def _arun(self, text: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
raise NotImplementedError() # # def _create_api_planner_tool( api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel ) -> Tool: endpoint_descriptions = [ f"{name} {description}" for name, description, _ in api_spec.endpoints ] prompt = PromptTemplate( template=API_PLANNER_PROMPT, input_variables=["query"], partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)}, ) chain = LLMChain(llm=llm, prompt=prompt) tool = Tool( name=API_PLANNER_TOOL_NAME, description=API_PLANNER_TOOL_DESCRIPTION, func=chain.run, ) return tool def _create_api_controller_agent(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
api_url: str, api_docs: str, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, ) -> AgentExecutor: get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT) post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT) tools: List[BaseTool] = [ RequestsGetToolWithParsing( requests_wrapper=requests_wrapper, llm_chain=get_llm_chain ), RequestsPostToolWithParsing( requests_wrapper=requests_wrapper, llm_chain=post_llm_chain ),
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
] prompt = PromptTemplate( template=API_CONTROLLER_PROMPT, input_variables=["input", "agent_scratchpad"], partial_variables={ "api_url": api_url, "api_docs": api_docs, "tool_names": ", ".join([tool.name for tool in tools]), "tool_descriptions": "\n".join( [f"{tool.name}: {tool.description}" for tool in tools] ), }, ) agent = ZeroShotAgent( llm_chain=LLMChain(llm=llm, prompt=prompt), allowed_tools=[tool.name for tool in tools], ) return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) def _create_api_controller_tool( api_spec: ReducedOpenAPISpec, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, ) -> Tool: """Expose controller as a tool. The tool is invoked with a plan from the planner, and dynamically creates a controller agent with relevant documentation only to constrain the context. """ base_url = api_spec.servers[0]["url"] def _create_and_run_api_controller_agent(plan_str: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*" matches = re.findall(pattern, plan_str) endpoint_names = [ "{method} {route}".format(method=method, route=route.split("?")[0]) for method, route in matches ] endpoint_docs_by_name = {name: docs for name, _, docs in api_spec.endpoints} docs_str = "" for endpoint_name in endpoint_names: docs = endpoint_docs_by_name.get(endpoint_name) if not docs: raise ValueError(f"{endpoint_name} endpoint does not exist.") docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n" agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm) return agent.run(plan_str) return Tool( name=API_CONTROLLER_TOOL_NAME, func=_create_and_run_api_controller_agent, description=API_CONTROLLER_TOOL_DESCRIPTION, ) def create_openapi_agent(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
api_spec: ReducedOpenAPISpec, requests_wrapper: RequestsWrapper, llm: BaseLanguageModel, shared_memory: Optional[ReadOnlySharedMemory] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = True, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Instantiate API planner and controller for a given spec. Inject credentials via requests_wrapper. We use a top-level "orchestrator" agent to invoke the planner and controller,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,361
Validation Error importing OpenAPI planner when OpenAI credentials not in environment
### System Info Name: langchain, Version: 0.0.180 Name: openai, Version: 0.27.7 macOS Mojave 10.14.6 ### Who can help? @vowelparrot ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps: 1. Do _not_ load open ai key into env with the intention of wanting to pass it as a parameter when instantiating the llm ``` from dotenv import dotenv_values openai_api_key = dotenv_values('.env')['OPENAI_API_KEY'] ``` 2. Load the planner: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner ``` ### Expected behavior A validation error should not be raised during the importing of the module. We should be able to pass the open api key as an argument. That is, the following should work: ``` from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0, open_api_key=open_api_key) ```
https://github.com/langchain-ai/langchain/issues/5361
https://github.com/langchain-ai/langchain/pull/5380
6df90ad9fd1ee6d64e112d8d58f9524ca11b0757
14099f1b93401a68f531fc1a55c50c5872e720fa
"2023-05-28T08:18:12Z"
python
"2023-05-29T13:22:35Z"
langchain/agents/agent_toolkits/openapi/planner.py
rather than a top-level planner that invokes a controller with its plan. This is to keep the planner simple. """ tools = [ _create_api_planner_tool(api_spec, llm), _create_api_controller_tool(api_spec, requests_wrapper, llm), ] prompt = PromptTemplate( template=API_ORCHESTRATOR_PROMPT, input_variables=["input", "agent_scratchpad"], partial_variables={ "tool_names": ", ".join([tool.name for tool in tools]), "tool_descriptions": "\n".join( [f"{tool.name}: {tool.description}" for tool in tools] ), }, ) agent = ZeroShotAgent( llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"""Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.retrieval_qa.base import VectorDBQA from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"""Load LLM chain from config dict.""" if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"""Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config ) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt( config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) else: prompt = None return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,224
PALChain loading fails
### System Info langchain==0.0.176 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.chains import PALChain from langchain import OpenAI llm = OpenAI(temperature=0, max_tokens=512) pal_chain = PALChain.from_math_prompt(llm, verbose=True) question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?" pal_chain.save("/Users/liang.zhang/pal_chain.yaml") loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") ``` Error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [17], in <cell line: 1>() ----> 1 loaded_chain = load_chain("/Users/liang.zhang/pal_chain.yaml") File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:449, in load_chain(path, **kwargs) 447 return hub_result 448 else: --> 449 return _load_chain_from_file(path, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:476, in _load_chain_from_file(file, **kwargs) 473 config["memory"] = kwargs.pop("memory") 475 # Load the chain from the config now. --> 476 return load_chain_from_config(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:439, in load_chain_from_config(config, **kwargs) 436 raise ValueError(f"Loading {config_type} chain not supported") 438 chain_loader = type_to_loader_dict[config_type] --> 439 return chain_loader(config, **kwargs) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/chains/loading.py:234, in _load_pal_chain(config, **kwargs) 232 if "llm" in config: 233 llm_config = config.pop("llm") --> 234 llm = load_llm_from_config(llm_config) 235 elif "llm_path" in config: 236 llm = load_llm(config.pop("llm_path")) File ~/miniforge3/envs/mlflow-3.8/lib/python3.8/site-packages/langchain/llms/loading.py:14, in load_llm_from_config(config) 12 def load_llm_from_config(config: dict) -> BaseLLM: 13 """Load LLM from Config Dict.""" ---> 14 if "_type" not in config: 15 raise ValueError("Must specify an LLM Type in config") 16 config_type = config.pop("_type") TypeError: argument of type 'NoneType' is not iterable ``` ### Expected behavior No errors should occur.
https://github.com/langchain-ai/langchain/issues/5224
https://github.com/langchain-ai/langchain/pull/5343
f6615cac41453a9bb3a061a3ffb29327f5e04fb2
642ae83d86b28b37605c9a20ca25c667ed461595
"2023-05-25T00:58:09Z"
python
"2023-05-29T13:44:47Z"
langchain/chains/loading.py
"""Load chain from file.""" if isinstance(file, str): file_path = Path(file) else: file_path = file if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") if "verbose" in kwargs: config["verbose"] = kwargs.pop("verbose") if "memory" in kwargs: config["memory"] = kwargs.pop("memory") return load_chain_from_config(config, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,316
VertexAIEmbeddings error when passing a list with of length greater than 5.
### System Info google-cloud-aiplatform==1.25.0 langchain==0.0.181 python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Any list with len > 5 will cause an error. ```python from langchain.vectorstores import FAISS from langchain.embeddings import VertexAIEmbeddings text = ['text_1', 'text_2', 'text_3', 'text_4', 'text_5', 'text_6'] embeddings = VertexAIEmbeddings() vectorstore = FAISS.from_texts(text, embeddings) ``` ```python InvalidArgument Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/google/api_core/grpc_helpers.py](https://localhost:8080/#) in error_remapped_callable(*args, **kwargs) 72 return callable_(*args, **kwargs) 73 except grpc.RpcError as exc: ---> 74 raise exceptions.from_grpc_error(exc) from exc 75 76 return error_remapped_callable InvalidArgument: 400 5 instance(s) is allowed per prediction. Actual: 6 ``` ### Expected behavior Excepted to successfully be able to vectorize a larger list of items. Maybe implement a step to
https://github.com/langchain-ai/langchain/issues/5316
https://github.com/langchain-ai/langchain/pull/5325
3e164684234d3a51032b737dce2c25ba6cd3ec2d
c09f8e4ddc3be791bd0e8c8385ed1871bdd5d681
"2023-05-26T20:31:56Z"
python
"2023-05-29T13:57:41Z"
langchain/embeddings/vertexai.py
"""Wrapper around Google VertexAI embedding models.""" from typing import Dict, List from pydantic import root_validator from langchain.embeddings.base import Embeddings from langchain.llms.vertexai import _VertexAICommon from langchain.utilities.vertexai import raise_vertex_import_error class VertexAIEmbeddings(_VertexAICommon, Embeddings):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,316
VertexAIEmbeddings error when passing a list with of length greater than 5.
### System Info google-cloud-aiplatform==1.25.0 langchain==0.0.181 python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Any list with len > 5 will cause an error. ```python from langchain.vectorstores import FAISS from langchain.embeddings import VertexAIEmbeddings text = ['text_1', 'text_2', 'text_3', 'text_4', 'text_5', 'text_6'] embeddings = VertexAIEmbeddings() vectorstore = FAISS.from_texts(text, embeddings) ``` ```python InvalidArgument Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/google/api_core/grpc_helpers.py](https://localhost:8080/#) in error_remapped_callable(*args, **kwargs) 72 return callable_(*args, **kwargs) 73 except grpc.RpcError as exc: ---> 74 raise exceptions.from_grpc_error(exc) from exc 75 76 return error_remapped_callable InvalidArgument: 400 5 instance(s) is allowed per prediction. Actual: 6 ``` ### Expected behavior Excepted to successfully be able to vectorize a larger list of items. Maybe implement a step to
https://github.com/langchain-ai/langchain/issues/5316
https://github.com/langchain-ai/langchain/pull/5325
3e164684234d3a51032b737dce2c25ba6cd3ec2d
c09f8e4ddc3be791bd0e8c8385ed1871bdd5d681
"2023-05-26T20:31:56Z"
python
"2023-05-29T13:57:41Z"
langchain/embeddings/vertexai.py
model_name: str = "textembedding-gecko" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validates that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import TextEmbeddingModel except ImportError: raise_vertex_import_error() values["client"] = TextEmbeddingModel.from_pretrained(values["model_name"]) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of strings. Args: texts: List[str] The list of strings to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.get_embeddings(texts) return [el.values for el in embeddings] def embed_query(self, text: str) -> List[float]: """Embed a text. Args: text: The text to embed. Returns: Embedding for the text. """ embeddings = self.client.get_embeddings([text]) return embeddings[0].values
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,316
VertexAIEmbeddings error when passing a list with of length greater than 5.
### System Info google-cloud-aiplatform==1.25.0 langchain==0.0.181 python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Any list with len > 5 will cause an error. ```python from langchain.vectorstores import FAISS from langchain.embeddings import VertexAIEmbeddings text = ['text_1', 'text_2', 'text_3', 'text_4', 'text_5', 'text_6'] embeddings = VertexAIEmbeddings() vectorstore = FAISS.from_texts(text, embeddings) ``` ```python InvalidArgument Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/google/api_core/grpc_helpers.py](https://localhost:8080/#) in error_remapped_callable(*args, **kwargs) 72 return callable_(*args, **kwargs) 73 except grpc.RpcError as exc: ---> 74 raise exceptions.from_grpc_error(exc) from exc 75 76 return error_remapped_callable InvalidArgument: 400 5 instance(s) is allowed per prediction. Actual: 6 ``` ### Expected behavior Excepted to successfully be able to vectorize a larger list of items. Maybe implement a step to
https://github.com/langchain-ai/langchain/issues/5316
https://github.com/langchain-ai/langchain/pull/5325
3e164684234d3a51032b737dce2c25ba6cd3ec2d
c09f8e4ddc3be791bd0e8c8385ed1871bdd5d681
"2023-05-26T20:31:56Z"
python
"2023-05-29T13:57:41Z"
tests/integration_tests/embeddings/test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.25.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ from langchain.embeddings import VertexAIEmbeddings def test_embedding_documents() -> None: documents = ["foo bar"] model = VertexAIEmbeddings() output = model.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768 assert model._llm_type == "vertexai" assert model.model_name == model.client._model_id def test_embedding_query() -> None: document = "foo bar" model = VertexAIEmbeddings() output = model.embed_query(document) assert len(output) == 768
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
"""All different types of document loaders.""" from langchain.document_loaders.airbyte_json import AirbyteJSONLoader from langchain.document_loaders.apify_dataset import ApifyDatasetLoader from langchain.document_loaders.arxiv import ArxivLoader from langchain.document_loaders.azlyrics import AZLyricsLoader from langchain.document_loaders.azure_blob_storage_container import ( AzureBlobStorageContainerLoader, ) from langchain.document_loaders.azure_blob_storage_file import ( AzureBlobStorageFileLoader, ) from langchain.document_loaders.bibtex import BibtexLoader from langchain.document_loaders.bigquery import BigQueryLoader from langchain.document_loaders.bilibili import BiliBiliLoader from langchain.document_loaders.blackboard import BlackboardLoader
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
from langchain.document_loaders.blockchain import BlockchainDocumentLoader from langchain.document_loaders.chatgpt import ChatGPTLoader from langchain.document_loaders.college_confidential import CollegeConfidentialLoader from langchain.document_loaders.confluence import ConfluenceLoader from langchain.document_loaders.conllu import CoNLLULoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.document_loaders.dataframe import DataFrameLoader from langchain.document_loaders.diffbot import DiffbotLoader from langchain.document_loaders.directory import DirectoryLoader from langchain.document_loaders.discord import DiscordChatLoader from langchain.document_loaders.docugami import DocugamiLoader from langchain.document_loaders.duckdb_loader import DuckDBLoader from langchain.document_loaders.email import ( OutlookMessageLoader, UnstructuredEmailLoader, ) from langchain.document_loaders.epub import UnstructuredEPubLoader from langchain.document_loaders.evernote import EverNoteLoader from langchain.document_loaders.facebook_chat import FacebookChatLoader from langchain.document_loaders.gcs_directory import GCSDirectoryLoader from langchain.document_loaders.gcs_file import GCSFileLoader from langchain.document_loaders.git import GitLoader from langchain.document_loaders.gitbook import GitbookLoader from langchain.document_loaders.googledrive import GoogleDriveLoader from langchain.document_loaders.gutenberg import GutenbergLoader from langchain.document_loaders.hn import HNLoader from langchain.document_loaders.html import UnstructuredHTMLLoader from langchain.document_loaders.html_bs import BSHTMLLoader from langchain.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader from langchain.document_loaders.ifixit import IFixitLoader
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
from langchain.document_loaders.image import UnstructuredImageLoader from langchain.document_loaders.image_captions import ImageCaptionLoader from langchain.document_loaders.imsdb import IMSDbLoader from langchain.document_loaders.joplin import JoplinLoader from langchain.document_loaders.json_loader import JSONLoader from langchain.document_loaders.markdown import UnstructuredMarkdownLoader from langchain.document_loaders.mastodon import MastodonTootsLoader from langchain.document_loaders.mediawikidump import MWDumpLoader from langchain.document_loaders.modern_treasury import ModernTreasuryLoader from langchain.document_loaders.notebook import NotebookLoader from langchain.document_loaders.notion import NotionDirectoryLoader from langchain.document_loaders.notiondb import NotionDBLoader from langchain.document_loaders.obsidian import ObsidianLoader from langchain.document_loaders.odt import UnstructuredODTLoader from langchain.document_loaders.onedrive import OneDriveLoader from langchain.document_loaders.pdf import ( MathpixPDFLoader, OnlinePDFLoader, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, PyPDFLoader, UnstructuredPDFLoader, ) from langchain.document_loaders.powerpoint import UnstructuredPowerPointLoader from langchain.document_loaders.psychic import PsychicLoader from langchain.document_loaders.python import PythonLoader
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
from langchain.document_loaders.readthedocs import ReadTheDocsLoader from langchain.document_loaders.reddit import RedditPostsLoader from langchain.document_loaders.roam import RoamLoader from langchain.document_loaders.rtf import UnstructuredRTFLoader from langchain.document_loaders.s3_directory import S3DirectoryLoader from langchain.document_loaders.s3_file import S3FileLoader from langchain.document_loaders.sitemap import SitemapLoader from langchain.document_loaders.slack_directory import SlackDirectoryLoader from langchain.document_loaders.spreedly import SpreedlyLoader from langchain.document_loaders.srt import SRTLoader from langchain.document_loaders.stripe import StripeLoader from langchain.document_loaders.telegram import ( TelegramChatApiLoader, TelegramChatFileLoader, ) from langchain.document_loaders.text import TextLoader from langchain.document_loaders.tomarkdown import ToMarkdownLoader from langchain.document_loaders.toml import TomlLoader from langchain.document_loaders.trello import TrelloLoader from langchain.document_loaders.twitter import TwitterTweetLoader from langchain.document_loaders.unstructured import ( UnstructuredAPIFileIOLoader, UnstructuredAPIFileLoader, UnstructuredFileIOLoader, UnstructuredFileLoader, ) from langchain.document_loaders.url import UnstructuredURLLoader from langchain.document_loaders.url_playwright import PlaywrightURLLoader from langchain.document_loaders.url_selenium import SeleniumURLLoader from langchain.document_loaders.weather import WeatherDataLoader
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,257
Github integration
### Feature request Would be amazing to scan and get all the contents from the Github API, such as PRs, Issues and Discussions. ### Motivation this would allows to ask questions on the history of the project, issues that other users might have found, and much more! ### Your contribution Not really a python developer here, would take me a while to figure out all the changes required.
https://github.com/langchain-ai/langchain/issues/5257
https://github.com/langchain-ai/langchain/pull/5408
0b3e0dd1d2fb81eeca76b960bb2376bd666608cd
8259f9b7facae95236dd5156e2a14d87a0e1f90c
"2023-05-25T16:27:21Z"
python
"2023-05-30T03:11:21Z"
langchain/document_loaders/__init__.py
from langchain.document_loaders.web_base import WebBaseLoader from langchain.document_loaders.whatsapp_chat import WhatsAppChatLoader from langchain.document_loaders.wikipedia import WikipediaLoader from langchain.document_loaders.word_document import ( Docx2txtLoader, UnstructuredWordDocumentLoader, ) from langchain.document_loaders.youtube import ( GoogleApiClient, GoogleApiYoutubeLoader, YoutubeLoader, ) PagedPDFSplitter = PyPDFLoader TelegramChatLoader = TelegramChatFileLoader __all__ = [ "AZLyricsLoader", "AirbyteJSONLoader", "ApifyDatasetLoader", "ArxivLoader", "AzureBlobStorageContainerLoader", "AzureBlobStorageFileLoader", "BSHTMLLoader", "BibtexLoader", "BigQueryLoader", "BiliBiliLoader", "BlackboardLoader", "BlockchainDocumentLoader", "CSVLoader", "ChatGPTLoader", "CoNLLULoader",