Datasets:

Modalities:
Text
Libraries:
Datasets
SynStOp / generate.py
mgrani's picture
first version
ad576ce
raw
history blame
11.5 kB
"""
This module generates datasets doing string manipulations
"""
import enum
import random
from collections import deque
import os
import string
import json
class StringOperations(str, enum.Enum):
SLICE = "slicing"
STARTS_ENDS_WITH = "starts_ends_with"
LEN= "len"
CONCAT= "concat"
REPEAT= "repeat"
UPPER_LOWER_SWAP_CASE= "upper_lower_swap_case"
IS= "is"
def generate_random_string(length, charset = None):
"""
Generates a random string of length length
:param length: the length of the string
:param alphabet: the alphabet to use
:return: the string
"""
if charset is None:
charset = string.ascii_letters + string.digits
return ''.join(charset[b % len(charset)] for b in os.urandom(length))
def generate_reverse_string_prompt(samples, length=20, rev_op="'{sample}'[::-1]",result_var="res", **kwargs):
"""
provides samples examples of reversing a random string.
:param s: the string
:return: the reversed string
"""
for i in range(samples):
s = generate_random_string(length)
o = rev_op.format(sample=s)
yield o, s[::-1], f"{result_var}='{o}'[::-1]", result_var, "reverse"
def generate_slicing_examples(samples, length=20, #char_at_op="'{sample}'[{pos}]",
pos_range=(1,2),
slice_range = (1,1),
step_size = (1,1),
result_var="res", **kwargs):
"""
provides samples examples of reversing a random string.
:param s: the string
:return: yields inp, outp, code, res_var, todo_str
"""
for _ in range(samples):
s = generate_random_string(length)
for i in range(*pos_range):
for j in range(*slice_range):
if j == 1: # only one character means no slice
o = f"'{s}'[{i}]"
yield o, s[i], f"{result_var}={o}", result_var, f"char_at_{i}"
else:
for k in range(*step_size):
if k==0:
continue
elif j==0 and i==0: # only step size
o = f"'{s}'[::{k}]"
yield o, s[::k], f"{result_var}={o}", result_var, f"step_::{k}"
elif k==1:
o = f"'{s}'[{i}:{i+j}]"
yield o, s[i:i+j], f"{result_var}={o}", result_var, f"slice_{i}:{i+j}"
elif abs(k)<j: # step size needs to be smaller
if k>0:
o = f"'{s}'[{i}:{i+j}:{k}]"
yield o, s[i:i+j:k], f"{result_var}={o}", result_var, f"slice_step_{i}:{i+j}:{k}"
else:
o = f"'{s}'[{i}:{i+j}][::{k}]"
yield o, s[i:i+j][::k], f"{result_var}={o}", result_var, f"slice_reverse_{i}:{i+j}:{k}"
class StringOperationGenerator:
"""
"""
data=None
def set_samples(self, equations):
self.equations = equations
return self
@staticmethod
def get_prompt(template_name:str = "simple", with_code:bool = False):
if template_name == "simple":
returns = StringOperationGenerator._get_simple_string_op_prompt()
else: returns = StringOperationGenerator._get_plain_prompt()
if with_code:
returns[-1].extend( [{"templates": ["###ACTION: exec-python\n{code}\n###/ACTION"],
"keys": ["code"],
"component": "action",},
])
return returns
@staticmethod
def _get_plain_prompt():
"""
:return: template for generating value filled equation, e.g. 1+2=3 and mapping needed for the dataset
"""
inp, out = [], []
inp.extend([{"templates": ["{input}="],
"keys": ["input"],
"component": "input",
},
])
out.extend([{"templates": ["{output}\n"],
"keys": ["output"],
"component": "output",
"tags": ["exact"]}])
return [inp, out]
@staticmethod
def _get_simple_string_op_prompt():
inp, out = [], []
# todo: this is a problem here, since the prompt is context sensitive, i.e. it depends on the data.
inp.extend([{"templates": ["Conduct the string operation {operation} as follows: {input}.\n"],
"keys": ["operation", "input"],
"component": "input",
},
])
out.extend([{"templates": ["{res_var}={output}\n"],
"keys": ["res_var", "output"],
"component": "output",
"tags": ["exact"]}])
return [inp, out]
def create_data (self, samples=100, operations=(StringOperations.SLICE),
valid_data_only=True, **kwargs):
self.data = deque()
for op in operations:
if op==StringOperations.SLICE.value:
g = generate_slicing_examples(samples, **kwargs)
else:
raise NotImplementedError(f"Operation {op} not implemented")
for inp, outp, code, res_var, todo_str in g:
if valid_data_only and (outp=="" or outp is None): continue
self.data.append({"input": inp, "output": outp, "code": code,"res_var": res_var, "operation": todo_str })
self.data = list(self.data)
return self
def save(self, filename):
# load prompts and equations from file
import json
with open(filename, "w") as f:
json.dump(self.data, f)
return self
def load(self, filename):
# load data and equations from file
import json
with open(filename, "r") as f:
self.data = json.load(f)
return self
def write_data(dump_dir, file, out, compress, indent=2 ):
import json, gzip
filename = os.path.join(dump_dir, file)
if compress:
with gzip.open(f'{filename}.gz', 'wt', encoding='utf-8') as f:
json.dump(out, f, indent=indent)
else:
json.dump(out, open(filename, "w"), indent=indent)
return filename
def generate_data_for_config(dump_dir, about, s_length = (10,25, 5), pos_range = (0,5), slice_range = (0,4),
step_size = (-1,2), samples_per_config = 10, valid_data_only = True):
samples = samples_per_config * (step_size[1]-step_size[0]) \
* (slice_range[1]-slice_range[0])\
* (pos_range[1]-pos_range[0])
about["data_files"] = {"train": [], "test": []}
markdown = ["", "|Length|Set|Group|Amount|File|", "|---|---|---|---|---|" ]
train_total, test_total, id = 0, 0, 1
for length in tqdm.tqdm(range(*s_length), desc="Generating data"):
generator = StringOperationGenerator()
data = generator.create_data(samples=samples,
operations=("slicing",),
length=length,
pos_range=pos_range,
slice_range = slice_range,
step_size = step_size,
valid_data_only=valid_data_only,
result_var="res",).data
for e in data:
e["id"] = id
id=id+1
cnt = Counter([e["operation"] for e in data])
test, train = {}, {}
for d in cnt.keys(): test[d], train[d] = [], []
for ix, e in enumerate(data): # not very smart, but it is late
if len(test[e["operation"]])>cnt[e["operation"]] *(1-split_ratio):
train[e["operation"]].append(e)
else:
test[e["operation"]].append(e)
markdown.extend([f"|{length}|train|{k}|{len(v)}|stop_{length}_train.json|" for k, v in train.items()])
markdown.extend([f"|{length}|test|{k}|{len(v)}|stop_{length}_train.json|" for k, v in test.items()])
about["length"]= length
about["set"] = "train"
data = [v for value in train.values() for v in value]
write_data(dump_dir, f"stop_{length}_train.json", data, compress)
about["data_files"]["train"].append({"length": length,
"files": [f"stop_{length}_train.json"],
"entries": len(data),
"groups": [{"name": k, "amount": len(v)} for k, v in train.items()]})
train_total+=len(data)
data = [v for value in test.values() for v in value]
write_data(dump_dir, f"stop_{length}_test.json", data, compress)
about["data_files"]["test"].append({"length": length,
"files": [f"stop_{length}_test.json"],
"entries": len(data),
"groups": [{"name": k, "amount": len(v)} for k, v in test.items()]})
test_total+=len(data)
about["items"] = {"train": train_total, "test": test_total}
# now add all about key value pairs except data_files to makrdown varialbe as separate table
pre_md = ["# Metadata", "|Key|Value|", "|---|---|"]
pre_md.extend([f"|{k}|{v}|" for k, v in about.items() if k!="data_files"])
markdown = pre_md + markdown
with open(os.path.join(dump_dir, "about.json"), "w") as f:
json.dump(about, f, indent=2)
with open(os.path.join(dump_dir, "Readme.md"), "w") as f:
f.write("\n".join(markdown))
return about, markdown
if __name__=="__main__":
import datetime, os, tqdm
from collections import Counter
split_ratio = 0.7
compress = True
about = {
"dataset_name" : "StOp-small",
"hfuser":"mgrani",
"version": "0.0.1",
# add date today as created field with the date of now
"created" : datetime.datetime.now().strftime("%Y-%m-%d"),
"creator" : "Michael Granitzer, michael.granitzer@uni-passau.de",
"split_ratio" : split_ratio,
"prompt": {"plain": StringOperationGenerator.get_prompt(template_name="plain"),
"simple": StringOperationGenerator.get_prompt(template_name="simple"),
"simple_with_code": StringOperationGenerator.get_prompt(template_name="simple_with_code")}
}
# get the date for today, but nicely formatted as string
dump_dir = os.path.expanduser("./small")
if not os.path.exists(dump_dir): os.mkdir(dump_dir)
about, markdown = generate_data_for_config(dump_dir, about, s_length=(10,25, 5), pos_range=(0,5),
slice_range=(0,4), step_size=(-1,2), samples_per_config=10,
valid_data_only=True)
# with open(os.path.join(dump_dir, "README.md"), "w") as readme:
# card = StringOperationGenerator.dataset_card(train_total, test_total,
# group_stats_table="\n".join(group_stats),
# metadata= "\n".join([f"{k}={v}" for k,v in about.items()]))
# readme.write(card)
# readme.close()