Upload Eye_diabetic.py with huggingface_hub
Browse files- Eye_diabetic.py +84 -0
Eye_diabetic.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from datasets.tasks import ImageClassification
|
5 |
+
|
6 |
+
|
7 |
+
_HOMEPAGE = "https://github.com/AI-Lab-Makerere/ibean/"
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@ONLINE {beansdata,
|
11 |
+
author="Makerere AI Lab",
|
12 |
+
title="Bean disease dataset",
|
13 |
+
month="January",
|
14 |
+
year="2020",
|
15 |
+
url="https://github.com/AI-Lab-Makerere/ibean/"
|
16 |
+
}
|
17 |
+
"""
|
18 |
+
|
19 |
+
_DESCRIPTION = """\
|
20 |
+
Beans is a dataset of images of beans taken in the field using smartphone
|
21 |
+
cameras. It consists of 3 classes: 2 disease classes and the healthy class.
|
22 |
+
Diseases depicted include Angular Leaf Spot and Bean Rust. Data was annotated
|
23 |
+
by experts from the National Crops Resources Research Institute (NaCRRI) in
|
24 |
+
Uganda and collected by the Makerere AI research lab.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_URLS = {
|
28 |
+
"train": "https://huggingface.co/datasets/NawinCom/Eye_diabetic/resolve/main/train_val2/train.zip",
|
29 |
+
"validation": "https://huggingface.co/datasets/NawinCom/Eye_diabetic/resolve/main/train_val2/val.zip"
|
30 |
+
}
|
31 |
+
|
32 |
+
_NAMES = ["0", "1", "2", "3", "4"]
|
33 |
+
|
34 |
+
|
35 |
+
class Beans(datasets.GeneratorBasedBuilder):
|
36 |
+
"""Beans plant leaf images dataset."""
|
37 |
+
|
38 |
+
def _info(self):
|
39 |
+
return datasets.DatasetInfo(
|
40 |
+
description=_DESCRIPTION,
|
41 |
+
features=datasets.Features(
|
42 |
+
{
|
43 |
+
"image_file_path": datasets.Value("string"),
|
44 |
+
"image": datasets.Image(),
|
45 |
+
"labels": datasets.features.ClassLabel(names=_NAMES),
|
46 |
+
}
|
47 |
+
),
|
48 |
+
supervised_keys=("image", "labels"),
|
49 |
+
citation=_CITATION,
|
50 |
+
task_templates=[ImageClassification(image_column="image", label_column="labels")],
|
51 |
+
)
|
52 |
+
|
53 |
+
def _split_generators(self, dl_manager):
|
54 |
+
data_files = dl_manager.download_and_extract(_URLS)
|
55 |
+
return [
|
56 |
+
datasets.SplitGenerator(
|
57 |
+
name=datasets.Split.TRAIN,
|
58 |
+
gen_kwargs={
|
59 |
+
"files": dl_manager.iter_files([data_files["train"]]),
|
60 |
+
},
|
61 |
+
),
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.VALIDATION,
|
64 |
+
gen_kwargs={
|
65 |
+
"files": dl_manager.iter_files([data_files["validation"]]),
|
66 |
+
},
|
67 |
+
),
|
68 |
+
datasets.SplitGenerator(
|
69 |
+
name=datasets.Split.TEST,
|
70 |
+
gen_kwargs={
|
71 |
+
"files": dl_manager.iter_files([data_files["test"]]),
|
72 |
+
},
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _generate_examples(self, files):
|
77 |
+
for i, path in enumerate(files):
|
78 |
+
file_name = os.path.basename(path)
|
79 |
+
if file_name.endswith(".jpg"):
|
80 |
+
yield i, {
|
81 |
+
"image_file_path": path,
|
82 |
+
"image": path,
|
83 |
+
"labels": os.path.basename(os.path.dirname(path)).lower(),
|
84 |
+
}
|