|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NLS Chapbook Images""" |
|
|
|
import collections |
|
import json |
|
import os |
|
from typing import Any, Dict, List |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = "TODO" |
|
|
|
|
|
_DESCRIPTION = "TODO" |
|
|
|
|
|
_HOMEPAGE = "TODO" |
|
|
|
|
|
_LICENSE = "Public Domain Mark 1.0" |
|
|
|
|
|
_IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip" |
|
|
|
|
|
_ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json" |
|
|
|
|
|
class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for National Library of Scotland Chapbooks dataset.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
super(NationalLibraryScotlandChapBooksConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), |
|
name=name, |
|
description="TODO", |
|
**kwargs, |
|
) |
|
|
|
|
|
class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder): |
|
"""National Library of Scotland Chapbooks dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
NationalLibraryScotlandChapBooksConfig("illustration_detection"), |
|
NationalLibraryScotlandChapBooksConfig("image_classification"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "illustration_detection": |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"url": datasets.Value("string"), |
|
"date_captured": datasets.Value("string"), |
|
} |
|
) |
|
object_dict = { |
|
"category_id": datasets.ClassLabel( |
|
names=["early_printed_illustration"] |
|
), |
|
"image_id": datasets.Value("string"), |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"segmentation": [[datasets.Value("float32")]], |
|
"iscrowd": datasets.Value("bool"), |
|
} |
|
features["objects"] = [object_dict] |
|
if self.config.name == "image_classification": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel( |
|
num_classes=2, names=["not-illustrated", "illustrated"] |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download_and_extract(_IMAGES_URL) |
|
annotations = dl_manager.download(_ANNOTATIONS_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotations_file": os.path.join(annotations), |
|
"image_dir": os.path.join(images, "nls-data-chapbooks"), |
|
}, |
|
) |
|
] |
|
|
|
def _get_image_id_to_annotations_mapping( |
|
self, annotations: List[Dict] |
|
) -> Dict[int, List[Dict[Any, Any]]]: |
|
""" |
|
A helper function to build a mapping from image ids to annotations. |
|
""" |
|
image_id_to_annotations = collections.defaultdict(list) |
|
for annotation in annotations: |
|
image_id_to_annotations[annotation["image_id"]].append(annotation) |
|
return image_id_to_annotations |
|
|
|
def _generate_examples(self, annotations_file, image_dir): |
|
def _image_info_to_example(image_info, image_dir): |
|
image = image_info["file_name"] |
|
return { |
|
"image_id": image_info["id"], |
|
"image": os.path.join(image_dir, image), |
|
"width": image_info["width"], |
|
"height": image_info["height"], |
|
"url": image_info.get("url"), |
|
"date_captured": image_info["date_captured"], |
|
} |
|
|
|
with open(annotations_file, encoding="utf8") as f: |
|
annotation_data = json.load(f) |
|
images = annotation_data["images"] |
|
annotations = annotation_data["annotations"] |
|
|
|
image_id_to_annotations = self._get_image_id_to_annotations_mapping( |
|
annotations |
|
) |
|
if self.config.name == "illustration_detection": |
|
for idx, image_info in enumerate(images): |
|
example = _image_info_to_example( |
|
image_info, |
|
image_dir, |
|
) |
|
annotations = image_id_to_annotations[image_info["id"]] |
|
objects = [] |
|
for annot in annotations: |
|
category_id = annot["category_id"] |
|
if category_id == 1: |
|
annot["category_id"] = 0 |
|
object_ = annot |
|
objects.append(object_) |
|
example["objects"] = objects |
|
yield idx, example |
|
if self.config.name == "image_classification": |
|
for idx, image_info in enumerate(images): |
|
example = _image_info_to_example(image_info, image_dir) |
|
annotations = image_id_to_annotations[image_info["id"]] |
|
if len(annotations) < 1: |
|
label = 0 |
|
else: |
|
label = 1 |
|
example = { |
|
"image": os.path.join(image_dir, image_info["file_name"]), |
|
"label": label, |
|
} |
|
yield idx, example |
|
|