|
import datasets |
|
import json |
|
|
|
|
|
_CITATION = "" |
|
|
|
_DESCRIPTION = "Dataset for training agents with Maze-v0 environment." |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/NathanGavenski/imagetest" |
|
|
|
_LICENSE = "" |
|
|
|
_REPO = "https://huggingface.co/datasets/NathanGavenski/imagetest" |
|
|
|
|
|
class ImageSet(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"obs": datasets.Image(), |
|
"actions": datasets.Value("int32"), |
|
"rewards": datasets.Value("float32"), |
|
"episode_starts": datasets.Value("bool"), |
|
"maze": datasets.Value("string"), |
|
"image": datasets.Image() |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
image_path = dl_manager.download_and_extract(f"{_REPO}/resolve/main/images.tar.gz") |
|
info_path = dl_manager.download_and_extract(f"{_REPO}/resolve/main/dataset.tar.gz") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": f"{image_path}/images", |
|
"infos": info_path |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, infos): |
|
print(images) |
|
with open(f"{infos}/dataset.jsonl", encoding="utf-8") as data: |
|
for idx, line in enumerate(data): |
|
record = json.loads(line) |
|
image = record["obs"].split(".")[0] |
|
yield idx, { |
|
"obs": |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|