patent_id
stringlengths
7
8
summary_text
stringlengths
29
1.54M
__index_level_0__
int64
1
326k
11276321
TECHNICAL FIELD The invention relates generally to a method and system for the use by users of search engines on a computer, an Intranet or the Internet, and in particular to a method and system to aid in training users interacting with a search engine to interact with the search engine with natural language sentences rather than traditional keyword queries. BACKGROUND Conventional search engines accept and use keywords for initiating a search query on a search engine. Accordingly, there is a need for improved systems and methods to assist in training users to change the way they interact with a search engine to more closely approximate typical human speech and writing patterns when initiating a search. SUMMARY The present invention provides a method and system for training a user to use a complete sentence as a search query in a site level engine search. The user enters a keyword or partial keyword as a search query, then a list of sentences are found from a search history or online sources. The found sentences containing the keyword or partial keyword can be ordered by popularity and presented to the user along with a recommendation to use a sentence similar to a spoken or written sentence as a search query in order to obtain more accurate and detailed results. A method to aid in training of users interacting with a site level search engine includes the steps of: a user, via a user interface of a computer having access to a search engine, entering one or more keywords or partial keywords as a search query to the search engine; determining, by the computer, a list of sentences of a human language from a search history of previous searches wherein each sentence contains the one or more keywords or partial keywords; and presenting, by the computer, to the user the list of sentences as suggested search queries for selection by the user to be submitted to the search engine. A computer program product includes one or more computer readable hardware storage devices having computer readable program code stored therein. The program code contains instructions executable by a computing device to implement a method to aid in training of users interacting with a site level search engine. The method includes the steps of: a user, via a user interface of a computer having access to a search engine, entering one or more keywords or partial keywords as a search query to the search engine; determining, by the computer, a list of sentences of a human language from a search history of previous searches wherein each sentence contains the one or more keywords or partial keywords; and presenting, by the computer, to the user the list of sentences as suggested search queries for selection by the user to be submitted to the search engine. A system includes a computing device which has one or more processors, one or more memories, and one or more computer readable hardware storage devices. The one or more hardware storage devices contain program code executable by the one or more processors via the one or more memories to implement a method to aid in training of users interacting with a site level search engine. The method includes the steps of: a user, via a user interface of a computer having access to a search engine, entering one or more keywords or partial keywords as a search query to the search engine; determining, by the computer, a list of sentences of a human language from a search history of previous searches wherein each sentence contains the one or more keywords or partial keywords; and presenting, by the computer, to the user the list of sentences as suggested search queries for selection by the user to be submitted to the search engine.
62,818
11443131
TECHNICAL FIELD The subject matter described herein relates to systems and methods for creating a parking lot map, and, more particularly, to generating an estimate map for a parking facility and mitigating errors in the estimate parking map based at least in part on detecting common patterns among parking spaces in the estimate parking map to create a corrected, accurate parking map for the parking facility. BACKGROUND High definition (HD) maps of parking facilities or parking lots are often an essential component of intelligent parking solutions. Accurate information about locations of each parking space can serve as a foundation for a variety of advanced services, such as navigation directly to available parking spaces (as opposed to navigation to a parking lot in general) and automated valet parking. However, manually creating accurate HD parking maps can require a prohibitive amount of human labor. Furthermore, manually creating accurate HD parking maps that correspond to parking facilities across a wide geographical region is a difficult and excessively time-consuming task. SUMMARY In one embodiment, example systems and methods associated with creating a parking map by generating an estimate HD parking map and correcting errors contained therein are disclosed. For example, a parking facility mapping system is disclosed. In one approach, the disclosed system includes one or more processors and a memory communicably connected to the one or more processors. The memory can store an image module including one or more instructions that, when executed by the one or more processors, cause the one or more processors to obtain one or more images of a parking facility. The memory can further store an estimate module including one or more instructions that, when executed by the one or more processors, cause the one or more processors to generate an estimate map of parking spaces in the parking facility based at least on the one or more images. The estimate map of parking spaces can include a plurality of estimate parking space shapes. The memory can further store a correction module including one or more instructions that, when executed by the one or more processors, cause the one or more processors to identify a parking block that includes a cluster of estimate parking spaces among the plurality of estimate parking space shapes, determine a common geometric pattern among the cluster of estimate parking spaces, correct geometrical features of one or more estimate parking spaces in the cluster of estimate parking spaces based at least in part on the common geometric pattern, identify one or more gaps among the cluster of estimate parking spaces, and determine a number of inserted parking spaces to fill the one or more gaps based at least in part on the common geometric pattern to create a corrected map of parking spaces of the parking facility. In one embodiment a method of creating a map of a parking facility is disclosed. The method includes obtaining one or more images of a parking facility, generating an estimate map of parking spaces in the parking facility based at least on the one or more images, the estimate map of parking spaces including a plurality of estimate parking space shapes, identifying a parking block that includes a cluster of estimate parking spaces among the plurality of estimate parking space shapes, determining a common geometric pattern among the cluster of estimate parking spaces, correcting geometrical features of one or more estimate parking spaces in the cluster of estimate parking spaces based at least in part on the common geometric pattern, identifying one or more gaps among the cluster of estimate parking spaces, and determining a number of inserted parking spaces to fill the one or more gaps based at least in part on the common geometric pattern. In one embodiment, a non-transitory computer-readable medium is disclosed. The computer-readable medium stores instructions that when executed by one or more processors cause the one or more processors to perform the disclosed functions. The instructions include instructions to obtain one or more images of a parking facility, generate an estimate map of parking spaces in the parking facility based at least on the one or more images, the estimate map of parking spaces including a plurality of estimate parking space shapes, identify a parking block that includes a cluster of estimate parking spaces among the plurality of estimate parking shapes, determine a common geometric pattern among the cluster of estimate parking spaces, correct geometrical features of one or more estimate parking spaces in the cluster of estimate parking spaces based at least in part on the common geometric pattern, identify one or more gaps among the cluster of estimate parking spaces, and determine a number of inserted parking spaces to fill the one or more gaps based at least in part on the common geometric pattern.
228,204
11319074
BACKGROUND Vehicle seats such as aircraft passenger seats are commonly equipped with amenities such as armrests, tray tables, leg rests, and seat backs that are adjustable for passenger comfort and/or personnel use. Luggage bins and other storage arrangements for use by either passengers or crew have hinged doors and various other parts that move by partial or full relative rotation. The components that facilitate the adjustability of such assemblies and arrangements are expected to provide long service lives. Moving elements that are subject to more frequent use are exposed to higher wear and even abuse. The pivoting armrests of airline passenger seats, for example, are likely handled and adjusted several times by every passenger that uses a particular seat. An armrest may be raised and lowered for courtesy each time another passenger using a nearby seat enters and exits a seating row. A typical armrest pivots about single mounting point in a cantilever fashion. The expectation that an armrest maintain any position once adjusted by a passenger is typically met by a pivoting joint that applies an appropriate amount of friction to permit adjustment and assure stability. Such armrests and other mechanical systems ultimately require maintenance and repair, particularly in components where friction and movement occur and thus wear tends to accumulate. As wear occurs in the pivoting joints of armrests and other mechanical systems, it is undesirable to replace an entire passenger seat, luggage bin, or other major assembly or even disassemble such an assembly to any great extent. Airline operators, in particular, prefer to conduct maintenance and repair operations with as little interruption to aircraft use as feasible. Any mounting and pivoting mechanism that attaches a pivoting element to a more fixed host structure, and that applies friction against relative movement, is likely to require maintenance and repair. It is preferable to minimize the costs of replacement parts and the required skill level for repair operations, while at once assuring a repaired mechanism is returned to an expected performance level once a maintenance operation is complete. SUMMARY OF THE INVENTIVE ASPECTS To achieve the foregoing and other advantages, the inventive aspects disclosed herein are directed to an externally replaceable friction mechanism, in which a first spacer is configured to non-rotationally engage a fixed element such as a seat frame element and frictionally engage a pivoting element such as an armrest. A first friction ring is configured to non-rotationally engage the first spacer, the first friction ring including fingers configured to frictionally engage the pivoting element. The first friction ring is configured to permit pivoting movement of the pivoting element relative to the fixed element and provide friction against the pivoting movement. In some embodiments, the friction mechanism may further include a first cap configured to non-rotationally engage the armrest and frictionally engage the first friction ring, wherein the first friction ring is configured to permit pivoting movement of the first cap with the armrest. In some embodiments, the first spacer may include a flange that is substantially perpendicular to an axis about which the first friction ring is configured to permit pivoting movement of the armrest relative to the seat frame, the flange configured to frictionally engage the armrest. In some embodiments, the first spacer may include a neck connected to the flange, the neck having an exterior for non-rotationally engaging the frame and an interior surrounding the axis for non-rotationally engaging the first friction ring. In some embodiments, the neck may extend as a hexagonal wall having exterior facets to non-rotationally engage the frame and having interior facets to non-rotationally engage the first friction ring. In some embodiments, the first friction ring may include a body extending along an axis about which the first friction ring is configured to permit pivoting movement of the armrest relative to the seat frame, the body including a hexagonal first end for non-rotationally engaging the first spacer, the hexagonal first end extending beyond the fingers, and a second end opposite the first end, the second end overlapped by at least one of the fingers. In some embodiments, the fingers may include multiple first fingers each inclined toward the first end and multiple second fingers inclined toward the second end. In some embodiments, the first fingers and the second fingers may be alternatingly spaced at regular angular intervals around the axis. In some embodiments, the first fingers and the second fingers may be connected to an exterior of the body along a circumferential path around the exterior of the body. In some embodiments, the friction mechanism may further include a second spacer configured to non-rotationally engage the seat frame and frictionally engage the armrest, and a second friction ring configured to non-rotationally engage the second spacer, the second friction ring including fingers configured to frictionally engage the armrest. In some embodiments, the first spacer may include a first flange and a hexagonal first neck connected to the first flange, the first neck extending toward the second spacer, the second spacer may include a second flange and a hexagonal second neck connected to the second flange, the second neck extending toward the first spacer, the first friction ring may have a hexagonal first end for non-rotationally engaging an interior of the hexagonal first neck, and the second friction ring may have a hexagonal second end for non-rotationally engaging an interior of the hexagonal second neck. In some embodiments, the first spacer and the second spacer may be symmetrically positioned and oriented relative to each other about a center plane, and the first friction ring and the second friction ring may be symmetrically positioned and oriented relative to each other about the center plane. Another inventive aspect disclosed herein is directed to an armrest assembly including a seat frame element, an armrest pivotally connected to the seat frame element, and a friction mechanism pivotally connecting the armrest to the seat frame element, the friction mechanism including a first friction ring in non-rotational engagement with the seat frame element, the first friction ring having deformable fingers frictionally engaging the armrest and permitting pivoting movement of the armrest relative to the seat frame element. In some embodiments, the friction mechanism may further include a spacer in non-rotational engagement with the seat frame, the spacer including a flange that is substantially perpendicular to an axis about which the armrest is pivotable relative to the seat frame. In some embodiments, the spacer may further include a neck connected to the flange, the neck surrounding the axis and non-rotationally engaging the frame. In some embodiments, the first friction ring may be in non-rotational engagement with the seat frame via the spacer. In some embodiments, the fingers may frictionally engage a circular interior wall of a hole defined in the armrest. A further inventive aspect disclosed herein is directed to a kit of parts for servicing a friction mechanism pivotally connecting an armrest to a seat frame, the kit including at least two friction rings, wherein each friction ring includes a body extending along an axis about which the friction ring is configured to permit pivoting movement of the armrest relative to the seat frame, the body having a hexagonal first end and an opposing second end, multiple first fingers for frictionally engaging the armrest, each first finger connected to an exterior of the body and inclined toward the first end, the first end extending beyond the first fingers, and multiple second fingers for frictionally engaging the armrest, each second finger connected to the exterior of the body inclined toward the second end, the second end overlapped by the second fingers, wherein the first fingers and second fingers are alternatingly connected to the exterior of the body along a circumferential path around the exterior of the body. In some embodiments, the kit of parts further includes multiple spacers, wherein each spacer includes a first flange for frictionally engaging the armrest, and a hexagonal neck connected to the first flange, the neck having an exterior for non-rotationally engaging the frame and an interior for non-rotationally engaging the first end of one of said at least two friction rings. In some embodiments, the friction mechanism includes a first side, a second side, and a bolt connecting the first side and second side together, the kit further comprising a tool configured to turn the bolt for use in servicing the friction mechanism.
105,148
11363280
TECHNICAL FIELD The present invention relates to a video signal encoding/decoding method and apparatus. BACKGROUND ART In recent years, demand for multimedia data such as moving pictures is rapidly increasing on the Internet. However, the rate at which the bandwidth of a channel develops is hard to follow the amount of multimedia data that is rapidly increasing. As a result, Video Coding Expert Group (VCEG) of the International Organization for Standardization (ITU-T) and MPEG (Moving Picture Expert Group) of ISO/IEC have issued High Efficiency Video Coding (HEVC) version 1 in February 2014. HEVC defines techniques such as intra prediction, inter prediction, transform, quantization, entropy coding, and in-loop filters. Among them, the inter prediction is performed by using the previously reconstructed pictures and motion information such as a motion vector, a reference picture index, a prediction direction (Inter prediction indicator), etc. The higher the correlation between images, the higher the prediction efficiency may be obtained. However, the inter prediction result may be inaccurate if the correlation between the images is lowered because of a change in brightness between images such as a fade-in or a fade-out. In order to solve such a problem, the present invention proposes weight prediction. Here, the weight prediction may mean that, when there is a brightness change between images, the weight is estimated by the degree of brightness change, and the estimated weight is applied to the inter prediction. DISCLOSURE Technical Problem The main object of the present invention is to improve inter prediction efficiency by performing inter prediction using a weight in encoding/decoding an image. The main object of the present invention is to provide an apparatus and a method capable of effectively performing inter prediction by selectively using a weight in encoding/decoding an image even when a plurality of light sources exist in an image or a brightness change exists only in a local region. Technical Solution The method and apparatus for decoding a video signal according to the present invention determines whether there is a brightness change between a current image including a current block and a reference image of the current image, determines a weight prediction parameter candidate for the current block if there is a brightness change between the current image and the reference image, determines a weight prediction parameter for the current block based on index information for specifying any one of the weight prediction parameter candidate, and performs prediction of the current block based on the weight prediction parameter. In the method and apparatus for decoding a video signal according to the present invention, the weight prediction parameter candidate may include a first weight prediction parameter for the reference image. In the method and apparatus for decoding a video signal according to the present invention, when the current image includes at least one region capable of deriving a second weight prediction parameter, the weight prediction parameter candidate further includes at least one second weight prediction parameter. In the method and apparatus for decoding a video signal according to the present invention, the first weight prediction parameter may be derived based on a prediction value for the first weight prediction parameter and a residual value for the first weight prediction parameter. In the method and apparatus for decoding a video signal according to the present invention, the prediction value for the first weight prediction parameter may be determined according to the accuracy of the current block. In the method and apparatus for decoding a video signal according to the present invention, the maximum number of the weight prediction parameter candidate may be adaptively determined according to a size of the current block. In the method and apparatus for decoding a video signal according to the present invention, the weight prediction parameter candidate may include an initial weight prediction parameter having a predetermined weight value. The method and apparatus for encoding a video signal according to the present invention determines whether there is a brightness change between a current image including a current block and a reference image of the current image, determines a weight prediction parameter candidate for the current block if there is a brightness change between the current image and the reference image, determines a weight prediction parameter for the current block among the weight prediction parameter candidate, encodes index information for specifying the determined weight prediction parameter, and performs prediction of the current block based on the weight prediction parameter. In the method and apparatus for encoding a video signal according to the present invention, the weight prediction parameter candidate may include a first weight prediction parameter for the reference image. In the method and apparatus for encoding a video signal according to the present invention, when the current image includes at least one region capable of deriving a second weight prediction parameter, the weight prediction parameter candidate further includes at least one second weight prediction parameter. The method and apparatus for decoding a video signal according to the present invention encodes a residual value indicating a difference between the first weight prediction parameter and a prediction value for the first weight prediction parameter. In the method and apparatus for encoding a video signal according to the present invention, the prediction value for the first weight prediction parameter may be determined according to the accuracy of the current block. In the method and apparatus for encoding a video signal according to the present invention, the maximum number of the weight prediction parameter candidate may be adaptively determined according to a size of the current block. In the method and apparatus for encoding a video signal according to the present invention, the weight prediction parameter candidate may include an initial weight prediction parameter having a predetermined weight value. Advantageous Effects In the present invention, the inter prediction efficiency is improved by performing inter prediction using a weight in encoding/decoding an image. The present invention may effectively perform inter prediction by selectively using a weight in encoding/decoding an image even when a plurality of light sources exist in an image or a brightness change exists only in a local region.
149,022
11307598
TECHNICAL FIELD The disclosure relates to autonomous aircraft, drones, and related systems and methods. In particular, embodiments of the disclosure relate to autonomous aircraft, drones, related control systems, and related methods. BACKGROUND Aircraft (e.g., airplanes, gliders, helicopters, jets, etc.) are used to transport people, animal, and other cargo large distances in relatively short amounts of time. Aircraft face challenges that are less common for automobiles due to their ability to travel in three dimensions rather than only 2 dimensions and at much higher rates of speed. Aircraft are governed by the agencies such as the Federal Aviation Administration (FAA), the European Union Aviation Safety Agency (EASA), the International Civil Aviation Organization (ICAO), etc. The Agencies also monitor and control air traffic to prevent midair collisions and ensure the availability of runways (e.g., landing strips) and prioritize access based on schedules, fuel needs, emergency needs, etc. There are many different technological aids for aircraft when approaching runways to aid pilots when landing the aircraft. The Agencies provide rules based on the available technologies that allow aircraft with more technological aids to land in more adverse weather conditions (e.g., low visibility) than those with fewer technological aids. Autonomous aircraft (e.g., drones) have many uses. Some drones are used to support the military, for example, drones are used for surveillance, cargo delivery, bombing, and close air support. Drones also have been used in non-military roles such as, delivering cargo and packages, aerial photography, geographic mapping, search and rescue, disaster management, agriculture management, wildlife monitoring, law enforcement surveillance, construction management, and storm tracking. Autonomous aircraft can be remotely controlled or preprogrammed to fly specific paths without human intervention following the preprogramming. BRIEF SUMMARY Some embodiments of the present disclosure may include an aircraft assistance method. The method may include flying an autonomous aircraft in an area preceding the aircraft. An optimal position for the autonomous aircraft relative to the aircraft may be determined such that vortices created by the autonomous aircraft interact with the aircraft to reduce drag on the aircraft. The autonomous aircraft may then be positioned in the optimal position. Some embodiments of the present disclosure may include a drone control system. The drone control system may include a plurality of drones. Each drone may include an antenna apparatus, an automatic flight control computer, a device for detecting received command information pertaining to drone formation, and a formation control processor. The antenna apparatus may be for receiving and transmitting command and telemetry information. The formation control processor may be configured to receive and transmit flight information through the antenna apparatus and provide the flight information to the automatic flight control computer. A first drone may be configured to establish a master-slave relationship with at least one other drone of the plurality of drones. The at least one other drone may be configured to follow the first drone in a formation. Some embodiments of the present disclosure may include a landing assistance system. The landing assistance system may include at least one autonomous aircraft. The at least one autonomous aircraft may be configured to transmit signals to an approaching aircraft. The at least one autonomous aircraft may be configured to provide the approaching aircraft with information regarding a desired horizontal position and a desired vertical position relative to a runway. Some embodiments of the present disclosure may include a flight assistance system. The flight assistance system may include an autonomous aircraft and at least one non-transitory computer-readable storage medium. The autonomous aircraft may be configured to fly at a speed and altitude substantially similar to an associated aircraft. The at least one non-transitory computer-readable storage medium may store instructions thereon that, when executed by at least one processor, cause the autonomous aircraft to receive data from the associated aircraft. The instructions may also cause the autonomous aircraft to receive atmospheric data from one or more atmospheric sensors. The instructions may further cause the autonomous aircraft to calculate an optimal position of the autonomous aircraft relative to the associated aircraft to minimize drag on the associated aircraft. The instructions may also cause the autonomous aircraft to transmit the optimal position to one or more of the autonomous aircraft and the associated aircraft.
93,809
11361764
BACKGROUND Voice-enabled devices and smart home devices have become ubiquitous. Some users may utilize voice-enabled devices to operate such smart home devices by providing user utterances to the voice-enabled devices. Described herein are improvements in technology and solutions to technical problems that can be used to, among other things, improve the use of voice-enabled devices to operate smart home devices.
147,518
11411878
TECHNICAL FIELD This application relates to the field of communications technologies, and in particular, to a data transmission method, related devices, and a data transmission system. BACKGROUND In a network, data transmission is performed between devices based on various types of communication protocols. For example, a Transmission Control Protocol (TCP) is a connection-oriented, reliable, byte stream-based transport layer communication protocol, is defined by Request for Comments (RFC) 793 released by the Internet Engineering Task Force (IETF), and is a transport layer protocol that is most widely used in a current network. To ensure reliable transmission of a data packet, the TCP is used to assign a sequence number (SN) to each data packet. For a data packet that has been successfully received, a receive end may reply a corresponding acknowledgement (ACK) to a transmit end, where the ACK carries a sequence number of the received data packet. If the transmit end has not received the acknowledgment in a proper round-trip time (RTT), a corresponding data packet is retransmitted. This mechanism is also commonly referred to as timeout retransmission. Although the TCP ensures reliable data transmission through the acknowledgment and the timeout retransmission mechanism, network resources (including link bandwidth, cache in a switching node, and the like) are usually limited. If in a period of time, there are too many data packets transmitted in the network, transmission performance of the network deteriorates drastically. This case is called network congestion. When congestion occurs in the network, generally, the following may occur a data packet loss, a transmission delay increase, and a throughput decrease. In a severe case, a congestion collapse may occur. To prevent network congestion, the TCP introduces a series of congestion control algorithms, including algorithms of “slow start” and “congestion avoidance” that are originally proposed by V. Jacobson in a paper in 1988, and algorithms of “fast retransmit” and “fast recovery” that are subsequently added in a TCP Reno version. A common point of these congestion control algorithms is that a data sending rate is adjusted based on a congestion window. A congestion window size, namely, a cwnd value, represents a maximum quantity of data packets that can be sent but are not responded with ACKs. A larger window indicates a higher data sending rate, but may indicate higher congestion occurring probability in the network. If a window value is 1, then each data packet sent will have to wait for an ACK before a second data packet can be sent. Data transmission efficiency is low. A best cwnd value is selected such that network throughput maximization and zero congestion are cores of a congestion control algorithm. FIG. 1shows a main process of TCP congestion control according to the other approaches, including a slow start phase, a congestion avoidance phase, a fast retransmit phase, and a fast recovery phase, where there are two important parameters: cwnd and slow start threshold (ssthresh). In all of these phases, a data sending rate is controlled by changing the two parameters. As shown inFIG. 1, in the slow start phase, a transmit end first sends one data packet (cwnd=1). If a receive end successfully receives the data packet, the transmit end starts to send two data packets (cwnd=2). If the receive end successfully receives the two data packets, the transmit end sends four data packets (cwnd=4). To be specific, the congestion window size increases exponentially until reaching a specified slow start threshold ssthresh. When cwnd=ssthresh, it enters the congestion avoidance phase. In the congestion avoidance phase, cwnd no longer increases in the foregoing exponential manner, but increases linearly. To be specific, after an ACK of the receive end is received each time, only 1/cwnd data packet is added. In this way, in an RTT, cwnd is increased by one at most. When cwnd=24, if a timeout occurs, cwnd is reset to 1, and the slow start threshold ssthresh is reduced. For example, ssthresh=current cwnd/2. It can be learned that, according to an existing congestion control algorithm, when a network status is good, impact on a network is avoided by slowly increasing a data sending rate. In addition, when a packet loss is detected, the data sending rate is radically reduced, to avoid further deterioration of the network status. This is a “congestion prevention”-based congestion control algorithm. According to this algorithm, although network congestion can be suppressed to some extent, a data transmission rate may be improperly limited, which increases a data transmission delay, and reduces network bandwidth utilization. Particularly, in environments such as a wireless network, a data center network and a remote direct memory access (RDMA) network, the following cases, caused by the existing congestion control algorithm, commonly exist a throughput rate is reduced, a data transmission delay is large, and network bandwidth is wasted. SUMMARY Embodiments of this application provide a data transmission method, related devices, and a data transmission system, and aim to reduce network congestion, fully utilize network bandwidth, increase a data transmission rate, and reduce a data transmission delay. To achieve the foregoing disclosure purposes, according to a first aspect, an embodiment of this application provides a data transmission method. The method includes sending, by a transmit end, a plurality of data packets in the first RTT of a data transmission phase between the transmit end and a receive end at a high rate (a line rate or any user-defined rate), and adding a first tag to the plurality of data packets sent in the first RTT such that after receiving the data packet that carries the first tag, a network device buffers the data packet that carries the first tag to a low-priority queue or discards the data packet that carries the first tag, where a data packet in a high-priority queue of the network device is forwarded in preference to a data packet in the low-priority queue, and the data packet buffered in the high-priority queue does not carry the first tag. According to the method, network free bandwidth is utilized to quickly start a new data flow without a delay, and marks the data packet sent in an initial RTT such that the network device forwards the packet sent in the initial RTT at a lower priority, to reduce impact on an old flow (a packet sent in a non-initial RTT) caused by the quick start of the new flow, and reduce network congestion probability. In a possible design, the transmit end may adjust a sending rate or a quantity of sent data packets in a next RTT based on a quantity of data packets that are successfully received by the receive end and that are in the plurality of data packets sent in the first RTT, and send the data packets in a next RTT based on an adjusted sending rate or the quantity of the data packets. Therefore, congestion control is performed in time based on a perceived network condition in order to avoid rapid deterioration of the network condition. In a possible design, the transmit end may add a second tag to the data packet sent in the non-initial RTT to indicate that the data packets are sent in the non-initial RTT. The network device buffers the data packet to the high-priority queue based on the second tag carried in the data packet, and the data packet is forwarded in preference to a data packet sent in the initial RTT, to reduce impact on the old flow (the packet sent in the non-initial RTT). In a possible design, the first tag or the second tag is a field or a specific bit of a header of the data packet. In a possible design, before sending a data packet, the transmit end first establishes a communication connection to the receive end. The foregoing first RTT or initial RTT is the first RTT after the communication connection is established. In a possible design, the transmit end performs data transmission during a process in which the transmit end establishes a communication connection to the receive end. The foregoing first RTT or initial RTT is the first RTT of a communication connection establishment phase. In a possible design, the transmit end determines, based on an ACK received from the receive end, a quantity of data packets that are successfully received by the receive end and that are in the plurality of data packets sent in the first RTT. In a possible design, an upper limit of a quantity of data packets allowed to be sent by the transmit end in the second RTT has a linear relationship with the quantity of the data packets that are successfully received by the receive end and that are in the data packets sent in the first RTT. According to a second aspect, an embodiment of this application provides a data transmission method, including receiving, by a network device, a data packet sent by a transmit end, and buffering, by the network device, the data packet to a low-priority queue if the data packet is sent by the transmit end in the first RTT of a data transmission phase between the transmit end and a receive end, or buffering, by the network device, the data packet to a high-priority queue if the data packet is not sent in the first RTT, where a data packet in the high-priority queue is forwarded in preference to a data packet in the low-priority queue. Using the foregoing method, the network device distinguishes a data packet sent in an initial RTT and a data packet sent in a non-initial RTT, and gives a higher forwarding priority to the data packet sent in the non-initial RTT. Therefore, impact on an old flow (a packet sent in the non-initial RTT) caused by fast packet delivery in the initial RTT is reduced, and network congestion probability is reduced. In a possible design, the transmit end adds a specific tag to the data packet sent in the initial RTT, and the network device determines, based on the tag carried in the received data packet, whether the data packet is sent by the transmit end in the initial RTT. In a possible design, the network device maintains a flow table used to record all active flow information. If 5-tuple information of a flow cannot be found in the flow table, the flow is classified as a new flow, and a new flow record is inserted into the flow table. Subsequently, when the data packet is looked up from the table, the newly inserted flow entry may be hit, and it is determined, based on content of the flow entry, that the current data packet belongs to a new flow, that is, a packet sent in the initial RTT. After a new flow ends data transmission in the first RTT, a flow entry is updated to “old flow”. Therefore, all subsequent data packets of the flow are identified, based on the updated flow entry, as packets sent in the non-initial RTT. In a possible design, each flow record in the flow table has a valid time. If the flow does not subsequently send any new data packet in the valid time, the flow record is deleted. According to a third aspect, an embodiment of this application provides a data transmission method, including receiving, by a network device, a data packet sent by a transmit end, and discarding, by the network device, the data packet if the data packet is sent by the transmit end in the first RTT of a data transmission phase between the transmit end and a receive end, and a quantity of data packets in a receive queue of the network device exceeds a specified threshold, or adding, by the network device, the data packet to the receive queue if the data packet is not sent in the first RTT and the receive queue is not full. Using the foregoing method, the network device selectively discards, based on a depth of the receive queue, a data packet sent in an initial RTT. Therefore, impact on an old flow (a packet sent in a non-initial RTT) caused by fast packet delivery in the initial RTT is reduced, and network congestion probability is reduced. In a possible design, if the data packet is not sent in the first RTT and the receive queue is full, the network device discards the data packet. In a possible design, if the data packet is not sent in the first RTT and the receive queue is full, the network device discards one data packet in the receive queue, where the discarded data packet is a data packet sent by the transmit end in the first RTT. In a possible design, the transmit end adds a specific tag to the data packet sent in the initial RTT, and the network device determines, based on the tag carried in the received data packet, whether the data packet is sent by the transmit end in the initial RTT. In a possible design, the network device maintains a flow table used to record all active flow information. If 5-tuple information of a flow cannot be found in the flow table, the flow is classified as a new flow, and a new flow record is inserted into the flow table. Subsequently, when the data packet is looked up from the table, the newly inserted flow entry may be hit, and it is determined, based on content of the flow entry, that the current data packet belongs to a new flow, that is, a packet sent in the initial RTT. After a new flow ends data transmission in the first RTT, a flow entry is updated to “old flow”. Therefore, all subsequent data packets of the flow are identified, based on the updated flow entry, as packets sent in the non-initial RTT. In a possible design, each flow record in the flow table has a valid time. If the flow does not subsequently send any new data packet in the valid time, the flow record is deleted. According to a fourth aspect, an embodiment of this application provides a computing device. The computing device has functions of implementing the transmit end in the foregoing method examples. The functions may be implemented by hardware, or implemented by executing corresponding software by hardware. The hardware or the software includes one or more modules corresponding to the foregoing functions. In a possible design, the computing device includes a processor, a memory, and a network interface card, where the network interface card is configured to receive a data packet and send a data packet, and the processor runs a protocol stack program in the memory, to perform the functions of the transmit end in the foregoing method examples. In another possible design, the computing device structurally includes a receiving unit, a processing unit, and a sending unit. These units may perform the corresponding functions in the foregoing method examples. For example, the receiving unit and the sending unit are respectively configured to receive and send a data packet, and the processing unit is configured to process the data packet, for example, add a first and/or second tag. According to a fifth aspect, an embodiment of this application provides a network device. The network device has functions of implementing the network device in any one of any aspect or any possible implementation of the aspect. The functions may be implemented by hardware, or implemented by executing corresponding software by hardware. The hardware or the software includes one or more modules corresponding to the foregoing functions. In a possible design, the network device includes a processor, a memory, and an input/output port. The input/output port is configured to receive a data packet and send a data packet, and the processor runs a protocol stack program in the memory, to perform the functions of the network device in the foregoing method examples, for example, identify a data packet sent in an initial RTT, buffer the data packet to a receive queue, and discard the data packet when the receive queue is full or a depth of the queue exceeds a specified threshold. In a possible design, the network device structurally includes a receiving unit, a processing unit, and a sending unit. These units may perform the corresponding functions in the foregoing method examples. For example, the receiving unit and the sending unit are respectively configured to receive and send a data packet, and the processing unit is configured to process the data packet, for example, identify a data packet sent in an initial RTT, buffer the data packet to a receive queue, and discard the data packet when the receive queue is full or a depth of the queue exceeds a specified threshold. In a possible design, the receiving unit and the sending unit are transceivers, network interface cards, or communications interfaces, and the processing unit is a processor, or a hardware circuit or a special-purpose chip, for example, a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). According to a sixth aspect, an embodiment of this application provides a network interface card, including an input/output port and a processor, where the processor is configured to send a plurality of data packets in the first RTT of a data transmission phase between a transmit end and a receive end through the input/output port, and add a first tag to the plurality of data packets sent in the first RTT such that after receiving the data packet that carries the first tag, a network device buffers the data packet that carries the first tag to a low-priority queue or discards the data packet that carries the first tag, where a data packet in a high-priority queue of the network device is forwarded in preference to a data packet in the low-priority queue, and the data packet buffered in the high-priority queue does not carry the first tag. According to another aspect, an embodiment of this application provides a computing device. The computing device includes the foregoing network interface card. According to still another aspect, an embodiment of this application provides a data transmission system. The system includes the foregoing computing device and the foregoing network device. According to yet another aspect, an embodiment of this application provides a computer storage medium configured to store computer software instructions used by the foregoing computing device or network device. The computer storage medium includes a program designed for executing the foregoing aspects. Compared with the other approaches, in the solutions provided in the embodiments of this application, according to the data transmission method provided in the embodiments of this application, a transmit end sends a large quantity of data packets in an initial RTT after a TCP connection is established such that free network bandwidth is fully utilized to quickly start a new data flow without a delay. In addition, flow classification is performed using whether a data flow is a new flow as a standard, and different network transmission priorities are set for different flows in order to prevent a data packet of a new flow from interfering with transmission of a data packet of an old flow, which causes network congestion. In other words, according to the data transmission method provided in the embodiments of this application, a better balance is achieved between network bandwidth utilization and network congestion probability, and network congestion is avoided as much as possible while network bandwidth is fully utilized.
197,225
11220765
BACKGROUND The seatbelt portion of a vehicle restraint system secures an occupant of a vehicle against harmful movement that may result from a vehicle collision. The seatbelt functions to reduce the likelihood of injury by reducing the force of occupant impacts with vehicle interior structures. In this role, the seatbelt applies loads across the chest or lap of the occupant. Controlling or reducing these loads may reduce the risk of occupant injury during a collision.
7,739
11272168
CROSS-REFERENCE TO RELATED APPLICATION This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/CN2018/095798, filed Jul. 16, 2018, the contents of which are incorporated by reference in the entirety. TECHNICAL FIELD The present invention relates to display technology, more particularly, to a three-dimensional display apparatus for providing a plurality of view points to a view zone, a three-dimensional imaging apparatus for providing a plurality of view zones to a left eye and a right eye respectively, and a method of displaying a three-dimensional image using a three-dimensional display apparatus for providing a plurality of view points to a view zone. BACKGROUND Various three-dimensional display systems have been developed. Examples of three-dimensional display systems include a parallax barrier system, liquid crystal shutter glasses, polarized glasses, or the like. For displaying a three-dimensional image, typically an image for the left eye and an image for the right eye are displayed on a display panel. A viewer, using the three-dimensional display system such as a parallax barrier system, is able to view the image for the left eye by his/her left eye, and view the image for the light eye by her right eye, thereby perceiving a three-dimensional image. SUMMARY In one aspect, the present invention provides a three-dimensional display apparatus for providing a plurality of view points to a view zone, comprising a display panel configured to display a plurality of first sub-images respectively in a plurality of display sub-regions and display a plurality of second sub-images respectively in the plurality of display sub-regions, the plurality of first sub-images and the plurality of second sub-images being displayed in a first time sequential order so that a respective one of the plurality of first sub-images and a respective one of the plurality of second sub-images displayed in a same one of the plurality of display sub-regions are displayed at different time points; a main lens between the display panel and the view zone, and configured to focus each of the plurality of first sub-images to a first view point and focus each of the plurality of second sub-images to a second view point, thereby displaying a three-dimensional image, the first view point and the second view point being within a same view zone, the second view point being different from the first view point; and a back light source comprising a plurality of first light sources and a plurality of second light sources, the plurality of first light sources configured to provide back light for the display panel to respectively display the plurality of first sub-images, the plurality of second light sources configured to provide back light for the display panel to respectively display the plurality of second sub-images; wherein the plurality of first light sources and the plurality of second light sources are configured to be illuminated in a second time sequential order corresponding to the first time sequential order. Optionally, the three-dimensional display apparatus further comprises a micro-lens array between the display panel and the back light source; wherein the micro-lens array comprises a plurality of micro-lenses respectively corresponding to the plurality of display sub-regions; the plurality of first light sources are respectively approximately at focal points of the plurality of micro-lenses; the plurality of second light sources are respectively approximately at the focal points of the plurality of micro-lenses; each individual one of the plurality of micro-lenses is configured to focus back light provided by a respective one of the plurality of first light sources to a respective one of the plurality of display sub-regions thereby displaying a respective one of the plurality of first sub-images, and configured to focus back light provided by a respective one of the plurality of second light sources to the respective one of the plurality of display sub-regions thereby displaying a respective one of the plurality of second sub-images. Optionally, each of the plurality of micro-lenses has a focal length in a range of approximately 0.1 mm to approximately 5 mm. Optionally, the plurality of micro-lenses are arranged as an array of micro-lenses, a cross-section of each micro-lens in the array of micro-lenses has a substantially hexagonal shape. Optionally, each of the plurality of first light sources and the plurality of second light sources comprises a first light emitting element of a first color, a second light emitting element of a second color, and a third light emitting element of a third color. Optionally, the first light emitting element of the first color, the second light emitting element of the second color, and the third light emitting element of the third color in a respective one of the plurality of first light sources are configured to be illuminated time sequentially; and the first light emitting element of the first color, the second light emitting element of the second color, and the third light emitting element of the third color in a respective one of the plurality of second light sources are configured to be illuminated time sequentially. Optionally, each of the plurality of first light sources and the plurality of second light sources has a size in a range of approximately 10 μm to approximately 200 μm. Optionally, a respective one of the plurality of first sub-images and a respective one of the plurality of second sub-images corresponding to a same one of the plurality of display sub-regions are generated by two different sets of pixels in the same one of the plurality of display sub-regions, the two different sets of pixels having no pixel in common. Optionally, the three-dimensional display apparatus further comprises a lens screen between the micro-lens array and the back light source; the lens screen has a plurality of openings configured to respectively allow light emitted from the plurality of first light sources and the plurality of second light sources to transmit there-through. Optionally, the three-dimensional display apparatus further comprises a substantially transparent optical material layer spacing apart the micro-lens array and the back light source. Optionally, the main lens and the display panel are spaced apart by a distance equal to or less than 5 cm. Optionally, the same view zone is a same eye of a viewer. Optionally, the first view point and the second view point are spaced apart by a distance no more than 2.5 mm. Optionally, the display panel is a liquid crystal display panel. In another aspect, the present invention provides a three-dimensional imaging apparatus for providing a plurality of view zones to a left eye and a right eye respectively, comprising a first three-dimensional display apparatus and a second three-dimensional display apparatus, each of which is a three-dimensional display apparatus described herein; wherein the first three-dimensional display apparatus is configured to focus each a plurality of first sub-images displayed by a first display panel to a first view point of the left eye and focus each a plurality of second sub-images displayed by the first display panel to a second view point of the left eye; and the second three-dimensional display apparatus is configured to focus each a plurality of first sub-images displayed by a second display panel to a first view point of the light eye and focus each a plurality of second sub-images displayed by the second display panel to a second view point of the right eye. In another aspect, the present invention provides a method of displaying a three-dimensional image using a three-dimensional display apparatus for providing a plurality of view points to a view zone; wherein the three-dimensional display apparatus comprises a display panel configured to display a plurality of first sub-images respectively in a plurality of display sub-regions and display a plurality of second sub-images respectively in the plurality of display sub-regions; a main lens between the display panel and the view zone, and configured to focus each of the plurality of first sub-images to a first view point and focus each of the plurality of second sub-images to a second view point, thereby displaying a three-dimensional image, the first view point and the second view point being within a same view zone, the second view point being different from the first view point; a back light source comprising a plurality of first light sources and a plurality of second light sources, the plurality of first light sources configured to provide back light for the display panel to respectively display the plurality of first sub-images, the plurality of second light sources configured to provide back light for the display panel to respectively display the plurality of second sub-images; wherein the method comprises displaying the plurality of first sub-images and the plurality of second sub-images in a first time sequential order by illuminating the plurality of first light sources and the plurality of second light sources in a second time sequential order corresponding to the first time sequential order; and a respective one of the plurality of first sub-images and a respective one of the plurality of second sub-images displayed in a same one of the plurality of display sub-regions are displayed at different time points according to the first time sequential order. Optionally, each of the plurality of first light sources and the plurality of second light sources comprises a first light emitting element of a first color, a second light emitting element of a second color, and a third light emitting element of a third color; wherein the method comprises illuminating the first light emitting element of the first color, the second light emitting element of the second color, and the third light emitting element of the third color in a respective one of the plurality of first light sources time sequentially; and illuminating the first light emitting element of the first color, the second light emitting element of the second color, and the third light emitting element of the third color in a respective one of the plurality of second light sources time sequentially. Optionally, the three-dimensional display apparatus further comprises a micro-lens array between the display panel and the back light source; wherein the micro-lens array comprises a plurality of micro-lenses respectively corresponding to the plurality of display sub-regions; the plurality of first light sources are respectively approximately at focal points of the plurality of micro-lenses; the plurality of second light sources are respectively approximately at the focal points of the plurality of micro-lenses; wherein the method further comprises focusing back light provided by the plurality of first light sources by the plurality of micro-lenses respectively to the plurality of display sub-regions thereby displaying the plurality of first sub-images; and focusing back light provided by the plurality of second light sources by the plurality of micro-lenses respectively to the plurality of display sub-regions thereby displaying the plurality of second sub-images. Optionally, the first time sequential order comprises displaying one or multiple of the plurality of first sub-images but none of the plurality of second sub-images at a first time point; and displaying one or multiple of the plurality of second sub-images but none of the plurality of first sub-images at a second time point; wherein the second time sequential order comprises illuminating one or multiple of the plurality of first light sources corresponding to the one or multiple of the plurality of first sub-images, but none of the plurality of second light sources at the first time point; and illuminating one or multiple of the plurality of second light sources corresponding to the one or multiple of the plurality of second sub-images, but none of the plurality of first light sources at a second time point. Optionally, the first time sequential order comprises displaying a combination of one or multiple of the plurality of first sub-images and one or multiple of the plurality of second sub-images at a first time point; and displaying a combination of one or multiple of the plurality of second sub-images and one or multiple of the plurality of first sub-images at a second time point; wherein the second time sequential order comprises illuminating a combination of one or multiple of the plurality of first light sources corresponding to the one or multiple of the plurality of first sub-images, and one or multiple of the plurality of second light sources corresponding to the one or multiple of the plurality of second sub-images at the first time point; and illuminating a combination of one or multiple of the plurality of second light sources corresponding to the one or multiple of the plurality of second sub-images, and one or multiple of the plurality of first light sources corresponding to the one or multiple of the plurality of first sub-images at a second time point. Optionally, the same view zone is a same eye of a viewer.
58,695
11251481
TECHNICAL FIELD The present invention relates to a battery packaging material having excellent moldability with pinholes and cracks hardly generated during molding. The present invention also relates to a battery packaging material in which curling after molding is suppressed. BACKGROUND ART Various types of batteries have been developed heretofore, and in every battery, a packaging material is an essential member for sealing battery elements such as an electrode and an electrolyte. Metallic packaging materials have been often used heretofore as battery packagings. On the other hand, in recent years, batteries have been required to be diversified in shape and to be thinned and lightened with improvement of performance of electric cars, hybrid electric cars, personal computers, cameras, mobile phones and so on. However, metallic battery packaging materials that have often been heretofore used have the disadvantage that it is difficult to keep up with diversification in shape, and there is a limit on weight reduction. Thus, in recent years, there has been proposed a film-shaped laminate with a base material, a metal layer and a sealant layer laminated in this order has been proposed as a battery packaging material which is easily processed into diversified shapes and is capable of achieving thickness reduction and weight reduction. However, such a film-shaped packaging material is thinner as compared to a metallic packaging material, and has the disadvantage that pinholes and cracks are easily generated during molding. If pinholes and cracks are generated in a battery packaging material, an electrolytic solution may permeate to a metal layer to form a metal precipitate, resulting in generation of a short-circuit, and therefore it is absolutely necessary that a film-shaped battery packaging material have a property that makes it hard to generate pinholes during molding, i.e. excellent moldability. Various studies have been conducted heretofore with attention paid to an adhesive layer for bonding a metal layer in order to improve the moldability of a film-shaped battery packaging material. For example, Patent Document 1 discloses that in a laminated packaging material which includes an inner layer including a resin film; a first adhesive agent layer; a metal layer; a second adhesive agent layer; and an outer layer including a resin film, at least one of the first adhesive agent layer and the second adhesive agent layer is formed of an adhesive agent composition containing a resin having an active hydrogen group on the side chain, a polyfunctional isocyanate and a polyfunctional amine compound to give a packaging material having high reliability in deeper molding. As represented by Patent Document 1, many studies have been conducted heretofore on techniques for improving moldability with attention paid to blended components of an adhesive layer for bonding a metal layer and other layer in a battery packaging material including a film-shaped laminate, but there have been reported very few techniques for improving moldability with attention paid to the properties of the battery packaging material as a whole. PRIOR ART DOCUMENTS Patent Document Patent Document 1: Japanese Patent Laid-open Publication No. 2008-287971 Non-Patent Document Non-Patent Document 1: Akira Ota, “Press Processing Engineering Manual”, published by NIKKAN KOGYO SHIMBUN, LTD., issued on Jul. 30, 1981, pages 1 to 3 SUMMARY OF THE INVENTION Problems to be Solved by the Invention A first object of the present invention is to provide the following technique: a battery packaging material including a film-shaped laminate in which at least a base material layer, a metal layer and a sealant layer are laminated in this order has excellent moldability with cracks and pinholes hardly generated during molding. In recent years, it has been required to further increase the energy density of a battery, and further reduces the size of the battery. For increasing the energy density of the battery, the molding depth of the battery packaging material may be made larger to increase the capacity of a battery element that can be stored in the battery packaging material. However, when the molding depth of the battery packaging material is excessively large, a stress applied to the packaging material increases, and a difference between a stress applied to an outer layer and a stress applied to an inner layer also increases. When the thickness is excessively small, shape retainability is deteriorated. Further, when there is an excessively large difference in slippage between the inner layer and the outer layer, how the outer layer is drawn is different from how the inner layer is drawn during molding. Accordingly, due to these factors and the like, the peripheral edge of a recess portion formed on the battery packaging material is curled (curved), so that storage of a battery element and heat-sealing of a sealant layer may be hindered, leading to deterioration of production efficiency of the battery. Under these circumstances, a second object of the present invention is to provide the following technique: curling after molding is suppressed in a battery packaging material including a laminate in which at least a base material layer, a metal layer and a sealant layer are laminated in this order. Means for Solving the Problems The present inventors have extensively conducted studies for achieving the above-mentioned first object. Resultantly, the present inventors have found that when a battery packaging material including a laminate in which a base material layer, a metal layer and a sealant layer are laminated in this order satisfies the relationship of A+B≥2.50, where A+B is a sum of a value A of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the MD direction and a value B of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the TD direction in the laminate, unexpectedly outstandingly excellent moldability can be imparted to a battery packaging material, so that the ratio of generation of pinholes and cracks during molding can be considerably reduced. A first aspect of the present invention has been completed by further conducting studies based on the above-mentioned findings. The present inventors have extensively conducting studies for achieving the above-mentioned second object. Resultantly, the present inventors have found that when a battery packaging material including a laminate in which a base material layer, a metal layer and a sealant layer are laminated in this order satisfies the relationships of (A1−A2)≥60 N/15 mm and (B1−B2)≥50 N/15 mm, where A1 is a stress in elongation by 10% in the MD direction and B1 is a stress in elongation by 10% in the TD direction in the laminate, and A2 is a stress in elongation by 10% in the MD direction and B2 is a stress in elongation by 10% in the TD direction in the base material layer, unexpectedly curling after molding can be effectively suppressed. A second aspect of the present invention has been completed by further conducting studies based on the above-mentioned findings. That is, the present invention provides a battery packaging material and a battery of the following aspects. Item 1. A battery packaging material including a laminate in which at least a base material layer, a metal layer and a sealant layer are laminated in this order, the laminate satisfying the relationship of A+B≥2.50, where A+B is a sum of a value A of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the MD direction and a value B of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the TD direction. Item 2. The battery packaging material according to item 1, wherein the value A and the value B satisfy the relationship of A<B. Item 3. The battery packaging material according to item 1 or 2, wherein the value A is 1.19 or more, and the value B is 1.31 or more. Item 4. The battery packaging material according to any one of items 1 to 3, wherein the tensile rupture strength of the base material layer in each of the MD direction and the TD direction is 200 MPa or more, and the tensile rupture elongation of the base material layer in each of the MD direction and the TD direction is in the range of 70 to 130%. Item 5. The battery packaging material according to any one of items 1 to 4, wherein the metal layer is an aluminum foil in which the 0.2% yield strength when a tensile test is conducted in a direction parallel to the MD direction and the 0.2% yield strength when a tensile test is conducted in a direction parallel to the TD direction are each in the range of 55 to 140 N/mm2. Item 6. The battery packaging material according to any one of items 1 to 5, wherein the base material layer is formed of at least one of a polyamide resin and a polyester resin. Item 7. A battery packaging material including a laminate in which at least a base material layer, a metal layer and a sealant layer are laminated in this order, wherein when A1 is a stress in elongation by 10% in the MD direction and B1 is a stress in elongation by 10% in the TD direction in the laminate, and A2 is a stress in elongation by 10% in the MD direction and B2 is a stress in elongation by 10% in the TD direction in the base material layer, the battery packaging material satisfies the relationships of: (A1−A2)≥60 N/15 mm; and (B1−B2)≥50 N/15 mm. Item 8. The battery packaging material according to claim7, wherein the ratio of (A1-A2) to (B1−B2) satisfies the relationship of (A1−A2)/(B1−B2)=1.00 to 1.20. Item 9. The battery packaging material according to claim7or8, wherein, when C is a dynamic friction coefficient of a surface of the base material layer and D is a dynamic friction coefficient of a surface of the sealant layer, the battery packaging material satisfies the relationships of: C≤0.3; D≤0.3; and C/D=0.5 to 2.5. Item 10. The battery packaging material according to any one of claims7to9, wherein the battery packaging material is a battery packaging material for deep drawing which is molded with a molding depth of 4 mm or more. Item 11. The battery packaging material according to any one of claims7to10, wherein the laminate has a thickness of 120 μm or less. Item 12. The battery packaging material according to any one of items 1 to 11, wherein at least one surface of the metal layer is subjected to a chemical conversion treatment. Item 13. The battery packaging material according to any one of items 1 to 12, wherein the battery packaging material is a packaging material for a secondary battery. Item 14. A battery, wherein a battery element including at least a positive electrode, a negative electrode and an electrolyte is stored in the battery packaging material according to any one of items 1 to 13. Advantages of the Invention The battery packaging material according to a first aspect of the present invention satisfies the relationship of A+B≥2.50, where A+B is a sum of a value A of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the MD direction and a value B of a ratio of a stress in elongation by 40% to a stress in elongation by 10% in the TD direction in the battery packaging material as a whole, and thus generation of pinholes, cracks and the like during molding of the battery packaging material can be suppressed. Further, the battery packaging material according to the first aspect of the present invention has excellent moldability as described above, and therefore can contribute to improvement of productivity. The battery packaging material according to a second aspect of the present invention satisfies the relationships of (A1−A2)≥60 N/15 mm and (B1−B2)≥50 N/15 mm, where A1 is a stress in elongation by 10% in the MD direction and B1 is a stress in elongation by 10% in the TD direction in a laminate, and A2 is a stress in elongation by 10% in the MD direction and B2 is a stress in elongation by 10% in the TD direction in a base material layer, and thus curling after molding can be effectively suppressed. Further, the battery packaging material according to the second aspect of the present invention can also contribute to improvement of productivity of batteries because curling after molding is suppressed, so that storage of a battery element and heat-sealing of a sealant layer are hardly hindered.
38,167
11262424
CROSS REFERENCE TO RELATED APPLICATIONS This application is a U.S. national phase application of International Application No. PCT/EP2015/068804, filed on Aug. 14, 2015, which claims the benefit of PCT/CN2014/084407 filed Aug. 14, 2014 and EP 14192427.4 filed Nov. 10, 2014 and is incorporated herein by reference. FIELD OF THE INVENTION The present invention involves coil compression for Magnetic Resonance Imaging (MRI), and specifically a method and apparatus for coil compression using a hardware coil compressor. BACKGROUND OF THE INVENTION Magnetic Resonance Imaging (MRI), Nuclear Magnetic Resonance Imaging (NMRI), or Magnetic Resonance Tomography (MRT) is a medical imaging technique used in radiology to investigate the anatomy and function of the body in both health and disease. MRI is based on the principles of nuclear magnetic resonance (NMR), a spectroscopic technique used by scientists to obtain microscopic chemical and physical information about molecules. MRI scanners use strong magnetic fields and radiowave to produce high quality images of the inside of the human body. MRI scanners have evolved considerably since the first commercial units were introduced in the 1980s. An MRI system is composed of a main magnet, gradient coils, a Radio Frequency (RF) coil, and a computer system. The main magnet produces a strong magnetic field B0around the area to be imaged. Gradient coils produce a gradient in B0in the X, Y, and Z directions. The RF coil produces the B1magnetic field necessary to rotate the spins by 90°, 180°, or any other value selected by the pulse sequence. The RF coil also detects the signal from the spins within the body. The computer system, or imaging computer, receives the detected RF signals and reconstructs the images of the inside of the human body. An MRI system using receiver arrays with many RF coil elements provides images with high Signal-to-Noise Ratio (SNR), parallel imaging acceleration, or both of them. The growing number of RF coil elements results in growing number of receiver channels or signal channels, growing amount of data and computation in the reconstruction. A commercial imaging computer, however, has usually up to limited 4 inputs each for one channel, due to complexity and cost considerations. This implies that the number of signal channels, which may be for example 32, has to be reduced, or compressed, to 4 before the signals can be input into a commercial imaging computer. Techniques for coil compression, receiver channel reduction or MRI data compression may be used to compress data from many channels into fewer virtual channels. For example, a typical 16 coil element system providing 16 receiver channels or signal channels may be linearly combined using 16 sets of combination coefficients to produce 16 virtual channels. The 16 sets of combination coefficients constitute a conversion matrix. If the conversion matrix is well chosen, the 16 virtual channels contain all information contained in the original 16 receiver channels, and the virtual channel with the highest SNR may be the virtual channel with theoretically obtainable highest SNR. The 4 virtual channels with the highest SNRs may be input into a 4 channel imaging computer for image reconstruction. Coil compression may be realized with a software compressor, a hardware compressor, or a compressor implemented with both hardware and software. Hardware compressors provide fast compression. Software compressors provide flexibility. Hardware compressors and software compressors may be selected or adequately combined for feasibility, imaging quality, cost effectiveness, simplicity, etc. Hardware compressors include Butler Matrix (King S, Varosi S, Duensing G., Optimum SNR data compression in hardware using an eigencoil array. MagnReson Med 2010; 63:1346-1356), TIM (“Mode Matrix—A Generalized Signal Combiner for Parallel Imaging Arrays”, ISMRM 2004 (1587)) and direct implementation of software compression (“A generalized analog mode-mixing matrix for channel compression in receive arrays”, ISMRM 2009 (101)). However, the Butler Matrix and the TIM are only applicable to specific coil configurations. The Butler matrix is only applicable to a cylindrical array of coils and it is inefficient for linear arrays or normal surface coil arrays. The TIM is only applicable to a linear array of coils such as a spine and torso coil array and the compression ratio is limited to 3:1. The direct implementation of software compression is too complex. A 32:8 conversion matrix directly implementing the software coil compression with hardware is not restricted to the configuration of the coil array and is not limited to the compression ratio of 3:1, but the compressor hardware is constructed with too many hardware components and is thus too complex and cost-inefficient for commercial products. US20100289494A1 from Wald et al. discloses a hardware-based compression including a mode-mixing apparatus. The mode-mixing apparatus includes a plurality of splitters, a plurality of combiners and a plurality of pathways to compress acquired multi-channel MR signals to produce compressed multi-channel MR signals. The hardware-based compression can be utilized with a variety of array coils. A publication “Array compression for MRI with large coil arrays” in Magnetic Resonance in Medicine, 1 Jun. 2007, discloses an array compression using optimized combination relative to principal component analysis (PCA) method which results in relative homogeneous virtual sensitivities. Another publication “a software channel compression technique for faster reconstruction with many channels” in Magnetic Resonance in Medicine, 1 Jan. 2008, introduces a PCA based method from channel compression which requires no calculation of sensitivity maps, noise correlation or any other prior information. US2007013375A1 from Akao et al. discloses a method and apparatus which reduces the number of channels employed in the parallel reconstruction from the M channel signals to a lower number of channel signals. The optimal choice of reconstructed channel modes can be mode using prior view information and/or sensitivity data for the given slice. With the number of coils growing, a compression technique is needed which provides high quality imaging and is simple and cost effective. SUMMARY OF THE INVENTION Method and apparatus for hardware coil compression is disclosed. The coils in an array configured for the same Region of Interest (ROI) are grouped into sub-arrays. The coils of each sub-array are pre-combined with a hardware combiner before further compression. The pre-combination converter composed of the pre-combiners is flexible, i.e., applicable to for example non-cylindrical coils; simpler than direct implementation of the software compression algorithm; and commercially feasible. For example, for pre-combination, a conversion matrix M is constructed first for the coils in the array configured for the same ROI. The conversion matrix M is optimized for the conversion outputs to have highest qualities. The coils are ordered and grouped into sub-arrays based on their importance. The pre-combination coefficients are determined for the sub-space spanned by the pre-combination coefficients to be as close as possible to the space spanned by all rows or the most important rows of the optimized conversion matrix M for the ordered coils. The converter constructed with hardware pre-combiners is simple and cost effective for commercial implementation and is of high performance. As one example, a method of hardware coil compression for Magnetic Resonance Imaging (MRI) comprises: pre-combining, using a plurality of hardware pre-combiners, outputs from coils of sub-arrays to obtain pre-combination outputs, one pre-combiner for each of the sub-arrays, wherein the sub-arrays are obtained by grouping coils of an array which is configured for imaging a Region of Interest (ROI). As one example, in the method of hardware coil compression for MRI, the coils in the array are grouped into the sub-arrays based on importance of each of the coils. As one example, in the method of hardware coil compression for MRI, the importance of a coil is represented by the contribution of the output of the coil to the Signal-to-Noise Ratio (SNR) of the signal obtained by combining the outputs of the coils. As one example, in the method of hardware coil compression for MRI, the coils are grouped into the sub-arrays by: assigning coils with the highest importance into the sub-arrays, one coil for each sub-array; and repeating the assignment of the remaining coils until all coils are assigned. As one example, in the method of hardware coil compression for MRI, the sub-arrays and pre-combination coefficients for the sub-arrays are determined by: constructing a channel conversion matrix M of n×n which converts signals s=(s1, s2, . . . , sn)Toutput from the coils of the array to conversion outputs s′=(s1′, s2′, . . . , sn′)T, s′=Ms, whereinTrepresents matrix transpose operation; selecting rows of the channel conversion matrix M corresponding to a number of conversion outputs with the highest Signal-to-Noise Ratios (SNRs); and optimizing the pre-combination coefficients or both the grouping and the pre-combination coefficients such that the pre-combination coefficients span a space which approaches the space spanned by all or the selected rows of M. As one example, in the method of hardware coil compression for MRI, the channel conversion matrix is an optimal channel conversion matrix. As one example, in the method of hardware coil compression for MRI, the pre-combination outputs are further linearly combined to obtain virtual outputs. As one example, an apparatus of coil compression for Magnetic Resonance Imaging (MRI) comprises: a plurality of hardware pre-combiners, each of the plurality of hardware pre-combiners is configured to combine outputs from coils in one of a plurality of sub-arrays, wherein the sub-arrays are obtained by grouping coils of an array which is configured for imaging a Region of Interest (ROI). As one example, in the apparatus of hardware coil compression for MRI, the coils in the array are grouped into the sub-arrays based on importance of each of the coils. As one example, in the apparatus of hardware coil compression for MRI, the importance of a coil is represented by the contribution of the output of the coil to the Signal-to-Noise Ratio (SNR) of the signal obtained by combining the outputs of the coils. As one example, in the apparatus of hardware coil compression for MRI, the coils are grouped into sub-arrays by: assigning coils with the highest importance into the sub-arrays, one coil for each sub-array; and repeating the assignment of the remaining coils until all coils are assigned. As one example, in the apparatus of hardware coil compression for MRI, the sub-arrays and pre-combination coefficients for the sub-arrays are determined by: constructing a channel conversion matrix M of n×n which converts signals s=(s1, s2, . . . , sn)Toutput from the coils of the array to conversion outputs s′=(s1′, s2′, . . . , sn′)T, s′=Ms, whereinTrepresents matrix transpose operation; selecting rows of the channel conversion matrix M corresponding to a number of conversion outputs with the highest Signal-to-Noise Ratios (SNRs); and optimizing the pre-combination coefficients or both the grouping and the pre-combination coefficients such that the pre-combination coefficients span a space which approaches the space spanned by all or the selected rows of M. As one example, in the apparatus of hardware coil compression for MRI, the channel conversion matrix is an optimal channel conversion matrix. As one example, in the apparatus of hardware coil compression for MRI, the pre-combination outputs are further linearly combined to obtain virtual outputs.
49,024
11321457
CROSS-REFERENCE TO RELATED APPLICATION This application is related to a U.S. patent application entitled “Data-Sampling Integrity Check using Gated Clock,” Ser. No. 16/571,255, filed on even date, whose disclosure is incorporated herein by reference. FIELD OF THE INVENTION The present invention relates generally to data security in electronic circuitry, and particularly to methods and systems for protection against fault injection attacks. BACKGROUND OF THE INVENTION Fault injection attacks are a family of techniques used for accessing, analyzing or extracting information from secure electronic circuitry, such as cryptographic circuitry. A fault injection attack typically involves causing a fault in the circuit, e.g., by physically contacting signal lines, by applying high-power laser or electromagnetic pulses, or by causing glitches on power supply or other external interfaces. The fault is expected to cause the circuit to output sensitive information, or otherwise assist the attacker in penetrating the circuit or the information it stores. Various techniques for detecting and/or mitigating fault injection attacks are known in the art. For example, U.S. Patent Application Publication 2009/0315603 describes a method and a circuit for detecting a disturbance of a state of at least one first flip-flop from a group of several first flip-flops of an electronic circuit. The respective outputs of the first flip-flops in the group are, independently from their functional purpose, combined to provide a signal and its inverse, triggering two second flip-flops having data inputs forced to a same state, the respective outputs of the second flip-flops being combined to provide the result of the detection. A pulse signal comprising a pulse at least for each triggering edge of one of the first flip-flops in the group initializes the second flip-flops. As another example, U.S. Pat. No. 7,977,965 describes a system and method for soft error detection in digital ICs. The system includes an observing circuit coupled to a latch, which circuit is capable of a response upon a state change of the latch. The system further includes synchronized clocking provided to the latch and to the observing circuit. For the latch, the clocking defines a window in time during which the latch is prevented from receiving data, and in a synchronized manner the clocking is enabling a response in the observing circuit. The clocking is synchronized in such a manner that the circuit is enabled for its response only inside the window when the latch is prevented from receiving data. U.S. Patent Application Publication 2005/0235179 describes a logic circuit comprising a logic module, which comprises a functional synchronous flip-flop receiving a functional result comprising several bits in parallel, and supplying a synchronous result. A module for checking the integrity of the functional flip-flop comprises a first coding block receiving the functional result and supplying a first code, a second coding block receiving the synchronous result and supplying a second code, a checking synchronous flip-flop receiving the first code and supplying a third code, and a comparator for comparing the second code with the third code and for supplying a first error signal. SUMMARY OF THE INVENTION An embodiment of the present invention that is described herein provides an electronic device including a combinational logic circuit, one or more functional state-sampling components, one or more protection state-sampling components, and protection logic. The combinational logic circuit has one or more outputs. The functional state-sampling components are configured to sample the respective outputs of the combinational logic circuit. The protection state-sampling components are associated respectively with the functional state-sampling components, each protection state-sampling component configured to sample a same output of the combinational logic circuit as the corresponding functional state-sampling component, but with a predefined time offset relative to the functional state-sampling component. The protection logic is configured to detect a discrepancy between the outputs sampled by the functional state-sampling components and the respective outputs sampled by the protection state-sampling components, and to initiate a responsive action in response to the discrepancy. In some embodiments, the electronic device further includes a delay element that is configured to delay an output of the combinational logic circuit so as to produce a delayed output, a functional state-sampling component is configured to sample one of the output and the delayed output, and a corresponding protection state-sampling component is configured to sample the other of the output and the delayed output. In other embodiments, the electronic device further includes a delay element that is configured to delay a clock signal so as to produce a delayed clock signal, a functional state-sampling component is configured to be clocked by one of the clock signal and the delayed clock signal, and a corresponding protection state-sampling component is configured to be clocked by the other of the clock signal and the delayed clock signal. In an embodiment, a functional state-sampling component and a corresponding protection state-sampling component include Flip-Flops (FFs). In another embodiment, a functional state-sampling component includes a first latch that drives a second latch, and a corresponding protection state-sampling component includes a third latch associated with the first latch. In yet another embodiment, the protection logic is configured to consolidate multiple discrepancies detected between two or more of the functional state-sampling components and two or more of the protection state-sampling components, and to initiate the responsive action in response to the consolidated discrepancies. In still another embodiment, the protection logic is configured to initiate the responsive action only when the detected discrepancy occurs during a predefined portion of a clock cycle. In a disclosed embodiment, a functional state-sampling component is configured to sample an output of the combinational logic circuit with a first threshold voltage, and a corresponding protection state-sampling component is configured to sample the same output of the combinational logic circuit with a second threshold voltage, higher than the first threshold voltage. There is additionally provided, in accordance with an embodiment of the present invention, a method for protecting an electronic device. The method includes sampling one or more outputs of a combinational logic circuit using one or more respective functional state-sampling components. The one or more outputs are also sampled using one or more protection state-sampling components that are associated respectively with the functional state-sampling component. Each protection state-sampling component samples a same output of the combinational logic circuit as the corresponding functional state-sampling component, but with a predefined time offset relative to the functional state-sampling component. A discrepancy between the outputs sampled by the functional state-sampling components and the respective outputs sampled by the protection state-sampling components is detected, and a responsive action is initiated in response to the discrepancy. There is also provided, in accordance with an embodiment of the present invention, an electronic device including clock generation circuitry, a combinational logic circuit, one or more functional state-sampling components, and protection logic. The clock generation circuitry is configured to generate a clock signal having a periodic clock cycle. The combinational logic circuit includes multiple internal nets and one or more outputs. The one or more functional state-sampling components are configured to sample the respective outputs of the combinational logic circuit periodically in accordance with the clock signal. The protection logic is configured to receive one or more signals from the internal nets or outputs of the combinational logic circuit, to detect, in one or more of the received signals, a signal instability that occurs during a predefined portion of the periodic clock cycle in which, in accordance with a design of the combinational logic circuit, the signals are expected to be stable, and to initiate a responsive action in response to the detected signal instability. In some embodiments, the protection logic is configured to receive a control signal, which is derived from the clock signal and defines the predefined portion of the clock cycle in which the signals are expected to be stable, and to detect, using the control signal, that the signal instability occurs during the predefined portion of the periodic clock cycle. In an embodiment, the protection logic is configured to generate a pulse in response to the detected signal instability, to drive a data input of a protection state-sampling component with the pulse, and to initiate the responsive action responsively to an output of the protection state-sampling component. In a disclosed embodiment, the protection logic is configured to generate a modified clock signal responsively to the detected signal instability, to drive a clock input of a protection state-sampling component with the modified clock signal, and to initiate the responsive action responsively to an output of the protection state-sampling component. In an example embodiment, the protection logic is configured to receive the signals from respective nets that are not on a critical timing path of the combinational logic circuit. There is further provided, in accordance with an embodiment of the present invention, a method for protecting a combinational logic circuit having multiple internal nets and one or more outputs, in which the outputs are sampled in accordance with a clock signal having a periodic clock cycle. The method includes receiving one or more signals from the internal nets or outputs of the combinational logic circuit. A detection is made, in one or more of the received signals, of a signal instability that occurs during a predefined portion of the periodic clock cycle in which, in accordance with a design of the combinational logic circuit, the signals are expected to be stable. A responsive action is initiated in response to the detected signal instability. The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
107,514
11455020
CROSS REFERENCE TO RELATED APPLICATION This application claim priority to Chinese Patent Application No. 201910169020.4, filed on Mar. 6, 2019, and titled COMPUTING DEVICE, APPARATUS FOR HOLDING POWER SUPPLY DEVICE, AND METHODS OF INSTALLING POWER SUPPLY DEVICE IN COMPUTING DEVICE; the content of which is hereby incorporated by reference herein in its entirety. FIELD OF THE INVENTION The present invention generally relates to power management for computing devices, and more particularly, to a computing device, apparatus for holding a power supply device, and methods of installing a power supply device in the computing device. BACKGROUND A computing device, such as a server, often requires a battery for backup purposes, such as to protect cache memory on Peripheral Component Interconnect (PCI) Redundant Array of Independent Disks (RAID) controllers. The battery is conventionally installed inside a server chassis, such as being clipped on the chassis wall or on air baffle. This is problematic in a number of aspects. For example, the conventional arrangement is unfavorable for heat dissipation, which degrades lifetime of the battery. It is also inconvenient for users to replace the battery because in doing so, they have to shut down the computing device, and open the cover, such as the chassis. As a result, replacement of the battery interrupts the normal operation of the computing device. Many users are intimidated by such a cumbersome task and instead simply doing nothing but wait until the battery is unable to function. SUMMARY The present invention provides a computing device, apparatus for holding a power supply device, and methods of installing a power supply device in the computing device to overcome one or more technical problems present in the conventional technology. According to one aspect of exemplary embodiments, there is provided an apparatus for holding a power supply device. The power supply device is operable to power a computing device. The apparatus comprises a container and at least one electrical contact disposed on the container. The container is configured to hold the power supply device and to be received in a receiving space defined by the computing device. The container, when received in the receiving space, is operable to be removed from the receiving space without necessity of opening a cover of the computing device. According to another aspect of exemplary embodiments, there is provided with a computing device. The computing device comprises a Redundant Array of Independent Disks (RAID) controller, a baseboard management controller (BMC) configured to communicate with the RAID controller, and a backplane. The backplane is configured to communicate with the RAID controller and the BMC and includes one or more connectors. The one or more connectors are operable to electrically contact one or more pins of an apparatus for holding a power supply device. The computing device further defines a receiving space configured to receive the apparatus. When the apparatus, with the power supply device, is received in the receiving space, status of the power supply device is readable by the BMC via the RAID controller. According to a yet further aspect of exemplary embodiments, there is provided with a method of installing a power supply device in a computing device. The method comprises providing an apparatus for holding the power supply device, the apparatus including a container and at least one electrical contact, and installing the apparatus into a receiving space defined by the computing device such that the at least one electrical contact electrically communicates with the computing device. The apparatus, computing device, and methods in accordance with exemplary embodiments improve over the existing technology in various aspects, such as being favorable to lifetime of the power supply device, convenience to monitor various status related to the power supply device (e.g. capacity, health status, etc.) directly on the front panel of the power supply device, and make replacement when necessary. Further, the apparatus in accordance with some exemplary embodiments are compatible with existing arrangement of computing devices. For example, the apparatus may be placed into a storage bay that is originally designed to hold one or more hard disks. As such, a battery pack, for example, may be held by the apparatus that is inserted into a hard disk slot of a server to power the server, which is technically advantageous on one hand and cost-effective on the other hand. For example, conventional systems include slots that are designed to receive one or more hard disks and none of them can hold a power supply device for powering a computing device, such as a computer server. Instead, the battery has to be disposed within the computer server, such as being installed inside the server chassis. In operation, under such unfavorable ventilation condition and also due to high workload of the server, temperature of the battery stays readily high and therefore lifetime of the battery is seriously compromised. Also, status of the battery is unknown to an external observer and replacement of the battery is cumbersome because one has to open the cover of the computer server. One or more of these issues have been overcome by the present implementations. For example, by means of the apparatus, a power supply device can be placed in a receiving space defined by the computing device. The position of the illustrative receiving space in accordance with present implementations is obviously much more favorable because it is not in a hot area of a computing device (i.e. not an area where heat is mostly generated) on one hand, and on the other hand, this position is also at least partly in air communication with surroundings, thereby facilitating heat dissipation. For the present implementations, it is also convenient for a user to install or replace a power supply device. For example, one may easily push the apparatus with the power supply device into a slot to complete the installation, or pull the apparatus out of the slot for replacement. In either scenario, one does not need to open a cover of the computing device as well as rearrange various cables. The present implementations thus save time and efforts, and also avoid damages to the computing device due to potential accidental operation during installation and replacement processes. Further, in conventional systems, users or operators are often unwilling to take action to replace battery. However, when capacity of the battery is below a certain value, there would be risks that the computing device may be shut down suddenly due to depletion of power, which likely result in data loss. Because of technical advantages of the present implementations, users are more willing to replace the power supply device for the computing device, which therefore alleviates risks of data loss. Further, due to the operation panel, various status related to the power supply device can be presented visually and/or audibly, which enables improved power management for the computing device More exemplary embodiments and technical effects will be discussed hereinafter.
239,995
11305517
FIELD The disclosure relates generally to relatively stiff interlayer materials for laminated thin glass structures and acoustic dampening thin glass laminate structures including such relatively stiff interlayer, which structures may be used in automotive glazing and other vehicle and architectural applications. BACKGROUND Glass laminates can be used as windows and glazing in architectural and vehicle or transportation applications, including automobiles, rolling stock, locomotive and airplanes. Glass laminates can also be used as glass panels in balustrades and stairs, and as decorative panels or covering for walls, columns, elevator cabs, kitchen appliances and other applications. As used herein, a glazing or a laminated glass structure is a transparent, semi-transparent, translucent or opaque part of a window, panel, wall, enclosure, sign or other structure. Common types of that glazing that are used in architectural and vehicle applications include clear and tinted laminated glass structures. Conventional automotive glazing constructions may consist of two plies of 2 mm soda lime glass (heat treated or annealed) with a polyvinyl butyral PVB interlayer. These laminate constructions have certain advantages, including, low cost, and a sufficient impact resistance for automotive and other applications. However, because of their limited impact resistance, these laminates usually have a poor behavior and a higher probability of breakage when getting struck by roadside stones, vandals and other impacts. In many vehicle applications, fuel economy is a function of vehicle weight. It is desirable, therefore, to reduce the weight of glazings for such applications without compromising their strength and sound-attenuating properties. In view of the foregoing, thinner, economical glazings or glass laminates that possess or exceed the durability, sound-damping and breakage performance properties associated with thicker, heavier glazings are desirable. No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinence of any cited documents. SUMMARY The present disclosure describes a new thin laminated glass structure for automotive glazing, architectural window and other applications. The new structure described herein includes two sheets of relatively thin chemically strengthened glass, such as Corning® Gorilla® Glass with composite interlayers that include a relatively stiff, relatively high modulus polymer layer and a relatively softer, lower modulus polymer layer. Such an interlayer can impart both desirable acoustic damping properties and rigidity, characterized by a sufficient degree of resistance to deflection or deformation to meet automotive and architectural specifications and standardized tests. Thin glass laminate mechanical properties depend on the properties of the interlayer to a greater degree than existing relatively thick soda lime glass laminates, because the interlayer comprises a much greater fraction of total laminate thickness for thin glass laminates than existing soda lime glass laminates. Properly engineered interlayers play a significant role in determining mechanical properties of thin glass laminates, such as its acoustic, optical, and rigidity properties. Acoustic damping of a laminated thin glass structure is primarily determined by shear modulus and loss factor of the polymer interlayer. When the interlayer is a large fraction of the total glass laminate thickness, then the bending rigidity (load deformation properties) of the laminated thin glass structure will be largely determined by the Young's modulus of the interlayer. Using multilayer interlayers, these properties can be adjusted independently in each layer in order to create a laminate having satisfactory rigidity and acoustic damping properties. One embodiment of the disclosure relates to a thin glass laminate structure having two glass sheets having a thickness of less than 1.5 mm; a composite interlayer between the two glass sheets comprising at least one relatively stiff polymer layer having a Young's modulus of 50 MPa or greater and a relatively soft polymer layer having a Young's modulus of less than 20 MPa. An additional embodiment of the disclosure relates to such a thin glass laminate structure having two of the relatively stiff polymer layers and the relatively soft polymer layer is located between the two relatively stiff polymer layers. According to some embodiments of the present disclosure, the relatively stiff polymer layers have a Young's modulus of about 100 MPa or greater, or in a range from about 100 MPa to about 1000 MPa. The relatively soft polymer layer has a Young's modulus of in a range from about 1 MPa to 10 MPa, or about 10 MPa or less, or in a range from about 1 MPa to 10 MPa. In other embodiments hereof, the relatively stiff polymer layer has a Young's modulus that is about 10× the Young's modulus of the relatively soft polymer layer, or about 100× the Young's modulus of the relatively soft polymer layer. In other embodiments hereof, the composite interlayer may makes up a majority of the total glass laminate thickness. The composite interlayer may make up about 57% of the total glass laminate thickness. The thin glass laminate structure as in claim1, wherein the polymer layers are formed of a thermoplastic polymer selected from the group consisting of PVBm, ionomer, PET, SentryGlas® from DuPont, EVA, and TPU. In other embodiments hereof, the thin glass sheets each have a thickness in a range from about 0.5 mm to about 1.5 mm. The glass sheets may additionally be chemically strengthened. Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings. It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
91,741
11335907
TECHNICAL FIELD AND BACKGROUND This invention relates to metal oxide compounds and to preparation methods thereof. More specifically, this invention relates to doped metal oxide insertion compounds for use in lithium and lithium-ion batteries. In recent years, secondary lithium ion batteries superseded other battery systems due to their relatively high gravimetric and volumetric energy density. These features are particularly desirable to accompany the miniaturization of portable electronics (such as laptops, smartphones or cameras . . . ) and foreseen as suitable for electrical vehicles (HEV or EV) with long operational range. The latter application requires batteries able to sustain good charge-discharge cycle life under real operating conditions, namely several thousand of cycles at over an extended temperature range and high rate of discharge. The majority of rechargeable lithium ion batteries use anode materials which do not contain lithium metal, for example carbon and/or metal alloy (such as silicon alloys, tin alloys . . . ) containing materials. The cathode must then contain lithium which can be reversibly extracted during charge and inserted during discharge in order to deliver good cycle life. Most promising materials as cathodes for rechargeable lithium ion batteries are lithium transition metal oxides with a layered structure derived from α-NaFeO2(space group R-3m). Since the introduction of the first Li-ion battery in 1990 by Sony into consumer electronics; LiCoO2is still the most commonly used cathode materials thanks to its good cycle life, very high pressed density—commonly exceeding 3.7 g/cm3—and large specific capacity of about 140 mAh/g at 4.2V against graphite anodes. LiCoO2is however less favored by its very high and fluctuating price and relative scarcity of cobalt, which limits its use for the emerging EV mass-market. Alternative cathode active materials such as LiNiO2have been investigated due to larger availability and lower price of nickel. LiNiO2also features a higher specific capacity when compared to LiCoO2; typically exceeding 200 mAh/g at 4.2V, due to the lower potential of the transition metal oxide redox-couple. LiNiO2has two shortcomings:(i) LiNiO2raises safety concerns because it has a sharper exothermic reaction with electrolyte at a lower temperature than LiCoO2, as evidenced by DSC (see Dahn et al, Solid State Ionics, 69, 265 (1994)), ultimately leading to thermal runaway and catastrophic failure of the battery. Accordingly, pure LiNiO2is generally not selected for use in commercial lithium-ion batteries.(ii) Higher specific capacity at a given cell voltage means that larger amounts of Li can be reversibly de-intercalated per unit of LiNiO2, leading to significant changes of the crystal volume upon charge and discharge cycling. Such repeated large variations of the crystal volume can lead to cathode materials' primary and secondary particles not being able to sustain such stress. Particle fracture and loss of electrical contact may occur within the electrode and this ultimately impairs the cycle life of the Li-ion battery. For improving the abovementioned issues, especially the ones related to safety for LiNiO2, various doping elements have been introduced, for example electrochemically inactive ions such as Mg2+, Ti4+and Al3+(see for example U.S. Pat. No. 6,794,085 B2). Such a doping strategy however frequently results in a decrease of specific capacity and lower power in real cells, and is not preferred for the end application. A more promising route is Co and Mn substitution of Ni (as disclosed in US 2003/0022063 A1) leading to a so called NMC-type composition with the idealized general formula Li1+x[Ni1−a−bMnaCob]1−xO2. This idealized formula doesn't expressly take into account cation mixing, which is the ability of a metal, generally nickel in divalent state, to occupy sites in the lithium layers. It is generally admitted that Mn is tetravalent, Co trivalent and Ni bears a 2+/3+ charge. It is trivial to show that the fraction of nickel ions being effectively Ni3+is: (1+x1-x⁢2⁢⁢a-b)1-a-b where 1+x1-x is referred to as the lithium to metal molar ratio. The Ni3+molar content is therefore equal to: (1+x1-x-2⁢a-b)×(1-x). When Li:M is close to 1, meaning that for x˜0 (or −0.05≤x≤0.05), the Ni3+molar content is approximates 1−2a−b. This last expression will be considered to calculate the effective Ni3+content in the following examples with the convention that “a” represents tetravalent metal cations (examples include—but are not limited to—Mn4+, Zr4+or Ti4+), and b represents trivalent metal cations (examples include—but are not limited to—Co3+and Al3+). Likewise, the calculation of effective Ni3+fraction can be extended to take into account divalent metal cation doping such as Mg2+and Ca2+; one can show that the content is given by (1−2a−b)/(1−a−b−c) where c represents the molar content of divalent cations. In these NMC materials, the specific capacity, hence the amount of Li reversibly de-intercalating from the materials, increases when the effective Ni3+content increases. For example, popular compositions such as 111 (111 standing for the molar ratio of Ni:Mn:Co, with ˜0.1 mole Ni3+per mole of product), 532 (˜0.2 mole Ni3+), 622 (˜0.4 mole Ni3+) and 811 (˜0.7 mole Ni3+) typically have a specific discharge capacity of 150, 160, 170 and 190 mAh/g, respectively, when cycled between 4.2 and 2.7V against a graphite anode. More lithium ions are then reversibly extracted from the materials, resulting in a higher particle strain when the effective Ni3+content is increased. Strain ultimately will lead to particle fracture and electrode degradation, hence accelerating the rate of capacity fading and impairing the cycle life of the cell. In addition, such particle fracture creates new exposed surfaces which will eventually accelerate side reactions on the cathode, namely electrolyte oxidation, and further reduce the cycle life of the battery. Such issues become more critical for systems requiring a higher power output: typically modern EV applications require operating C-rates superior to 1C and even up to 5C (1C=1 h and 5C=12 mins to complete full battery charging or discharging). Cathode materials must be able to accommodate strain generated by volume change of the unit cell due to insertion and extraction of Li ions in a short amount of time. Clearly, it is difficult to design materials being both able to deliver a large specific capacity (i.e. having high effective Ni3+) and able to accommodate larger strain, especially at higher power. It is the object of the present invention to provide such materials. The volumetric energy density (in Wh/L) of the Li-ion battery is not only influenced by the specific discharge capacity (in mAh/g) of both the anode and cathode electrodes, but also by the gravimetric density of the electrodes (in g/cm3). On the cathode side, the electrode gravimetric density is determined by:(i) the intrinsic properties of the cathode materials such as tap density (TD) or pressed density, and,(ii) the electrode production process, for example during the calendaring or pressing step to increase electrode density. In such a step, an uniaxial stress is applied to the electrode in order to reach the desired level of density (or porosity) to achieve a high volumetric energy. The present invention aims at providing a cathode material able to sustain such stress, id est a material with secondary particles that do not break under pressure during the manufacturing process and that are able to sustain repeated charge-discharge cycles without breaking. In this respect, US 2004/023113 A1 is concerned with the determination of the compressed density and compressive strength of cathode powders; the examples being mostly about LiCoO2. In the determination of the compressed density, the power is compressed under a pressure of 29.4 MPa. Such pressure is about 10-fold lower in comparison to the present state of the art requirements of electrode making and is not representative of the behavior of cathode materials during such process. It is known that the particular morphology of LiCoO2, with very dense, non-agglomerated potato-shaped particles, can sustain very high compression stress without breaking. Composite lithium nickel manganese cobalt oxides (NMC) have a very different morphology of secondary particles made of agglomeration of primary particles. Such secondary particles are more brittle due to the occurrence of inter-particle grain boundaries which are preferred fracture points. Impurities such as un-reacted alkali salts (hydroxides, carbonates, sulfates . . . ) accumulate at the grain boundaries. When the full cell is operated at potentials above 4V, these unreacted salts decompose and dissolve in the electrolyte, leaving the grain boundary opened and unfilled, which dramatically impairs the mechanical resistance of the secondary particles. Materials comprising an excessive amount of such Li-salt impurities demonstrate a lower resistance to mechanical stress resulting from electrode processing, and have an inferior tolerance to accommodate strain resulting for Li insertion and extraction when operated in a battery at high power (=at a high discharge C-rate). It is commonly accepted that the higher the effective Ni3+content, the more impurities, primarily LiOH and Li2CO3, accumulate at the grain boundaries, further increasing the propensity of secondary particles to break. US 2009/0314985 A1 describes the compressive strength of cathode powders and introduces the concept that the D10 value of the particle size distribution should changes by no more than 1 μm after compression of the powder under 200 MPa. Such criterion fails to properly describe the behavior of materials having lower D10 values; especially when D10<1 μm. The only example describes the behavior of a D50=10 μm NMC 111 with +/−5 mol % of Ni3+. Because of its low effective Ni3+content NMC 111 is one of the less brittle NMC materials. Materials having a larger effective Ni3+content—and a larger specific capacity—while keeping relatively low secondary particle brittleness are desirable for modern applications. In addition, the manufacturing process disclosed in US 2009/0314985 A1 is not realistic for mass production: it is for example described to use oxygen gas streams and multiple step firing resulting in both high cost and low throughput. In addition, no mention is made on the cycle life improvement of cathode materials featuring an improved hardness strength. SUMMARY Viewed from a first aspect, the invention can provide a powderous positive electrode material for a lithium secondary battery, the material having the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z; M being either one or more elements of the group Mn, Zr and Ti, M′ being either one or more elements of the group Al, B and Co, M″ being a dopant different from M and M′, x, a, b and c being expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05; and wherein the powderous material is characterized by having a BET value≤0.37 m2/g, a Dmax<50 μm, and wherein the powderous material is characterized by having a hardness strength index (HSI)ΔΓ(P) value of no more than 100%+(1−2a−b)×160% for P=200 MPa, wherein Δ⁢⁢Γ⁡(P)=ΓP⁡(D⁢1⁢0P=0)-Γ0⁡(D⁢1⁢0P=0)Γ0⁡(D⁢1⁢0P=0)×100⁢⁢(in⁢⁢%) with D10P=0being the D10 value of the unconstrained powder (P=0 MPa), Γ0(D10P=0) being the cumulative volume particle size distribution of the unconstrained powder at D10P=0, and ΓP(D10P=0) being the cumulative volume particle size distribution at D10P=0of the pressed samples with P being expressed in MPa. In an embodiment, M=Mn and M′ is either one of Al and Co. In another embodiment Dmax<45 μm. From the experiments below it is clear that a value for BET of less than 0.20 m2/g is not obtained. In a more particular embodiment, 1−a−b≥0.5 and 1+x<1.000. Also, the material may comprise up to 2 mol % of W, Mo, Nb, Zr, or a rare earth element. In one embodiment, the material comprises a second phase LiNx′Oy′with 0<x′<1 and 0<y′<2, where N is either one or more of W, Mo, Nb, Zr and rare earth elements. Authors speculate that materials modified with proper additives or dopants can feature enhanced hardness strength and also an improved cycle life. This is for example the case of additives or dopants T such as W, Mo, Nb, Zr, or rare earth elements. Such T elements have the property to alloy with Li (for example Li2ZrO3, (Li2O)n(WO3) with n=1, 2, 3; or Li3NbO4) and sometimes also with M=Co, Ni and Mn as in Li4MWO6compounds. Such T-containing alloys are stable and accumulate at the grain boundary of particles; it results in a stabilization of the grain boundary offering better mechanical resistance to stress and during repeated electrochemical cycling. The material may have a Al2O3surface coating, resulting in an alumina content greater than 1000 ppm, or even greater than 2000 ppm. The cathode materials according to the invention may have less than 3000 μm F. In one embodiment, the material may have a S wt % content lower than 0.5 wt %, or lower than 0.25 wt %, or even lower than 0.15 wt %. In various embodiments the following features are provided: ΔΓ(P)≤150+(1−2a−b)×160% forP=300 MPa, or ΔΓ(P)≤125%+(1−2a−b)×100% forP=300 MPa, or ΔΓ(P)≤180% forP=300 MPa, or ΔΓ(P)≤140% forP=300 MPa, or ΔΓ(P)≤100% forP=300 MPa. For the powderous positive electrode material according to the inventionthey may have a BET value after wash>1 m2/g, or also greater than 1.5 m2/g,they may have a pressed density greater than 3.0 g/cm3, or greater than 3.2 g/cm3, or also greater than 3.4 g/cm3.they may have a soluble base content (Li2CO3+LiOH)<0.8 wt %, or Li2CO3wt %+LiOH wt %<0.5 wt %, or also Li2CO3wt %+LiOH wt %<0.3 wt %.they may comprise secondary particles substantially free from porosities larger than 20 nm, or even free from porosities larger than 10 nm, as is illustrated inFIG. 9-10.they may comprise secondary particles comprising less than 20 voids larger than 20 nm or even less than 10 voids larger than 20 nm, as is illustrated inFIG. 9-10.they may have a FWHM value of the (104) peak as defined by the pseudo hexagonal lattice with R-3m space group which is greater than 0.125 2-theta degrees, or greater than 0.140 2-theta degrees, or even greater than 0.150 2-theta degrees.they may have a FWHM value of the (015) peak as defined by the pseudo hexagonal lattice with R-3m space group which is greater than 0.125 2-theta degrees, or greater than 0.140 2-theta degrees, or even greater than 0.150 2-theta degrees.they may have a FWHM value of the (113) peak as defined by the pseudo hexagonal lattice with R-3m space group which is greater than 0.16 2-theta degrees, or greater than 0.18 2-theta degrees, or even greater than 0.20 2-theta degrees. The cathode materials according to the invention may have a 0.1C Efad.≤(1−2a−b)×10%, or a 0.1C Efad.≤(1−2a−b)×5%, or a 1C Efad.≤(1−2a−b)×20% (see in the detailed description, part a) and c) for the electrochemical testing experiments). The material may cycle for at least 1000 cycles, or even at least 1500 cycles with a retained capacity above 80% at room temperature in a full cell. The material may also cycle for at least 900 cycles, or even at least 1500 cycles with a retained capacity above 80% at 45° C. in a full cell. It is clear that further product embodiments according to the invention may be provided by combining features that are covered by the different product embodiments described before. Viewed from a second aspect, the invention may provide a powderous positive electrode material incorporated in an electrode and having an electrode density greater than 3.0+((1−2a−b)/2) g/cm3. Viewed from a third aspect, the invention may provide a lithium secondary battery comprising a positive electrode active material comprising particles of lithium-transition metal oxide; a Li-free negative electrode, a separator interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte, wherein the particles of the positive electrode active material have a ΔΓ(P) values which is no more than (1−2a−b)×180% for P=300 MPa, or no more than 2(1−x)(1−a−b)×140% for 300 MPa, or even less than (1−a−b)×100% at 300 MPa. In an embodiment the material has a FWHM of the (104) peak greater than 0.16 2-theta and demonstrates at least 1000 cycles, or even 1500 cycles with a retained capacity above 80% at room temperature. In an embodiment the material has a FWHM of the (104) peak greater than 0.16 2-theta and demonstrates at least 900 cycles with a retained capacity above 80% at 45° C. Viewed from a fourth aspect, the invention may provide a method for preparing a powderous positive electrode material according to the invention, the material having the general formula Li1+x[N1−a−b−cMaM′bM″c]1−xO2−z, and the method comprising the steps of:providing a mixture of one or more precursor materials comprising either one or more of Ni, M, M′ and M″, and a precursor material comprising Li,sintering the mixture at a temperature T expressed in ° C., with (945−(248*(1−2a−b)≤T≤(985−(248*(1−2a−b)), thereby obtaining agglomerated particles, andpulverizing the agglomerated particles whereby a powder is obtained having a BET≤0.37 m2/g and a Dmax<50 μm. The Dmaxor D100 value is the maximum particle size of the obtained powder. In an embodiment Dmax<45 μm. From the experiments below it is clear that a value for BET of less than 0.20 m2/g is not obtained. It should be mentioned here that US2011/193013 describes a powderous lithium transition metal oxide having a layered crystal structure Li1+aM1−aO2+bM′kSmwith −0.03<a<0.06, b≅0, 0≤m≤0.6 being expressed in mol %, M being a transition metal compound, consisting of at least 95% of either one or more elements of the group Ni, Mn, Co and Ti; M′ being present on the surface of the powderous oxide, and consisting of either one or more elements of the group Ca, Sr, Y, La, Ce and Zr. The products having a BET value 0.37 m2/g have been fired at a too high temperature, causing an increase in porosity that leads to a decrease in hardness. Also, US2006/233696 describes a powderous lithium transition metal oxide with the composition LixMyO2and prepared by solid state reaction in air from a mixed transition metal precursor and Li2CO3, the powder being practically free of Li2CO3impurity. In the formula M=M′1-kAk, where M′=Ni1−a−b(Ni1/2Mn1/2)aCobon condition of 0.65≤a+b≤0.85 and 0.1≤b≤0.4; A is a dopant; and 0≤k≤0.05; and x+y=2 on condition of 0.95≤x≤1.05. The BET surface area of the prepared products is too high, causing a decrease in hardness. Finally, in US2010/112447 the positive electrode active material includes a composite oxide containing lithium and Ni, Mn, and Co. The molar ratio of Ni is from 0.45 to 0.65, and the molar ratio of Mn is from 0.15 to 0.35. The positive electrode active material has a pressed density under a compression of 60 MPa of 3.3 g/cm3or more and 4.3 g/cm3or less. The positive electrode active material has a volume resistivity under a compression of 60 MPa of 100 Ω·cm or more and less than 1000 Ω·cm. The disclosed material however have a (Ni+Mn+Co):Li ratio of 1:1.03 or more, or 1:0.95. This ratio is either too high or too low to allow to obtain products with the desired hardness.
121,871
11532172
FIELD OF THE DISCLOSURE The described technology generally relates to computer technology and, more specifically, to machine learning. BACKGROUND Modern video games commonly emphasize realism through graphically impressive representations of characters, environments, scenarios, and so on. While an example video game may be set in a fantastical environment, and include fictional characters, the example video game may still include lifelike renditions of the fantastical environment and characters. To create such environments and characters, video game modelers and designers may spend substantial time creating wire-frames, meshes, textures, and so on. Additionally, a three-dimensional model of a character may be animated according to specific scenarios or stories presented within the electronic game. To animate the three-dimensional model, video game designers and modelers may have to ensure proper and realistic movement of the underlying skeletal model. Another example video game may be a sports game, for example hockey, baseball, basketball, football, curling, and so on. In such a video game, the characters may be designed to accurately represent their real-world counterparts. For example, a hockey game may include accurate representations of all real-world professional hockey players. These video game hockey characters may be designed, through substantial effort, to move and act in realistic ways. As an example, motion capture may be utilized to inform movement of the video game hockey characters. Additionally, substantial time and resources may be spent ensuring that the video game hockey characters utilize authentic real-world strategies to play the hockey game. Indeed, determining how real-world players move around a hockey rink, pass to other players, take shots, and so on, may require a substantial time investment. Translating this information into the video game may similarly require complex implementation of rules that enable simulation of artificial intelligence. As users of the video game learn these rules, the artificial intelligence may seem less impressive. Thus, video game designers may constantly be required to tweak and update these rules. SUMMARY OF THE DISCLOSURE Described herein are systems and methods for machine learning techniques utilized to improve the functioning of video games. As will be described, electronic gameplay from video games (e.g., sports video games) may be utilized to train machine learning models. Example electronic gameplay may include images generated by a video game along with label or annotation information describing features to be learned. A system implementing the trained machine learning models may obtain images of real-world gameplay, and may identify or extract the learned features from the real-world gameplay. As an example, the machine learning models may be trained to identify aspects of a video game hockey player, such as arms, legs, hockey stick, skates, and so on. In this example, the system may obtain images of a real-world hockey game, and may similarly identify a real-world hockey player's arms, legs, hockey stick, skates, and so on. As will be described, this identified information may be utilized to improve animation or motion of video game hockey players. Thus, due to the techniques described herein, machine learning models trained via video game data may be able to properly label, classify, and/or annotate real-world images. Obtaining sufficient training data to effectively train machine learning models can present monumental technical challenges. To address this issue, publicly accessible databases were created with images of different objects along with labels for the objects. While these publicly accessible databases may be utilized to broadly train machine learning models, these databases generally do not include sufficient images to enable highly accurate models. In general, such publicly accessible databases are utilized to test machine learning models for accuracy. Additionally, these databases include broad spectrums of objects, but lack the enormous number of samples required for specificity in a particular area. With respect to the above example of a hockey game, these databases are ill equipped to train machine learning models to learn player specifics, player habits or maneuvers, ice hockey rink specifics, information regarding how television cameras are operated (e.g., camera angles or tracking of players or action), and so on. In addition to publicly accessible databases, another example scheme to obtain training data may include obtaining images or video of real-world sports and utilizing the obtained images or video to train machine learning models. For example, users may obtain broadcast video of hockey games, and utilize the broadcast video to train machine learning to learn specifics of hockey games. In this example scheme, the obtained broadcast video will require labels or annotations for features being learned. Since these labels or annotations will be manually assigned by users—as automatically assigning the labels would require an already learned model—this scheme can present a massive, and inefficient, burden on the users. Thus, the techniques described herein can utilize the high fidelity and realism afforded by video games to automatically generate training data. As will be described, video games may be augmented to automatically generate label or annotation information. For example, the video game engine may be adjusted to output specific information associated with rendered video game images. With respect to the above-described example of learning how hockey players move their hockey sticks, video game images of hockey players moving their sticks may be generated along with information describing the particulars of the hockey stick (e.g., which pixels correspond to the hockey stick, positional or directional information, and so on). Therefore, machine learning models may be trained to recognize disparate features from video games. Real-world images of hockey games may then be ingested, and useful information from the real-world images may be extracted via the trained machine learning models. For example, the useful information may include movement of hockey sticks. Since this information is being extracted from real-world professional hockey players, the information may be utilized to improve how video game hockey players use their sticks (e.g., how the video game players use sticks to pass, shoot goals, guard, and so on). As will be described, the real-world images may be automatically adjusted prior to ingestion to ensure that they adhere closely to the video game images utilized to train the machine learning models. As will be described below, the trained machine learning models can be utilized to extract useful features associated with real-world gameplay. For example, a system described herein can utilize trained machine learning models to extract realistic animation and movement information of real-world players. As another example, the system can learn how real-world cameras are operated to capture a real-world sports game. For instance, the system can learn how human camera operators track real-world gameplay action. This extracted and learned information may then be utilized or imported into video games. Thus, the training machine learning models can dramatically simplify various aspects of video games including artificial intelligence of characters, realistic animation and movement of characters, vantage points and viewpoints of electronic gameplay which are to be shown to users, and so on. Optionally, learned information may be automatically imported into video games to improve the functioning of the video games. For example, user experience can be improved, technical ability or accuracy can be improved, and so on. As an example, animation of a particular real-world hockey player may be extracted from footage of a hockey game. Example animation can include animation illustrating a game winning shot or celebratory dance performed after the game winning shot. Via the techniques described herein, the extracted animation may be provided to users of a hockey video game the following day. For example, the animation may be downloadable content. The extracted animation may describe skeletal movement of the real-world hockey player, and this skeletal movement may be applied to a video game version of the real-world hockey player. In this way, the real-world hockey player's movement may be translated onto the video game version of the player. The systems and methods described herein therefore improve the functioning of the computer and address technological problems. Prior example systems have generally relied on manual generation of training data, for example manual labeling of specific features to be learned. Additionally, some example systems may create training data by adjusting existing training data. As an example, these systems may shift locations of features to be learned within images via one or more pixels. In this way, a set of training data may be expanded. However, the above-described example systems are limited in the training data available to them without large undertakings by users to manually label or create new training data. As will be described in more detail, video game data, or other realistic animation or computer graphics information, may be utilized as training data. With respect to video game data, when a video game generates images for presentation on a display, the video game may already have information describing all features present within the generated images. Thus, this information may be opportunistically utilized as labels or annotations for specific features being learned. Accordingly, in various embodiments, large amounts of data are automatically and dynamically calculated interactively in response to user inputs, and the calculated data can be efficiently and compactly presented to a user by the system. Thus, in some embodiments, the user interfaces described herein are more efficient as compared to previous user interfaces in which data is not dynamically updated and compactly and efficiently presented to the user in response to interactive inputs. Further, as described herein, the system may be configured and/or designed to generate user interface data useable for rendering the various interactive user interfaces described. The user interface data may be used by the system, and/or another computer system, device, and/or software program (for example, a browser program), to render the interactive user interfaces. The interactive user interfaces may be displayed on, for example, electronic displays (including, for example, touch-enabled displays). Various aspects of the novel systems, apparatuses, and methods are described more fully hereinafter with reference to the accompanying drawings. Aspects of this disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the novel systems, apparatuses, and methods disclosed herein, whether implemented independently of or combined with any other aspect. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope is intended to encompass such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects set forth herein. It should be understood that any aspect disclosed herein may be embodied by one or more elements of a claim. Although particular aspects are described herein, many variations and permutations of these aspects fall within the scope of the disclosure. Although some benefits and advantages of the preferred aspects are mentioned, the scope of the disclosure is not intended to be limited to particular benefits, uses, or objectives. Rather, aspects of the disclosure are intended to be broadly applicable to any systems and/or devices that could benefit from universal facial expression. The detailed description and drawings are merely illustrative of the disclosure rather than limiting, the scope of the disclosure being defined by the appended claims and equivalents thereof. In various embodiments, systems and/or computer systems are disclosed that comprise computer readable storage media having program instructions embodied therewith, and one or more processors configured to execute the program instructions to cause the one or more processors to perform operations comprising one or more aspects of the above- and/or below-described embodiments (including one or more aspects of the appended claims). In various embodiments, computer-implemented methods are disclosed in which, by one or more processors executing program instructions, one or more aspects of the above- and/or below-described embodiments (including one or more aspects of the appended claims) are implemented and/or performed. In various embodiments, computer program products comprising computer readable storage media are disclosed, wherein the computer readable storage media have program instructions embodied therewith, the program instructions executable by one or more processors to cause the one or more processors to perform operations comprising one or more aspects of the above- and/or below-described embodiments (including one or more aspects of the appended claims).
316,499
11233337
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit under 35 U.S.C. § 119(a) of Korean Patent Application No. 10-2018-0025269 filed on Mar. 2, 2018, and Korean Patent Application No. 10-2018-0072739 filed on Jun. 25, 2018 in the Korean Intellectual Property Office, the entire disclosures of which are incorporated herein by reference for all purposes. BACKGROUND 1. Field The following description relates to an antenna apparatus. 2. Description of Related Art Data traffic of mobile communications is rapidly increasing, and technological development is underway to support the transmission of the increased data in real time in wireless networks. For example, the contents of internet of things (IoT) based data, augmented reality (AR), virtual reality (VR), live VR/AR combined with SNS, autonomous navigation, applications such as Sync View (real-time video transmissions of users using ultra-small cameras) require communications (e.g., 5G communications, mmWave communications, etc.) supporting the transmission and reception of large amounts of data. Recently, research is being conducted in millimeter wave (mmWave) communications, including 5thgeneration (5G) communications, and the commercialization/standardization of an antenna apparatus smoothly realizing such communications. Since RF signals in high frequency bands (e.g., 24 GHz, 28 GHz, 36 GHz, 39 GHz, 60 GHz, etc.) are easily absorbed and lost in the course of the transmission thereof, the quality of communications may be dramatically reduced. Therefore, antennas for communications in high frequency bands may require different approaches from those of conventional antenna technology, and a separate approach may require further special technologies, such as separate power amplifiers for securing antenna gain, integrating an antenna and RFIC, and securing effective isotropic radiated power (EIRP), and the like. SUMMARY This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. According to an aspect, there is disclosed an antenna apparatus including patch antennas arranged in an N×1 array, first feed vias connected to a point offset, in a first direction, from a center of each of the patch antennas, and through which an RF signal of a first phase passes, second feed vias connected to a point offset, in a second direction, from a center of each of the patch antennas, and through which the RF signal of the first phase passes, third feed vias connected to a point offset, in a third direction, from a center of each of the patch antennas, and through which an RF signal of a second phase, different from the first phase, passes, and fourth feed vias connected to a point offset, in a fourth direction, from a center of each of the patch antennas, and through which the RF signal of the second phase passes, wherein a line extending between the point in the first direction and the point in the second direction is oblique to a direction of an array of the patch antennas, and a line extending between the point in the third direction and the point in the fourth direction is oblique to the direction of the array of the patch antennas. A transmitted RF signal of the patch antennas may be transferred from the first to fourth feed vias, and a received RF signal of the patch antennas is transferred to the first to fourth feed vias. The second phase may be different from the first phase by 180 degrees. Each of the patch antennas may be quadrangular, and the first, second, third, and fourth directions may be directions towards different sides of a quadrangle from the center of the quadrangle. At least one of the patch antennas may include first slots with the point of the first feed vias being located between the first slots, second slots with the point of the second feed vias being located between the second slots, third slots with the point of the third feed vias being located between the third slots, and fourth slots with the point of the fourth feed vias being located between the fourth slots. The antenna may include an upper coupling patches spaced apart from the patch antennas and being arranged in another N×1 array. The antenna may include wiring vias with an end being electrically connected to the IC, first branch patterns with an end being electrically connected to the wiring vias, respectively, and being configured to branch the RF signal of the first phase to be transferred to the first and second feed vias, and second branch patterns with an end being electrically connected to the wiring vias, respectively, and being configured to branch the RF signals of the second phase to be transferred to the third and fourth feed vias. Each of the second branch patterns may have an electrical length different from that of each of the first branch patterns. The antenna may include feed lines with an end being electrically connected to the first, second, third, and fourth feed vias, respectively, wiring vias with an end being electrically connected to the f feed lines, respectively, and an IC electrically connected to another end of the wiring vias. The antenna may include second wiring vias with an end being electrically connected to the IC, second feed lines with an end being electrically connected to the second wiring vias, respectively, and end-fire antennas electrically connected to one or two of the second feed lines, respectively. The antenna may include ground layers disposed above and below a position of the feed lines, and wherein the feed lines and second feed lines may be disposed on a same level. A number of the feed lines may be 4N, a number of the second feed lines may be M, wherein M may be greater than N, and less than 2N. N may be a multiple of 3, a number of the end-fire antennas may be N, M may be a multiple of four. The end-fire antennas may be arranged in parallel with the patch antennas in another N×1 array, an end-fire antenna electrically connected to two of the second feed lines among the end-fire antennas may be more closely centered than an end-fire antenna electrically connected to only one of the second feed lines. The antenna may include a ground layer disposed in a position above or below a position of the feed lines, and wherein an end-fire antenna, electrically connected to only one of the second feed lines among the end-fire antennas, may be electrically connected to the ground layer. A line extending between the point in the first direction and the point in the third direction may be parallel to a direction of an array of the patch antennas, and a line extending between the point in the second direction and the point in the fourth direction may be perpendicular to the direction of the array of the patch antennas. The first, second, third, and fourth vias may be positioned substantially adjacent to the edge of the quadrangle. Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
20,194
11388865
FIELD OF THE INVENTION The present concept relates to methods and devices for removing stumps and more particularly relates to rotating auger devices used for removing stumps. BACKGROUND OF THE INVENTION The conventional stump removal tool is often referred to as a stump grinder. An example of the type of equipment which is generally accepted and used in the industry at this time is depicted in U.S. Pat. No. 5,660,217, inventor Michael C. Nissley titled Stump Grinder which was issued on Aug. 26, 1997. This type of grinder uses a grinding wheel with carbides or hardened steel attached around the outer periphery. The grinding wheel rotates about a horizontal axis and the carbides make contact with the stump thereby grinding away at the wood. The grinding wheel is passed back and forth along the face of the stump thereby grinding more and more of the stump until eventually the entire stump has been chipped away. This process can take anywhere from 10 minutes to over an hour depending upon the size of the stump and the wood species. The traditional style stump grinder tends to be labour intensive to operate and involves potential hazards due to the speed of rotation of the grinding wheel. For example chips are released and discharged in all directions. Additionally the operator is never certain when he may hit resulting in potential kickback of the machine. There have been some attempts to develop a stump grinder which rotates not about a horizontal axis but rather about a vertical axis151however none of the designs to date have found market acceptance due to their inability to efficiently and effectively remove the stump. One example of a stump grinder which rotates about a vertical axis is shown and depicted in U.S. Pat. No. 5,360,041 inventor H. J. Stevens, under the title Stump Grinder issued on Nov. 1, 1994. Unfortunately there are a number of drawbacks including slow removal rates, incomplete removal, very high maintenance costs, and lack of efficiency of these devices in effectively removing stumps in a timely and efficient manner. Therefore there is a need for a stump remover which safely and efficiently removes stumps without the inherent inefficiencies and dangers of the current technology. SUMMARY OF THE INVENTION The present concept a stump auger for cutting and destroying a tree stump, the stump auger includes:a) a main shaft connected at a top end to a drive mechanism for turning the shaft about a vertical axis;b) the main shaft connected at a bottom end to a cone top, wherein the cone is part of the main shaft;c) the cone including a spiral thread extending about the outer surface of the cone from the cone top to the cone bottom;d) the stump auger further includes at least two boring bars connected to the main shaft, each boring bar includes at least two third blades includes a blade edge on a front face for shaving, grinding and chipping the tree stump as the stump auger is rotated about the vertical axis and penetrates the tree stump;e) wherein each third blade includes a planar bottom surface spaced from a planar top surface, an inner face spaced from an outer face, the front face spaced from a back face, and wherein the outer face of the first third blade abuts at least partially with the inner face of the second third blade such that the bottom surface of the first third blade lies along a first plane A and the bottom surface of the second third blade lies along a second plane B such that plane B is a distance D vertically higher along the vertical z-axis, and wherein successive third blades lie along successive planes each higher along the vertical z-axis.f) wherein the outer face and inner face of each third blade are rigidly connected together. Preferably wherein the cone thread has a pitch selected to fall between ½ and 2 inches per revolution. Preferably wherein the cone thread has a pitch selected to fall between ¾ and 1½ inches per revolution. Preferably wherein the third blades are oriented parallel along a bar axis having a bar angle theta selected to fall between 10 and 30 degrees relative to horizontal. Preferably wherein the third blades are stepped at an offset of ¼ to ¾ a thickness T of the third blade. Preferably wherein the third blades are stepped at an offset of ½ a thickness T of the third blade. Preferably wherein the third blades include a top surface, a bottom surface and a chamfer terminating at the blade edge, the bottom surface of the third blades tilted at a third blade angle gamma, wherein gamma ranges between 5 and 15 degrees relative the horizontal. Preferably wherein blade angle gamma preferably oriented at substantially 10 degrees. Preferably further including fourth blades attached to the outer end of the boring bar, fourth blades include a blade edge mounted substantially vertically. Preferably wherein the fourth blade is attached at one end to outer end of the boring bar and at the other end to a strut, the strut for stabilizing the boring bar. Preferably wherein the strut attached at one end to fourth blade and at the other end to the main shaft. Preferably wherein the strut includes a lower blade portion for additional cutting action. Preferably wherein the thread includes a maximum height proximate the cone top, and wherein the thread tapers towards the cone bottom. Preferably wherein the thread maximum height is ¾ of an inch. Preferably wherein the thread maximum height is ⅜ of an inch. Preferably wherein the thread taper is defined by angle alpha the angle between the cone outer surface and a line drawn joining the thread apexes, alpha is preferably between 1 and 3 degrees. Preferably wherein the thread taper is defined by angle alpha which is preferably 2 degrees. Preferably wherein the thread has a thread profile TP ranging between 30 and 50 degrees. Wherein the thread profile TP is preferably 40 degrees. The present concept a stump auger for removing a tree stump, the stump auger comprising: a) a main shaft connected at a top end to a drive mechanism for turning the shaft about a vertical axis; b) the main shaft connected at a bottom end to a cone top; c) the cone including discreet first blades mounted along a thread ridge about the outer diameter of the cone to define a thread; d) further including second blades attached to the stump auger for shaving, grinding and chipping the tree stump. Preferably wherein further including third blades attached to the stump auger the third blades for shaving, grinding and chipping the tree stump. Preferably wherein the thread defined by the first blades has a pitch selected to fall between 0.5 and 4.0 inches per revolution. Preferably wherein the third blades are oriented along a bar axis having a rise angle theta selected to fall between 10 and 30 degrees relative to horizontal.
174,422
11353708
TECHNICAL FIELD The present invention generally relates to augmented reality, and more specifically relates to a sensor fusion augmented reality eyewear device with a wide field of view that can be utilized for low vision, vision impaired, and the blind. BACKGROUND Interactive viewing systems have found application in manufacturing automation and maintenance, surgical procedures, educational instruction, mechanical, architectural, and interior designs, multimedia presentations, and motion picture production. Such interactive viewing systems work by displaying computer-generated overlay images, such as a rendering of annotations, blueprints, component parts, buildings, backgrounds, and other images, in a user's field-of-view of a real-world environment to provide information about the real-world objects. One type of interactive viewing system is referred to as an augmented reality (AR) system. Some augmented-reality approaches rely upon a head-mounted display. These head-mounted displays often have the form-factor of a pair of glasses. Such displays place artificial images over a portion the user's view of the world. Such head-mounted displays are typically either optical see-through mechanisms or video-based mechanisms. Some conventional approaches attempt to use augmented reality to provide user interface. For example, a virtual display may appear on a table surface to provide an alphanumeric-input mechanism in an application setting where no such user-input mechanism otherwise exists, or an on/off switch may appear on a wall to permit having the user switch some aspect of the physical world or the augmentation to be switched on and off via manipulation of that switch. Few existing head-mounted augmented reality devices are discussed as follows. US20170285345 entitled “augmented reality in a field of view including a reflection” discloses a system comprising eyeglasses including a transparent display screen that is coupled with an image capture device on a user, and a reality augmenter to automatically generate an augmented reality object based on an identification of an object in a field of view of the user that is to include a reflection of the user from a reflective surface, wherein the augmented reality object is to be observable by the user on the transparent display screen when the user wears the eyeglasses. Real objects in a field of view of the user are augmented by the AR object using SLAM (Simultaneous Localization and Mapping) process. The device further comprises wireless communication interface. U.S. Pat. No. 9,240,074 B2 entitled “network-based real time registered augmented reality for mobile devices” discloses a method of operating a mobile device with a camera, a display, and a position sensor to provide a display of supplementary information aligned with a view of a scene. One or more image obtained from the camera is uploaded to a remote server together with corresponding data from the position sensor. Image processing is then performed to track image motion between that image and subsequent images obtained from the camera, determining a mapping between the uploaded image and a current image. Data is then received via the network indicative of a pixel location for display of supplementary information within the reference image. The mapping is used to determine a corresponding pixel location for display of the supplementary information within the current image, and the supplementary information is displayed on the display correctly aligned with the view of the scene. Further, SLAM techniques are used for the local tracking. Though the discussed prior art references are useful to some extent for some purposes, these prior efforts sometimes yield a poor user experience. Therefore, there is a need for a sensor fusion augmented reality eyewear device with a wide field of view to provide better user experience. BRIEF SUMMARY The present invention generally discloses a wearable device. Further, the present invention discloses a sensor fusion augmented reality eyewear device to operate augmented reality applications. According to the present invention, the augmented reality eyewear device is configured to be worn by a user to operate augmented reality applications. In one embodiment, the eyewear device comprises a frame. In one embodiment, the frame is associated with a processor, a sensor assembly, a camera assembly, and a user interface control assembly. In one embodiment, the processor is in communication with the sensor assembly, the camera assembly, and the user interface control assembly for transferring and receiving signals/data. In one embodiment, the processor could be, but not limited to, an android based snapdragon processor. In one embodiment the processor comprises an android based operating system. In one embodiment, a fan assembly in communication with the processor is configured to increase or decrease the fan speed based on the processor's heat. In one embodiment, the device further comprises a light assembly in communication with the processor. In one embodiment, the frame supports a pair of glasses lens/optical display in communication with the processor and a camera PCB board. The frame is further integrated with a wireless transceiver which is coupled to the processor. In one embodiment, the sensor assembly comprises at least two inertial measurement unit (IMU) sensors. In one embodiment, at least one IMU is a raw IMU and at least one IMU is an android connected IMU. In one embodiment, the processor could receive the sensor data in a dual combined manner. In one embodiment, the at least two IMU sensors are configured to rotate to match with an axis of at least two wide angle cameras. In one embodiment, the camera is a 13-megapixel HD camera. In one embodiment, the eyewear device allows the user to present (display) a desired magnification, which may be a preset magnification level. That is, in some embodiments, the user can preset multiple magnification levels, and then, on command, the eyewear device can then display at one of those preset magnification levels. In one embodiment, the sensor assembly further comprises a light sensor coupled to the processor. The light sensor is configured to input environmental conditions to the processor for providing a display characteristic based on the environmental conditions. In one embodiment, the sensor assembly further comprises, but not limited to, a thermal sensor, a flashlight sensor, 3-axis accelerometer, 3-axis compass, 3-axis gyroscope, and a magnetometer sensor. In one embodiment, the camera assembly comprises at least two wide angle cameras. The two wide angle cameras are synchronized with one another to transmit camera feed data from the camera assembly to the processor. In one embodiment, the camera feed data from the two wide angle cameras are combined into a single data before processing by the processor via an I2C electrical connection. The placement and angle of the camera assembly could be customizable for simultaneous localization and mapping of an environment. The processor is configured to dually synchronize raw IMU Data and android connected IMU data with the camera feed data providing a seamless display of 3D content of the augmented reality applications In one embodiment, the user interface control assembly comprises an audio command control, a head motion control and a wireless Bluetooth control. The user interface enables the user to control the eyewear device. In one embodiment, the eyewear device further comprises one or more built-in communication units. In one embodiment, the communication unit is a wireless communication unit. In one embodiment, the eyewear device further comprises a speaker system to deliver audio data to the user via the communication unit. The communication unit includes, but not limited to, a Bluetooth®. The communication unit is connected to one or more Bluetooth hearing aids configured to deliver audio data. In one embodiment, the speaker system comprises a built-in Bluetooth to deliver and receive the audio data wirelessly. In one embodiment, the eyewear device allows the registered users to use its features without any internet access. In one embodiment, the eyewear device allows the user to record video and/or take pictures using voice commands or audio commands. The eyewear device uses audio commands for all functions such as zoom level (1, 2, 3), high contrast, inverted contrast, and zoom or magnification view. In one embodiment, the maximum zoom is about 8× (digital zoom). In one embodiment, the eyewear device further utilizes Open CV (Open Source Computer Vision Library) mechanism. The Open CV mechanism allows for low latency (<2 ms) switching into greyscale and other modes. In one embodiment, the eyewear device further comprises features such as live view, greyscale view, universal product code (UPC) lookup, high contrast view, inverted contrast view, optical character recognition (OCR) readback, toggle flashlight, and decreased aspect ratio mode. The eyewear device allows the user to turn on the flashlight for low light reading situations and provides auditory command at the same time. In one embodiment, the eyewear device shrinks the horizontal and vertical size of the application. It allows users who are unable to easily to the edges of the screen. The eyewear device further comprises a thermal camera, an integrated slam or SLAM (Simultaneous Localization and Mapping) system, a visual odometry tracking, environment meshing, a dominant plane detection and a dynamic occlusion. In one embodiment, the thermal camera could be coupled to the camera PCB board. In one embodiment, the eyewear device further comprises a connector port assembly having a mini-jack port and a Universal Serial Bus Type-C (USB-C) port. The eyewear device is further adapted to use in both indoor and outdoor with different brightness level depending on indoor and outdoor settings. The brightness level is automatically adjusted from about 300 nits to about 500 nits. The indoor and outdoor settings are detected using an Ambient Light Sensor (ALS). In one embodiment, the eyewear device allows the user to turn on a flashlight for low light reading situations and provides auditory command. Other objects, features, and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
139,533
11441859
FIELD OF THE INVENTION The field of the invention relates to firearms, particularly receivers for firearms where the receiver is a hybrid design using multiple materials and the receiver is designed with multiple ambidextrous features. BACKGROUND Many modern firearms and firearm accessories (including handguns, rifles, carbines, shotguns, etc.) are designed based on existing modular firearm systems. For example, many firearms and related accessories are designed for compatibility with the AR-15 variant (civilian) or M16/M4 (military) firearm platform. Many of these products follow traditional designs based on industry standards and/or military specification (milspec). However, many of the existing components are not compatible with ambidextrous features, are not optimized for different or multiple materials, and require labor-intensive construction and assembly techniques. U.S. Pat. Nos. 9,297,599 and 9,389,033 describe hybrid receiver designs. Each of these two patents is hereby incorporated in its entirety by this reference. To increase comfort and convenience for a greater number of operators, it may be desirable to design new firearm components or accessories with ambidextrous features. Manufacturing methods utilizing multiple materials to create hybrid parts facilitate the use of specialized materials that more efficiently distribute and dissipate energy while better absorbing vibration and reducing weight for the firearm. Such designs may result in modular firearm components or accessories that increase reliability, reduce perceived recoil, increase safety, and reduce manufacturing/assembly costs. SUMMARY The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim. According to certain embodiments of the present invention, a firearm receiver assembly comprises: a receiver body; a threaded mount at a rear portion of the receiver body; a magazine release assembly comprising a magazine release portion on at least one side of the receiver body; a bolt release assembly comprising a bolt release central portion and a bolt release portion on at least one side of the receiver body; a safety selector assembly comprising a safety portion on at least one side of the receiver body, wherein the bolt release central portion translates vertically within a cavity of the receiver body. According to certain embodiments of the present invention, a lower receiver assembly for an AR-15 style firearm comprises: a receiver body comprising a left side and a right side; a threaded mount at a rear portion of the receiver body; a magazine release assembly comprising a first magazine release portion on the left side of the receiver body and a second magazine release portion on the right side of the receiver body; and a bolt release assembly comprising a bolt release portion on at least one side of the receiver body.
226,936
11473829
TECHNICAL FIELD The present invention relates to the field of thawing, and particularly relates to a thawing to method for a thawing device. BACKGROUND ART In the freezing process of food, the quality of the food is maintained, but the frozen food needs to be thawed before processing or eating. In order to facilitate a user to freeze and thaw the food, in the prior art, the food is generally thawed by disposing a heating device or a microwave device in a refrigerator. However, it is generally takes a long time to thaw food by means of the heating device, and the thawing time and temperature are not easy to grasp, which is prone to water evaporation and juice loss of the food, resulting in quality loss of the food; and thawing food by means of the microwave device is fast and efficient, so that the nutrient loss of the food is very low, however, due to a difference in penetration and absorption of water and ice by microwaves and the uneven distribution of internal substances in the food, the melted regions absorb more energy, resulting in the problems of uneven thawing and local overheating. Under comprehensive consideration, there is a need for a thawing method for a thawing device, which has high thawing efficiency, can realize uniform thawing and can ensure the food quality. SUMMARY OF THE INVENTION An objective of the first aspect of the present invention is directed to provide a thawing method for a thawing device, which has high thawing efficiency, can realize uniform thawing and can ensure the food quality. A further objective of the first aspect of the present invention is to improve the thawing efficiency of the thawing device. Another further objective of the first aspect of the present invention is to prevent an object to be processed from being excessively thawed. An objective of the second aspect of the present invention is to provide a thawing method for a refrigerator. Particularly, the present invention provides a thawing method for a thawing device. The thawing device includes a cavity defining a thawing chamber configured for placement of an object to be processed and having a forward opening, a device door disposed at the forward opening of the thawing chamber and configured to open and close the thawing chamber, a frequency generation module, and an upper electrode plate and a lower electrode plate horizontally disposed on a top wall and a bottom wall of the thawing chamber respectively. The upper electrode plate and the lower electrode plate are electrically connected with the radio frequency generation module respectively. The thawing method includes: generating, by the radio frequency generation module, a radio frequency signal in a frequency range of 40 to 42 MHz; obtaining the radio frequency signal; and generating, by the upper electrode plate and the lower electrode plate, radio frequency waves of corresponding frequency in the thawing chamber according to the radio frequency signal, and thawing the object to be processed in the thawing chamber. Optionally, the radio frequency signal has a constant frequency preset in the range of 40.48 to 40.68 MHz. Optionally, the thawing device further includes a detection module, and the detection module is configured to detect an incident wave signal and a reflected wave signal of an electrical connection wire connecting the radio frequency generation module to the upper electrode plate. The thawing method includes: detecting the incident wave signal and the reflected wave signal of the electrical connection wire; obtaining a voltage and a current of the incident wave signal and a voltage and a current of the reflected wave signal; and calculating a load impedance of the radio frequency generation module. Optionally, the thawing device further includes a load compensation module, and the load compensation module includes a compensation unit connected in series with the object to be processed and a motor configured to increase or reduce the impedance of the compensation unit. The thawing method includes: obtaining the load impedance of the radio frequency generation module; determining whether a difference between the load impedance of the radio frequency generation module and an output impedance of the radio frequency generation module is greater than or equal to a first impedance threshold and less than or equal to a second impedance threshold, where the first impedance threshold is less than the second impedance threshold; if the difference between the load impedance of the radio frequency generation module and the output impedance of the radio frequency generation module is less than the first impedance threshold or greater than the second impedance threshold, enabling the load compensation module to work; and if the difference between the load impedance of the radio frequency generation module and the output impedance of the radio frequency generation module is greater than or equal to the first impedance threshold and less than or equal to the second impedance threshold, enabling the load compensation module not to work. Optionally, the step of enabling the load compensation module to work includes: if the difference between the load impedance of the radio frequency generation module the output impedance of the radio frequency generation module is less than the first impedance threshold, increasing the impedance of the compensation unit; and if the difference between the load impedance of the radio frequency generation module and the output impedance of the radio frequency generation module is greater than the second impedance threshold, reducing the impedance of the compensation unit. Optionally, a control method for the thawing device includes: obtaining the load impedance of the radio frequency generation module; calculating a change rate of a dielectric constant of the object to be processed; and determining a thawing progress of the object to be processed. Optionally, the step of determining the thawing progress of the object to be processed includes: obtaining the change rate of the dielectric constant of the object to be processed; determining whether the change rate of the dielectric coefficient of the object to be processed is greater than or equal to a first rate threshold; and if yes, reducing a working power of the radio frequency generation module by 30% to 40%. Optionally, the step of determining the thawing progress of the object to be processed includes: obtaining the change rate of the dielectric constant of the object to be processed; determining whether the change rate of the dielectric coefficient of the object to be processed decreases to be less than or equal to a second rate threshold; and if yes, enabling the radio frequency generation module to stop working. According to the second aspect of the present invention, a thawing method for a refrigerator is provided. The refrigerator includes a refrigerator body defining at least one containing space, a compartment door for opening and closing the containing space separately, and a thawing device disposed in one of the containing spaces. The thawing method includes any one of the above thawing methods for a thawing device. Optionally, the refrigerator further includes a power supply module for supplying power for the thawing device, and a thawing switch for controlling the start and stop of a thawing program is disposed on any one of the compartment doors. The thawing method for a refrigerator includes: if the thawing switch is turned on, enabling the power supply module to start to work; and if the thawing switch is turned off, enabling the power supply module to stop working. The inventor of the present application has creatively discovered that radio frequency waves using the frequency range of the present application have shorter thawing time, higher temperature-uniformity and lower juice loss rate than radio frequency waves of other frequencies, and are especially suitable for thawing devices. Further, by the load compensation module, the difference between the load impedance of the radio frequency generation module and the output impedance of the radio frequency generation module is in a preset range (greater than or equal to a first impedance threshold and less than or equal to a second impedance threshold), thereby further improving the thawing of the object to be processed. Further, the change rate of the dielectric coefficient of the object to be processed is calculated by the detection module to determine the thawing progress of the object to be processed. Prior to the present invention, it is generally recognized by those skilled in the art that when the temperature of the object to be processed is higher (i.e., the temperature of the object to be processed is greater than or equal to −7° C.), the thermal effect is significantly attenuated, so that the object to be processed cannot be excessively thawed. However, this is not the case. Generally, the radio frequency thawing power is larger (greater than 100 W). When the temperature of the object to be processed is higher, the object to be processed is prone to excessive thawing. The inventor of the present application has creatively recognized that when the temperature of the object to be processed is higher, the object to be processed can be effectively prevented from being excessively thawed by reducing the working power of the radio frequency generation module by 30 to 40%. Further, whether the thawing is completed or not is determined according to the change rate of the dielectric coefficient of the object to be processed. Compared with the mode of determining whether the thawing is completed by sensing the temperature of the object to be processed in the prior art, the determining mode of the present invention is more accurate, and the object to be processed can be further prevented from being excessively thawed. Tests show that the temperature of the object to be processed, thawed by the thawing device of the present invention, is generally −4 to −2° C. when the thawing is completed, and bloody water generated by thawing when the object to be processed is meat can be avoided. According to the following detailed descriptions of the specific embodiments of the present invention in cooperation with drawings, those skilled in the art will more clearly understand the above and other objectives, advantages and features of the present invention.
258,630
11437317
BACKGROUND The present invention generally relates to integrated chip fabrication, and, more particularly, to the fabrication of lines in an integrated chip. Patterning the conductive lines to form these interconnects, particularly at small dimensions, can involve the use of multiple photolithographic masks, each with respective deposition, developing, and etching processes, such that each additional mask adds expense to the fabrication process. SUMMARY A method of forming lines in an integrated chip includes forming first lines on an underlying substrate. Conformal dielectric spacers are formed on sidewalls of the first lines. Second lines are formed on the underlying substrate, in open areas between the dielectric spacers. A method of forming lines in an integrated chip includes forming an etch stop layer on an underlying substrate, the etch stop layer having gaps that expose a top surface of the underlying substrate. First lines are formed on the exposed surface of the underlying substrate, in the gaps of the etch stop layer. A layer of dielectric material is conformally deposited on exposed surfaces of the first lines. Dielectric material is anisotropically etched from the layer of dielectric material that is on horizontal surfaces above and between the first lines. The anisotropic etch is blocked in part by a top portion of the conformal dielectric spacers, such that the conformal dielectric spacers each include a foot of dielectric material that extends laterally from a bottom portion of the respective conformal dielectric spacer, into a space between the first lines. Second lines are formed on the underlying substrate, in openings left between the dielectric spacers. An integrated chip includes first lines, formed on an underlying substrate. Spacers are formed conformally on sidewalls of the plurality of lines. Etch stop remnants are positioned on the sidewalls of the plurality of lines, between the spacers and the underlying substrate. Second lines are formed on the underlying substrate, between respective pairs of adjacent first lines. These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
222,427
11390830
TECHNICAL FIELD The present application provides compositions comprising 1,2-dichloro-1,2-difluoroethylene (i.e., CFO-1112) and, optionally, an additional component. The compositions described herein may be useful, for example, in which are useful in cleaning, solvent, carrier fluid, and deposition applications. BACKGROUND Chlorofluorocarbon (CFC) compounds have been used extensively in the area of semiconductor manufacture to clean surfaces such as magnetic disk media. However, chlorine-containing compounds such as CFC compounds are considered to be detrimental to the Earth's ozone layer. In addition, many of the hydrofluorocarbons used to replace CFC compounds have been found to contribute to global warming. Therefore, there is a need to identify new environmentally safe solvents for cleaning applications, such as removing residual flux, lubricant or oil contaminants, and particles. There is also a need for identification of new solvents for deposition of fluorolubricants and for drying or dewatering of substrates that have been processed in aqueous solutions. SUMMARY The present application provides, inter alia, processes for dissolving a solute, comprising contacting and mixing said solute with a sufficient quantity of a composition comprising:i) 1,2-dichloro-1,2-difluoroethylene; and, optionally,ii) a compound selected from N-pentane, HFE-7000, R-1233xfB, R-1336mzzZ, dimethoxymethane, R-1345mzzE, R-43-10mee, R-365mfc, tetrahydrofuran, and R-153-10mzzy. The present application further provides processes of cleaning a surface, comprising contacting with said surface a composition comprising:i) 1,2-dichloro-1,2-difluoroethylene; and, optionally,ii) a compound selected from N-pentane, HFE-7000, R-1233xfB, R-1336mzzZ, dimethoxymethane, R-1345mzzE, R-43-10mee, R-365mfc, tetrahydrofuran, and R-153-10mzzy. The present application further provides processes for removing at least a portion of water from the surface of a wetted substrate, comprising:a) contacting the substrate with a composition comprising:i) 1,2-dichloro-1,2-difluoroethylene; and, optionally,ii) a compound selected from N-pentane, HFE-7000, R-1233xfB, R-1336mzzZ, dimethoxymethane, R-1345mzzE, R-43-10mee, R-365mfc, tetrahydrofuran, and R-153-10mzzy; andb) removing the substrate from contact with the composition. The present application further provides processes for depositing a fluorolubricant on a surface comprising:a) combining a fluorolubricant and a solvent, said solvent comprisingi) 1,2-dichloro-1,2-difluoroethylene; and, optionally,ii) a compound selected from N-pentane, HFE-7000, R-1233xfB, R-1336mzzZ, dimethoxymethane, R-1345mzzE, R-43-10mee, R-365mfc, tetrahydrofuran, and R-153-10mzzy, to form a lubricant-solvent combination;b) contacting the lubricant-solvent combination with the surface; andc) evaporating the solvent from the surface to form a fluorolubricant coating on the surface. The present application further provides compositions, comprising:i) 1,2-dichloro-1,2-difluoroethylene; andii) a compound selected from HFE-7000 and tetrahydrofuran. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
176,370
11472012
CROSS REFERENCE TO RELATED APPLICATIONS This application is the U.S. National Phase under 35 U.S.C. § 371 of International Patent Application No. PCT/JP2019/002479, filed on Jan. 25, 2019, which claims the benefits of Japanese Patent Application No. 2018-027010, filed on Feb. 19, 2018 the entire contents of which are hereby incorporated by reference. TECHNICAL FIELD The present invention relates to a driver having a pressure chamber and a striking portion that is actuated in a direction of striking a fastener when compressed gas is supplied to the pressure chamber. BACKGROUND ART A driver configured to drive a fastener to a workpiece has been known. The driver described in Patent Document 1 has a housing, a pressure accumulation chamber, a pressure chamber, a striking portion, a push lever, a cylinder, a trigger, a trigger valve, an ejection portion, a magazine, and a delay valve as a switching mechanism. The pressure accumulation chamber is provided in the housing, and the pressure accumulation chamber stores compressed air. The pressure chamber and the striking portion are provided in the housing, and the striking portion is provided so as to be actuated in the housing. The cylinder is provided so as to be actuated in the housing, and the cylinder connects and disconnects the pressure chamber and the pressure accumulation chamber. The trigger is rotatably attached to the housing. The push lever is provided so as to be actuated on the housing. The ejection portion is fixed to the housing, and the ejection portion has an ejection path. The magazine stores fasteners and the magazine supplies the fasteners to the ejection path. In the driver described in Patent Document 1, the cylinder disconnects the pressure accumulation chamber and the pressure chamber unless at least one of the conditions that an operation force is applied to the trigger and an operation force is applied to the push lever is satisfied. The compressed air of the pressure accumulation chamber is not supplied to the pressure chamber, and the striking portion is stopped at the top dead center. Namely, the striking portion is not actuated in the direction of striking the fastener. In the driver described in Patent Document 1, the trigger valve is actuated and the cylinder is actuated to connect the pressure accumulation chamber and the pressure chamber when both of the conditions that the operation force is applied to the trigger and the operation force is applied to the push lever are satisfied. The compressed air of the pressure accumulation chamber is supplied to the pressure chamber, and the striking portion is actuated in the direction of striking the fastener. The worker can perform single firing and continuous firing with use of the driver. The single firing is a usage mode in which the worker applies an operation force to the push lever and then applies an operation force to the trigger, thereby actuating the striking portion. The continuous firing is a usage mode in which the worker applies an operation force to the trigger and the push lever regardless of the operation order of the trigger and the push lever, thereby actuating the striking portion. In the driver described in Patent Document 1, for a predetermined time from the time when the operation force is applied to the trigger in order to perform the continuous firing, the delay valve connects the passage to supply the compressed gas of the pressure accumulation chamber to the pressure chamber. Therefore, if the operation force is applied to the push lever within the predetermined time from the time when the operation force is applied to the trigger in order to perform the continuous firing, compressed air is supplied to the pressure chamber, and the striking portion is actuated in the direction of striking the fastener. On the other hand, when the predetermined time has elapsed from the time when the operation force is applied to the trigger in order to perform the continuous firing, the delay valve disconnects the passage to supply the compressed gas of the pressure accumulation chamber to the pressure chamber. Therefore, the compressed air is not supplied to the pressure chamber even if the operation force is applied to the push lever after the predetermined time has elapsed from the time when the operation force is applied to the trigger in order to perform the continuous firing. Namely, the striking portion is not actuated in the direction of striking the fastener. The delay valve described in Patent Document 1 is actuated by compressed gas. RELATED ART DOCUMENTS Patent Documents Patent Document 1: International Patent Application Publication No. 2017-115593 SUMMARY OF THE INVENTION Problem to be Solved by the Invention The inventor of this application has recognized a problem that power consumption increases if a switching mechanism that switches from a state in which continuous firing is possible to a state in which continuous firing is not possible is configured to be actuated by electric power. An object of the present invention is to provide a driver capable of suppressing an increase in electric power consumed for actuating the switching mechanism. Means for Solving the Problems A driver according to an embodiment includes: a pressure chamber; a striking portion actuated in a direction of striking a fastener when compressed gas is supplied to the pressure chamber; and a first operation member and a second operation member configured to control the striking of the fastener, the driver can select a single firing in which the striking portion is actuated in the direction of striking the fastener when an operation force is applied to the second operation member and then an operation force is applied to the first operation member and a continuous firing in which the striking portion is actuated in the direction of striking the fastener when the operation force is applied to the first operation member and the second operation member regardless of an order of applying the operation force to the first operation member and the second operation member, the driver further includes: a switching mechanism actuated when power is supplied and having a first control state in which the striking portion can be actuated in the direction of striking the fastener when the single firing is selected and a second control state in which the striking portion is blocked from being actuated in the direction of striking the fastener when the continuous firing is selected; and a control unit configured to switch the switching mechanism from the first control state to the second control state when a predetermined time elapses in a state where the continuous firing is selected and the switching mechanism is in the first control state, and the control unit stops the power supply to the switching mechanism for at least part of a period of time when the predetermined time elapses. A driver according to another embodiment includes: a pressure chamber; a striking portion actuated in a direction of striking a fastener when compressed gas is supplied to the pressure chamber; and a first operation member and a second operation member configured to control the striking of the fastener, the driver can select a single firing in which the striking portion is actuated in the direction of striking the fastener when an operation force is applied to the second operation member and then an operation force is applied to the first operation member and a continuous firing in which the striking portion is actuated in the direction of striking the fastener when the operation force is applied to the first operation member and the second operation member regardless of an order of applying the operation force to the first operation member and the second operation member, the driver further includes: a switching mechanism actuated when power is supplied and having a first control state in which the striking portion can be actuated in the direction of striking the fastener when the single firing is selected and a second control state in which the striking portion is blocked from being actuated in the direction of striking the fastener when the continuous firing is selected; and a control unit configured to control the supply and stop of the power to the switching mechanism, and the control unit performs a first control in which, when the continuous firing is selected, power is supplied to the switching mechanism to change the switching mechanism from the second control state to the first control state and then the power supply to the switching mechanism is stopped and a second control in which, when a predetermined time elapses in a state where the continuous firing is selected and the switching mechanism is in the first control state, power is supplied to the switching mechanism to change the switching mechanism from the first control state to the second control state and then the power supply to the switching mechanism is stopped. Effects of the Invention A driver according to one embodiment can suppress the increase in electric power consumed for actuating the switching mechanism.
256,823
11489044
BACKGROUND Technical Field The present invention generally relates to semiconductor device fabrication and, more particularly, to nanosheet field effect transistors with bottom isolation. Description of the Related Art Field effect transistors (FETs) can be formed using a number of basic structures. In some devices, nanosheet channels are used and are formed by depositing alternating sheets of channel material and sacrificial material. However, such devices can be limited in the thickness of channel layers, as lattice strain between the channel material and the sacrificial material can cause defects to form. Furthermore, isolating the bottom of the device with a dielectric layer can be challenging, as dielectric material can pinch off in devices with high aspect ratios, preventing the dielectric material from adequately filling the needed space. SUMMARY A method of forming a semiconductor device includes forming slanted dielectric structures from a first dielectric material on a substrate, with gaps between adjacent slanted dielectric structures. A first semiconductor layer is grown from the substrate, using a first semiconductor material, including a lower portion that fills the gaps and an upper portion above the first dielectric material. The lower portion of the first semiconductor layer is replaced with additional dielectric material. A method of forming a semiconductor device includes masking an original dielectric layer, formed from a first dielectric material, with a pattern that exposes strips of a top surface of the original dielectric layer. A tilted implantation is performed that converts exposed portions of the original dielectric layer to a second dielectric material. Remaining first dielectric material is etched away to form the gaps between the portions of the second dielectric material. A first semiconductor is grown layer from the substrate, using a first semiconductor material, including a lower portion that fills the gaps and an upper portion above the second dielectric material. The lower portions of the first semiconductor layer are replaced with additional dielectric material. A semiconductor device includes a bottom dielectric isolation layer. Stacks of vertically arranged channel layers are formed over the bottom isolation layer. Gate stacks are formed on and between the vertically arranged channel layers of respective stacks from the plurality of stacks. These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
273,703
11238690
TECHNICAL FIELD The present invention relates to a gaming machine, a control method for a gaming machine, and a program for a gaming machine. BACKGROUND ART A gaming machine represented by a slot machine is highly popular among casino customers as a device that provides gaming that is easy to enjoy, and recent statistics report that sales from gaming machines account for the majority of casino earnings. Initial slot machines were simple devices, wherein an inserted coin is received, a configured reel rotates and stops mechanically according to a handle operation, and a win or a loss is determined by a combination of symbols stopped on a single pay line. However, recent gaming machines, such as mechanical slot machines driven by a highly accurate physical reel via a computer controlled stepping motor, video slot machines that display a virtual reel on a display connected to a computer, and various gaming machines that apply similar technology to other casino games are quickly advancing. For the manufacturers that develop these gaming machines, an important theme is to provide an attractive game that strongly attracts casino customers as players, and improves the functionality of the gaming machine. SUMMARY OF INVENTION In one aspect of the present invention, a gaming machine is provided. The gaming machine includes an operation unit, a display unit, and a control unit. The operation unit is configured to receive an operation of the player. The display unit is operably coupled to the operation unit and is configured to display a plurality of cells. The plurality of cells are arranged in a plurality of rows and columns. The control unit is operably coupled to the operation unit and the display unit and, for each instance of the game, randomly establishes a symbol to be displayed within each of the plurality of cells. The control unit is further configured to provide a first instance of the game and to display the symbols established for the first instance of the game in the respective cells, and to automatically add one or more new rows of cells to the display unit prior to each subsequent instance of the game. In another aspect of the invention, a control method for a gaming machine provides a game to a player. The gaming machine includes an operation unit, a display unit, and a control unit. The operation unit is configured to receive an operation of the player. The display unit is operably coupled to the operation unit and is configured to display a plurality of cells. The plurality of cells are arranged in a plurality of rows and columns. The control unit is operably coupled to the operation unit and the display unit and, for each instance of the game, randomly establishes a symbol to be displayed within each of the plurality of cells. The method includes the steps of providing a first instance of the game and displaying the symbols established for the first instance of the game in the respective cells, and automatically adding one or more new rows of cells to the display unit prior to each subsequent instance of the game. In still another aspect of the present invention, a program for a gaming machine provides a game to a player. The gaming machine includes an operation unit, a display unit, and a control unit. The operation unit is configured to receive an operation of the player. The display unit is operably coupled to the operation unit and is configured to display a plurality of cells. The plurality of cells are arranged in a plurality of rows and columns. The control unit is operably coupled to the operation unit and the display unit and, for each instance of the game, randomly establishes a symbol to be displayed within each of the plurality of cells. The program of the gaming machine performing the steps of: providing a first instance of the game and displaying the symbols established for the first instance of the game in the respective cells, and automatically adding one or more new rows of cells to the display unit prior to each subsequent instance of the game.
25,501
11459229
BACKGROUND OF THE INVENTION An MEMS actuator can be used, for example, to move a micromirror connected therewith and to position the same as desired. Such actuators are increasingly used for a wide range of applications, such as spatial light modulators, scanner mirrors, optical switches for coupling optical fibers (optical cross-connect), microvalves, electric microswitches and others. Usually, the position of a movable actuator part is controlled by an applied electric signal. In many cases, electrostatic force of attraction is used as physical effect, but electromagnetic forces and piezoelectric or thermal expansion can also be used. Such actuators frequently have a resetting elastic suspension providing a respective counterforce for static equilibrium deflection. Based on the type of executable movement, a differentiation is made between rotating/tilting actuators and translatory actuators as well as actuator types enabling both types of motion. Rotating/tilting actuators can have a gimbal suspension. In micromechanics, such gimbal suspensions work quite well, as long as the springs are not under excessive mechanical tension. However, in micromechanics, mechanical tensions can easily arise, either due to production processes or during operation due to temperature variations and the different thermal coefficients of expansion of the materials used for springs, rigid actuator parts, the substrate and possibly the housing. Tension in the springs changes the spring constant and hence the deflection behavior of the actuator. Compressive stress, which can result in buckling of the springs (depending on the geometry) when exceeding a critical value, is particularly unfavorable [1, 2]. Such buckling frequently makes the actuators completely unusable although applications are possible where this effect is used advantageously. Thus, generally, an attempt is made to produce the springs with low tensile stress. Depending on the production technology, however, adjusting the desired stress value is frequently not sufficiently precise. In micromechanic gimbal suspensions, only in some cases, surprisingly, buckling springs can be seen although the system as a whole is under slight tensile stress. In the case when, for example, the outer springs are anchored at the substrate, the gimbal frame can deform under the tensile stress of the outer springs due to its (although low) elasticity, such that the inner springs are under compressive stress and can buckle, even when they still had a slight tensile stress in the original form of the gimbal frame. Such a behavior is shown inFIGS. 12aand 12b.FIGS. 12aand 12bshow the system in the original state, illustrated as full surface and the system when tensile forces are applied to outer elements1004aand1004billustrated in dotted lines. For the occurrence of the tensile force, the reference numbers are provided with an apostrophe. This means the outer element1004a′ corresponds to the outer element1004awhen the tensile force occurs. An element1003is connected to outer elements1004aand1004bvia a gimbal frame1002configured in a round manner. Both the outer elements1004aand1004bcan be connected to a substrate while the element1003is an element to be moved or is connected, for example, to an element to be moved or positioned, such as a micromirror. It is also possible that the element1003is connected to the substrate and the outer elements1004aand1004bare connected to the element to be positioned or are this element. A pair of springs including springs1005aand1005bis arranged between the outer elements1004aand1004band the gimbal frame1002. A further pair of springs including springs1006aand1006bis arranged between the element1003and the gimbal frame1002. Based on tensile force1007, the gimbal frame1002can deform, such that compressive stress onto the springs1006aand1006bresults which can cause buckling of the springs. FIG. 12bshows a similar scenario where the gimbal frame1002and the (inner) element1003are configured in a square manner. Here, the compressive stress on the springs1006aand1006bcan also cause buckling of the springs. In other cases, the outer springs can also receive compressive stress when the gimbal frame deforms under the tension of the inner springs. This means, in response to tensile forces from the substrate, a circular or square gimbal frame deforms. The inner springs receive strong compressive stress and buckle, here, for example, by shifting or rotating the actuator plate in the center. Buckling of the springs can take place in different modes. Four examples are shown inFIGS. 12aand 12b, but further examples exist, in particular into the third dimension or in connection with torsion of the springs. This effect does usually not occur in conventional precision gimbal suspensions since normally no springs are used, but axes whose bearings also allow slight axial movement. In conventional micromechanical gimbal suspensions, the gimbal frames are mostly built in a very strong manner in order to minimize the above-described deformation. However, this has the effect that the springs come under more stress with respect to the substrate. These stresses can be reduced in that the spring does not rigidly connect to the gimbal frame or substrate, but with a further spring that runs transversally to the first spring and is connected to the substrate. This is illustrated inFIG. 13. The spring1005ais connected to a spring1008athat is connected to the outer element1004a. Also, the spring1005bis connected to a spring1008bthat again establishes a connection to the outer element1004b. The frame1002can be configured in a particularly rigid manner. The transverse springs1008aand1008bat the outer springs1005aand1005b, respectively, reduce the stress introduced by the substrate. The low residual deformation of the gimbal frame1002results in only little compressive stress in the inner springs1006aand1006b, such that buckling can partly be prevented. Thus, this can function sufficiently well but normally a residual deformation remains and hence pressure onto the inner springs1006aand1006b. Additionally, the rigid gimbal frame needs a lot of space and is correspondingly heavy. Additionally, this procedure is only of limited assistance when, for example, during production, the gimbal frame itself is under higher tensile stress than the movable micromechanical structures inside the same and then (partly) relaxes when releasing the system. In this case, compressive stress in the inner springs could, at most, be reduced again by further transverse springs which, however, only results in partial reduction. Similar problems can also result when the inner springs1006aand1006bare connected to the substrate and the outer springs1005aand1005bto the movable actuator part. Therefore, concepts that reduce or prevent occurrence of compressive stress in MEMS springs would be desirable. SUMMARY According to an embodiment, an MMS may have: a substrate; an element moveable with respect to the substrate; a frame structure; a first pair of springs arranged between the substrate and the frame structure along a first spring direction; and a second pair of springs arranged between the movable element and the frame structure along a second spring direction; wherein the frame structure is configured to generate tensile stress in the second pair of springs at tensile stress acting in the first pair of springs; wherein a first and a second side of the frame structure where one spring each of one of the two pairs of springs is arranged comprise a first partial area and a second partial area between which the respective spring is arranged, wherein the first and the second partial area are arranged at an angle of less than 180° measured outside with respect to the frame structure. According to another embodiment, an MMS may have: a substrate; an element movable with respect to the substrate; a frame structure; a first and a second spring arranged between the substrate and the frame structure along a first spring direction; and a third and fourth spring arranged between the movable element and the frame structure along a second spring direction; wherein the first spring at an end of the frame facing away from the frame structure is connected to a first anchor area of the substrate via a first lever element and to a second anchor area of the substrate via a second lever element, and wherein the second spring at an end facing away from the frame structure is connected to third anchor area of the substrate via a third lever element and to a fourth anchor area of the substrate via a fourth lever element; wherein the first, second, third and fourth anchor area can be displaced with respect to one another along a first, second, third and fourth displacement direction when the substrate expands; and wherein each of the lever elements is arranged at an angle of at least 70° and at most 100° at the respective anchor area relative to the displacement direction. According to another embodiment, an inventive MMS may have a micromirror connected to the movable element. Another embodiment may have an MMS array including a plurality of inventive MMS. Another embodiment may have an MMS actuator including an inventive MMS and/or an MMS array including a plurality of inventive MMS. A core idea of a first aspect is the finding that a gimbal structure can be implemented such that tensile stress acting in a first pair of springs of a gimbal suspension generates tensile stress in a second pair of springs of the gimbal suspension. This enables prevention of occurrence of compressive stress due to the tensile stress and this is enabled by the configuration of the frame structure. The core idea of a second aspect is the finding that by preventing tensile forces in the first spring elements, deformation of the movable structure and hence compressive forces in the second spring elements can be reduced or prevented and that this can be obtained by a lever structure between springs and anchor areas at the substrate, wherein the levers are essentially at a right angle to the expected displacement directions of the anchor areas. According to an embodiment of the first aspect, a micromechanical system (MMS) comprises a substrate and an element movable with respect to the substrate. Further, the MMS includes a frame structure and a first pair of springs arranged between the substrate and the frame structure along a first spring direction. A second pair of springs is arranged between the movable element and the frame structure along a second spring direction. The frame structure is configured to generate tensile stress in a second pair of springs at tensile stress acting in a first pair of springs. This allows the conversion of occurring tensile forces as they can occur, for example, by releasing the MMS in particular by expansion of the surrounding substrate, into tensile stress acting in the springs between the movable element and the frame structure. This allows low or no compressive stress and hence higher reliability of the spring elements and hence the MMS since buckling or breaking of the springs due to compressive forces is reduced or prevented. According to one embodiment, a distance of two distal ends of two opposing sides of the frame structures can be extended based on the tensile stress acting in the first pair of springs in order to generate the tensile force on the second pair of springs. This means the tensile force on the first pair of springs is converted into extension of the frame structure along a direction transverse to this first pair of springs, wherein the extension can be used for obtaining the tensile force onto the second pair of springs. According to a further embodiment, a first and second side of the frame structure where one spring each of the first pair of springs is arranged comprise a first partial area and a second partial area between which the respective spring is arranged. The first and second partial areas are arranged at an angle of less than 180° measured outside with respect to the frame structure, i.e., such that the frame structure is configured in a concave manner. The value of this angle allows configuration of the extent of tensile force passed on to the second pair of springs and as a result a high degree of reliability of the MMS. According to a further embodiment, which can be implemented combined with the above embodiment but also independent of the same, a third and fourth side of the frame structure, where one spring each of the second pair of springs is arranged, comprise a first partial area and a second partial area between which the respective spring is arranged. The first and the second partial areas are arranged at an angle of less than 180° measured outside with respect to the frame structure. This also allows the advantage of a configuration of the extent of tensile force that is transferred. According to a further embodiment, the frame structure is configured such that the same comprises, adjacent to corners of the frame and/or adjacent to areas where the springs of the first or second pair of springs are arranged, a hinge, for example a flexure bearing. This allows specific interference with the frame structure under influence of the tensile force and hence a further increase of reliability. According to a further embodiment, the MMS includes a compensation structure arranged between two sides of the frame structure and mechanically fixed to the same, wherein a bending stiffness of the frame structure along the first spring direction and a bending stiffness of the frame structure along the second spring direction have a comparatively higher value and a comparatively lower value, i.e., two sides of the frame structure have a lower value of bending stiffness compared to two other sides of the frame structure. The compensation structure extends along the spring direction along which the frame structure has the bending stiffness with the comparatively higher value between the two sides. This can also be considered such that the sides having a lower bending stiffness are enforced by the compensation structure such that undesired bending of the frame structure is reduced or prevented. An MMS according to the second aspect includes a substrate, an element movable with respect to the substrate and a frame structure. The MMS includes a first and a second spring arranged between the substrate and the frame structure along a first spring direction and includes a third and a fourth spring arranged between the movable element and the frame structure along a second spring direction. The first spring at an end facing away from the frame structure is connected to a first anchor area of the substrate via a first lever element and connected to a second anchor area of the substrate via a second level element. The second spring at an end facing away from the frame structure is connected to a third anchor area of the substrate via a third level element and to a fourth anchor area of the substrate via a fourth level element. When the substrate is expanded, the first, second, third and fourth anchor areas are displaced with respect to one another along a first, second, third and fourth direction of movement. Each of the level elements is arranged at an angle of at least 75° and at most 105° at the respective anchor area relative to the first, second, third or fourth displacement direction. It is advantageous that when releasing the substrate but also during thermally induced expansion or compression of the substrate and hence the displacement of the anchor elements, inducing compressive forces onto the first and second spring is at least reduced, since by arranging the lever elements at the angle a change of the length of the first and second spring due to displacement of the anchor elements is low. This allows high reliability of the MMS. A further embodiment provides an MMS array having a plurality of MMS that can be arranged on the same substrate. A further embodiment provides an MMS actuator having an MMS according to the above described embodiments. Further embodiments provide a method for providing an MMS according to the first aspect. The method includes providing a substrate, providing an element movable with respect to the substrate and providing a frame structure movable with respect to the substrate. Further, the method includes arranging a first pair of springs between the substrate and the frame structure along a first spring direction and arranging a second pair of springs between the movable element and the frame structure along a second spring direction. The frame structure is provided such that the same generates tensile stress in the second pair of springs at tensile stress acting in the first pair of springs. Further embodiments provide a method for producing an MMS according to the second aspect. The method includes providing a substrate, providing an element movable with respect to the substrate, providing a frame structure movable with respect to the substrate and providing a first, second, third and fourth anchor area at the substrate, such that the first, second, third and fourth anchor area are displaced with respect to one another along a first, second, third and fourth direction when the substrate expands. The method includes arranging a first and a second spring between the substrate and the frame structure along a first spring direction. Further, the method includes arranging a third and fourth spring between the movable element and the frame structure along a second spring direction. Further, the method includes connecting an end of the first spring facing away from the frame structure to the first anchor area of the substrate via a first level element and to the second anchor area of the substrate via a second lever element. An end of the second spring facing away from the frame structure is connected to the third anchor area of the substrate via a third lever element and to the fourth anchor area of the substrate via a fourth lever element. Connecting is performed such that each of the lever elements is arranged at an angle of at least 75° and at most 105° at the respective anchor area relative to the displacement direction of the anchor area.
244,150
11417558
This application claims priority from Japanese Patent Applications No. 2020-076847, filed on Apr. 23, 2020, the entire contents of which are herein incorporated by reference. BACKGROUND Technical Field The present disclosure relates to a ceramics substrate, a method of manufacturing the same, an electrostatic chuck, a substrate fixing device, and a semiconductor device package. Background Art In the background art, a film forming apparatus or a plasma etching apparatus used in manufacturing a semiconductor device has a stage for accurately retaining a wafer in a vacuum processing chamber. For example, a substrate fixing device that adsorbs and retains a wafer by an electrostatic chuck mounted on a base plate has been proposed as such a stage. The electrostatic chuck includes a substrate body, an electrostatic electrode built in the substrate body, and a ceramics substrate having vias etc. electrically connected to the electrostatic electrode. The electrostatic electrode or the vias are produced as follows. That is, for example, an electrically conductive paste containing metal powder high in melting point such as tungsten (W), molybdenum (Mo) or a molybdenum-manganese (Mo—Mn) alloy, a resin binder, etc. is formed on a ceramics green sheet by a screen printing method or the like, and fired (e.g. see JP-A-2011-228727). However, in general, a sintering aid (such as silica, magnesia, calcia or yttria) is often contained in alumina ceramics. The value of insulation resistance of the ceramics containing the sintering aid thus tends to decrease as temperature of the usage environment rises. To solve this problem, sintering aid-free alumina ceramics small in temperature dependence of insulation resistance are desired. However, since there is no sintering aid that can turn to a liquid phase during sintering, there is a case that bonding strength between the ceramics forming the substrate body and the vias cannot be secured in the ceramics substrate of the electrostatic chuck etc. SUMMARY The present disclosure provides a ceramics substrate in which bonding strength between ceramics forming a substrate body and vias is improved. A certain embodiment provides a ceramics substrate including: a substrate body; an electric conductor layer that is built in the substrate body; and a via that is built in the substrate body to be electrically connected to the electric conductor layer. The substrate body is made of ceramics containing aluminum oxide. The via is made of a fired body of an electric conductor paste. The electric conductor paste contains molybdenum as a main component and further contains nickel oxide, aluminum oxide, and silicon dioxide.
202,841
11362634
BACKGROUND OF THE DISCLOSURE Field of the Disclosure The present disclosure relates to a filter module including a LC filter and a high frequency module including this filter module. Description of the Related Art A filter module including a LC filter including an inductor and a capacitor is known in the art. As an example of such a filter module, Japanese Unexamined Patent Application Publication No. 2003-60465 (patent document 1) discloses a filter module including a low pass filter that includes an inductor provided in an input/output path of high frequency signals, a first capacitor provided between one end portion of the inductor and ground, and a second capacitor provided between the other end portion of the inductor and the ground. BRIEF SUMMARY OF THE DISCLOSURE However, in the filter module including a low pass filter disclosed in the patent document 1, the attenuation outside the pass band of the LC filter is degraded in some cases. The present disclosure is made to resolve the foregoing issue, and an object thereof is to provide a filter module and the like, which are capable of suppressing the degradation of attenuation outside the pass band of the LC filter. In order to achieve the foregoing object, a filter module according to one aspect of the present disclosure includes: a first ground terminal; a second ground terminal that is different from the first ground terminal; a low pass filter including a first inductor, a first capacitor, and a second capacitor, the first inductor being provided in an input/output path of signal, the first capacitor being provided in a first path connecting the first ground terminal and a first node of the input/output path on one end portion side of the first inductor, the second capacitor being provided in a second path connecting the second ground terminal and a second node of the input/output path on another end portion side of the first inductor; and a second inductor connected in series to the second capacitor in a path connecting the second capacitor and the second ground terminal, the path being part of the second path, wherein the first path and the second path are connected to one another in between the first node and the second node via the first inductor and not connected to one another by any path except a path between the first node and the second node. As described above, by having the configuration in which the first path and the second path are not connected to one another by any path except the path between the first node and the second node, an attenuation pole generated by LC resonance of the second inductor and the second capacitor can be maintained. This enables to suppress the degradation of attenuation outside the pass band of the low pass filter. The filter module may further include: a multilayer substrate; and a mount component mounted on the multilayer substrate, wherein the first ground terminal and the second ground terminal may be formed on the multilayer substrate, at least part of the low pass filter may be included in the mount component, and at least one of the second inductor and the second capacitor may be included in at least one of the multilayer substrate and the mount component. This enables to form at least part of the low pass filter using the mount component and to provide the filter module having a stable attenuation characteristic. The filter module may further include a ground electrode provided in a path connecting the first capacitor and the first ground terminal, the path being part of the first path, wherein the ground electrode may be provided in inside of the multilayer substrate and may not be connected to the second path in the inside of the multilayer substrate. As described above, by having the structure in which the ground electrode provided in the multilayer substrate is not connected to the second path in the inside of the multilayer substrate, it becomes possible to hinder a signal having entered the ground electrode from going into the second path. This enables to maintain an attenuation pole generated by LC resonance of the second inductor and the second capacitor and to suppress the degradation of attenuation outside the pass band of the low pass filter. The at least one of the second inductor and the second capacitor may be provided in inside of the multilayer substrate. As described above, by providing at least one of the second inductor and the second capacitor in the inside of the multilayer substrate, a design change of the inductance value of the second inductor or the capacitance value of the second capacitor can be made easily, and this enables to form an attenuation pole using LC resonance of the second inductor and the second capacitor in a required frequency band. This enables to suppress the degradation of attenuation outside the pass band of the low pass filter. A filter module according to one aspect of the present disclosure includes: a first ground terminal; a second ground terminal that is different from the first ground terminal; a high pass filter including a first capacitor, a first inductor, and a second inductor, the first capacitor being provided in an input/output path of signal, the first inductor being provided in a first path connecting the first ground terminal and a first node of the input/output path on one end portion side of the first capacitor, the second inductor being provided in a second path connecting the second ground terminal and a second node of the input/output path on another end portion side of the first capacitor; and a second capacitor connected in series to the second inductor in a path connecting the second inductor and the second ground terminal, the path being part of the second path, wherein the first path and the second path are connected to one another in between the first node and the second node via the first capacitor and not connected to one another by any path except a path between the first node and the second node. As described above, by having the configuration in which the first path and the second path are not connected to one another by any path except the path between the first node and the second node, an attenuation pole generated by LC resonance of the second capacitor and the second inductor can be maintained. This enables to suppress the degradation of attenuation outside the pass band of the high pass filter. The filter module may further include: a multilayer substrate; and a mount component mounted on the multilayer substrate, wherein the first ground terminal and the second ground terminal may be formed on the multilayer substrate, at least part of the high pass filter may be included in the mount component, and at least one of the second inductor and the second capacitor may be included in at least one of the multilayer substrate and the mount component. This enables to form at least part of the high pass filter using the mount component and to provide the filter module having a stable attenuation characteristic. The filter module may further include a ground electrode provided in a path connecting the first inductor and the first ground terminal, the path being part of the first path, wherein the ground electrode may be provided in inside of the multilayer substrate and may not be connected to the second path in the inside of the multilayer substrate. As described above, by having the structure in which the ground electrode provided in the multilayer substrate is not connected to the second path in the inside of the multilayer substrate, it becomes possible to hinder a signal having entered the ground electrode from going into the second path. This enables to maintain an attenuation pole generated by LC resonance of the second capacitor and the second inductor and to suppress the degradation of attenuation outside the pass band of the high pass filter. The at least one of the second capacitor and the second inductor may be provided in inside of the multilayer substrate. As described above, by providing at least one of the second inductor and the second capacitor in the inside of the multilayer substrate, a design change of the inductance value of the second inductor or the capacitance value of the second capacitor can be made easily, and this enables to form an attenuation pole using LC resonance of the second inductor and the second capacitor in a required frequency band. This enables to suppress the degradation of attenuation outside the pass band of the high pass filter. The multilayer substrate may include one or more ground electrodes, the one or more ground electrodes including the ground electrode, and the second path may not be connected to any of the one or more ground electrodes in the inside of the multilayer substrate. According to this, even in the case where a signal has entered into any of the ground electrodes inside of the multilayer substrate, because no ground electrode is connected to the second path, it becomes possible to hinder the foregoing signal from going into the second path. This enables to maintain an attenuation pole generated by LC resonance of the second inductor and the second capacitor and to suppress the degradation of attenuation outside the pass band of the low pass filter or the high pass filter. The two or more ground terminals including the first ground terminal and the second ground terminal may be formed on the multilayer substrate, and the second path may not be connected to any of the two or more ground terminals except the second ground terminal in the multilayer substrate. As described above, by making the second path as an independent path that is not connected to any ground terminal in the multilayer substrate except the second ground terminal, it becomes possible to hinder an unwanted signal from entering the second path. This enables to maintain an attenuation pole generated by LC resonance of the second inductor and the second capacitor and to suppress the degradation of attenuation outside the pass band of the low pass filter or the high pass filter. The filter module may have a structure in which the second inductor is provided in the inside of the multilayer substrate, and the second inductor does not overlap the ground electrode in a plan view of the multilayer substrate viewed from one principal surface side of the multilayer substrate. This enables to hinder an unwanted signal from entering the second path from the ground electrode. This enables to maintain an attenuation pole generated by LC resonance of the second inductor and the second capacitor and to suppress the degradation of attenuation outside the pass band of the low pass filter. The filter module may have a structure in which the second capacitor is provided in the inside of the multilayer substrate, and the second capacitor does not overlap the ground electrode in a plan view of the multilayer substrate viewed from one principal surface side of the multilayer substrate. This enables to hinder an unwanted signal from entering the second path from the ground electrode. This enables to maintain an attenuation pole generated by LC resonance of the second capacitor and the second inductor and to suppress the degradation of attenuation outside the pass band of the high pass filter. The filter module may include a first filter portion that is the foregoing filter module including the low pass filter, and a second filter portion that is the foregoing filter module including the high pass filter, wherein the input/output path of the first filter portion and the input/output path of the second filter portion may be connected to one another in series. As described above, by including the first filter portion including the low pass filter and the second filter portion including the high pass filter in the filter module, the filter module including a band pass filter having an excellent attenuation characteristic can be provided. The filter module may include a first filter portion that is the foregoing filter module including the low pass filter and a second filter portion that is the foregoing filter module including the high pass filter, wherein the mount component of the first filter portion and the mount component of the second filter portion may be formed into a same single mount component, and the multilayer substrate of the first filter portion and the multilayer substrate of the second filter portion may be formed into a same single multilayer substrate. As described above, by forming the first filter portion including the low pass filter and the second filter portion including the high pass filter in the filter module into a single mount component, at least part of a band pass filter can be formed as the mount component, and the filter module having a stable attenuation characteristic can be provided. A high frequency module according to one aspect of the present disclosure includes the foregoing filter module and a mounting board on which the filter module is mounted. This enables to provide the high frequency module including the filter module that enables to suppress the degradation of attenuation outside the pass band of the low pass filter of the high pass filter. Other features, elements, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of preferred embodiments of the present disclosure with reference to the attached drawings.
148,381
11399258
BACKGROUND Over many years now the desire to know the position of a mobile object has been the subject of research, publications, patents, and development of intellectual property and trade secrets. The early efforts in position knowledge were limited by technology. The tools for the knowledge of position determination are mostly of “static” nature. That is, the position of a mobile object (which may herein be referred to as a “mobile”) is known at a specific time and place after some measurements are made. After a certain length of time has elapsed, measurements are taken again, and the new position of the mobile is recorded. An example of static measurements for position determination is that of imaging satellites, which are still widely used today. Using an imaging satellite, the location and characteristics of a certain target are acquired when the satellite passes over the target, and are acquired again when the satellite passes over the target a few hours later. The motion of the target, if any, is then measured by correlating the previous and after images to determine the target displacement. Much more recent technology for tracking the positioning and movement of targets has been in the form of RFID technology. U.S. Pat. Nos. 8,629,762, 8,838,135, 8,842,013, 8,866,615, 9,291,699, 9,332,394, 9,338,606, 9,472,075, and 9,619,679 are based on RFID technology. Using RFID technology, the moving object is first affixed or tagged with a passive tag and the object movement is then tracked using active RFID tags located at strategic locations throughout a workspace of interest where the object will move about. This is considered a “dynamic” positioning determination. As the objects moves along, and the passive RFID transceivers communicate with the active RFID transceiver, the locations of the objects are registered. Only through the dynamic interlocking of communications between the RFID transceivers can the positions of moving objects can be known. Many of previously filed and issued patents use different techniques or modalities of dynamic position determination. Another example of dynamic positioning technology is in the use of laser technology (U.S. Pat. Nos. 8,565,913 and 9,360,300). Other previously filed and issued patents disclose developing technologies that make different attempts at methods for position determination using a combination of existing technologies such a mobile computing (U.S. Pat. Nos. 9,043,069, 9,177,476), parking technology (U.S. Pat. Nos. 8,395,968, 9,064,414, 9,123,034), and a variety of sensors, radars, range finders, communications devices such as cell phones and other handsets, navigational aids, and other RF transmission devices (U.S. Pat. Nos. 8,284,100, 8,428,913, 8,442,482, 8,725,416, 8,929,913,8954292, 9071701, 9094816, 9339990, 9295027, 9369838, 9373241, 9386553, 9485623, 9641978, 9734714, 6501955, 5379047, 6021371, 7489240, 6907224, 9749780 and others). Presently, the most advanced and most popular positioning determination method for mobiles or stationary objects is the Global Position System (GPS) as shown in U.S. Pat. Nos. 8,478,299, 9,274,232, and 9,612,121. GPS is categorized herein as a “continuous” positioning determination method, and it has been available to the public for several years now. Continuous position determination means that an object with GPS technology can be continuously tracked and its position can be determined without any elapsed time if the object can continuously receive GPS signaling from GPS satellites. Therefore, for GPS technology, continuous tracking is dependent on the uninterrupted availability of GPS received signals. Current geo positioning applications such as GPS, rely on four satellites to triangulate their location. For the most part, these systems return accurate results except when operating within the cement canyons of densely populated cities and geographic obstructions. In densely populated cities, buildings' “shadows” make it difficult for the Global Navigation Satellite Systems (GNSS) to perform accurately. Without continuous direct received signals from four or more GPS satellites, a precise positioning cannot be determined. The positional accuracy of a GPS system, assuming no fading and multipath, is on the order of 15-30 feet. In congested structural environments GPS signals have troubles being acquired. The technology for position determination using GPS is based on the time of arrival (TOA) and the time of reception (TOR) of the GPS signal by the GPS receiver and the triangulation of the four GPS received signals. There can't be any lapse in TOA and TOR if continuous position determination is desired. To compensate for the deficiencies in signal coverage due to physical obstructions in the environment, and to improve the accuracy of GPS positioning technology, a strategy known as “differential GPS” is used, where corrections are made to the measurements by a mobile receiver (user) by using as reference the measurements done by the nearest fixed GPS base station using the same four GPS satellites. In a cellular phone system where mobiles (e.g., people) are equipped with cellular technology and the cellular technology is equipped with GPS receivers, as the mobile object moves, the GPS differential position of the mobile unit also moves. The mobile unit can move through an extensive route and the cell towers will track the GPS position along the route. The “hand-over” of the tracking from one cell tower to the next occurs when the signal strength received at one tower decreases as the signal strength received at another tower increases. There is continuous communication among the towers as the hand-over occurs. However, even with all the advances in GPS positioning technology, GPS can only perform the function of a “beacon” in space. To the user, GPS positioning is nothing more than an electrical beacon overlaid on a geographic information system (GIS) map on the user's mobile device (e.g., the GIS of a Google map on a cellular phone). The only reason this beacon is successfully tracked is because of cellular technology. The two technologies (GPS and cellular) are unrelated, even though they complement each other concerning the subject of positioning. Therefore, there is a need for a more accurate determination of positioning (presently between 15 to 30 feet as provided by GPS) for a mobile system. It would be ideal to determine the position of an object or a mobile accurately to within several inches or centimeters of uncertainty. A much more accurate position determination of mobiles is needed to: a) avoid collisions among mobiles, b) enable the mobiles to avoid obstacles in their paths, c) enable the mobiles to navigate autonomously. If there is a need for autonomous movement for a mobile (e.g., Google car) there needs to be a great accuracy in the knowledge of mobile location, d) enable the mobile to navigate in congested physical environments and yet be able to distinguish among the paths of different mobiles, and e) enable the mobiles to not always rely on GPS technology, especially when GPS signaling is not available or is being obstructed. It would also be of great advantage for mobiles to decrease their dependency on the effects of shadow issues (e.g., multipath and fading) which are common and obstruct GPS positioning. There is also a need to establish data communications with the mobile system while the mobile is being tracked, a capability not available in GPS positioning since GPS signaling behaves only as an electronic beacon. For example, an airborne drone can be accurately tracked by a futuristic non-GPS system while at the same time the futuristic non-GPS system can get information about the drone's flight path and the status of its instrumentation. This futuristic system can also provide information to the drone such as in the form of commands or telemetry information. There is even a foreseen need, which can also be realized, for mobiles to communicate with each other, and within the framework of inter-mobile communications. Furthermore, there is a foreseen need for mobiles to know not only their own position (known as absolute positioning), but also the position of the other neighboring mobiles circulating nearby (i.e., the concept of relative positioning) within a prescribed distance. Finally, there is a foreseen need to measure the speed and relative direction of motion of the mobiles. These three additional capabilities, inter-mobile communication, relative positioning, and velocity components, are not presently available in GPS or any other positioning technology, but they are highly desirable for the technological future of mobile systems. SUMMARY The present invention may include an autonomous transceiver positioning system (ATPS) which provides a ground-based autonomous wireless system that accurately determines the position of a moving or stationary object. For a moving object, the ATPS may provide position determination with an accuracy of several centimeters. The ATPS may also provide velocity (speed and direction) determination for a moving object. For a stationary object, the ATPS may provide position determination with an accuracy of several centimeters. The ATPS may be able to track the positions of multiple objects simultaneously and continuously within a defined workspace. The ATPS may include multiple autonomous wireless interrogators (AWIs) on fixed ground locations within a defined space of interest and multiple autonomous wireless responders (AWRs) affixed to the moving and/or stationary objects. The ATPS may use an advanced form of RFID inspired technology such that the AWIs may be able to determine, via hardware and software implementation, the position and tracking of multiple AWRs, and the AWRs may be able to communicate with multiple AWIs. The ATPS may also enable the AWRs to inter-communicate among each other using the AWIs, and the AWIs themselves can also inter-communicate with each other. Therefore, the ATPS may behave as a closed loop system. The coverage of the ATPS is only limited by the numbers of AWIs available and their coverage, and therefore can be expanded to suit an application. Therefore, the coverage of the ATPS is dependent on the coverage of the AWIs. The ATPS, though essentially a closed loop, also has external access points for different external interfaces. These external interfaces enable the ATPS to access the world wide web (WWW) and other future forms of external sources of information. The ATPS may be an autonomous wireless system that is intentionally deterministic from its creation. All the elements of the ATPS may be for determining the accurate location and tracking of an object in a confined space (also known as a workspace). In the ATPS, location is not determined from the manipulation of incidental knowledge that is available from other existing technologies, including wireless, which serve other purposes. Rather, the ATPS uses advanced technologies to develop new approaches for position determination, which means that all the elements of the technology may be specifically designed for position determination. The ATPS has the capability of locating and tracking the position of multiple objects (AWRs) simultaneously as they move. In addition to position determination, the ATPS can also track simultaneously the direction of motion of multiple objects and the speed of multiple objects. The number of objects that ATPS can track is limited only by the number of wireless AWIs available in the defined space. A capability of the ATPS is that the system can facilitate large amounts of data exchanges within a closed loop consisting of AWIs and AWRs. That is, the AWRs being tracked can exchange data among themselves through the wireless AWIs which are tracking the AWRs. In the simplest form, this data exchange consists of information revealing the relative position of one AWR with respect to other AWRs and the velocity vectors for each of the AWRs. Larger volumes of data exchanges can also be achieved among the AWRs and among AWIs. For example, larger data exchanges can be used for providing diagnostics, instructions & commands, and many other types and information with uses that are consistent with the potential different applications. The AWIs may have nine major sub-systems, and each subsystem may be on a different respective electronic board. All the boards in the AWIs may be interconnected and may include: a) a transceiver sub-system to communicate with AWRs (the transceiver sub-system may also include a GPS receiver); b) a microprocessor-based sub-system to process data, commands, and implement embedded software algorithms; c) a positioning electronic board including electronics responsible for calculating the position and velocity of the AWR transceiver, and having ASIC and FPGA electronics in addition to interface electronics; d) a digital signal processing sub-system to process analog and digital data; e) power supply and power distribution; f) memory; g) an interfaces board to account for multiple interfaces such as remote access, hardware testing, antennas, and externally- and internally-generated data; h) antennas and their feed network; and i) embedded software. There are many potential applications of the ATPS, but the most significant one is in autonomous vehicles (e.g., airborne drones and self-drive automobiles). Other potential applications include data off-loading from autonomous vehicles, smart parking, guidance of pedestrians with disabilities, social mobile gaming applications where game-play is dependent upon precise geo-location, delivery tracking, emergency services, cell phones and many other applications. The ATPS is a ground-based wireless electronic system with advanced electronic hardware which uses advanced RFID inspired modes (interrogating and responding) of operation. The system includes autonomous wireless transceivers electronics known as interrogators (AWIs). Multiple interrogators (AWIs) work in an ensemble mode to track the position and velocity components (speed and direction) of any object (mobile or stationary) which is equipped with another type of autonomous wireless transceiver electronics known as responders (AWRs). AWIs are stationary and can simultaneously track multiple AWRs. A variety of beamforming antennas and smart antennas are used on the AWIs. In some embodiments omnidirectional antennas are used for AWRs. The number of AWRs that can be tracked is only limited by the number of AWIs available. AWIs are capable of autonomously communicating with each other. AWRs can autonomously communicate with several AWIs. Position and velocity components of AWRs can be accurately measured in cm and cm/sec respectively. A defined workspace for the tracking of AWRs is defined by the number of AWIs available. As the AWRs move through the defined workspace, the AWIs have the capability of autonomously transferring (or handing over) to other AWIs the tracking of AWRs that move within AWIs' workspace. Therefore, the AWRs are always being tracked, but the responsibility of tracking the AWRs changes from previous AWIs to newer AWIs that are closer to the AWRs as the AWRs move along. The ATPS electronic system described above may enable AWIs to determine the position and velocity of individual AWRs. The AWIs also may be capable of determining the relative position and velocity of AWRs with respect to other AWRs. The ATPS can facilitate data exchanges within a closed loop consisting of AWIs and AWRs. For example, the AWRs being tracked can exchange data among themselves through the wireless interrogators (AWIs) which are tracking them. The AWIs in the ATPS may have nine major sub-systems, with each subsystem being represented by an electronic board. All the boards in the AWIs may be interconnected: a) transceiver sub-system to communicate with AWRs. The transceiver also contains a GPS receiver, b) a microprocessor based sub-system to process data, commands, and implement embedded software algorithms, c) the positioning electronic board is the electronics responsible for calculating the position and velocity of the AWR transceiver. It is composed of ASIC and FPGA electronics in addition to interface electronics, d) a digital signal processing sub-system to process analog and digital data, e) power supply and power distribution, f) memory, g) interfaces board to account for multiple interfaces such as remote access, hardware testing, antennas, and external and internal-generated data, h) antennas and their feed network, and i) embedded software. The ATPS may include certain elements of the embedded software that are of artificial intelligence nature. The AWRs in the ATPS may have three major components: a) a transceiver system to communicate with AWIs, b) microcontroller system, and c) antennas. The AWRs may be battery powered. Batteries may last about one year on average. The AWIs in the ATPS may include electronics such as ASICs, FPGAs, control electronics, telemetry, data manipulation, processing and handling, memory management, data storage, smart antennas, and PLC. These electronics are used for all eight major subsystems. The AWIs in the ATPS may be matched with installation fixtures which enable AWIs to be installed on many types of vertical and horizontal surfaces. The AWRs in the ATPS may be matched with installation fixtures which enable AWRs to be installed on many types of vertical and horizontal surfaces. The AWIs in the ATPS may be able to simultaneously track the motions of AWRs up to 100 meters away. The AWIs can track hundreds of AWRs simultaneously. The AWIs may be approximately the size and shape of a half-gallon milk carton. The AWRs may be the size of, or slightly larger than, a credit card. The ATPS electronic system can be configured to track the motion of objects in the form of airborne and/or terrestrial autonomous mobile devices. This configuration consists in equipping the mobile devices with AWRs electronics. The AWRs may serve as active tags in the mobile devices moving within the AWIs workspace. In the ATPS the AWRs may also have passive tags. The ATPS electronic system may be configured to accurately track the motion of AWRs as they move through the AWIs workspace. As AWRs move away from some AWIs and move closer to other AWIs in the workspace, the task of tracking the AWRs is autonomously handed over from those AWIs farther away to those AWIs closest to the AWRs (the AWIs closest to the AWRs may be those AWIs experiencing higher signal strength when communicating with AWRs). A series of software driven algorithms embedded in all AWIs may be responsible for the handing over process. Several AWIs in the ATPS electronic system may be connected to the internet. The number of AWIs connected to the internet may be correlated to the size of the AWIs workspace and to the specific application of that workspace. The connection to the internet may be via Wi-Fi signals. Communications among the AWIs may be accomplished via WiMAX, Wi-Fi or W-Fi-direct depending on the availability to the AWIs workspace to access such modes of communications. The communication link between AWIs and AWRs may be at 3.2 GHz. The AWIs in the ATPS can be remotely accessed for programming and set-up purposes to tailor their functions to the requirements and environments of the AWIs' given workspace. In certain embodiments of the ATPS, AWIs and AWRs can use different types of directional and omnidirectional antennas instead of smart antennas or in addition to smart antennas. Using directional and omnidirectional antennas may require an increase in the number of AWIs, and this approach may cause an increase in the number of these antennas as well as change in the location and velocity calculations algorithms. Using directional and omnidirectional antennas may also decrease the overall implementation costs. For example, if velocity calculations are not required and only location position is required, smart antennas may not be needed. In certain embodiments of the ATPS, the AWRs architecture can be a passive tag with no electrical interfaces and only a microcontroller unit instead of a microprocessor-based system. This approach requires only minimum data exchange between AWIs and AWRs. In certain embodiments of the ATPS, the ATPS can be integrated with cell phone tower base stations where the cell tower accommodates an additional set of antennas for the AWIs, and the cell base station integrates with the additionally needed AWIs electronics. In certain embodiments of the ATPS, the ATPS workspace can be aggregated in the form of clusters, as in cell phone towers communications, and where communications among the AWIs can be handed over among clusters. This approach may be greatly facilitated if AWIs' locations are as described in the immediately preceding paragraph. In certain embodiments of the ATPS, the AWRs can be integrated as a feature in cell phones. In certain embodiments of the ATPS, the location of AWIs within their workspace can be any fixed location that can accommodate solar power or power provided by public utility companies. The AWIs in the ATPS can communicate and provide data exchange with non-autonomous (e.g., manned) entities which the AWIs may access remotely. All AWIs in the ATPS may have GPS capability. In certain embodiments some AWRs may have GPS capability. In certain embodiments of the ATPS, the AWIs and AWRs can not only be used in open spaces but also in closed spaces, such as in parking structures and inside buildings. In certain embodiments of the ATPS, the locations of the AWIs can be off-ground and the AWRs can be airborne. The ATPS can be habilitated for many applications such as autonomous vehicles like airborne drones and self-drive automobiles, data off-loading from autonomous vehicles, smart parking, pedestrians with disabilities, social mobile gaming applications where game-play is dependent upon precise geo-location, delivery tracking, emergency services, cell phones and many other applications that require accurate tracking and position determination. In one embodiment, the invention comprises an arrangement for determining a position of an object within a space. The arrangement includes a first wireless transceiver carried by the object and transmitting a signal including time information. At least four second wireless transceivers are fixedly mounted within the space. Each of the second wireless transceivers receives the signal. At least one of the second wireless transceivers calculates a position of the object based upon the time information and respective times at which each of the second wireless transceivers receives the signal. In another embodiment, the invention comprises an arrangement for informing a moving object of its position within a space. The arrangement includes a first wireless transceiver carried by the moving object and transmitting a first signal including time information. At least four second wireless transceivers are fixedly mounted within the space. Each of the second wireless transceivers receives the first signal. At least one of the second wireless transceivers calculates a position of the object based upon the time information and respective times at which each of the second wireless transceivers receives the first signal. At least one of the second wireless transceivers transmits a second signal to the moving object indicative of the calculated position of the object. In yet another embodiment, the invention comprises an arrangement for managing occupancy of a parking area by vehicles each carrying a first wireless transceiver. The arrangement includes at least four earthbound second wireless transceivers associated within the parking area. Each of the second wireless transceivers receives a respective first signal from each of the vehicles occupying the parking area. Each of the first signals includes time information. An electronic processor is communicatively coupled to the four earthbound second wireless transceivers and calculates a respective position of each of the vehicles occupying the parking area based upon the time information and respective times at which each of the second wireless transceivers receives the first signal. It is determined which parking spaces of a plurality of parking spaces within the parking area are occupied by the vehicles. The determining is based on the calculated positions of each of the vehicles occupying the parking area. When the ATPS is designed for ground system (i.e. ATPS-Ground), an AWI is renamed a Ground-Based Transceivers (GBT) and an AWR is renamed as the mobile-with-RFID-active-tag or mobile/RFID for short. In certain embodiment, the ATPS-Ground is composed of multiple clusters of four (4) GBTs each. The GBTs are identical in design. The GBTs will track the motion of mobiles/RFID within a cluster and provide further capabilities for the tracking of the mobiles/RFID as they move from one cluster to the next cluster. As the mobiles/RFID move from cluster to cluster they can communicate with GBTs and also with external wireless devices via Wi-Max, Wi-Fi, 5G, etc. The GBTs within a cluster exchange mobile/RFID information with each other as the mobile moves within a cluster and such tracking information is handed over to the next cluster as the mobile/RFID moves into the next cluster. In certain embodiment, the mobile/RFID responds quickly to the Pings from each of the four (4) GBTs within a cluster. Timing information received from both, the mobile/RFID and the GBTs, is used to calculate the distance from each GBT to the mobile/RFID on a continuous basis as the mobile/RFID moves through the clusters of four (4) GBTs. The timing data is also used to calculate the coordinates of the mobile/RFID on a continuous basis. Within each cluster of four (4) GBTs, and based on timing data, one of the GBTs within a cluster assumes a commanding role over the other three (3) GBTs of the cluster. The commanding GBT, to be named the designated GBT, will carry the responsibility of handing over the tracking of the mobile/RFID to the following cluster and will perform some of the most crucial measurements concerning the mobiles/RFID, such as the coordinates of the mobile/RFID, the mobile/RFID velocity, and the relative velocity of the mobile/RFID with its nearest neighbor. Using the timing information acquired by the GBTs, the position of the mobile/RFID, the velocity of the mobile/RFID, and the relative velocity of the mobile/RFID with its nearest neighbor is accomplished by a complex design of four (4) field programmable gate arrays (FPGAs), a digital signal processing (DSP) interface block, and two (2) processors. The four processors are named as followed: (a) the main processor, and (b) the application processor. The four FPGA are named as followed: (a) master controller, (b) external input controller, (c) position and velocity determination hybrid system (PVD-HS), and (d) the App processor interconnect. The complex design also incorporates three (4) SRAM architectures named as followed: (a) the PVDS-HS, (b) the FPGA controller, (c) the FPGA-App processor, and (d) the external input controller SRAM memory. The position of the mobile/RFID, the velocity of the mobile/RFID, and the relative velocity of the mobile/RFID with its nearest neighbor can also be accomplished by using beam forming antennas arrays in each of the ground-based transceivers (GBTs). The beamforming antennas can calculate the angle of arrival (AOA) between the mobile/RFID and the antenna array. The AOA can be used to calculate the coordinates of the mobile/RFID but such will be a secondary capability since the coordinates of the mobile/RFID can be more accurately determined from timing measurements analyzed by the PVD-HS. In certain embodiment external commands and external networking (e.g. Wi-Fi, Wi-Max, 5G) can be interfaced with a GBT. Such interface has its own FPGA controller, memory and interface circuitry. The interface circuitry connects to the main bus (known as system bus) within a GBT. Likewise, all data generated within a GBT can be externally interfaced to a PCI bus for information, testing or troubleshooting purposes. Therefore, each GBT and its internal electronics can be externally interface to receive data and/or transmit data. The tasks for position of the mobile/RFID, the velocity of the mobile/RFID, and the relative velocity of the mobile/RFID with its nearest neighbor can be accomplished with FPGA designs and multiprocessors assistance. The FPGA designs perform mathematical operations embedded in the hardware for maximum speed and accuracy. The multiprocessors perform data flow management and some final mathematical operations. The combined approach is a way to maximize data gathering and processing for constantly tracking services of multiple mobiles/RFID. The four (4) BGTs in a cluster are identical in design and functional capabilities but only one ground-based transceiver (GBT) can become the designated (D) GBT, i.e. D_GBT. The D_GBT controls the functions of the remaining three (3) GBTs in a cluster while the mobile/RFID moves through the cluster. The GBT closest (in distance) to the mobile/RFID when the mobile/RFID enters the cluster becomes the D_GBT. The distance is determined by timing analysis of the signals between the GBTs and the mobile/RFID. The choice of which GBT is the D_GBT is mandated by the GBT which has the lowest response time (i.e. the time it takes for the acknowledge signal (response) from the mobile/RFID to travel between the mobile/RFID and each GBT when the mobile/RFID get pinged by the four (4) GBTs). For each GBT, the timing data is first processed by the DSP block which received the information from the RF subsystem. The main processor and the PVD-HS perform the data management which calculates the lowest response time. The lowest response time data is sent out via the DSP block and the RF-subsystem to each GBT. One GBT becomes the “winner” and becomes the D_GBT when it informs the other GBTs that such GBT is closest to the mobile/RFID that just entered the cluster. Timing analysis of the signals being received and transmitted by the mobile/RFID, as well as the timing analysis of the signals being transmitted and received by the ground-based transceivers (GBT) is performed by FPGAs which have been designed to perform multiple analytical and arithmetic operations. Separate FPGAs are also designed to perform control functions for the analytical and arithmetic operations being performed. More advanced operations related to position determination and vector velocities of the mobile are performed by microprocessor working in conjunction with the FPGAs. The GBT design contains interface circuits to access data transport venues which allow the data to be sent externally and internally. There is interface circuitry design to send the raw timing data to any applicable non-wireless (i.e. dedicated hardwired) external application. The raw timing data can be used for analyzing data quality, data errors, data integrity, diagnostics, troubleshooting, and for other independent analyses. There is interface circuitry design to allow timing data to be sent via a system bus. The system bus communicates essentially with all the major data generation center within the GBT. There is interface circuitry to allow external wireless links (Wi-Fi, Wi-Max, 5G, etc.) to be connected directly with the system bus. The external links allow for timing information and other data being generate to be sent wirelessly for other applications.
184,719
11326063
TECHNICAL FIELD This disclosure relates to a fibrous carbon nanostructure dispersion liquid. BACKGROUND Fibrous carbon materials, and in particular fibrous carbon nanostructures such as carbon nanotubes (hereinafter, also referred to as “CNTs”), have been attracting interest in recent years as materials having excellent electrical conductivity, thermal conductivity, and mechanical properties. However, fibrous carbon nanostructures such as CNTs are fine structures having nanometer-size diameters, which makes handling and processing of individual nanostructures difficult. Therefore, it has been proposed that, for example, a solution containing dispersed CNTs may be prepared and applied onto a substrate or the like in order to cause a plurality of CNTs to assemble into the form of a film to form a carbon nanotube film (hereinafter, also referred to as a “CNT film”) that can then be used as a conductive film or the like. A CNT film such as described may also be referred to as “buckypaper”. In one known example of an application liquid in which CNTs are dispersed, the application liquid contains high-purity CNTs that are dispersed in a solvent (refer to PTL 1). CITATION LIST Patent Literature PTL 1: U.S. Pat. No. 7,556,746 B2 SUMMARY Technical Problem However, CNT aggregation has a higher tendency to occur in the case of the application liquid described in PTL 1 as a consequence of pretreatment being performed to increase CNT purity. This reduces light absorbance of the application liquid and results in inadequate CNT dispersibility in the obtained application liquid. Since a CNT film formed using an application liquid with inadequate dispersibility has poor electrical conductivity and strength, there is currently demand for fibrous carbon nanostructure-containing dispersion liquids having excellent dispersibility. Accordingly, an objective of this disclosure is to provide a fibrous carbon nanostructure dispersion liquid having excellent fibrous carbon nanostructure dispersibility. Solution to Problem The inventor conducted diligent studies with the aim of solving the problems set forth above. Through these studies, the inventor discovered that a dispersion liquid having excellent fibrous carbon nanostructure dispersibility can be obtained by using specific fibrous carbon nanostructures, and thereby completed this disclosure. Specifically, this disclosure aims to advantageously solve the problems set forth above by disclosing a fibrous carbon nanostructure dispersion liquid comprising: one or more fibrous carbon nanostructures having a percentage mass loss of 3.0 mass % or less upon heating from 23° C. to 200° C. at a heating rate of 20° C./min in a nitrogen atmosphere as measured by thermogravimetric analysis. A dispersion liquid such as set forth above has excellent fibrous carbon nanostructure dispersibility. The presently disclosed fibrous carbon nanostructure dispersion liquid preferably does not substantially contain a dispersant. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. In the presently disclosed fibrous carbon nanostructure dispersion liquid, the fibrous carbon nanostructures preferably have a concentration per 1 L of the solvent of 1 mg/L or more. A dispersion liquid such as set forth above can form a carbon film having even better electrical conductivity and strength. The presently disclosed fibrous carbon nanostructure dispersion liquid preferably does not substantially contain particles having a number-basis modal diameter of more than 500 nm. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, this enables formation of a uniform carbon film and production of an electronic component having stable characteristics. In addition, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. Moreover, the presently disclosed fibrous carbon nanostructure dispersion liquid preferably does not substantially contain particles having a number-basis modal diameter of more than 300 nm. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, this enables formation of a uniform carbon film and production of an electronic component having stable characteristics. In addition, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. In the presently disclosed fibrous carbon nanostructure dispersion liquid, metal impurities preferably have a concentration of less than 1×1018atoms/cm3. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, this enables production of an electronic component having stable characteristics and long service life. In addition, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. Moreover, in the presently disclosed fibrous carbon nanostructure dispersion liquid, metal impurities preferably have a concentration of less than 15×1010atoms/cm3. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, this enables production of an electronic component having stable characteristics and long service life. In addition, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. The presently disclosed fibrous carbon nanostructure dispersion liquid preferably does not substantially contain sediments and aggregates of the fibrous carbon nanostructures. A dispersion liquid such as set forth above has low impurity content and can form a carbon film having even better electrical conductivity and strength. Moreover, the obtained dispersion liquid has even better fibrous carbon nanostructure dispersibility. The presently disclosed fibrous carbon nanostructure dispersion liquid is preferably used as a constituent material of a semiconductor device. Advantageous Effect According to this disclosure, it is possible to provide a fibrous carbon nanostructure dispersion liquid having excellent fibrous carbon nanostructure dispersibility.
112,088
11534525
CROSS-REFERENCE TO RELATED APPLICATIONS This application is the U.S. national phase entry of PCT/GB2014/051646, with an international filing date of May 29, 2014, which claims priority to and the benefit of GB 1309607.8, filed on May 29, 2013, the contents of which are hereby incorporated by reference in their entirety. TECHNICAL FIELD The present invention relates to a process for producing a low endotoxin alkali chitosan, and also to a process for producing low endotoxin neutral chitosan, chitosan salt and chitosan derivatives, and to the products of such processes. BACKGROUND Chitosan is particularly useful in the preparation of haemostatic materials for use in controlling bleeding. Chitosan is a derivative of solid waste from shell fish processing and can be extracted from fungus culture. Chitosan is a water insoluble cationic polymeric material. Before using chitosan in haemostatic materials, it is often first converted into a water soluble salt. This way, the chitosan salt is soluble in blood to form a gel which stems blood flow. Chitosan salts are ideally suited for the applications described herein as chitosan is readily broken down in the body. Chitosan is converted to glucosamine by the enzyme lysozyme and is therefore excreted from the body naturally. It is not necessary to remove chitosan from the body. Furthermore, chitosan salts exhibit mild antibacterial properties and as such their use reduces the risk of infection. In order to utilise chitosan in the preparation of haemostatic materials that are suitable for use in controlling bleeding, it is necessary to ensure that the chitosan has a sufficiently low concentration of endotoxin. Endotoxin is a lipopolysaccharide existing on the surface of the outer membrane of gram-negative bacteria. Endotoxins are highly toxic to mammals, particularly humans, and are notoriously difficult to remove from materials. Endotoxins may become pyrogenic when released into the bloodstream or other tissue where they are not usually found. Thus, endotoxin must be removed from pharmaceutically acceptable products. Treatments to remove or destroy pyrogens, particularly endotoxin, are referred to as methods of ‘depyrogenation’. Techniques for the depyrogenation of materials containing endotoxin include ion exchange chromatography, ultrafiltration, distillation and various chemical processes aimed at destroying endotoxin. WO2008063503 relates to a method of removing endotoxin from chitosan including the following steps:a) utilizing sterile pyrogen-free equipment and materials in a sterile environment;b) swelling chitosan containing endotoxins for up to 24 hours;c) dissolving 1 kg/25 L to 1.5 kg/25 L of the chitosan in 0.01M to 4.0M of a hydroxide base;d) continuously stirring the resulting chitosan base solution;e) heating the solution between 60-100° C. for 45 minutes to 4 hours with stirring;f) rinsing the solution with up to 10× volume of ultra-pure endotoxin-free water;g) neutralizing the solution to a pH between 6.8 and 7.5;h) forming an ultra-pure low endotoxin chitosan slurry and transferring to a endotoxin-free closed system;i) removing excess water from the slurry. This is a complicated and costly process, especially with the need for sterile equipment and the need to rinse the solution with 10× volume of endotoxin-free water. US2006293509 relates to a method of making a water soluble chitosan having low endotoxin by:(a) contacting water-insoluble chitosan with a basic solution for a first period of time of greater than 1 hour;(b) rinsing the water-insoluble chitosan to remove residual basic solution, desirably with endotoxin-free water;(c) partially acetylating the water-insoluble chitosan in a reaction solution containing a phase transfer agent;(d) dissolving the partially acetylated water-soluble chitosan in an aqueous solution containing a surfactant and having a pH of from about 7.0 at about 7.4;(e) adding a water-miscible solvent into the aqueous solution and further adjusting the pH of the aqueous solution to a pH of at least 8.0 to cause precipitation of water-soluble chitosan having low endotoxin content from the aqueous solution/water-miscible solvent mixture; and(f) optionally washing in a non-solvent such as isopropanol. However, this process is complicated and expensive and desirably involves using large quantities of endotoxin-free water or other liquids. The process also requires the use of phase transfer agents and takes place over a few hours. TW593342 relates to a method of reducing endotoxin in chitosan by:(a) dissolving chitosan containing endotoxin in an aqueous solution;(b) contacting the aqueous solution with a surfactant to form an insoluble solid and an aqueous solution reduced in the content of the endotoxin;(c) using a solid/liquid separation means to separate the solid from the aqueous solution. However, this process requires a surfactant to react with the dissolved chitosan to make an insoluble solid. The resulting solid will be a mixture of chitosan and surfactant or a reaction product between the chitosan and surfactant. The present invention aims to alleviate the aforementioned difficulties. SUMMARY According to a first aspect of the present invention, there is provided a process for producing a low endotoxin alkali chitosan, chitin or a derivative thereof, the process comprising the steps of:(a) contacting chitosan, chitin, a chitosan derivative or a chitin derivative with an alkali solution having a concentration of less than 0.25M to form a mixture; and(b) leaving the mixture for a period of less than 12 hours. The process of the present invention may further comprise the step (c) of drying the mixture. The process of the present invention provides an effective way of obtaining an alkali chitosan, chitin, chitosan derivative or chitin derivative having a low endotoxin concentration. Advantageously, the process does not require a washing step, a rinsing step, use of a surfactant or phase transfer agents, sterile equipment and/or the use of endotoxin free water. Further, specialist air filtration or sterile conditions are also not required. The process of the present invention preferably does not comprise a step of acetylating the chitosan. Further, the process of the present invention does not use endotoxin free equipment. This is particularly beneficial as it reduces the cost of the process compared to processes requiring such equipment. By the term ‘chitosan derivative’ it is meant herein a partially deacetylated chitin, which may have different percentages of deacetylation, as desired. Typically, the partially deacetylated chitin suitable for use in the present invention has a deacetylation degree above about 50%, more typically above about 75% and most typically 5 above about 85%. Also herein included within the term ‘derivatives’ are reaction products of chitosan or chitin with other compounds. Such reaction products include, but are not limited to, carboxymethyl chitosan, hydroxyl butyl chitin, N-acyl chitosan, O-acyl chitosan, N-alkyl chitosan, O-alkyl chitosan, N-alkylidene chitosan, O-sulfonyl chitosan, sulfated chitosan, phosphorylated chitosan, nitrated chitosan, alkalichitin, alkalichitosan, or metal chelates with chitosan, etc. Whilst the first aspect of the present invention provides a process for producing low endotoxin chitosan, chitin or a derivative thereof, it is described hereinafter in relation to chitosan for convenience and illustrative purposes only. The chitosan may be commercially available chitosan, such as food grade, medical grade or pharmaceutical grade chitosan. The process of the present invention may therefore be operable to provide low endotoxin alkali chitosan from commercially available chitosan. This is different to certain processes where endotoxins may be removed or reduced as part of a chitosan production process. Beneficially, the process of the present invention can be used to provide low endotoxin alkali chitosan from prepared chitosan that would otherwise have been unsuitable to the medical field due to its endotoxin concentration. The term alkali chitosan is used herein to refer to a chitosan composition having a pH value of greater than pH 7.5. The term alkali solution is used herein to refer to a solution having a pH value of greater than pH 7.5. Since the molecular weight of endotoxins can vary significantly, endotoxin concentration is measured in endotoxin units (EU) per gram of material. The measurement of endotoxin concentration is a quantification of endotoxin levels relative to a specific quantity of reference endotoxin. For example, in the present invention, the concentration of endotoxin is measured in endotoxin units (EU) per gram of chitosan. The term ‘low endotoxin’ is used herein to refer to an endotoxin concentration of less than 50 endotoxin units (EU) per gram of chitosan. The process of the present invention is thus suitable for making an alkali chitosan that has an endotoxin concentration of less than 50 EU/g. Preferably, the resulting alkali chitosan has an endotoxin concentration of less than 30 EU/g, more preferably less than 20 EU/g, more preferably less than 15 EU/g, even more preferably less than 10 EU/g and most preferably less than 5 EU/g. It has been found that low concentrations of alkali solution produce a product with desirable properties. The concentration of alkali solution used in the process may be 0.2M or less. Preferably, the concentration of alkali solution is from around 0.01M to 0.2M. More preferably, the concentration of alkali solution is from around 0.02M to 0.1M. The concentration of alkali solution may be around 0.04M to 0.06M, typically 0.05M. Concentrations of alkali solution can be up to around 0.01M, 0.05M, 0.10M, 0.15M, 0.20M or 0.25M. Good results have been observed with a concentration of 0.1M alkali solution. In some embodiments, the quantity of alkali solution to chitosan may be in the range of from about 1 part chitosan to about 10 parts alkali solution up to about 10 parts chitosan to about 1 part alkali solution. Preferably, the quantity of alkali solution to chitosan is about 1 part alkali solution to about 2 parts chitosan, more preferably about 1 part alkali solution to about 1 part chitosan. The alkali solution may comprise an alkali or alkaline earth component selected from the following, either alone or in combination: metal hydroxides, metal carbonates, metal bisulphites, metal persilicates, conjugate bases and ammonium hydroxide. Suitable metals include sodium, potassium, calcium, or magnesium. Preferably, the alkali component is sodium hydroxide, potassium hydroxide or sodium carbonate. Typically, sodium hydroxide is used. The alkali solution may be contacted with the chitosan by any suitable means known in the art. For example, the alkali solution may be sprayed onto the chitosan or the chitosan may be mixed with the alkali solution. Preferably, there is an even distribution of alkali contacted chitosan. Preferably, the chitosan is mixed with the alkali solution. At low molecular weights, the chitosan may completely or partially dissolve in the alkali solution. The chitosan may be mixed with the alkali solution in step (a) for up to around 30 minutes, more preferably for around 10 minutes. In some embodiments, the chitosan may be mixed with the alkali solution for greater than 30 minutes. In some embodiments, the chitosan does not dissolve in the alkali solution. In some embodiments, the chitosan does not swell in the alkali solution. In some embodiments, the alkali solution wets the chitosan without dissolving or swelling the chitosan. In some embodiments, the mixture of chitosan and alkali solution may be stirred intermittently for the duration of step (b). The mixture of chitosan and alkali solution is left for a period of time in which sufficient endotoxin is destroyed. The mixture of chitosan and alkali solution is left for a period of less than 12 hours. It has been discovered that leaving the chitosan and alkali solution having a concentration of less than 0.25M for a period of time of less than 12 hours before subsequent processing results in a desirably low endotoxin concentration in the resulting alkali chitosan. It is an advantage of the process of the present invention that the mixture can be left without the need for continued mixing of the chitosan with the alkali solution. In some embodiments, the mixture may be left in step (b) for a period of less than 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 hours. The mixture may be left in step (b) for a period of less than 10 hours, preferably less than 8 hours, more preferably less than 6 hours, even more preferably less than 4 hours and most preferably less than 2 hours. In some embodiments, the mixture may be left in step (b) for a period of more than 1 but less than 12 hours; more than 2 but less than 12 hours; more than 3 but less than 12 hours; more than 4 but less than 12 hours; more than 5 but less than 12 hours; more than 6 but less than 12 hours; more than 7 but less than 12 hours; more than 8 but less than 12 hours; more than 9 but less than 12 hours; more than 10 but less than 12 hours; or more than 11 but less than 12 hours. In some embodiments, the mixture may be left in step (b) for a period of between 1 to 11 hours, 1 to 10 hours, 1 to 9 hours, 1 to 8 hours, 1 to 7 hours, 1 to 6 hours, 1 to 5 hours, 1 to 4 hours, 1 to 3 hours or 1 to 2 hours. Thus, in some embodiments, the mixture may be left for a period of between 2 to 10 hours, 4 to 8 hours or 5 to 7 hours. In some embodiments, the mixture may be left in step (b) for a period of less than 1 hour, including less than 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, or 5 minutes. The mixture may be left for a period of less than three minutes, less than two minutes or less than one minute. In some embodiments, the mixture may be left in step (b) only for the period of time taken to prepare the mixture for a subsequent stage of processing, for example, the drying step (c). Good results have been observed when the mixture has been dried immediately following contacting chitosan with the alkali solution in step (a). In this context, immediately means that the mixture is only left in step (b) for the period of time it takes to prepare the mixture for the drying step (c). Typically, this is less than about 30 seconds, preferably less than 20 seconds and most preferably less than 10 seconds. Thus, according to an aspect of the present invention there is provided a process for producing a low endotoxin alkali chitosan, chitin or a derivative thereof, the process comprising the steps of:(a) contacting chitosan, chitin, a chitosan derivative or a chitin derivative with an alkali solution having a concentration of less than 0.25M to form a mixture; and(b) immediately drying the mixture. In such a process, the mixture is left in step (b) only for the time it takes to prepare it for the next stage of processing. For example, the mixture may be left in step (b) for the time it takes to prepare it for drying. The mixture may then be dried in a drying step (c). The mixture may be left to stand in step (b) at room temperature and pressure. By room temperature and pressure, it is meant a temperature of around 20-25° C. and a pressure of about 1 atmosphere (atm). Beneficially, the mixture does not need to be left in a sterile environment. The mixture is preferably stored in a clean container. The mixture may be stored under an inert atmosphere. The mixture may further comprise a preservative. Beneficially, the preservative may eliminate the risk of microbial growth that may develop, for example, when the mixture is left for a prolonged period. The preservative may be any preservative that is biocompatible and suitable for use in an alkali environment. Suitable preservatives include silver ions, zinc ions, chlorohexadine, or combinations thereof. The process of the present invention may or may not comprise the drying step. The drying step may be performed by any conventional drying means known in the art. Preferably, the drying step is performed in an oven or by filtration through an air dryer. Again, specialist sterile equipment is not required for the drying step. It has been discovered that, once the mixture has been dried in the drying step, the endotoxin level of the dry mixture does not noticeably increase over time. This is beneficial in that the mixture can be stored for a period of time prior to further processing. There is thus provided a low endotoxin alkali chitosan having an endotoxin concentration of less than 50 EU/g. The low endotoxin alkali chitosan may be water insoluble. At low molecular weights, the low endotoxin alkali chitosan may show some water solubility. According to a further aspect of the present invention, there is provided a low endotoxin alkali chitosan, chitin or a derivative thereof obtainable by the process as described herein. According to a further aspect of the present invention, there is provided an alkali chitosan, chitin or a derivative thereof comprising an endotoxin concentration of less than 50 EU/g. The alkali chitosan, chitin or a derivative thereof preferably has an endotoxin concentration of less than 30 EU/g, preferably less than 20 EU/g, more preferably less than 15 EU/g, even more preferably less than 10 EU/g and most preferably less than 5 EU/g. The low endotoxin alkali chitosan, chitin or a derivative thereof comprises alkali having a concentration of less than 0.25M. Preferably, the concentration is around 0.2M or less, more preferably from around 0.15M or less and even more preferably from around 0.1M or less. The low endotoxin alkali chitosan may be used as an intermediate in the manufacture of other chitosan products, such as for example, derivatives or copolymers or in the manufacture of low molecular weight chitosan or chitosan oligosaccharides. The low endotoxin alkali chitosan may also be useful as a raw material for the manufacture of other forms of chitosan or derivatives or copolymers, such as chitosan based fibres, fabrics, coatings, films, gels, solutions, sheets or foams. In particular, the low endotoxin alkali chitosan may be used in the preparation of other useful chitosan products having low concentrations of endotoxin, including neutral chitosan and chitosan salts and other chitosan derivatives, for example, carboxymethyl chitosan, hydroxyethyl chitosan, acyl chitosan, alkyl chitosan, sulphonyl chitosan, phosphorylated chitosan, alkylidene chitosan, metal chelates, chitosan chloride, chitosan lactate, chitosan acetate, chitosan malate, chitosan gluconate. Thus, according to a further aspect of the present invention there is provided a process for producing a low endotoxin neutral chitosan, chitosan salt or chitosan derivative comprising the step of contacting an alkali chitosan prepared by the process described hereinbefore with an acid. The process can provide medically useful neutral chitosan, chitosan salt or other chitosan derivative having low concentrations of endotoxin. The step of contacting the alkali chitosan with the acid may be performed before the drying step (c) described hereinabove in the process for producing a low endotoxin alkali chitosan. Alternatively, the step of contacting the alkali chitosan with an acid may be performed after the drying step (c) described hereinabove in the process for producing a low endotoxin alkali chitosan. In such embodiments, the process for producing a low endotoxin neutral chitosan, chitosan salt or chitosan derivative may comprise a further drying step after the step of contacting the alkali chitosan with an acid. The drying step may be performed by any conventional drying means known in the art. Preferably, the drying step is performed in an oven or by filtration of the product through an air dryer. The acid may be contacted with the alkali chitosan by any suitable means known in the art. For example, the acid may be sprayed onto the alkali chitosan or the alkali chitosan may be mixed with the acid. Preferably, the alkali chitosan is mixed with the acid. A neutral chitosan is referred to herein to mean a chitosan composition having a pH value of between about pH 6.5 and about pH 7.5, and preferably about pH 7. Thus, in order to prepare a neutral chitosan, the alkali chitosan may be mixed with an appropriate volume and/or concentration of acid to form a neutral solution having a pH of between 6.5 and 7.5. The volume and/or concentration of acid required to neutralise the alkali chitosan will be dependent on the pH of the alkali chitosan. Alternatively, in order to prepare a chitosan salt or chitosan derivative, the alkali chitosan may be mixed with a volume and/or concentration of acid in excess of that required to provide a neutral chitosan. A suitable acid for use in the present invention may be selected from the following, either alone or in combination: organic acids, carboxylic acids, fatty acids, amino acids, lewis acids, monoprotic acids, diprotic acids, polyprotic acids, nucleic acids and mineral acids. Suitable organic acids may be selected from the following, either alone or in combination: acetic acid, tartaric acid, citric acid, ascorbic acid, acetylsalicylic acid, gluconic acid and lactic acid. Suitable fatty acids may be selected from the following, either alone or in combination: myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, α-Linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid. Suitable amino acids may be selected from the following, either alone or in combination: histidine, lysine, aspartic acid, glutamic acid, glutamine, glycine, proline, taurine. Suitable mineral acids may be selected from the following, either alone or in combination: hydrochloric acid, sulphuric acid and nitric acid. Preferably, the acid selected for the neutralisation is hydrochloric acid. The acid may have a concentration of from about 0.001M acid up to the maximum possible concentration of acid. For example, the typical maximum concentration for sulphuric acid is around 98% sulphuric acid. The acid may have a concentration of from about 0.01M to 5M, 0.01M to 3M or 0.1M to 2M. Preferably, the acid has a concentration of about 1M. The concentration of acid may be up to about 0.01M, 0.05M, 0.10M, 0.15M, 0.20M, 0.25M, 0.30M, 0.35M, 0.40M, 0.45M, 0.50M, 0.55M, 0.60M, 0.65M, 0.70M, 0.75M, 0.80M, 0.85M, 0.90M, 0.95M or 1.0M. The acid may be present as an acid liquor comprising the acid and a non-solvent. The non-solvent may be any solvent in which chitosan is insoluble. Typical non-solvents include ethyl lactate, ethyl acetate, methyl acetate, ethanol, acetone or mixtures thereof. Preferably, the non-solvent comprises ethyl acetate or ethanol. More preferably, the non-solvent comprises 80:20 ethanol in water. Beneficially, it has been observed that the reaction proceeds at a faster rate using a non-solvent comprising an 80:20 mixture of ethanol to water. The ratio of chitosan to acid liquor may be from about 5 to 1 to about 1 to 5. Preferably, the ratio of chitosan to acid liquor is about 2 to 1. In some embodiments, the low endotoxin alkali chitosan may be mixed with the acid for up to around 30 minutes or less, more preferably for around 10 minutes or less and most preferably for around five minutes or less. The reaction may then be allowed to happen as the mixture is dried. The product resulting from the mixture of alkali chitosan with acid may contain an acid salt. Preferably, the alkali solution and acid are selected to ensure that the acid salt formed is biocompatible. For example, the alkali solution may comprise sodium hydroxide and the acid may comprise hydrochloric acid. In such an example, the acid salt would be the biocompatible salt sodium chloride. The acid salt is formed as a by-product of the reaction between the alkali chitosan and the acid. It has been discovered that the presence of an acid salt in the product can affect the usefulness of the resulting chitosan product. For example, it has been observed that chitosan gels to a lesser extent in saline solution than it does in water, and to an even lesser extent in saline solution at double concentration. Double concentrated saline solution referred to herein is contemplated as having an amount of sodium chloride of 1.8%. Consequently, it is desirable to have as low an amount of acid salt in the resulting chitosan product as possible and, ideally, a level of acid salt which makes little or substantially no difference to the effectiveness of the chitosan product. It has surprisingly been discovered that using an alkali solution having a low concentration, such as less than 0.25M and preferably from around 0.01M to around 0.2M, produces the desired low endotoxin concentration whilst also resulting in less acid salt by-product being produced in the subsequent process to produce a neutral chitosan, chitosan salt or chitosan derivative. Beneficially, less acid salt by-product has been found to result in a chitosan product that has improved gelling in use over products containing a higher amount of acid salt. The process of the present invention can provide a chitosan product with a suitably low amount of acid salt without the need to wash or rinse the chitosan product. This also has the added advantage of not requiring the use of endotoxin-free water in a washing or rinsing step. It has also been found that using low concentrations of alkali solution as described herein causes less of a reduction in the viscosity of the chitosan when producing a neutral chitosan, chitosan salt or chitosan derivative. By low concentrations of alkali, it is meant less than 0.25M, preferably from around 0.01M to 0.2M. In some embodiments, the alkali concentration may be from 0.02M to 0.1M, preferably 0.05M to 0.1M. Good results have been observed using an alkali concentration of around 0.1M. In some embodiments, the alkali concentration may be as mentioned hereinabove. Beneficially, therefore, using low concentrations of alkali solution in the process is less damaging to the chitosan. It is therefore possible to remove endotoxin from chitosan whilst causing only minimal change in viscosity. It is desirable for the viscosity of the chitosan to reduce by less than about 25% in the process, preferably by less than about 15% and more preferably by less than about 10%. Where the process provides a low endotoxin neutral chitosan, the product is suitable for use as an intermediate in the production of other chitosan based products. One particular use is in the production of chitosan salts, whose absorbent properties make them desirable for use in haemostatic preparations for controlling bleeding. It is preferable that the chitosan salts are water soluble. Thus, in another embodiment of the present invention, a low endotoxin chitosan salt may be prepared by contacting a low endotoxin neutral chitosan produced by the process described herein with an acid. The acid may be any acid appropriate for providing the desired chitosan salt. For example, if chitosan acetate is desired, acetic acid may be used; if chitosan succinate is desired, succinic acid may be used, etc. Any of the acids described herein may be used in the present process for producing a low endotoxin chitosan salt. The process for producing a low endotoxin chitosan salt or chitosan derivative may further comprise the step of drying the mixture of low endotoxin neutral chitosan and acid. The drying step may be performed by any conventional drying means known in the art. Preferably, the drying step is performed in an oven or by filtration of the product through an air dryer. There is thus provided a low endotoxin neutral chitosan, chitosan salt or chitosan derivative having an endotoxin concentration of less than 50 EU/g. The low endotoxin neutral chitosan may be water insoluble. The low endotoxin chitosan salt may be water soluble. According to a further aspect of the present invention, there is provided a low endotoxin neutral chitosan, chitosan salt or chitosan derivative obtainable by any of the processes described herein. According to a further aspect of the present invention, there is provided a neutral chitosan, chitosan salt or chitosan derivative comprising an endotoxin concentration of less than 50 EU/g. The neutral chitosan, chitosan salt or chitosan derivative may have an endotoxin concentration of less than 30 EU/g, preferably less than 20 EU/g, more preferably less than 15 EU/g, even more preferably less than 10 EU/g, and most preferably less than 5 EU/g. The low endotoxin chitosan salt of the present invention is suitable for use as a haemostat for stemming blood flow. Thus, according to a further aspect of the present invention, there is provided a low endotoxin chitosan salt as described herein for use as a haemostat for stemming blood flow. The low endotoxin chitosan salt can be used as a haemostat for internal or external bleeding. For chitosan salts used in surgery for internal bleeding, endotoxin concentration of less than 5 EU/g is desired. The low endotoxin chitosan salt of the present invention may be incorporated into a wound dressing for superficial non-life threatening bleeding or life threatening bleeding. Thus, according to a further aspect of the present invention, there is provided a low endotoxin chitosan salt as described herein for use in a wound dressing for superficial non-life threatening bleeding or life threatening bleeding. The low endotoxin chitosan salt of the present invention is suitable for use in the preparation of a haemostatic wound dressing for stemming blood flow. According to a further aspect of the present invention, there is provided a haemostatic wound dressing comprising a low endotoxin chitosan salt as described herein. According to a still further aspect of the present invention, there is provided a haemostatic material comprising a low endotoxin chitosan salt as described herein. The haemostatic material and/or chitosan salt may be in any suitable form, such as particulate, powder, granular, flake, fibrous, gel, foam, sheet, film or liquid form. According to a still further aspect of the present invention, there is provided a method of stemming blood flow comprising the steps of: optionally cleaning a wound area where possible; applying to said wound area a haemostatic wound dressing comprising a low endotoxin chitosan salt as described herein; and applying constant pressure to the wound area until a gel clot forms. Constant pressure is preferably applied to the wound area for about three minutes or more. Beneficially, the lower the concentration of alkali solution used in the preparation of the haemostatic material of the present invention, the better the material performs in penetrability, blood clotting and haemostasis.
318,832
11265905
TECHNICAL FIELD The present invention relates to a user terminal and a radio communication method in next-generation mobile communication systems. BACKGROUND ART In the UMTS (Universal Mobile Telecommunications System) network, the specifications of long-term evolution (LTE) have been drafted for the purpose of further increasing high speed data rates, providing lower latency and so on (see non-patent literature 1). In addition, successor systems of LTE are also under study for the purpose of achieving further broadbandization and increased speed beyond LTE (referred to as, for example, “LTE-A (LTE-Advanced),” “FRA (Future Radio Access),” “4G,” “5G,” “5G+(plus),” “NR (New RAT),” “LTE Rel. 14,” “LTE Rel. 15 (or later versions),” and so on). In existing LTE systems (for example, LTE Rel. 8 to 13), downlink (DL) and/or uplink (UL) communication are performed using one-ms subframes (also referred to as “transmission time intervals (TTIs)” and so on). These subframes are the time unit for transmitting one channel-encoded data packet, and serve as the unit of processing in, for example, scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest) and so on. A radio base station controls the allocation (scheduling) of data for a user terminal, and reports the schedule of data to the user terminal using downlink control information (DCI). The user terminal controls receipt of DL data and/or transmission of uplink data based on the downlink control information. To be more specific, based on the downlink control information, the user terminal receives downlink data in the same subframe as that of the downlink control information, or transmits uplink data in a predetermined subframe in a predetermined period (for example, 4 ms later). CITATION LIST Non-Patent Literature Non-Patent Literature 1: 3GPP TS36.300 V8.12.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8),” April, 2010 SUMMARY OF INVENTION Technical Problem Future radio communication systems (for example, LTE Rel. 14, 15 or later versions, 5G, NR, etc.) may control data scheduling based on different configurations than existing LTE systems (for example, LTE Rel. 13 or earlier versions). For example, in existing LTE systems, DL data in each subframe is scheduled based on downlink control information that is transmitted per predetermined transmission time interval (subframe). Also, based on downlink control information transmitted in a given subframe, UL data is scheduled a predetermined period later. By contrast with this, future radio communication systems are under research to use downlink control information that is transmitted in a given transmission time interval (for example, a slot) to control scheduling of data (UL data and/or DL data) in this same slot and/or in different slots. Note that controlling data scheduling in different slots based on downlink control information in a predetermined slot is also referred to as “cross-slot scheduling.” When cross-slot scheduling is employed, how to control the position to allocate data (for example, the position to start allocating data) in each slot is the problem. Considering the efficiency of the use of resources, it is desirable to configure data allocation in each slot so that it can be changed dynamically. Meanwhile, when data allocation in each slot is controlled dynamically, the problem is how to allow the user terminal to identify the position where data is allocated. The present invention has been made in view of the above, and it is therefore an object of the present invention to provide a user terminal and radio communication method, whereby data can be transmitted and/or received adequately even when data scheduling methods that are different from those of existing LTE systems are applied. Solution to Problem According to one aspect of the present invention, a user terminal has a receiving section that receives downlink control information, and a control section that controls receipt and/or transmission of data scheduled by the downlink control information, where data that is transmitted in the same slot as and/or a different slot from that of the downlink control information is scheduled by the downlink control information, and the control section identifies the position in the time direction where the data is allocated, based on the downlink control information and/or common control information that is common to predetermined user terminals. Advantageous Effects of Invention According to the present invention, data can be transmitted and/or received adequately even when data scheduling methods that are different from those of existing LTE systems are applied.
52,479
11395876
CROSS-REFERENCE TO RELATED APPLICATIONS This application is the United States national phase entry of International Application No. PCT/EP2018/063509, filed May 23, 2018, which claims the benefit of priority of German Application No. 10 2017 111 299.5, filed May 23, 2017. The contents of International Application No. PCT/EP2018/063509 and German Application No. 10 2017 111 299.5 are incorporated by reference herein. FIELD The present invention relates to a pump module for an infusion pump comprising a separate piston-cylinder unit adapted for selective/changeable coupling with the infusion pump (1) for delivering fluid from a fluid feed line to a fluid drain line to a patient, wherein the piston-cylinder unit comprises a delivery chamber fluidically connected to the fluid feed line and the fluid drain line, and which is delimited by the cylinder, the piston which is arranged therein so as to be movable translationally/forwards and backwards in the axial direction, and a piston seal sealing the piston with respect to the cylinder. It further relates to an infusion pump for delivering fluid from a fluid source to a patient comprising such a pump module. BACKGROUND In infusion technology, flexible tube pumps as well as syringe pumps are commonly known in order to deliver fluid to a patient. For applications that place high demands on dosing accuracy, syringe pumps are generally used, as they easily achieve a defined fluid delivery. For applications that require a higher delivery volume of fluid, flexible tube pumps are well suited, as they deliver largely continuously and without discrete delivery volume due to their conveying technology. Such applications of an infusion pump are known from the prior art, in which relatively high delivery volumes have to be paired with high delivery accuracy, which leads to significant problems. Syringe pumps have the disadvantage that the fluid volume that can be conveyed with them is limited by the volume of the syringe used. Flexible tube pumps, on the other hand, can achieve relatively large delivery volumes, but have the disadvantage of low delivery accuracy. Particularly with small feed rates, their delivery accuracy is not guaranteed due to the peristalsis commonly used. In addition, the drive of a flexible tube pump is usually relatively large and heavy and consumes a comparatively large amount of power due to the flexing of the pump hose by the peristaltic drive. An infusion pump of the Applicant specially developed for such applications with relatively high delivery volume as well as high delivery accuracy works with a pump module with a piston-cylinder unit as pump unit. It is configured to be actuated by a drive mechanism of the infusion pump consisting of an electric drive motor as well as a transmission gearing to transform the rotational movement of the drive motor into a translational/back/forth movement of the piston mounted displaceably in the cylinder. The drive mechanism is preferably controlled by a control/regulation unit of the infusion pump. The pump module also includes a valve device, which is preferably connected to the control/regulation unit and which is adapted, if necessary, in a regulated/controlled manner in the case of a pump delivery stroke, to interrupt a connection between the piston-cylinder unit as fluid intermediate storage and a delivery terminal to a separate fluid large volume as well as to open a connection between the piston-cylinder unit and a patient port and, in the case of a pump suction stroke, to open the connection between the piston-cylinder unit and the delivery terminal to the separate fluid large volume as well as to block the connection between the piston-cylinder unit and the patient port. From U.S. Pat. No. 3,901,231 A, an infusion pump for delivering intravenous fluid from a conventional syringe to a patient is known. The pump is adaptable to adjust the amplitude of the syringe stroke to determine the amount of fluid delivered to the patient over a period of time. From U.S. Pat. No. 3,985,133 a pump module with a piston-cylinder unit is known, whose piston can be coupled with a pump drive to inject fluid from a fluid reservoir into the bloodstream of a patient. A similar pump module is known from U.S. Pat. No. 4,396,385 A, wherein the cylinder chamber is closed with a cover arranged on the one hand on the cylinder and on the other hand on the piston. The disadvantage of this pump module is that the cover protrudes unprotected from the cylinder and can possibly be easily damaged so that contaminations can penetrate into the cylinder chamber. A further disadvantage is that the rotary valves used are relatively complex in terms of their actuation and are not very reliable. It is particularly important that the pump module is and remains absolutely sterile in its areas of contact with the liquid to be administered, in particular infusion fluid or a medication. Established piston pumps of this type have the disadvantage that their oscillating piston can be contaminated by the surrounding air, for example, and germs can penetrate into the liquid to be conveyed and may be administered to the patient. SUMMARY Based on the above problem, the invention is based on the object of eliminating the previously mentioned disadvantages, in particular to provide a pump module as well as a medical infusion pump that can replace known systems, is universally applicable particularly in applications with high volume delivery and high delivery accuracy, and is absolutely sterile and remains sterile during use in areas that come into contact with a fluid to be administered to a patient. In particular, sterility is to be guaranteed. In addition, the pump module is to be mountable in the pump in a particularly user-friendly manner, wherein the sterility of the pump module is not endangered during handling, use, or storing of the pump module. Preferably, the size is to be small compared to known systems. Furthermore, it is to be simple and inexpensive and preferably operable by means of a rechargeable battery. This object is solved according to the invention by a pump module, in particular an infusion/syringe pump module, for a medical infusion pump to convey fluid from a fluid source to a patient as well as by an infusion pump. The object is solved in particular by a pump module for an infusion pump, which has a piston-cylinder unit which can be coupled to the infusion pump, in particular a separate piston-cylinder unit adapted for selective/changeable coupling with the infusion pump (1) for delivering fluid from a fluid feed line into a fluid drain line to a patient, wherein the piston-cylinder unit comprises a delivery chamber fluidically connected to the fluid feed line and the fluid drain line and which is delimited by the cylinder, the piston is arranged therein so as to be movable translationally/forwards and backwards in the axial direction, in particular in the axial direction of the piston-cylinder unit, and a piston seal sealing the piston with respect to the cylinder, wherein the wall portion of the cylinder passed by the piston seal during the forward/backward movement of the piston is sealed against the environment in a sterile manner, in particular wherein the piston seal has a sleeve portion extending along the piston and surrounding it in a relatively movable manner, which is configured to be movable relative to the piston and is held loosely between a circumferential portion/wall portion of the cylinder and the piston and is sealingly fixed to the cylinder at an end or end region of the cylinder facing away from the delivery chamber, such that the circumferential portion/wall portion of the cylinder passed by the piston seal during the forward/backward movement of the piston is sealed against the environment in a sterile manner. The object is also solved by an infusion pump with a pump module according to the invention, in particular according to the present description. The advantage and effect of this invention over the prior art is that the oscillating pump element, here in the form of the piston-cylinder unit, is protected against germs by the sealing element, in particular in the areas that come into contact with the fluid to be administered to a patient. These areas are in particular the sections of the cylinder wall that are swept by the piston seal during the piston stroke. The piston-cylinder unit is preferably a smooth-running unit in order to keep actuating forces low and to achieve a high delivery accuracy. Advantageous embodiments of the invention are explained in more detail below. According to an embodiment of the invention, the piston displacement, which is located on the side of the piston seal opposite the delivery chamber, in particular the entire piston displacement, can be sealed in a sterile manner against the environment by means of an elastic sealing element arranged inside the piston displacement. In particular, the sealing element can in particular be a membrane that seals the proximal piston displacement in a sterile manner from the environment; as a result of its elasticity, it can compensate for the relative positional changes between the piston and the cylinder caused by moving the piston forwards and backwards. It may also be located on the proximal end of the piston, on the one hand, and on the proximal end of the cylinder, on the other hand, and/or be firmly connected to it. Proximal in this context means on the sides of the pump, distal on the sides of the delivery chamber. In a preferred embodiment, the sealing element is configured and arranged on the cylinder and on the piston in such a way that it does not protrude beyond the proximal end of the cylinder, in particular regardless of the respective position of the piston in the cylinder. In this way, the sealing element is arranged inside the cylinder in a protected manner so that accidental damage during storing, assembly and/or use of the pump module can be safely prevented. This helps to ensure the sterility of the areas of the pump module that come into contact with a fluid to be administered to a patient. Within the scope of the invention, the sealing element may also have a wall portion formed as bellows and extending in particular in the axial direction. It can preferably be arranged inside the cylinder so that it is protected against damage. Such a bellows takes up little space and is also subject to relatively low loads during operation of the pump module due to the deformation imposed on it, so that the pump module can be formed small and robust. A particularly robust embodiment of the invention provides that the sealing element on its side facing away from the piston has an in particular annular coupling portion for sealing arrangement at and/or sealing connection to the cylinder. This can be connected to the cylinder by means of a border, in particular it can be tightly connected. The border can, for example, be formed by flanging a proximal end section of the cylinder, in particular the cylinder wall. Alternatively or additionally, the sealing element can be connected in a sealing manner to the piston with its side facing the piston. In particular, it can be connected to the front side of the piston. For example, the sealing element is connected to the piston by a material connection. In particular, it can be designed in one piece with the piston, e.g. by manufacturing the piston and the sealing element using two-component injection molding. The coupling portion can in particular be formed as a sealing plate. According to a particularly user-friendly embodiment, the piston can have a coupling structure for detachable coupling with a corresponding coupling element of the drive mechanism of the infusion pump. Especially advantageously, the coupling structure can be formed radially inside the sealing element, in particular radially inside the wall portion of the sealing element formed as a bellows. For example, the coupling structure may have a blind hole, in particular a central blind hole, inserted into the proximal front surface of the piston in the axial direction. This allows a particularly short construction length of the piston and thus of the pump module. In order to enable a particularly simple coupling of pump module and infusion pump, the coupling structure can have an internal latching structure for the latching insertion of a piston rod of the drive mechanism. The piston is or can be arranged by means of the coupling structure in particular on a piston rod of the infusion pump. The coupling element can, for example, be formed as a plug-in coupling and can be automatically or inevitably coupled to the drive when the pump module is arranged as intended in the infusion pump. The coupling preferably has latching structures which hold the two coupling elements together and, in particular, allow the two coupling elements to engage audibly and/or perceptibly for an operator. One embodiment of the invention is characterized in that the piston-cylinder unit comprises a proximal piston seal and a distal piston seal. These seal both between the piston and the cylinder and ensure the sterility of the delivery chamber. It is particularly within the scope of the invention that the pump module has only proximal and distal piston seals and no sealing element connected to the piston and the cylinder. Preferably, the proximal piston seal and the distal piston seal are arranged plane-parallel to each other. Alternatively or additionally, the distance in the direction of the longitudinal axis between the proximal piston seal and the distal piston seal is greater than the delivery stroke of the piston-cylinder unit/of the piston in the cylinder. Preferably, the distance between the two piston seals is at least 1 mm to 3 mm, in particular 2 mm greater than the stroke of the piston pump (and thus than the stroke of the piston in the cylinder). This ensures that the area coming into contact with the fluid to be administered is always absolutely sterile. The proximal piston seal and/or the distal piston seal can be formed in one piece with the piston, e.g. by being molded onto the piston using two-component injection molding. The piston seal(s) can basically be designed in the form of a flexible sealing lip or sealing lips within the scope of the invention. A particular advantage of the embodiment described above with a proximal and a distal piston seal is that the piston-cylinder unit is particularly smooth-running and actuating forces are low, so that high delivery accuracy and efficiency can be achieved. It can also be said that the piston and the distance between the two piston seals in the axial direction are longer than the maximum filling level of the cylinder, which prevents ambient air, which is naturally outside the cylinder, from mixing with the medium inside the cylinder or from contaminating areas of the piston-cylinder unit that come into contact with the fluid to be delivered. The combination of two piston seals/sealing lips and piston/cylinder length results in an effective barrier against entering germs. A further advantage is that this embodiment with two piston seals can withstand relatively high pressure differences during fluid delivery without the fluid and/or air to be pumped being able to overcome the seal/sealing lip between piston and cylinder. It can therefore also be said that the piston has one seal/sealing lip for sealing against overpressure and one seal/sealing lip for sealing against low pressure. Thus, a low-pressure movement and a high-pressure movement of the piston are sealed to ensure the sterility of a fluid space/dosing space, i.e. the space in which the fluid to be conveyed is located in the cylinder. In this way, the pump meets the high requirements for cleanliness in a medical environment. The piston preferably has an essentially round cross-section, resulting in approximately ring-shaped piston seals. In a particularly storing friendly embodiment of the invention, which allows a relatively long storage of the pump module without significant impairment of the sealing effect the piston seal(s), the cylinder is provided with a number of annular grooves corresponding to the number of piston seals, i.e. in the case of only one piston seal on its inner surface facing the piston with only one circumferential annular groove, to receive the piston seal in a storing position/rest position therein. In the case of a piston with a proximal and a distal piston seal, the cylinder is provided on its inner surface facing the piston with a proximal circumferential annular groove and a distal circumferential annular groove, whose distance from each other in the longitudinal direction is equal to the distance of the proximal piston seal and the distal piston seal in the longitudinal direction. The annular groove(s) is/are preferably arranged so that they are outside the working range of the piston. One embodiment of the invention is characterized in that the cylinder has at its distal end a cylinder head in which at least one fluid passage is formed to fluidly connect the delivery chamber to the fluid feed line and/or to the fluid drain line. The cylinder head can in particular distally delimit the delivery chamber. A particularly user-friendly embodiment of the invention, which can be easily coupled with the infusion pump, provides that a handle portion or handle piece is arranged distally on the cylinder, in particular on its cylinder head, for handling of the pump module when coupling and uncoupling with the infusion pump. According to an embodiment of the invention, the piston-cylinder unit can be provided with a first tube portion as inlet feed line/fluid feed line and a second tube portion as patient-side outlet feed line/fluid drain line. At least one or both tube portions can be firmly connected to the piston-cylinder unit, in particular to the cylinder head, e.g. in one piece, friction-locked or material-locked, e.g. by injection in the case of plastic parts. The fluid feed line or respectively the first tube portion can be provided with a Luer-Lock coupling piece at the end opposite the piston-cylinder unit. This can be formed in particular as a Luer-Lock internal cone. Alternatively or additionally, the fluid drain line or respectively the second tube portion can be provided with a Luer-Lock coupling piece at the end opposite the piston-cylinder unit. This can in particular be formed as a Luer-Lock outside cone. This allows a connection of the pump module or respectively the fluid conduit system contained in it with an extracorporeal line or conduit system that is particularly easy to operate. The invention can therefore be used easily and in a well-known way together with existing and widely used medical technology equipment. As an alternative to a Luer-Lock connection, a drip chamber connected to the patient can be provided or the second tube portion is designed as a bag line with a closed end and can be connected with an insertion spike. In addition or alternatively, the arrangement of a spike/injection spike is also possible to increase the flexibility in the area of application or the compactness of the pump. According to one embodiment, the pump module can have a sliding clamp which is adjustable, i.e. displaceable, in such a way that it selectively releases or blocks a fluid flow from or to the piston-cylinder unit, in particular in the first and/or second tube portion. The sliding clamp can be adjusted in such a way that no air bubbles form after starting up the pump module. The sliding clamp can preferably be clipped onto the handle portion or the handle piece of the pump module so that it can easily be made of a different material than the rest of the pump module. An advantageous embodiment of the invention is distinguished in that a sleeve/ring is arranged at one end of the pump module or the handle portion/piece facing away from the sliding clamp. This sleeve is able to fix the fluid feed line and/or the fluid drain line and/or the first and/or the second tube portion and thus allows safe coupling of an infusion line with the pump module. It therefore serves as a holding ring through which the infusion line can be threaded. The piston-cylinder unit can in particular be adapted to be actuated by means of a drive mechanism, in particular by means of a drive mechanism of the infusion pump according to the invention, for example consisting of an electric drive motor as well as a transmission gearing for transforming the rotational movement of the drive motor into a translational movement/forward/backward movement of the piston mounted displaceably in the cylinder. The drive mechanism can also be controlled by a control/regulation unit of the infusion pump. In addition, a valve device may be provided, for example the infusion pump may have a valve device connected to the control/regulation unit and be configured to interrupt (optionally in a regulated/controlled manner) in case of a pump delivery stroke, a connection between the piston-cylinder unit as fluid intermediate storage and a delivery terminal to a separate fluid large volume as well as to release a connection between the piston-cylinder unit and a patient port and, in case of a pump suction stroke, to open the connection between the piston-cylinder unit and the delivery terminal to the separate fluid large volume as well as to block the connection between the piston-cylinder unit and the patient port. In the simplest case, the valve device has passively-operable valve elements, i.e. the valve device preferably has two check valves, which are housed in (separate, as disposable items designed) connection lines to the patient port and to the fluid large volume, which can be inserted into the infusion pump. This has the advantage that the valve device can be manufactured at a particularly low price and can therefore be disposed of as a disposable item together with the entire fluid conduit system. Alternatively, it may be provided to equip the valve device with actively-actuable valve elements, preferably two tube pinchers/compressors, which can act on flexibly deformable sections of the two connection lines for their sealing compression and which are preferably housed in the infusion pump (or pump module). In concrete terms, therefore, the fluid conduit system, which is preferably designed as a disposable article, has a first, preferably elastically deformable tube portion for supplying fluid (from the large fluid reservoir into the intermediate reservoir) and a second, preferably elastically deformable tube portion for discharging fluid (from the intermediate reservoir in the direction towards the patient), wherein the two tube portions have intermediate liquid reservoirs for insertion into the infusion pump as well as for connection to the piston-cylinder unit for sucking fluid from the first tube portion into the intermediate liquid reservoir. The tube pinchers/compressors can preferably be configured as punches/tappers or as scissor clamps or similar mechanical clamping devices which are movably mounted in the infusion pump (thus being part of the infusion pump) and can each be operated by a drive which is connected to the control/regulation unit. This variant enables controlled and thus safe opening and closing of the respective liquid/fluid lines and also a fluid conduit system that can be manufactured at a lower price. The characteristic feature here is that the two tube pinchers/compressors located in the inlet and outlet are mechanically coupled to each other in such a way that at least one side securely squeezes the hose. The tube pinchers/compressors are preloaded with springs, for example, so that they bridge the otherwise leaking positions so that no leaking position occurs when changing between inlet and outlet. Alternatively, the control time of the valves can also be set via e.g. cam disks or by separate drives using motors. Via the control unit, which can be implemented, for example, in the form of a motor-driven valve control system, the hose in the outlet, i.e. the second tube portion, can be blocked, preferably squeezed off, when the piston-cylinder unit/syringe is retracted. Moreover, the hose in the inlet, i.e. the first tube portion, can be blocked, preferably squeezed off, when the piston-cylinder unit/syringe is pushed out. It is characteristic that the piston-cylinder unit/syringe can be driven like a piston pump. Altogether, the invention makes it possible to convey large fluid quantities/volumes in infusion applications in the broadest sense with the high precision of a piston pump/syringe pump. The high precision is due to the fact that the delivery rate/flow amount is very precise, since the delivery is carried out with the piston-cylinder unit. Changes in the delivery volume, i.e. the volume of the cylinder chamber, can be precisely adjusted and controlled over a wide feed rate range. Leakage flows can be essentially completely prevented by this design. The disadvantage of the limited flow rate usually present with piston pumps is eliminated in the sense of the invention in that the piston-cylinder unit is continuously filled and emptied alternately, which is made possible by the control according to the invention of the inflows and outflows to and from the piston-cylinder unit. One way to achieve a largely constant feed rate is to combine two pumps according to the invention or to provide the pump with two piston-cylinder units and their associated control units, which are operated with phase shifts. A preferred embodiment of the infusion pump according to the invention is characterized in that the control unit and the drive are arranged at/in a housing part of the infusion pump. The pump module can in particular be arranged on the housing part so that it can be exchanged by the user. It should preferably be placed inside and/or be removed from the pump without the use of special tools or devices. The pump module according to the invention can in particular be designed as a single-use article and be intended for single use in the pump. This is particularly advantageous and user-friendly with regard to sterile conditions. It can, for example, be implemented in the form of a disposable syringe, with the delivery volume opening of which the two tube portions are fluidically connected. This can be realized in such a way that the two tube portions form a continuous fluid line which is provided with a branch in an area between the deformation points for connecting the piston-cylinder unit, in particular a disposable syringe. Alternatively, the piston-cylinder unit/the disposable syringe can have two flow openings, an outlet and an inlet, each of which is fluidically connected to the corresponding tube portion. It is of particular advantage if the drive of the piston-cylinder unit is a linear drive/motor located in the axis of motion of the piston. It is particularly preferred if the drive is arranged and designed in such a way that forces acting on the piston from the drive are applied centrally and in the axial direction. A particular advantage is that forces acting on the piston can be minimized (in comparison to decentralized force introduction) and thus only a small amount of energy is required to actuate the piston-cylinder unit. As a result, the drive and thus the pump can be small, which leads to savings in terms of weight, costs and installation space. Furthermore, high precision can be achieved by the central application of operating forces in the piston. Using a small syringe as a piston-cylinder unit allows a linear drive to be arranged directly in the axis of the syringe piston, thus ensuring that no transverse forces affecting the accuracy act on the syringe piston. Furthermore, a small cross section of the syringe produces only small forces, allowing the use of a simple, cost-efficient drive, such as a linear stepper motor. The construction size of the pump can therefore be significantly smaller than with known infusion pumps. The pump according to the invention can also have a second drive, in particular a linear drive/motor, for the control unit. The two drives for the piston-cylinder unit and the control unit can be coupled together for control purposes in such a way that the control function described above is performed by squeezing the two tube portions shut. According to a further embodiment, the pump may have a receptacle for the pump module. This can, for example, be in the form of a recess in a pump housing and, in particular, can be closed by means of a closure (for example, in the form of a cover flap arranged pivotably on the pump, in particular on its housing). In particular, the closure can be locked with the housing part via a locking unit in a position closing the receptacle. The closure, the receptacle and the pump module can be matched to each other in such a way that closing (and if necessary locking) of the closure is only possible if the pump module is arranged and connected as intended and in the correct manner. In this way, a user can be given feedback with regard to error-free installation and use of the pump, which increases patient safety in an advantageous way. Furthermore, by closing the cover flap, an automatic coupling of the piston-cylinder unit with the drive can be achieved, which is a particularly simple and safe operation. A housing of the pump can in particular consist of a lower housing part, on which the entire mechanics and electronics can be arranged and held, as well as an upper housing part, which can in particular have a display and various switching elements. Inside the housing there can be a locking mechanism for the cover flap. One embodiment of the infusion pump is characterized by the fact that the control unit has a motor-driven tilting-lever unit. This can be designed and operated in such a way that in a first tilting position it squeezes the first tube portion and opens the second tube portion and in a second tilting position, it squeezes the second tube portion and opens the first tube portion. In particular, the control unit may have a pressure ram pivotally mounted on the tilting-lever unit. It may include an inlet ram interacting with the first tube portion and/or an outlet ram interacting with the second tube portion. At least one pressure ram can be prestressed by means of a prestressing unit, in particular by means of a compression spring, into a position opening, in particular non-contacting, the respective tube portion. In this way, it can be ensured that the pressure rams are not located in the area of the corresponding tube portion when the pump is not in operation. This allows particularly user-friendly changing, insertion and removal of the pump module according to the invention. Since the drive/drives of the pump can be small, it is advantageously possible that the pump comprises a power storage unit, in particular a rechargeable battery, and can be operated without a direct power supply. The power storage unit can, for example, be a standard lithium battery that can be charged via a standardized connector, for example in the form of a USB interface. This can also be used to read data into and/or out of a pump controller. In summary, it can be said that the invention allows an infusion pump system with the accuracy of a syringe pump and the delivery volume or volume reservoir of a flexible tube pump with significantly lower power requirements, reduced size, and low manufacturing costs. In particular, it provides a pump module for a piston pump, which has a stroke-controlled piston system. The pump module/pump element itself is absolutely sterile in a particularly advantageous way in the area where the infusion fluid is located. The following advantages can in particular be achieved through this invention:“One fits all”: a wide range of (almost all known) infusion therapies can be performed with a single pump.Cost-effective and small infusion pump.The pump can be used in any place (everywhere), in particular without power supply (mobile, long battery life), which makes it particularly suitable for outdoor use or use in less developed areas.The pump allows more accurate dosing of the infusion than standard infusion pumps.Firm connection of the pump module, particularly designed as a single-use article, to the pump.The pump module can be coupled with different types of infusion lines.Both the pump module and the infusion pump are very easy to use and user-friendly.The system allows low as well as high feed rates both with accurate dosing.The system is absolutely sterile. The drive for the piston-cylinder unit can be equipped with a rotation monitor that is not shown. This makes it possible to detect disturbances in the supply of fluid to a patient, for example an obstruction in the outlet. Such disturbances can be detected by deviations of the drive behavior from usual values, for example by blocking or slowing down the motor. By means of such rotation monitoring, the use of otherwise necessary, expensive pressure sensors can be dispensed with.
181,371
11218498
CROSS-REFERENCE TO RELATED APPLICATIONS The entire contents of the following related references are incorporated by reference:U.S. patent application Ser. No. 16/122,398, entitled “MALICIOUS ACTIVITY DETECTION BY CROSS-TRACE ANALYSIS AND DEEP LEARNING”, filed by Juan Fernandez Peinador, et al. on Sep. 5, 2018.W.I.P.O. Patent Application No. PCT/US2017/033698, entitled “MEMORY-EFFICIENT BACKPROPAGATION THROUGH TIME”, filed by Marc Lanctot, et al. on May 19, 2017;U.S. patent application Ser. No. 15/347,501, entitled “MEMORY CELL UNIT AND RECURRENT NEURAL NETWORK INCLUDING MULTIPLE MEMORY CELL UNITS”, filed by Daniel Neil et al. on Nov. 9, 2016;U.S. patent application Ser. No. 14/558,700, entitled “AUTO-ENCODER ENHANCED SELF-DIAGNOSTIC COMPONENTS FOR MODEL MONITORING”, filed by Jun Zhang et al. on Dec. 2, 2014; and“EXACT CALCULATION OF THE HESSIAN MATRIX FOR THE MULTI-LAYER PERCEPTRON,” by Christopher M. Bishop, published inNeural Computation4 No. 4 (1992) pages 494-501. FIELD OF THE DISCLOSURE This disclosure relates to sequence anomaly detection. Presented herein are techniques for contextual embedding of features of operational logs or network traffic for anomaly detection based on sequence prediction. BACKGROUND Network security is a major challenge for network-based systems such as enterprise and cloud datacenters. These systems are complex and dynamic and run in evolving network environments. Analyzing the massive volumes of data flowing between hosts, and the distributed processing that accompanies that traffic, although increasingly crucial from a network security perspective, exceeds the workload capacity of a human security expert. In some ways, traffic and activity analysis is more or less unmanageable with some techniques. A fundamental representation of network data is the raw network traffic carried as network packets. Most malicious activities happen in the application layer of the TCP/IP network model, where an application passes a flow of network packets between hosts. Evidence of malicious activity may be more or less hidden within network flows of packets. Most existing industrial solutions leverage rule- or signature-based techniques for malicious activity detection in network flows. Some techniques ask security experts to fully inspect known malicious flows so as to extract rules or signatures out of them. A new flow is detected as malicious if it matches with any existing rule or signature. The rule- or signature-based techniques have three obvious drawbacks: (i) they can only detect known malicious activities, (ii) the patterns and rules are often very difficult to generalize and therefore frequently miss slightly changed malicious activities, and (iii) there is a significant requirement for human security experts to be involved. Fortunately, most network devices (such as servers, routers and firewalls) summarize the activities and events occurred on the devices in textual log messages. For example, on Linux servers, the operating systems write auditd (audit demon) logs for security-related activities like login, logout, file access, etc. Evidence of malicious activity may be more or less hidden within these operational logs. Log analysis involves large volumes of log data coming from a variety of sources even for small companies and especially for a large enterprise having multiple domain silos, multiple external interfaces, multiple middleware tiers, and a potentially confusing mix of scheduled and ad hoc activity. Consequently, manual log analysis may be a futile effort. Most entries of log data are uninteresting which makes reading through them like searching for a needle in a haystack. Furthermore, manual log analysis depends on the expertise of the human operator doing the analysis. Rule based log filtration and analysis requires a hand crafted and human-error prone rule for each known type of malicious behavior. The rule set is limited to known attacks and may be difficult to manually maintain evolution over time to adapt to new types of malicious behavior. Even when assisted by machine learning, manual chores may remain. Choosing informative, discriminative and independent features is a crucial step for building an effective classification machine learning model. Often features are extracted from individual log messages, thus ignoring all possible inter-relationships between them and losing contextual information. Thus, the effectiveness of the machine learning model can be seriously hampered. Training a model on individual log messages may mislead the model to attempt to detect independently anomalous log messages rather than anomalous activities that span multiple log messages or network packets. Tools such as Splunk may provide search and exploration capabilities for Windows and Linux logs, such as audit logs. Splunk may predict numeric fields (linear regression), predict categorical fields (logistic regression), detect numeric outliers (distribution statistics), detect categorical outliers (probabilistic measures), forecast time series and cluster numeric events. Effective use of such a tool requires in-depth knowledge of the context, given that the user can only select a limited number of log message fields for every search query. However, log message parsing is static and tailored for dash-boarding tools rather than security tools. As a result, Splunk cannot discover relationships among different log message fields or even log messages. Elastic (ELK) Stack is a log collection, transformation, normalization and visualization framework that includes time-series analysis over a set of user-selected log message fields. Effective use of ELK necessitates in-depth knowledge of the problem and application context, as the ELK user is tasked with setting up the time-series analysis pipeline and analyzing the results. Unfortunately, tools such as ELK are prone to false positives, which must be filtered by a domain-expert user. Overall, both Splunk and ELK are shipped with detection tools that are static and have few or no learning capabilities. Therefore, the applicability of Splunk and ELK is limited because any fresh data triggers a re-analysis over the entire dataset (Splunk) or the last analysis window (ELK). As a result, both tools fall short of correlating log messages into meaningful groups and hence lose the context and opportunity of detecting a malicious event. Structured logs are mostly constructed from key-value pairs, such as for categorical fields. In typical machine learning, categorical/state variables are usually vectorized via one-hot encoding. As a result, depending on the total number of categorical fields and their associated values in the log messages, the resulting feature vector can be very large but at the same time sparse. On the other hand, there is not much semantic or contextual information encoded in the resulting vector. For example, in the one-hot encoded vector space, two states (e.g. field values) which have more in common are as equally distant as two states which are totally independent. An embedding model is needed that provides not only a dense and reduced feature vector but also an optimized vector that has more semantics. There is a need for new techniques that depart from the basic models that work on individual log messages or simply aggregate the information in log messages by summing or averaging the features. On one hand, individual log message analysis is extremely weak for many cyber-attack scenarios where the interrelation between log messages matters. On the other hand, heuristic methods such as averaging ignore some important information in the sequential data such as an ordering of log messages.
5,498
11386545
BACKGROUND Flash infrared thermography (IRT) is a thermal transient technique that uses a flash source, an infrared camera, and an image processor to analyze a structure. In one approach, one or more short pulses of high thermal energy are applied to a thermally conductive surface of a structure using a flash source. An infrared camera is then used to monitor and record thermal transients of the surface as heat disperses into the structure and the surface returns to its normal temperature. For instance, an infrared camera can be used to capture images of the surface before and after the pulses are applied. Further, the images can then be analyzed using various image processing techniques in order to discriminate between different features and materials. In practice, material imperfections, such as voids, delamination, or cracks, can affect the cooling of the surface by causing an area of the surface to cool down faster or slower relative to other areas of the surface. Image processing algorithms can analyze a sequence of images and enhance the contrast of relatively warm or cold spots on the surface, which may be indicative of material imperfections. Further, image processing algorithms can also be used to assist in the evaluation and/or characterization of any anomalous cooling behavior. Various approaches to detecting surface cracks exist. For example, ultrasonic inspection can be used to inspect a surface of a railcar axle, or an inspector can apply a liquid dye to a surface and observe the penetration of the liquid dye into the surface. However, these techniques can be slow and labor intensive. A rapid, large area, non-contact method with good sensitivity is desirable. SUMMARY The present disclosure provides systems, apparatuses, and methods relating to detection of surface cracks. In some examples, a method of thermographic inspection may include applying a thermal pulse to a surface and capturing an image of a thermal response of the surface. The image may be captured with an infrared camera through a polarizer having a first orientation. The method may further include determining, by analysis of the image, whether the thermal response is indicative of a crack on the surface. In some examples, a method of detecting cracks in a surface may include heating the surface and capturing a first image of thermal emissions from the surface through a wire grid polarizer in a first orientation. The method may further include capturing a second image of thermal emissions from the surface through a wire grid polarizer in a second orientation, and comparing the first and second images. The method may further include identifying regions of the surface with thermal emissions corresponding to a cooler temperature, wherein the thermal emissions corresponding to a cooler temperature have a relatively greater intensity in the first image or the second image. In some examples, a system for detecting cracks in a surface may include a light source configured to generate a thermal pulse incident on the surface and an infrared camera configured to capture an image of a response of the surface to the thermal pulse. The system may further include a wire grid polarizer interposed between the surface and the infrared camera, having a first orientation, and a data processing system in communication with the infrared camera and configured to analyze the captured image. Features, functions, and advantages may be achieved independently in various examples of the present disclosure, or may be combined in yet other examples, further details of which can be seen with reference to the following description and drawings.
172,128
11217894
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to an antenna structure, and more specifically, to an antenna structure with integrated horizontally polarized antenna and vertically polarized antenna. 2. Description of the Related Art As mobile communication technologies develop, an electronic device, which is equipped with an antenna module, such as a smartphone, a wearable device, or the like is widely supplied. The electronic device may receive or transmit a signal including data (e.g., a message, a photo, a video, a music file, a game, and the like) through the antenna. The antenna module of the electronic device is implemented using a plurality of antenna elements for the purpose of receiving or transmitting a signal more efficiently. For example, the electronic device may include one or more antenna arrays in each of which a plurality of antenna elements are arranged in a regular shape. A signal that is received by an electronic device may be polarized in a specific direction. To receive or transmit a vertically polarized signal or a horizontally polarized signal, the electronic device may physically separate the plurality of paths based on a direction in which a signal is polarized. Next-generation wireless communication technologies, like 5G mobile networks or wireless system, may use a millimeter wave (mmWave) which is substantially greater than or equal to 20 GHz. In order to overcome a high free space loss due to a frequency characteristic and to increase an antenna gain, specific horizontally polarized antennas and specific vertically polarized antennas are required to receive and transmit vertically polarized signal or horizontally polarized signal respectively. In addition, to ensure a 360° coverage at the time of mm-wave communication, the antenna device is preferably mounted on an edge portion of the electronic device, such as a corner portion of the circuit board. However, while the electronic device is gradually becoming slimmer, the thin thickness as compared to the longitudinal size thereof may not provide a sufficient length or is not easy to be implemented for vertically polarized antennas as well as to design a required frequency, and at least some regions of the antenna modules and circuit module may overlap or be placed too closer each other. When a plurality of antenna modules are installed along the periphery of a board, a polarization loss due to the interference between adjacent antenna modules is expected. Thus, when the antenna modules are mounted, it is necessary for the antenna modules to be spaced apart from each other by a predetermined spacing which unavoidably causes the integration of the antenna modules to be degraded. The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure. Accordingly, there is a need for an improved antenna structure with well-integrated horizontally and vertically polarized antennas arrangement to provide dual polarized transmission in confined space and prevent the interference between adjacent antenna modules. SUMMARY OF THE INVENTION In order to meet the requirement of next-generation wireless communication, the present invention hereby provides an antenna structure with well-integrated horizontally polarized antenna module and vertically polarized antenna module to provide optimized radiation performance of the antenna module in dual polarization manner without mutual interference and make the best use of confined space in compact electronic devices. The aspect of present invention is to provide an antenna structure, including a reflector dividing said antenna structure into a front side and a back side, a horizontally polarized antenna on said front side of said reflector, wherein said horizontally polarized antenna comprises a pair of dipoles at least partially overlapping each other, and each said dipole comprises a positive ground member and a negative ground member separated by a slot, a first signal source extending from a back side of said reflector to said front side through a first opening of said reflector, wherein said first signal source extends between said dipoles and extends from one overlapping interval between said positive ground members of said dipoles to another overlapping interval between said negative ground members of said dipoles across said slot to excite said horizontally polarized antenna, a vertically polarized antenna on said front side of said reflector, wherein said vertically polarized antenna comprises a upper ground member and a lower ground member at least partially overlapping each other, wherein said upper ground member is above upper said dipole and said lower ground member is below lower said dipole, and a second signal source extending from said back side of said reflector to said front side through a second opening of said reflector, wherein said second signal source extends between said upper ground member and said lower ground member and extends vertically toward one of said upper ground member and said second lower ground member to excite said vertically polarized antenna. These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
4,900
11400352
The disclosures of the above-referenced applications are incorporated by reference herein in their entirety. COPYRIGHT AUTHORIZATION The present disclosure may be subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the present disclosure and its related documents, as they appear in the Patent and Trademark Office patent files or records, but otherwise reserves all applicable copyrights. FIELD The present disclosure generally relates to golf equipment, and more particularly, to golf club heads and methods to manufacturing golf club heads. BACKGROUND Various materials (e.g., steel-based materials, titanium-based materials, tungsten-based materials, etc.) may be used to manufacture golf club heads. By using multiple materials to manufacture golf club heads, the position of the center of gravity (CG) and/or the moment of inertia (MOI) of the golf club heads may be optimized to produce certain trajectory and spin rate of a golf ball.
185,804
11490456
TECHNICAL AREAS MENTIONED The present application refers to the method of automatically analyzing and warning the optical connection status between the base station device (Base Band Unit—BBU) and the high frequency radio receiver (Remote Radio Unit—RRU). The disclosure supports deployment engineers in station integration and optical transmission defect detection, thereby reducing effort, equipment costs, and also reducing network service outages. THE TECHNICAL STATUS In the mobile communication system, to meet the needs of large bandwidth and small signal delay, radio transmitting stations use standard radio interface (Common Public Radio Interface—CPRI) and optical transmission equipment for connection between BBU and RRU. These optical connections have many advantages including speed up to 24 Gbps, transmission distance of 10 km and bit error rate of 10−12. However, the quality of optical equipment such as the Small Form-factor Pluggable (SFP) and optical fiber cables are susceptible to deterioration with time, environmental impacts and incorrect installation skill. When the optical connection no longer works well, there will be errors such as signal loss, CPRI frame sync error, and more importantly, complete loss of connection to the RRU and interruption of mobile service. Therefore, maintaining an optical connection between the BBU and the RRU is very important to ensure smooth communication. Usually, when the CPRI interface reports errors such as signal loss, frame alignment loss, most of these errors are due to optical transmission. However, because the RRU may be installed on a pole tens of meters high and far from the BBU, the operator could not find out exactly whether the cause of the error was SFP or optical wire in a short time. This leads to the fact that the operator will perform all fiber and SFP replacement on the BBU and RRU. This wastes time, effort and cost of equipment and materials, more importantly, it causes loss of network service in the process of finding fault and replacing installation. THE PURPOSE OF THE DISCLOSURE To solve the above problems, the authors of the disclosure researched and proposed the automatic method to Analyze and warn of optical connection status between BBU unit and RRU of a radio base station. When applying this method, it will save time to find the cause of the optical connection error, reduce the cost of manpower and equipment materials. At the same time, it reduces the time lost from network service connection for mobile devices THE TECHNICAL NATURE OF THE DISCLOSURE The disclosure proposes a method automatically analyzing and warning of the state of the optical transmission line in the radio transmitting station system based on the state of the CPRI interface and the optical power of the SFP, called the AWOT (Automated Analysis and Warning of Optical Transmission) method. The disclosed AWOT method identifies faults on the optical link between BBU and RRU, and provides warnings about optical transmission lines, thereby quickly fixing problems, reducing system downtime. mobile communication. FIG. 1illustrates a conventional radio base station, consisting of 2 main components: BBU and RRU. These two components are connected to each other via the CPRI interface standard, with the transmission device being the fiber optic cable and the SFP module. Fiber optic cable consists of 2 fibers, 1 fiber transmits signals from BBU to RRU, 1 fiber transmits signals from RRU to BBU. SFP modules consist of a transmit (TX) and a receive (RX) port. The RRU is installed on high poles and is several tens of meters to tens of kilometers away from BBU. Therefore, when optical connection failure occurs, it will take engineers who operate the system to find and correct the error. Currently, SFP modules are integrated with a memory area to store parameters, including voltage, optical signal power emitted, optical signal power is obtained. These parameters have normal thresholds, alarm thresholds and error thresholds. The threshold values depend on the device code and are defined from production. A good quality photoelectric converter is one whose output voltage and output are within normal range. Particularly, the obtained optical power parameter depends on the quality of the optical wire and the emitted optical power of the equipment on the other side of the transmission line. The AWOT method according to the invention includes the following steps: (i) read the warning status of CPRI and optical power of the photoelectric converter module on the BBU. (ii) connect to RRU via Ethernet interface, in case of successful connection, perform step (iii), otherwise, if connection is unsuccessful, perform step (v). (iii) read the photoelectric converter module optical power on the RRU. (iv) compute the attenuation on the optical link from BBU to RRU and vice versa, from RRU to BBU. Optical signal transmitted in optical fiber is always attenuated, the degree of attenuation depends on optical fiber type, fiber length and quality of optical fiber. The loss on the optical transmission line is calculated as the ratio between the transmitter optical power and the receiver optical power. (v) analyze the fault on the optical link and give warnings based on three factors: the state of the CPRI unit, the emitted optical power of the SFP, and the optical loss on the link between the BBU and the RRU. The method of the invention basically includes the above steps. By evaluating the measured photoelectric signal power level and the elimination methods, it is possible to conclude exactly where the error occurred. From there, it is recommended to restore the system quickly and accurately, to minimize waste and system downtime. In the following sections, the steps above will be described in more detail.
275,104
11505802
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a U.S. National Phase of International Patent Application No. PCT/EP2018/052315, filed Jan. 30, 2018, which claims priority to European Patent Application No. 17153839.0, filed Jan. 30, 2017, both of which applications are herein incorporated by reference in their entireties. SEQUENCE LISTING This application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 26, 2019, is named 245761_000082_seqlist.txt, and is 15,002 bytes in size. Plants are exposed during their life term to a series of abiotic stress conditions such as heat stress, frost stress, chilling stress, salinity stress, drought stress etc. Such stress conditions are important limiting factors for plant growth and productivity. Thus, exposure of plants for example to heat and/or drought conditions may typically lead to reduction of yields of plant material such as leaves, seeds, fruits and other edible or usable products. Such yield reductions represent with economically important plants such as maize, rice or wheat an important economical factor, whereby especially in many underdeveloped countries such yield reductions may result in food shortages which endanger the food supply of the population. Maize is the most widely produced crop in the world. This cereal is grown in at least 164 countries around the world with a total production of more than 1 billion metric tons. Maize is grown at latitudes varying from the equator to slightly above 50 degrees north and south, from sea level to over 3000 meters elevation, in cool and hot climates, and with growing cycles ranging from 3 to 13 months. It is therefore of importance for the food supply of the world population that the supply with maize plants remains at high level. However, especially regions with extreme weather conditions such as extreme heat, extreme cold, extreme wetness, extreme drought etc. run danger that the food supply is not ensured, which, in view of obvious weather changes in the last years, has become an even more critical subject. Moreover, the importance of maize as a renewable resource has increased in the last years in view of the fact that the combustion of resources such as oil, coal, and natural gas contributes to the warming of the world climate and resources are needed which, due their regrowth, do not contribute to a negative CO2balance. In view of this, it is a scientific demand to provide maize plants and other crop plants which brave the climate in all its forms and other abiotic factors and, despite heat, chilling, drought, salinity, wetness etc. consistently provide high yields. Cell wall invertases, also called extracellular invertases, are crucial enzymes for an appropriate metabolism, growth and differentiation of plants. They work by hydrolysis of sucrose into glucose and fructose outside cells which are subsequently imported into target cells by monosaccharide transporters. The monosaccharides do not only serve as a source of carbon and energy for plants, but they are also key signaling molecules that potentially regulate cell division, growth, differentiation, metabolism and resource allocation in plants. Cell wall invertases are regarded as crucial to supply sink tissues with carbohydrates via an apoplastic pathway. Cell wall invertases are known in the art as potentially increasing the grain yield and biomass of certain plants. Thus, Li et al. (Li B. et. al., Plant Biotechnology Journal, 2013, 11, 1080-1091) disclose the constitutive overexpression of three cell wall invertase genes (AtCWIN1, OsGIF1 and ZmMn1) in transgenic maize plants leading to an increase in grain yield. Schweinichen and Büttner (Schweinichen C. and Büttner M., Plant Biol. (Stuttg), 2005, 7, 469-475) disclose the root-specific expression ofChenopodium rubrumcell wall invertase in Arabidopsis leading to early flowering and increased biomass of the whole plant, probably due to an extensive root growth. Albacete A. et al., Journal of Experimental Botany, 2015, 66, 863-878 disclose that fruit-specific expression ofChenopodium rubrumcell wall invertase in transgenic tomato can lead to improved drought tolerance, however they did not observed an increased shoot weight or leaf area, i.e. biomass. Despite these successes of increasing plant yields, there is still a need to provide economically important plants which produce high biomass yield, even under adverse abiotic conditions. To address this issue, the present inventors succeeded in developing maize plants which overcome disadvantages of previous maize plants in that these maize plants show both, an enhanced drought tolerance and biomass production. Thereby, the present inventors introducedChenopodium rubrumcell wall invertase (CrCIN) into maize plants and found that these maize plants produced increased yield and had increased tolerance to drought. The invention is described in the following, with reference to the claims. In the following, the present invention is described in detail. The features of the present invention are described in individual paragraphs. This, however, does not mean that a feature described in a paragraph stands isolated from a feature or features described in other paragraphs. Rather, a feature described in a paragraph can be combined with a feature or features described in other paragraphs. The term “comprise/es/ing”, as used herein, is meant to “include or encompass” the disclosed features and further features which are not specifically mentioned. The term “comprise/es/ing” is also meant in the sense of “consist/s/ing of” the indicated features, thus not including further features except the indicated features. Thus, the product and method of the present invention may be characterized by additional features in addition to the features as indicated. In a first aspect, the present invention relates to a transgenic maize plant comprising as transgene i) a nucleic acid capable of expressing aChenopodium rubrumcell wall invertase (CrCIN) or a functional part thereof, ii) the nucleic acid capable of expressing theChenopodium rubrumcell wall invertase or the functional part thereof of item i) which is modified by the degeneration of the genetic code, iii) a nucleic acid capable of expressing a cell wall invertase or a functional part thereof having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% amino acid identity or at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid homology to theChenopodium rubrumcell wall invertase or the functional part thereof of item i), or iv) a nucleic acid capable of hybridizing under stringent conditions with a complementary sequence of the nucleic acid of any one of items i) to iii), whereby the nucleic acid of item iv) is capable of expressing a cell wall invertase, wherein as a result of the expression of theChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof the transgenic maize plant exhibits an enhanced tolerance to abiotic stress and/or an increased yield, optionally as compared to a reference. In an embodiment thereof, the nucleic acid is derived from the nucleic acid of any one of items i) to iv) by codon optimization. In an embodiment of the above, the nucleic acid of item i) comprises the nucleic acid sequence of SEQ ID NO: 3 or encodes the amino acid sequence of SEQ ID NO: 4. In an embodiment of the above, the transgenic maize plant comprises as transgene an expression cassette comprising the nucleic acid. In an embodiment of the above, the nucleic acid or the expression cassette is stably integrated into the genome of the maize plant or is transiently expressed in the maize plant, for example is present in the maize plant on a vector. In an embodiment of the above, the expression of the nucleic acid is controlled by a promoter, preferably a constitutive promoter. In an embodiment of the above, the abiotic stress is selected from drought, salinity, heat or chilling and/or the yield is biomass yield or grain yield. The present inventors have surprisingly demonstrated thatChenopodium rubrumcell wall invertase is effective in enhancing in a maize plant tolerance to drought stress and/or of increasing yield of a maize plant. This is surprising insofar, as the present inventors also demonstrated that the same gene introduced into wheat plants were not effective in increasing biomass or grain yield. This shows that the effect of cell wall invertases in general and specifically ofChenopodium rubrumcell wall invertase in a heterologous setting is not predictable. Thus, by introducing the gene coding forChenopodium rubrumcell wall invertase the present inventors were able to enhance in a maize plant tolerance to abiotic stress and/or to increase (biomass) yield of a maize plant under normal and/or stress conditions. Specifically, the present inventors showed that the gene coding forChenopodium rubrumcell wall invertase introduced into a maize plant was expressed and expression of the gene resulted in an enhanced production of leaves, in the production of higher plants and in the production of maize plants with a higher drought resistance as compared to a reference. The transgenic maize plant of the present invention expressesChenopodium rubrumcell wall invertase (CrCIN). The gene encoding the CIN1 cell wall invertase derived fromChenopodium rubrumis known in the art and is, e.g. characterized by the accession number as available from the NCBI database (National Centre for Biotechnology Information; National Library of Medicine 38A, Bethesda, Md. 20894, USA; www.ncbi.nih.gov) under the accession number X81792.1 (SEQ ID NO: 1) encoding the protein with the accession number CAA57389.1 (SEQ ID NO: 2).Chenopodium rubrumcell wall invertase and the gene encoding the cell wall invertase are not restricted to SEQ ID NOs: 1 and 2, but include anyChenopodium rubrumcell wall invertase naturally expressed byChenopodium rubrumand the gene encoding theChenopodium rubrumcell wall invertase. Moreover, the transgenic maize plant of the present invention comprises a nucleic acid that expresses a “homolog” of aChenopodium rubrumcell wall invertase. A “homolog”, as defined herein, is a cell wall invertase which has an amino acid identity to aChenopodium rubrumcell wall invertase, as exemplarily identified by SEQ ID NO: 2, of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%, or which has an amino acid homology to aChenopodium rubrumcell wall invertase, as exemplarily identified by SEQ ID NO: 2, of at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%. Thereby, “amino acid homology” refers to identical or homologous amino acids. Homologous amino acid residues have similar chemical-physical properties, for example, amino acids belonging to a same group: aromatic (Phe, Trp, Tyr), acid (GIu, Asp), polar (GIn, Asn), basic (Lys, Arg, His), aliphatic (Ala, Leu, lie, VaI), with a hydroxyl group (Ser, Thr), or with a short lateral chain (GIy, Ala, Ser, Thr, Met). It is expected that substitutions between such homologous amino acids do not change a protein phenotype (conservative substitutions). Alternatively, a “homolog” is a cell wall invertase which is encoded by a nucleic acid which is capable of hybridizing under stringent conditions with the complementary sequence of the nucleic acid coding for aChenopodium rubrumcell wall invertase, such as identified by SEQ ID NO: 2, or with the complementary sequence of the nucleic acid coding for a cell wall invertase which has amino acid identity or amino acid homology toChenopodium rubrumcell wall invertase, as identified above. TheChenopodium rubrumcell wall invertase, such as identified by SEQ ID NO: 2, or a homolog thereof confers on the maize plant an enhanced tolerance to abiotic stress and/or the maize plant harboring a nucleic acid coding forChenopodium rubrumcell wall invertase, such as identified by SEQ ID NO: 2, or a homolog thereof has an increased yield, optionally as compared to a reference. Preferably,Chenopodium rubrumcell wall invertase, such as identified by SEQ ID NO: 2, or a homolog thereof may not be capable of conferring on a wheat plant into which it has been transformed tolerance to abiotic stress and/or of increasing the yield of a wheat plant, more specificallyChenopodium rubrumcell wall invertase or a homolog thereof may not be capable of increasing wheat plant height or grain yield. As used herein, a “functional part” of aChenopodium rubrumcell wall invertase or of a homolog thereof refers to any part of the protein which has the same activity as full-lengthChenopodium rubrumcell wall invertase such as identified SEQ ID NO: 2, namely the functional part hydrolyses sucrose into glucose and fructose. Moreover, the functional part confers on the maize plant an enhanced tolerance to abiotic stress and/or the maize plant harboring the functional part has an increased yield, optionally as compared to a reference. Preferably, the functional part may not be capable of conferring on a wheat plant into which it has been transformed tolerance to abiotic stress and/or of increasing the yield of a wheat plant, more specifically the functional part may not be capable of increasing wheat plant height or grain yield. As used herein, the term “maize plant” means any plant of the speciesZea mays. As used herein, the term “nucleic acid” may be a DNA, a RNA or a hybrid of DNA and RNA. Preferably, the DNA is double-stranded. It may be a genomic DNA comprising intron sequences and possibly regulatory sequences in the 5′ and/or 3′ region or a cDNA without intron sequences. The term “nucleic acid”, as used herein, comprises nucleic acids which encodeChenopodium rubrumcell wall invertases or a functional part thereof or a homolog thereof, as defined above. Moreover, the term “nucleic acid” comprises a nucleic acid which is modified by the degeneration of the genetic code of a nucleic acid encoding a naturally occurringChenopodium rubrumcell wall invertase. As used herein, the term “nucleic acid” is also meant to include a part of a nucleic acid encodingChenopodium rubrumcell wall invertase or a homolog thereof, whereby the part of a nucleic acid encodes a functional part of aChenopodium rubrumcell wall invertase or a homolog thereof, as defined above. The term “degeneration of the genetic code” refers to the degeneracy of codons which is a term known in the art and means the redundancy of the genetic code exhibited as the multiplicity of three-base pair codon combinations that specify a given amino acid. Thus, the codon coding for an amino acid can be specifically changed without that the amino acid is changed. This results in a variety of nucleic acids coding for the sameChenopodium rubrumcell wall invertase. The percentage of “sequence identity” or “sequence homology”, as used herein, refers to the percentage of amino acid residues which are identical or homologous, respectively, in corresponding positions in two optimally aligned sequences. It is determined by comparing two optimally aligned sequences over a comparison window, where the fragment of the amino acid sequence in the comparison window may comprise additions or deletions (e.g., gaps or overhangs) as compared to a reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical or homologous amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith T. F. and Waterman M. S., Add APL Math, 1981, 2, 482-489, by the homology alignment algorithm of Needleman S. B. and Wunsch C. D., J. Mol. Biol., 1970, 48, 443-453, by the search for similarity method of Pearson W. R. and Lipman D. J., PNAS, 1988, 85, 2444-2448, by the algorithm of Karlin S. and Altschul S. F., PNAS, 1990, 87, 2264-2268, modified by Karlin S. and Altschul S. F., PNAS, 1993, 90, 5873-5877, or by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, PASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection. GAP and BESTFIT are preferably employed to determine the optimal alignment. Typically, the default values of 5.00 for gap weight and 0.30 for gap weight length may be used. As used herein, the term “hybridize(s)(ing)” refers to the formation of a hybrid between two nucleic acid molecules via base-pairing of complementary nucleotides. The term “hybridize(s)(ing) under stringent conditions” means hybridization under specific conditions. An example of such conditions includes conditions under which a substantially complementary strand, such as a strand composed of a nucleotide sequence having at least 80% complementarity, hybridizes to a given strand, while a less complementary strand does not hybridize. Alternatively, such conditions refer to specific hybridizing conditions of sodium salt concentration, temperature and washing conditions. As an example, highly stringent conditions comprise incubation at 42° C., 50% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate, 5×Denhardt's solution, 10× dextran sulphate, 20 mg/ml sheared salmon sperm nucleic acid and washing in 0.2×SSC at about 65° C. (SSC stands for 0.15 M sodium chloride and 0.015 M trisodium citrate buffer). Alternatively, highly stringent conditions may mean hybridization at 68° C. in 0.25 M sodium phosphate, pH 7.2, 7% SDS, 1 mM EDTA and 1% BSA for 16 hours and washing twice with 2×SSC and 0.1% SDS at 68° C. Further alternatively, highly stringent hybridisation conditions are, for example: Hybridizing in 4×SSC at 65° C. and then multiple washing in 0.1×SSC at 65° C. for a total of approximately 1 hour, or hybridizing at 68° C. in 0.25 M sodium phosphate, pH 7.2, 7% SDS, 1 mM EDTA and 1% BSA for 16 hours and subsequent washing twice with 2×SSC and 0.1% SDS at 68° C. The present inventors showed that the nucleic acid encoding aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof can be expressed in a maize plant. The expressed cell wall invertase confers on the maize plant an enhanced tolerance to abiotic stress and/or the maize plant exhibits an increased yield. “Tolerance to abiotic stress” means that the introduction and expression ofChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof in a maize plant renders the maize less susceptible to adverse abiotic conditions, whereby typical stress symptoms due to the adverse abiotic factors do not occur or occur to a lesser degree than in a reference. Alternatively or additionally, introduction and expression ofChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof in a maize plant increases the yield of the maize plant, optionally as compared to a reference. “Increased yield”, as used herein, means that the transgenic maize plant exhibits an increased growth rate under normal conditions which do not produce stress to the plant or abiotic stress conditions, optionally as compared to a reference. An increased growth rate comprises an increased mass production of the whole plant or a part thereof such as an increased mass production of the overground part of the plant, e.g. of stem, leaves, florescence, cobs, and/or grains etc., and/or an increased mass production of the underground part of the plant. The “increased mass production” may include any part of the transgenic maize plant and refers in particular to the stem, leaves, cobs and/or grains. “Increased yield” also comprises a prolonged growth and survival, also resulting in an increased mass production. As used herein, the term “reference” may refer to a maize plant of the same genotype as the transgenic maize plant of the present invention whereby the reference does not comprise the transgene encodingChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof. Reference experiments including (a) reference maize plant(s) may be conducted parallel to the experiments for testing the properties of the transgenic maize plants of the present invention. However, reference experiments may also be conducted at a different time point under comparable conditions and the results may be compared after all experiments are finished. Alternatively, the “reference” may be a specific (pre)determined measure of yield or of a symptom such as the percentage of leaves showing leaf rolling symptom under drought conditions which characterizes a maize plant as having tolerance to an abiotic stress factor or as having no tolerance to an abiotic stress factor. For example, a reference measure may be an already determined measure or a publicly available measure which provides to the skilled person a threshold measure and helps him/her to decide that a transgenic maize plant is tolerant or not tolerant to an abiotic stress factor or has an increased yield, dependent of whether the measure of the transgenic maize plant is below or above this measure. Based on this reference measure (e.g. number of leaves with rolling symptoms), the skilled person can then identify a maize plant as being tolerant to a stress factor if the maize plant has a lower number of leaves with rolling symptoms than the reference measure or as having increased yield if the maize plant indicates a higher yield than the reference measure. Thereby, the maize plant(s) used for establishing the reference measure does not need to be, but may be, a maize plant of same genotype as the transgenic maize plant. For example, the reference maize plant(s) may be (a) maize plant(s) which has(ve) a degree of tolerance to an abiotic stress factor which reflects the average tolerance degree of a population of maize plants adapted to a specific environment. The skilled person who wants to develop a maize plant better adapted to the specific environment may use this measure as reference and develop a transgenic maize plant which exhibits a better measure and which is, therefore, better adapted to the specific environment. Or the reference maize plant(s) may be (a) maize plant(s) with a certain degree of tolerance to an abiotic stress factor, and it is an object to generate a transgenic maize plant which has a higher degree of tolerance to the abiotic factor. Likewise, the skilled person may want to develop a transgenic maize plant with a high yield under specific conditions, and may use the comparison with a reference measure to determine whether the transgenic maize plant meets the object. For determination whether a transgenic maize plant shows “tolerance to abiotic stress” or “increased yield”, CrCIN transcript and/or protein expression and/or expression level from the transgene may be determined, according to methods known in the art. Thus, the determination whether a transgenic maize plant harboring aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof has tolerance to abiotic stress or increased yield does not necessarily require the comparison with a reference. The present inventors have found that introduction and expression of theChenopodium rubrumcell wall invertase results in an increase in yield and increased tolerance to abiotic stress factors, as is shown in the exemplary part of the present specification. The term “abiotic stress” or “abiotic stress conditions” refers to stress conditions for the maize plant arising from abiotic, i.e. non-living, factors. Such abiotic factors include drought, salinity (concentration of salt), heat or chilling. While not being want to be bound by the following, it may be assumed that the effect of theChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof in the maize plant is related to an increased carbohydrate pool, which is generated due to the increased activity ofChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof in the maize plant where the enzyme is overexpressed. Sugars which are generally known to have a protective effect against osmotic stress may result in a molecular cellular phenotype in the maize plant which protects the maize plant from stress conditions such as drought, salinity and/or heat conditions at which osmotic events play a role. Moreover, sugars which are generally known to have protective effect against chilling or frost temperature impacts may result in a molecular cellular phenotype which protects the maize plant from stress conditions such as chilling. In a preferred embodiment of the present invention, the nucleic acid as comprised by the maize plant according to the present invention is codon optimized. Once a cell wall invertase has been selected for transformation of a maize plant, the codons may be modified and adapted to the specific requirements of the host in order to maximize expression. Codon optimization of a nucleic acid for expression in heterologous host cells is known to those skilled in the art. There are numerous commercial providers that have developed algorithms that consider relevant transcription and translation optimization parameters and deliver a nucleic acid sequence configured to the requirements of nucleic acid and host. For example, codon optimization can be effected by the GeneOptimizer™ software, GeneArt, ThermoFisher Scientific. A preferred nucleic acid, as comprised by the present invention, is the codon optimized sequence of SEQ ID NO: 3 derived from SEQ ID NO: 1 encoding the polypeptide of SEQ ID NO: 4. The codons are especially adapted to the codon usage in maize plants. The term “expression of” or “expressing” means (1) the transcription of a nucleic acid as comprised by the present invention into an RNA or mRNA and/or (2) the translation of the RNA or mRNA intoChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof. As used herein, an “expression cassette” is a nucleic acid molecule which is composed of one or more open reading frames or genetic sequences which are expressed into (a) protein(s) in a maize plant into which the expression cassette has been introduced and regulatory element(s) in the 5′ and optionally 3′ position controlling their expression. Thus, an expression cassette may contain a promoter regulatory sequence, also designated promoter, operably linked to an open reading frame or another genetic sequence, and a 3′ terminator regulatory region that may contain a polyadenylation site. The promoter directs the machinery of the cell to make RNA and/or protein. The regulatory element(s) may be from the cell wall invertase nucleic acid which is introduced into the maize plant or may be from different genes, as long as the regulatory element(s) is(are) able to function in the maize plant. Moreover, the regulatory element(s) in the 5′ position may be derived from the same gene as the regulatory element(s) in the 3′ position or may be derived from different genes. As used herein, “operably linked” means that expression of the linked nucleic acid sequences occurs in the maize plant. An expression cassette may be part of a vector used for cloning and introducing the nucleic acid into a cell. For introducing the nucleic acid molecule capable of expressing aChenopodium rubrumcell wall invertase or a homolog thereof or a functional part thereof into a cell, the nucleic acid molecule or the expression cassette harboring the nucleic acid may be inserted into a vector. Vectors which harbor a nucleic acid molecule are known to those in the art. In addition to the nucleic acid molecule, the vector may comprise regulatory element(s) in the 5′ and optionally in the 3′ positions which are able to function in a maize plant. The regulatory element(s) are preferably heterologous to theChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof. Thus, the vector may comprise a promoter regulatory sequence operably linked to the nucleic acid molecule, and optionally a terminator regulatory sequence. Preferably, the vector is a shuttle vector for transformation intoAgrobacterium tumefaciensand subsequent transfer of the nucleic acid molecule encoding aChenopodium rubrumcell wall invertase or a functional part thereof or homolog thereof into maize plant cells by infection of the maize plant by the transformedAgrobacterium tumefaciens. More preferably, the vector is a binary vector which is a standard tool in the transformation of higher plants mediated byAgrobacterium tumefaciens. It is composed of the borders of T nucleic acid, multiple cloning sites, replication functions forEscherichia coliandAgrobacterium tumefaciens, selectable marker genes, reporter genes, and other accessory elements that can improve the efficiency of and/or give further capability to the system. Another more preferred vector is a super-binary vector that carries additional virulence genes from a Ti plasmid, and exhibits very high frequency of transformation, which is valuable for recalcitrant plants such as cereals. A number of useful vectors are available in the art. Especially preferred is a binary vector which comprises the ubiquitin promoter of maize (e.g., U.S. Pat. Nos. 5,510,474 A, 6,020,190 A, 6,054,574 A, 6,878,818 B1, 6,977,325 B2) and the nos terminator sequence ofAgrobacterium tumefaciensor the 35S terminator sequence of cauliflower mosaic virus as transcription regulatory sequences and preferably extended by a herbicide resistance gene (e.g. pat gene for conferring Basta resistance (e.g., U.S. Pat. No. 7,112,665 B1)) and/or the spectinomycin resistance gene as selectable marker genes. According to the invention, the term “promoter regulatory sequence” or “promoter” is intended to mean any promoter of a gene that can be expressed in a maize plant. Such promoter may be a promoter which is naturally expressed in the maize plant or is of fungal, bacterial, or viral origin. The promoter may include a constitutive promoter, a tissue specific promoter, or an inducible promoter, whereby constitutive expression is preferred. A number of suitable promoters are available in the art. For example, a constitutive promoter useful in the invention is the ubiquitin promoter from maize. Another promoter is the Act-1 promoter from rice (e.g., U.S. Pat. No. 5,641,876 A). The NCR promoter from soybean chlorotic mottle virus (SoyCMV) (Hasegawa, A., et al. “The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter.”Nucleic acids research17.23 (1989): 9993-10013.) has also been shown to be useful in monocotyledonous plants. Further useful promoters are the 35S CaMV (Franck A. et al., 1980, Cell 21:285-294) and the 19S CaMV promoter from cauliflower mosaic virus (U.S. Pat. No. 5,352,605; WO 84/02913) or plant promoters like those from the Rubisco small subunit (U.S. Pat. No. 4,962,028). The promoter used in the method of the invention may be an inducible promoter. An inducible promoter is a promoter that is capable of directly or indirectly activating transcription of a nucleic acid sequence in response to an inducer. In the absence of an inducer, the nucleic acid sequence will not be transcribed. Inducible expression may be desirable. Stimuli for inducible promoters are of different kind and include environmental conditions such as light, temperature and/or abiotic stress conditions such as water stress, salinity stress conditions, cold stress or heat stress. Other types of stimuli for inducible promoters are hormones (for example gibberellin, abscisic acid, jasmonic acid, salicylic acid, ethylene, auxin) or chemicals (tetracycline, dexamethasone, estradiol, copper, ethanol, and benzothiadiazol). Thus, the expression ofChenopodium rubrumcell wall invertase or a functional fragment thereof or a homolog thereof under specific inducive conditions, preferably under abiotic stress conditions, results in the protection of the maize plant by preventing stress symptoms and allowing the formation of mass. Inducible promoters are e.g. promoters which are benzyl sulfonamide inducible (EP 0 388 186), tetracyclin inducible), Gatz C. et al., Plant J. 2, 1992: 397-404), abscisic acid inducible (EP 0 335 528) or ethanol or cyclohexenol inducible (WO 93/21334). In addition to a promoter sequence, an expression cassette or vector may also contain a terminator downstream of the structural gene to provide for efficient termination. According to the invention, the term “terminator” or “terminator regulatory sequence” is intended to mean any such sequence that is functional in terminating expression of a nucleic acid in a maize plant, also optionally comprising polyadenylation sequences. The terminator may be obtained from the same gene as the promoter sequence or may be obtained from a different gene. Thus, it may be of viral origin such as the CaMV 35S terminator which is the preferred one, of bacterial origin such as the octopine synthase or the nopaline synthase terminator ofAgrobacterium tumefaciens, or of plant origin such as a histone terminator. Polyadenylation sequences include, but are not limited to, theAgrobacterium octopinesynthase signal. The term “introducing” or “introduction”, as used herein, means inserting a nucleic acid into a maize plant by any means known in the art, such as “transformation” using non-viral introduction methods or “transduction” using viral-mediated gene transfer. For introducing the nucleic acid molecule into a maize plant, numerous methods are known in the art (see, for example, Miki et al., “Procedures for Introducing Foreign nucleic acid into Plants” in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993), pages 67-88). In addition, expression vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are available (see, for example, Gruber et al., “Vectors for Plant Transformation” in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds. (CRC Press, Inc., Boca Raton, 1993), pages 89-119). A preferred method applied in the present invention is transformation of the nucleic acid molecule, expression cassette or vector harboring the nucleic acid molecule by the use of bacteria of theAgrobacteriumgenus, preferably by infection of cells or tissues of a maize plant withA. tumefaciens(Knopf U. C., 1979, Subcell. Biochem. 6: 143-173; Shaw C. H. et al., 1983, Annu. Rev. Genet. 16: 357-384; Tepfer M. and Casse-Delbart F., 1987, Microbiol. Sci. 4 (1): 24-28). For example, the transformation of maize plant cells or tissues withAgrobacterium tumefaciensis carried out according to the protocol described by Hiei Y. et al. (1994, Plant J. 6 (2): 271-282). Another method for introducing a nucleic acid into a maize plant is the biolistic transformation method, wherein cells or tissues are bombarded with particles onto which the nucleic acid, expression cassette or vector as comprised by the invention are adsorbed (Bruce W. B. et al., 1989, Proc. Natl. Acad. Sci. USA 86 (24): 9692-9696; Klein T. M. et al., 1992, Biotechnology 10 (3): 286-291; U.S. Pat. No. 4,945,050). A further method is the widely used protoplast transformation. Therefor, plant cells are separated by pectinases and subsequently, the cell wall is degraded to generate protoplasts. For transformation, polyethylene glycol may be added or electroporation may be applied. Other methods are bringing the plant cells or tissues into contact with polyethylene glycol (PEG) and the nucleic acid, expression cassette or vector of the invention (Chang S. and Cohen S. N., 1979, Mol. Gen. Genet. 168 (1): 111-115; Mercenier A. and Chassy B. M., 1988, Biochimie 70 (4): 503-517). Electroporation is another method, which consists of subjecting the cells or tissues to be transformed and the nucleic acid, expression cassette or vector as comprised by the invention to an electric field (Andreason G. L. and Evans G. A., 1988, Biotechniques 6 (7): 650-660; Shigekawa K. and Dower W. J., 1989, Aust. J. Biotechnol. 3 (1): 56-62). Another method consists of directly injecting the nucleic acid, expression cassette or vector as comprised by the invention into the cells or the tissues by microinjection (Gordon and Ruddle, 1985, Gene 33 (2): 121-136). Another method for physical delivery of a nucleic acid to plants is sonication of target cells (Zhang et al., Bio/Technology 9: 996 (1991)). Alternatively, liposome or spheroplast fusion may be used to introduce the nucleic acid, expression cassette or vector as comprised by the invention into plants (Deshayes et al., EMBO J., 4: 2731 (1985), Christou et al., Proc Natl. Acad. Sci. U.S.A. 84: 3962 (1987)). Direct uptake of a nucleic acid into protoplasts using CaCl2precipitation, polyvinyl alcohol or poly-L-ornithine has also been reported (Hain et al., Mol. Gen. Genet. 199: 161 (1985); Draper et al., Plant Cell Physiol. 23: 451 (1982)). The selection step for identifying a transgenic maize plant comprising the nucleic acid can be carried out via a selectable gene present on the vector, as referred to above. The selectable gene may comprise an operably linked promoter regulatory sequence and possibly a terminator regulatory sequence that are functional in maize cells. Among the selectable markers that can be used in the present invention, reference is made to genes for resistance against antibiotics, such as the spectinomycin resistance gene, the hygromycin phosphotransferase gene, the neomycin phosphotransferase II gene inducing resistance against kanamycin, or the aminoglycoside 3′-adenyltransferase gene, the bar gene (White J. et al., Nucl. Acids Res., 1990, 18: 1062) for tolerance to bialaphos, the EPSPS gene (U.S. Pat. No. 5,188,642) for tolerance to glyphosate or the HPPD gene (WO 96/38567) for tolerance to isoxazoles, genes encoding identifiable enzymes, such as the GUS enzyme, GFP protein or genes encoding pigments or enzymes regulating pigment production in the transformed cells. Such selectable marker genes are in particular described in patent applications WO 91/02071, WO 95/06128, WO 96/38567, and WO 97/04103. In a preferred embodiment, the spectinomycin resistance gene and the pat gene are used as the selectable genes on a binary vector in the present invention. Marker gene free transformation is another alternative to transfer the nucleic acid, expression cassette or vector, as referred to above, into a maize plant. In one embodiment, the nucleic acid or expression cassette is stably integrated into the genome of the transgenic maize plant, preferably into a chromosome of the plant such as the nuclear, plastid and/or mitochondrial chromosome. Integration can, however, also occur into an extrachromosomal element. By stable integration into the genome of a plant, the nucleic acid sequences can be passed to subsequent generations of the transgenic plant. Stable integration and passing to next maize plant generations is preferred in the present invention. Using theAgrobacterium tumefaciensmediated transformation method of plants as the preferred transformation method, theChenopodium rubrumcell wall invertase nucleic acid is stably integrated into the maize plant genome. Alternatively, the nucleic acid or expression cassette or vector harboring the nucleic acid or expression cassette may be converted into an autonomous replicon. Alternatively, the nucleic acid molecule or expression cassette is present within the plant cell on the vector used to introduce the nucleic acid molecule and is not stably integrated into the genome of the plant, or the nucleic acid is transiently expressed such as transformed mRNA. Therefore, the nucleic acid sequences may not be passed to subsequent generations of the maize plant. The term “heterologous”, as used herein, refers to conditions wherein molecules are present in environments under which they are not naturally present. For example, a nucleic acid molecule which is expressed in a host cell in which it is not naturally expressed is a heterologous nucleic acid. Consequently, the host cell is then a heterologous host cell. Heterologous regulatory elements are those which are linked to nucleic acid molecules to which they are not naturally linked. A “transgenic maize plant”, as used herein, refers to a maize plant which contains a nucleic acid capable of expressing aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof integrated into its nuclear genome or organelle genome or being present on an autonomous replicon or on the vector used to introduce the nucleic acid as comprised by the present invention or being present as mere coding sequence without other elements. This term encompasses further the offspring generations such as T1, T2 or consecutive generations, as well as crossbreeds thereof with non-transgenic or other transgenic plants. The transgenic maize plant advantageously contains at least one copy of the nucleic acid as comprised by the invention. Expression ofChenopodium rubrumcell wall invertase or a functional part or a homolog thereof in a maize plant enhances tolerance to abiotic stress conditions. Preferred “abiotic stress” against which the transgenic maize plant of the present invention exhibits enhanced tolerance includes drought, salinity (concentration of salt), heat and/or chilling. “Drought” or “drought conditions” mean conditions of water deficiency arising from a long period of low or no water supply (water stress condition), especially conditions that adversely affect growing and/or living conditions of a maize plant. Under drought conditions, the plant will show symptoms of injury such as wilting, leaf browning and/or leaf rolling, growth is hampered and the plant will eventually die. Drought conditions can be generated by growing a maize plant of the V2, V3, V4, V5, V6, V7, or V8 (according to Leaf Collar Method described below) stage for one week in ¼ strength Hoagland Solution and then treating it for one day in 25% PEG6000. “Tolerance to drought”, as used herein, may mean that the transgenic maize plant shows significantly reduced leaf rolling symptoms under drought conditions such as treatment of plants with Hoagland Solution and 25% PEG6000. “Significantly reduced” means that the percentage of leaves with rolling symptoms is reduced as compared to a reference by at least 20, 30, 40, 50, 60, 70, 80, 90, 95 or 100%. Alternatively, a maize plant is tolerant to drought if at the most 60, 50, 40, 30, 20, 10 or 5 or less % of the leaves of the maize plant in the V2, V3, V4, V5, V6, V7, V8 and/or VT (fully mature plant with inflorescence) stage show rolling symptoms if kept under drought conditions. “Salinity” or “salinity conditions” mean conditions of high concentration of salt such as 100 mM NaCl solution for irrigation, especially in the air and/or in the soil, especially conditions that adversely affect growing and/or living conditions of a maize plant. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, or certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The cause of cell wall invertases to protect a maize plant from adverse salinity effects may lie in their ability to synthesize osmotically active compounds. Under salinity conditions, the yield of the maize plant will be lower than under non-salinity conditions. Under extended and/or very high salinity conditions, the maize plant will eventually die. “Tolerance to salinity” may mean that the transgenic plant of the V2, V3, V4, V5, V6, V7, or V8 stage survives and/or grows under salinity conditions as compared to a reference which does no longer grow or grows to a lesser degree, whereby under very high salinity conditions and/or over an extended period of salinity, the maize plant will eventually die. By “survives” is meant that the transgenic maize plant survives for a longer period of time, such as at least 10, 11, 12, 13 or more days, than the reference. By “grows” is meant that the increase in yield of the whole maize plant or of parts thereof such as stem, leaves, cobs or grains is at least 20, 30, 40, 50, 60, 70, 80, 90 or 100%, as compared to the yield of a control. “Heat” or “heat conditions” mean conditions under high temperature such as ca. 33-40° C. at ear level along a 15-days pre-anthesis period, especially conditions that adversely affect growing and/or living conditions of a maize plant. Rate of plant growth and development is dependent upon the temperature surrounding the plant. Extreme heat events occurring during the vegetation period seems to have the most dramatic impact on plant productivity; whereby extreme heat may cause reduction in grain yield. In general, extreme high temperatures during the reproductive stage may affect pollen viability, fertilization, and grain formation. Chronic exposures to extreme temperatures during the pollination stage of initial grain set will reduce grain yield potential. Acute exposure to extreme events may be most detrimental during the reproductive stages of development (Hatfield J. L. and Prueger J. H., 2015, Weather and Climate Extremes, 10: 4-10). Bearing in mind that temperature and extreme temperature events are expected to increase due to the warming of world climate, the development of maize plants with an enhanced tolerance to heat stress conditions seems to be an urgent need. “Tolerance to heat”, as used herein, may mean that the transgenic plant of the V2, V3, V4, V5, V6, V7, or V8 and pollination stage survives and/or grows under heat conditions as compared to a reference which does no longer grow or grows to a lesser degree. By “survives” is meant that the transgenic maize plant survives for a longer period of time, such as at least 10, 11, 12, 13 or more days, than the reference. By “grows” is meant that the increase in yield of the whole maize plant or of parts thereof such as stem, leaves, cobs or grains is at least 20, 30, 40, 50, 60, 70, 80, 90 or 100%, as compared to the yield of a control. “Chilling” or “chilling conditions” mean conditions under chilling temperature such as under 10° C. but above the freezing point, especially conditions that adversely affect growing and/or living conditions of a maize plant. Chilling may cause damage (chlorosis) and interrupts the pathways for nutrients and water to flow. Under chilling conditions, the plant will produce less yield. “Tolerance to chilling” may mean that the transgenic plant of the V2, V3, V4, V5, V6, V7, V8 (????) stage survives and/or grows under chilling conditions as compared to a reference which does no longer grow or grows to a lesser degree. By “survives” is meant that the transgenic maize plant survives for a longer period of time than the reference. By “grows” is meant that the increase in yield of the whole maize plant or of parts thereof such as stem, leaves, cobs or grains is at least 20, 30, 40, 50, 60, 70, 80, 90 or 100%, as compared to the yield of a control. It will be understood by those skilled in the art that, due to the large number of different maize varieties that are grown under a broad spectrum of climate and other abiotic conditions, it is difficult to indicate specific values with respect to drought, salinity, heat or chilling, such as days of drought, degree of salinity or height of temperature, which guide the skilled person under which conditions tolerance to an abiotic factor should be tested. For example, maize plants with high drought tolerance will need stronger drought conditions than maize plants with a lower drought tolerance in order to assess whether the corresponding transgenic maize plant shows higher tolerance or will produce higher yield. Therefore, the test conditions will depend on the maize plant used for inserting the transgene and/or on the purpose for which the transgenic maize plant will be used. Due to the fact that introduction and expression ofChenopodium rubrumcell wall invertase results in an increase in yield of the transgenic maize plant under normal and drought conditions and in a drought tolerant phenotype, it is not necessarily required that a transgenic maize plant which expresses aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof is compared to a reference, as referred to herein, if it should be determined whether the transgenic maize plant has tolerance to abiotic stress such as drought, salinity, heat and/or chilling. It may be sufficient to determine expression of theChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof, e.g. by determining the amount of transcript or protein, in order to detect that tolerance to the abiotic stress factors drought, salinity, heat and/or chilling exists. Resistance to an abiotic stress factor may be determined by exposing the transgenic maize plant to an abiotic stress factor and determining the degree of stress factor symptoms and/or yield. The obtained measures may be compared to a reference. Resistance may also be detected by determining expression or expression level of the transcript expressed from the transgene as comprised by the present invention. In a second aspect, the invention relates to a plant cell, a tissue, a harvestable part or a seed of the transgenic maize plant of the present invention, wherein the plant cell, the tissue, the part or the seed comprises the transgene as comprised by the present invention. In principle, any part, tissue or organ of a maize plant is included within the present invention to comprise as a transgene a nucleic acid encoding aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof. Thus, shoot vegetative organs/structures, e.g., leaves, stems, roots, flowers or floral organs/structures, e.g. bracts, sepals, petals, stamens, carpels, anthers or ovules; seed, including embryo, endosperm or seed coat; grain or the mature ovary; plant tissue, e.g. vascular tissue or ground tissue; or cells, e.g. guard cells, egg cells or trichomes; or progeny of the same are included within the present invention. The term “cell” refers to a cell or cell accumulation within the plant as well as to an isolated cell or isolated cell accumulation. A cell may have a cell wall or may be a protoplast. The present invention also relates to a seed which comprises the nucleic acid, expression cassette or vector as comprised by the present invention. Preferably, the seeds of a transgenic maize plant retain the nucleic acid, expression cassette or vector as comprised by the invention, so that the new plants generated from a seed continues to comprise the nucleic acid, expression cassette or vector. A “harvestable part” is any part of the plant which can be harvested and used by man. Preferably, the harvestable part may be the whole overground part of the maize plant which can be cut, possibly fermented and used as animal food in animal breeding or in biogas plants as energy source for generating energy providing substances such as biofuel such as ethanol or methane. Preferably, the harvestable part may be the cob, especially the grains, which are used for nutrition of man and animal. In a third aspect, the invention relates to a method of producing a transgenic maize plant, comprising the steps of introducing into at least a cell of a maize plant the nucleic acid or the expression cassette or the vector as comprised by the invention, and regenerating the transgenic maize plant from the at least one cell. As used herein, “regenerating” or “regeneration” means a process of growing an entire maize plant from a single cell, a group of cells, a part of the maize plant or a tissue of the maize plant. The skilled person knows methods of introducing nucleic acid into at least a cell of the maize plant and growing a maize plant therefrom. “At least a cell” means a single cell, a group of cells, a part of the maize plant or a tissue of the maize plant. In a fourth aspect, the invention relates to method of enhancing the tolerance to abiotic stress of a maize plant and/or of increasing yield potential of a maize plant, comprising the steps of introducing into at least a cell of a maize plant the nucleic acid or the expression cassette or the vector as comprised by the invention, and causing expression of the nucleic acid, the expression cassette, or the vector. As used herein, the term “causing expression” means that under the conditions, under which the plant is kept and/or cultivated, transcription of the nucleic acid introduced into the maize plant occurs. For example, if the promoter is a constitutive promoter, expression occurs consistently, whereas in case the promoter is an inducible promoter, the activity of the promoter can be induced by the presence or absence of specific biotic or abiotic factors. As used herein, the term “yield potential” means the capability of the transgenic maize plant to increase yield. By expression of aChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof, the capability is conferred on the maize plant that its yield can be increased. In a fifth aspect, the invention relates to the use of the nucleic acid or the expression cassette or the vector as comprised by the invention for enhancing the tolerance to abiotic stress of a maize plant, for increasing yield potential of a maize plant and/or for protecting a maize plant against abiotic stress. As used herein, “protecting a maize plant against abiotic stress” means conferring resistance against abiotic stress on the maize plant. A resistant maize plant is not damaged by abiotic stress factors or is damaged to a lesser degree as compared to a reference. Resistance may be determined as tolerance to abiotic stress is determined. This includes that resistance may be determined by determining transcript and/or protein expression or expression level from the transgene. In an embodiment, in the method of the fourth aspect or the use of the fifth aspect the abiotic stress is selected from drought, salinity, heat or chilling, and/or the yield potential is biomass yield potential or grain yield potential The term “biomass yield potential” or “grain yield potential” has the meaning as referred to above with respect to “yield potential”, thereby referring to biomass yield or grain yield, respectively. The term “biomass” generally refers to organic matter derived from a plant. The term “biomass” can be used for a source of energy and does not refer to food or feed. Thus, as used herein, the term “biomass” refers to the parts of the maize plant, usually the overground parts such as the whole overground maize plant, which can be used as an energy source by converting it to various forms of biofuel such as ethanol or methane. In a sixth aspect, the invention relates to the nucleic acid which is derived from a nucleic acid encodingChenopodium rubrumcell wall invertase or a functional part thereof or a homolog thereof as comprised by the present invention by codon optimization, preferably wherein the nucleic acid comprises the nucleic acid sequence of SEQ ID NO: 3 or encodes the amino acid sequence of SEQ ID NO: 4. The invention also relates to an expression cassette comprising said nucleic acid or a vector comprising said nucleic acid or expression cassette. In a seventh aspect, the invention relates to a vector comprising the nucleic acid as defined or the expression cassette as defined in the present invention. In an eighth aspect, the invention relates to a method for production of ethanol or methane comprising the following steps: cutting the transgenic maize plant or harvestable part according to the present invention, optionally treating the cut maize plant or the cut harvestable part with an ensilage agent, optionally storing the cut maize plant or the cut harvestable part optionally treated with an ensilage agent, and producing ethanol or methane from the cut maize plant or the cut harvestable part by anaerobic digestion. The eighth aspect serves to provide a method by which the transgenic maize plant is used as an energy source for providing biofuel such as ethanol or methane which are used in petrol, for heating, for obtaining electricity etc. The processes for obtaining energy from maize plants are known in the technical field of biogas recovery where cut maize or other plant material is stored and fermented in a process called ensilage with the help of anaerobic bacteria. Treatment of the cut biomass with an ensilage agent serves to improve the ensilaging result. By adding powerful lactic acid bacteria or other bacteria useful for anaerobic digestion of the biomass and/or chemical agents, undesired bacteria such as butyric acid generating bacteria are inhibited. Chemical agents may be sodium nitrite or hexamine for reducing undesired bacteria such as butyric acid generating bacteria, or sodium benzoate or potassium sorbate for preventing the growth of yeasts and mildews. Thus, failed anaerobic digestions and/or after-warming processes can be prevented and the anaerobic digestion process can be controlled. By “storing the cut maize plant or cut harvestable part” is meant the placing in a container, silo or pit and compressing it so as to leave as little oxygen as possible or keeping it under anaerobic conditions in order to avoid growth of aerobic bacteria. Storing is preferably performed under suitable conditions regarding suitable temperature, moisture, low or no oxygen etc. to allow anaerobic digestion. The skilled person knows the conditions and devices which are to be used for storage and anaerobic digestion. The present invention discloses a method of conferring on a maize plant tolerance to abiotic stress, comprising the following steps: introducing into at least a cell of a maize plant a nucleic acid capable of expressing a cell wall invertase or a functional part thereof or a homolog thereof, an expression cassette comprising the nucleic acid or a vector comprising the nucleic acid or the expression cassette, and causing expression of the nucleic acid, the expression cassette, or the vector. The present invention discloses the use of a nucleic acid capable of expressing a cell wall invertase or a functional part thereof or a homolog thereof, an expression cassette comprising the nucleic acid or a vector comprising the nucleic acid or the expression cassette for conferring on a maize plant tolerance to abiotic stress or for protecting a maize plant against abiotic stress. The above method or use may comprise as abiotic stress drought, salinity, heat and/or chilling. The cell wall invertase as referred to in the above mentioned method and use may be any cell wall invertase without being restricted toChenopodium rubrumcell wall invertase or a homolog thereof or a functional part thereof, with the function of hydrolysing sucrose into glucose and fructose outside the cell which are then transported into cells and of conferring on a maize plant tolerance to abiotic stress. These functions also apply to the “part” and “homolog”, which are otherwise defined as outlined above. The definitions of the other features as comprised by the method or use such as tolerance, abiotic stress, expression cassette, vector etc. are as comprised herein. The invention is further explained in the following figures and examples which are included for illustration purposes and are not intended to limit the invention.
290,321
11303247
TECHNICAL FIELD The present invention relates to the field of communications, and more particularly to a method and a device for controlling power amplification. BACKGROUND A radio frequency (RF) power amplifier is a key component of a network equipment (NE) in a radio communication system. The RF power amplifier is substantially an energy converter, which converts Direct Current (DC) energy of a power source into RF energy for transmission through an antenna. A ratio of the RF power to the DC power provided by the power source is referred to as the efficiency η of the power amplifier, and the efficiency is an important factor of the power amplifier. Taking the power amplifier in a base station for example, the efficiency is directly associated with factors such as the power source, heat dissipation, size, fans, and noises of the base station system. A high efficiency of the power amplifier improves the reliability of the base station system and reduces the cost of the base station equipment. For a telecommunication operator, a high efficiency of the power amplifier can effectively reduce the cost of system operation and subsequent maintenance. The efficiency η of a power amplifier is calculated according to the following formulae: η=(Power_rf/power_dc)×100%  [1] where Power_rf is an RF power, and Power_dc is a DC power; and Power_dc=Vdd×Id[2] where Vddis a voltage provided by a DC power source, and Idis a current provided by the DC power source. In the whole power conversion process, a part of the DC energy is inevitably converted into heat, which will be wasted. Therefore, the actual efficiency of the power amplifier is always lower than 100%. In a current base station power amplifier, to consider the efficiency and linearity indexes comprehensively, a static working point of the power amplifier is normally set to Class A or Class AB, that is, a static working current of the power amplifier Idq>0 A. Taking a laterally diffused metal oxide semiconductor (LDMOS) for example, the LDMOS is a power amplifier transistor widely applied at present. If a voltage bias of a power amplifier using the power amplifier transistor is in Class AB, and the power amplifier is in a saturated output state, the efficiency is the highest. However, with the decrease of the output power, the efficiency will be reduced gradually. That is, the ratio of the heat converted from the DC energy provided by the power source will rise with the decrease of the efficiency of the power amplifier. When the power amplifier does not output any RF power, the dissipated DC power is as follows: Power_dc=Vdd×Idq[3] For the base station system, the state in which the power amplifier does not output any RF power appears frequently (for example, when no subscriber accesses the system). According to the above analysis, at this time, for a common Class A or Class AB amplifier, the static power is wasted, and the overall efficiency of the power amplifier is lowered. To improve the overall efficiency of the power amplifier, the following solution is adopted in the prior art. When the power amplifier is in a state with no RF power output, a voltage of a drain electrode of the power amplifier transistor in the power amplifier is adjusted to 0 V. It is known from Formula [3] that, at this time, Power_dc=0 W, i.e. the dissipated DC power is 0 W. Though the overall efficiency of the power amplifier is increased to some extent by using the above method, the inventors found the following problems from the solution. First, the response time is long, the solution is applicable to few scenarios only, and the improvement to the efficiency of the power amplifier is limited. Normally, the drain electrode of the power amplifier transistor operates in the state of high voltage (for example, 28 V) and large current (for example, 10 A), so the power supply unit thereof must be a power source capable of providing a high power. Limited by factors such as the charging and discharging of high-capacitance capacitors and the soft-start mechanism to ensure security, the time for establishing or disabling the output voltage of such a power source is often several seconds or even several tens of seconds. However, in normal situations, time periods required by services of the base station system are much shorter than one second. For example, in a Global System for Mobile Communications (GSM), the timeslot period of each user is only 577 μs. Subscribers may access (the power amplifier needs to switch on) or not access (the power amplifier needs to switch off) the GSM system in a timeslot period, while the solution of controlling the voltage of a drain electrode cannot track such a fast change. To ensure normal communications, the voltage on the drain port of the power amplifier transistor must remain at the normal operating voltage without changes for a long time, and thus a part of the static power will be dissipated In view of the above, the solution of controlling the voltage of a drain electrode is applicable to very few scenarios in practice. Normally, this solution is adopted only when no subscriber accesses the system for a long time at night. Therefore, the improvement to the efficiency of the power amplifier is unobvious, and the power-saving effect is limited. In addition, the control circuit is complicated with a high cost and low reliability. The solution of controlling the voltage of a drain electrode deals with signals with a high voltage and large current, so many high-power elements are needed. Therefore, the circuit implementation is complicated, the cost is high, and the reliability is low, which may easily cause potential quality problems. SUMMARY Accordingly, the embodiments of present invention provide a method and a device for controlling power amplification, a base station, and a terminal, so as to improve the efficiency of a power amplifier by reducing static power dissipation in a time period without output power. In an embodiment of the present invention, a method for controlling power amplification is provided. The method includes the following steps. Outputting a voltage signal according to the state of an NE. Applying the voltage signal to a grid electrode or a base electrode of at least one power amplifier transistor in a power amplifier. In an embodiment of the present invention, a transmitter is provided. The transmitter includes a main control unit, a voltage control unit, and a power amplifier unit. The main control unit is adapted to obtain the state of an NE where the transmitter is located, and send a voltage control signal according to the state. The voltage control unit is adapted to output a voltage signal according to the voltage control signal received from the main control unit. The power amplifier unit is adapted to switch on or switch off according to the voltage signal applied to a grid electrode or a base electrode of at least one power amplifier transistor therein by the voltage control unit. In an embodiment of the present invention, a base station is provided. The base station includes a main control unit, a voltage control unit, and a power amplifier unit. The main control unit is adapted to obtain the state of the base station, and send a voltage control signal according to the state. The voltage control unit is adapted to output a voltage signal according to the voltage control signal received from the main control unit. The power amplifier unit is adapted to switch on or switch off according to the voltage signal applied to a grid electrode or a base electrode of at least one power amplifier transistor in the power amplifier unit. In an embodiment of the present invention, a terminal is provided. The terminal includes a main control unit, a voltage control unit, and a power amplifier unit. The main control unit is adapted to obtain the state of the terminal, and send a voltage control signal according to the state. The voltage control unit is adapted to output a voltage signal according to the voltage control signal received from the main control unit. The power amplifier unit is adapted to switch on or switch off according to the voltage signal applied to a grid electrode or a base electrode of at least one power amplifier transistor therein by the voltage control unit. In an embodiment of the present invention, a device for controlling power amplification is provided. The device includes a main control unit and a voltage control unit. The main control unit is adapted to obtain the state of equipment, and send a voltage control signal according to the state. The voltage control unit is adapted to output a voltage signal to a grid electrode or a base electrode of at least one power amplifier transistor in a power amplifier unit according to the voltage control signal. Compared with the prior art, the embodiments of the present invention achieve the following beneficial effects. The response time is short, the solution is applicable to more scenarios, and the power amplification efficiency is improved to the maximum extent. The grid electrode of the power amplifier transistor normally operates in the state of low voltage (for example, 3 V) and small current (for example, 5 mA), the circuit does not have capacitors with high capacitance, and the charging/discharging time is at μs level or even lower. Therefore, the power amplifier transistor can switch on or switch off at the same speed, which is advantageous to a fast response to the control signal. Through the control over the grid electrode or the base electrode of the power amplifier transistor, static power dissipation at a timeslot level is reduced, so as to avoid energy dissipation to the maximum extent. The control circuit is simple, the cost is low, and the reliability is high. The voltage control unit processes low-voltage and small-current signals. The circuit implementation is simple, the cost is low, and the reliability is high.
89,495
11385404
CLAIM FOR PRIORITY This application claims the benefit of priority of German Application Serial No. 10 2019 211 002.9, filed Jul. 24, 2019 and German Application Serial No. 10 2019 210 745.1, filed Jul. 19, 2019, each of which are hereby incorporated by reference in their entireties. TECHNICAL FIELD The disclosure relates to an optical system, a carrier substrate, and a method for manufacturing an optical system. BACKGROUND Optical elements—such as lasers, modulators, photodiodes, and other elements—are increasingly miniaturized. Compact optical systems can thus be implemented on suitable substrates, for example as a photonic integrated circuit (PIC). Such systems can be used to implement splitters, couplers, phase shifters, ring resonators, arrayed waveguide gratings, optical amplifiers, switches, and other functional units. Light is transmitted by waveguides, which can be embedded into optical components made of flat substrates or deposited thereon. It can be advantageous when producing respective optical systems to provide an optical component with a recess or cavity into which then another optical component is inserted. A respective optical system and a respective manufacturing method are known from patent document DE 10 2016 203 453 A1. SUMMARY/OVERVIEW When manufacturing optical systems of this type, there always is the problem of optically coupling waveguides of various components to be solved, that is, to align these so precisely to each other that light from one waveguide can be transmitted into another waveguide with sufficient efficiency for any intended applications. Edge-emitting optical components are frequently used when manufacturing such systems, i.e. such components in which light propagating in the waveguide can exit from an end face of the component or light can be coupled into a waveguide through an end face. The respective end faces are arranged and aligned relative to each other in a suitable position and orientation for optical coupling of such components, which is also called butt coupling. The precision requirements such alignment must meet are the higher the smaller the dimensions of the waveguides to be coupled. For example, a single-mode waveguide, which allows propagation of just one light mode, can have a cross section from a few hundred nanometers to a few micrometers, which predetermines respective narrow tolerances for optical coupling. Various methods have been proposed for precise alignment of edge-emitting optical components in a butt coupling configuration. In so-called active methods, a light signal which can be transmitted and measured when optical coupling is achieved can be maximized by positioning the components. But such methods are complex, accordingly costly, and can only be used in specific situations. They are also an obstacle to further miniaturization. Passive methods do without measuring a light signal transmitted by the coupling and the required complex manufacturing assemblies. But these methods typically require compliance with extremely stringent manufacturing tolerances of the optical components (for example when aligning these relative to each other using reference contact surfaces), which again is complex and costly. Furthermore, heterogeneous integration methods have been proposed for manufacturing PICs, wherein semiconductor materials are bonded on complementary metal oxide semiconductor wafers and the semiconductors are then finish-processed, which allows good precision due to the lithographic structuring of components. Such methods are practicable in few applications only due to process-related restrictions and low yield. Accordingly, it is the problem of the disclosure to propose an optical system with improvements regarding the alignment of components, which improvements prevent or reduce the disadvantages mentioned. Furthermore, the problem is to propose a carrier substrate and a method for manufacturing an optical system. This problem is solved, according to the disclosure, by an optical system according to claim1, by a carrier substrate according to claim11, and by a method according to claim12. Advantageous embodiments and further developments of the disclosure result from the features of the dependent claims. The proposed optical system includes a first optical component, comprising a first waveguide and a carrier substrate, wherein the first optical component is arranged on the carrier substrate. The first optical component comprises a first markup set having a defined position and/or orientation with respect to the first waveguide, the carrier substrate comprises a second markup set, and it can be detected based on a relative position and/or orientation of the first and second markup sets if a desired orientation of the first waveguide relative to the carrier substrate is achieved in a reference plane extending parallel to a surface of the carrier substrate. The first optical component and the carrier substrate each have a front side and a rear side located opposite the front side. Other side surfaces, which are oriented perpendicular to the front or rear side, respectively, are called end faces herein. Directions that are parallel to the front side—that is, also to the reference plane—are called lateral directions, directions perpendicular thereto are called normal directions. Such an optical system has the advantage that, by detecting the orientation of the first optical component and the carrier substrate based on the relative position and/or orientation of the first and second markup sets—preferably while manufacturing the optical system—allows alignment of the first optical component and the carrier substrate to each other at high precision in a comparatively simple and cost-effective manner (namely by correcting a relative position and/or orientation of the first and second optical components and the carrier substrate). The system can also be prepared for arranging a second optical component with a second waveguide on the carrier substrate, wherein the first and second waveguides can be optically coupled. Particularly, the known advantages of passive alignment while easing manufacturing tolerances are achieved. Using a carrier substrate with a markup set also has the advantage that it can be designed and manufactured separately from the optical components and thus provides considerable flexibility. A markup set as defined in the present application includes one or more markings, a marking being an element the position and/or orientation of which can be detected by means of a suitable measuring device. This detection can particularly be performed optically, for example by means of a camera or another optical scanning or detection system (such as a laser scanning system with a raster scanner and a point, line, or area detector) as a measuring device. Detection can alternatively be performed in a different way, for example using electrical or magnetic or contact-based measuring. When detecting the position and/or orientation of a markup set, all markings, multiple markings, or just one marking can be detected completely or partially. Detection can include processing of data measured using the measuring device by means of a processing unit. A markup set can thus be usable as positioning aid when aligning two components. Accordingly, a markup set or marking of a markup set can be an element which does not fulfill an optical, electronic, mechanical and/or other function other than being used as positioning aid. Alternatively, a markup set can fulfill other functions. A marking can for example be a coating, an embedded part, or a part of a component, sections of which were modified with respect to specific properties, such as optical properties, relative to the environment. Alternatively, a marking can be a part usable and/or intended for other purposes, such as a structural part of a component, e.g. an edge, corner, surface, or a waveguide. The optical system can include a second optical component arranged on the carrier substrate, comprising a second waveguide which can be optically coupled to the first waveguide. The optical system can thus advantageously be extended, for example, by the optical, electronic, and/or electro-optical functionality of the second optical component. The second optical component can include a third markup set with a defined position and/or orientation with respect to the second waveguide. It can be detected based on a relative position and/or orientation of at least two of the markup sets if the first and second optical components are oriented in a reference plane extending parallel to a surface of the carrier substrate in such a manner that optical coupling of the first and second waveguides is made possible. Since the optical coupling is made possible, as described, by respective aligning of the optical components in lateral directions, optical coupling is initially prepared. Establishing optical coupling includes allowing optical coupling by aligning in lateral directions and in a normal direction. The markup sets of the respective optical system can be configured such that they allow aligning the optical components to each other, which again includes aligning the waveguides to each other for establishing or improving or preparing optical coupling of the waveguides. Aligning the optical components to each other can include aligning of markup sets to each other by adjusting a relative position and/or orientation of the optical components and/or the carrier substrate in such a manner that a specified relative position and/or orientation of the markup sets is achieved. The specified relative position and/or orientation of the markup sets results from the defined position and/or orientation of the markup sets of the optical components with respect to the respective waveguide in such a manner that, by establishing the specified relative position and/or orientation, optical coupling of the waveguides is achieved, improved, or prepared. For aspects of aligning the optical components, all markings, multiple markings, or just one marking of the markup set may have to be completely or partially taken into account within a given markup set. This means that passive coupling with the advantages mentioned is available for the waveguides of the two optical components. The optical components and/or the carrier substrate can be flat or two-dimensionally extended elements, which may for example be implemented as chips or wafers or formed therefrom. At least one of the optical components and/or the carrier substrate may comprise a semiconductor chip (such as a silicon chip), a photonic integrated circuit (PIC), a silicon-on-insulator chip, a ceramic chip, and/or a glass chip and/or a polymer. Furthermore, the carrier substrate may contain materials such as silicon or other semiconductor materials, ceramics, glass, or polymers, or may consist thereof. At least one of the waveguides may contain a polymer, a glass, an oxide (such as SiO2), a nitride (such as Si3N4 in SiO2), and/or silicon (e.g. as Si or SiO2). The manifold embodiments and uses of such components, materials, and compositions as well as the methods for their manufacture and processing are thus transferred to the proposed method, including the advantages known to a person skilled in the art. The optical components can be edge-emitting; the first and second waveguides can thus be arranged inside the respective optical component such that light can propagate in the waveguides parallel to the front end of the respective optical component—and/or emerge there—and can enter or exit the waveguide through a portion of an end face. The end faces can be prepared by dry etching (using a lithographic varnish for targeted defined edge creation of the end faces) or mechanical polishing, or by breaking (optionally after previous heating) along defined crystal surfaces. This makes it possible to achieve advantageous properties for coupling light into and out of the waveguides through the end faces. At least one of the optical components may have another or multiple other waveguides in addition to the first/second waveguide. The carrier substrate may also comprise at least one waveguide. If the carrier substrate has a waveguide, the method may comprise establishing an optical coupling between the waveguide of the carrier substrate and the first and/or second waveguide. In addition to the waveguides, at least one of the optical components and/or the carrier substrate may include other elements, such as optical and/or electronic elements. For example, at least one of the optical components and/or the carrier substrate can be configured as an electro-optical circuit. The second optical component may further comprise a recess through which the second optical component at least partially passes from a front side in the direction of a rear side located opposite the front side, wherein the first optical component is arranged in the recess. Arranging an optical component in a recess of another optical component results in advantages with respect to thermal properties of the optical system, high-frequency applications, as well as scaling and manufacturing costs. This is also pointed out in patent document DE 10 2016 203 453 A1 mentioned above. The recess may be produced in one piece, either mechanically or by means of a laser process, etched out, or by etching surrounding indentations (trenches) and subsequent removal of the remaining core. The recess may either completely or partially pass through the second optical component, wherein the latter case provides particularly good optical and mechanical accessibility of the interior of the recess. The first and/or second optical component may of course have one or more other recesses. Accordingly, the system may include at least a third optical component, which again comprises at least one third waveguide which is optically coupled to the first and/or second waveguides and/or at least one fourth markup set having a defined position and/or orientation relative to the third waveguide and being arranged on the carrier substrate in the one other recess/one of the other recesses The fourth and first and/or second markup sets can then be suitable for detecting a relative position and/or orientation of the first and second waveguides to each other in the reference plane. The second markup set can comprise: a first portion, adapted to bring the first waveguide into a defined position and orientation relative to the carrier substrate, and thus as well to the first waveguide, by aligning the first markup set and the first portion of the second markup set to each other, and a second portion, adapted to bring the second waveguide into a defined position and orientation relative to the carrier substrate by aligning the first markup set and the first portion of the second markup set to each other The carrier substrate can be at least partially transparent and/or translucent for a specific wavelength range, particularly for visible light, ultraviolet light, and/or infrared light. Detecting the relative position and/or orientation of the second and first and/or third markup sets can advantageously performed using a camera unit which is placed near the rear side of the carrier substrate facing away from the optical components and can capture images of the optical components and their markup sets or portions of markup sets, respectively, through the carrier substrate. The camera unit can be configured for simultaneous capturing of images in multiple directions; for example, the camera unit can be provided with a beam splitter, whereby images can be taken and/or overlapped in two opposite directions at the same time. The camera unit configured in this manner can be inserted between the first component and the carrier substrate or between the second component and the carrier substrate (including any elements arranged thereon, such as the first optical components). The carrier substrate and the first/second optical components can then be simultaneously detected and aligned using the respective markup sets. By detecting the relative position and/or orientation of two waveguides, positioning can be achieved at a maximum deviation from a desired relative position in lateral directions of, for example, less than 5 μm, less than 2 μm, less than 1 μm, less than 500 nm, or less than 200 nm, and/or a maximum angular deviation from a desired orientation in lateral directions of, for example, less than 10 mrad, less than 5 mrad, less than 2 mrad, or less than 1 mrad. The first waveguide may have a first distance from the front side of the first optical component, the front side of the first optical component may be facing the carrier substrate, and the first distance may be selected such that a desired relative position and/or orientation of the first waveguide and the carrier substrate to each other is set in the normal direction. This ensures a precise and repeatable orientation of the first waveguide relative to the carrier substrate in the normal direction. In this situation, the second waveguide may have a second distance from the front side of the second optical component, the front side of the second optical component may be facing the carrier substrate, and the first and second distances may be selected such that a relative position and/or orientation of the first and second optical components to each other and in a normal direction perpendicular to a surface of the carrier substrate in such a manner that optical coupling of the first and second waveguides is made possible. This results in an orientation of the first and second waveguides in the normal direction that contributes to optical coupling. This means that the advantages of passively aligning the waveguides can also be leveraged for orientation in the normal direction. For example, a maximum deviation from a desired relative position in the normal direction can be achieved that is less than 2 μm, less than 1 μm, less than 500 nm, less than 200 nm, or less than 100 nm. The first and/or second distances can be set by layers arranged on the front side of the first and/or second optical components. This ensures highly precise and repeatable alignment of the first and second waveguides to each other in the normal direction. Such layers can be deposited onto the front side of the first and/or second optical components using various methods, for example by epitaxy (also followed by metalizations or passivations, such as by means of oxide or nitride), plasma enhanced chemical vapor deposition (PECVD), or other layer deposition processes. A desired efficiency of optical coupling can be achieved by combining suitable lateral and normal deviation tolerances, such that attenuation of the intensity of a light signal coupled into one of the other waveguides compared to the intensity of a light signal coupled out of another waveguide is for example less than 3 dB, less than 2 dB, or less than 1 dB. A distance between a first end face of the first optical component where an end of the first waveguide to be coupled to the second waveguide terminates, and a second end face of the second optical component where an end of the second waveguide to be optically coupled to the first waveguide terminates, may for example be less than 2 μm, less than 1 μm, less than 500 nm, less than 200 nm, less than 100 nm, but also more than 2 μm The first and second end faces may also contact each other. At least a portion of one of the markup sets can be used as a reference surface when setting the first and second distances. For example, such a part of a marker set can be implemented as a metal layer of defined thickness on the front side of the corresponding optical component and/or of the carrier substrate, which defines a stop and thus a reference surface during arrangement of the optical components on the carrier substrate. Thus, a robust alignment can be implemented in the normal direction. It may be provided that at least one part of at least one of the markers sets is implemented by means of a part of one of the waveguides or contains said and/or is produced, directly or indirectly, in the same layer orientation and/or by means of the same mask. This enables an especially uncomplicated manufacture of the optical components and/or of the optical system without additional steps in order to produce the markers. At least one part of at least one of the marker sets can be applied to one of the optical components or the carrier substrate or may be embedded therein by means of a lithographic process. In this manner, precise production and especially good visibility of the marker sets and/or parts thereof can be achieved. It may be provided that at least one part of at least one of the marker sets and at least one part of at least one of the waveguides are produced in a common work step and/or by means of a common mask through a lithographic process. This has the advantage that the position and/or the orientation of the marker sets and/or the corresponding parts thereof is defined as relates to the corresponding waveguide with great precision and reproducibility. At least one of the markers sets may have at least one linear and/or cruciform and/or cruciform and/or elliptical and/or polygonal element and/or several parallel lines and/or a vernier structure. Linear elements and/or combinations thereof (which thus comprises cruciform and polygonal elements—and/or edges thereof—or vernier structures) are advantageous. Sets of several parallel linear elements can be considered especially advantageous. Linear elements of a marker set may extend parallel to the corresponding waveguides at a fixed distance/fixed distances away and thus enable an especially good alignment of the waveguides with respect to one another. The aforementioned advantages take effect in the frequently encountered situation in which a waveguide in the vicinity of the end surface of an optical component—and particularly at the entry and/or exit point of the waveguide on the end surface—is not parallel to the end surface but instead meets it at an angle of more or less than 90°. Thus, undesired back-reflections of light, for example in laser cavities, can be avoided. In this situation, the precise position of the entry and/or exit point depends on how much material has been removed during polishing or refraction of the end surface (see above). If a linear element of a marker set extends parallel to the waveguide, the linear element will be shortened the same as the waveguide, and the point of intersection between the linear element and the end surface will change in the same manner as the entry and/or exit point of the waveguide. In addition, a necessary offset of the optical components, which can be defined, for example, by the refractive indices of the associated waveguides and the distance between the corresponding end surfaces, can be set by means of the positions and/or orientations of the linear elements. It may be provided that end surfaces, facing one another, of the first end of the second element have a distance, for example, of less than 100 μm, less than 10 μm, less than 1 μm, or less than 100 nm at the end of the method—i.e. particularly after the alignment of the components with respect to one another and the arrangement of both components on the carrier substrate. It may be provided that the first and the second marker set and/or the second and third marker set supplement one another and/or engage one another and/or are complementary to one another in order to facilitate an alignment. This may occur, for example, in the case of simple linear elements or, for example, in the case of vernier structures, which are known to enable an especially precise determination of the position deviation. For example, parts of the first and/or second and/or marker set may each result in the read-off and main scale of a vernier structure. It may be provided that at least one of the marker sets comprises several markers at a distance which is as large as possible (i.e. as large as possible according to the scale of the dimension of the corresponding optical component and/or of the carrier substrate and the arrangement of other elements thereupon). A greater distance between elements enables more precise determination of deviations in the position and/orientation of optical components and/or of the carrier substrate from the desired position. It may be provided that at least a part of at least one of the marker sets extends from an end surface of the corresponding optical component and/or of the carrier substrate to another edge and/or that at least one of the marker sets comprises elements in the vicinity of several end surfaces. On the one hand, the accuracy of the determination of position/orientation deviations is also hereby improved; on the other hand, the course of a waveguide in the vicinity of several end surfaces can be considered, particularly when optical couplings are to be achieved on several end surfaces. It should also be generally considered that each marker set must contain at least one discernible point, which is different from the other points, for each independent degree of freedom (displacement, angle tilt) to be considered during alignment of the optical elements with respect to one another. With linear or otherwise extended, i.e. not pointy, elements, this can be provided by several defined points of such elements (for example end points). At least one part of at least one of the marker sets may be an edge of one of the optical components or of the carrier substrate or may contain them/it. Thus, a clear position can be defined with reference to an exit point of said waveguide, namely as the point of intersection between the edge and the linear element, particularly in conjunction with a further part of the same marker set—implemented as a linear element positioned parallel to one of the waveguides. A corresponding edge of at least one of the optical elements can be marked and thus rendered especially easily visible also by a part of a marker set, which is designed as an extended surface element (i.e., for example, as a polygon, for example as a rectangle). It may be provided that the carrier substrate and/or at least one of the optical components has an adhesive layer, configured for the temporary and/or permanent attachment of the first and/or second optical component to the carrier substrate. Thus, a robust and flexible attachment option is provided. The adhesive used may consider the requirements of the process for producing or of the proper use of the optical system in many different ways, for example with respect to temperature resistance, thermal conductivity, other thermal or electrical properties, conformity to effective mechanical forces, etc. The adhesive layer can also enable an at least temporary sealing of spaces between the optical components and/or the carrier substrate. It may be provided that the adhesive layer is structured and/or noncontinuous and/or that the alignment of the first and the second waveguide with respect to one another in the normal direction comprises at least partial deformation of the adhesive layer. A structured and/or noncontinuous adhesive layer comprises several discrete adhesive elements, which can be achieved, for example, by means of lithographic processing of a continuous adhesive layer. Such an adhesive layer especially provides a great amount of flexibility and can be adapted to the method and/or usage requirements in an advantageous manner with respect to the structure size/density/surface configuration of the adhesive. To this end, the adhesive elements may be shaped in different ways, for example as points, rectangles, polygons, rings, or linear elements. The adhesive elements may be superposed over further elements of the surface of the optical components and/or of the carrier substrate—for example of a structured metal layer serving as a part of a marker set—or arranged in the intermediate spaces thereof. An alignment of the first and second waveguide with respect to one another in the normal direction with at least partial deformation of the adhesive layer can be implemented, for example, such that structured metal layers on the front sides of the optical components and of the carrier substrate serve as reference surfaces for alignment in the normal direction, and the adhesive elements of the structured adhesive layer are arranged in the intermediate spaces of the structured metal layer. If the adhesive elements are thicker than the structured metal layer, they are deformed when the optical component(s) are pressed together with the carrier substrate, whereby a stable adhesion is achieved and combined with the advantages of the structured metal layer with respect to the alignment in the normal direction. The structuring of the adhesive layer in discrete, size-defined adhesive elements of selectable shape enables an adaptation and/or optimization of parameters of the manufacturing process, particularly with respect to the bonding surface/layout of the optical component(s) and/or the required bonding force (press-on force during attachment) and/or the required degree of deformation of the adhesive layer for the alignment of the optical component(s). A maximized degree of deformation (i.e. “flattening”) of the thin adhesive layer can therefore also be achieved more reliably, which enables a more robust processing window and/or an increased reproducibility of the manufacturing process. The proposed carrier substrate has a marker set and is configured to be applied with an optical component, having a waveguide and a marker set with a defined position and/orientation with respect to the waveguide such that, by means of a relative position and/or orientation of at least two of the marker sets, it can be determined whether a desired alignment of the waveguide has been established with respect to the carrier substrate in the reference plane. The thusly obtained carrier substrate is advantageously to be used during production of the proposed optical system. The proposed method for producing an optical system comprises:providing at least one optical component, each having a waveguide, and a carrier substrate;arranging the at least one optical component on the carrier substrate.It is provided that the at least one optical component has a marker set with a defined position and/or orientation with respect to the respective waveguide, the carrier substrate has a second marker set, and the arrangement of the at least one optical component on the carrier substrate comprises the following:detecting a relative position and/or orientation of the marker set of the at least one optical component with respect to the second marker set of the carrier substrate in order to align the at least one optical component with respect to the carrier substrate in a reference plane parallel to a surface of the carrier substrate. The method has the advantage that the detection of the relative position and/or orientation of the first optical component and of the carrier substrate with respect one another—preferably during the production of the optical system—enables an alignment of the first optical component and of the carrier substrate with respect one another with great accuracy in a manner that is comparatively simple to implement and is economical (namely by means of possible correcting of a relative position and/or orientation of the first and optical component and of the carrier substrate). Thus, the system can also be prepared for the arranging of a second optical component with a second waveguide on the carrier substrate, wherein the first and the second waveguides can then be optically coupled together. In particular, the known advantages of passive alignment are achieved with simultaneous easing of the production tolerances. During arranging of the first and second optical component on the carrier substrate, initially the first optical component, for example, can be arranged on the carrier substrate such that its front side is facing the front side of the carrier substrate. In this case, the first optical component can be aligned with respect to the carrier substrate with the assistance of a suitable measuring device, which enables the determining of a relative position and/or orientation at least of parts of the first and second marker set. At the same time or subsequently, the first optical component can be temporarily or permanently attached to the carrier substrate, for example by means of an adhesive applied to the carrier substrate and/or to the first optical component. The second optical component can thus be guided to the back side of the first optical component such that the front side of the first optical component is likewise facing the front side of the carrier substrate, but that there is still a distance between first and second component, which enables a determining of a relative position and/or orientation at least of parts of the second and third marker set by means of the measuring device. This can occur, for example, in optical ways, for example by recording images using at least one camera. A position and/or orientation of the second optical component and/or of the first optical component, including the carrier substrate, can thus be corrected according to the determined relative position and/or orientation such that thereby an alignment of the first and second waveguide with respect to one another is enabled, particularly in the lateral directions. After the correcting is complete, the determining of the relative position and/or orientation of the optical components can be repeated—optionally multiple times, i.e. iteratively—until a desired tolerance of the relative position and/or orientation of the first and second waveguide is achieved or values are within the tolerance, in order to check and/or correct the position and/or orientation of the first and/or second component. The second optical component can be arranged on the carrier substrate while retaining the alignment and likewise be temporarily or permanently attached, for example by means of an adhesive applied to the carrier substrate and/or to the second optical component. In this case, the first optical component can be arranged in the recess of the second optical component. Alternatively, initially the second optical component can be arranged on the carrier substrate, and moreover can be moved similarly as above, during arrangement of the first and second optical component on the carrier substrate—provided the recess passes completely through the second optical component—wherein, however, the steps which relate to the first or second optical component, respectively, are correspondingly reversed or modified. The described checking and/or correcting of the relative position and/or orientation of the first and second waveguide can also be used to reject workpieces in which a desired tolerance was not achieved or can also be used to improve the method iteratively, for example by adapting correction factors. It may be provided that the first waveguide has a distance from the front side of the first optical component, that the second waveguide has a second distance from a front side of the second optical component, that the first and second optical components are facing the carrier substrate during arrangement of the first and second optical component on the carrier substrate, and that the alignment of the first and second optical component with respect to one another comprises the following: setting of the first and second distance in order to align the first and second waveguide with respect to one another in a normal direction perpendicular to the reference plane. The setting of the first and second distance may further comprise an application of layers to the front side of the first and/or second optical component, wherein, for example, the previously mentioned layer deposition processes can be used, e.g. epitaxy or PECVD. The method may comprise a removal of the carrier substrate from the at least one optical component after alignment of the at least one optical component with respect to the carrier substrate. Thus, the flexibility is increased for further processing steps. The optical system can optionally be further developed in different ways which are customary for the processing of corresponding systems. This may comprise, for example, a filling of the remaining gaps between the optical components with suitable filling materials and/or thinning of surfaces and/or applying electrical contacting. The method can be implemented with the assistance of typical systems and devices for producing electronic, optical, or electro-optical components and systems, for example by means of a flip chip bonder. It should be mentioned that the aforementioned steps and sub-steps of the method do not have to be executed in a particular sequence, rather the sequence can be established depending on specific modalities.
170,996
11348243
TECHNICAL FIELD Embodiments of the subject matter disclosed herein relate to medical imaging, and more particularly, to systems and methods for mapping medical images to a target style domain using deep neural networks. BACKGROUND Image processing devices are often used to obtain internal physiological information of a subject, such as a patient. For example, an image processing device may be used to obtain images of the bone structure, the brain, the heart, the lungs, and various other anatomical regions of a patient. Image processing devices may include magnetic resonance imaging (MRI) systems, computed tomography (CT) systems, positron emission tomography (PET) systems, PET/MR systems, x-ray systems, ultrasound systems, C-arm systems, and various other imaging modalities. Medical images from different imaging modalities (e.g., MRI images versus CT images) and medical images from the same imaging modality but from different imaging systems (e.g., MRI images from two different MRI systems produced by two different manufactures, or two different models of MRI systems produced by a same manufacturer), may possess distinct appearance characteristics attributed to acquisition parameters and manufacturer-specific image-processing algorithms. In screening and diagnostic image review, clinicians often need to adapt to modality and manufacturer-specific image appearance characteristics, as medical images for a patient may be acquired using multiple imaging modalities or using multiple imaging systems of different models or from different manufacturers. Clinicians may have appearance preferences for medical images, for example, a clinician may have a greater degree of experience diagnosing medical images in a first style (that is, medical images with a first set of appearance characteristics), and may therefore prefer to evaluate/diagnose medical images in the first style. Presentation of medical images from different imaging modalities/manufacturers/models, which comprise appearance characteristics which do not match with a clinician's preferences, may require additional efforts for a clinician to adopt to the different appearance characteristics, therefore hinder a clinician's review and diagnostic efficiency. Similarly, deep neural networks and other machine learning models trained to evaluate medical images of a first style may perform poorly (e.g., with reduced accuracy) when evaluating medical images in styles distinct from the first style (that is, medical images with appearance characteristics different from those of the first style). Some previous approaches to address the above identified issues attempt to match physical parameters of an originating image processing device and a target image processing device (the image processing device producing images matching a clinician's appearance characteristic preferences), requiring knowledge of the physical parameters and settings of both systems, which may, in some examples, require laboratory testing of both the originating medical imaging device and the target medical imaging device. Acquisition of the physical parameters of image processing devices may require substantial time, and may need to be repeated for each distinct imaging system and imaging modality. Thus, the above approach may not scale efficiently to larger numbers of image processing devices, and may be impractical in terms of implementation time and expense. Other approaches based on conventional image feature analysis or supervised machine learning may require datasets comprising extensive, manually selected corresponding pairs of images of the same anatomical region (e.g., a first medical image of the anatomical region in an originating style, and a second medical image of the anatomical region in a target style). However, the acquisition of such pair datasets is often challenging in practice. Additionally, current attempts to map medical images from an originating style to a target style do not explicitly control the clinical image quality during the mapping process, thus may incur substantial clinical quality degradation (e.g., a morphology of a tumor is altered upon adjusting image appearance characteristics to match a designated target style, thereby reducing a clinician's ability to detect the presence of the tumor in the style transferred image). Therefore, based on the above issues and limitations, it is generally desirable to explore techniques for transferring style of medical images, without requiring knowledge of the physical parameters of the originating or target image processing devices, without requiring manual selections of paired images with the same anatomical region, while preserving the clinical quality of the medical images. SUMMARY The current disclosure at least partially addresses one or more of the above identified issues. In one embodiment, the current disclosure provides a method for transferring style of a medical image to a target style, while maintaining the anatomical content of the medical image, as well as the clinical/diagnostic quality of the medical image, comprising, acquiring a medical image of an anatomical region of a subject, wherein the medical image is in a first style, selecting a target style, wherein the target style is distinct from the first style, selecting a clinical quality metric, selecting a trained style transfer network based on the target style and the clinical quality metric, mapping the medical image to a style transferred medical image using the trained style transfer network, wherein the style transferred medical image is in the target style, and displaying the style transferred medical image via a display device. The first style and the target style of the medical image are implicitly characterized by the corresponding un-paired datasets of acquired medical images with the first style and acquired medical images with the target style and are automatically learned by the style transfer network during an unsupervised training process. In this way, one or more appearance characteristics of a medical image may be mapped to one or more target appearance characteristics (also referred to herein as a target style), with neither measurement of the physical parameters of a target or originating image processing device, nor manual selection of paired images. Further, by selecting a trained style transfer network based on a clinical quality metric, the clinical quality of the medical image with respect to one or more clinical qualities being evaluated by a clinician or downstream image processing system, may be better preserved in the style transferred medical image. The above advantages and other advantages, and features of the present description will be readily apparent from the following Detailed Description when taken alone or in connection with the accompanying drawings. It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
134,116
11359114
TECHNICAL FIELD The present invention relates to a CMP polishing liquid and a polishing method using the same. BACKGROUND ART Recently, new microfabrication technologies have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as “LSI”). Chemical mechanical polishing (hereinafter referred to as “CMP”) method is one of the techniques and is a technology frequently used in a LSI manufacturing process, especially, planarization of insulating films, formation of metal plugs, and formation of embedded interconnections in a multilayer interconnection formation process. This technology is disclosed in Patent Document 1, for example. Recently, in order to improve the performance of LSI, utilization of a metal film of copper or a copper alloy as a conductive substance to be a wiring material has been attempted. However, it is difficult to microfabricate copper or a copper alloy by a dry etching method frequently used in the formation of conventional aluminum alloy wiring. Accordingly, a method has been mainly adopted in which a metal film of copper or a copper alloy is deposited on and embedded in an insulating film of silicon dioxide or the like in which grooves have been formed in advance, and the metal film located outside the grooves is removed by CMP to form an embedded interconnection, which is the so-called damascene method. This technology is disclosed in Patent Document 2, for example. On the other hand, as a barrier metal for preventing diffusion of metal into the insulating film and improving adhesion, a layer consisting of a conductor such as tantalum, tantalum alloys, or tantalum nitride is formed under the metal film of copper or a copper alloy, etc. Therefore, it is necessary to remove the exposed barrier metal by CMP in a part other than the wiring part in which a metal film of copper or a copper alloy, etc. is embedded. However, since these barrier metals have higher hardness than copper or a copper alloy, a sufficient polishing rate cannot be obtained even when polishing is performed by combining polishing materials for copper or a copper alloy, and the flatness of the surface to be polished is often deteriorated. Thus, a two-step polishing method consisting of a first polishing step of polishing a metal film and a second polishing step of polishing a barrier metal has been investigated. FIG. 1is a schematic cross-sectional view showing a wiring formation by a general damascene process.FIG. 1(a)shows a condition before polishing, which includes an insulating film1having grooves formed on the surface thereof, a barrier metal2formed so as to follow the surface irregularities of the insulating film1, and a metal3for wiring part of copper or a copper alloy deposited to fill the irregularities. First, as shown inFIG. 1(b), the metal3for wiring part is polished with a polishing liquid for polishing the metal for wiring part until the barrier metal2is exposed (the first polishing step). Next, polishing is performed with a polishing liquid for the barrier metal2until the convex part of the insulating film1is exposed (the second polishing step). In this second polishing step, as shown inFIG. 1(c), overpolishing, i.e. excessively polishing the insulating film, is often performed. InFIG. 1(c), symbol4indicates the condition ofFIG. 1(b)before the barrier metal polishing in the second polishing step. By such overpolishing, the flatness of the polished surface after polishing can be improved. Proposals for such a polishing liquid for the barrier metal include a barrier metal polishing liquid containing an oxidizing agent, a protective film forming agent for a metal surface, an acid, and water, the barrier metal polishing liquid having a pH of 3 or less, and the oxidizing agent having a concentration of 0.01 to 3 mass % (for example, see Patent Document 3). Recently, corrosion of extremely small metal wiring may become a problem along with miniaturization of wiring intervals. Since corrosion of the metal wiring deteriorates the yield of the LSI, the polishing liquid is also required to cause no corrosion of the metal wiring. From the viewpoint of yield, few defects on the metal wiring and the insulating film after polishing are also required. Furthermore, with the recent miniaturization of the wiring intervals, a problem of wiring delay has arisen. In the integrated circuit, metal wiring is laminated over many layers to transmit signals, and the distance between the wiring becomes short as miniaturization progresses. As a result, the interwiring capacitance between the adjacent wires becomes large and signal delay occurs proportionally to it. This gives rise to a noticeable problem whereby the operation speed of the circuit does not increase but the power consumption does. In order to overcome this problem, as one of the techniques for lowering the interwiring capacitance, an insulating film having a low dielectric constant material (hereinafter referred to as “low-k film”) is sometimes used from an insulating film mainly consisting of silicon dioxide. Examples of the low-k film include organosilicate glasses and wholly aromatic ring low-k films. Compared to silicon dioxide films, these low-k films have disadvantages such as low mechanical strength, high hygroscopicity, low plasma resistance, and low chemical resistance. As a result, the second polishing step has problems such as damage to the low-k film, excessive polishing, and film peeling. In order to overcome the abovementioned problems, it has been proposed to adopt a structure in which a silicon dioxide film is capped on a low-k film. When the silicon dioxide film of the cap layer is included in the insulating film part, the effective relative dielectric constant of the insulating film as a whole is not lowered so much due to the effect of dielectric constant of silicon dioxide. For this reason, it is desirable that the silicon dioxide film as the cap layer is quickly removed at the time of the barrier metal polishing and then the insulating film finally consists of the only low-k film. FIG. 2is a schematic cross-sectional view showing wiring formation using a low-k film and a cap layer as an insulating film. In order to obtain the structure ofFIG. 2(a), a low-k film6and a cap layer7consisting of silicon dioxide are formed in a laminated structure on a Si substrate5, and then the raised part and the groove part are formed. The barrier metal2is formed thereon so as to follow the raised part and the groove part of the surface, and the wiring part metal3deposited entirely so as to fill the raised part and the groove part is formed. As inFIG. 1, from the condition of the substrate shown inFIG. 2(a)to the condition of the substrate shown inFIG. 2(b), the wiring part metal3is polished by the polishing liquid for polishing the wiring part metal until the barrier metal2is exposed (the first polishing step). As shown inFIG. 2(c), the barrier metal2is polished with the polishing liquid for the barrier metal to reach the condition of the substrate shown inFIG. 2(c), that is, at least the cap layer7consisting of silicon dioxide is completely removed and until the low-k film6is exposed (the second polishing step). Accordingly, in the second polishing step, it is necessary to polish the barrier metal, the metal film, and the silicon dioxide film, or the barrier metal, the metal film, the silicon dioxide film which is the cap layer, and the low-k film. The polishing rate for the low-k film tends to be large for reasons such as low mechanical strength and chemical resistance. Since the low-k film should not be excessively removed unlike the cap layer, the polishing rate for the low-k film is required not to be too large. When the polishing rate for the metal film is too large, the central part of the embedded metal wiring is isotopically polished to cause the phenomenon (dishing) in which the central part becomes depressed like a dish. It is thus required also for the polishing rate for the metal film not to be too large. CITATION LIST Patent Literature Patent Document 1: U.S. Pat. No. 4,944,836 Patent Document 2: Japanese Unexamined Patent Publication No. H2-278822 Patent Document 3: International Publication No. WO 01/13417 pamphlet SUMMARY OF INVENTION Technical Problem As described above, the barrier metal, the metal film, and the silicon dioxide film, or the barrier metal, the metal film, the silicon dioxide film as the cap layer, and the low-k film may be polished by using the polishing liquid for the barrier metal. Therefore, a certain uniform polishing rate is required for the polishing liquid for the barrier metal, the metal film, the silicon dioxide film, and the low-k film, and particularly the polishing rates for the metal film and the low-k film are required to be appropriately controlled (not too high). However, since the mechanical strength of the barrier metal or the silicon dioxide is generally relatively high, the polishing rates for the barrier metal and the silicon dioxide film are low and the polishing rates for the metal film and the low-k film tend to be high. For this reason, it is difficult to adapt the CMP polishing liquid for individual films as the polishing target, and to balance the polishing rate for each film. The present invention has been made in view of the abovementioned problems, and the object of the present invention is to provide a CMP polishing liquid capable of suppressing corrosion of the metal film and occurrence of defects on the metal film and the insulating film and uniformly polishing the barrier metal, the metal film, the silicon dioxide film, and the low-k film at a high polishing rate in the second polishing step polishing the barrier metal, and a polishing method using the polishing liquid. Solution to Problem The polishing liquid according to the present invention is a CMP polishing liquid for polishing a substrate comprising at least a barrier metal, a metal film, and a silicon dioxide film, or a substrate comprising at least a barrier metal, a metal film, a silicon dioxide film, and a low-k film, wherein the polishing liquid contains abrasive particles, a metal oxide dissolving agent, an oxidizing agent, a water-soluble polymer, and an alkali metal ion; the surface potentials of the abrasive particles and the metal film have the same sign and the product of the surface potential (mV) of the abrasive particles and the surface potential (mV) of the metal film is 250 to 10000; and pH is 7.0 to 11.0. In one embodiment of the present invention, it is preferable that the abrasive particles form associated particles, and the average secondary particle diameter of the associated particles is 120 nm or less. In one embodiment of the present invention, it is preferable that the content of abrasive particles is 1 to 20 mass %. In one embodiment of the present invention, it is preferable that abrasive particles comprise silica particles. In one embodiment of the present invention, it is preferable that the metal oxide dissolving agent comprise at least one selected from the group consisting of citric acid, malonic acid, diglycolic acid, isophthalic acid, and methylsuccinic acid. In one embodiment of the present invention, it is preferable that the water-soluble polymer have a structure of the following formula (1): RO—Xn—Ym—H  (1) (In the formula, R represents an alkyl group, an alkenyl group, a phenyl group, a polycyclic phenyl group, an alkylphenyl group, or an alkenylphenyl group having 6 or more carbon atoms, X and Y represent an oxyethylene group and an oxypropylene group that optionally have a substituent on a side chain, respectively, n and m each represent an integer of 0 or more, and n+m is an integer of 4 or more). In one embodiment of the present invention, it is preferable that the alkali metal ion be a potassium ion. In addition, a polishing method of the present invention is characterized by comprising a step of relatively moving a polishing platen and a substrate in a condition where the substrate is pressed against the polishing cloth, while the abovementioned CMP polishing liquid is supplied onto the polishing cloth of the polishing platen, the substrate comprising at least a barrier metal, a metal film, and a silicon dioxide film, or comprising at least a barrier metal, a metal film, a silicon dioxide film, and a low-k film. Advantageous Effects of Invention The present invention can provide the CMP polishing liquid capable of suppressing corrosion of the metal film and occurrence of defects on the metal film and the insulating film, and uniformly polishing the barrier metal, the metal film, the silicon dioxide film and the low-k film at a high polishing rate in the second polishing step of polishing the barrier metal, and the polishing method using the polishing liquid.
144,890
11369109
FIELD OF THE INVENTION The present invention generally relates to antimicrobial surfaces and coatings, compositions suitable for antimicrobial surfaces and coatings, and methods of making and using the same. BACKGROUND OF THE INVENTION Coronavirus disease 2019 (“COVID-19”) is caused by severe acute respiratory syndrome coronavirus 2 (“SARS-CoV-2”). The COVID-19 pandemic has emphasized the importance of environmental cleanliness and hygiene management involving a wide variety of surfaces. Despite the strict hygiene measures which have been enforced, it is has proven to be very difficult to sanitize surfaces all of the time. Even when sanitized, surfaces may get contaminated again. Respiratory secretions or droplets expelled by infected individuals can contaminate surfaces and objects, creating fomites (contaminated surfaces). Viable SARS-CoV-2 virus can be found on contaminated surfaces for periods ranging from hours to many days, depending on the ambient environment (including temperature and humidity) and the type of surface. See, for example, Van Doremalen et al., “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1”, New England Journal of Medicine2020; 382: 1564-1567; Pastorino et al., “Prolonged Infectivity of SARS-CoV-2 in Fomites”,Emerging Infectious Diseases2020; 26(9); and Chin et al., “Stability of SARS-CoV-2 in different environmental conditions”,The Lancet Microbe, e10, Apr. 2, 2020. There is consistent evidence of SARS-CoV-2 contamination of surfaces and the survival of the virus on certain surfaces. People who come into contact with potentially infectious surfaces often also have close contact with the infectious person, making the distinction between respiratory droplet and fomite transmission difficult to discern. However, fomite transmission is considered a feasible mode of transmission for SARS-CoV-2, given consistent findings about environmental contamination in the vicinity of infected cases and the fact that other coronaviruses and respiratory viruses can transmit this way (World Health Organization, “Transmission of SARS-CoV-2: implications for infection prevention precautions”, Jul. 9, 2020 via www.who.int). Virus transmission may also occur indirectly through touching surfaces in the immediate environment or objects contaminated with virus from an infected person, followed by touching the mouth, nose, or eyes. While use of face masks has, generally speaking, become widespread, use of hand gloves has not. Even with gloves, touching of mouth, nose, and eyes still frequently occurs, following the touch of a contaminated surface. Therefore, there is a desire to prevent the transmission of pathogens (such as, but not limited to, SARS-CoV-2) via surfaces. One method of reducing pathogen transmission is to reduce the period of human vulnerability to infection by reducing the period of viability of SARS-CoV-2 on solids and surfaces. Surfaces may be treated with chemical biocides, such as bleach and quaternary ammoniums salts, or UV light, to disinfect bacteria and destroy viruses within a matter of minutes. Biocides in liquids are capable of inactivating at least 99.99 wt % of SARS-CoV-2 in as little as 2 minutes, which is attributed to the rapid diffusion of the biocide to microbes and because water aids microbial dismemberment. However, these approaches cannot always occur in real-time after a surface is contaminated. Alternatively, antimicrobial coatings may be applied to a surface in order to kill bacteria and/or destroy viruses as they deposit. However, to exceed 99.9 wt % reduction of bacteria and/or viruses, conventional antimicrobial coatings typically require at least 1 hour, a time scale which is longer than indirect human-to-human interaction time, such as in an aircraft or shared vehicle, for example. Existing solid coatings are limited by a low concentration of biocides at the surface due to slow biocide transport. The slow diffusion of biocides through the solid coating to the surface, competing with the removal of biocides from the surface by human and environmental contact, results in limited availability and requires up to 2 hours to kill 99.9 wt % of bacteria and/or deactivate 99.9 wt % of viruses. Water improves transport and aids microbial dismemberment. However, single-material coatings have limited water uptake. Swelling with water is often an unwanted characteristic of single-material coatings, since swelling which can cause coating weakness and degradation if not designed into the coating. In view of the aforementioned needs in the art, there is a strong desire for an antimicrobial coating that enables fast transport rates of biocides for better effectiveness on deactivating SARS-CoV-2 on surfaces. The coating should be safe, conveniently applied or fabricated, and durable. It is particularly desirable for such a coating to be capable of destroying at least 99 wt %, preferably at least 99.9 wt %, and more preferably at least 99.99 wt % of bacteria and/or viruses in 30 minutes of contact, preferably 20 minutes of contact, and more preferably 10 minutes of contact. SUMMARY OF THE INVENTION Some variations of the invention provide an antimicrobial structure comprising: (a) a solid structural phase comprising a solid structural material; (b) a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and (c) an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. In some embodiments, the solid structural material is or includes a solid structural polymer selected from the group consisting of a non-fluorinated carbon-based polymer, a silicone, a fluorinated polymer, and combinations thereof. A non-fluorinated carbon-based polymer may be selected from the group consisting of polyalkanes, polyurethanes, polyethers, polyureas, polyesters, and combinations thereof. A silicone may be selected from the group consisting of polydimethyl siloxane, polytrifluoropropylmethyl siloxane, polyaminopropylmethyl siloxane, polyaminoethylaminopropylmethyl siloxane, polyaminoethylaminoisobutylmethyl siloxane, and combinations thereof. A fluorinated polymer may be selected from the group consisting of fluorinated polyols, perfluorocarbons, perfluoropolyethers, polyfluoroacrylates, polyfluorosiloxanes, polyvinylidene fluoride, polytrifluoroethylene, and combinations thereof. In some embodiments, the solid transport material is or includes a solid transport polymer selected from a hygroscopic polymer, a hydrophobic and non-lipophobic polymer, a hydrophilic polymer, an electrolyte polymer, and combinations thereof. A hygroscopic solid transport polymer may be selected from the group consisting of poly(acrylic acid), poly(ethylene glycol), poly(2-hydroxyethyl methacrylate), poly(vinyl imidazole), poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), poly(vinylpyrolidone), modified cellulosic polymers, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, and combinations thereof. A hydrophobic, non-lipophobic solid transport polymer may be selected from the group consisting of poly(propylene glycol), poly(tetramethylene glycol), polybutadiene, polycarbonate, polycaprolactone, acrylic polyols, and combinations thereof. A hydrophilic solid transport polymer may be a polymer with ionic charge that may be present within the hydrophilic solid transport polymer as carboxylate groups, amine groups, sulfate groups, or phosphate groups, for example. An electrolyte solid transport polymer may be selected from the group consisting of polyethylene oxide, polypropylene oxide, polycarbonates, polysiloxanes, polyvinylidene difluoride, and combinations thereof. In preferred embodiments, the solid structural material is a solid structural polymer, the solid transport material is a solid transport polymer, and the solid structural polymer is crosslinked, via a crosslinking molecule, with the solid transport polymer. The crosslinking molecule may include at least one moiety selected from the group consisting of an amine moiety, a hydroxyl moiety, an isocyanate moiety, and a combination thereof, for example. In certain embodiments, at least one moiety is an isocyanate moiety, which may be a blocked isocyanate. In some embodiments, the continuous transport phase is a solid solution or solid suspension of the solid transport material and the antimicrobial agent. In other embodiments, the continuous transport phase contains a transport-phase liquid that at least partially dissolves the antimicrobial agent. The transport-phase liquid may be selected from the group consisting of water, dialkyl carbonate, propylene carbonate, γ-butyrolactone, 2-phenoxyethanol, and combinations thereof. Alternatively, or additionally, the transport-phase liquid is selected from polar solvents. Alternatively, or additionally, the transport-phase liquid is selected from ionic liquids. In certain embodiments, the transport-phase liquid contains one or more water-soluble salts, one or more of which may function as an antimicrobial agent. Exemplary water-soluble salts include, but are not limited to, copper chloride, copper nitrate, zinc chloride, zinc nitrate, silver chloride, silver nitrate, or combinations thereof. In some embodiments, water-soluble salts are selected from quaternary ammonium salts, such as benzalkonium chloride, benzethonium chloride, methylbenzethonium chloride, cetalkonium chloride, cetylpyridinium chloride, cetrimonium, cetrimide, tetraethylammonium bromide, didecyldimethylammonium chloride, dioctyldimethylammonium chloride, domiphen bromide, or combinations thereof. In certain embodiments, the transport-phase liquid is a eutectic liquid salt, which is optionally derived from ammonium salts. The eutectic liquid salt may contain an antimicrobial agent or be otherwise antimicrobially active. In some embodiments, the continuous transport phase contains a liquid electrolyte, a solid electrolyte, or both a liquid electrolyte and a solid electrolyte. In some embodiments, the antimicrobial agent is selected from quaternary ammonium molecules. Exemplary quaternary ammonium molecules include, but are not limited to, benzalkonium chloride, benzethonium chloride, methylbenzethonium chloride, cetalkonium chloride, cetylpyridinium chloride, cetrimonium, cetrimide, tetraethylammonium bromide, didecyldimethylammonium chloride, dioctyldimethylammonium chloride, and domiphen bromide. In some embodiments, the antimicrobial agent is selected from N-halamines. Exemplary N-halamines include, but are not limited to, hydantoin (imidazolidine-2,4-dione); 1,3-dichloro-5,5-dimethylhydantoin; 3-bromo-1-chloro-5,5-dimethylhydantoin; 5,5-dimethylhydantoin; 4,4-dimethyl-2-oxazalidinone; tetramethyl-2-imidazolidinone; and 2,2,5,5-tetramethylimidazo-lidin-4-one. In some embodiments, the antimicrobial agent is selected from oxidizing molecules, such as (but not limited to) those selected from the group consisting of sodium hypochlorite, hypochlorous acid, hydrogen peroxide, and combinations thereof. In some embodiments, the antimicrobial agent is selected from metal ions, such as (but not limited to) metal ions selected from the group consisting of silver, copper, zinc, and combinations thereof. The antimicrobial structure may be characterized in that the antimicrobial agent has a diffusion coefficient between 10−16m2/s and 10−9m2/s, measured at 25° C. and 1 bar, within the continuous transport phase. The antimicrobial structure may be characterized in that the antimicrobial agent is replenished on an outer surface of the antimicrobial structure to at least 25% of the original concentration of antimicrobial agent, in 100 minutes or less. In some embodiments, the antimicrobial structure contains embedded electrodes in a configuration such that the antimicrobial agent is electrically or electrochemically rechargeable. The antimicrobial structure may further contain one or more additives, such as (but not limited to) salts, buffers, UV stabilizers, fillers, or combinations thereof. The antimicrobial structure may further contain one or more protective layers, such as environmentally protective layer(s). In some antimicrobial structures, the average phase-separation length is from about 0.5 microns to about 100 microns. In certain embodiments, the average phase-separation length is from about 1 micron to about 50 microns. The antimicrobial structure may be a coating or may be present in a coating. Alternatively, or additionally, the antimicrobial structure may be present at a surface of a bulk object. The antimicrobial structure may be the entirety of a bulk object.
154,803
11296924
TECHNICAL FIELD This application relates to the communications field, and in particular, to a communication method, a communications device, and a storage medium. BACKGROUND The 802.3 standard Ethernet (StdE) related standards defined by the 802.3 working group of the Institute of Electrical and Electronics Engineers (IEEE) are widely used in the industry. A standard Ethernet is greatly welcomed by manufacturers because of its simple principle, easy implementation, and low price. However, with development of technologies, a difference between bandwidth granularities is getting larger, and a port of the standard Ethernet increasingly deviates from an actual application requirement. It is likely that mainstream required application bandwidth does not belong to any existing standard Ethernet rate. For example, resource waste is caused if a 100 GE port is used to carry a 50 Gb/s service, and there is no corresponding Ethernet standard granularity to carry a 200 Gb/s service. To meet this challenge, the Optical Internet Forum (OIF) releases a flexible Ethernet (FlexE). The FlexE is a general-purpose technology that supports a plurality of Ethernet MAC layer rates. By binding a plurality of 100 GE (Physical, PHYs) ports and dividing each 100 GE port into 20 timeslots in a granularity of 5G in time domain, the FlexE can support the following functions: binding: binding a plurality of Ethernet ports together as a link group to support a Medium Access Control (MAC) service whose rate is greater than bandwidth of a single Ethernet port; a sub-rate: allocating a timeslot to a service to support a MAC service whose rate is less than bandwidth of a link group or bandwidth of a single Ethernet port; channelization: allocating timeslots to services to support simultaneous transmission of a plurality of MAC services in a link group, for example, supporting simultaneous transmission of one 150 G MAC service and two 25 G MAC services in a 2×100 GE link group. FIG. 1is a schematic diagram of a possible communications system architecture in the prior art. As shown inFIG. 1, the architecture includes a first Ethernet device1101and a second Ethernet device1201. The first Ethernet device1101includes a medium dependent interface (MDI)1102(which is marked as MEDIUM1102in the figure for clear description), a physical layer, a medium independent interface (MII)1107, a reconciliation sublayer (Reconciliation Sublayer, RS)1108, a Medium Access Control (MAC) layer1109, and an upper layer (Upper layer)1110. The physical layer of the first Ethernet device1101may include a physical medium dependent sublayer (PMD)1104, a physical medium attachment sublayer (PMA)1105, and a physical coding sublayer (PCS)1106. The upper layer1110may include an Internet Protocol (IP) layer, a Transmission Control Protocol (TCP) layer, and the like. Correspondingly, the second Ethernet device1201includes a medium dependent interface (MDI)1202(which is marked as MEDIUM1202in the figure for clear description), a physical layer, an MII1207, an RS1208, a MAC layer1209, and an upper layer1210. The physical layer of the second Ethernet device1201may include a PMD1204, a PMA1205, and a PCS1206. The upper layer1210may include an IP layer, a TCP layer, and the like. Clause 81.3.4 of the IEEE 802.3 standard document defines local fault information (Local Fault, LF) and remote fault information (Remote Fault) in a 40 GE/100 GE standard Ethernet protocol. The local fault information may indicate a fault detected between a remote RS and a local RS. The remote fault information may be RF generated by the RS when the RS detects the LF. The protocol specifies a mechanism for link fault status negotiation between the local RS sublayer and the remote RS sublayer, and an LF-and-RF-based mechanism for sending and processing a 64b/66-bit block. As shown inFIG. 1, a link for sending information from the second Ethernet device1201to the first Ethernet device1101is faulty, and the physical layer (for example, the PMD1104) of the first Ethernet device1101detects the link fault. The PMD1104, the PMA1105, or the PCS1106generates LF and sends the LF to an upper-layer functional unit until the RS1108receives the LF. If the RS1108detects the LF that is sent by the PCS1106by using the MII interface1107, the RS1108stops delivering a data flow from the upper MAC layer to the PCS1106, and continuously delivers RF destined for the second Ethernet device1201to the PCS1106. If a transmission link from the first Ethernet device1101to the second Ethernet device1201is normal, the RF can arrive at the second Ethernet device1201. The RS1208of the second Ethernet device1201detects the RF, stops delivering a data flow from the upper MAC layer to the PCS1206, and continuously delivers an idle control block flow (refer to Clause 81.3.4 of IEEE 802.3-2015 Section 6) to the PCS1206. The idle control block flow is sent from the second Ethernet device1201to the first Ethernet device1101. Because the transmission link from the second Ethernet device1201to the first Ethernet device1101is faulty, the idle control block flow does not arrive at the first Ethernet device1101. It can be learned from the above example that in the prior art, fault negotiation can be implemented by transmitting LF and RF in an Ethernet device, and an RS of the Ethernet device can terminate fault information and stop transmission of a data flow from a MAC layer. Based on the provided flexible Ethernet protocol, it is imperative to combine the standard Ethernet protocol and the flexible Ethernet protocol in networking. However, no fault information transmission scheme is currently available for joint networking in which the standard Ethernet protocol and the flexible Ethernet protocol are used. In conclusion, a communication solution is urgently required to implement fault information transmission in joint networking in which the standard Ethernet protocol and the flexible Ethernet protocol are used. SUMMARY Embodiments of this application provide a communication method, a communications device, and a storage medium, to transmit fault information in joint networking in which a standard Ethernet protocol and a flexible Ethernet protocol are used. According to a first aspect, an embodiment of this application provides a communication method, where the method includes: obtaining first fault information by using a first port, where the first port is a first-type port, the first-type port transmits information according to a standard Ethernet protocol, the first fault information is first-type fault information, and the first-type fault information includes at least one of local fault information and remote fault information; and sending second fault information based on the first fault information by using a second port, where the second port is a second-type port, the second-type port transmits information according to a flexible Ethernet protocol, the second fault information is second-type fault information, and the second-type fault information is used to indicate that a link corresponding to the standard Ethernet protocol is faulty. In this embodiment of this application, the first fault information is obtained by using the first port, and the second fault information is sent based on the first fault information by using the second port. The first port is a first-type port, the first-type port transmits information according to the standard Ethernet protocol, the first fault information is first-type fault information, the second port is a second-type port, and the second-type port transmits information according to the flexible Ethernet protocol. The first-type fault information includes at least one of the local fault information and the remote fault information, the second fault information is second-type fault information, and the second-type fault information is used to indicate that the link corresponding to the standard Ethernet protocol is faulty. Therefore, through transmission of the second fault information, not only a fault can be reported in joint networking in which the standard Ethernet protocol and the flexible Ethernet protocol are used, but also a foundation can be laid for determining whether a link corresponding to the flexible Ethernet protocol or the link corresponding to the standard Ethernet protocol is faulty. In a possible design, the sending second fault information based on the first fault information by using a second port includes: if the obtained first-type fault information meets a first preset condition, sending the second fault information based on the first fault information by using the second port, where the first preset condition includes: a quantity of first-type fault information obtained within first preset duration is greater than a first quantity threshold; or a quantity of obtained first preset code blocks is not less than the first quantity threshold, and an interval between any two obtained adjacent first preset code blocks does not exceed a first-preset-code-block interval. This can avoid a misoperation caused by a relatively small quantity of fault information and further improve operation accuracy. In a possible design, the method further includes: obtaining third fault information by using the second port, where the third fault information is second-type fault information; and sending fourth fault information based on the third fault information by using the first port, where the fourth fault information is first-type fault information. In this way, the second-type fault information may be transmitted inside a flexible Ethernet network, and the first-type fault information may be transmitted outside the flexible Ethernet network, so that whether a link corresponding to the flexible Ethernet protocol or the link corresponding to the standard Ethernet protocol is faulty can be determined based on a type of fault information. In a possible design, the sending fourth fault information based on the third fault information by using the first port includes: if the obtained second-type fault information meets a second preset condition, sending the fourth fault information based on the third fault information by using the first port, where the second preset condition includes: a quantity of third fault information obtained within second preset duration is greater than a second quantity threshold; or a quantity of obtained second preset code blocks is not less than the second quantity threshold, and an interval between any two obtained adjacent second preset code blocks does not exceed a second-preset-code-block interval. This can avoid a misoperation caused by a relatively small quantity of fault information and further improve operation accuracy. In a possible design, the method further includes: obtaining fifth fault information by using a third port, where the third port is a second-type port, and the fifth fault information is first-type fault information or second-type fault information; and sending the fifth fault information by using a fourth port, where the fourth port is a second-type port. In this way, the first-type fault information and the second-type fault information may be transparently transmitted inside a flexible Ethernet network, and further, the second-type fault information may be transmitted inside the flexible Ethernet network, and the first-type fault information may be transmitted outside the flexible Ethernet network, so that whether a link corresponding to the flexible Ethernet protocol or the link corresponding to the standard Ethernet protocol is faulty can be determined based on a type of fault information. In a possible design, the method further includes: obtaining sixth fault information by using a fifth port, where the fifth port is a second-type port, the sixth fault information is first-type fault information, and a standby link is configured for the fifth port; and enabling the standby link corresponding to the fifth port. It can be learned that in this embodiment of this application, whether a link corresponding to the flexible Ethernet protocol or the link corresponding to the standard Ethernet protocol is faulty can be determined based on the first-type fault information and the second-type fault information. This prevents a protection switching function from being triggered when the link corresponding to the standard Ethernet protocol is faulty, and can more accurately trigger the protection switching function based on fault information on a flexible Ethernet protocol network. In a possible design, the sending second fault information based on the first fault information by using a second port includes: sending at least two pieces of second fault information based on the first fault information by using the second port, where any two of the at least two pieces of second fault information are separated by at least one code block. In this way, sending frequency of the second fault information can be flexibly set. For example, if the sending frequency of the second fault information is set to be smaller than sending frequency of the first fault information, used transmission path bandwidth of a link corresponding to the flexible Ethernet protocol can be reduced. For example, the first fault information is the remote fault information, and the second fault information is client-service-type remote fault information. The remote fault information is continuously sent, and relatively large bandwidth is occupied. If a piece of client-service-type remote fault information is sent at intervals of a specific quantity of code blocks, occupied bandwidth can be reduced. According to a second aspect, an embodiment of this application provides a communication method, where the method includes: obtaining third fault information by using a second port, and sending fourth fault information based on the third fault information by using a first port, where the first port is a first-type port, the first-type port transmits information according to a standard Ethernet protocol, the fourth fault information is first-type fault information, the first-type fault information includes at least one of local fault information and remote fault information, the second port is a second-type port, the second-type port transmits information according to a flexible Ethernet protocol, the third fault information is second-type fault information, and the second-type fault information is used to indicate that a link corresponding to the standard Ethernet protocol is faulty. In this embodiment of this application, the third fault information is obtained by using the second port, and the fourth fault information is sent based on the third fault information by using the first port. The first-type fault information includes at least one of the local fault information and the remote fault information, and the second-type fault information is used to indicate that the link corresponding to the standard Ethernet protocol is faulty. Therefore, through transmission of the second fault information, first, a fault can be reported in joint networking in which the standard Ethernet protocol and the flexible Ethernet protocol are used, second, a foundation can be laid for determining whether a link corresponding to the flexible Ethernet protocol or the link corresponding to the standard Ethernet protocol is faulty, and third, a solution of reporting a fault on a standard Ethernet protocol network by using the first-type fault information can also be supported. The communication method further includes the method in any one of the first aspect and the possible designs of the first aspect. Details are not described herein again. According to a third aspect, an embodiment of this application provides a communications device, where the communications device includes a memory, a transceiver, and a processor, the memory is configured to store an instruction, the processor is configured to execute the instruction stored in the memory, and control the transceiver to send and receive signals, and when the processor executes the instruction stored in the memory, the communications device is configured to perform the method in any one of the first aspect and the possible designs of the first aspect. According to a fourth aspect, an embodiment of this application provides a communications device configured to implement the method in any one of the first aspect and the possible designs of the first aspect, where the communications device includes corresponding functional modules separately configured to implement the steps of the foregoing method. According to a fifth aspect, an embodiment of this application provides a computer storage medium, where the computer storage medium stores an instruction, and when the instruction is executed on a computer, the computer performs the method in any one of the first aspect and the possible implementations of the first aspect. According to a sixth aspect, an embodiment of this application provides a computer program product including an instruction, where when the computer program product runs on a computer, the computer performs the method in any one of the first aspect and the possible implementations of the first aspect.
83,228
11423465
FIELD OF THE DISCLOSURE The present disclosure relates to a system that provides a computer-implemented means of connecting prospective producers and purchasers of an agricultural product, and facilitates a transaction between a matched producer and purchaser to arrange the production of the agricultural product by the producer and delivery to the purchaser. BACKGROUND Much of the production and sale of agricultural products is conducted in a commoditized marketplace in which a disconnect typically exists between producers of crops and purchasers of the crops. Producers of crops typically select a particular crop to grow based on the producer's best guess as to the marketability of the crop and the likelihood of producing the crop given the producer's growing conditions. Purchasers of crops typically purchase crops by selecting from the offerings from various wholesalers based on the best match of the characteristics of the crops, such as moisture content or protein/carbohydrate/oil content, with the needs of the purchaser. Even among the same crop with similar characteristics, the purchaser's selected crops are increasingly fragmented according to end-product requirements, which may be categorized according to the plant's genome (i.e., GMO or non-GMO), or growing conditions (i.e., organic and conventional). Except in the case of large-scale purchasers with long-standing relationships with particular producers, purchasers rarely have opportunity to order a particular crop grown in a specific manner that is well-matched to the purchaser's requirements. Conversely, the producer typically operates with less than complete knowledge of any particular purchaser's requirements. Further, a producer may choose to underutilize the potential yield capacity of the available acreage rather than assume the risk of producing a crop that may not be profitable.
208,699
11482581
CROSS-REFERENCE TO RELATED APPLICATION This application claims priority under 35 U.S.C. § 1I9 to Korean Patent Application No. 10-2019-0083943, filed on Jul. 11, 2019, in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference in its entirety herein. 1. Technical Field One or more exemplary embodiments relate to a display apparatus, and more particularly, to a display apparatus including a transmissive area in a display area, wherein the transmittance of the display area and the distortion of a color gamut are simultaneously improved. 2. Discussion of Related Art Display apparatuses have been incorporated into a wide variety of electronic devices. The recent size and weight reduction of display apparatuses have broadened the types of electronic devices that include display apparatuses. Among the different types of display apparatuses, an organic light-emitting display apparatus provides wide viewing angles, good contrast, and a fast response speed and thus has drawn attention as a next-generation display apparatus. An organic light-emitting display apparatus includes a plurality of pixel units having (sub)pixels which include an organic light-emitting diode. The organic light-emitting diode includes an intermediate layer having an emission layer between a pixel electrode and an opposite electrode. In such an organic light-emitting display apparatus, the emission and the degree of emission of each pixel may be controlled by using a thin film transistor that is electrically connected to the pixel electrode. The opposite electrode is integrally formed over a plurality of (sub)pixels. The emission layers may be patterned and deposited by using masks, for example, fine metal masks (FMMs), that are open for respective sub-pixels. However, in an existing display apparatus, when a pattern layer is deposited using a mask having an opening corresponding to a pattern area, a shadow area may be formed due to a deposition material propagating to a space between an uppermost layer and the mask. Therefore, the deposition material is also deposited outside of the pattern area. SUMMARY One or more exemplary embodiments include a display apparatus including a transmissive area in a display area, wherein the transmittance of the display area and the distortion of a color gamut are simultaneously improved. However, this is merely an example, and the exemplary embodiments of the present inventive concepts are not limited thereto. Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure. According to one or more exemplary embodiments, a display apparatus includes a substrate including a first transmissive area, a second transmissive area, and a pixel area between the first transmissive area and the second transmissive area. A first pixel electrode is in the pixel area. A first intermediate layer is disposed on the first pixel electrode. The first intermediate layer is configured to emit light of a first color. An insulating layer covers edges of the first pixel electrode and defines a first emission area through a first opening exposing a portion of the first pixel electrode. A first partition wall is disposed on the insulating layer between the first emission area and the first transmissive area. A second partition wall is disposed on the insulating layer between the first emission area and the second transmissive area. An opposite electrode is disposed on the first intermediate layer in the pixel area, the opposite electrode partially contacts the first partition wall and the second partition wall. An upper surface of the first partition wall may include a first portion adjacent to the first emission area and a second portion adjacent to the first transmissive area, and the first portion may contact the opposite electrode. The second portion may not overlap the opposite electrode. The display apparatus may further include a material layer disposed on the opposite electrode, and the second portion may directly contact the material layer. The display apparatus may further include a second pixel electrode that is apart from the first pixel electrode in the pixel area in a first direction, a second intermediate layer disposed on the second pixel electrode and emitting light of a second color, a third pixel electrode that is apart from the second pixel electrode in the pixel area in the first direction, and a third intermediate layer disposed on the third pixel electrode and emitting light of a third color, wherein the insulating layer may cover edges of the second and third pixel electrodes and may define a second emission area and a third emission area through a second opening and a third opening which expose central portions of the second and third pixel electrodes, and the first partition wall may extend between the third emission area and the first transmissive area in the first direction. The second partition wall may extend between the third emission area and the second transmissive area in the first direction. A length of the first partition wall in the first direction may be the same as a length of the second partition wall. Lengths of the first and second partition walls in the first direction may be less than or equal to about 300 μm. Widths of the first and second partition walls in a second direction may be identical, the second direction crossing the first direction. The widths of the first and second partition walls in the first direction may be less than or equal to about 30 μm. Heights of the first and second partition walls may be less than or equal to about 3.5 μm. The display apparatus may further include a first supportive partition wall disposed on the insulating layer between the first opening and the second opening, in a second direction crossing the first direction. The display apparatus may further include a second supportive partition wall disposed on the insulating layer between the second opening and the third opening, in the second direction. The opposite electrode may cover the first supportive partition wall and the second supportive partition wall. The first supportive partition wall may extend in the second direction and may be connected to the first partition wall at one side and to the second partition wall at the other side. In the pixel area, at least one pixel portion including a plurality of light-emitting diodes emitting light of different colors may be disposed, and the plurality of light-emitting diodes may include a first light-emitting diode including the first pixel electrode, a second light-emitting diode including the second pixel electrode, and a third light-emitting diode including the third pixel electrode. The pixel portion may include a first pixel portion and a second pixel portion that are in the first direction, and the display apparatus may further include a third supportive partition wall disposed on the insulating layer between the first pixel portion and the second pixel portion, in the second direction. The first partition wall and the second partition wall may respectively correspond to the first pixel portion and the second pixel portion. The display apparatus may further include a multilayer disposed between the insulating layer and the substrate and including at least one of an organic insulating layer and an inorganic insulating layer, and the multilayer may include an open region corresponding to the first and the second transmissive areas, respectively. There may be a plurality of first transmissive areas and a plurality of second transmissive areas in the first direction with the pixel area between the plurality of first transmissive areas and the plurality of second transmissive areas, the pixel area extending in the first direction, and the opposite electrode may be integrally formed in the pixel area between the plurality of first transmissive areas and the plurality of second transmissive areas. In an exemplary embodiment, a method for manufacturing a display apparatus, includes forming a substrate comprising a first transmissive area, a second transmissive area, and a pixel area between the first transmissive area and the second transmissive area. A pixel electrode is formed in the pixel area. An intermediate layer is formed on the pixel electrode, the intermediate layer is configured to emit light. An insulating layer is formed covering edges of the pixel electrode and defining an emission area through an opening exposing a portion of the pixel electrode. A first partition wall and a second partition wall is formed having first portions and second portions on the insulating layer. A mask is formed that is supported on the second portions of the first partition wall and the second partition wall. An opposite electrode is formed on the intermediate layer by depositing a deposition material on an open region of the mask, the open region of the mask including the first portions of the first partition wall and second partition wall. In an exemplary embodiment, a display apparatus includes a substrate comprising a first transmissive area, a second transmissive area, and a pixel area between the first transmissive area and the second transmissive area. The pixel area includes at least one pixel portion having a plurality of light-emitting diodes configured to emit light of different colors. The plurality of light-emitting diodes is spaced apart in a first direction. Each of the plurality of light-emitting diodes includes a pixel electrode, an intermediate layer disposed on the pixel electrode, an insulating layer covering edges of the pixel electrode and defining an emission area through an opening exposing a portion of the pixel electrode and an opposite electrode disposed on the intermediate layer in the pixel area. Supportive partition walls are disposed on the insulating layer between openings of adjacent light-emitting diodes in the first direction. The supportive partition walls extend in a second direction that crosses the first direction. In addition to the aforesaid details, other aspects, features, and advantages will be clarified from the detailed description, claims, and drawings.
267,304
11231279
FIELD The present invention relates to a work machine management system and a work machine. BACKGROUND In a mining site of a mine, a mining machine may be made to travel along a set travel route. Patent Literature 1 discloses a technology of generating a route for a moving body to move from a departure point to a destination point. CITATION LIST Patent Literature Patent Literature 1: Japanese Patent Application Laid-open No. 2001-124576 A SUMMARY Technical Problem In a case of making a mining machine travel along a set travel route, actual positional data of a mining machine is acquired by a global positioning system (GPS) or the like, and travel of the mining machine is controlled such that a difference between a target position on the travel route and an actual position of the mining machine is minimized. However, depending on an environment of a mine, a time zone during which positional data of the mining machine is hardly acquired by the GPS or the like may be caused. When the mining machine is made to travel during such a time zone, correct positional data of the mining machine cannot be acquired, and therefore, the mining machine can hardly travel along the travel route, and productivity in the mine may be deteriorated. An aspect of the present invention is directed to providing a work machine management system and a work machine capable of suppressing deterioration of productivity in a mine. Solution to Problem According to a first aspect of the present invention, a work machine management system comprising: a position detecting device configured to detect a position of a work machine traveling in a workplace; a non-contact sensor configured to detect, in a non-contact manner, an object existing in the workplace; map data configured to accumulate information on existence and a position of the object existing in the workplace on the basis of detection data obtained by the position detecting device and detection data obtained by the non-contact sensor; a travel route generation unit configured to generate a travel route where the work machine travels; and an identifying unit configured to identify perfection of the map data, wherein the travel route generation unit generates the travel route where the work machine travels on the basis of the perfection of the map data identified by the identifying unit. According to a second aspect of the present invention, a work machine comprises the work machine management system according to the first aspect. According to a third aspect of the present invention, a work machine management system comprises: a position detecting device configured to detect a position of a work machine traveling in a workplace; a non-contact sensor configured to detect, in a non-contact manner, an object existing in the workplace; map data configured to accumulate information on existence and a position of the object existing in the workplace on the basis of detection data obtained by the position detecting device and detection data obtained by the non-contact sensor; a travel route generation unit configured to generate a travel route where the work machine travels, the travel route including a first travel route that passes a center region from a first position to a second position in the workplace and a second travel route that passes an outer periphery region from the first position to the second position in the workplace, and a designation unit configured to designate perfection of map data in the second travel route, wherein the travel route generation unit generates a travel route so as to make the work machine preferentially pass the second travel route on the basis of information from the designation unit. According to a fourth aspect of the present invention, a work machine management system, comprises: a position detecting device configured to detect a position of a work machine traveling in a workplace; a non-contact sensor configured to detect, in a non-contact manner, an object existing in the workplace; map data configured to accumulate information on existence and a position of the object existing in the workplace on the basis of detection data obtained by the position detecting device and detection data obtained by the non-contact sensor; a travel route generation unit configured to generate a travel route where the work machine travels, the travel route including a travel route that passes an outer periphery region from a first position to a second position in the workplace; an identifying unit configured to identify perfection of map data; a scan matching navigation position calculation unit configured to calculate a position of the work machine by matching a detection result obtained by the non-contact sensor with the map data; and a travel controller configured to control travel of the work machine on the basis of a detection result obtained by the position detecting device in a case where the position detecting device is effective, and configured to control travel of the work machine on the basis of a calculation result obtained by the scan matching navigation position calculation unit in a case where the position detecting device is not effective, wherein the travel route generation unit generates a travel route that causes the work machine to pass the travel route both in the case where the position detecting device is effective and in the case where the position detecting device is not effective. Advantageous Effects of Invention According to the aspects of the present invention, provided are the work machine management system and the work machine capable of suppressing deterioration of productivity in a mine.
18,153
11463161
BACKGROUND 1. Field The present teaching generally relates to authorizing access in satellite communications. More specifically, the present teaching relates to a system and method for facilitating satellite communications based on multi-factor authentication. 2. Technical Background Satellite communications generally involve a client device communicating with a satellite via a satellite modem. Satellite modems may be installed at a satellite ground station. At a satellite ground station there may be one or more satellite dishes that transmit and receive data from orbiting satellites. The client device may access the satellite modem to provide instructions to the satellite and/or to receive telemetry data transmitted from the satellite to the satellite ground station. Conventionally, an entity that interfaces with the satellite is required to purchase their own satellite modem customized to the specific needs of that entity. However, satellite modems are very expensive. The more satellite ground stations that the entity needs to access to communicate with a satellite, the more satellite modems the entity needs to purchase. One possible solution to this problem is to allow two or more entities to share a satellite modem. However, this imparts security vulnerability in that there needs to be a mechanism implemented to ensure that each entity only has access to their data. Furthermore, the more entities able to access the satellite modem, the greater the chance of a data breach. Thus, there is a need for methods, systems, and programming that facilitate secure satellite communications while also reducing the cost. SUMMARY The following is a non-exhaustive listing of some aspects of the present techniques. These and other aspects are described in the following disclosure. Some aspects may describe a method for communicating with a satellite, where the method may be implemented by one or more processors configured to execute one or more computer program instructions, and the method including: receiving, from a client device, a request for communicating with a satellite; determining a device identifier associated with the client device; retrieving, upon determining that the device identifier is associated with an account authorized to connect to one or more satellite ground stations, a schedule of activity for the account, where the schedule of activity indicates a time period during which the client device is authorized to connect to the one or more satellite ground stations such that data is communicated between the satellite and the client device associated with the account, and where the one or more satellite ground stations are configured to communicate with the satellite; generating, at a start of the time period, a connection between the client device and the one or more satellite ground stations; and providing, via the connection, data to the client device. Additional aspects may describe a system for communicating with a satellite, the system including: memory including one or more computer program instructions; and one or more processors that, when the one or more computer program instructions are executed, are configured to: receive, from a client device, a request for communicating with a satellite; determine a device identifier associated with the client device; retrieve, upon determining that the device identifier is associated with an account authorized to connect to one or more satellite ground stations, a schedule of activity for the account, where the schedule of activity indicates a time period during which the client is authorized to connect to the one or more satellite ground stations such that data is communicated between the satellite and the client device associated with the account, and where the one or more satellite ground stations are configured to communicate with the satellite; generate, at a start of the time period, a connection between the client device and the one or more satellite ground stations; and provide, via the connection, data to the client device. Another aspect may describe a method for communicating with a satellite, the method being implemented by one or more processors configured to execute one or more computer program instructions, the method including: retrieving, upon determining that an account of a client device is authorized to connect to a satellite ground station, a schedule of activity for the account, where the schedule of activity indicates a time period during which the satellite ground stations is authorized to communicate data to a client device associated with the account; generating, at a start of the time period, a connection to the satellite ground station; and obtaining, via the connection, telemetry data from the client ground station.
248,052
11454179
TECHNICAL FIELD The present disclosure relates generally to engine brake control and, for example, to engine brake control according to engine operating parameters. BACKGROUND A power system (e.g., a 4-stroke engine) powers a vehicle by converting chemical energy stored in fuel (e.g., diesel fuel, gasoline, and/or the like) into mechanical work. In a diesel-powered engine, the fuel is injected directly into a cylinder from a fuel injector to form an air-fuel mixture. A piston, movably mounted within the cylinder to travel in a cycle between a top dead center (TDC) position and a bottom dead center (BDC) position, compresses the air-fuel mixture, which causes an explosion. A force of the explosion drives the piston down towards the BDC position, and the cycle repeats. Because the piston is connected to a drive train of the vehicle, continued movement of the piston propels the vehicle. To increase fuel efficiency and/or power output, the power system may include one or more turbochargers. The one or more turbochargers, which are driven by exhaust gases from the engine, compress and send air back to the engine for further combustion. While the power system has a number of benefits, including greater fuel efficiency compared to a gasoline-powered system, performance of the power system may suffer in certain conditions. For example, when the power system is in a low-load state, the power system may experience poor transient response and/or sub-standard emissions. Transient response of the power system occurs during changes in engine speed or load (e.g., acceleration, load increase, and/or the like). Due to turbocharger lag in responding to the changes, a ratio of the air-fuel mixture may temporarily decrease, leading to slow engine response. Furthermore, because of low temperatures of the exhaust gases during the low-load state, the power system may experience an increase in particulate matter and/or gaseous emissions (e.g., nitrogen oxides, carbon monoxide, hydrocarbons, and/or the like). One attempt to improve emissions during a low-load state is disclosed in U.S. Publication No. 2008/0196388 (“the '388 publication”). In particular, the '388 publication discloses an apparatus for activating a diesel particulate filter by use of an internal combustion engine. The apparatus includes an engine brake under the control of a controller and one or more sensors sensing information associated with operation of the engine. During operation of the engine, untreated exhaust gas flows through the diesel particulate filter which removes emissions from the exhaust gas. The treated exhaust gas may subsequently be released into the atmosphere. From time to time during operation of the engine, the controller selectively operates the engine brake on one or more of the engine cylinders while increasing the load on at least one cylinder allowed to combust fuel to generate sufficient engine heat to regenerate or otherwise activate the diesel particulate filter. The power system of the present disclosure is directed to overcoming one or more of the problems set forth above and/or other problems in the art. SUMMARY According to some implementations, a method may comprise: obtaining a performance characteristic of an engine; determining, based on the performance characteristic of the engine, that engine braking is enable to control the engine; identifying, based on the performance characteristic, a set of operating parameters of the engine that are associated with the performance characteristic; monitoring the set of operating parameters to obtain operating values; determining that the operating values satisfying corresponding thresholds of the set of operating parameters; determining, based on the operating values satisfying the corresponding thresholds, an engine braking configuration associated with activating engine braking of a set of cylinders of the engine to increase the temperature of exhaust gas from the engine, wherein the set of cylinders is a proper subset of a total quantity of cylinders of the engine; and causing the engine braking to be applied to the set of cylinders to increase the temperature of exhaust gas from the engine. According to some implementations, a control system may comprise: a plurality of sensors; and a controller communicatively coupled to the plurality of sensors to: determine that engine braking is enabled to control the engine; identify, based on the engine braking being abled, a set of operating parameters of the engine that are associated with the performance characteristic; monitor, via the plurality of sensors, the set of operating parameters that are associated with applying engine braking to the engine; determine, based on the operating values satisfying the corresponding thresholds, an engine braking configuration associated with activating engine braking of a set of cylinders of the engine; and cause the engine braking to be applied to the set of cylinders to increase the temperature of exhaust gas from the engine. According to some implementations, a power system may comprise: an engine that includes a plurality of cylinders; a plurality of sensors; and a controller configured to: determine, based on a performance characteristic of the engine, that engine braking is enabled to control the engine; identify, based on the engine braking being enabled, a set of operating parameters of the engine that are associated with the performance characteristic; monitor, via the plurality of sensors, the set of operating parameters; determine that operating values of the set of operating parameters satisfy corresponding thresholds of the set of operating parameters; determine, based on the operating values, an engine braking configuration associated with activating engine braking of a set of cylinders of the plurality of cylinders; and cause the engine braking to be applied to the set of cylinders to cause an increase of an amount of fuel to be provided to one or more other cylinders that are not included in the set of cylinders.
239,162
11267968
CROSS REFERENCE TO RELATED APPLICATIONS This application is a national stage filing under 35 U.S.C. 371 of PCT/IB2019/050713, filed 29 Jan. 2019, which claims the benefit of European Patent Application No. 18155029.4, filed 5 Feb. 2018, the disclosures of which are incorporated by reference in their entirety herein. FIELD OF THE INVENTION The invention relates to a radiation-curable silicone composition for additive-manufacturing technology, particularly for processing the composition in a stereolithographic process, i.e. a process comprising a radiation curing step, to obtain an elastic 3-dim article. The radiation-curable composition comprises mercapto-functional polyorganosiloxane(s), polyorganosiloxane(s) with at least two aliphatic unsaturated carbon-carbon moieties, photo-initiator(s), dye(s) and either of the following alone or in combination: surfactant(s) and/or solvent(s) for the dye(s). BACKGROUND Thiolene-based composition for dental use are known. E.g. U.S. Pat. No. 5,100,929 (Jochum et al.) describes a photopolymerizable dental composition which is curable with visible light and which contains polymerizable monomers of the group of the poly-thiol compounds each having at least two thiol groups and polymerizable monomers of the group of the poly-ene compounds each having at least two ethylenically unsaturated groups and at least one photo initiator, wherein said composition contains respectively related to the sum of all the polymerizable monomers (a) at least 10% by weight of one or more of the poly-thiol compounds, (b) at least 10% by weight of one or more of the poly-ene compounds and (c) as photo initiator 0.01-5% by weight of at least one acyl phosphine compound. The processing of silicone-based compositions by additive-manufacturing techniques is also known. WO 2004/077157 A1 (3D Systems) describes liquid, colored radiation-curable compositions which are suitable for production of colored three-dimensional articles by stereolithography. The composition comprises a) one cationically polymerizing organic substance (e.g. an epoxy component), b) one free-radical polymerizing organic substance (e.g. a poly(meth)acrylate), c) one cationic polymerization initiator, d) one free-radical polymerization initiator, e) an effective color-imparting amount of a certain soluble dye compound. WO 2015/069454 A1 (Dow Corning) describes a composition comprising a) a mercapto-functional polyorganosiloxane, b) an organic molecule comprising at least two aliphatic unsaturated carbon-carbon bonds, c) a filler and d) a photo initiator, wherein the composition is shear-thinning and UV-curable. WO 2016/044547 A1 (Dow Corning) describes a method of forming a three-dimensional article by processing a photo-curable organosilicone composition with a 3D-printer. The organosilicone composition comprises a) an organosilicone compound having an average of at least two silicon-bonded ethylenically unsaturated groups and at least one silicon-bonded phenyl group per molecule, b) an organosilicone compound having an average of at least two silicon-bonded hydrogen atoms per molecule, c) a catalytic amount or a photoactivated hydrosilylation catalyst and d) optionally a filler. WO 2016/071241 A1 (Wacker) describes a generative method for producing molded parts from silicone elastomers, wherein a silicone rubber mass places drop by drop and is crosslinked by means of electromagnetic radiation. However, the solutions proposed in the prior art are not fully satisfying. SUMMARY OF INVENTION Silicone-based compositions are typically hydrophobic compositions which are not designed for dissolving other components needed for the preparation of a radiation-curable composition. The radiation-curing of an inhomogeneous mixture of different components dissolved in a silicone-based composition will typically result in a non-homogeneously cured 3-dim article. Further, it is not trivial to selectively cure certain parts of a silicone-based compositions by radiation. There is always the risk of over-curing, i.e. the radiation-curable composition is not only cured in those areas which are intended to be cured, but also in adjacent areas. Thus, there is a need for an improved silicone-based composition which allows the production of elastomeric 3-dim articles by additive-manufacturing techniques e.g. by stereolithography. Particularly, there is a need for a silicone-based composition which allows the additive-manufacturing of elastomeric 3-dim articles having high surface resolution. There is also a need for a silicone-based composition which allows the additive-manufacturing of elastomeric 3-dim articles having sufficient mechanical properties like tensile strength and/or elongation at break. One or more objects outlined above are addressed by the invention described in the present text. In one embodiment, the present invention features a radiation-curable silicone composition for additive-manufacturing technology comprisingmercapto-functional polyorganosiloxane(s) as Component A,organosiloxane(s) with at least two aliphatic unsaturated carbon-carbon moieties as Component B,photo initiator(s) as Component C for initiating a curing reaction between Component A and Component B,dye(s) as Component D, andat least one of the following as Component E: solvent and/or surfactant(s). In another embodiment, the invention relates to a process of producing a cured 3-dim article, the process comprising the step of processing the curable composition as described in the claims and the present text by applying an additive-manufacturing technique comprising a radiation curing step. A further embodiment of the invention is directed to a cured 3-dim article obtained by radiation curing the radiation-curable composition described in the claims an in the present text. The invention is also related to a kit of parts comprising the radiation-curable silicone composition as described in the claims in the present text, 3d-printing equipment selected from a 3d-printer (SLA), and optionally an instruction of use. Unless defined differently, for this description the following terms shall have the given meaning: The term “compound” or “component” is a chemical substance which has a certain molecular identity or is made of a mixture of such substances, e.g., polymeric substances. A “hardenable component” or “polymerizable component” is any component which can be cured or solidified in the presence of a photo initiator by radiation-induced polymerization. A hardenable component may contain only one, two, three or more polymerizable groups. Typical examples of polymerizable groups include unsaturated carbon groups, such as a vinyl group being present i.a. in a (methyl)acrylate group. A “derivative” or “structural analogue” is a chemical compound showing a chemical structure closely related to the corresponding reference compound and containing all featured structural elements of the corresponding reference compound but having small modifications like bearing additional chemical groups like e.g. alkyl moieties, Br, Cl, or F or not bearing chemical groups like e.g. alkyl moieties in comparison to the corresponding reference compound. That is, a derivative is a structural analogue of the reference compound. A derivative of a chemical compound is a compound comprising the chemical structure of said chemical compound. A “monomer” is any chemical substance which can be characterized by a chemical formula, bearing polymerizable groups (including (meth)acrylate groups) which can be polymerized to oligomers or polymers thereby increasing the molecular weight. The molecular weight of monomers can usually simply be calculated based on the chemical formula given. “Polymer” or “polymeric material” are used interchangeably to refer to a hompolymer, copolymer, terpolymer etc. As used herein, “(meth)acryl” is a shorthand term referring to “acryl” and/or “methacryl”. For example, a “(meth) acryloxy” group is a shorthand term referring to either an acryloxy group (i.e., CH2═CH—C(O)—O—) and/or a methacryloxy group (i.e., CH2═C(CH3)—C(O)—O—). As used herein, “hardening” or “curing” a composition are used interchangeably and refer to polymerization and/or crosslinking reactions including, for example, photopolymerization reactions and chemical polymerization techniques (e. g., ionic reactions or chemical reactions forming radicals effective to polymerize ethylenically unsaturated compounds) involving one or more materials included in the composition. A “powder” means a dry, bulk material composed of a large number of fine particles that may flow freely when shaken or tilted. A “particle” means a substance being a solid having a shape which can be geometrically determined. The shape can be regular or irregular. Particles can typically be analysed with respect to e.g. particle size and particle size distribution. A particle can comprise one or more crystallites. Thus, a particle can comprise one or more crystal phases. A “photo initiator” is a substance being able to start or initiate the curing process of a hardenable composition in the presence of radiation, in particular light (wave length of 300 to 700 nm). A “transparent article” is an article being transparent, if inspected with the human eye, in particular an article which has a light transmission of at least 40% for a path length of 1 mm for light having a wave length of 500 nm. So, a picture can be seen through a platelet (1 mm thick) of such a transparent material. A “red, orange or yellow dye” is a dye which has a red, orange or yellow colour appearance for the human eye. A “solvent” means a liquid that can dissolve a solid or liquid. “Surfactants” are agents which are able to lower the surface tension of water. If desired, the effect of lowering the surface tension of water can be measured by determining the water-contact angle. “Additive manufacturing” or “3d-printing” means processes comprising a radiation curing step used to make 3-dimensional articles. An example of an additive manufacturing technique is stereolithography (SLA) in which successive layers of material are laid down under computer control. The articles can be of almost any shape or geometry and are produced from a 3-dimensional model or other electronic data source. The term “dental or orthodontic article” means any article which is to be used in the dental or orthodontic field, especially for producing a dental restoration, orthodontic devices, a tooth model and parts thereof. Examples of dental articles include crowns, bridges, inlays, onlays, veneers, facings, copings, crown and bridged framework, implants, abutments, dental milling blocks, monolithic dental restorations and parts thereof. Examples of orthodontic articles include brackets, buccal tubes, cleats and buttons and parts thereof. A dental or orthodontic article should not contain components which are detrimental to the patient's health and thus free of hazardous and toxic components being able to migrate out of the dental or orthodontic article. A material or composition is “essentially or substantially free of” a certain component within the meaning of the invention, if the material or composition does not contain said component as an essential feature. Thus, said component is not willfully added to the composition or material either as such or in combination with other components or ingredient of other components. Ideally the composition or material does not contain the said component at all. However, sometimes the presence of a small amount of the said component is not avoidable e.g. due to impurities. “Ambient conditions” mean the conditions which the composition described in the present text is usually subjected to during storage and handling. Ambient conditions may, for example, be a pressure of 900 to 1100 mbar, a temperature of 10 to 40° C. and a relative humidity of 10 to 100%. In the laboratory, ambient conditions are typically adjusted to 20 to 25° C. and 1000 to 1025 mbar. As used herein, “a”, “an”, “the”, “at least one” and “one or more” are used interchangeably. Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.). Adding an “(s)” to a term means that the term should include the singular and plural form. E.g. the term “additive(s)” means one additive and more additives (e.g. 2, 3, 4, etc.). Unless otherwise indicated, all numbers expressing quantities of ingredients, measurement of physical properties such as described below and used in the specification and claims are to be understood as number as such and also as being modified by the term “about.” The term “about” can allow for a degree of variability in a value or range, e.g. within 10% or within 5% or within 1% of a given value or a given limit of a range. The terms “comprise” or “contain” and variations thereof do not have a limiting meaning where these terms appear in the description and claims. The term “comprise” shall include also the terms “consist essentially of” and “consists of”. “And/or” means one or both. E.g., the expression component A and/or component B refers to a component A alone, component B alone, or to both component A and component B.
54,525
11231704
TECHNICAL FIELD The subject disclosure relates to system(s) and/or method(s) to predict maintenance costs and material consumption, and more particularly to utilization of cumulative cost model(s) to predict asset maintenance costs from distress model(s). BACKGROUND As aircrafts fly in and out of certain locations around the world, they are respectively exposed to dust, salt, high temperatures, cross winds, vibration sources, etc. Distress models analyze operational data, environmental data, satellite data, etc., and seek to determine the number of times an engine, asset or part has been exposed to certain conditions. Such information is analyzed utilizing physics and domain expertise regarding how a part is designed to build an algorithm that predicts current state of distress as well as forecast timing of end of life. Such algorithm can provide an estimate of remaining number of instances a part can continue to be employed with same exposures before it needs to be serviced (e.g., prior to failure). However, repair and overhaul facilities are still often surprised by conditions of incoming components and have little visibility into estimated costs and material consumptions of individual assets. SUMMARY The following presents a summary to provide a basic understanding of one or more embodiments of the invention. This summary is not intended to identify key or critical elements, or delineate any scope of the particular embodiments or any scope of the claims. Its sole purpose is to present concepts in a simplified form as a prelude to the more detailed description that is presented later. In one or more embodiments described herein, devices, systems, computer-implemented methods, apparatus and/or computer program products are described. In an implementation, a system is provided to facilitate predicting asset maintenance costs. The system comprises a processor that executes computer executable components stored in memory. The system comprises a data aggregation component that receives data generated by a set of components and assets; a data science component that employs artificial intelligence (AI) and physical domain expertise to learn the data generated by the set of components and assets enabling building of at least one model of current or future distress levels of a subset of components and assets; and a correlation component that correlates material consumption, labor or resulting maintenance costs to current or future distress models of respective components or assets of a set to generate respective cumulative material and cumulative cost models that provide current or future material demand and cost predictions associated with expected maintenance of a subset of the respective components or assets. In another implementation, the system comprises a collection component that collects and stores data relative to maintenance costs including labor, material consumption, transportation costs, material availability, repair availability or available capacity. In another implementation, the system comprises a replacement component that enables ordering of replacement components and assets based on at least one cumulative material or cumulative cost model analysis. In another implementation, the system comprises an avatar component that generates an avatar that interfaces with a user and provides suggestions to the user based on outputs of the cumulative cost models. In yet another implementation, a method comprises employing a processor to execute computer executable components stored in a memory. The method comprises using a data aggregation component to receive data generated by a set of components and assets; using a data science component to employ artificial intelligence (AI) and physical domain expertise to learn the data generated by the set of components and assets enabling building of at least one model of current or future distress levels of a subset of components and assets; and using a correlation component to correlate material consumption, labor or resulting maintenance costs to current or future distress models of respective components or assets of a set to generate respective cumulative material and cumulative cost models that provide current or future material demand and cost predictions associated with expected maintenance of a subset of the respective components or assets. In an implementation, a computer program product for predicting asset maintenance costs comprises a computer readable storage medium having program instructions embodied therewith, the program instructions are executable by a processor to cause the processor to use a data aggregation component that receives data generated by a set of components and assets; use a data science component that employs artificial intelligence (AI) and physical domain expertise to learn the data generated by the set of components and assets enabling building of at least one model of current or future distress levels of a subset of components and assets; and use a correlation component that correlates material consumption, labor or resulting maintenance costs to current or future distress models of respective components or assets of a set to generate respective cumulative material and cumulative cost models that provide current or future material demand and cost predictions associated with expected maintenance of a subset of the respective components or assets. In some embodiments, elements described in connection with the computer-implemented method(s) can be embodied in different forms such as a system, a computer program product, or another form.
18,575
11328728
TECHNICAL FIELD The present disclosure relates to secure communications, particularly to a system, device and method for handling sensitive data during a communication session with a voice assistant, and more particularly a voice assistant proxy for voice assistant servers. BACKGROUND Voice assistants are software applications that use speech recognition to receive, interpret and execute voice commands. Voice assistants may be provided by a mobile wireless communication device such as a smartphone, tablet, laptop computer, smart speaker or similar smart or internet-of-things (IoT) device. Because of the varying environments in which voice assistants may be used, the privacy of communications can be a concern. Thus, there is a need for a method for handling sensitive data during a communication session with a voice assistant.
114,735
11293964
OVERVIEW The present disclosure relates to sensors, and more particularly to sensors for measurements of electric potentials and electric fields. For container inspections, electrical surface charges on the surface of containers are an important consideration in developing a credible electric potential and field container inspection system. For example, when measuring the electric potentials about a container holding a charged object, the measured potential as determined from outside of the container will be a combined electric potential due to the charged object plus the electrical potential due to the container. There is added complexity when the object of interest has a quasi-static or dynamically changing electric potential, such as that observed when an electronic circuit is activated, deactivated, and/or operating. Additionally, electric potential measurements made by scanning systems generally require that the electric potential sources are constant during the time it takes to scan the object of interest. Electric potential sources are not always constant for organic systems, systems with electrical and mechanical functions, objects or systems in motion, systems with internal or external components in operation, and systems utilizing plasma and fluid dynamics. Therefore, systems and methods are needed to dynamically and remotely locate and quantitatively measure the electrical potential of hidden contained electrical components exhibiting quasi-static or dynamic changes in electrical potential. Additionally, systems and methods to remotely quantitatively characterize static, quasi-static, and dynamic electric potentials and electric fields in real-time are needed. SUMMARY Various embodiments provide a multi-dimensional electric potential sensor array to remotely quantitatively measure static, quasi-static, and dynamic electric potential and electric field in free space, and emanating and propagating from or to objects. Various embodiments enable the evaluation of the integrity of electronic circuits and electronic components by quantitatively and dynamically imaging electric potentials generated during electronic circuit activation, operation, and deactivation. In various embodiments, the electrical potential of active electronics and objects of interest in containers may be quantitatively measured by the electric potential and electric field methods and by using specified materials in a combined structural and electronic component design to construct a multi-dimensional sensor array. One embodiment of the present disclosure may provide a multi-dimensional electric potential sensor array including an array of electric potential sensors and a support casing supporting the array of electric potential sensors, wherein the support casing is triboelectrically neutral, has a low electric susceptibility, and is electrically non-conductive. In various embodiments, the electric potential sensors may include field effect transistors (FETs). In various embodiments, the array is configured in a series of rows of electric potential sensors and a series of columns of electric potential sensors. In various embodiments, the electric potential sensors include collinear electrodes. In various embodiments, the electric potential sensors include triaxial electrodes. Another embodiment may provide a dynamic multidimensional electric potential and electric field quantitative measurement system including an embodiment multi-dimensional electric potential sensor array, an interface circuit connected to the multi-dimensional electric potential sensor array, a sampling circuit connected to the interface circuit, and a processing circuit connected to the sampling circuit. In various embodiments, the processing circuit may be configured to receive measurements of electrical potentials from the array of electric potential sensors and output an electric potential image based at least in part on the received measurements of electrical potentials from the array of electric potential sensors. Another embodiment may provide a dynamic multidimensional electric potential and electric field quantitative measurement method including receiving, at a processing circuit, measurements of electrical potentials from an embodiment array of electric potential sensors, generating, at the processing circuit, at least one electric potential image based at least in part on the received measurements of electrical potentials from the array of electric potential sensors, and outputting, from the processing circuit, the at least one electric potential image on a display. These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
80,295
11467591
TECHNICAL FIELD Embodiments of the present disclosure relate generally to operating autonomous vehicles. More particularly, embodiments of the disclosure relate to an online agent using reinforcement learning to plan an open space trajectory for autonomous driving vehicles (ADVs). BACKGROUND Vehicles operating in an autonomous mode (e.g., driverless) can relieve occupants, especially the driver, from some driving-related responsibilities. When operating in an autonomous mode, the vehicle can navigate to various locations using onboard sensors, allowing the vehicle to travel with minimal human interaction or in some cases without any passengers. Motion planning and control are critical operations in autonomous driving. However, conventional motion planning operations estimate the difficulty of completing a given path mainly from its curvature and speed, without considering the differences in features for different types of vehicles. Same motion planning and control is applied to all types of vehicles, which may not be accurate and smooth under some circumstances. Trajectories are usually planned based on traffic lanes/reference lines which are pre-labeled within a high-definition (HD) map. This process limits the applicable scenarios for autonomous vehicles with full autonomous driving, such as, in open space scenarios, where the model has to plan trajectories (e.g., parking, U-turn, or three point turns) without a reference lane, and at the same time, to avoid a collision.
252,442
11260969
FIELD The present disclosure relates generally to ground effect craft, including apparatus, systems, and methods for stabilizing such ground effect craft. BACKGROUND A ground effect craft traveling over a planetary surface, such as water, snow, ice, or land, generally uses air trapped beneath the wing to increase a lifting force on the craft, unlike traditional aircraft in free flight where the air underneath a wing away from the planetary surface is not bounded and therefore provides less lift. A ground effect wing takes advantage of a surface boundary below the wing that dampens wingtip vortices, thereby reducing the drag otherwise caused by the wingtip vortices when the aircraft is away from the planetary surface. As a result, the ground effect wing increases lift and reduces drag. When ground effect craft move at high speeds along a planetary surface, such as water, an induced pitching moment on planing surfaces rigidly coupled to an aerodynamic surface will cause increased angles of attack. An increased angle of attack and increase in height will cause the force of the air under the wing to move towards the front of the craft. This forward movement of this center of aerodynamic pressure results in an unstable condition which can cause the craft to overturn in a dangerous and destructive failure mode known as a “blow over.” Environmental factors can also increase the instability of ground effect craft. Because of a ground effect craft's proximity to the planetary surface, any aerodynamic or planetary surface disturbance may cause different parts of the craft to contact the planetary surface with great force. Such contact may result in structural damage and may cause the ground effect craft to become unstable. One example of such environmental factors applying forces to a craft travelling over or upon a planetary surface are sea swells. A sea swell that contacts one part of the craft before the other can cause the craft to pitch upwards and also roll sideways, creating instability, which can lead to the craft turning over. Instabilities of watercraft and ground effect craft cause numerous failures each year, endangering passengers and crew. Therefore, there is a need to improve stability of watercraft and ground effect craft. SUMMARY An exemplary aspect of this disclosure relates to a method of stabilizing a ground effect craft, the method including generating lift via a first lift surface connected to a body structure of a ground effect craft; stabilizing the ground effect craft via dynamic coupling a plurality of sponsons to the body structure; and stabilizing the ground effect craft via a stabilizing surface coupled to the body structure. According to some embodiments, the first lift surface may include a first ground effect wing. According to some embodiments, the step of stabilizing the ground effect craft via dynamic coupling of a plurality of sponsons to the body structure may include connecting the ground effect wing to a sponson in the plurality of sponsons via a hinge, bearing, pivot, and/or joint (such as a ball joint) connection. According to some embodiments, the step of stabilizing the ground effect craft via dynamic coupling of the plurality of sponsons to the body structure may include connecting the body to a sponson in the plurality of sponsons via a control link and a hinge, bearing, pivot, and/or joint (such as a ball joint) connection. According to some embodiments, the step of stabilizing the ground effect craft via dynamic coupling of the plurality of sponsons to the body structure may include connecting the body to a sponson in the plurality of sponsons via a spring, a dampener, and/or a shock. An aspect of this disclosure relates to a ground effect craft having a plurality of sponsons, wherein a first sponson and a second sponson in the plurality of sponsons are dynamically connected to each other; a body dynamically connected to the plurality of sponsons via a plurality of control links; and a first ground effect wing connected to the body. According to some embodiments, the ground effect craft may further a first propulsion device connected to the first sponson and a second propulsion device connected to a second sponson. According to some embodiments, the ground effect craft may include a dynamic seal, the dynamic seal configured to maintain a ground effect lifting force during movement of at least one of the first sponson and the second sponson. According to some embodiments, the ground effect craft may include the dynamic seal may include an endplate of the first ground effect wing substantially adjacent to a first surface of the first sponson and a second surface of the second sponson. According to some embodiments, the dynamic seal may include an extendable endplate of the first ground effect wing configured to extend to be substantially adjacent to at least one of the first sponson and the second sponson. According to some embodiments, the dynamic seal may include at least one of a pneumatically inflated seal and a preformed seal. According to some embodiments, the dynamic seal may include a membrane connected to the ground effect wing and a sponson in the plurality of sponsons. According to some embodiments, the ground effect wing may include a flexible membrane and a spar, and wherein the membrane may be connected to the spar. According to some embodiments, the ground effect craft may include a dynamic seal configured to allow movement of the first sponson relative to the body and generate a lifting force during movement of the first sponson. According to some embodiments, the first ground effect wing may include a flap configured to move relative to the first ground effect wing and configured to control a ground effect lift force on the ground effect craft. According to some embodiments, the ground effect craft may include longitudinal and lateral reinforcing members configured to restrain movement of a flap surface when the flap is deflected. According to some embodiments, the flap may be configured to deflect with aerodynamic pressure and/or hydrodynamic impacts. According to some embodiments, the ground effect wing may include a mid-flap configured to extend from the ground effect wing between a leading edge and a trailing edge. According to some embodiments, the ground effect craft may include a second ground effect wing dynamically connected to at least one sponson in the plurality of sponsons. According to some embodiments, the second ground effect wing may include a control arm connected to at least one sponson in the plurality of sponsons. According to some embodiments, the ground effect craft may include a second ground effect wing dynamically sealed with at least one sponson in the plurality of sponsons. According to some embodiments, the second ground effect wing may include a plurality of overlapping segments configured to permit deflection of at least one segment of the overlapping segments without transmitting the movement to at least one other segment of the overlapping segments. According to some embodiments, the second ground effect wing may include the flap configured to move relative to the second ground effect wing and configured to control a ground effect lifting force on the sponsons. According to some embodiments, the ground effect craft may include a stabilizing wing connected to the body. According to some embodiments, the stabilizing wing may include an anhedral wing. According to some embodiments, the stabilizing wing may include a reverse delta wing. According to some embodiments, the stabilizing wing may include at least one of an elevator, a flap, an aileron, a rudder, an ailevator, an ailevon, a flaperon, a split flap, a spoiler, or a split spoiler. According to some embodiments, the ground effect craft may include a linkage system configured to permit at least two sponsons in the plurality of sponsons to move substantially relative to each other and relative to the body. According to some embodiments, the linkage system may include a flexible beam spanning at least two sponsons in the plurality of sponsons and connected to the body. According to some embodiments, the linkage system may include a spar of the ground effect wing, wherein the spar dynamically connects two sponsons in the plurality of sponsons. According to some embodiments, the linkage system may include at least one control link including at least one ball joint at a point of connection. According to some embodiments, the linkage system may include a frame spanning at least two sponsons in the plurality of sponsons, the frame being dynamically connected to at least one sponson in the plurality of sponsons via a spring. According to some embodiments, the frame may be dynamically connected to at least one of the plurality of sponsons via a dampener. According to another aspect of this disclosure, a ground effect craft may include a body; a sponson; a suspension system configured to dynamically couple the sponson to the body; a primary lift surface connected to the body and configured to generate a first ground effect lifting force; and a stabilizing surface coupled to the body. According to some embodiments, the ground effect craft may include a secondary lift surface dynamically connected to the sponson and configured to generate a second ground effect lifting force. According to another aspect of this disclosure, a ground effect craft may include a body section including a first ground effect wing, a second ground effect wing, a stabilizing wing, and a tail surface; wherein the first ground effect wing includes a first lift-generating surface and a first control surface; wherein the second ground effect wing includes a second lift-generating surface and a second control surface; a first sponson dynamically coupled to the body section via a first control link; a second sponson dynamically coupled to the body section via a second control link; a third control link dynamically coupling the first sponson to the second sponson; and a third ground effect wing dynamically coupled to the first sponson and the second sponson. According to some embodiments, the third ground effect wing being configured to generate a stabilizing moment on the sponsons when angle of attack of the body is increased. According to some embodiments, the first sponson and the second sponson are configured to move relative to the body, such that the movement of the first sponson may be substantially independent of the movement of the second sponson. According to another aspect of this disclosure, a ground effect craft may include a fuselage including a first ground effect surface and a second ground effect surface, the first ground effect surface including a first ground effect wing, the second ground effect wing including a second wing surface; a first sponson dynamically coupled to the fuselage; a second sponson dynamically coupled to the fuselage; and a control link configured to dynamically couple the first sponson to the second sponson. According to some embodiments, the ground effect craft may include a third ground effect surface dynamically coupled to the control link. According to some embodiments, the fuselage further may include at least one stabilizing wing. According to some embodiments, the at least one stabilizing wing being statically coupled to the fuselage. According to some embodiments, the dynamic coupling of the first sponson to the body and the second sponson to the body may be configured such that the first sponson and the second sponson move independently of the fuselage and each other. According to some embodiments, the first sponson may be dynamically coupled to the fuselage by a plurality of control arms and the second sponson may be dynamically coupled to the fuselage by a plurality of control arms. According to some embodiments, the control link may be dynamically coupled to the first sponson and the second sponson by a plurality of ball joints. According to some embodiments, the first sponson and the second sponson are configured to retract toward the fuselage. According to some embodiments, the first sponson may be dynamically connected to the first ground effect surface and the second sponson may be dynamically connected to the second ground effect surface. According to some embodiments, the first ground effect wing may comprise a rigid or semi-rigid surface. According to some embodiments, the first ground effect wing may comprise a flexible or semi-flexible, elastic or non-elastic membrane surface. According to some embodiments, the membrane may act against a spar of the ground effect wing to generate lift. According to some embodiments, the first ground effect wing may comprise a combination of solid and membrane surfaces. The stabilizing surface may be configured to counteract an unstable moment of the ground effect craft. The plurality of sponsons are configured to move relative to the body structure and each other, wherein the first lift surface creates lift independent of the movement of the plurality of sponsons. The body structure may be configured to be lifted by the first ground effect wing. According to some embodiments, the body structure may include canard wings configured to generate lift to and/or control body movement. The body structure may be configured to maintain course and direction independent of the movement of the plurality of sponsons in response to a variation in a planetary surface or forces acting on one or more of the sponsons. According to some embodiments, the method may further include generating lift via a second lift surface dynamically coupled to the plurality of sponsons. According to some embodiments, the second lift surface may include a second ground effect wing. According to some embodiments, the second lift surface may be configured to provide lift to the plurality of sponsons and reduce hydrodynamic drag by lifting at least one sponson in the plurality of sponsons. According to some embodiments, the first lift surface may be configured to restrict or direct air toward the second lift surface. According to some embodiments, the second ground effect wing may comprise a rigid or semi-rigid surface. According to some embodiments, the second ground effect wing may comprise a flexible or semi-flexible, elastic or non-elastic membrane surface. According to some embodiments, the membrane may act against a spar of the second ground effect wing to generate lift. According to some embodiments, the second ground effect wing may comprise a combination of solid and membrane surfaces. An aspect of the disclosure relates to a method of stabilizing a ground effect craft, the method including dynamically coupling a plurality of sponsons to a body structure of the ground effect craft; generating a first lifting force via a first ground effect wing surface coupled to the body structure; stabilizing the body structure via a control system dynamically coupled between the plurality of sponsons; generating a second lifting force via the second ground effect wing surface; and deflecting a first sponson in the plurality of sponsons in response to a force imparted by a planetary surface, wherein the first sponson is configured to deflect independent of a second sponson in the plurality of sponsons in response to the force. The first lifting force may be configured to lift the body to reduce drag. The first lifting force may be configured to lift the body to stabilize the ground effect craft. In some embodiments, an angle of incidence of the first ground effect wing may be adjusted to change the center of pressure. The control link may be configured to rotate at a connection. The control link may be configured to control the movement of the first sponson relative to the movement of the second sponson and to the body structure. In some embodiments, the second ground effect wing surface may be substantially rearward of the first ground effect wing. In some embodiments, an angle of a second ground effect flap of the second ground effect wing may be adjusted for varying desired lift, obstacle clearance, docking, weight distribution, or weight transfer. The second ground effect wing may be configured to generate the second lifting force at a location aft of a center of gravity of the sponsons. The second ground effect wing may be configured to generate the second lifting force to adjust the pitch of the plurality of sponsons. The second lifting force may be configured to counteract an unstable moment of the ground effect craft. The second lifting force may be configured to lift the plurality of sponsons and reduce hydrodynamic drag. Another aspect of the disclosure relates to a method of stabilizing a flying body including stabilizing the flying body via a control assembly dynamically coupled between a plurality of sponsons, generating lift via a ground effect wing connected to the body, wherein the control assembly includes a fore control link dynamically connected to the plurality of sponsons and the flying body and a rear control link dynamically connected to a first sponson in the plurality of sponsons and a second sponson in the plurality of sponsons. The first sponson and the second sponson may be configured to move independent of the flying body and each other when a surface variation affects a desired path of at least one sponson in the plurality of sponsons. In some embodiments, the plurality of sponsons may be configured to retract towards the flying body. The ground effect wing may be configured to lift the flying body when the flying body transitions between a takeoff mode and a flying mode. The plurality of sponsons may be configured to absorb a landing impact when the flying body transitions between the flying mode and a landing mode. Another aspect relates to a ground effect craft configured to create an air cushion beneath the craft when the ground effect craft is substantially stationary. The ground effect craft may include a body, a ground effect wing, a stabilizing wing, and a plurality of planing surfaces. The air cushion may include a skirt configured to surround an air cushion when the craft is in motion. The skirt may be an inflatable skirt. The skirt may be configured to provide a seal configured to entrap air under the ground effect wing when the ground effect craft is in motion. The entrapped air may be pressurized to lift the ground effect craft. The ground effect wing may include a finger extending downwards from the ground effect wing to entrap air in an air chamber. The finger may include an inflation compartment. The air chamber may be enclosed or partially enclosed by a plurality of fingers that seal with each other, the ground effect wing, and/or the sponsons. In some embodiments, the ground effect craft may include a fan configured to increase the pressure within the air chamber between the inflatable fingers. The fingers may be configured to retract when the ground effect wing is at an airspeed sufficient to provide lift. In some embodiments, a ground effect craft may include a plurality of sponsons, a body, and a ground effect wing. The ground effect craft may be configured to move along a planetary surface. The plurality of sponsons may include a first sponson and a second sponson. The first sponson and the second sponson may be dynamically connected to each other. The ground effect craft may be propelled by a propulsion device connected to a sponson in the plurality of sponsons. The plurality of sponsons may be dynamically connected to each other. The body may be dynamically connected to each sponson in the plurality of sponsons via a control system. The control system may include a plurality of control links. In some embodiments, the control links may flex, thereby acting as dampeners and/or springs. In some embodiments, the control links may include a flexible beam. A first end of the flexible beam may be connected to a first sponson in the plurality of sponsons. A second end of the flexible beam may be connected to the body. In some embodiments, the control links may be positioned forward of a center of gravity of the body. The ground effect wing may be configured to be connected to the body. In some embodiments, the ground effect wing may be coupled in heave with the body. In some embodiments, the ground effect wing may be coupled in pitch with the body. In some embodiments, lift created by the ground effect wing may lift the weight of the body. Another aspect of the disclosure relates to a ground effect craft including a first ground effect wing and a second ground effect wing. The ground effect craft may include a body, a plurality of sponsons, the first ground effect wing, and the second ground effect wing. In some embodiments, the ground effect craft may include a third ground effect wing. In some embodiments, the third ground effect wing may be substantially rearward of the first ground effect wing and the second ground effect wing. The first ground effect wing and the second ground effect wing may be configured to restrict or direct air to the third ground effect wing. In some embodiments, the third ground effect wing may be rearward of the center of gravity of the sponsons. The third ground effect wing may be configured to provide lift to an aft portion of the ground effect craft. The third ground effect wing may be configured to counteract an unstable moment on the first ground effect wing or the second ground effect wing. The third ground effect wing may be configured to produce additional lift from air directed towards the third ground effect wing when the first ground effect wing and/or the second ground effect wing pivot relative to at least one sponson. The third ground effect wing may be configured to produce additional lift from air directed towards the third ground effect wing when the flaps of the first ground effect wing and/or the second ground effect wing deflect either by actuator and/or increased aerodynamically induced pressure acting upon the flaps and/or flap reinforcing members. In some embodiments, one or more of the ground effect wings may be configured to generate a stabilizing moment on one or more sponsons when an angle of attack of the body is increased. In some embodiments, the ground effect craft may have folding features. For example, a first ground effect wing may be substantially foldable about a first pivot point. In some embodiments, the first ground effect wing may fold about the first pivot point to narrow the width of the ground effect craft. In some embodiments, a second ground effect wing may be substantially foldable about a second pivot point. In some embodiments, the second ground effect wing may fold about the second pivot point to narrow the width of the of the ground effect craft. The stabilizing wing may be substantially foldable about a third pivot point. In some embodiments, plurality of sponsons may be configured to rotate underneath the body. In some embodiments, the plurality of sponsons may retract towards the body. Another aspect relates to a body of a ground effect craft. The ground effect craft may include a body. In some embodiments, the body may include a cockpit, a fuselage, a storage space, a cabin, and/or cargo doors. The body may include a bow door configured to open forwardly. In some embodiments, the body may include a buoyant sponson or incorporate a sponson in a hull of the body. In some embodiments, the body may include an actuator configured to lift the body relative to the sponsons. In some embodiments, such actuators may be controlled by automatic control systems. In some embodiments, the body may include a fore ground effect wing. In some embodiments, the body may include a planing surface. In some embodiments, the body may include a resting surface configured to rest on an aft control link, for example, when the ground effect craft is stationary or moving at lower velocities. According to some embodiments, the resting surface may include one or more shock absorption materials or devices. In some embodiments, the shock absorption materials or devices may be configured to absorb forces imparted from the aft control link to the body or from the body to the aft control link. Another aspect relates to a body, a stabilizing wing, and a plurality of sponsons. The stabilizing wing may include a surface configured to rest on a spar of the aft ground effect wing. The stabilizing wing may include a surface configured to rest on a control link. The sponsons may include a vertical stabilizing wing. The stabilizing wing may include a bottom surface configured to rest on a top of the vertical stabilizing wing. The resting surface of the stabilizing wing may include shock absorption materials or devices. An aft ground effect spar and/or a linkage and/or sponson vertical stabilizing wing may include shock absorption materials or devices. The stabilizing wing may be dynamically connected to the plurality of sponsons via the body by (for example) a spring system. The stabilizing wing may be dynamically connected to the plurality of sponsons via the body by (for example) a dampening system. The stabilizing wing may comprise a rigid, semi-rigid, flexible, or semi-flexible surface. In some embodiments, the stabilizing wing may comprise one or more membrane surfaces. The second ground effect wing may comprise a flexible or semi-flexible, elastic or non-elastic membrane surface. The membrane may act against a fixed or non-fixed spar system. In some embodiments, the stabilizing wing may comprise a combination of solid and membrane surfaces. According to some embodiments, a spar of the stabilizing wing may connect to the body via a ball joint and/or a spring joint thereby allowing the stabilizing wing to deflect rather than create a roll moment on the body. In some embodiments, the stabilizing wing may be configured to generate a stabilizing moment on one or more sponsons when an angle of attack of the body is increased. Another aspect relates to a sponson of a ground effect craft. In some embodiments, the sponson may have a lateral profile that minimizes the fore lateral surface area and maximizes the aft lateral surface area, thereby providing the center of lateral resistance of the sponson is proximate to the center of gravity of the sponson. In some embodiments, the sponson may have variable deadrise. In some embodiments, the sponson may include a strake. In some embodiments, the sponson may include a transverse step. In some embodiments, the sponson may include a longitudinal step. In some embodiments, the sponson may include a chine. In some embodiments, the bottom of the sponson may include a planing surface or a semi-planing surface. In some embodiments, the bottom of the sponson may be a displacement surface. In some embodiments, the sponson may include hydrodynamic and/or aerodynamic stabilizing surfaces. In some embodiments, the sponson may include hydrodynamic and/or aerodynamic control surfaces. Another aspect of the disclosure relates to a dynamic seal for a ground effect craft. The ground effect craft may include the dynamic seal between a first ground effect wing and one sponson of a plurality of sponsons. The dynamic seal may be configured to increase lift of the first ground effect wing by increasing pressure under the ground effect wing. The dynamic seal may include an endplate that is substantially adjacent to one sponson in the plurality of sponsons. In some embodiments, the dynamic seal may include an extendable endplate. In some embodiments, the extendable endplate may extend from the first ground effect wing. In some embodiments, the dynamic seal may include a pneumatic seal that is substantially adjacent to a sponson in the plurality of sponsons. In some embodiments, the dynamic seal may include a preformed seal that is substantially adjacent to a sponson in the plurality of sponsons. The preformed seal may include a Teflon, rubber, high density molecular plastic seal, or other suitable material. In some embodiments, the dynamic seal may include a flexible elastic or non-elastic membrane. In some embodiments, the membrane of the dynamic seal may connect to the body and a sponson of the plurality of sponsons. In some embodiments, the ground effect wing membrane may include the membrane of the dynamic seal. In some embodiments, the dynamic membrane may comprise a break-away connection, such as, for example hook and loop fasteners or break-away stitching, configured to detach the membrane from the sponson and/or ground effect wing at certain angles or rotations. Such detachment, for example, may prevent a pitched sponson from pitching the ground effect wing when the membrane seal is at the limits of travel and/or fully taut. In some embodiments, the dynamic seal may include a plurality of fingers. In some embodiments, the dynamic seal may include a plurality of overlapping and/or telescoping panels. In some embodiments, one or more flaps of the ground effect craft may include a dynamic seal configured to seal with the ground effect wing and a sponson of the plurality of sponsons. Another aspect of the disclosure relates to a ground effect craft including a stabilizing wing. The stabilizing wing may include one or more control surfaces. In some embodiments, the one or more control surfaces may be actuated by one or more actuators. In some embodiments, the one or more control surfaces may be configured to operate in a coordinated manner. In some embodiments, one or more control surfaces may be actuated by automatic control systems, including, for example, an autopilot. In some embodiments, the stabilizing wing may include a horizontal stabilizer. In some embodiments, the stabilizing wing may include one or more vertical stabilizers. In some embodiments, the stabilizing wing may include one or more of an elevator, a flap, a flaperon, ailevon, spoiler, split spoiler, aerodynamic rudder or an ailevator. In some embodiments, the stabilizing wing may include an anhedral wing. In some embodiments, the stabilizing wing may include a reverse delta wing. In some embodiments, the stabilizing wing may include outrigger bodies with spoilers. Another aspect of the disclosure relates to a linkage system between a plurality of sponsons of a ground effect craft. In some embodiments, the linkage system may include a connection between the plurality of sponsons. In some embodiments, the linkage system may include a control system that stiffens at least one connection between the body and the sponsons. In some embodiments, the linkage system may include a control system that dampens at least one connection between the body and the sponsons. In some embodiments, the linkage system may include a plurality of control links. The plurality of control links may dynamically connect the plurality of sponsons to the body of the ground effect craft. In some embodiments, the linkage system may include a flexible beam that spans between two sponsons in the plurality of sponsons and/or a sponson in the plurality of sponsons and the body. In some embodiments, the linkage system may include at least one of a spring and a dampener. In some embodiments, the linkage system may include a frame spanning two sponsons in the plurality of sponsons and/or a sponson in the plurality of sponsons and the body. In some embodiments, the frame may be dynamically connected to the sponsons via a dampening device, such as, for example, a spring. In some embodiments, the linkage system may include at least one of a McPherson strut, a torsion bar, a trailing arm, a leaf spring, a single or double wishbone, a single or double hinge, a pantograph linkage system, or a Watts Linkage. Another aspect of the disclosure relates to a flap of a ground effect wing. The ground effect wing may include the flap configured to move relative to the ground effect wing. In some embodiments, the flap may be configured to be reinforced by one or more transverse and/or longitudinal reinforcing members. In some embodiments the reinforcing members and/or the flap may be of a composite construction with a laminate schedule designed to provide a predetermined resistance to deflection at varying aerodynamic pressures. In some embodiments, the laminate schedule may include a dampening material. In some embodiments, the laminate may be configured to have an increased stiffness at an interior portion of the flap and a decreased stiffness at an edge portion of the flap. In some embodiments, the laminate may be configured to have an increased stiffness at an edge portion of the flap and a decreased stiffness at an interior portion of the flap. In some embodiments, a flap may be constructed of overlapping segments to permit deflection of at least one segment of the overlapping segments without transmitting the movement to at least one other segment of the overlapping segments. In some embodiments, the ground effect wing may include a first flap configured to extend from an aft spar of the ground effect wing. The first flap may be configured to rotate substantially downwards to increase lift of the ground effect wing. In some embodiments, the first flap may include an actuator that moves the first flap, thereby changing a location of a center of pressure and/or adjusting a pressure underneath the ground effect wing. In some embodiments, the flap may be configured to actuate by a pneumatically pressurized membrane lobe. The flap may be configured to rotate substantially downwards or upwards to increase or decrease the lift of the ground effect wing. In some embodiments, the ground effect wing may include a second flap proximate to the center of area of a ground effect wing. In some embodiments, the second flap may be located between a front spar and an aft spar of the ground effect wing. In some embodiments, the second flap may be configured to be extended or retracted, changing a location of a center of pressure and/or adjusting a pressure underneath the ground effect wing. Another aspect of the disclosure relates to a propulsion system of a ground effect craft. In some embodiments, the propulsion system may include one or more motors connected to at least one sponson in the plurality of sponsons. The motors may include marine motors. In some embodiments, the marine motors may include at least one of an outboard motor and an inboard motor. The propulsion system may include pod drives, surface drives, jet drives, stern drives, inboard drives, folding surface shaft drive, and outboard drives. In some embodiments, the propulsion system may include a surface or shaft drive comprising hydro-pneumatic dampening of the vertical trim actuators. In some embodiments, the propulsion system may include at least one aerodynamic motor connected to a body, a sponson, and/or a stabilizing wing. In some embodiments, the propulsion system may include at least aerodynamic propulsion system connected to a body, a sponson, and/or a stabilizing wing. In some embodiments the aerodynamic motor or aerodynamic propulsion system may include a propeller and/or force-generating mechanism. In some embodiments, at least one wing surface of the ground effect craft may include solar cells to power electric motors or charge batteries. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several exemplary embodiments and together with the description, serve to outline principles of the exemplary embodiments.
47,584
11322231
TECHNICAL FIELD This disclosure relates to documentation systems and methods and, more particularly, to automated clinical documentation systems and methods. BACKGROUND As is known in the art, clinical documentation is the creation of medical records and documentation that details the medical history of medical patients. As would be expected, traditional clinical documentation includes various types of data, examples of which may include but are not limited to paper-based documents and transcripts, as well as various images and diagrams. As the world moved from paper-based content to digital content, clinical documentation also moved in that direction, where medical records and documentation were gradually transitioned from stacks of paper geographically-dispersed across multiple locations/institutions to consolidated and readily accessible digital content. SUMMARY OF DISCLOSURE Invention #2 In one implementation, a computer-implemented method for automating an intake process is executed on a computing device and includes prompting a patient to provide encounter information via a virtual assistant during a pre-visit portion of a patient encounter. Encounter information is obtained from the patient in response to the prompting by the virtual assistant. One or more of the following features may be included. The encounter information may be processed to generate an encounter transcript. At least a portion of the encounter transcript may be processed to populate at least a portion of a medical record associated with the patient encounter. Prompting the patient to provide encounter information via the virtual assistant may include audibly prompting the patient to provide encounter information via the virtual assistant. Obtaining encounter information from the patient may include audibly obtaining encounter information from the patient. The encounter information may include one or more of: patient background information; patient current-prescription information; patient insurance information; and patient symptom information. The pre-visit portion of the patient encounter may include a patient intake portion of the patient encounter. In another implementation, a computer program product resides on a computer readable medium and has a plurality of instructions stored on it. When executed by a processor, the instructions cause the processor to perform operations including prompting a patient to provide encounter information via a virtual assistant during a pre-visit portion of a patient encounter. Encounter information is obtained from the patient in response to the prompting by the virtual assistant. One or more of the following features may be included. The encounter information may be processed to generate an encounter transcript. At least a portion of the encounter transcript may be processed to populate at least a portion of a medical record associated with the patient encounter. Prompting the patient to provide encounter information via the virtual assistant may include audibly prompting the patient to provide encounter information via the virtual assistant. Obtaining encounter information from the patient may include audibly obtaining encounter information from the patient. The encounter information may include one or more of: patient background information; patient current-prescription information; patient insurance information; and patient symptom information. The pre-visit portion of the patient encounter may include a patient intake portion of the patient encounter. In another implementation, a computing system includes a processor and memory is configured to perform operations including prompting a patient to provide encounter information via a virtual assistant during a pre-visit portion of a patient encounter. Encounter information is obtained from the patient in response to the prompting by the virtual assistant. One or more of the following features may be included. The encounter information may be processed to generate an encounter transcript. At least a portion of the encounter transcript may be processed to populate at least a portion of a medical record associated with the patient encounter. Prompting the patient to provide encounter information via the virtual assistant may include audibly prompting the patient to provide encounter information via the virtual assistant. Obtaining encounter information from the patient may include audibly obtaining encounter information from the patient. The encounter information may include one or more of: patient background information; patient current-prescription information; patient insurance information; and patient symptom information. The pre-visit portion of the patient encounter may include a patient intake portion of the patient encounter. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
108,287
11535201
TECHNICAL FIELD The present disclosure relates to a license plate lamp unit and a vehicle provided with a license plate lamp unit BACKGROUND ART In recent years, vehicles having a vehicle-mounted camera configured to capture a situation around a vehicle have been increasing. A lens, which is an imaging surface, of the vehicle-mounted camera may be smudged due to rain, mud and the like. For this reason, in order to remove foreign matters such as water droplets attached on the lens, a device configured to remove the foreign matters by ejecting a cleaning liquid, a compressed air and the like to the lens of the vehicle-mounted camera has been known. For example, PTL 1 discloses a configuration where a compressed air generation unit is provided in the vicinity of the vehicle-mounted camera, and a compressed air of the compressed air generation unit is sprayed from a nozzle to eject a high-pressure air to a front glass of the vehicle-mounted camera, thereby removing water droplets attached on the front glass (refer to PTL 1). CITATION LIST Patent Literature PTL 1: JP-A-2001-171491 SUMMARY OF INVENTION Technical Problem In the configuration as disclosed in PTL 1, when mounting a vehicle-mounted camera configured to capture a rear situation of the vehicle, a process of mounting the vehicle-mounted camera to a rear part of the vehicle and a process of mounting a nozzle to a position in which the foreign matters (particularly, mud and the like) attached on a front glass of the vehicle-mounted camera can be removed are performed. The mounting process of the respective components (vehicle-mounted camera, nozzle) is performed by adjusting the position between the components. Therefore, the mounting process is troublesome and the positional displacement among the components may occur. Also, in the configuration as disclosed in PTL 1, when mounting the vehicle-mounted camera configured to capture the rear situation of the vehicle, the vehicle-mounted camera is disposed in the vicinity of a license plate lamp configured to irradiate light to a license plate, for example. In this case, the light from the license plate lamp is incident on a lens of the vehicle-mounted camera, so that a part of an image captured by the camera becomes white, which lowers detection accuracy of the vehicle-mounted camera. The present disclosure is to provide a license plate lamp unit that, with a simple configuration, enables components to be easily mounted to a rear part of a vehicle and can prevent positional displacement among the components, and a vehicle equipped with the license plate lamp unit. Also, the present disclosure is to provide a license plate lamp unit that, with a simple configuration, can prevent light from a license plate lamp from being incident on a lens of a vehicle-mounted camera to thereby prevent lowering in detection accuracy of the vehicle-mounted camera, and a vehicle equipped with the license plate lamp unit. Solution to Problem A license plate lamp unit of the present disclosure includes: a license plate lamp configured to irradiate light to a license plate; a camera unit having a camera lens; a nozzle configured to discharge a cleaning medium toward the camera lens, and a base component configured to support the license plate lamp, the camera unit and the nozzle. According to the above configuration, the license plate lamp, the camera unit and the nozzle are mounted to the common base component and are thus modularized, so that the modularized license plate lamp unit can be easily mounted to an outer panel of a rear part of a vehicle, for example. Also, since each component is mounted to the common base component, it is possible to prevent positional displacement among the components. Also, the license plate lamp unit of the present invention may further include a delivery unit configured to deliver air, as the cleaning medium, toward the nozzle, and the delivery unit may be supported to the base component. According to the above configuration, the delivery unit can also be mounted to the common base component and modularized. Also, the license plate lamp unit of the present invention may further include a door opening/closing part for opening and closing a rear door of a vehicle, and the door opening/closing part may be supported to the base component. According to the above configuration, the door opening/closing part can also be mounted to the common base component and modularized. Also, a vehicle of the present disclosure includes the license plate lamp unit having anyone of the above-described configurations. According to the above configuration, the license plate lamp unit can be easily mounted to an outer panel of a rear part of a vehicle, for example, and the positional displacement among the respective components can be prevented. Also, a license plate lamp unit of the present invention includes: a license plate lamp having a light emission unit configured to irradiate light to a license plate, and a camera unit having a camera lens, wherein in a state in which the license plate lamp unit is mounted to a vehicle, the camera lens satisfies at least one of (a) a condition that the camera lens is located below a lower end of the light emission unit, and (b) a condition that the camera lens is located at the rear of a rear end of the light emission unit. According to the above configuration, it is possible to prevent the light from the license plate lamp from being incident on the camera lens by adjusting a position of the camera lens relative to the light emission unit of the license plate lamp. Also, the license plate lamp unit of the present invention may further include: a delivery unit configured to deliver a cleaning medium, a nozzle configured to discharge the cleaning medium toward the camera lens, and a pipe path configured to interconnect the delivery unit and the nozzle. According to the above configuration, it is possible to remove foreign maters attached on the camera lens, thereby preventing lowering in detection accuracy of a vehicle-mounted camera. Also, a vehicle of the present disclosure includes the license plate lamp unit having any one of the above-described configurations. According to the above configuration, it is possible to prevent the light from the license plate lamp from being incident on the vehicle-mounted camera with a simple configuration, thereby preventing lowering in detection accuracy of the vehicle-mounted camera. Advantageous Effects of Invention According to the license plate lamp unit and the vehicle having the same in accordance with the present disclosure, it is possible to easily mount the license plate lamp unit to the rear part of the vehicle, and to prevent the positional displacement among the components. Also, according to the license plate lamp unit and the vehicle having the same in accordance with the present disclosure, it is possible to prevent the light from the license plate lamp from being incident on the vehicle-mounted camera with a simple configuration, thereby preventing lowering in detection accuracy of the vehicle-mounted camera.
319,502
11276966
BACKGROUND OF THE INVENTION The subject matter herein relates generally to communication systems. Some communication systems utilize communication connectors to interconnect various components of the system for data communication. For example, the communication connector may be surrounded by a cage to provide electrical shielding around the communication connector. Some known communication systems use pluggable modules, such as I/O modules, that are received in the cage and electrically connected to the communication connector. The pluggable modules typically include a circuit board configured to be plugged into a card slot of the communication connector. However, data throughput may be limited through the pluggable module and the communication connector. To increase data throughput, some known pluggable modules and communication connectors include double rows of contacts. However, the close proximity of the two rows of contacts leads to problems with signal integrity. A need remains for a high density communication system. BRIEF DESCRIPTION OF THE INVENTION In one embodiment, a pluggable module is provided. The pluggable module includes a pluggable body extending between a cable end and a mating end rearward of the cable end. The pluggable body has a module cavity. The pluggable module includes a module circuit board received in the module cavity. The module circuit board has a mating edge at a mating end configured to be plugged into a first slot of a communication connector. The pluggable module includes a plug connector extending between a plug mating end and a plug mounting end. The plug mounting end is mounted to the module circuit board. The plug connector plug contacts extend between the plug mating end and the plug mounting end. The plug mating end is configured to be plugged into a second slot of the communication connector to mate the plug contacts with the communication connector. In another embodiment, a pluggable module is provided. The pluggable module includes a pluggable body extending between a cable end and a mating end rearward of the cable end. The pluggable body has a module cavity. The pluggable module includes a module circuit board received in the module cavity. The module circuit board has a mating edge at a mating end configured to be plugged into a first slot of a communication connector. The pluggable module includes a plug connector extending between a plug mating end and a plug mounting end, the plug mating end configured to be plugged into a second slot of the communication connector to mate the plug contacts with the communication connector. The plug mounting end is mounted to the module circuit board. The plug connector includes an inner contact assembly and an outer contact assembly with a ground plate between the inner contact assembly and the outer contact assembly. The inner contact assembly includes a dielectric inner frame holding inner signal plug contacts and inner ground plug contact. The outer contact assembly includes a dielectric outer frame holding outer signal plug contacts and outer ground plug contacts. The plug connector includes inner ground connecting tabs electrically connecting the inner ground plug contacts to the ground plate at an inner connecting location remote from the plug mating end and remote from the plug mounting end. The plug connector includes outer ground connecting tabs electrically connecting the outer ground plug contacts to the ground plate at an outer connecting location remote from the plug mating end and remote from the plug mounting end. In a further embodiment, a pluggable module is provided. The pluggable module includes a pluggable body extending between a cable end and a mating end rearward of the cable end. The pluggable body has a module cavity. The pluggable module includes a module circuit board received in the module cavity. The module circuit board has a mating edge at a mating end configured to be plugged into a first slot of a communication connector. The pluggable module includes a plug connector extending between a plug mating end and a plug mounting end. The plug mating end is configured to be plugged into a second slot of the communication connector to mate the plug contacts with the communication connector. The plug mounting end is mounted to the module circuit board. The plug connector includes an inner contact assembly and an outer contact assembly with a ground plate between the inner contact assembly and the outer contact assembly. The inner contact assembly and the outer contact assembly include dielectric frames holding signal plug contacts and ground plug contacts. The signal plug contacts have signal mating ends at the plug mating end, signal terminating ends at the plug mounting end and signal transition portions between the signal mating ends and the signal terminating ends. The ground plug contacts have ground mating ends at the plug mating end and ground terminating ends at the plug mounting end, the ground plug contacts being discontinuous between the ground mating ends and the ground mounting ends. The ground mating ends and the ground terminating ends are coupled to the ground plate. The ground mating ends are electrically connected to the ground terminating ends through the ground plate.
63,459
11400218
CROSS REFERENCE TO RELATED APPLICATIONS The present application is the national stage entry of International Patent Application No. PCT/EP2016/056102, filed on Mar. 21, 2016, and claims priority to Application No. EP 15160252.1, filed on Mar. 23, 2015, the disclosures of which are expressly incorporated herein in entirety by reference thereto. TECHNICAL FIELD The present disclosure relates to a housing for an injection device for delivery of a liquid medicament. In one aspect the disclosure relates to elongated or tubular housing components for an injection device and to a non-releasable interconnection of housing components. The disclosure particularly relates to a positive and permanent connection of housing components, wherein each housing component prior to mutual assembly accommodates particular components of the injection device, such as a cartridge and a drive mechanism, respectively. BACKGROUND Injection devices for setting and dispensing single or multiple doses of a liquid medicament are well-known in the art. Generally, such devices have a substantially similar purpose to that of an ordinary syringe. Injection devices, in particular pen-type injectors have to meet a number of user-specific requirements. For instance, with patient's suffering chronic diseases, such as diabetes, the patient may be physically infirm and may also have impaired vision. Suitable injection devices especially intended for home medication therefore need to be robust in construction and should be easy to use. Furthermore, manipulation and general handling of the device and its components should be intelligible and easy understandable. Moreover, a dose setting as well as a dose dispensing procedure must be easy to operate and has to be unambiguous. Typically, such devices comprise a housing including a particular cartridge holder, adapted to receive a cartridge at least partially filled with the medicament to be dispensed. Such devices further comprise a drive mechanism, usually having a displaceable piston rod to operably engage with a piston of the cartridge. By means of the drive mechanism and its piston rod, the piston of the cartridge is displaceable in a distal direction or dispensing direction and may therefore expel a predefined amount of the medicament via a piercing assembly, which is to be releasably coupled with a distal end section of the housing of the injection device. The medicament to be dispensed by the injection device is provided and contained in a multi-dose cartridge. Such cartridges typically comprise a vitreous barrel sealed in distal direction by means of a pierceable seal and being further sealed in proximal direction by the piston. With reusable injection devices an empty cartridge is replaceable by a new one. In contrast to that, injection devices of disposable type are to be discarded when the medicament in the cartridge has been dispensed or used-up. Disposable injection devices, e.g. of pen-injector type, having an elongated housing extending with a long axis in an axial direction typically comprise at least two substantially tubular-shaped housing components that need to be interconnected to form a rigid joint at the end of a automated assembly and manufacturing process. Typically, a distal housing component, commonly denoted as a cartridge holder and configured to accommodate a cartridge filled with the medicament as well as a proximal housing component, commonly denoted as a body to accommodate a drive mechanism operably engaging with a piston of the cartridge need to be mutually connected to form an irreleasable and permanent connection. For a rather efficient and reliable mass manufacturing of such injection devices it is desirable to provide a positive interconnection of the at least two housing components of the injection device without the aid of adhesives or without welding that would require application of thermal energy. Document WO 2012/105892 A1 discloses for instance a coupling arrangement in a medicament delivery device. The coupling arrangement is adapted to permanently attach a first and a second longitudinally elongated tubular component to each other. The coupling arrangement comprises first positive connection means configured to lock the first and the second components to each other such that the components are locked from being moved in a longitudinal direction in relation to each other. The coupling arrangement further comprises a second positive connection means configured to lock the first and the second component to each other such that the components are locked from being rotated in relation to each other about a longitudinal axis of the components. SUMMARY The present disclosure provides a permanent and irreleasable connection of two housing components for an injection device such like a pen-type injector, which housing components provide easy and straight forward mutual assembly. It is a further aim, that the housing components form a rigid and tight long-term stable positive interconnection when mutually assembled to form a housing of an injection device. The interconnection should be highly resistant to mechanical loads and should be able to withstand mechanical shock that may for instance inadvertently arise in the event that the injection device drops to the ground. Furthermore, the interconnection of the housing components should be substantially free of clearance to enhance the quality feel of the injection device. In a first aspect of the disclosure an elongated housing for an injection device configured for delivery of a liquid medicament is provided. The elongated housing is typically of substantially tubular shape. Its long axis extends in an axial direction or defines an axial direction. A distal axial direction points towards an injection site when in use while a proximal end of the device is actuatable by a user or patient. The distal end of the elongated housing is the end section where the liquid medicament is actually dispensed during use of the device whereas an opposite proximal end section is typically equipped with a dose dial and/or with a dose button providing dose setting and dose dispensing functionalities to be conducted by a user of the injection device. The elongated housing comprises a tubular-shaped cartridge holder to accommodate a cartridge filled with the medicament. The tubular-shaped cartridge holder comprises a proximal connecting end and forms a distal housing component of the elongated housing. The elongated housing further comprises a proximal housing component denoted as a body. The body is configured to accommodate or to receive a drive mechanism of the injection device, which drive mechanism is operably engageable with a piston of the cartridge located inside the cartridge holder. The body as a proximal housing component comprises a distal connecting end connectable to the proximal connecting end of the cartridge holder. Typically, the proximal connecting end and the distal connecting end are interconnectable in an interleaved or in an at least partially nested way. In an assembly or connection arrangement at least portions of the proximal connecting end and the distal connecting end mutually overlap and mechanically engage to form the desired interconnection of the two housing components, namely of the cartridge holder and of the body. One of the proximal connecting end and the distal connecting end comprises an insert section which may be stepped down in radial direction. The other one of the proximal connecting end and the distal connecting end comprises a receptacle to axially receive the insert portion. Hence, the inner diameter of the receptacle matches with the outer diameter of the insert portion so that the insert portion is axially insertable into the receptacle to form the interconnection of cartridge holder and body. Typically, the cross-section and geometric shapes of the receptacle and of the insert portion mutually match in such a way, that a positive interconnection of receptacle and insert portion can be obtained. The insert section comprises at least one fastening element to positively engage with a complementary-shaped fastening element of the receptacle. Mutually engageable and complementary-shaped fastening elements of the insert section and the receptacle provide an axial interlock of cartridge holder and body. Typically, the insert section is slidably displaceable inside the receptacle until the mutually corresponding fastening elements of insert section and receptacle engage. Once the fastening elements of insert section and receptacle engage the insert section is axially fixed to the receptacle. Hence, upon mutual engagement of fastening elements of the insert section and the receptacle the cartridge holder is axially fixed to the body and vice versa. The mutually corresponding fastening elements of the insert section and the receptacle comprise at least one pair of a radial protrusion mating with a radial recess provided on an inside wall of the receptacle and on an outside wall of the insert section. Typically, the at least one radial protrusion comprises a slanted or beveled edge so as to form a wedge-shaped geometry as seen in an insertion direction. Moreover, the receptacle and the protrusion comprise mutually engaging and complementary-shaped abutments section facing in an axial direction, which abut as the fastening position of the insert section inside the receptacle has been reached. Typically, there are provided several pairs of fastening elements on the outside wall of the insert section and on the inside wall of the receptacle. As seen in a circumferential direction the fastening elements of the receptacle and of the insert section are located at well-defined angular positions. This requires that the insert section is inserted into the receptacle in at least one particular angular orientation with regard to the long axis of insert section or receptacle as an axis of rotation. For this there may be provided additional positively engaging guiding means defining and retaining a predefined angular orientation of insert section and receptacle prior to and during insertion of the insert section into the receptacle in an axial direction. Furthermore, a radial depth of the radial recess in one of the inside wall of the receptacle or the outside wall of the insert section is smaller than a thickness of the respective sidewall of the insert section or of the receptacle. Hence, the radial recess is configured in form of a blind hole or pocket hole but does not feature a through opening in the sidewall of insert section or receptacle. In this way the radial recess could be formed on an inside-facing portion of the sidewall of the receptacle. It would not be visible from outside the device. Apart from that a limited depth of the radial recess is beneficial in terms of the mechanical stability of the respective sidewall section. Implementation of a radial recess with a radial depth smaller than the thickness of the sidewall in which the radial recess is located makes the respective housing component less susceptible to mechanical failure or fracture. In another embodiment the insert section is axially confined or axially delimited by a radially outwardly extending flange section. The insert section typically comprises or forms a socket portion with an outer diameter that is at least slightly smaller than the outer diameter of the flange section. Hence, the outer diameter of the insert section is smaller than the diameter of the axially adjacent flange section. The flange section therefore axially confines the stepped down insert section of one of the cartridge holder and body. In another embodiment a sidewall of the receptacle comprises a beveled axial end face that is complementary-shaped to a beveled abutment face of the flange section. The beveled axial end face of the receptacle's sidewall forms an axial edge or axial end of the receptacle and faces towards the abutment face of the flange section of the insert section. The beveled axial end face and the beveled abutment face of the receptacle and of the flange section define an axial abutment of the cartridge holder and the body so as to limit an insert motion of the insert section entering the receptacle. By means of beveled faces the mutual abutment of the sidewall of the receptacle of cartridge holder or body and the correspondingly-shaped flange section of body or cartridge holder inherently provides a tolerance compensation. Typically, cartridge holder and body are made of injection molded plastic components that are inevitably subject to geometric tolerance variation. Providing beveled and complementary-shaped end faces and abutment faces on the receptacle and the flange section allows these abutment faces to pass over each other, with the Body splaying radially outwards. Causing the Body to splay radially outwards in this way requires a reduced force and stress, when compared to a joint formed with abutment faces that face in a direction perpendicular to the direction of assembly, for a given over-travel once the abutment faces first make contact. This facilitates a tight axial engagement to be provided over comparatively large geometric tolerance margins, without over stressing the components or requiring excessive assembly force during the final assembly step of interconnecting cartridge holder and body. By means of the beveled axial end face at the longitudinal edge of the receptacle it is possible to induce a radially outwardly directed splaying or an at least slight radial widening of the receptacle which may be of further advantage to reduce friction between the interior of the receptacle and an outer surface of the insert section. Also in this way assembly forces may be effectively reduced and assembly of cartridge holder and body can be facilitated. According to another embodiment the end face of the receptacle and the abutment face of the flange section are facing in opposite axial directions. When the insert section reaches a fastening position inside the receptacle the beveled abutment face of the flange section and the beveled axial end face of the sidewall of the receptacle are in mutual abutment. On a microscopic scale the fastening position of the insert section inside the receptacle may vary within inevitable geometric tolerance margins that arise from the production and manufacturing of the individual housing components, cartridge holder and body. By having complementary-shaped beveled end faces and abutment faces on the sidewall of the receptacle and on the flange section, respectively such geometric tolerances can be easily compensated. Typically, for all tolerance-based variable axial fastening positions of the insert section inside the receptacle a mutual abutment of the beveled end face the beveled abutment face is always obtainable. In this way a rather rigid, tight and slack-free interconnection can be formed between cartridge holder and body, which is rather insensitive to the geometric tolerances of cartridge holder and body. The fastening elements of the insert section and of the receptacle are located and arranged in such axial positions relative to the beveled axial end face and the beveled abutment face so that the complementary-shaped fastening elements of insert section and receptacle just engage when the abutment face of the flange section actually gets in abutment or is already in abutment with the beveled end face of the sidewall of the receptacle. Typically, an abutment configuration of the end face and the abutment face is obtained even prior to the irreleasable engagement of the fastening elements of the receptacle and the insert section. In this way it is somewhat guaranteed, that the beveled axial end face and the beveled abutment face are in rigid or tight abutment as the complementary-shaped fastening elements of insert section and receptacle interconnect or get mutually interlocked. In another embodiment one of the insert section and the receptacle comprises an axially extending radial slot. The radial slot comprises an axially elongated recessed portion that extends from an axial edge of the sidewall of the insert section towards the flange section. When implemented on the inside of the receptacle the slot extends axially from the beveled axial end face of the receptacle in axial direction. The other one of the insert section and the receptacle then comprises a radial protrusion or an axially extending radial rib complementary-shaped to the axially extending radial slot. When at least the radial slot extends in axial direction mutually engaging radial rib and radial slot define a rotational interlock of receptacle and insert section. Moreover, the radial slot and the complementary-shaped protrusion or rib define at least one or only a few relative angular positions of insert section and receptacle that allow and support a sliding insertion of the insert section into the receptacle. In this way, a pair formed by the axially extending slot with the protrusion or with the axially extending rib establishes a rotational interlock for the insert section and the receptacle. The rib and the slot have to engage prior to or during insertion of the insert section into the receptacle and prior to a mutual engagement of the fastening elements of receptacle and insert section forming a second axial interlock of insert section and receptacle. Along the circumference of the inside of the receptacle and along the outside of the insert section there may be provided several mutually corresponding fastening elements as well as several mutually corresponding slots and protrusions or ribs. In this way, any mechanical loads acting between the insert section and the receptacle may divide and may be spread over numerous mutually engaging fastening elements or mutually engaging axially extending slots or ribs. The mutually corresponding fastening elements of insert section and receptacle to form an axial interlock between the cartridge holder and the body are typically symmetrically or equally spaced along the inner and outer circumference of the receptacle and the insert section. In this way, any mechanical load to be transferred between cartridge holder and body in axial direction may somewhat equally split over the pairs of mutually engaging fastening elements of insert section and receptacle. Any rotational forces with regard to a rotation axis extending longitudinally through the cartridge holder or body may be transferred via the radial protrusion or radial rib located inside the at least one radial slot of insert section and receptacle of cartridge holder and body, respectively. When providing more than one axially extending radial slot the at least two or even more slots could be equally spaced along the inner circumference of the receptacle or outer circumference of the insert section. In this way any relative angular momentum acting between the cartridge holder and body could be somewhat equally transferred via the interface of insert section and receptacle. However, it is also conceivable to implement a symmetry breaking feature by having only one axial slot to engage with a complementary-shaped radial protrusion or rib. Alternatively it is conceivable, that the angular position of the at least two axially extending slots is asymmetric so that the angular position of the radial slots defines a unique relative angular position of cartridge holder and body, in which the insert is axially insertable into the receptacle. According to another embodiment the axially extending radial slot and the axially extending rib are mutually axially insertable free of clearance. In this way the mutual engagement of the slot and the rib already provides a slack-free arrangement of cartridge holder and body during an insert motion of the insert section into the receptacle. This helps to improve the quality feel of the device. Moreover, a complementary geometric configuration of the axially extending radial slot and the axially extending radial rib free of clearance helps to improve the accuracy at which a label is to be applied to the outside of the body or cartridge holder. For an automated label attachment to at least one of the cartridge holder and body the other one of cartridge holder and body will be gripped or fixed in an automated assembly process while the cartridge holder or body is subject to an attachment of a label thereto. By means of a clearance-free geometric design of axially extending slot and rib on the inside of the receptacle and on the outside of the insert portion a rather rigid and positionally stable configuration of cartridge holder and body can be obtained even before the fastening elements of insert section and receptacle mutually engage thereby forming the axial interlock. According to another embodiment it is the insert section that forms the proximal connecting end of the cartridge holder and it is the receptacle that forms the distal connection end of the body. Consequently, the beveled axial end face is located on a distal end of the body and the beveled abutment face of the flange section is provided on the cartridge holder. It forms a proximal end of the insert section of the cartridge holder. In a final assembly configuration the beveled axial end face of the sidewall of the receptacle faces in a distal direction whereas the beveled abutment face of the flange section of the cartridge holder faces in the opposite proximal direction. Typically, the outer diameter of the flange section substantially matches with the outer diameter of the receptacle so that the interconnection and mutual abutment of the flange section and the sidewall of the receptacle is substantially flush. Having the insert section located on a proximal end of the cartridge holder and having the receptacle on a distal end of the body is beneficial in that the body may comprise a slightly larger diameter than the cartridge holder. This is of particular advantage to accommodate numerous mechanically interacting components of the drive mechanism inside the body. Moreover, by having the insert section located on the proximal end of the cartridge holder the diameter of the cartridge holder can be easily reduced compared to the diameter of the body. This is of particular use when cartridges of limited or reduced diameter should be used with the injection device. Diameter reduced cartridges may be particularly useful for administering and for delivery of rather small or of a non-integer number of doses of the medicament as for instance measured in International Units (IU). In another embodiment the at least one fastening element of the receptacle comprises the radial protrusion and the at least one fastening element of the insert section comprises the radial recess. Implementing the radial recess or radial recesses on the insert section is beneficial in terms of bending loads that apply during the insertion of the insert section into the receptacle. When bending loads are applied across the joint, having the radial protrusions extending radially inwardly from an inside facing sidewall of the receptacle and having the complementary-shaped radial recesses to extend radially inwardly on the outside facing sidewall of the insert section leads to a circumferentially directed compressive stress in the insert section and to a circumferentially directed tensile stress in the sidewall of the receptacle. Since thermoplastic materials are more susceptible to failure via tensile stress than compressive stress it is beneficial to arrange the radial recesses on or in the insert section of the cartridge holder and to have the radial protrusions on the inside facing surface of the receptacle of the body. For the same reasons it is also beneficial that the at least one axially extending radial slot is located on the outside of the insert section of the cartridge holder and that the complementary-shaped at least one radial protrusion or axially extending radial rib is provided on an inside facing portion of the receptacle of the body. It is generally of particular benefit, that any structural weakening elements, such like radial recesses or axially extending radial slots are placed on the cartridge holder, where stresses are of compressive type and that protrusions and ribs radially protruding from a sidewall portion are placed on the body, where stresses are of tensile type. According to another embodiment an axial distance d1between the at least one fastening element of the receptacle and the axial end face is larger than or equal to an axial distance d2between the at least one fastening element of the insert section and the abutment face of the flange section thereof. In this way it is guaranteed, that the beveled axial end face of the sidewall of the receptacle axially engages with the complementary-shaped beveled abutment face of the flange section of the insert section as the mutually corresponding fastening elements of the receptacle and the insert section engage to form an axial interlock of cartridge holder and body. The difference between the distances d1and d2is fairly small. The difference between said distances d1and d2is in the submillimeter range. It may be as small as a few, a few tens or hundreds of micrometers. The difference between the axial distances d1and d2is substantially equal to the maximum tolerance margin of the position of the fastening element, the complementary-shaped beveled abutment face and axial end face of the flange section and of the sidewall of the receptacle, respectively. So even in the loosest axial tolerance conditions of insert section and receptacle and their respective mutually corresponding fastening elements a zero axial play or slack between cartridge holder and body can be obtained. By means of the beveled abutment face of the flange section and the complementary-shaped beveled axial end face of the receptacle axial interference and axial geometric tolerances of insert section and receptacle can be absorbed through elastic and radially directed deformations to always enable axial engagement of the fastening elements. By means of the beveled flange and beveled end face the body is enabled to overtravel past its nominal position relative to the cartridge holder during mutual assembly. Depending on the shape and configuration of the complementary-shaped beveled flange and beveled end face the side wall of the receptacle may be subject to splay radially outwardly. Such a radial splaying requires significantly less forces and less energy compared to a configuration where the contact surfaces of the flange section and the receptacle were not angled and wherein all of the axial interference would have to be accommodated with axial compression. Additionally, also the insert section of the cartridge holder may be subject to splay radially inwardly as compressive forces apply across the interface of mutually engaging beveled surfaces. The beveled or angled profiles of the flange section and the axial end face of the receptacle also prevent or at least reduce a leverage effect from increasing the axial load on the fastening elements during application of bending loads to the device. In addition, the radially outwardly directed splaying of the receptacle of the cartridge holder during a final step of inserting the insert section into the receptacle may also help to establish a mutual engagement of the fastening elements. Typically, the fastening elements are configured as snap features, wherein the radial protrusion comprises a wedge-shaped profile as seen in axial direction. According to a further embodiment the beveled axial end face and the beveled abutment face are shaped to generate a radially inwardly directed load to the insert section when the beveled axial end face and the beveled abutment face are subject to an axial compression. Likewise, and according to another embodiment the beveled axial end face and the beveled abutment face of the receptacle and the flange section are shaped to generate a radially outwardly directed load to the receptacle when subject to an axial compression thereby splaying the sidewall thereof radially outwardly. Radially outwardly directed load to the receptacle and radially inwardly directed load to the insert section also helps to establish the snap fit connection of the mutually corresponding fastening elements of the receptacle and the insert section. In addition, eventual point loads that may be present in the interface of mutually engaging fastening elements of the insert section and the receptacle may be reduced due to the mutual abutment of the beveled axial end face and the beveled flange section. The total surface of mutually engaging flange section and beveled end face of the receptacle is substantially larger than the mutually engaging abutment sections of the fastening elements. An axial compression and mechanical stress across the interface of cartridge holder and body can be equally and smoothly distributed across the comparatively large surfaces of the beveled axial end face and the beveled flange section of the sidewall of the receptacle and the insert section, respectively. According to another embodiment, at least one of the axial end face of the sidewall of the receptacle and the flange section of the insert section comprises an axially protruded portion to mate with a complementary-shaped axial recessed portion of the other one of the axial end face and the flange section. In this way, the interface of axial end face and flange section is provided with a symmetry breaking feature that defines a specific orientation of the cartridge holder relative to the body with regard to a longitudinal axis of rotation. The protruded portion may be provided on the flange section and may extend in proximal direction, hence towards the body. Correspondingly, the body comprises an axially recessed portion on its distal and beveled end face to receive and to engage with the protruded portion of the flange section. By means of the axially protruded portion and the complementary-shaped axially recessed portion the symmetry breaking feature of cartridge holder and body is immediately recognizable from outside the housing component's cartridge holder and body. Moreover, by means of the axially protruded portion and the complementary-shaped axially recessed portion the housing may be provided with a function-specific design. In another embodiment the insert section comprises a free axial end section and an intermediate section located axially between the free axial end section and the flange section. Here, the diameter of the free axial end section is smaller than the diameter of the intermediate section. Complementary, also the receptacle comprises a free axial end section and an axially adjacently located intermediate section. At least the intermediate section of the receptacle is complementary-shaped to the axial end section of the insert section. In this way, the cartridge holder and the body each comprise a stepped wall portion, wherein the respective faces of the matching stepped wall portions are in radial contact and in radial abutment when the body and the cartridge holder are fully assembled. At least the outer diameter of the axial end section of the insert section closely matches with the inside surface and inner diameter of the intermediate section of the receptacle. When fully assembled the faces of the axial end section of the insert section and of the intermediate section of the receptacle are somewhat in close mechanical contact. They may even form almost a press fit. This allows the joint and interface of cartridge and body to tolerance greater radial misalignment during assembly while still maintaining a small draft angle and maintaining radial contact in a fully assembled condition. In addition it is also conceivable, that the intermediate section of the insert section and the axial end section of the receptacle mutually match to get in close radial contact when the cartridge holder and the body are in a final assembly configuration. In another aspect the disclosure relates to an injection device for delivery of a liquid medicament. The injection device comprises a housing as described above and further comprises a drive mechanism arranged inside the body and fixed to the body. Typically, the injection device is of pen-injector type and allows a user to individually set a dose of variable size and to dispense and to inject the dose into biological tissue. In another embodiment the injection device further comprises a cartridge arranged inside the cartridge holder of the housing, wherein the cartridge holder and the body are irreleasably connected. In this way the injection device is of disposable type. Due to the irreleasable connection of cartridge holder and body, which is typically obtained only by way of a positive interlock of mutually corresponding fastening elements of the insert section and the receptacle the entire injection device is intended to be discarded when the content of the cartridge has been used up. Disconnecting of cartridge holder and body is only possible by an at least partial destruction or disruption of one of these housing components. The term “drug” or “medicament”, as used herein, means a pharmaceutical formulation containing at least one pharmaceutically active compound, wherein in one embodiment the pharmaceutically active compound has a molecular weight up to 1500 Da and/or is a peptide, a protein, a polysaccharide, a vaccine, a DNA, a RNA, an enzyme, an antibody or a fragment thereof, a hormone or an oligonucleotide, or a mixture of the above-mentioned pharmaceutically active compound, wherein in a further embodiment the pharmaceutically active compound is useful for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, thromboembolism disorders such as deep vein or pulmonary thromboembolism, acute coronary syndrome (ACS), angina, myocardial infarction, cancer, macular degeneration, inflammation, hay fever, atherosclerosis and/or rheumatoid arthritis, wherein in a further embodiment the pharmaceutically active compound comprises at least one peptide for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, wherein in a further embodiment the pharmaceutically active compound comprises at least one human insulin or a human insulin analogue or derivative, glucagon-like peptide (GLP-1) or an analogue or derivative thereof, or exendin-3 or exendin-4 or an analogue or derivative of exendin-3 or exendin-4. Insulin analogues are for example Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin. Insulin derivatives are for example B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N—(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N—(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N—(ω-carboxyheptadecanoyl) human insulin. Exendin-4 for example means Exendin-4(1-39), a peptide of the sequence H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser- Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2. Exendin-4 derivatives are for example selected from the following list of compounds: H-(Lys)4-des Pro36, des Pro37 Exendin-4(1-39)-NH2, H-(Lys)5-des Pro36, des Pro37 Exendin-4(1-39)-NH2, des Pro36 Exendin-4(1-39), des Pro36 [Asp28] Exendin-4(1-39), des Pro36 [IsoAsp28] Exendin-4(1-39), des Pro36 [Met(O)14, Asp28] Exendin-4(1-39), des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39), des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39), des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39), des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39), des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39); or des Pro36 [Asp28] Exendin-4(1-39), des Pro36 [IsoAsp28] Exendin-4(1-39), des Pro36 [Met(O)14, Asp28] Exendin-4(1-39), des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39), des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39), des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39), des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39), des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39), wherein the group -Lys6-NH2 may be bound to the C-terminus of the Exendin-4 derivative; or an Exendin-4 derivative of the sequence des Pro36 Exendin-4(1-39)-Lys6-NH2 (AVE0010), H-(Lys)6-des Pro36 [Asp28] Exendin-4(1-39)-Lys6-NH2, des Asp28 Pro36, Pro37, Pro38Exendin-4(1-39)-NH2, H-(Lys)6-des Pro36, Pro38 [Asp28] Exendin-4(1-39)-NH2, H-Asn-(Glu)5des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-NH2, des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2, H-des Asp28 Pro36, Pro37, Pro38 [Trp(O2)25] Exendin-4(1-39)-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2, des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36 [Met(O)14, Asp28] Exendin-4(1-39)-Lys6-NH2, des Met(O)14 Asp28 Pro36, Pro37, Pro38 Exendin-4(1-39)-NH2, H-(Lys)6-desPro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2, des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-Asn-(Glu)5 des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-Lys6-des Pro36 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2, H-des Asp28 Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25] Exendin-4(1-39)-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-NH2, des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2, H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(S1-39)-(Lys)6-NH2, H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2; or a pharmaceutically acceptable salt or solvate of any one of the afore-mentioned Exendin-4 derivative. Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists as listed in Rote Liste, ed. 2008, Chapter 50, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin. A polysaccharide is for example a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra low molecular weight heparin or a derivative thereof, or a sulphated, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium. Antibodies are globular plasma proteins (˜150 kDa) that are also known as immunoglobulins which share a basic structure. As they have sugar chains added to amino acid residues, they are glycoproteins. The basic functional unit of each antibody is an immunoglobulin (Ig) monomer (containing only one Ig unit); secreted antibodies can also be dimeric with two Ig units as with IgA, tetrameric with four Ig units like teleost fish IgM, or pentameric with five Ig units, like mammalian IgM. The Ig monomer is a “Y”-shaped molecule that consists of four polypeptide chains; two identical heavy chains and two identical light chains connected by disulfide bonds between cysteine residues. Each heavy chain is about 440 amino acids long; each light chain is about 220 amino acids long. Heavy and light chains each contain intrachain disulfide bonds which stabilize their folding. Each chain is composed of structural domains called Ig domains. These domains contain about 70-110 amino acids and are classified into different categories (for example, variable or V, and constant or C) according to their size and function. They have a characteristic immunoglobulin fold in which two p sheets create a “sandwich” shape, held together by interactions between conserved cysteines and other charged amino acids. There are five types of mammalian Ig heavy chain denoted by a, 5, E, y, and p. The type of heavy chain present defines the isotype of antibody; these chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively. Distinct heavy chains differ in size and composition; a and y contain approximately 450 amino acids and 5 approximately 500 amino acids, while p and E have approximately 550 amino acids. Each heavy chain has two regions, the constant region (CH) and the variable region (VH). In one species, the constant region is essentially identical in all antibodies of the same isotype, but differs in antibodies of different isotypes. Heavy chains y, a and b have a constant region composed of three tandem Ig domains, and a hinge region for added flexibility; heavy chains p and E have a constant region composed of four immunoglobulin domains. The variable region of the heavy chain differs in antibodies produced by different B cells, but is the same for all antibodies produced by a single B cell or B cell clone. The variable region of each heavy chain is approximately 110 amino acids long and is composed of a single Ig domain. In mammals, there are two types of immunoglobulin light chain denoted by A and K. A light chain has two successive domains: one constant domain (CL) and one variable domain (VL). The approximate length of a light chain is 211 to 217 amino acids. Each antibody contains two light chains that are always identical; only one type of light chain, K or A, is present per antibody in mammals. Although the general structure of all antibodies is very similar, the unique property of a given antibody is determined by the variable (V) regions, as detailed above. More specifically, variable loops, three each the light (VL) and three on the heavy (VH) chain, are responsible for binding to the antigen, i.e. for its antigen specificity. These loops are referred to as the Complementarity Determining Regions (CDRs). Because CDRs from both VH and VL domains contribute to the antigen-binding site, it is the combination of the heavy and the light chains, and not either alone, that determines the final antigen specificity. An “antibody fragment” contains at least one antigen binding fragment as defined above, and exhibits essentially the same function and specificity as the complete antibody of which the fragment is derived from. Limited proteolytic digestion with papain cleaves the Ig prototype into three fragments. Two identical amino terminal fragments, each containing one entire L chain and about half an H chain, are the antigen binding fragments (Fab). The third fragment, similar in size but containing the carboxyl terminal half of both heavy chains with their interchain disulfide bond, is the crystalizable fragment (Fc). The Fc contains carbohydrates, complement-binding, and FcR-binding sites. Limited pepsin digestion yields a single F(ab′)2 fragment containing both Fab pieces and the hinge region, including the H—H interchain disulfide bond. F(ab′)2 is divalent for antigen binding. The disulfide bond of F(ab′)2 may be cleaved in order to obtain Fab′. Moreover, the variable regions of the heavy and light chains can be fused together to form a single chain variable fragment (scFv). Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from alkali or alkaline, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1-C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences” 17. ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and in Encyclopedia of Pharmaceutical Technology. Pharmaceutically acceptable solvates are for example hydrates. It will be further apparent to those skilled in the art that various modifications and variations can be made to the present disclosure without departing from the spirit and scope of the disclosure. Further, it is to be noted, that any reference numerals used in the appended claims are not to be construed as limiting the scope of the disclosure.
185,670
11231420
BACKGROUND Ebolavirus outbreaks are devastating, unpredictable and occurring with increasing frequency in Central and West Africa. The West African Ebola virus (EBOV) epidemic occurred from 2014 to 2016, beginning in Guinea and spreading to Liberia and Sierra Leone. This EBOV outbreak was the most widespread, largest and most severe ever with respect to the number of cases and fatalities, with more than 28,000 individuals infected and ˜11,000 deaths. It took more than a month for definitive confirmation that this hemorrhagic fever outbreak was due to EBOV, highlighting problems associated with the dismal state of filovirus diagnosis. Most recently, a small 2017 outbreak was documented in the Democratic Republic of the Congo, demonstrating the wide geographic distribution of the unidentified animal reservoir for the virus. Better, faster and simpler diagnostics are needed to allow rapid control of an emerging outbreak. As well as the ever-present danger of outbreaks in endemic areas, ebolaviruses also pose a potential worldwide danger as they could be used as bioterrorism agents or in biological warfare. Four species of pathogenic ebolavirus circulating in Africa, any of which could cause the next natural or man-made outbreak. To control an ebolavirus outbreak, it is essential to rapidly identify and isolate infected individuals. SUMMARY In one aspect, the present description relates to an aptamer. The aptamer includes a DNA sequence with at least 80% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17 and binds to a marker of ebola virus. The ebola virus marker may be sGP. The aptamer may have a DNA sequence having at least 90% sequence identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The aptamer may have a DNA sequence having at least 95% sequence identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The DNA sequence of the aptamer may be SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The aptamer may be further modified. The aptamer may include a modified pyrimidine. The aptamer may include a modified purine. In another aspect, the present description relates to a nucleic acid compound that includes a DNA sequence with at least 80% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The nucleic acid compound may have a DNA sequence having at least 90% sequence identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The nucleic acid compound may have a DNA sequence having at least 95% sequence identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The nucleic acid compound may include DNA sequence that includes SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The nucleic acid compound may be further modified. The nucleic acid compound may include a modified pyrimidine. The nucleic acid compound may include a modified purine. In yet another aspect, the present description relates to a method of detecting the presence of ebola virus in a test sample. The method can include contacting the test sample with an aptamer that binds to a marker of the ebola virus. The marker may be sGP. The aptamer used to bind the marker of the ebola virus may be an oligonucleotide selected from SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The aptamer used to bind the marker of the ebola virus may be an oligonucleotide with at least 80% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The aptamer used to bind the marker of the ebola virus may be an oligonucleotide with at least 90% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The aptamer used to bind the marker of the ebola virus may be an oligonucleotide with at least 95% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17. The test sample may be a serum sample, tissue sample, cell sample or a saliva sample. The method may further include processing the test sample to expose the marker to the aptamer. The method may include immobilizing the aptamer on a solid support. The method may further include depositing the sample on a membrane, adding an aptamer to the membrane wherein the aptamer is labeled with a detectable label. The method may further include removing unbound aptamer and detecting bound labeled aptamer to the ebola marker. In a further aspect, the present description also relates to a kit that includes an aptamer, wherein the aptamer includes a DNA sequence with at least 80% identity to SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and/or SEQ ID NO: 17 and binds to sGP of ebola virus. The kit may also include a DNA sequence selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16 and SEQ ID NO: 17.
18,294
11398688
CROSS-REFERENCE TO RELATED APPLICATION This application claims the benefit of the filing date under 35 U.S.C. § 119(a)-(d) of European Patent Application No. 19305870.8, filed on Jun. 28, 2019. FIELD OF THE INVENTION The present invention relates to a plug-in connector and, more particularly, to a plug-in connector with a handle part. BACKGROUND A plug-in connector for a fuse element can be equipped with a handle part to enable plugging or unplugging it from terminal blocks. Such handles, to be easily maneuverable, should have a sufficient size even when the plug-in connector is small. This, however, implies geometrical constraints that can be difficult to deal with as other elements such as markings or a light indicator could also be necessary for such plug-in connectors. SUMMARY A plug-in connector cooperating with a terminal block includes a body having a cooperation assembly mechanically securing the plug-in connector on the terminal block, the body having a compartment accommodating a fuse element, a pair of plug contacts received within the compartment, and a handle part having an actuating portion and a linking portion. The plug contacts are each connected to a terminal of the fuse element. Each of the plug contacts has a contact tongue extending outside of the compartment, the contact tongue electrically secured to a bus bar of the terminal block. The linking portion is attached to the body and extends along a linking axis parallel to an insertion axis of a pin of the cooperation assembly. The actuating portion has an actuating surface extending transversely to the insertion axis and cooperating with a marking element disposed along the actuating surface.
184,161
11245052
TECHNICAL FIELD This disclosure relates to a method of producing microelectronic components and an appropriate manufacturing system for the execution of the method. BACKGROUND In the production of microelectronic components such as, e.g., optoelectronic components, a common task involves the separation of a layer stack comprised of a plurality of layers between two specific layers such that two individual layer stacks are produced. Nowadays, for example, light-emitting diodes (LEDs) are frequently produced by the constitution of p- and n-doped semiconductor layers of gallium nitride (GaN) by epitaxial deposition on a sapphire wafer functioning as a growth substrate. Such layers have a respective thickness of a few μm such that the overall thickness of the various GaN layers can, e.g., be less than 10 μm. Prior to further processing, structuring of the GaN layers can be executed, for example, by laser treatment for the production of individual components or in preparation for the production thereof. A thin, generally metallic bonding layer is applied to the GaN layer stack, for example, by vapor deposition. By this bonding layer, the growth substrate, with the GaN layer stack arranged thereupon, is bonded to a flat laminar carrier. The planar connection between the growth substrate and the GaN stack is subsequently released. As a result, the GaN stack is transferred to the carrier. The carrier, with the GaN stack arranged thereupon, serves as a basis for the production of the microelectronic component. The separation of the functional layer stack that incorporates the carrier and the GaN layer stack, from the growth substrate is generally executed by the “laser lift-off” method. A buffer layer located in the boundary region between the growth substrate and the GaN layers is destroyed or removed by laser irradiation. Irradiation is executed from the reverse side of the growth substrate and directed through the latter, wherein the laser beam is focused on the buffer layer or the boundary region. Thereafter, the growth substrate can be separated from the other layers by the action of an external force. A method of this type is described, e.g., in “Laser lift-off: smaller overall heights in microelectronics achieved by substrate transfer” by R. Delmdahl inPhotonik2 (2013, pp 54 to 56). However, problems may occasionally occur during the release from the growth substrate of the functional layer system which is bonded to the carrier. Operation of the microelectronic component may be impaired as a result. It could therefore be helpful to provide a method and a manufacturing system of the generic type such that the separating step, by which the growth substrate serving as a temporary substrate is separated from the other layers, can be constituted in a more reliable and more non-destructive manner than previously. SUMMARY We provide a method of producing microelectronic components including a carrier and a microelectronic functional layer system applied to the carrier, the method including forming a functional layer system on a front side of a growth substrate; applying a laminar carrier to the functional layer system for constitution of a workpiece in the form of a layered composite comprised of the carrier, the functional layer system and the growth substrate; attaching the workpiece to a workpiece carrier such that a reverse side of the growth substrate arranged opposite a front side is accessible; utilizing incident radiation of a laser beam from the reverse side of the growth substrate through the growth substrate such that the laser beam is focused in a boundary region between the growth substrate and the functional layer system, and a bond between the growth substrate and the functional layer system in the boundary region is weakened or destroyed; separating a functional layer stack comprised of the carrier and the functional layer system from the growth substrate, wherein for separation of the functional layer stack from the growth substrate, a vacuum gripper having a sealing zone that circumferentially encloses an inner region is applied to the reverse side of the growth substrate, further to the applying, a negative pressure is generated in the inner region such that, by introduction of a separating force to the growth substrate, separation of the functional layer stack from the growth substrate is initiated in the inner region; and the growth substrate held on the vacuum gripper is removed from the functional layer stack that is held on the workpiece carrier. We also provide a manufacturing system that produces microelectronic components that include a carrier and a microelectronic functional layer system applied to the carrier, the system including a workpiece carrier that accommodates a workpiece in the form of a layered composite including a carrier, a functional layer system bonded to the carrier, and a growth substrate bonded to the functional layer system; a laser treatment station for incident radiation of a laser beam from a reverse side of the growth substrate through the growth substrate such that the laser beam is focused in a boundary region between the growth substrate and the functional layer system, and a bond between the growth substrate and the functional layer system is weakened or destroyed in the boundary region; a debonding station that separates a functional layer stack including the carrier and the functional layer system from the growth substrate, wherein the debonding station includes a vacuum gripper having a sealing zone that circumferentially encloses an inner region, that can be applied to a reverse side of the growth substrate such that an inner region can be sealed from the exterior by the sealing zone and, in the inner region, a clearance is provided between the vacuum gripper and the workpiece, and devices that generate a negative pressure in the inner region are provided in the vacuum gripper which is applied to the workpiece.
31,791
11354765
BACKGROUND Geolocation technologies have been continually improving with the proliferation of mobile computing and location-aware technologies. These geolocation technologies typically determine an asset is present by receiving a scan of an object (a barcode). Each of these scans are typically stored as events, with inconsistent naming conventions that are not mapped to physical or logical locations. The scans, among other things, can be inaccurate or a scan may be missed by the geolocation technologies. Due to many of these problems, no analytical metrics can be determined. Typical analytical metrics are unable to determine inaccurate or missing scans which makes tracking the asset inaccurate and unsuccessful. As described in more detail herein, aspects improve these technologies and conventional solutions. SUMMARY This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in isolation as an aid in determining the scope of the claimed subject matter. Further, alternative or additional embodiments exist other than those described in this summary section. In general, embodiments of the present invention provide methods, apparatus, systems, computing entities, and/or the like for determining a parcel position error. In accordance with one aspect, a computer-implemented method for determining a parcel position error based on a comparison of load data and configuration data is provided. The method may include receiving a load data with positions of a tag on a parcel. The method may further include receiving a configuration data with positions of a plurality of tags on a plurality of parcels. A computer may determine the parcel position error based on comparing the load data to the configuration data. In some embodiments, the parcel position error is determined when the first set of positions area beyond a threshold from the second set of positions. Some embodiments are directed to an apparatus with at least one processor, memory, and program code that may cause the processor to determine a parcel position error based on determining a parcel path exceeds a threshold. In some embodiments, the method comprises receiving a load data comprising a first set of positions of a tag associated with a first parcel, and receiving a configuration data comprising a plurality of parcel paths of a tag of a plurality of tags associated with a plurality of parcels. A parcel path may be determined based on the first set of positions. In some aspects, the parcel position error may be determined based on determining the parcel path exceeds a threshold when compared to the plurality of parcel paths. Some embodiments are directed to a computer-implemented method of determining at least one parcel path of a parcel. In some embodiments, the method includes receiving a load data comprising a first set of positions of a tag on the parcel. The method may further include determining a load start node with a first initial position based on the load data. The method may include determining a first series of positions based on the first set of positions of the tag. Finally, the method may include determining at least one parcel path based on the first set of positions of the tag and the load start node.
140,584
11459411
FIELD The field includes polyolefin compositions, products made therefrom, methods of making and using same, and articles containing same. INTRODUCTION Polyolefins are used in a number of commercial applications. These include coatings, films, sheets, and injection molded articles. Coatings may be used on wire and cables for electric power transmitting and telecommunications applications. Films and sheets are used in packaging applications and non-packaging applications. Examples are agricultural film, food packaging, garment bags, grocery bags, heavy-duty sacks, industrial sheeting, pallet and shrink wraps, and bags. LLDPE injection molded articles include buckets, freezer containers, lids, toys. U.S. Pat. No. 4,005,254 to B. T. MacKenzie, Jr. (“MacKenzie”) relates to a pressureless cure system for chemically cross-linking ethylene containing polymers, and product formed thereby. A curable composition comprises an ethylene-containing polymer, a curing agent, and a mineral filler treated with tetramethyltetravinylcyclotetrasiloxane. In preparing the composition, the polymer, mineral filler, tetramethyltetravinylcyclotetrasiloxane, and other additives are intimately admixed as in a Banbury. During this compounding operation, the tetramethyltetravinylcyclotetrasiloxane is said to interact or coat the filler, and the result is referred to as siloxane treated filler. Where desired, the mineral filler may be pretreated with the tetramethyltetravinylcyclotetrasiloxane in a separate operation, and the siloxane treated filler is then admixed with the polymer and other additives. MacKenzie's Toluene Extract (% on compound) data for Example 1 (0.0 weight percent (wt %) tetramethyltetravinylcyclotetrasiloxane) is 11.6% and for Examples 2 and 3 (each 0.97 wt % tetramethyltetravinylcyclotetrasiloxane based on total composition weight) are 9.6% and 11.8%, respectively (Table I). In view of the percent extractables for comparative Example 1 relative to those for Examples 2 and 3, it would be recognized by a skilled artisan that the tetramethyltetravinylcyclotetrasiloxane in Examples 2 and 3 did not contribute to crosslinking of the ethylene-containing polymer. Instead the tetramethyltetravinylcyclotetrasiloxane coated the aluminum silicate filler, as taught by MacKenzie. U.S. Pat. No. 8,426,519 B2 to J. M. Cogen, et al. relates to silicone-thermoplastic polymer reactive blends and copolymer products prepared using economical post-reactor reactive mixing, e.g., extrusion. The procedure is based on the ring-opening polymerization of cyclic siloxanes within a thermoplastic polymer matrix. In a preferred mode, the thermoplastic polymer is a polyolefin, optionally containing silane groups that are available for reaction with the silicone polymer that is formed in situ. The resulting materials provide hybrid performance that can extend the range of applications beyond those which are served by thermoplastic polymers or silicones alone, or their physical blends. CN104277182A to Z-I Wu et al., and the article Crosslinking of low density polyethylene with Octavinyl polyhedral oligomeric silsesquioxane as the crosslinker, J. Wu., et al., RSC Advances, 2014, volume 4, page 44030, relate to a method of preparing a crosslinked low density polyethylene using an octavinyl polyhedral oligomeric silsesquioxane as a crosslinker. SUMMARY We recognized a problem that hurts the crosslinking and performance of prior polyolefins. Coagents may be blended with polyolefins to give polyolefin compositions with increased crosslinking capability, but conventional coagents have their limitations. For example, a conventional coagent typically has limited solubility or miscibility in polyolefin compositions. This limits the coagent's maximum loading level in the composition. It also causes the coagent to undesirably migrate to the surface of the composition (e.g., surface of pellets), limiting the composition's storage lifetime. Conventional coagents also pose other problems. For example, upon curing they may yield crosslinked products with insufficient extent of crosslinking. Or the compositions may cure too slowly for use in certain manufacturing operations (e.g., power cable manufacturing, injection molding, and film extrusion). Or the compositions may cure prematurely (i.e., to be prone to scorch during cable extrusion, injection molding, and film extrusion). Not surprisingly, these problems have limited the structures of conventional coagents that have been used with polyolefins. Typically, conventional coagents comprise conventional substructural groups bonded to two or more olefinic crosslinking groups. The conventional substructural groups are acyclic or cyclic multivalent groups that comprise a backbone or ring, respectively, containing in the backbone or ring carbon atoms and, optionally, nitrogen and/or oxygen atoms, but not silicon atoms. A technical solution to this problem was not obvious from the prior art. A problem to be solved by inventiveness then is to discover a new polyolefin composition comprising a polyolefin polymer and an improved coagent. Our analysis suggests that the new coagent ideally would be a cyclic molecule that does not contain carbon or nitrogen atoms in its ring. Our technical solution to this problem includes a polyolefin composition comprising a polyolefin polymer and an alkenyl-functional monocyclic organosiloxane; crosslinked polyolefin products made therefrom; methods of making and using same; and articles containing same. The inventive polyolefin composition and products are useful in any application in which polyolefins, including crosslinked polyolefins, are utilized, including coatings, films, sheets and injection molded articles.
244,330
11520807
BACKGROUND On an average day, a person typically uses multiple computing devices and multiple applications across those devices. Often the person will move from one application to another, preferring one or the other based on a particular task the person is trying to complete, the location of the user (e.g., whether the user is at home or driving somewhere), or the experience the person is seeking. For example, the person might begin reading an email on their phone using a native email application only to continue reading and responding to it on a desktop computer using a different application. Similarly, a person may look for flights through a first travel application and then use a personal assistant application to look for flights at a different time. But transitioning from one application to another is not seamless and often can be cumbersome, requiring the person to move the application data herself from one application to another and apply the data to the new application. Applications often have no way to know what actions the user took in a different application. For instance, in the above example, the user may need to manually transfer reservation information to the personal assistant or from the personal assistant back to the travel application, for example, to let the two applications know that travel is planned. SUMMARY This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in isolation as an aid in determining the scope of the claimed subject matter. Technology described in the present disclosure improves navigation between applications and application states by collecting and sharing application state information at key points during an application experience. The technology can allow a user to return directly to a previously experienced application state without having to re-enter data used to create the desired application experience in the first place. A platform and application programming interface (API) are provided for a primary application to receive and store event records from secondary applications. The event record includes state data and a hint describing the application state of the secondary application at a point in the time the event occurred. In one aspect, the state data is encrypted and readable only by the secondary application that generated the state data. The hint is readable by the primary application and can used to identify a state the user wishes to return to, for example, in response to a user query. The event that triggers creation of an event record can be defined by a trigger criterion for the event. When the trigger criterion is met, the event record is created. Exemplary events include closing an application, completing a task, entering new data, displaying an updated user interface, and such. The trigger criteria allow a computing device to determine the event happened or is about to. For example, the trigger criteria for the “close application event” can be receiving an instruction to close the application. In this situation, the event record would be created and communicated to the primary application before the secondary application is closed. The platform may be cloud based and the event records may be shared across client computing devices (sometimes referred to herein as “user devices”) over the Internet. For example, the event records may be preserved in a cloud-based data store associated with the user. Using the API, applications and services running on clients with an Internet connection can access the data store, to store or retrieve the state data. The platform and API enable the sharing of the event records across nearly any application or service that may be used for a particular task, including applications or services developed using different computer programming languages and/or operating on different types of user devices, or user devices running different operating systems. Thus, for example a user can begin a task on one device in one secondary application and return to the computer experience later through a second instance of the secondary application on a second device using information stored in the event record. For example, a user could check flights through a travel application (e.g., a secondary application) causing several flight options to be presented. As is understood, the user may have provided a destination city, departure city, dates of travel, and other relevant application information in order for the travel application to generate the flight options interface. When the user closes the travel application an event record is created capturing state information at the time of the travel application is closed and a hint describing the state of the secondary application. In this case, the hint could describe the travel parameters. The event record can then be used at a later point to allow the travel application to show the flight options previously presented (possibly updated to reflect changes in cost, availability, or other information that may have changed). In one aspect, the user's desire to return to the flight options interface in the travel application is determined by a primary application, such as a personal assistant application. For example, the user could query the personal assistant about travel arrangements researched previously. The personal assistant could use the hint in the event record to determine that the user's previous application experience associated with the event record might be relevant to the query and output for selection by the user an option to “see the flights previously presented in the travel application” as a search result. Upon the user selecting this search result, the primary application can pass the encrypted state information to the travel application. The travel application can then recreate the desired flight options interface following information in the state record, which the travel application is capable of decrypting, having encrypted it in the first place.
305,208
11283070
TECHNICAL FIELD The present invention relates to rechargeable batteries using aluminum metal as the anode during discharge. In particular, the present invention relates to low-cost, rapidly rechargeable batteries that can be charged and recharged over multiple cycles. BACKGROUND ART Cheap and efficient electrical energy storage is essential for reducing our dependence on fossil fuels. Lithium-ion batteries dominate in applications for portable electronic devices and electric vehicles due to their relatively high energy density and a well-established marketplace. However, factors including cost, safety and energy density limit their long-term and large-scale applications. As demand for batteries grows, limitations on the global supply of lithium portend dramatic price increases. Because of their reliance on flammable organic electrolytes, lithium-ion batteries pose a significant safety concern as electric vehicles gain increased market share. Finally, the energy density of lithium-ion batteries is approaching a limit rooted in the underlying intercalation chemistry. Consequently, inexpensive and efficient batteries are desired based on abundant and renewable natural resources. Aluminum is the most abundant metal, and the third most abundant element of the earth's crust, and with its low atomic weight and ability to give up three electrons, has significant intrinsic potential for use in electrochemical storage. However, operation of a rechargeable aluminum metal battery requires the fully reversible transfer of three electrons between aluminum acting as an electrode and an aluminum ion in the molten salt electrolyte. SUMMARY OF THE EMBODIMENTS Embodiments of an aluminum-chalcogen cell, that use molten salts at modestly elevated temperatures, have superior reaction kinetics and reversibility compared to those of previously described aluminum-chalcogen cells that operate at room temperature thanks to the use of expensive ionic liquids with large organic cations and halide anions which serve as the electrolyte. From a safety perspective, due to the absence of a flammable organic electrolyte as is found in lithium-ion batteries, embodiments fitted with molten salt electrolytes offer non-flammability and high thermal tolerance. In contrast to lithium-ion batteries, which require continuous monitoring and cooling to prevent potentially dangerous overheating, no cooling system is required for operation of embodiments of the present battery. Rather, during normal operation, the Joule heat generated internally from the battery can be trapped as needed by appropriate insulation to keep the battery operating at an optimal, modestly elevated operating temperature with no need for external heating or cooling. The chalcogen positive electrode also offers much higher specific capacity than previously reported graphite electrodes that function by AlCl4−intercalation. In an embodiment of the instant invention, a system utilizing liquid sulfur accommodated in porous carbon as a positive electrode, a molten salt solution of sodium chloride and aluminum chloride as an electrolyte, and aluminum foil as a negative electrode exhibits a high capacity (400 mAh g−1) and ˜200 cycles of full depth of discharge with minimal loss of storage capacity. In accordance with one embodiment of the invention, a rechargeable, self-heating aluminum-chalcogen battery is provided, the battery including: (a) an aluminum or aluminum alloy negative electrode; (b) a positive electrode comprising elemental chalcogen having an oxidation state of zero, selected from the group consisting of sulfur, selenium, tellurium, and combinations thereof; (c) an electrolyte that includes a mixture of AlX3and MX, wherein X is a halide, and M is selected from the group consisting of lithium, sodium, potassium, and combinations thereof, the electrolyte formulated so as to make a molten salt that physically contacts and wets the positive electrode and the negative electrode during operation of the aluminum-chalcogen battery; (d) a negative current collector in electrical contact with the negative electrode; (e) a positive current collector in electrical contact with the positive electrode, wherein the molar concentration of AlX3in the salt mixture is at least 50 mole %, and wherein the melting temperature of the salt mixture is between 70° C. and 140° C. In some embodiments, the salt mixture includes between 60% and 95% AlCl3on a molar basis. In some embodiments the salt mixture includes between 80% and 95% AlCl3on a molar basis. In some embodiments, the cell is constructed so as to require no externally supplied heat during operation. In some embodiments, the battery further includes insulating material configured to retain Joule heat generated by the battery in order to maintain normal operating temperature. In some embodiments, the cell is designed with appropriate insulation for operation at a temperature between about 90° C. and about 250° C. In some embodiments, the cell is designed for operation at a temperature between about 90° C. and about 180° C. In some embodiments, the cell is designed for operation at a temperature between about 90° C. and about 150° C. In some embodiments, the cell is designed for operation at a temperature between about 90° C. and about 120° C. In some embodiments, the elemental chalcogen comprises sulfur. In some embodiments, sulfur is present as a liquid during battery operation. In some embodiments, sulfur is present as a solid during battery operation. In further embodiments, the elemental chalcogen comprises selenium. In some embodiments, the positive current collector comprises a conductive matrix in contact with the elemental chalcogen. According to some embodiments, the elemental chalcogen is coated as a polymer-containing slurry onto the positive electrode. In some embodiments, the salt mixture includes molar percentages between 60% and 90% AlCl3, between 0% and 30% NaCl and between 0% and 20% KCl. In some embodiments, a method for generating electric current comprises: providing the aluminum-chalcogen battery; connecting the positive current collector and the negative current collector to an external circuit; applying an external heat source to melt a portion of the electrolyte; deactivating the external heat source; discharging the aluminum-chalcogen battery through the external circuit; allowing Joule heat generated during discharging to melt the remaining electrolyte and to maintain the electrolyte in a molten state without further external heating.
69,508
11497085
TECHNICAL FIELD This disclosure relates to Fe—Cr alloy excellent in electric resistivity and oxidation resistance. BACKGROUND Resistance heating is a method of heating an object by Joule heat generated when a current is applied to a resistance heating element. Since this method has good efficiency of conversion from electric energy to heat energy and uses a simple control apparatus, it is used in a wide range of fields including industrial electric furnaces and electric cooking apparatuses. Resistance heating elements used in the resistance heating can be classified into metallic heating elements represented by Ni—Cr alloy and Fe—Cr alloy and non-metallic heating elements represented by SiC. The metallic heating elements are superior to the non-metallic heating elements in terms of workability, and thus can be formed into a foil or wire material. Therefore, the metallic heating elements are applicable to thin members such as window glasses and floors, and to members applied with bending loads such as gloves. As such metallic heating elements, for example, JIS C 2520 specifies three types of Ni—Cr alloy as wires and strips for electrical heating (Type 1 to Type 3 of nickel chromium wires and strips for electrical heating), and two types of Fe—Cr alloy (Type 1 and Type 2 of iron chromium wires and strips for electrical heating). The Ni—Cr alloy is Ni-based alloy having Cr:15% to 21% and Si: 0.75% to 3% as main additive elements. The Fe—Cr alloy is Fe-based alloy having Cr: 17% to 26%, Al: 2% to 6%, Si: 1.5% or less as main additive elements (“%” of each element represents a mass %, hereinafter the same). Further, JP 2013-159837 A (PTL 1) describes “a stainless steel foil or stainless steel wire material having a volume resistivity with low dependence on a cold rolling reduction ratio, in which the stainless steel foil or stainless steel wire has: a chemical composition containing, in mass %, C: 0.080% or less, Si: 1.5% to 5.0%, Mn: 5% or less, P: 0.050% or less, S: 0.003% or less, Ni: 10% to 15%, Cr: 15% to 22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, O: 0.01% or less, and Ti: 0.05% or less, with the balance being Fe and inevitable impurities; an average temperature coefficient of a volume resistivity at 20° C. to 600° C. of 0.00100/° C. or less; and a dependence index of the volume resistivity on a cold rolling reduction ratio defined as β(c)/β(A) of 0.970 or more and 1.030 or less, where β(c) represents a volume resistivity at 200° C. for working materials having a foil rolling ratio or wire area reduction ratio of 50%, and β(A) represents a volume resistivity at 200° C. for annealing materials”. Furthermore, JP 2016-094662 A (PTL 2) describes “a stainless steel foil or stainless steel wire material for resistance heating elements having a volume resistivity with low dependence on a cold rolling reduction ratio, in which the stainless steel foil or stainless steel wire has: a chemical composition containing, in mass %, C: 0.080% or less, Si: 1.5% to 5.0%, Mn: 5% or less, P: 0.050% or less, S: 0.003% or less, Ni: 10% to 15%, Cr: 15% to 22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, O: 0.01% or less, and Ti: 0.05% or less, with the ratio of Ni/Si being in a range of 3 to 7 and the balance being Fe and inevitable impurities; an average temperature coefficient of a volume resistivity at 20° C. to 600° C. of 0.00100/° C. or less; and a dependence index of the volume resistivity on a cold rolling reduction ratio defined as β(c)/β(A) of 0.970 or more and 1.030 or less, where β(c) represents a volume resistivity at 200° C. for working materials having a foil rolling ratio or wire area reduction ratio of 50%, and β(A) represents a volume resistivity at 200° C. for annealing materials”. CITATION LIST Patent Literature PTL 1: JP 2013-159837 A PTL 2: JP 2016-094662 A SUMMARY Technical Problem The electrical resistivity of metallic heating elements is generally lower than that of non-metallic heating elements. Therefore, in order to obtain a required amount of heat generated, it is necessary to reduce the cross-sectional area of a metallic heating element and increase the length of it by processing it into a foil or wire material. However, for the viewpoint of reducing the usage amount of heating elements and improving the flexibility in shape thereof, metallic heating elements having higher electric resistivity have been demanded. Further, metallic heating elements obtain excellent oxidation resistance through a protective oxide layer formed by Cr and Al in the alloy at high temperature. However, when Cr and Al in the alloy is consumed by long-term use and thus the concentrations of these elements decrease, the protective oxide layer cannot be maintained, causing breakaway oxidation and damage of the heating element. In particular, heating elements which are installed immediately upstream of exhaust gas purification equipment in automobiles and the like and are used for increasing the temperature of exhaust gas to promote reactions with catalysts are required to have more excellent oxidation resistance because the heating elements may have a maximum arrival temperature exceeding 1000° C. Among the alloys specified in JIS C 2520, Type 2 and Type 3 of nickel chromium wires and strips for electrical heating of Ni—Cr alloy have a maximum use temperature of 1000° C. and 800° C., respectively, and thus they cannot be used in applications in which the maximum use temperature exceeds 1000° C. Further, although Type 1 of nickel chromium wires and strips for electrical heating has a maximum use temperature of 1100° C., it is very expensive because it contains Ni in an amount of 77% or more. Furthermore, the electrical resistivity is 101 μΩ·cm to 112 μΩ·cm (1.01 μΩ·m to 1.12 μΩ·m) in terms of volume resistivity, which is not enough. On the other hand, the Fe—Cr alloy has a higher maximum operating temperature than the Ni—Cr alloy, and Type 1 and Type 2 of iron chromium wires and strips for electrical heating have a maximum operating temperature of 1250° C. and 1100° C., respectively. Further, the Fe—Cr alloy has higher electrical resistivity than the Ni—Cr alloy. Type 1 and Type 2 of iron chromium wires and strips for electrical heating have a volume resistivity of 142 μΩ·cm (1.42 μΩ·m) and 123 μΩ·cm (1.23 μΩ·m), respectively. However, when such Type 1 and Type 2 of iron chromium wires and strip for electrical heating are used at a high temperature above 1000° C. for a long time, the oxidation rate of the heating element is fast and Al is early consumed. This phenomenon is particularly noticeable in foil materials having a thin thickness and wire materials having a small diameter, which results in a significant shortening of life. At high temperatures exceeding 1000° C., a protective oxide layer easily spalls off, which likely causes a damage and rupture of the heating element. Further, the alloy described in PTLs 1 and 2, which is Fe—Cr alloy, has an austenite microstructure because it contains Ni as an austenite-stabilizing element at a content of 10% to 15% and thus is advantageous in that it has higher strength at high temperatures than Fe—Cr alloy having a ferrite microstructure. However, since the austenite microstructure has a higher thermal expansion coefficient than the ferrite microstructure, a large thermal stress occurs along with volume expansion during heating. In particular, when heating and cooling are repeated under conditions such that the maximum use temperature exceeds 1000° C., deformation and fracture due to the thermal stress easily occur, leading to a shorter life. It could thus be helpful to provide Fe—Cr alloy which is suitable for using as a resistance heating element, the Fe—Cr alloy having high electric resistivity and excellent in oxidation resistance, in particular oxidation resistance at a high temperature beyond 1000° C., and an advantageous method for producing the same. Further, it also provides a resistance heating element using the Fe—Cr alloy. Solution to Problem In order to solve the above problems, the inventors made various studies, and as a result, discovered the following. (1) To achieve both excellent electrical resistivity and oxidation resistance at high temperatures in Fe—Cr alloy, it is effective to simultaneously increase the Si content and Al content. In particular, when the Al content exceeds 2.0%, a protective layer of Al2O3is formed on the surface in a high temperature environment, which dramatically improves oxidation resistance. Thus, it is possible to improve both electric resistivity and oxidation resistance at high temperatures by simultaneously increasing the Si content and Al content and further containing a certain amount or more of Cr to set the total amount of Si, Al, and Cr to a predetermined amount or more. (2) However, Al and Si are an element that deteriorates toughness. When the inventors used Fe—Cr alloy containing Cr in the amount of about 20% to produce a material with a changed Si content and Al content, as the Si content and Al content were increased, cracking was likely to occur during hot rolling and cold rolling, and in particular, processing the Fe—Cr alloy into a thin sheet material became difficult. (3) In order to solve the problems, the inventors made additional studies. As a result, they discovered that in order to simultaneously increase the Si content and Al content of, in particular, a thin Fe—Cr alloy sheet material, it is effective to roll a slab having an increased Al content and a lowered Si content to obtain a sheet material having a final sheet thickness, and subject the sheet material to siliconizing treatment by a thermal CVD method to increase the Si content in the final product. Thus, Fe—Cr alloy having a thin sheet thickness with increased Si and Al contents can be obtained. This disclosure is based on the discoveries and further studies. We thus provide: 1. A Fe—Cr alloy having a chemical composition containing (consisting of), by mass %,C: 0.020% or less,Si: more than 1.5% and 10.0% or less,Mn: 1.0% or less,P: 0.040% or less,S: 0.010% or less,Cr: 16.0% to 30.0%,Al: 2.0% to 6.5%,N: 0.020% or less, andNi: 0.50% or less, with the balance being Fe and inevitable impurities, the Fe—Cr alloy satisfying the following formula (1): 14.0≤% Si+1.15×% Al+0.35×% Cr   (1) where % Si, % Al and % Cr indicate a Si content, an Al content, and a Cr content, by mass %, respectively in the chemical composition. 2. The Fe—Cr alloy according to 1., wherein the chemical composition further contains, by mass %, at least one selected from the group consisting ofTi: 0.01% to 0.50%,Zr: 0.01% to 0.20%,Hf: 0.01% to 0.20%,REM: 0.01% to 0.20%,Cu: 0.01% to 0.10%,Nb: 0.01% to 0.50%,V: 0.01% to 0.50%,Mo: 0.01% to 6.0%,W: 0.01% to 6.0%,B: 0.0001% to 0.0050%,Ca: 0.0002% to 0.0100%, andMg: 0.0002% to 0.0100%. 3. The Fe—Cr alloy according to 1. or 2. having a sheet thickness of 200 μm or less. 4. A method for producing a Fe—Cr alloy, comprising:rolling a slab having a chemical composition containing (consisting of), by mass %,C: 0.020% or less,Si: 0.01% to 1.5%,Mn: 1.0% or less,P: 0.040% or less,S: 0.010% or less,Cr: 16.0% to 30.0%,Al: 2.0% to 6.5%,N: 0.020% or less, andNi: 0.50% or less, with the balance being Fe and inevitable impurities to obtain a sheet material having a final sheet thickness;subjecting the sheet material to siliconizing treatment by a thermal CVD method to obtain a Fe—Cr alloy having a Si content of more than 1.5 mass % and 10.0 mass % or less and satisfying the following formula (1): 14.0≤% Si+1.15×% Al+0.35×% Cr   (1) where % Si, % Al, and % Cr indicate a Si content, an Al content, and a Cr content, by mass %, respectively in the chemical composition of the Fe—Cr alloy. 5. The method for producing a Fe—Cr alloy according to 4., wherein the chemical composition of the slab further contains, by mass %, at least one selected from the group consisting ofTi: 0.01% to 0.50%,Zr: 0.01% to 0.20%,Hf: 0.01% to 0.20%,REM: 0.01% to 0.20%,Cu: 0.01% to 0.10%,Nb: 0.01% to 0.50%,V: 0.01% to 0.50%,Mo: 0.01% to 6.0%,W: 0.01% to 6.0%,B: 0.0001% to 0.0050%,Ca: 0.0002% to 0.0100%, andMg: 0.0002% to 0.0100%. 6. The method for producing a Fe—Cr alloy according to 4. or 5., wherein the sheet material has a final sheet thickness of 200 μm or less. 7. A resistance heating element made of the Fe—Cr alloy according to any one of 1. to 3. Advantageous Effect According to this disclosure, it is possible to obtain a Fe—Cr alloy having high electrical resistivity and excellent in oxidation resistance, in particular, oxidation resistance at a high temperature beyond 1000° C. Further, since the Fe—Cr alloy of this disclosure is particularly excellent in oxidation resistance at high temperatures, it can be suitable used as heating elements of exhaust gas heating devices which are installed immediately upstream of exhaust gas purification equipment in automobiles and the like, as heating elements of electric furnaces and electric cooking apparatuses, and additionally, as catalyst carriers, reflector plates of heaters, and chimney members.
281,674
11321031
FIELD OF THE INVENTION The present invention relates to authenticating user access to printing operations from a cloud-based server. More particularly, the present invention relates to authenticating user information to access a job stored on the cloud-based server. DESCRIPTION OF THE RELATED ART A user should be authenticated prior to submitting a print job to a cloud-based server. The authentication determines its permission. It also allows the server to identify the user of a print job, or other processing instruction, being submitted. Authentication usually requires a client program to prompt the user to enter its username and password in a login dialog. Most client applications have no problem prompting a login dialog authenticate a user to a server, then submitting a print job to a cloud-based server. Other client applications, such as a port monitor, may find it difficult to show a login box because the application interferes with the normal printing flow. SUMMARY OF THE INVENTION A method for authenticating user access to a print job on a cloud-based server is disclosed. The method includes submitting a job submission request to the cloud-based server from a port monitor. The method also includes uploading job data for the print job to the cloud-based server. The method also includes generating a claim code by the cloud-based server. The claim code is associated with the print job. The method also includes forwarding the claim code to the port monitor. The method also includes launching a browser with a uniform resource locator (URL) address indicating the cloud-based server. The URL address includes the claim code. The method also includes assigning the claim code to a user session initiated by the browser. The method also includes selecting the print job having the job data associated with the claim code to be sent from the cloud-based server. A method for authenticating user access to a job at a cloud-based server is disclosed. The method includes uploading job data for the job from a port monitor to the cloud-based server. The method includes receiving a first uniform resource locator (URL) address at the port monitor. The first URL address refers to the uploaded job on the cloud-based server. The method also includes submitting a request for the job using the first URL address. The request includes job metadata information for the job. The method also includes generating a claim code for the job at the cloud-based server. The method also includes receiving the claim code at the port monitor. The method also includes forwarding the claim code to the cloud-based server using a second URL address. The method also includes authenticating a session to access the job according to the claim code. The method also includes forwarding the job to the device from the cloud-based server. A method for authenticating a user session to access a job on a cloud-based server using a port monitor is disclosed. The method includes uploading job data for the job to the cloud-based server using the port monitor. The method also includes submitting the job including job information metadata using the application. The job data and job information metadata for the job are stored on the cloud-based server. The method also includes generating a claim code for the job at the cloud-based server. The method also includes providing the claim code to the port monitor. The method also includes forwarding the claim code using a uniform resource locator (URL) address initiated in a browser by the port monitor to the cloud-based server. The method also includes determining whether user information associated with the claim code is valid. The method also includes establishing the user session once the user information is validated. The method also includes selecting the job on the cloud-based server.
107,093
11498868
TECHNICAL FIELD The present disclosure relates to the addition of colloidal silica as an admixture to concrete as it is being mixed, and prior to being poured or alternatively immediately after being poured. BACKGROUND Silica, silicates and siliconates have been used extensively for many different applications since their discovery. They are used in everything from toothpaste as an abrasive, to matches as a water proofer, to engine blocks as a sealant. Silica is the common name for silicon dioxide. Silica is one of two principle ingredients in Portland cement. Silica (in the form of siliceous clay) also known as a pozzolan, is mixed with limestone (calcium carbonate) under high heat to make cement. The term pozzolan is derived from the name of the town Pozzuoli, Italy. It is situated near Mt. Vesuvius and is the place where the Romans more than 2,000 years ago mined the ashes deposited by the occasional eruptions of this volcano. Adding these ashes at a ratio of 2:1 to aged lime putty (aged 2+ years) they were able to construct the buildings of ancient Rome, many of which still exist today due to the composition of the concrete the Romans used. The pozzolanic reaction is the chemical reaction that occurs in Portland cement containing pozzolans. It is the main reaction involved in the Roman concrete invented in Ancient Rome and used to build, for example, the Pantheon. Pozzolans are the glue that holds concrete together. Included within the category of pozzolans is colloidal silica. Colloidal silica is a suspension of fine amorphous, nonporous, and typically spherical silica particles in a liquid phase. Colloidal silica has an extremely high pozzolanic value. The smaller the particle size the larger the surface area and the higher the pozzolanic value. At the basis of the pozzolanic reaction stands a simple acid-base reaction between calcium hydroxide, also known as Portlandite, or (Ca(OH)2), and silicic acid (H4SiO4, or Si(OH)4). Simply, this reaction can be schematically represented as follows: Ca(OH)2+H4SiO4→Ca2++H2SiO42−+2H2O→CaH2SiO4.2H2O or summarized in abbreviated notation of cement chemists: CH+SH→C—S—H The product of general formula (CaH2SiO4.2H2O) formed is a calcium silicate hydrate, also abbreviated as C—S—H in cement chemist notation, the hyphenation denotes the variable stoichiometry. The ratio Ca/Si, or C/S, and the number of water molecules can vary and the above mentioned stoichiometry may differ. Many pozzolans contain aluminate, or Al(OH)4−, that will react with calcium hydroxide and water to form calcium aluminate hydrates such as C4AH13, C3AH6or hydrogarnet, or in combination with silica C2ASH8or stratlingite (where “C” represents calcium oxide, or lime (CaO), “A” represents aluminum oxide, or alumina (Al2O3), “S” represents silicon dioxide, or silica (SiO2) and “H” represents water (H2O) in cement chemist notation). In the presence of anionic groups such as sulphate, carbonate or chlorine, AFm (alumina, ferric oxide, monosulfate) phases and AFt (alumina, ferric oxide, tri-sulfate) phases or ettringite phases can form. Pozzolans not only strengthen and seal the concrete; they have many other beneficial features when added to the mix. The most common pozzolans are fly ash, rice hull ash, and silica fume. Fly ash (FA) and rice hull ash (RHA) particles are almost totally spherical in shape, allowing them to flow and blend freely in mixtures with Portland cement. This is known as the “ball-bearing” effect of the spherical shape of FA and RHA particles create a lubricating action when concrete is in its plastic state. During curing and continuing for some time thereafter these pozzolans will continue to combine with free lime, increasing the density and structural strength of the concrete over time. The increased density and long-term pozzolanic action ties up free lime and results in fewer bleed channels and decreases permeability in the concrete structure. Dense pozzolan concrete also helps keep foreign, destructive compounds on the surface of the concrete where their destructive action is lessened. Pozzolan concrete is also more resistant to attack by sulfate, mild acid, soft (lime-absorbing) water, and seawater. These pozzolans tie up free lime that otherwise could combine with sulfate to create destructive expansion of the concrete. Also, pozzolans chemically bind free lime and salts that can create efflorescence. Denser concrete, due to pozzolans, holds efflorescence-producing compounds on the inside. The largest contributor to drying shrinkage in concrete is the loss of water content. The lubricating action of FA and RHA reduces the need for water and therefore also reduces drying shrinkage. Fly ash is the most commonly known and used artificial pozzolan and results from the burning of pulverized coal in electric power plants. The amorphous glassy spherical particles are the active pozzolanic portion of fly ash. Fly ash is 66-68% glass, on an average. Though fly ash is typically produced in coal-fired power plants, in reality it doesn't matter at all where the ash comes from, as long as it can produce the benefits listed above. Unfortunately that may not always be true with the kind of ash one would like to use as a pozzolan. For example, coal from the East Coast of the United States tends to contain sulfur, which is still present in the ash or the particles of an ash regardless of its origin, and might be too big or contain too much carbon. In an attempt to classify different qualities of ash, categories have been created for coal-derived fly ash. Class F fly ash (see ASTM C 618) readily reacts with lime (produced when Portland cement hydrates) and alkalis to form cementitious compounds. In addition to that, Class C fly ash may also exhibit hydraulic (self-cementing) properties. In combination with Portland cement, Class C fly ash can be used as a cement replacement, ranging from 20-35% of the mass of cementitious material. Class C fly ash must replace at least 25% of the Portland cement to mitigate the effects of alkali silica reaction. In combination with Portland cement, Class F fly ash can be used as a cement replacement ranging from 20-30% of the mass of cementitious material. As little as 3% of coal in the cement mix (without aggregates) will prevent the hardening of the concrete. On the other hand, 1% doesn't seem to be a problem at all, so the gap is pretty narrow. If the fly ash has high calcium content, it should not be used in sulfate exposure or hydraulic applications. Rice Hull Ash (RHA) does not come by nature as a finely divided powder, one of the requirements to be a good pozzolan. Rice hulls are an organic product and they contain carbon. The technology for burning rice hulls has improved a lot, but that doesn't mean that each and every plant that burns these hulls is using the latest technology. Even if they do, the result will not necessarily be a suitable pozzolan. The modern furnaces for rice hulls are probably mostly designed to produce as little NOx emission as possible. For that the hulls would have to be burnt with the minimum possible amount of air (oxygen). That in turn would unfortunately mean that the carbon content measured in3LOI2(loss on ignition) might be high. Silica fume (SF) is a waste product of the silicon metal industry, and is a super-fine powder of almost pure amorphous silica. Though difficult (and expensive) to handle, transport and mix, it has become the chosen favorite for very high-strength concretes (such as for high rise buildings), and is often used in combination with both cement and fly ash. Silica fume is a by-product resulting from the production of silicon or ferrosilicon alloys or other silicon alloys. Silica fume is light or dark gray in color, containing typically more than 90% of amorphous silicon dioxide. Silica fume powder collected from waste gases and without any further treatment is generally called undensified silica fume, to distinguish it from other forms of silica fume. Undensified silicon fume consists of very fine vitreous spherical particles with an average diameter about 150 nm, whereas the average cement particle has a diameter of about 10 μm. The undensified silica fume is almost as fine as cigarette ash and the bulk density is only about 200-300 kg/m3. The relative density of typical silica fume particles is 2.2 to 2.5. Because the extreme fineness and high silicon content, silica fume is generally a very effective pozzolan. Though condensed silica fume is much easier to handle and transport, uncondensed silica fume (normally in the form of a slurry) is more effective. The smaller, already wetted particles mix much easier and distribute better, hence reactivity is better. The chemical composition of SF varies depending on the nature of the manufacturing process from which the SF is collected. The main constituent material in SF is silica (SiO2), the content of which is normally over 90%. The use of silica fume in concrete usually increases water demand. The increased water demand causes an increase in water to cement ratio and could negate the benefits of adding silica fume. For this reason, silica fume concrete (SFC) normally incorporates a water reducing agent or superplasticiser. SFC is more cohesive than conventional concrete. This is true for SFCs both with and without superplasticiser. Increased cohesiveness reduces the likelihood of bleeding and segregation. This increased cohesiveness could however increase the required compaction energy. Increased cohesiveness of SFC encourages the potentiality of plastic shrinkage and cracking that appears when the bleeding water cannot compensate for the water loss on the surface, due to evaporation. Under conditions of fast evaporation, curing measures are normally taken immediately after placing the concrete. It should be noted that to overcome the above shortcomings, sometimes FA and/or RHA are also added to the concrete, together with SF. Combining SF with the appropriate aggregates and water-reducing agent can produce high-strength concrete with a cube compressive strength of around 100 Mpa, in extreme cases up to 300 Mpa. The impermeability of SFC is higher than that of similar concrete without SF. Tests have proven that one part of silica fume can replace up to 3-4 parts of cement without any loss of strength. Replacing 10% by weight of cement with SF is a good starting point for experiments. Unfortunately, some types of SF cannot be used in concrete. The combination of Si and FeSi—75% condensed silica fume has proven to work effectively, while mixtures of FeSi—75% with FeSi—50% and FeSi—75% with CaSi have proven to be ineffective. The silica fume particle consists mainly of vitreous silica particles. It has a specific gravity of about 2.20, which happens to be the accepted value for the specific gravity of any vitreous silica. Nevertheless, it has been proven that the higher the amount of impurities in silica fume, the higher the specific value. Certain impurities such as iron, magnesium, and calcium (note: but not CaSi) have shown to increase this value. SUMMARY The present invention includes chemical compositions that include colloidal silica for use as admixtures when mixing concrete prior to being poured and finished. The present invention also includes chemical compositions that comprise colloidal silica for application to concrete immediately after it is poured for use as hardening agents and as a means of protecting freshly poured concrete from freeze damage prior to finishing during cold weather. In one embodiment, colloidal silica can be used as an admixture to concrete mix. In specific embodiments, a colloidal silica solution having a silica solids content of about 3% to about 10%, by weight, may be used at a ratio of about 1 fluid ounce (fl. oz.) (about 30 mL) to about 34 fl. oz. (about 1 L) per sack of concrete mix, to provide for a finishable concrete mix even when there is up to a 90% reduction in the amount of water added to the mix. In embodiments where the concrete mix includes only a small amount of water (e.g., more than a 75% reduction, an 85% reduction, a 90% reduction, etc.), use of colloidal silica as an admixture may be enhanced by vibrating (e.g., with a vibratory screed, etc.) or otherwise manipulating the concrete mix. In a second embodiment, colloidal silica can be used in a method where it is applied at the rate of about 32 fl. oz. (about 950 mL) per 100 square feet (sq. ft.) (9.3 m2) to freshly poured, but uncured, concrete, to prevent freeze damage in the event the concrete is poured but not timely finished during freezing weather. Other aspects of the invention, as well as their features and advantages, will become apparent to those in the art through consideration of the ensuing description and the appended claims.
283,439
11453710
SEQUENCE LISTING The instant application contains a Sequence Listing, which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 31, 2019, is named 761146_000139_SL.txt and is 230,489 bytes in size. BACKGROUND The development of mature immunocompetent lymphoid cells from less-committed precursors, their subsequent antigen-driven immune responses, and the suppression of these and unwanted autoreactive responses are highly dependent and regulated by cytokines (including interleukin-2 [IL-2], IL-4, IL-7, IL-9, IL-15, and IL-21) that utilize receptors in the common γ-chain (γc) family (Rochman et al., 2009) and family members including IL-12, 18 and 23. IL-2 is essential for thymic development of Treg cells and critically regulates several key aspects of mature peripheral Treg and antigen-activated conventional T cells. Because of its potent T cell growth factor activity in vitro, IL-2 has been extensively studied in part because this activity offered a potential means to directly boost immunity, e.g., in cancer and AIDS-HIV patients, or a target to antagonize unwanted responses, e.g., transplantation rejection and autoimmune diseases. Although in vitro studies with IL-2 provided a strong rationale for these studies, the function of IL-2 in vivo is clearly much more complex as first illustrated in IL-2-deficient mice, where a rapid lethal autoimmune syndrome, not lack of immunity, was observed (Sadlack et al., 1993, 1995). Similar observations were later made when the gene encoding IL-2Rα (Il2ra) and IL-2Rβ(Il2rb) were individually ablated (Suzuki et al., 1995; Willerford et al., 1995). The present invention refers to conditionally active and/or targeted cytokines for use in the treatment of cancer and other diseases dependent on immune up or down regulation. For example, the antitumoral activity of some cytokines is well known and described and some cytokines have already been used therapeutically in humans. Cytokines such as interleukin-2 (IL-2) and interferon α (IFNα) have shown positive antitumoral activity in patients with different types of tumors, such as kidney metastatic carcinoma, hairy cell leukemia, Kaposi sarcoma, melanoma, multiple myeloma, and the like. Other cytokines like IFNβ, the Tumor Necrosis Factor (TNF) α, TNFβ, IL-1, 4, 6, 12, 15 and the CSFs have shown a certain antitumoral activity on some types of tumors and therefore are the object of further studies. SUMMARY Provided herein are therapeutic proteins, nucleic acids that encode the proteins, and compositions and methods of using the proteins and nucleic acids for the treatment of a disease or disorder, such as proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, graft-versus-host disease and the like. The invention features fusion proteins that are conditionally active variants of IL-12. In one aspect, the full-length polypeptides of the invention have reduced or minimal IL-12-receptor activating activity even though they contain a functional IL-12 polypeptide. Upon activation, e.g., by cleavage of a linker that joins a blocking moiety, e.g., a steric blocking polypeptide, in sequence to the active cytokine, IL-12, or a functional fragment or mutein thereof, can bind its receptor and effect signaling. If desired, the full-length polypeptides can include a blocking polypeptide moiety that also provides additional advantageous properties. For example, the full-length polypeptide can contain a blocking polypeptide moiety that also extends the serum half-life and/or targets the full-length polypeptide to a desired site of cytokine activity. Alternatively, the full-length fusion polypeptides can contain a serum half-life extension element and/or targeting domain that are distinct from the blocking polypeptide moiety. Preferably, the fusion protein contains at least one element or domain capable of extending in vivo circulating half-life. Preferably, this element is removed enzymatically in the desired body location (e.g., protease cleavage in the tumor microenvironment), restoring pharmacokinetic properties to the payload molecule (e.g., IL-12) substantially similar to the naturally occurring payload molecule. The fusion proteins may be targeted to a desired cell or tissue. As described herein targeting is accomplished through the action of a blocking polypeptide moiety that also binds to a desired target, or through a targeting domain. The domain that recognizes a target antigen on a preferred target (for example a tumor-specific antigen), may be attached to the cytokine via a cleavable or non-cleavable linker. If attached by a non-cleavable linker, the targeting domain may further aid in retaining the cytokine in the tumor, and may be considered a retention domain. The targeting domain does not necessarily need to be directly linked to the payload molecule, and may be linked directly to another element of the fusion protein. This is especially true if the targeting domain is attached via a cleavable linker. In one aspect is provided a fusion polypeptide comprising an IL-12 polypeptide, or functional fragment or mutein thereof, and a blocking moiety, e.g., a steric blocking domain. The blocking moiety is fused to the IL-12 polypeptide, directly or through a linker, and can be separated from the IL-12 polypeptide by cleavage (e.g., protease-mediated cleavage) of the fusion polypeptide at or near the fusion site or linker or in the blocking moiety. For example, when the IL-12 polypeptide is fused to a blocking moiety through a linker that contains a protease cleavage site, the IL-12 polypeptide is released from the blocking moiety and can bind its receptor, upon protease mediated cleavage of the linker. The linker is designed to be cleaved at the site of desired cytokine activity, for example in the tumor microenvironment, avoiding off-target cytokine activity and reducing overall toxicity of cytokine therapy. In one embodiment, a fusion polypeptide is provided that includes at least one of each of an interleukin 12 (IL-12) polypeptide [A], a half-life extension domain [B], an IL-12 blocking moiety [D], and a protease-cleavable polypeptide linker [L], wherein the IL-12 polypeptide and the IL-12 blocking moiety are operably linked by the protease-cleavable polypeptide linker and the fusion polypeptide has attenuated IL-12-receptor activating activity. Typically, the IL-12-receptor activating activity of the fusion polypeptide is at least about 10 fold less than the IL-12-receptor activating activity of the polypeptide that includes the IL-12 polypeptide that is produced by cleavage of the protease-cleavable polypeptide linker. The serum half-life of the IL-12-comprising polypeptide that is produced by protease cleavage of the protease-cleavable polypeptide linker is typically comparable to the half-life of naturally occurring IL-12. The fusion polypeptide can have the formula: [A]-[L1]-[D], [A]-[L1]-[D]-[L2]-[B], or [B]-[L1]-[A]-[L1]-[D], where [A] is an interleukin 12 (IL-12) polypeptide, [B] is a half-life extension element, [L1] and [L2] are each independently a polypeptide linker, wherein [L1] is a protease-cleavable polypeptide linker and [L2] is polypeptide linker that is optionally protease-cleavable, and [D] is an IL-12 blocking moiety. In one embodiment, the fusion polypeptide has attenuated IL-12-receptor activating activity, but the IL-12 comprising polypeptide that is produced upon (i) cleavage of the L1 protease-cleavable polypeptide linker, or (ii) cleavage of both L1 and L2 when L2 is a protease-cleavable polypeptide linker, has comparable IL-12-receptor activating activity and half-life to naturally occurring IL-12. The interleukin 12 (IL-12) polypeptide [A] can be further defined by the formula: [A1]-[L3]-[A2],or [A2]-[L3]-[A1], where [A1] is an IL-12 p40 subunit polypeptide, [A2] is an IL-12 p35 subunit polypeptide, and [L3] is a polypeptide linker that is optionally protease cleavable. The fusion polypeptide can further include a tumor-specific antigen binding peptide. For example, the tumor-specific antigen binding peptide can be linked to any one of [A], [B], or [D] by a non-cleavable linker. The tumor-specific antigen binding peptide can be linked to any one of [A], [B], or [D] by a cleavable linker. The tumor-specific antigen binding peptide can be linked to the IL-12 polypeptide by a non-cleavable linker and the IL-12 polypeptide can be linked to the half-life extension element or the IL-12 blocking moiety by a cleavable linker. The IL-12-receptor activating activity of the fusion polypeptide can be assessed, for example, using a HEK Blue reporter cell assay and using equal amounts on a mole basis of the IL-12 polypeptide and the fusion polypeptide. The fusion polypeptide of the invention may include protease-cleavable polypeptide linkers, where each protease-cleavable polypeptide linker independently comprises at least one sequence that is capable of being cleaved by a protease selected from the group consisting of a kallikrein, thrombin, chymase, carboxypeptidase A, cathepsin G, cathepsin L, an elastase, PR-3, granzyme M, a calpain, a matrix metalloproteinase (MMP), a fibroblast activation protein (FAP), an ADAM metalloproteinase, a plasminogen activator, a cathepsin, a caspase, a tryptase, and a tumor cell surface protease. Each protease-cleavable polypeptide of the fusion polypeptide can independently comprise two or more cleavage sites for the same protease, or two or more cleavage sites that can be cleaved by different proteases, or at least one of the protease-cleavable polypeptides comprises a cleavage site for two or more different proteases. In some embodiments, the IL-12 blocking moiety of the fusion polypeptides of the invention inhibits activation of the IL-12 receptor by the fusion polypeptide. In some embodiments, the IL-12 blocking moiety of the fusion polypeptide can comprise, for example, a ligand-binding domain or fragment of a cognate receptor for the IL-12, a single domain antibody, Fab or scFv that binds the IL-12 polypeptide, or an antibody or antibody fragment selected from a single domain antibody, an Fab and an scFv that binds a receptor of the IL-12. The half-life extension element of the fusion polypeptide can be, for example, human serum albumin, an antigen-binding polypeptide that binds human serum albumin, or an immunoglobulin Fc. In some embodiments, the blocking moiety can also function as a serum half-life extension element. In some other embodiments, the fusion polypeptide further comprises a separate serum half-life extension element. In some embodiments, the fusion polypeptide further comprises a targeting domain. In various embodiments, the serum half-life extension element is a water-soluble polypeptide such as optionally branched or multi-armed polyethylene glycol (PEG), full length human serum albumin (HSA) or a fragment that preserves binding to FcRn, an Fc fragment, or a nanobody that binds to FcRn directly or to human serum albumin. In addition to serum half-life extension elements, the pharmaceutical compositions described herein preferably comprise at least one, or more targeting domains that bind to one or more target antigens or one or more regions on a single target antigen. It is contemplated herein that a polypeptide construct of the invention is cleaved, for example, in a disease-specific microenvironment or in the blood of a subject at the protease cleavage site and that the targeting domain(s) will bind to a target antigen on a target cell. At least one target antigen is involved in and/or associated with a disease, disorder or condition. Exemplary target antigens include those associated with a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease. In some embodiments, a target antigen is a cell surface molecule such as a protein, lipid or polysaccharide. In some embodiments, a target antigen is a on a tumor cell, virally infected cell, bacterially infected cell, damaged red blood cell, arterial plaque cell, or fibrotic tissue cell. Target antigens, in some cases, are expressed on the surface of a diseased cell or tissue, for example a tumor or a cancer cell. Target antigens for tumors include but are not limited to Fibroblast activation protein alpha (FAPa), Trophoblast glycoprotein (5T4), Tumor-associated calcium signal transducer 2 (Trop2), Fibronectin EDB (EDB-FN), fibronectin EIIIB domain, CGS-2, EpCAM, EGFR, HER-2, HER-3, c-Met, FOLR1, and CEA. Pharmaceutical compositions disclosed herein, also include proteins comprising two antigen binding domains that bind to two different target antigens known to be expressed on a diseased cell or tissue. Exemplary pairs of antigen binding domains include but are not limited to EGFR/CEA, EpCAM/CEA, and HER-2/HER-3. In some embodiments, the targeting polypeptides independently comprise a scFv, a VH domain, a VL domain, a non-Ig domain, or a ligand that specifically binds to the target antigen. In some embodiments, the targeting polypeptides specifically bind to a cell surface molecule. In some embodiments, the targeting polypeptides specifically bind to a tumor antigen. In some embodiments, the targeting polypeptides specifically and independently bind to a tumor antigen selected from at least one of EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1. In some embodiments, the targeting polypeptides specifically and independently bind to two different antigens, wherein at least one of the antigens is a tumor antigen selected from EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1. In some embodiments, the targeting polypeptide serves as a retention domain and is attached to the cytokine via a non-cleavable linker. As described herein, the IL-12 blocking moiety can bind to IL-12 and thereby block activation of the cognate IL-12 receptor. This disclosure also related to nucleic acids, e.g., DNA, RNA, mRNA, that encode the conditionally active proteins described herein, as well as vectors and host cells that contain such nucleic acids. This disclosure also relates to pharmaceutical compositions that contain a conditionally active protein, nucleic acid that encodes the conditionally active protein, and vectors and host cells that contain such nucleic acids. Typically, the pharmaceutical composition contains one or more physiologically acceptable carriers and/or excipients. The disclosure also relates to methods of making a pharmaceutical composition that include culturing host cell that contain nucleic acids encoding the fusion polypeptides of the invention under suitable conditions for expression and collection of the fusion polypeptides. The disclosure also relates to therapeutic methods that include administering to a subject in need thereof an effective amount of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid, and pharmaceutical compositions of any of the foregoing. Typically, the subject has, or is at risk of developing, a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease. The disclosure further relates methods for treating a tumor or cancer that include administering to a subject in need thereof an effective amount of a fusion polypeptide of the invention. In some embodiments, the method for treating a tumor or cancer can include administering effective amount of the fusion polypeptide intravenously. In some embodiments, the method can further include administration of an additional chemotherapeutic agent. The disclosure also relates to the use of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid, and pharmaceutical compositions of any of the foregoing, for treating a subject in need thereof. Typically the subject has, or is at risk of developing, a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease. The disclosure also relates to the use of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid for the manufacture of a medicament for treating a disease, such as a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease.
238,699
11318142
TECHNICAL FIELD OF THE INVENTION The present invention is aimed at a novel composition (pharmaceutical) for use as a medicament; in particular, the present invention is aimed at the above pharmaceutical composition for use in the treatment of depressive and anxiety syndromes. Specifically, said pharmaceutical composition is suitable for use in the treatment of: major depression, generalized anxiety disorder, social phobia, disorder, panic disorder, mixed depression and anxiety disorder, somatoform disorder, treatment-resistant depression, obsessive-compulsive disorder. The invention also relates to a process for the preparation of said composition. BACKGROUND OF THE INVENTION The data relating to the incidence of depressive syndromes, in particular of major depression with or without anxiety component, in the general population have reached dramatically high levels with costs associated with treatments and loss of productivity amounting to several billion dollars. Patients who, despite adequate therapy, do not fully recover or worse, fail to respond at all to the treatments, are estimated at more than a third of subjects in treatment. From WHO data, depression affects 322 million people worldwide. Depression as a whole is the foremost item of expenditure of the healthcare systems of European countries. The majority of people suffering from depression (major depression according to the DSM-V) are of full working age, and the loss of productivity associated with this condition has been estimated at one trillion US dollars per year. Despite the treatments available to date, well over a third of patients in therapy for depressive, anxiety, or mixed disorders or do not attain complete remission, and a sizeable proportion of these obtain no response in terms of improvement. From these concerns emerges the need to have new and more effective pharmacological strategies available. Brief Description of the Prior Art Research in this field has been directed toward the identification of new target receptors besides the “conventional” monoaminergic receptors (receptors 5HT2A, 5HT2C, 5HT1A, 5HT7, α2 and β2, D2, D3, H1, and so on) the activities of which are acted upon by tricyclic antidepressants (TCAs), monoaminoxidase inhibitors (MAOIs), and selective serotonin reuptake inhibitors (SSRIs), or serotonin and noradrenaline reuptake inhibitors (SNRI), of dopamine and noradrenaline (DNRIs) by increasing the bioavailability of the neurotransmitter at the synaptic level. Among the target receptors investigated, one that has aroused great interest is the receptor called sigma-1 (σ-1), just recently discovered and initially erroneously included in the family of opioid receptors. Today it is known that the σ-1 receptor endogenously binds neurohormones having a steroidal structure such, for example, dehydroepiandrosterone sulphate (DHEAS) and progesterone. Also many exogenous compounds, including SSRIs, bind, with different affinity levels, to the σ-1 receptor as agonists. The role of these receptors in the treatment of depression has been elucidated by studies demonstrating how they are capable of modulating serotoninergic, dopaminergic, and, especially, glutamatergic transmission in strategic areas of the central nervous system (CNS) such, for example, the limbic system, the anterior cingulate cortex, the amygdala and the hippocampus (Jordanna E. Bermack and Guy Debonnel, 2004 J Pharmacol Sci 97, 317-336 (2005)The role of Sigma Receptors in depression. Jordanna E. Bermackl and Guy Debonnell,* 1 Department of Psychiatry, McGill University, 1033, Pine Avenue West, Suite 207, Montreal, Quebec, Canada H3A 1A1. Received Nov. 22, 2004). They are also capable of influencing the flow of calcium ions across the membrane in nerve cells, by modifying their action potential and thus their excitability (normalization of calcium flows within neurons is one of the mechanisms underlying the activity of various mood stabilizing drugs). The glutamatergic system has still not been fully exploited as a target for the action of antidepressant and/or anxiolytic drugs. The only drugs developed by research for this system, and moreover with limited effectiveness, given the pathologies to which they are addressed, are Memantine for Alzheimer's disease and Riluzole for amyotrophic lateral sclerosis (ALS). The fact that via an agonist action on the σ-1 receptor this system can also be “manipulated” to obtain an antidepressant/anxiolytic effect is an absolute novelty. Moreover, SSRIs (and other molecules) also have agonist activity on this receptor, in particular fluvoxamine followed, in terms of affinity, by sertraline (in order of decreasing affinity, these are followed by fluoxetine, citalopram, and paroxetine). However, clinical experience teaches that notwithstanding the use of high dosages of these known drugs in therapy, these alone do not resolve cases that are refractory to treatment. For this a stronger σ-1 receptor agonist could yield better results. Such a molecule exists and is used in particular in Germany and other European countries for the treatment of generalized anxiety disorder (GAD), generally as the monotherapy. Said molecule corresponds to 4-[3-(5H-dibenz[b,f]azepine-5-yl)propyl]-1-piperazinethanol, a tricyclic antidepressant compound known as Opipramol. Agonist action on the σ-1 receptor through binding to opipramol causes the migration of the receptor complex from the endoplasmic reticulum of the nerve cell to the cytoplasmic membrane thereof, where it performs a sensitization of permeability to calcium ions (Ca2+). Increased influx of calcium ions into the glutamatergic neuron determines the release therefrom of neurotransmitters such as serotonin and noradrenaline, dopamine, glutamate and acetylcholine on the synaptic gradient, with increase of neurotransmission. No other drug currently available guarantees the synaptic release of all these neurotransmitters, in particular of glutamate and acetylcholine, which positively influence both mood and cognitive functions. Moreover, σ-1 receptor agonism is capable of initiating a series of intracellular events, including an increase in the production of the transcription factor CREB which involves an increase in the production of BDNF (Brain-derived neurotrophic factor). This, as is well known, is capable of stimulating neurogenesis in particular areas of the CNS, including the hippocampus. Hippocampal atrophy is correlated to patients with major depression and is in all probability due both to the regression of dendritic processes and to a real loss of hippocampal neurons. Recent studies have shown that the σ-1 receptors are also co-involved in the budding of an axon and in its branching (or sprouting). Yet the same study has highlighted how SSRIs are able to increase the density of these receptors in these affected areas (Takebayashi M., Hayashi T., on T. P.,nerve growth factor-induced neurite sprouting in PC12cells involves sigma-1receptors: implications for antidepressants. J Pharmacol Exp Ther 2002; 303, 1227-1237). For its part, the compound (RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol, an antidepressant of the class of SNDRIs known as venlafaxine, proved to be one of the most effective antidepressants in major depressions, has a good affinity for the σ-1 receptor, inhibits the reuptake of serotonin and noradrenaline and, at higher dosages, of dopamine also. TECHNICAL PROBLEM Unfortunately, even the use of these last two compounds, taken individually, at dosages known and commonly used in therapy has not been completely satisfactory for the resolution of the problems described previously, both in respect of the treatment of all the depressive and anxiety syndromes described and, in particular, in respect of the cases that are refractory to known treatments. There remains, therefore, the need in medical circles to have available new pharmaceutical compositions having adequate antidepressant and/or anxiolytic activity, that are able to provide a satisfactory response to the problems previously described. SUMMARY OF THE INVENTION The Applicant has now found that, by combining suitable quantities of Opipramol and Venlafaxine, it is possible to give an adequate response to the technical problem generated by the need described above. One object of the present invention is therefore a suitable combination of the two active principles referred to above for use as a medicament, as stated in the attached independent claim. Another object of the present invention is then formed by a pharmaceutical composition comprising the combination of said two active principles referred to above, as stated in the attached independent claim. Yet another object of the present invention is a pharmaceutical composition comprising the aforementioned combination for use in the treatment of depressive and anxiety syndromes, as stated in the attached independent claim. A still further object of the present invention is a process for preparing said composition referred to above, as stated in the attached independent claim. Other objects of the present invention are described in the appended dependent claims.
104,218
11288942
FIELD OF THE INVENTION The present technology is directed towards management of therapy for the amelioration, treatment, or prevention of respiratory disorders. More specifically, it is directed towards a patient management system having a rules engine to monitor patient compliance. BACKGROUND TO THE INVENTION Insurance companies, or other reimbursing entities (payors), often require evidence that a patient prescribed with respiratory pressure therapy has been compliant, that is, used their respiratory pressure therapy (“RPT”) device according to certain a compliance standard before reimbursing the patient for the RPT device. Compliance standards generally require some minimum amount of usage per session for some fraction of a number of consecutive sessions known as the compliance period. One example of a compliance standard for Continuous Positive Airway Pressure (CPAP) therapy common to many payors, known as the CMS compliance standard, is that a patient is required to use the RPT device for at least four hours a night on at least 21 of 30 consecutive days. In order to determine a patient's compliance, a provider of the RPT device (such as a durable medical equipment provider or DME agent, also sometimes referred to as a home medical equipment provider or HME agent) may manually obtain data describing the patient's therapy using the RPT device, calculate the device usage from the therapy data, and compare the usage with the compliance standard. Once the DME agent has determined that the patient is compliant according to the compliance standard, the DME agent may notify the reimbursing entity that the patient is compliant. This process can be costly, time-consuming, and error-prone if conducted manually. RPT devices typically therefore contain data management capability that enables the RPT device to store and transmit therapy data to a remote server to determine automatically whether the patient has used the RPT device in accordance with the compliance standard. SUMMARY OF THE INVENTION In a first aspect there is provided a patient management system comprising:a data management server in communication with a plurality of durable medical equipment (DME) devices configured to provide a therapy to a plurality of patients, the data management server configured to:receive, via a network, data from each of the plurality of DME devices, wherein the data comprises at least one of DME therapy data or patient identifying data,assess the received data, andbased at least in part on a determination that the received data satisfies at least one rule, cause an indication of an alert condition. The plurality of DME devices may comprise a plurality of respiratory pressure therapy devices. Each of the plurality of respiratory pressure therapy devices may be configured to deliver respiratory pressure therapy to a patient in the form of pressurized air to an airway of the patient during a therapy session. The data may comprise one or more variables of therapy delivered to the patient by at least one of the plurality of DME devices. The data management server may be further configured to:identify an action of a plurality of actions;perform the identified action;adjust one or more settings of the alert condition, wherein said adjusting includes at least muting the alert condition; andre-assess the received data. The identified action may comprise at least one of add patient notes, update prescription data, contact a patient, order new equipment, or generate a patient report. Said updating prescription data may comprise at least one of modifying, cancelling, or renewing a prescription. To assess the received data, the patient management system may be configured to determine patient compliance based at least in part on a monitored therapy treatment of the one or more patients and a prescribed therapy treatment of the one or more patients. Said muting the alert condition may comprise muting the alert condition for a predefined period of time. The rule may comprise a condition associated with at least one of patient usage data, therapy duration, timestamp information or equipment information. Each rule of the plurality of rules may define a set of patients that satisfies a particular rule, wherein a set of patients that satisfies the particular rule is a subset of the plurality of patients of which therapy is provided by the plurality of DME devices. The data management server may be further configured to cause a display to display information indicative of one or more of the plurality of rules and information indicative of one or more patients. Satisfying a rule may indicate that a patient is not in compliance with a prescribed therapy treatment. The data management server may be further configured to cause an indication that one or more patients do not meet one or more efficacy thresholds. In another aspect there is provided a method of patient management comprising:assessing activity of one or more patients of a group of patients;indicating an alert condition is present based at least in part on the assessed activity, the alert condition indicative of one or more patients satisfying one or more rules;receiving a first action of a plurality of actions;performing the first received action;adjusting one or more settings of the alert condition, wherein said adjusting includes at least muting the alert condition; andre-assessing patient activity. Each action of the plurality of actions may be associated with at least one of adding patient notes, updating prescription data, contacting one or more patients, ordering new equipment, and generating a patient report. Updating prescription data may comprise at least one of modifying, cancelling, or renewing a prescription. Said assessing activity may comprise determining patient compliance based at least in part on a monitored therapy treatment of the one or more patients and a prescribed therapy treatment of the one or more patients. Muting the alert condition may comprise muting the alert condition for a predefined period of time. The one or more rules may include a condition associated with at least one of patient usage data, therapy duration, timestamp information, equipment information. Each rule of the one or more rules may define a set of patients that satisfies the associated rule, wherein the set of patients that satisfies the associated rule is a subset of the group of patients of which activity is assessed. The method may further comprise displaying information indicative of one or more of the plurality of rules and information indicative of one or more patients. Satisfaction by a first patient of one or more rules may indicate that the first patient is not in compliance with a prescribed therapy treatment. The method may further comprise providing indication that one or more patients do not meet one or more efficacy thresholds. In another aspect there is provided a patient management system comprising:a data management server in communication with a plurality of DME devices and configured to receive use data from the plurality of DME devices, wherein the use data is associated with a first set of the plurality of patients; anda patient compliance monitoring system in communication with the data management server, wherein the patient compliance monitoring system is configured to provide a displayed indication of the use data for the plurality of DMEs, wherein the displayed indication of the use data comprises:an overview of patient compliance, wherein the overview of patient compliance includes at least a number of patients in the first set of patients, current compliance data, compliance history data, and follow-up data; anda plurality of customizable tiles, wherein the plurality of customizable tiles includes at least a title and a plurality of selectable subtitles, each of the plurality of selected subtitles associated with one or more rules;wherein the patient compliance monitoring system is further configured to:receive a first selection of a first selectable subtitle;responsive to the selection of a first selectable subtitle, update the displayed indication to include an indication of one or more patients in a second set of patients, wherein the second set of patients is a subset of the first set of patients;receive a second selection corresponding to a first patient of the second set of patients, andresponsive to the second selection, update the displayed indication to include an indication of one or more rules triggered by the first patient. The one or more rules may be associated with at least one of patient usage data, therapy duration, timestamp information, equipment information. The display device may be further configured to provide an indication that one or more patients do not meet one or more efficacy thresholds. The one or more efficacy thresholds may be variable efficacy thresholds. The one or more variable efficacy thresholds may comprise one or more moving averages. The one or more rules triggered by the first patient may indicate that the first patient is at risk of non-compliance with a prescribed therapy treatment. The displayed indication may further include a report, the report comprising information associated with at least one of monitored patient performance, patient notes, proscribed patient treatment, and patient identifying information. In another aspect there is provided a method of patient management comprising:receiving therapy data associated with a plurality of durable medical devices and a first set of patients;causing a display to display an overview of patient compliance and a plurality of customizable tiles, wherein the overview of patient compliance includes at least the number of patients in the first set of patients, current compliance data, compliance history data, and follow-up data, wherein the plurality of customizable tiles include at least a title and a plurality of selectable subtitles, each of the plurality of selected subtitles associated with one or more rules;responsive to a selection of a first selectable subtitle, causing the display to display at least an indication of one or more patients in a second set of patients, wherein the second set of patients is a subset of the first set of patients; andresponsive to a selection of a first patient, causing the display to display at least one or more rules triggered by the first patient. The one or more rules may be associated with at least one of patient usage data, therapy duration, timestamp information, equipment information. The method may further comprise providing indication that one or more patients do not meet one or more efficacy thresholds. The one or more efficacy thresholds may be variable efficacy thresholds. The one or more variable efficacy thresholds may comprise one or more moving averages. The rule triggered may suggest that a patient is at risk of non-compliance with a prescribed therapy treatment. The method may further comprise generating a report, the report comprising information associated with at least one of monitored patient performance, patient notes, proscribed patient treatment, and patient identifying information. In another aspect there is provided a system which monitors patient compliance for a plurality of patients of prescriptions for using a plurality of durable medical devices (DMEs) in order to improve patient usage of the DMEs, the system comprising:a data management server in communication with the plurality of DMEs, the data management server configured to receive use information of the plurality of DMEs;a patient compliance monitoring system configured to provide a displayed indication of the use information of the plurality of DMEs, wherein the patient compliance monitoring system automatically organizes the use information based on one or more compliance rules preprogramed or selected by a user, the one or more compliance rules configured to organize the information into a format that indicates to a user information regarding compliance of the DMEs so that the user can determine one or more groupings of the plurality of patients that have similar compliance of the DMEs in order to allow the user to improve or confirm compliance with the prescriptions. The displayed indication of the use information may comprise a plurality of tiles representing the one or more groupings of the plurality of patients that have similar compliance of the DMEs. At least one tile of the plurality of tiles may represent patients of the plurality of patients at risk of non-compliance. The at least one tile may represent patients at risk of non-compliance within 7 days, 14 days, or one month. Each tile of the plurality of tiles may display a number of patients represented by the particular tile. Each tile of the plurality of tiles may be configured to expand to list individual patient information. Individual patient information may comprise at least a patient name and/or contact information. Clicking on or selecting the patient name, the contact information, or other information of the individual patient information may automatically send a text or initiates a phone call. The text or phone call may initiate an automated message to a patient identified by the individual patient information. Clicking on or selecting the patient name, the contact information, or other information of the individual patient information may allow a user to can change the patient's prescription. The automated message may comprise an indication of one or more links to tutorials to instruct the patient identified by the individual patient information as to how to improve that patient's usage and/or compliance. The individual patient information may comprise an indication of previous contact attempts and/or results. The individual patient information may comprise a compliance history. The individual patient information may comprise an indication of recommended actions to improve patient compliance. At least one tile of the plurality of tiles may comprise an indication of recommended actions to improve patient compliance. At least one tile of the plurality of tiles may include metrics for patients of a particular group of the plurality of patients. The individual patient information may comprise Apnea-Hypopnea Index (AHI) information. The individual patient information may comprise an indication of an amount of time a particular patient uses a DME of the plurality of DMEs. At least one tile of the plurality of tiles may represent patients of the plurality of patients which are non-compliant. The at least one tile may represent patients which have been non-compliant for at least 30 days or at least 90 days. At least one tile of the plurality of tiles may represent patients of the plurality of patients to follow up with. The at least one tile may represent patients to follow up with after 2 days, 1 week, or 2 weeks. In another aspect there is provided a method for monitoring patient compliance for a plurality of patients of prescriptions for using a plurality of durable medical devices (DMEs) in order to improve patient usage of the DMEs, the method comprising:receiving, at a data management server in communication with the plurality of DMEs, use information of the plurality of DMEs;providing, via a patient compliance monitoring system, a displayed indication of the use information of the plurality of DMEs; andautomatically organizing the use information based on one or more compliance rules preprogramed or selected by a user, the one or more compliance rules configured to organize the information into a format that indicates to the user information regarding compliance of the DMEs so that the user can determine one or more groupings of the plurality of patients that have similar compliance of the DMEs in order to allow the user to improve or confirm compliance with the prescriptions. The displayed indication of the use information may comprise a plurality of tiles representing the one or more groupings of the plurality of patients that have similar compliance of the DMEs. At least one tile of the plurality of tiles may represent patients of the plurality of patients at risk of non-compliance. The at least one tile may represent patients at risk of non-compliance within 7 days, 14 days, or one month. Each tile of the plurality of tiles may display a number of patients represented by the particular tile. The method may further comprise responsive to a selection of a first tile of the plurality of tiles, causing the displayed indication of the use information to display an expanded list of individual patient information. Individual patient information may comprise at least a patient name and/or contact information. The method may further comprise automatically sending a text or initiating a phone call in response to a user clicking on or selecting the patient name, the contact information, or other information of the individual patient information. The text or phone call may initiate an automated message to a patient identified by the individual patient information. The automated message may comprise an indication of one or more links to tutorials to instruct the patient identified by the individual patient information as to how to improve that patient's usage and/or compliance. The method may further comprise changing the patient's prescription in response to a user clicking on or selecting the patient name, the contact information, or other information of the individual patient information. The individual patient information may comprise an indication of previous contact attempts and/or results. The individual patient information may comprise a compliance history. The individual patient information may comprise an indication of recommended actions to improve patient compliance. At least one tile of the plurality of tiles may comprise an indication of recommended actions to improve patient compliance. At least one tile of the plurality of tiles may comprise metrics for patients of a particular group of the plurality of patients. The individual patient information may comprise Apnea-Hypopnea Index (AHI) information The individual patient information may comprise an indication of an amount of time a particular patient uses a DME of the plurality of DMEs. At least one tile of the plurality of tiles may represent patients of the plurality of patients which are non-compliant. The at least one tile may represent patients which have been non-compliant for at least 30 days or at least 90 days. At least one tile of the plurality of tiles may represent patients of the plurality of patients to follow up with. The at least one tile may represent patients to follow up with after 2 days, 1 week, or 2 weeks. For purposes of summarizing the disclosure, certain aspects, advantages and novel features of several embodiments have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the embodiments disclosed herein. Thus, the embodiments disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
75,332
11484363
FIELD OF THE DISCLOSED TECHNIQUE The disclosed technique relates to system and method for preventing rapture of eye tissue of interest in general, and to systems and methods for determining the position and orientation of a tool tip relative to eye tissue of interest, in particular. BACKGROUND OF THE DISCLOSED TECHNIQUE The optical structure of the eye includes thin and fragile transparent tissues such as the cornea, the iris, the lens and the lens capsule. Common surgery procedures in ophthalmology (e.g., cataract surgery, IOL placement, cornea implantation and the like) are related to the front eye and are performed using a stereoscopic microscope. In general, the eye tissues are transparent and therefore difficult to see. These surgical procedures are complicated due to low visibility through the transparent eye tissues. During these procedures the surgeon needs to cut or avoid cutting these transparent tissues. Damage to transparent eye tissues might cause complication during the surgery, resulting long period of patient recovery, altering the outcome of the procedure and causing repeated surgeries and retirements. When a surgeon experiences difficulties in making accurate incision and procedures using the microscope, the procedure may not provide the desired results. Prior art systems employ non-visual scanning technologies for locating the eye capsule during surgery. Reference is now made to U.S. Pat. No. 8,945,140 issued to Hubschman et al., and entitled “Surgical Procedures Using Instrument to Boundary Spacing Information Extracted from Real-Time Diagnostic Scan Data”. This publication relates to a surgical method for providing a surgeon with additional guidance concerning the distance separating a working end of an instrument and the posterior capsule of the eye during a surgical procedure. The method involves acquiring non-visual three-dimensional data (i.e., diagnostic scan data), and processing the scan data for determining the distance between an instrument and the posterior boundary of the lens tissue. Visual and/or auditory conveyance of distance information is provided to the surgeon. SUMMARY OF THE PRESENT DISCLOSED TECHNIQUE It is an object of the disclosed technique to provide a novel method and system for determining the position and orientation of a tool tip relative to an eye tissue of interest. In accordance with one aspect of the disclosed technique, there is thus provided a system for determining a position of at least one tool point of interest of a tool, relative to an eye tissue of interest. The system includes and imager a tool tracker and a processor coupled with the imager and with the tool tracker. The imager acquires at least one image of at least one tissue reference marker. The at least one tissue reference marker is different from the eye tissue of interest. The tool tracker determines information relating to the position and orientation of the tool in a reference coordinate system. The imager and the tool tracker are in registration with the reference coordinate system. The processor determines at least one of a position and a position and orientation of the at least one tissue reference marker in the reference coordinate system, according to the acquired at least one image of the at least one tissue reference marker. The processor determines the position and orientation of the eye tissue of interest in the reference coordinate system according to the at least one of position and position and orientation of the at least one tissue reference marker and a relative position between the at least one tissue reference marker and the eye tissue of interest. The relative position is pre-determined at least from a stored 3D model. The processor further determines the position of the at least one tool point of interest in the reference coordinate system from the information relating to the position and orientation of the tool in the reference coordinate system. The processor also determines a relative position between the at least one tool point of interest and the eye tissue of interest. In accordance with another aspect of the disclosed technique, there is thus provided a method for determining a position of at least one tool point of interest, relative to an eye tissue of interest. The method includes the procedures of acquiring at least one image of at least one tissue reference marker, determining at least one of position and position and orientation of the at least one tissue reference marker in a reference coordinate system. The at least one tissue reference marker being different from the eye tissue of interest. The method further includes the procedure of determining a position and orientation of the eye tissue of interest in the reference coordinate system according to the at least one of position and position and orientation of the at least one tissue reference marker and a relative position between the at least one tissue reference marker and the eye tissue of interest. The relative position being pre-determined at least from a stored 3D model. The method also includes the procedures of determining the position of the at least one tool point of interest in the reference coordinate system and determining a relative position between the at least one tool point of interest and the eye tissue of interest.
269,069
11317797
FIELD OF THE DISCLOSURE The present disclosure relates generally to methods and devices for identifying contact lens wearers predisposed to contact lens discomfort, and more particularly to methods and devices for delivering a cool mechanical stimulus to the eye of the patient to determine a detection threshold and classifying the patient as being predisposed to contact lens discomfort if the threshold is less than or equal to a predetermined value. BACKGROUND Discomfort and dryness affect about 50% of the contact lens-wearing population and despite the advances in lens materials, contact lens discomfort (“CLD”) is still the primary factor for abandonment of contact lens wear. While the causes of CLD are multifactorial and it is known that lens wear alters sensory responses of the ocular surface, the neural basis of the symptoms remains a mystery, in part because there is a poor correlation between the symptoms and clinical signs that might theoretically help to explain the symptoms. This lack of knowledge is an important problem because subjective measures of symptoms are often used to measure success, even though more quantitative, objective measures might be preferable. This has hindered the hypothesis-driven development and testing of new materials, solutions or other interventions designed to eliminate CLD. Accumulating evidence suggests that adaptation and sensitization of the sensory system play an important role in contact lens-induced discomfort and dryness. Sensitization involves an enhanced response to a stimulus in the nervous system, leading to discomfort or pain. In contrast, neural adaptation is the decreased responsiveness to a repetitive and sustained stimulus over time and might partly be responsible for reducing lens awareness. SUMMARY In one embodiment, the present disclosure provides a method of determining a predisposition to contact lens discomfort in a patient, said method comprising: determining a detection threshold of the patient by delivering a cool mechanical stimulus to the cornea of the patient; optionally applying a series of cool mechanical stimuli to the cornea of the patient; and classifying the patient as being predisposed to contact lens discomfort if the detection threshold is at or below a cut-off value predetermined to be associated with predisposition to contact lens discomfort and/or the patient does not adapt to the series of cool mechanical stimuli. In one aspect of this embodiment, the cool mechanical stimulus is delivered by directing a cool fluid to the cornea of the patient. In a variant of this aspect, the cool fluid is a gas. In another variant, the cool fluid is a liquid. In another variant of this embodiment, the cool mechanical stimulus is a cool pneumatic stimulus and the series of cool mechanical stimuli is a series of cool pneumatic stimuli. In a further variation, the cool pneumatic stimulus is delivered by a pneumatic esthesiometer. In a still further variation, the cool pneumatic stimulus is delivered at about room temperature. In yet another variation, the cool pneumatic stimulus is delivered to the cornea at a controlled flow rate having a temperature of from about 20° C. to 30° C. from an air pulse source located at a controlled spaced-apart distance of from 1 mm to 10 mm from the cornea for a controlled duration of from 1 second to 5 seconds. In another variation, the cool pneumatic stimulus is delivered as ascending intensities of air pulse flow rates, with a pause between deliveries of different air pulse flow rates, until an air pulse flow rate elicits a positive psychophysical response from the patient, wherein said air pulse flow rate that elicits the positive psychophysical response from the patient is used to determine the patient's detection threshold. In another variation, the series of cool pneumatic stimuli is applied to the cornea of the patient and the patient is classified as being predisposed to contact lens discomfort if the patient does not adapt to the series of cool pneumatic stimuli. In a further variation, the series of cool pneumatic stimuli is applied at subthreshold intensity. In still a further variation, the series of cool pneumatic stimuli is applied at threshold intensity. In another variation, the series of cool pneumatic stimuli is applied at suprathreshold intensity. In another variation, the patient is prescribed initial contact lenses after the detection threshold is determined and the series of cool pneumatic stimuli is applied to the patient after the initial contact lenses have been worn by the patient for at least one day. In a still further variation, the method comprises prescribing contact lenses comprising a different design and/or material from the initial contact lenses if the patient does not adapt to the series of cool pneumatic stimuli. In another variant of this embodiment, the detection threshold or the patient's ability to adapt to the series of cool mechanical stimuli are determined prior to prescribing contact lenses to the patient. In another aspect, the patient is one of a neophyte contact lens wearer, a current contact lens wearer and a lapsed contact lens wearer. In yet another aspect, the patient as a subject in a clinical trial for a pre-marketed contact lens. In another aspect, the method comprises classifying the patient comprises inputting results of the determining step to a system comprising at controller configured to i) receive the results; ii) optionally receive data on whether the patient adapts to a series of cool mechanical stimuli administered to an ocular surface of the patient; and iii) classify the patient as being predisposed to contact lens discomfort if the patient's detection threshold is below a predetermined cut-off associated with predisposition to contact lens discomfort and/or if the patient does not adapt to the series of cool mechanical stimuli. In a variant of this aspect, the controller carries out the additional step of iv) outputting a recommendation for the patient's follow-up management based on the patient's classification. In a further variant, the patient is classified as being predisposed to contact lens discomfort and the recommendation for the patient's follow-up management comprises at least one of prescribing a premium lens to the patient, prescribing an ophthalmic drop that promotes ocular comfort, and scheduling a follow-up visit for the patient. In another embodiment, the present disclosure provides an analysis system comprising: an esthesiometer comprising a source of fluid, a fluid flow rate controller coupled to the source of fluid, a tip coupled to the flow rate controller adapted to deliver a cool mechanical stimulus to an ocular surface of a patient, and a user input device by which patient responses can be signaled; and a controller in communication with the flow rate controller to execute a test process including: producing a stimulus according to a detection threshold test protocol for detecting a threshold of a cool mechanical stimulus administered to an ocular surface of the patient, and storing patient responses received at the user input device during execution of the detection threshold test protocol, the sequence controller determining the patient's detection threshold based on the stored patient responses for the detection threshold test protocol, optionally producing a series of stimuli according to an adaptation test protocol for determining whether the patient adapts to a series of cooling mechanical stimuli administered to the ocular surface of the patient, and storing patient responses received at the user input device during execution of the adaptation test protocol, the controller determining whether the patient adapts to the series of cooling mechanical stimuli based on the stored patient responses for the adaptation test protocol; and generating data for classifying the patient as being predisposed to contact lens discomfort if the patient's detection threshold is below a predetermined cut-off associated with predisposition to contact lens discomfort and/or if the patient does not adapt to the series of cooling mechanical stimuli. In one aspect of this embodiment, the fluid is a gas, the cool mechanical stimulus is a cool pneumatic stimulus, and the series of cooling mechanical stimuli is a series of pneumatic cooling stimuli.
103,877
11349656
BACKGROUND 1. Field of the Invention Various embodiments described herein relate generally to the field of electronic data security and more particularly to the secure storage, management, and transmission of data, credentials and encryption keys at a client endpoint and during transmission. 2. Related Art The vision of a paperless modern society is quickly becoming a reality, as more and more communications, services and transactions take place digitally across networks such as the Internet. The need for paper copies of correspondence, financial documents, receipts, contracts and other legal instruments is dwindling as electronic methods for securely transmitting, updating and accessing these documents increases. In addition to the electronic transmission and access to documents and correspondence, the process of electronically submitting information is also commonplace, such as with online shopping or applications for loans, credit cards, health insurance, college or job applications, etc. Security of electronic data is of paramount importance for private individuals and for almost every conceivable business and government entity. A tremendous volume of electronic data is being generated, stored, and transmitted on a constant basis. Moreover, the breadth of electronic data, which nowadays inevitably extends to private and sensitive information, necessarily attracts a host of bad actors. Conventional data security solutions are relatively static. For example, one or more data security mechanisms (e.g., password protection, encryption scheme) may be deployed at a particular data storage location. The same data security mechanisms will generally remain in place until a significant security breach is detected, at which point the entire data storage location may have already been compromised. Data that have been stored based on standard relational data models are particularly vulnerable to unauthorized access. Individual data records (e.g., name, address, social security number, credit card number, and bank account number) stored in separate storage locations are typically accompanied by a common record locator indicating a logicalnexusbetween the data records (e.g., associated with the same user). For example, individual data records may each be associated with the same user identification number. As such, unauthorized access to any one data record may expose sufficient information (i.e., the user identification number) to gain access to the remainder of the data records. Although numerous data security methods are available, implementing a flexible roster of seamlessly integrated and complementary data security solutions at a single data storage location remains an enormous challenge. For example, while combining security solutions will normally increase data security, incompatibilities between different solutions may in fact give rise to additional security risks. Moreover, in order for a user to be able to store and retrieve data, there must be a way to identify that user and protect their data from being accessed by any other user. Traditionally, this is performed by “front-end” software where the user is authenticated and authorized through a login process. The conventional login process is associated with a number of documented weaknesses. For example, in many systems, the login step is commonly considered a part of the user interface (UI) and a separate entity from the security bubble. The problem is magnified in cases where in-house developers, having limited background in security, attempt to build custom login authentication and authorization systems. As such, a malicious user can potentially have access to other users' data once that user successfully completes the login process. But these issues are also exacerbated by the fact that much of the data that is created today is created or accessed at a client endpoint, e.g., a computer, laptop, smartphone, tablet, Internet of Things device, etc. Even if the issues described above can be solved for data stored and retrieved at a server, there is the additional problem of securing the data at the endpoint. Thus, any solution to the above issues should take into account the fact that the client endpoint must also be secured. Key Exchange Methodologies There are many forms of key exchange methodologies in current use for establishing a trusted communication link between two devices and to encrypt/decrypt transmitted data such as through symmetric shared secret keys or public/private asymmetric keys. Symmetric encryption uses the same key for both encrypting and decrypting data through any number of algorithms such as AES, Blowfish, DES, and Skipjack and is typically faster than asymmetric encryption. It is often used for bulk data encryption and when high rates of data throughput are necessary. In contrast, asymmetric encryption utilizes a pair of keys, public and private, where a public key is typically used to encrypt the data and the private key is used to decrypt the data. Asymmetric key algorithms can be 1000 times slower than symmetric key algorithms and therefore more commonly applied to key management or initial device authentication where there is not a continuous exchange of key pairs which would require enormous resource capability. Encrypted Data Transmission In a common scenario where a large object needs to be sent encrypted to multiple client destinations and each client should have a uniquely encrypted copy, the traditional approach is to encrypt the original object using a different key for each client. If there are N clients and it takes an amount of time T to encrypt each object, the total encryption time is N×T. Data Encryption Speed Currently, there are several approaches to increase performance (speed at which data can be encrypted). One approach is by using hardware-based acceleration. 128 bit and 256-bit AES ciphers can be accelerated 4 to 8 times through AES-NI hardware encryption (where available on Intel and AMD processors). It is also possible to decrease the key size at the expense of security. AES with 256-bit keys is about 40% slower than AES with 128-bit keys. Another tactic is to use alternative encryption algorithms such as Blowfish which can produce a 20% speed improvement. Encryption Key Management Encryption keys are typically used to encrypt data or to encrypt other keys which are then used to encrypt data, the later commonly known as Key Encryption Keys (KEK). Managing keys and who has access to keys can be a daunting task. Key Management Software (KMS) attempts to make this job easier by providing user and administration access to all of the necessary keys. A KMS may also provide backup and redundancy services to safeguard a copy of the keys in case of a catastrophic server failure. User uptime is maintained when a replacement KMS is spun up quickly since access to encrypted data will not be possible unless the KMS is constantly up. Data Encryption Data is traditionally encrypted while in any number of states. For example, an entire hard-drive may be encrypted for data-at-rest. In another example, data-in-motion may be encrypted as it travels through a secure https connection. Data in databases may also be encrypted using methods where data in individual fields are encrypted in place while preserving the original table format. Other ad-hoc scenarios include encrypting single desktop folders or mounted disk drives. In all these cases, the data to be encrypted is not organized into a format that is much different from their original footprint. The encrypted data merely replaces the original data in-place, or if replicated to other media, transferred to storage using a similar data and file hierarchy as the original data. Other techniques exist which do reorganize the data storage format, such as in the case with Data Sharding and Erasure Coding algorithms. These distribute the original data and that data may also be encrypted. However, the distribution and storage formats follow a rigid protocol imposed by the underlying algorithm thereby making it difficult to apply higher level capabilities and integration with existing legacy formats and/or third-party solutions. SUMMARY Disclosed herein are systems and methods for secure storage, transmission and management of data, credentials and encryption keys to and from the client endpoint. According to one aspect, a method for secured communications between devices is provided. The method comprises: establishing communications for data streaming of a data object between a first device and a second device; receiving, at the second device, a plurality of datasets encrypted based on a first dataset key derived based, in part, on a first encryption algorithm, each encrypted dataset comprising encryption keys used to encrypt corresponding data fragments constituting the data object; decrypting a first encrypted dataset of the plurality of datasets using the first dataset key to retrieve encryption keys for decrypting corresponding data fragments; evaluating key regeneration criteria to determine whether the first dataset key should be regenerated for a second encrypted dataset of the plurality of encrypted datasets; in response to determining that the dataset key should not be regenerated, determining a second dataset key based, in part, on a second encryption algorithm; and decrypting the second encrypted dataset using the second dataset key to retrieve unique encryption keys for decrypting corresponding data fragments. In another aspect, a method for secured communications between devices is provided. The method comprises: establishing communications for data streaming of a data object between a first device and a second device; generating, by the first device, a plurality of datasets corresponding to a plurality of data fragments constituting the data object, each dataset comprising encryption keys used to encrypt the corresponding data fragments; encrypting a first dataset of the plurality of datasets using a first dataset key derived based, in part, on a first encryption algorithm; evaluating key regeneration criteria to determine whether the first dataset key should be regenerated for a second encrypted dataset of the plurality of encrypted datasets; and in response to determining that the first dataset key should not be regenerated, determining a second dataset key based, in part, on a second encryption algorithm. In another aspect, a system for authenticated communications between devices is provided. The system comprises a plurality of devices comprising at least a first and second device; and one or more communication pathways configured to communicatively couple the first and second devices for data streaming of a data object. The first device comprises a memory coupled to at least one processor, the first device configured to: generate a plurality of datasets corresponding to a plurality of data fragments constituting the data object, each dataset comprising encryption keys used to encrypt the corresponding data fragments, encrypt a first dataset of the plurality of datasets using a first dataset key derived based, in part, on a first encryption algorithm, and determine a second dataset key based, in part, on at least one of the first encryption algorithm and second encryption algorithm. Other features and advantages should become apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings.
135,516
11458564
BACKGROUND Friction stir processing (“FSP”) of metals has been used to attach weldable materials to one another in a solid state joining process. FSP uses the motion of a pin pressed against the surface of a weldable material to generate heat and friction to move the weldable material. The material can plasticize and physically stir together with a second material to which the first material is joined. A pin, a pin and shoulder, or another “FSP tool” may be rotated in contact with a workpiece. A force is applied to the FSP tip to urge the FSP tool against the workpiece. The FSP tool is moved along the workpiece to stir the material of the workpiece. The physical process of mixing material from two plates joins the plates. FSP joins weldable materials in a solid-state process that avoids many of the potential defects of other welding processes. For example, FSP produces a stirred region along the path of the tool that is generally indistinguishable from the original material. FSP may be performed without the inclusion of an additional material or use of shield gasses. Some welding methods, such as metal-inert gas (“MIG”) welding, may introduce an additional material to create a bond. Other welding methods, such as tungsten-inert gas (“TIG”) welding, may use a non-consumable contact point to heat one or more workpieces. However, the heating may cause the one or more workpieces to attain a liquid phase and risk a phase change in the one or more workpieces. A phase change may compromise the integrity of the bond and, potentially, the workpiece, itself. To limit the possibility of a phase change or other reaction, TIG welding and similar processes utilize an inert gas “shield” around the contact area. FSP may, therefore, provide more controllable bonds in various applications. The predictability of FSP may be desirable during the manufacturing and/or assembly of structures or devices that experience high forces during use in environments or applications in which the structure or device may be inaccessible by operators. SUMMARY In some embodiments, a method of friction stir processing (FSP) includes contacting a first workpiece with a FSP tool, where the first workpiece is a low-melting temperature metal or alloy and the FSP tool is a single-body FSP tool having a diamond working surface. The method also includes rotating the FSP tool in contact with the first workpiece at an interface and generating thermal energy at the interface to heat the first workpiece. The method further includes conducting thermal energy away from the interface with the FSP tool, and friction stirring the first workpiece at a temperature of the FSP tool below 800° C. In other embodiments, a FSP device includes a single body tool formed in a single pressing process in a high temperature, high pressure press. The single body tool has a rotational axis and at least a shank and a pin. The pin is integrally formed with the shank, where the pin and at least a portion of the shank include polycrystalline diamond. In yet other embodiments, a FSP device includes a single body tool formed in a single pressing process in a high temperature, high pressure press. The single body tool has a rotational axis and at least a shank and a pin without a shoulder connected to the pin or shank. The pin is integrally formed with the shank, where the pin and at least a portion of the shank include polycrystalline diamond. This summary is provided to introduce a selection of concepts that are further described in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter. Additional features and aspects of embodiments of the disclosure will be set forth herein, and in part will be obvious from the description, or may be learned by the practice of such embodiments.
243,492
11411464
CROSS-REFERENCES TO RELATED APPLICATIONS This application is the U.S. National Stage of International Application No. PCT/EP2015/081152, filed Dec. 23, 2015, which designated the United States and has been published as International Publication No. WO 2017/016618 and which claims the priority of German Patent Application, Serial No. 20 2015 103 948.4, filed Jul. 28, 2015, pursuant to 35 U.S.C. 119(a)-(d). BACKGROUND OF THE INVENTION The invention relates to a braking device for an electric drive motor, in particular a drive motor with an armature shaft protruding beyond the motor housing, having at least one braking element and an energy storage device, wherein the energy storage device permanently applies a braking force on the braking element. Such drive motors are used in many ways, inter alia in electrical furniture drives which are used to adjust a piece of furniture. The furniture part can be, for example, a headboard or footboard of a bed or chair. Often, the driving force of the drive motor is transmitted via a worm gear with downstream spindle drive onto the furniture part. The worm gear is formed by a worm mounted on or attached to the armature shaft of the drive motor in conjunction with a worm wheel, into which the worm engages. The worm transmission offers the advantage of self-locking, thus preventing a lowering of a weight-loaded furniture part when the motor is off. Particularly in the care sector, high demands are placed on self-locking. Even with an unfavorably positioned patient a headboard or footboard of a hospital bed is not permitted to lower. To meet these high demands, it may be necessary to provide a braking device in addition to the self-locking by the worm gear, which braking device brakes the armature shaft of the motor when the motor is stopped and thus prevents lowering of the furniture part. Such braking devices can be designed as actively controllable brakes, for example, which, when actuated electromechanically, brake the armature shaft of the motor at a standstill. Alternatively, not actively controlled brakes can be used for an armature shaft of an electric drive motor. Such brakes are known from the publications DE 20 2004 008 713 U1 and DE 20 2004 008 714 U1. In these braking devices, a slight permanent braking of the armature shaft occurs, which is overcome by the torque during operation of the drive motor, but which in standstill in conjunction with self-locking is still sufficiently large to prevent an inadvertent rotation of the electric drive motor by loading of the adjustable furniture part. The braking devices initially mentioned and presented in the cited documents each have an energy storage device such as a spring, which permanently apply a braking force to a braking element. As a result of the braking force, the braking element is pressed against a braking runner for example, which is non-rotatably in communication with the armature shaft of the motor. The aforementioned permanent braking devices have proven themselves and are simpler in their structure compared to actively controlled braking devices and therefore more cost-effective. However, they are still difficult to produce, since it must be ensured that the energy storage device and the braking elements consisting of different materials are securely connected to each other, without increasing the manufacturing cost. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a braking device of the type mentioned, which is simple and therefore inexpensive in construction and offers long service life with reliable function. This object is achieved by a braking device with the features of the independent claim. Advantageous embodiments and further developments are specified in the dependent claims. A braking device according to the invention of the initially mentioned type is characterized in that the energy storage device and braking element are integrally made of the same material. The invention is based on the fundamental concept that with appropriate shaping the braking element itself can achieve a sufficient spring action to apply a required braking force. In an advantageous embodiment of the braking device, it is formed in annular manner, wherein a self-contained annular body has a central opening for receiving a portion of the armature shaft of the drive motor. Incisions which extend radially and/or inclined and are inwardly and/or outwardly open are preferably introduced into the base body. Since the body is circumferentially self-contained, it can exert a radially acting braking force from itself, without any support on external components, on the armature shaft guided through the central opening. Through the incisions, the material thickness of the annular base body is reduced, so that it can be easily widened, thus achieving a spring effect. The number and depth of the incisions makes it possible to set the desired spring force and the spring travel for the material used in the body. Thus, a material which is relatively hard and in itself is not particularly elastic can be used for the base body, which, in spite of the applied braking effect, wears little and nevertheless gives a spring action with sufficient spring travel and a required spring force which in particular is not too strong. Several incisions may preferably be arranged in a star shape. Open incisions can preferably alternate circumferentially inwardly and outwardly. As the material of the base body, zinc or bronze or a high-temperature-resistant plastic such as PEEK (polyether ether ketone) can be used for example. The materials mentioned are usually softer than the commonly used material of the armature shaft, namely solid, unhardened steel, so that braking of the armature shaft does not lead to damage to the surface of the armature shaft. Nevertheless, the materials mentioned are hard enough to achieve a braking effect as wear-free as possible and thus for a long life cycle. Said braking device, in its annular configuration, can be placed on the armature shaft in a simple and space-saving manner abutting the motor housing or be inserted into a receptacle in the motor housing. In order to fix the braking device, it is merely necessary to prevent axial slippage of the motor shaft, which can be achieved by holding or latching projections. Furthermore, the braking device must be secured against rotation, which, for example, can also take place by latching or holding projections arranged on the motor housing. These projections can, for example, engage in said incisions in the base body of the braking device. Alternatively, projections may be arranged on the outer circumference of the base body, which interact with said holding or latching projections and non-rotatably fix the braking device to the motor housing. The holding or latching projections can be arranged or formed on the motor housing itself or on a motor holder. Particularly advantageously, a surface of the at least one braking element itself forms the friction surface. In this way, a particularly simple construction of the braking device is achieved, in particular if the braking element is made of plastic in an injection-molding process. Alternatively, however, it is also possible to apply an additional ring segment to the at least one braking element facing the central opening. In this case, a surface of the ring segment forms the friction surface. Thus, regardless of the material of the base body, a friction surface which is particularly suitable for braking can be provided. In a further advantageous embodiment, the braking device is formed integrally with a motor holding plate. As a result, manufacturing and assembly costs of the electromotive drive are further reduced. Alternatively, the braking device can also be integrated in the electrical drive motor with the same advantage and in particular additionally assume the function of a sliding bearing for the drive shaft there. In particular, the rear journal bearing of a drive motor is often not designed as a ball bearing, but as a sliding bearing. The sliding bearing provided as a standard can be replaced by the braking device with sliding bearing function according to the invention. In a further advantageous embodiment of the braking device, it is formed in an annular manner from a sheet metal material, preferably in an embossing process. Again, the braking device has an annular base body with a central inner opening for receiving the armature shaft. The base body has open incisions facing inwardly towards the central opening, by means of which intermediate spring tongues are formed. The spring tongues are bent toward the inner opening out of the plane of the annular base body, so that they have at their front end an axially extending portion, with which the spring tongues press radially onto an armature shaft guided through the central opening and thus exert a braking force. In this embodiment, the braking element can be fixed to the motor housing in a similarly simple and space-saving manner. The braking device is also made integrally, preferably from a thin and resilient sheet material. The spring force is achieved by the shaping of the projecting spring tongues which extend axially in their respective end portion.
196,817
11369630
FIELD OF THE INVENTION The present invention concerns the preparation and use of a roll-on, gel, cream or spray formulation for treating muscle spasms, strains, and sprains. BACKGROUND OF THE INVENTION Magnesium and calcium are two ions that need to be in a proper equilibrium in order for the muscle cell to function properly. Dehydration, often due to excessive exercise, sweating from exercise or heat or diuretic ingestion such as with coffee or alcohol, can cause a loss of intracellular magnesium. Muscle anatomy basically consists of two components, Myosin and Actin sheaths. When a muscle is in a relaxed state, these two sheaths glide over each other with little or no resistance. When a nerve impulse activates the muscle, the two muscle sheaths contract in a ratchet like fashion. Calcium ion is needed to sustain this ability of the muscle to contract for the ratchet action. Too much calcium ion can cause stiff muscles or “the rusty ratchet effect.” Magnesium is nature's physiologic calcium blocker and replaces calcium in the contraction cycle and causes relaxation of the muscle. Current remedies for “stiff” muscles include using Epsom salts (i.e., MgSO4.7H2O). Magnesium sulfate came into medical use at least as early as 1618. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. Various uses of Epsom salts include treatment for: arthritis pain and swelling; bruises and sprains; fibromyalgia, a condition that makes your muscles, ligaments, and tendons hurt, and causes tender points throughout your body; psoriasis, a disease that causes red, itchy, scaly skin; sore muscles after working out; soreness from diarrhea during chemotherapy; sunburn pain and redness; and tired, swollen feet. The usual method of treating muscles with Epsom salts is to take a warm bath with Epsom salts added. However, magnesium salts that form in the bath water from the Epsom salts can act as an astringent and can cause dry skin so a hydrating lotion is often used after the bath. Clearly, a formulation that provides the benefits of Epsom salts but can be used without the need to take a warm bath, could be more easily used anywhere, and conveniently taken with you is needed. BRIEF SUMMARY OF THE INVENTION The present invention is the use of magnesium chloride in a formulation, used for the purpose of the magnesium sulfate, but also formulated to meet other needs has now been made by this invention. Magnesium sulfate is soluble in water at 26.9 g/100 mL. In contrast, magnesium chloride is a highly water soluble, 54.2 g/100 mL. A potent form of magnesium ion for fast-acting topical uses is needed. Magnesium chloride is more easily absorbed and utilized by the body than other forms or salts of magnesium. Magnesium chloride is selected over other possible salts because of its clinical and pharmacological effects, and its lower tissue toxicity as compared to magnesium sulfate. Other advantages of magnesium chloride are discussed in the Detailed Description of this application. Other ingredients are used in the present formulation to increase the absorption of magnesium ions into the muscle. Some additives are excipients such as non-ionic surfactants, polyethylene glycol and aloe to treat dry skin—because magnesium salts can act as an astringent and can cause dry skin. Other additives are used to increase the present roll-on formulation to be applied smoothly without causing the ball of the roll-on to be sticky or not clogging for the spray device. When desired, an aroma additive can optionally be added to the present formulation to combat the unpleasant body order from sweating when the formulation is applied after exercise. The present invention also provides a method for the treatment of an animal or human in need of treatment for muscle spasm, strain or sprain by use of a pharmaceutically-acceptable formulation of magnesium chloride. The formulation is a liquid and may be applied in any suitable manner such as a spray or roll-on application. The preferred components of the formulation are discussed below.
155,319
11462442
BACKGROUND Field Example embodiments of the inventive concepts relate to a semiconductor device having a work-function metal. Description of Related Art Widths of gate electrodes are being gradually decreased by requiring highly integrated semiconductor devices. A uniform electrical characteristic may be required for the semiconductor devices formed in memory cell areas and high current driving capability may be required for the semiconductor devices formed in logic areas. When gate electrodes for implementing the uniform electrical characteristic and the gate electrodes for implementing the high current driving capability in a single semiconductor chip are formed, there are a variety of difficulties to be faced. SUMMARY Example embodiments of the inventive concepts provide a semiconductor device having an improved electrical characteristic while simplifying a process. Example embodiments of the inventive concepts provide a method of forming a semiconductor device having an improved electrical characteristic while simplifying a process. The technical objectives of the inventive concepts are not limited to the above disclosure; other objectives may become apparent to those of ordinary skill in the art based on the following descriptions. In accordance with example embodiments of the inventive concepts, a semiconductor device includes a substrate having a memory cell area and a logic area, a first active area and a second active area in the memory cell area on the substrate, a third active area in the logic area on the substrate, an insulating layer on the substrate and configured to cover the first, second and third active areas, a first gate electrode configured to pass through the insulating layer, cover a side surface of the first active area, and cross the first active area, a second gate electrode configured to pass through the insulating layer, cover a side surface of the second active area, and cross the second active area, and a third gate electrode configured to pass through the insulating layer, cover a side surface of the third active area, cross the third active area, having a width smaller than the first gate electrode and the second gate electrode, and not having the first and second conductive layers. The first gate electrode includes a first P-work-function metal layer in the first active area, a first capping layer on the first P-work-function metal layer, a first N-work-function metal layer on the first capping layer, a first barrier metal layer on the first N-work-function metal layer, and a first conductive layer on the first barrier metal layer and having a different material from the first barrier metal layer. The second gate electrode includes a second capping layer in the second active area, a second N-work-function metal layer on the second capping layer, a second barrier metal layer on the second N-work-function metal layer, and a second conductive layer on the second barrier metal layer and having a different material from the second barrier metal layer. The third gate electrode includes a second P-work-function metal layer in the third active area, a third capping layer on the second P-work-function metal layer, a third N-work-function metal layer on the third capping layer, and a third barrier metal layer on the third N-work-function metal layer. The first N-work-function metal layer, the second N-work-function metal layer, and the third N-work-function metal layer may be thicker than the first P-work-function metal layer and the second P-work-function metal layer. The first barrier metal layer, the second barrier metal layer, and the third barrier metal layer may be thicker than the first N-work-function metal layer, the second N-work-function metal layer, and the third N-work-function metal layer. The first P-work-function metal layer and the second P-work-function metal layer may include titanium nitride (TiN). The first capping layer, the second capping layer, and the third capping layer may include TiN. The first N-work-function metal layer, the second N-work-function metal layer, and the third N-work-function metal layer may include one of titanium aluminum carbide (TiAlC) and titanium aluminide (TiAl). The first barrier metal layer, the second barrier metal layer, and the third barrier metal layer may include TiN. The first conductive layer and the second conductive layer may include tungsten (W). The device may further include a gate dielectric layer between the first active area and the first gate electrode, between the second active area and the second gate electrode, and between the third active area and the third gate electrode, wherein an upper surface of the gate dielectric layer and an upper surface of the first, second and third gate electrodes are at a same level. The first P-work-function metal layer, the second capping layer, and the second P-work-function metal layer may directly contact the gate dielectric layer. The second gate electrode may not have the first P-work-function metal layer and the second P-work-function metal layer. Upper surfaces of the insulating layer, the first P-work-function metal layer, the second P-work-function metal layer, the first capping layer, the second capping layer, the third capping layer, the first N-work-function metal layer, the second N-work-function metal layer, the third N-work-function metal layer, the first barrier metal layer, the second barrier metal layer, the third barrier metal layer, the first conductive layer, and the second conductive layer may be at a same level. The device may further include a first source/drain on the first active area and having an upper portion adjacent to an outer sidewall of the first gate electrode, the upper portion having an upper surface at a level higher than a lower surface of the first gate electrode, a second source/drain on the second active area and having an upper portion adjacent to an outer sidewall of the second gate electrode, the upper portion having an upper surface at a level higher than a lower surface of the second gate electrode, and a third source/drain on the third active area and having an upper portion adjacent to an outer sidewall of the third gate electrode, the upper portion having an upper surface at a level higher than a lower surface of the third gate electrode, wherein the upper surface of the upper portion of the second source/drain is at a different level than the upper surface of the upper portion of the first source/drain and the upper surface of the upper portion of the third source/drain. The upper surface of the upper portion of the second source/drain may be at a level from the upper surface of the upper portion of the first source/drain and the upper surface of the upper portion of the third source/drain. The first source/drain and the third source/drain may include silicon-germanium (SiGe). The second source/drain may include one of silicon carbide (SiC), silicon (Si), and a combination thereof. The device may further include a fourth active area in the logic area on the substrate, and a fourth gate electrode configured to pass through the insulating layer, cover a side surface of the fourth active area, and cross the fourth active area, the fourth gate electrode having a width smaller than the first gate electrode and the second gate electrode and not having the first and second conductive layers. The fourth gate electrode may include a fourth capping layer in the fourth active area, a fourth N-work-function metal layer on the fourth capping layer, and a fourth barrier metal layer on the fourth N-work-function metal layer. The first gate electrode may include the first barrier metal layer surrounding side surfaces and a bottom surface of the first conductive layer, the first N-work-function metal layer surrounding side surfaces and a bottom surface of the first barrier metal layer, the first capping layer surrounding side surfaces and a bottom surface of the first N-work-function metal layer, and the first P-work-function metal layer surrounding side surfaces and a bottom surface of the first capping layer. The second gate electrode may include the second barrier metal layer surrounding side surfaces and a bottom surface of the second conductive layer, the second N-work-function metal layer surrounding side surfaces and a bottom surface of the second barrier metal layer, and the second capping layer surrounding side surfaces and a bottom surface of the second N-work-function metal layer. The third gate electrode may include the third N-work-function metal layer surrounding side surfaces and a bottom surface of the third barrier metal layer, the third capping layer surrounding side surfaces and a bottom surface of the third N-work-function metal layer, and the second P-work-function metal layer surrounding side surfaces and a bottom surface of the third capping layer. In accordance with example embodiments of the inventive concepts, a semiconductor device includes a substrate having a memory cell area and a logic area, a first active area in the memory cell area on the substrate, a second active area in the logic area on the substrate, an insulating layer on the substrate, the insulating layer configured to cover the first and second active areas, a first gate electrode configured to pass through the insulating layer, cover a side surface of the first active area, and cross the first active area, and a second gate electrode configured to pass through the insulating layer, cover a side surface of the second active area, and cross the second active area, the second gate electrode having a width smaller than the first gate electrode and not having the first conductive layer. The first gate electrode includes a first work-function metal layer in the first active area, a first barrier metal layer on the first work-function metal layer, and a conductive layer on the first barrier metal layer, the conductive layer having a different material from the first barrier metal layer. The second gate electrode includes a second first work-function metal layer in the second active area, and a second barrier metal layer on the second first work-function metal layer. In accordance with example embodiments of the inventive concepts, a semiconductor device includes a substrate having a memory cell area and a logic area, a first active area and a second active area in the memory cell area on the substrate, a third active area and a fourth active area in the logic area on the substrate, an insulating layer on the substrate, the insulating layer configured to cover the first to fourth active areas, a first gate electrode configured to pass through the insulating layer, cover a side surface of the first active area, and cross the first active area, a second gate electrode configured to pass through the insulating layer, cover a side surface of the second active area, and cross the second active area, a third gate electrode configured to pass through the insulating layer, cover a side surface of the third active area, cross the third active area, and have a width smaller than the first gate electrode and the second gate electrode, and a fourth gate electrode configured to pass through the insulating layer, cover a side surface of the fourth active area, and cross the fourth active area, the fourth gate electrode having a width smaller than the first gate electrode and the second gate electrode and not having the first and second conductive layers. The first gate electrode includes a first P-work-function metal layer in the first active area, a first capping layer on the first P-work-function metal layer, a first N-work-function metal layer on the first capping layer, a first barrier metal layer on the first N-work-function metal layer, and a first conductive layer on the first barrier metal layer, the first conductive layer having a different material from the first barrier metal layer. The second gate electrode includes a second capping layer in the second active area, a second N-work-function metal layer on the second capping layer, a second barrier metal layer on the second N-work-function metal layer, and a second conductive layer on the second barrier metal layer, the second conductive layer having a different material from the second barrier metal layer. The third gate electrode includes a second P-work-function metal layer in the third active area, a third capping layer on the second P-work-function metal layer, a third N-work-function metal layer on the third capping layer, and a third barrier metal layer on the third N-work-function metal layer. The fourth gate electrode includes a fourth capping layer in the fourth active area, a fourth N-work-function metal layer on the fourth capping layer, a fourth barrier metal layer on the fourth N-work-function metal layer, and a third conductive layer on the fourth barrier metal layer, the third conductive layer having a different material from the fourth barrier metal layer. In accordance with example embodiments of the inventive concepts, a method of forming a semiconductor device includes preparing a substrate having a memory cell area and a logic area, forming a first active area and a second active area in the memory cell area on the substrate, forming a third active area in the logic area on the substrate, forming an insulating layer on the substrate to cover the first, second and third active areas, forming a first trench configured to pass through the insulating layer and cross the first active area, a second trench configured to pass through the insulating layer and cross the second active area, and a third trench configured to pass through the insulating layer and cross the third active area, the third trench having a horizontal width smaller than a horizontal width of the first trench and the second trench, forming a P-work-function metal layer on bottom surfaces and side surfaces of the first trench and the third trench, forming a capping layer on bottom surfaces and side surfaces of the first, second and third trenches such that the P-work-function metal layer remains between the first active area and the capping layer, and between the third active area and the capping layer, forming an N-work-function metal layer on the capping layer in the first, second and third trenches, forming a barrier metal layer on the N-work-function metal layer in the first, second and third trenches, the barrier metal layer completely filling the third trench, and forming a conductive layer on the barrier metal layer in the first and the second trenches, the conductive layer having a different material from the barrier metal layer. The N-work-function metal layer may be thicker than the P-work-function metal layer. The barrier metal layer may be thicker than the N-work-function metal layer. A gate dielectric layer may be formed between the first active area and the P-work-function metal layer, between the second active area and the capping layer, and between the third active area and the P-work-function metal layer. The capping layer may directly contact the gate dielectric layer in the second trench. The P-work-function metal layer may directly contact the gate dielectric layer in the first and third trenches. Upper surfaces of the insulating layer, the P-work-function metal layer, the capping layer, the N-work-function metal layer, the barrier metal layer, and the conductive layer may be at a same level. The method may further include forming a first source/drain on the first active area adjacent to an outer sidewall of the first trench such that an upper portion of the first source/drain has an upper surface at a level higher than a lower surface of the P-work-function metal layer, forming a second source/drain on the second active area adjacent to an outer sidewall of the second trench such that an upper portion of the second source/drain has an upper surface at a level higher than a lower surface of the capping layer, and forming a third source/drain on the third active area adjacent to an outer sidewall of the third trench such that an upper portion of the third source/drain has an upper surface at a level higher than a lower surface of the P-work-function metal layer, wherein the upper surface of the upper portion of the second source/drain may be at a different level than the upper surface of the upper portion of the first source/drain and the upper surface of the upper portion of the third source/drain. The upper surface of the upper portion of the second source/drain may be at a level higher than the upper surface of the upper portion of the first source/drain and the upper surface of the upper portion of the third source/drain. In accordance with example embodiments of the inventive concepts, a semiconductor device includes a substrate having a memory cell area and a logic area, a first well in the memory cell area on the substrate, a second well in the logic area on the substrate, an insulating layer on the substrate and configured to cover the first and second wells, a first metal structure on the first well and configured to penetrate the insulating layer, the first metal structure including a plurality of first metal layers, the plurality of first metal layers including a work-function metal, and a second metal structure on the second well and configured to penetrate the insulating layer, the second metal structure having a different width from than the first metal structure, the second metal structure including a plurality of second metal layers, the plurality of second metal layers including the work-function metal. The width of the second metal structure may be smaller than the width of the first metal structure. The work-function metal may be one of titanium nitride (TiN), titanium aluminum carbide (TiAlC) and titanium aluminide (TiAl). The device may further include a gate dielectric layer between the first well and the first metal structure, and between the second well and the second metal structure, wherein an upper surface of the gate dielectric layer and an upper surface of the first and second metal structures may be at a same level. The device may further include a first source/drain on the first well, the first source/drain having an upper portion adjacent to an outer sidewall of the first metal structure, the upper portion having an upper surface at a level higher than a lower surface of the first metal structure, and a second source/drain on the second well, the second source/drain having an upper portion adjacent to an outer sidewall of the second metal structure, the upper portion having an upper surface at a level higher than a lower surface of the second metal structure, wherein the first source/drain and the second source/drain may include silicon-germanium (SiGe). Details of other embodiments are included in detailed explanations and the drawings.
247,344
11496670
BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an electronic device and a region selection method. Description of the Related Art In a digital camera (hereinafter referred to as a camera), a function of autofocusing (AF) on an object automatically detected by the camera or an object arbitrarily selected by a user is known. In particular, in cameras of the past few years, AF to a more precise position of an object that is realized by detecting an organ of a face (for example, an eye or the like) rather than just detecting the face as an object. It is important that such a camera have a specification to enable a user to select whether a face is set as an AF target position or an eye is set as an AF target position to thereby enable the user's intention to be better reflected. For example, Japanese Patent Laid-Open No. 2013-070164 describes a technique in which a user touches an LCD screen, it is determined whether the touch position is a face or an eye, and one of the face and the eye is selected as an AF target. In Patent Document 1, when the size of the eye on the LCD screen is small, a selection reaction region of the eye with respect to a touch is widened. As a result, since the user can easily designate the eye as an AF target position in accordance with a capturing scene, a camera with high usability can be realized. However, in Japanese Patent Laid-Open No. 2013-070164, when the selection region for an eye is widened in accordance with being a small eye, the selection region for the eye may include a background when the eye is at an edge of a face region such as when the face is turned. In such a case, a physical object located near the eye cannot be selected as a focus detection region. SUMMARY OF THE INVENTION In one aspect of the present invention, a technique that enables region selection that more reliably reflects a user's intent is provided. According to one aspect of the present invention, there is provided an electronic device comprising: at least one memory and at least one processor which function as: a detecting unit configured to detect a face and an eye from an image; an obtaining unit configured to obtain a position designated by a user on a display screen on which the image is displayed; a setting unit configured to set a left region for selecting a left eye of a face specified by the position designated and a right region for selecting a right eye of the face; and a selecting unit configured to select an eye region of a corresponding eye when the position designated is present in the left region or the right region, wherein, in a case where a predetermined condition is satisfied, the setting unit extends a region for selecting, out of eyes of the specified face, an eye closer to an edge of the specified face, and the predetermined condition includes at least one of the specified face satisfying a condition for becoming a main object, a degree of reliability of detection as the eye closer to the edge of the specified face being equal to or greater than a predetermined value, and the eye further from the edge of the specified face being selected. According to another aspect of the present invention, there is provided an electronic device comprising: at least one memory and at least one processor which function as: a detecting unit configured to detect a face and an eye from an image; an obtaining unit configured to obtain a position designated by a user on a display screen on which the image is displayed; a setting unit configured to set a left region for selecting a left eye of a face specified by the position designated and a right region for selecting a right eye of the face; and a selecting unit configured to select an eye region of a corresponding eye when the position designated is present in the left region or the right region, wherein, in a case where one eye of the specified face is selected, the setting unit does not set a selection region for the selected one eye, and sets a selection region for selecting the other eye that is not selected of the face, or selecting the face without selecting an eye of the face. According to another aspect of the present invention, there is provided an electronic device, comprising: at least one memory and at least one processor which function as: a detecting unit configured to detect a face and an eye from an image; an accepting unit configured to accept an operation for designating a position in a display screen in which the image is displayed; and a control unit configured to perform control to, in response to accepting an operation that designates a position corresponding to a region of the face detected by the detecting unit, set, as a selection region, an unselected eye from out of a left eye and a right eye included in a region of a designated face, wherein each time an operation for designating a position corresponding to the region of the same face is accepted, the control unit alternatingly sets a region of the right eye and a region of the left eye as the selection region. According to another aspect of the present invention, there is provided a region selection method in accordance with an electronic device, the method comprising: detecting a face and an eye from an image; obtaining a position designated by a user on a display screen on which the image is displayed; setting a left region for selecting a left eye of a face specified by the position designated and a right region for selecting a right eye of the face; and selecting an eye region of a corresponding eye when the position designated is present in the left region or the right region, wherein in a case where a predetermined condition is satisfied, the setting extends a region for selecting an eye closer to an edge of the specified face, and the predetermined condition includes at least one of the specified face satisfying a condition for becoming a main object, a degree of reliability of detecting an eye as the eye closer to the edge of the specified face being equal to or greater than a predetermined value, and the eye further from the edge of the specified face being selected as a focus detection region. According to another aspect of the present invention, there is provided a region selection method in accordance with an electronic device, the method comprising: detecting a face and an eye from an image; obtaining a position designated by a user on a display screen on which the image is displayed; setting a left region for selecting a left eye of a face specified by the position designated and a right region for selecting a right eye of the face; and selecting an eye region of a corresponding eye when the position designated is present in the left region or the right region, wherein, in a case where one eye of the specified face is selected as a focus detection region, the setting does not set a selection region for the selected one eye, and sets a selection region for selecting the other eye that is not selected of the face, or selecting the face without selecting an eye of the face. According to another aspect of the present invention, there is provided a region selection method in accordance with an electronic device, the method comprising: detecting a face and an eye from an image; accepting an operation for designating a position in a display screen in which the image is displayed; and performing control to, in response to accepting an operation that designates a position corresponding to a region of the detected face, set, as a selection region, an unselected eye from out of a left eye and a right eye included in a region of a designated face, wherein each time an operation for designating a position corresponding to the region of the same face is accepted, the control alternatingly sets a region of the right eye and a region of the left eye as the selection region. According to another aspect of the present invention, there is provided a non-transitory computer-readable storage medium storing a computer program for causing a computer to execute one of the above-described region selection methods. Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
281,263
11384284
BACKGROUND During hydraulic fracturing operations in shale and tight rock reservoirs, new wells drilled adjacent (e.g., within 5000 ft) to existing or parent wells can produce sub-optimal results due to well-to-well interference. For example, the fracture network for the new (child) well can be skewed towards the existing (parent or teenage) well, resulting in a negative production impact to the child well. There can also be a premature decline in production in the existing well where the fracturing treatment in the new well pushes fluids and debris (e.g., sand, shale fragments) into the existing well, potentially causing damage to the completion or lift equipment of the existing well and/or requiring the existing well to be shut-in or cleaned out. This loss of production and poor fracture alignment is well documented in literature and industry. SUMMARY During infill drilling, water can be pumped into the existing wells to increase wellbore pressure. This injection can help the child well fracture network be less skewed and limit the amount of fluid/debris introduced into the existing well(s) during the fracturing operation on the child well. This approach can be referred to as frac protect, active well defense, pre-loading, loading, or recharging. Herein, methods which employ aqueous pressure protection compositions are described. The aqueous pressure protection compositions can include one or more components which can improve hydrocarbon recovery from the existing wellbore (e.g., following pressure protection/pre-loading with the aqueous pressure protection composition). Examples of such components include a surfactant package, an acid (e.g., to improve permeability in proximity to the wellbore and/or to remove any mineral precipitates in proximity to the wellbore), an alkali agent (e.g., to reduce surfactant adsorption and/or to generate surfactant in situ from active oils present in the formation), a co-solvent, a viscosity-modifying polymer, or any combination thereof. Additional additives can also be incorporated in the aqueous pressure protection compositions, such as a chelating agent (e.g., EDTA or a salt thereof, to reduce formation damage), a clay swelling inhibitor (e.g., KCl, to improve injection efficiency), a biocide, a scale inhibitor, an anti-foam agent (e.g., chemical defoamer), a corrosion inhibitor, or any combination thereof. Provided are methods for the pressure protection of wells (e.g., by pre-loading the wells) using the aqueous pressure protection compositions described herein. Methods for the pressure protection of an existing wellbore that has previously been fractured in proximity to a new wellbore to be fractured can comprise (a) injecting an aqueous pressure protection composition into the unconventional subterranean formation via an existing wellbore in fluid communication with a rock matrix of the unconventional subterranean formation prior to and/or during injection of a fracturing fluid into the unconventional subterranean formation via a new wellbore in fluid communication with the rock matrix of the unconventional subterranean formation; and (b) producing a hydrocarbon from the existing wellbore during and/or after the injection of the fracturing fluid into the unconventional subterranean formation via the new wellbore. The rock matrix of the unconventional subterranean formation in proximity to the existing wellbore can be fractured. The aqueous pressure protection solution can be injected at a pressure and flowrate effective to increase the existing wellbore pressure without substantially refracturing the existing wellbore. Also provided are methods for pressure protection of a first wellbore in proximity to a second wellbore. These methods can comprise injecting an aqueous pressure protection composition into the first wellbore in fluid communication with an unconventional subterranean formation prior to and/or during fracturing of the second wellbore in fluid communication with the unconventional subterranean formation. The first wellbore can have an existing reservoir pressure that is less than original reservoir pressure. The aqueous pressure protection solution can be injected at a pressure and flowrate effective to increase the first wellbore pressure without fracturing the first wellbore. The aqueous pressure protection solution can include a surfactant package including a first surfactant. A region of the unconventional subterranean formation in fluid communication with the first wellbore can be naturally fractured, can have been previously fractured one or more times (e.g., fractured, or fractured and refractured one or more times), or any combination thereof. The fracturing of the second wellbore can comprise fracturing or refracturing of a region of the unconventional subterranean formation in fluid communication with the second wellbore. Also provided are analogous pressure protection methods which employ foamed pressure protection compositions. For example, in some embodiments, a foam can be injected into the existing wellbore to provide pressure protection to the existing wellbore prior to fracturing a new wellbore proximate to the existing wellbore. The foam can comprise any suitable foam known for use in oil and gas operations. The foam can be formed using any suitable expansion gas as discussed in detail below, such as, for example, air, helium, carbon dioxide, nitrogen, natural gas or a hydrocarbon component thereof, or any combination thereof. Accordingly, also provided are methods for pressure protection of an existing wellbore that has previously been fractured in proximity to a new wellbore to be fractured that comprise (a) injecting a foamed pressure protection composition into the unconventional subterranean formation via an existing wellbore in fluid communication with a rock matrix of the unconventional subterranean formation prior to and/or during injection of a fracturing fluid into the unconventional subterranean formation via a new wellbore in fluid communication with the rock matrix of the unconventional subterranean formation; and (b) producing a hydrocarbon from the existing wellbore during and/or after the injection of the fracturing fluid into the unconventional subterranean formation via the new wellbore. The rock matrix of the unconventional subterranean formation in proximity to the existing wellbore can be fractured. As discussed above with respect to aqueous pressure protection compositions, the foamed pressure protection solution can be injected at a pressure and flowrate effective to increase the existing wellbore pressure without substantially refracturing the existing wellbore. Also provided are analogous pressure protection methods which employ non-aqueous pressure protection compositions. For example, in some embodiments, a gas can be injected into the existing wellbore to provide pressure protection to the existing wellbore prior to fracturing a new wellbore proximate to the existing wellbore. The gas can comprise any suitable gas, such as, for example, air, helium, carbon dioxide, nitrogen, natural gas or a hydrocarbon component thereof, or any combination thereof. Example methods can comprise (a) injecting a gas into the unconventional subterranean formation via an existing wellbore in fluid communication with a rock matrix of the unconventional subterranean formation prior to and/or during injection of a fracturing fluid into the unconventional subterranean formation via a new wellbore in fluid communication with the rock matrix of the unconventional subterranean formation; and (b) producing a hydrocarbon from the existing during and/or after the injection of the fracturing fluid into the unconventional subterranean formation via the new wellbore. The rock matrix of the unconventional subterranean formation in proximity to the existing wellbore can be fractured. As discussed above with respect to aqueous pressure protection compositions, the gas can be injected at a pressure and flowrate effective to increase the existing wellbore pressure without substantially refracturing the existing wellbore. Other methods can employ suitable hydrocarbon-based pressure protection composition. For example, pressure protection compositions comprising a hydrocarbon solvent (e.g., liquid petroleum gas (LPG)) can be injected into the existing wellbore to provide pressure protection to the existing wellbore prior to and/or during fracturing a new wellbore proximate to the existing wellbore. These hydrocarbon-based pressure protection compositions can comprise any of the components described above with respect to aqueous pressure protection compositions. For example, hydrocarbon-based pressure protection compositions can comprise a surfactant package, an acid, an alkali agent, a co-solvent, a viscosity-modifying polymer, or any combination thereof. Example methods can comprise (a) injecting a pressure protection composition comprising a hydrocarbon solvent into the unconventional subterranean formation via an existing wellbore in fluid communication with a rock matrix of the unconventional subterranean formation prior to and/or during injection of a fracturing fluid into the unconventional subterranean formation via a new wellbore in fluid communication with the rock matrix of the unconventional subterranean formation; and (b) producing a hydrocarbon from the existing wellbore during and/or after the injection of the fracturing fluid into the unconventional subterranean formation via the new wellbore. The rock matrix of the unconventional subterranean formation in proximity to the existing wellbore can be fractured. As discussed above with respect to aqueous pressure protection compositions, the pressure protection composition can be injected at a pressure and flowrate effective to increase the existing wellbore pressure without substantially refracturing the existing wellbore.
169,882
11240348
BACKGROUND Smartphones have driven the widespread adoption of application marketplaces. Beyond smartphones, it has become increasingly common for application marketplaces to target other types of computing devices. In this respect, application marketplaces can commonly be found for other types of mobile devices, including tablet computers, laptops, and smartwatches, as well as for desktop computers, and other computing devices. Application marketplaces provide features for managing applications that typically include discovering, downloading, and updating the applications. However, the feature sets of application marketplaces can be limited and typically do not extend beyond basic application distribution. Furthermore, the feature sets can vary between application marketplaces, which can introduce the risk of fragmenting a developer's user base, particularly in the cross-platform environment. As such, developers may seek other application management solutions to overcome any of the various limitations of application marketplaces. SUMMARY Embodiments of the present invention are directed to remote management of application settings. Applications can be distributed to managed devices utilizing an application marketplace or another distribution means. Upon an application being installed on a managed device, a developer may wish to modify, add, delete, replace, or otherwise manage one or more settings associated with the application. A remote settings service is described herein that enables remote management of application settings. The remote settings service can facilitate real-time, or near real-time, management of applications installed on managed devices. As a result, settings associated with an application installed on a managed device can be modified without having to reinstall the application or wait an extended period of time for modifications. This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in isolation as an aid in determining the scope of the claimed subject matter.
27,136
11239887
CROSS-REFERENCE TO RELATED APPLICATIONS The present application is the U.S. national phase of PCT Application No. PCT/CN2017/074976 filed on Feb. 27, 2017, which claims priority to the Chinese patent application No. 201610140777.7 filed before the SIPO on Mar. 11, 2016, which are incorporated herein by reference is their entireties. TECHNICAL FIELD The present disclosure relates to the field of communication technology, in particular to a data transmission method and a data transmission device. BACKGROUND Closed-loop precoding technique has been introduced into a Long Term Evolution (LTE) Release 8 (Rel-8) system, so as to improve the spectral efficiency. For the closed-loop precoding technique, it is required to store a same set of precoding matrices in a base station and a User Equipment (UE) in advance, and this set of precoding matrices is called as code book. Upon the estimation of channel information in accordance with a cell common pilot, the UE selects one precoding matrix from the code book in accordance with a predetermined criterion. The predetermined criterion may be maximization of mutual information or maximization of Signal-to-Interference plus Noise Ratio (SINR). An index of the selected precoding matrix in the code book is returned by the UE to the base station via an uplink channel, and this index is called as Precoding Matrix Indicator (PMI). The base station may determine the precoding matrix to be used by the UE in accordance with the received PMI. For the closed-loop precoding technique, a transmission parameter is selected on the basis of feedback information from the UE, so when the UE moves at a high speed, the PMI returned by the UE may probably be invalid, i.e., it is impossible to reflect a current channel state of the UE. At this time, the transmission parameter may not match an actual channel condition, and the system performance may be deteriorated. In a high-speed movement scenario, an open-loop Multiple Input Multiple Output (MIMO) transmission scheme has been introduced into the LTE Rel-8 system. For the open-loop MIMO transmission scheme, the UE does not return the PMI any more, and instead, it is merely necessary for the UE to return a Channel Quality Indicator (CQI) and a Rank Indicator (RI). When UE calculates the CQI and the RI, it is assumed that the UE uses a pre-agreed precoding matrix on a resource involved in the data transmission. For the open-loop MIMO transmission scheme defined in the LTE Rel-8 system, a precoding operation is performed completely on the basis of the channel-independent precoding matrix, and it is impossible to adjust the transmission parameter adaptively in accordance with a channel change, so it is impossible to acquire a beamforming gain and a precoding gain. In a word, it is impossible for the open-loop MIMO transmission scheme to adaptively adjust the transmission parameter in accordance with the channel change, so it is impossible to acquire the beamforming gain and the precoding gain. In addition, for a closed-loop MIMO transmission scheme, due to the invalid information returned by the UE when the UE moves at a high speed, the transmission parameter does not match the actual channel condition, so the system performance may be deteriorated. SUMMARY An object of the present disclosure is to provide a method and a device for transmitting feedback information, so as to solve the problems in the related art where it is impossible for the open-loop MIMO transmission scheme to acquire a beamforming gain and a precoding gain due to the fact that the open-loop MIMO transmission scheme is incapable of adaptively adjusting the transmission parameter in accordance with a channel change, and it is impossible for the closed-loop MIMO transmission scheme to prevent the deterioration of the system performance when the transmission parameter does not match the actual channel condition due to the invalid information returned by the UE at a high speed. In one aspect, the present disclosure provides in some embodiments a data transmission method, including steps of: determining, by a transmitting end, a first precoding matrix and a second precoding matrix, the first precoding matrix being selected from a predefined first codebook, the second precoding matrix being acquired on the basis of Channel State information (CSI); performing, by the transmitting end, precoding processing on a data stream in accordance with the first precoding matrix and the second precoding matrix; and transmitting, by the transmitting end, the data stream acquired after the precoding processing to a receiving end. In a possible embodiment of the present disclosure, the step of performing, by the transmitting end, the precoding processing on the data stream in accordance with the first precoding matrix and the second precoding matrix includes: performing, by the transmitting end, first-level precoding processing on the data stream in accordance with the first precoding matrix, and performing second-level precoding processing on the data stream acquired after the first-level precoding processing in accordance with the second precoding matrix; or determining, by the transmitting end, a third precoding matrix in accordance with the first precoding matrix and the second precoding matrix, and performing the precoding processing on the data stream in accordance with the third precoding matrix. In a possible embodiment of the present disclosure, the data transmission method further includes: performing, by the transmitting end, precoding processing on a pilot signal in accordance with the second precoding matrix. The step of transmitting, by the transmitting end, the data stream acquired after the precoding processing to the receiving end includes transmitting, by the transmitting end, the pilot signal acquired after the precoding processing to the receiving end. In a possible embodiment of the present disclosure, the data transmission method further includes transmitting, by the transmitting end, a control signaling to the receiving end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the step of determining, by the transmitting end, the first precoding matrix includes: determining, by the transmitting end, dimensions of the first precoding matrix in accordance with the quantity of the data streams; selecting, by the transmitting end, the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each Resource Element (RE), selecting, by the transmitting end, one to precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the step of determining, by the transmitting end, the dimensions of the first precoding matrix in accordance with the quantity of the data streams includes: determining, by the transmitting end, the quantity of columns of the first precoding matrix as the quantity of the data streams; and determining, by the transmitting end, the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of rows of the first precoding matrix. In a possible embodiment of the present disclosure, the step of selecting, by the transmitting end, one precoding matrix from the selected first code book as the first precoding matrix for the RE includes: selecting, by the transmitting end, one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of the RE or a serial number of a Resource Block (RB) to which the RE belongs; or selecting, by the transmitting end, one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. In a possible embodiment of the present disclosure, for the mapping relationship between the quantity of the data streams and the quantity of the rows of the first precoding matrix, when the quantity of the data streams is 1, the quantity of the rows of the first precoding matrix is 1, and when the quantity of the data streams is greater than 1, the quantity of the rows of the first precoding matrix is a minimum even number greater than or equal to the quantity of the data streams or a minimum value of a power of 2 greater than or equal to the quantity of the data streams. In a possible embodiment of the present disclosure, the step of determining, by the transmitting end, the second precoding matrix includes: performing, by the transmitting end, channel estimation in accordance with a signal from the receiving end so as to acquire a channel matrix, and determining the second precoding matrix in accordance with the channel matrix; or upon the receipt of the CSI reported by the receiving end, determining, by the transmitting end, the second precoding matrix in accordance with the CSI, the CSI being acquired by the receiving end after measuring a channel from the transmitting end to the receiving end. In another aspect, the present disclosure provides in some embodiments a data reception method, including steps of: receiving, by a receiving end, a signal from a transmitting end; determining, by the receiving end, a first precoding matrix and a fourth precoding matrix, the first precoding matrix being selected from a predefined first code book, the fourth precoding matrix being acquired on the basis of CSI; and performing, by the receiving end, decoding processing on the received signal in accordance with the first precoding matrix and the fourth precoding matrix, so as to acquire a data stream. In a possible embodiment of the present disclosure, the step of performing, by the receiving end, the decoding processing on the received signal in accordance with the first precoding matrix and the fourth precoding matrix includes: performing, by the receiving end, first-level decoding processing on the received signal in accordance with the fourth precoding matrix, and performing second-level decoding processing on the signal acquired after the first-level decoding processing in accordance with the first precoding matrix; or determining, by the receiving end, a fifth precoding matrix in accordance with the first precoding matrix and the fourth precoding matrix, and performing the decoding processing on the received signal in accordance with the fifth precoding matrix. In a possible embodiment of the present disclosure, the step of determining, by the receiving end, the fifth precoding matrix in accordance with the first precoding matrix and the fourth precoding matrix includes determining, by the receiving end, a product of the first precoding matrix and the fourth precoding matrix as the fifth precoding matrix. In a possible embodiment of the present disclosure, the step of determining, by the receiving end, the fourth precoding matrix includes: performing, by the receiving end, channel estimation on a pilot signal in the received signal, and determining a resultant channel matrix as the fourth precoding matrix; or measuring, by the receiving end, a channel from the transmitting end to the receiving end, and selecting one precoding matrix from a predefined second code book as the fourth precoding matrix in accordance with the resultant CSI; or receiving, by the receiving end, index information from the transmitting end, and determining a precoding matrix in the predefined second code book corresponding to the index information as the fourth precoding matrix in accordance with the index information. In a possible embodiment of the present disclosure, prior to the step of performing, by the receiving end, the channel estimation on the pilot signal in the received signal, the data reception method further includes receiving, by the receiving end, control signaling from the transmitting end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the step of determining, by the receiving end, the first precoding matrix includes: determining, by the receiving end, dimensions of the first precoding matrix in accordance with the quantity of the ports for the pilot signal and/or the quantity of the data streams; selecting, by the receiving end, the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each RE, selecting, by the receiving end, one precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the step of determining, by the receiving end, the dimensions of the first precoding matrix in accordance with the quantity of the ports for the pilot signal and/or the quantity of the data streams includes: determining, by the receiving end, the quantity of columns of the first precoding matrix as the quantity of the data streams; and determining, by the receiving end, the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of the rows of the first precoding matrix. In a possible embodiment of the present disclosure, for the mapping relationship between the quantity of the data streams and the quantity of the rows of the first precoding matrix, when the quantity of the data streams is 1, the quantity of the rows of the first precoding matrix is 1, and when the quantity of the data streams is greater than 1, the quantity of the rows of the first precoding matrix is a minimum even number greater than or equal to the quantity of the data streams or a minimum value of a power of 2 greater than or equal to the quantity of the data streams. In a possible embodiment of the present disclosure, the step of selecting, by the receiving end, one precoding matrix from the selected first code book as the first precoding matrix for the RE includes: selecting, by the receiving end, one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of the RE or a serial number of a RB to which the RE belongs; or selecting, by the receiving end, one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. In yet another aspect, the present disclosure provides in some embodiments a data transmission device, including: a determination module configured to determine a first precoding matrix and a second precoding matrix, the first precoding matrix being selected from a predefined first codebook, the second precoding matrix being acquired on the basis of CSI; a precoding module configured to perform precoding processing on a data stream in accordance with the first precoding matrix and the second precoding matrix; and a transmission module configured to transmit the data streamed acquired after the precoding processing to a receiving end. In a possible embodiment of the present disclosure, the precoding module is further configured to: perform first-level precoding processing on the data stream in accordance with the first precoding matrix, and perform second-level precoding processing on the data stream acquired after the first-level precoding processing in accordance with the second precoding matrix; or determine a third precoding matrix in accordance with the first precoding matrix and the second precoding matrix, and perform the precoding processing on the data stream in accordance with the third precoding matrix. In a possible embodiment of the present disclosure, the precoding module is further configured to perform precoding processing on a pilot signal in accordance with the second precoding matrix, and the transmission module is further configured to transmit the pilot signal acquired after the precoding processing to the receiving end. In a possible embodiment of the present disclosure, the transmission module is further configured to transmit control signaling to the receiving end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the determination module is further configured to: determine dimensions of the first precoding matrix in accordance with the quantity of the data streams; select the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each RE, select one precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the determination module is further configured to: determine the quantity of columns of the first precoding matrix as the quantity of the data streams; and determine the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of rows of the first precoding matrix. In a possible embodiment of the present disclosure, the determination module is further configured to: select one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of the RE or a serial number of a RB to which the RE belongs; or select one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. In a possible embodiment of the present disclosure, the determination module is further configured to: perform channel estimation in accordance with a signal from the receiving end so as to acquire a channel matrix, and determine the second precoding matrix in accordance with the channel matrix; or upon the receipt of the CSI reported by the receiving end, determine the second precoding matrix in accordance with the CSI, the CSI being acquired by the receiving end after measuring a channel from the transmitting end to the receiving end. In still yet another aspect, the present disclosure provides in some embodiments a base station, including a transceiver and at least one processor connected to the transceiver. The processor is configured to read a program stored in a memory, so as to: determine a first precoding matrix and a second precoding matrix, the first precoding matrix being selected from a predefined first codebook, the second precoding matrix being acquired on the basis of CSI; perform precoding processing on a data stream in accordance with the first precoding matrix and the second precoding matrix; and transmit through the transceiver the data streamed acquired after the precoding processing to a receiving end. In a possible embodiment of the present disclosure, the processor is further configured to: perform first-level precoding processing on the data stream in accordance with the first precoding matrix, and perform second-level precoding processing on the data stream acquired after the first-level precoding processing in accordance with the second precoding matrix; or determine a third precoding matrix in accordance with the first precoding matrix and the second precoding matrix, and perform the precoding processing on the data stream in accordance with the third precoding matrix. In a possible embodiment of the present disclosure, the processor is further configured to perform precoding processing on a pilot signal in accordance with the second precoding matrix, and transmit through the transceiver the pilot signal acquired after the precoding processing to the receiving end. In a possible embodiment of the present disclosure, the processor is further configured to transmit through the transceiver control signaling to the receiving end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the processor is further configured to: determine dimensions of the first precoding matrix in accordance with the quantity of the data streams; select the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each RE, select one precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the processor is further configured to: determine the quantity of columns of the first precoding matrix as the quantity of the data streams; and determine the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of rows of the first precoding matrix. In a possible embodiment of the present disclosure, the processor is further configured to: select one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of the RE or a serial number of a RB to which the RE belongs; or select one precoding matrix from the selected first code book as the first precoding matrix in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. In a possible embodiment of the present disclosure, the processor is further configured to: perform channel estimation in accordance with a signal from the receiving end so as to acquire a channel matrix, and determine the second precoding matrix in accordance with the channel matrix; or upon the receipt of the CSI reported by the receiving end through the transceiver, determine the second precoding matrix in accordance with the CSI, the CSI being acquired by the receiving end after measuring a channel from the transmitting end to the receiving end. In still yet another aspect, the present disclosure provides in some embodiments a data reception device, including: a reception module configured to receive a signal from a transmitting end; a determination module configured to determine a first precoding matrix and a fourth precoding matrix, the first precoding matrix being selected from a predefined first code book, the fourth precoding matrix being acquired on the basis of CSI; and a decoding module configured to perform decoding processing on the received signal in accordance with the first precoding matrix and the fourth precoding matrix, so as to acquire a data stream. In a possible embodiment of the present disclosure, the decoding module is further configured to: perform first-level decoding processing on the received signal in accordance with the fourth precoding matrix, and perform second-level decoding processing on the signal acquired after the first-level decoding processing in accordance with the first precoding matrix; or determine a fifth precoding matrix in accordance with the first precoding matrix and the fourth precoding matrix, and perform the decoding processing on the received signal in accordance with the fifth precoding matrix. In a possible embodiment of the present disclosure, the decoding module is further configured to determine a product of the first precoding matrix and the fourth precoding matrix as the fifth precoding matrix. In a possible embodiment of the present disclosure, the determination module is further configured to: perform channel estimation on a pilot signal in the received signal, and determine a resultant channel matrix as the fourth precoding matrix; or measure a channel from the transmitting end to the receiving end, and select one precoding matrix from a predefined second code book as the fourth precoding matrix in accordance with the resultant CSI; or after the reception module has received index information from the transmitting end, determine a precoding matrix in the predefined second code book corresponding to the index information as the fourth precoding matrix in accordance with the index information. In a possible embodiment of the present disclosure, the reception module is further configured to receive control signaling from the transmitting end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the determination module is further configured to: determine dimensions of the first precoding matrix in accordance with the quantity of the ports for the pilot signal and/or the quantity of the data streams; select the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each RE, select one precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the determination module is further configured to: determine the quantity of columns of the first precoding matrix as the quantity of the data streams; and determine the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of the rows of the first precoding matrix. In a possible embodiment of the present disclosure, the determination module is further configured to: select one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of the RE or a serial number of a RB to which the RE belongs; or select one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. In still yet another aspect, the present disclosure provides in some embodiments a User Equipment (UE), including a transceiver and at least one processor connected to the transceiver. The processor is configured to read a program stored in a memory, so as to: receive through the transceiver a signal from a transmitting end; determine a first precoding matrix and a fourth precoding matrix, the first precoding matrix being selected from a predefined first code book, the fourth precoding matrix being acquired on the basis of CSI; and perform decoding processing on the received signal in accordance with the first precoding matrix and the fourth precoding matrix, so as to acquire a data stream. In a possible embodiment of the present disclosure, the processor is further configured to: perform first-level decoding processing on the received signal in accordance with the fourth precoding matrix, and perform second-level decoding processing on the signal acquired after the first-level decoding processing in accordance with the first precoding matrix; or determine a fifth precoding matrix in accordance with the first precoding matrix and the fourth precoding matrix, and perform the decoding processing on the received signal in accordance with the fifth precoding matrix. In a possible embodiment of the present disclosure, the processor is further configured to determine a product of the first precoding matrix and the fourth precoding matrix as the fifth precoding matrix. In a possible embodiment of the present disclosure, the processor is further configured to: perform channel estimation on a pilot signal in the signal received by the transceiver, and determine a resultant channel matrix as the fourth precoding matrix; or measure a channel from the transmitting end to the receiving end, and select one precoding matrix from a predefined second code book as the fourth precoding matrix in accordance with the resultant CSI; or receive through the transceiver index information from the transmitting end, and determine a precoding matrix in the predefined second code book corresponding to the index information as the fourth precoding matrix in accordance with the index information. In a possible embodiment of the present disclosure, the transceiver is further configured to receive control signaling from the transmitting end, and the control signaling includes the quantity of ports for the pilot signal and/or the quantity of the data streams. In a possible embodiment of the present disclosure, the processor is further configured to: determine dimensions of the first precoding matrix in accordance with the quantity of the ports for the pilot signal and/or the quantity of the data streams; select the first code book which includes precoding matrices each having dimensions same to the first precoding matrix in accordance with the dimensions of the first precoding matrix; and with respect to each RE, select one precoding matrix from the selected first code book as the first precoding matrix for the RE. In a possible embodiment of the present disclosure, the processor is further configured to: determine the quantity of columns of the first precoding matrix as the quantity of the data streams; and determine the quantity of rows of the first precoding matrix in accordance with a predetermined mapping relationship between the quantity of the data streams and the quantity of the rows of the first precoding matrix. In a possible embodiment of the present disclosure, the processor is further configured to: select one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of the RE or a serial number of a RB to which the RE belongs; or select one precoding matrix from the selected first code book as the first precoding matrix for the RE in accordance with a serial number of a data symbol vector included in the data stream transmitted on the RE. According to the data transmission method and device in the embodiments of the present disclosure, the transmitting end performs the precoding processing on the data stream in accordance with the first precoding matrix and the second precoding matrix. The first precoding matrix is selected from the predefined first code book and it is independent of the channel from the transmitting end to the receiving end. When the data is transmitted in a scenario where the UE moves at a high speed, it is able to ensure the acquired channel state information to match an actual channel state, thereby to prevent the system performance from being deteriorated. In addition, the second precoding matrix is acquired on the basis of the CSI and it is related to the channel from the transmitting end to the receiving end. In the case of data transmission, it is able to adaptively adjust a transmission parameter in accordance with a channel change, thereby to acquire a beamforming gain and a precoding gain and improve the system performance.
26,680
11449226
TECHNICAL FIELD The subject matter of this disclosure is generally related to data storage and more particularly to data storage systems that implement RAIDs (Redundant Arrays of Independent Drives). BACKGROUND Data storage system implement protection groups to help avoid data loss by enabling a failing or failed protection group member to be reconstructed. Individual disk drives within a drive cluster are often used as protection group members, e.g. members of a RAID protection group. A RAID (D+P) protection group has D data members and P parity members. The data members store data. The parity members store parity information such as XORs of data values. The parity information enables reconstruction of data in the event that a data member fails. Parity information can be reconstructed from the data on the data members in the event that a parity member fails. A failed protection group member is typically reconstructed on a spare drive. It is sometimes necessary to increase the total storage capacity of a data storage system that is in service. The storage capacity of a drive cluster that uses individual drives as protection group members may be increased by adding a new protection group, e.g. W drives for a drive cluster with RAID (D+P) protection groups where W=(D+P). A drive cluster that implements RAID-5 (4+1), for example, may be scaled-up in increments of five new drives. Similarly, a drive cluster that implements RAID-5 (3+1) may be scaled-up in increments of four new drives. One drawback of scaling storage capacity in increments of W new drives is that it may introduce excess storage capacity that will not be utilized within a reasonable timeframe. Another drawback is that the risk of data loss increases as the number of drives in a drive cluster increases. Drive failure initiates a race condition between rebuilding a failed drive and failure of a second drive in the same protection group. If a second drive fails before the first drive is rebuilt, then multiple members of the protection group become unavailable and data loss can occur. The likelihood of a second drive failing before a first drive is rebuilt increases as the number of drives in the cluster increases. SUMMARY Aspects of the present disclosure include scaling of a drive cluster in single drive increments and splitting of a drive cluster into multiple drive clusters to manage the total number of drives in a cluster. All examples, aspects and features mentioned in this document can be combined in any technically possible way. In accordance with some aspects an apparatus comprises: at least one compute node comprising a processor and non-transitory memory; drives that are managed by the at least one compute node; and a drive cluster manager configured to sequentially number a first cluster of W of the drives, organize each of the W drives into W partitions each having a fixed-size amount of storage capacity equal to storage capacity of other partitions of the first cluster, implement redundant arrays of independent drives (RAID) each having D+P=W RAID protection group members having an initial distribution to the partitions such that each partition of the first cluster contains members of a single RAID protection group, scale the first cluster at least until there are 2*W drives, and split the scaled first cluster into a first smaller cluster that comprises sequentially numbered drives (W/2)+1 to (W/2)+W and a second smaller cluster that comprises remaining drives, and adapt the second smaller cluster for scaling by adding more new drives. In accordance with some aspects a method for scaling storage capacity of a storage array that comprises at least one compute node comprising a processor and non-transitory memory and drives that are managed by the at least one compute node comprises: sequentially numbering a first cluster of W of the drives; organizing each of the W drives into W partitions each having a fixed-size amount of storage capacity equal to storage capacity of other partitions of the first cluster; implementing redundant arrays of independent drives (RAID) each having D+P=W RAID protection group members having an initial distribution to the partitions such that each partition of the first cluster contains members of a single RAID protection group; scaling the first cluster at least until there are 2*W drives; splitting the scaled first cluster into a first smaller cluster that comprises sequentially numbered drives (W/2)+1 to (W/2)+W and a second smaller cluster that comprises remaining drives; and adapting the second smaller cluster for scaling by adding more new drives. In accordance with some aspects a computer-readable storage medium that stores instructions that when executed by a compute node of a storage array cause the storage array to perform a method for scaling storage capacity of the storage array, the method comprising: sequentially numbering a first cluster of W drives; organizing each of the W drives into W partitions each having a fixed-size amount of storage capacity equal to storage capacity of other partitions of the first cluster; implementing redundant arrays of independent drives (RAID) each having D+P=W RAID protection group members having an initial distribution to the partitions such that each partition of the first cluster contains members of a single RAID protection group; scaling the first cluster at least until there are 2*W drives; splitting the scaled first cluster into a first smaller cluster that comprises sequentially numbered drives (W/2)+1 to (W/2)+W and a second smaller cluster that comprises remaining drives; and adapting the second smaller cluster for scaling by adding more new drives. Other aspects, features, and implementations may become apparent in view of the detailed description and figures.
234,259
11285837
This nonprovisional application is based on Japanese Patent Application No. 2018-240081 filed on Dec. 21, 2018, with the Japan Patent Office, the entire contents of which are hereby incorporated by reference. BACKGROUND Field The present disclosure relates to a charging processing system applied to a charging control system that charges an onboard power storage device using renewable energy. Description of the Background Art Japanese Patent Laying-Open No. 2017-41939 discloses a system that externally charges an onboard power storage device using power supplied from a power supply device external to a vehicle. This system includes a charging service provision server and a coupon service provision server. The charging service provision server receives, from a mobile terminal operated by a user, authentication information of the user and information relating to validity of payment information. When the authentication information is valid and the payment information is valid, the charging service provision server transmits a charging start request to the power supply device. Moreover, in response to the start of charging by the power supply device, the charging service provision server requests the coupon service provision server to issue a coupon. In response to the request, the coupon service provision server issues, to the mobile terminal, a coupon usable at a shop located around the power supply device. Accordingly, while waiting during the external charging, the user can use the coupon by way of the mobile terminal at the shop located around the power supply device. SUMMARY In recent years, for global environment protection, power generation facilities for generating power using renewable energy (such as solar energy, wind power energy, geothermal energy, and biomass energy) involving low environmental impact, rather than fossil energy (such as oil, coal, and natural gas) involving high environmental impact, are being pervasive. Accordingly, it is desired to develop a technique for promoting external charging using such renewable energy. However, in the system disclosed in Japanese Patent Laying-Open No. 2017-41939 described above, no technique for promoting external charging with the renewable energy is mentioned at all. Therefore, there is room for improvement. The present disclosure has been made to solve the above-described problem, and has an object to appropriately promote, to a user who has a specific attribute, (i) external charging using renewable energy and (ii) visiting to a shop located around the place of the external charging. It should be noted that in the description below, power generated using the renewable energy will be also referred to as “CO2free power”, and external charging with such CO2free power will be also referred to as “CO2free charging”. (1) A charging processing system according to the present disclosure includes: a power supply facility that supplies CO2free power generated using renewable energy; a plurality of electrically powered vehicles that each perform CO2free charging to charge an onboard power storage device using the CO2free power supplied from the power supply facility; a plurality of respective mobile terminals portable by a plurality of respective users each of who owns a corresponding electrically powered vehicle; and a server that issues a coupon to a mobile terminal of a user of an electrically powered vehicle in which the CO2free charging is performed among the plurality of electrically powered vehicles, the coupon being usable at a shop located around the power supply facility. The server includes a storage device and a control device. The storage device stores, for each of the plurality of users, user attribute information in which information for specifying each of the plurality of users and information indicating an attribute of each of the plurality of users are associated with each other. The control device extracts a user who has a specific attribute by making reference to the user attribute information and that notifies, to a mobile terminal of the extracted user, coupon advance-notice information about the coupon to be issued. According to the above-described system, the coupon usable at the shop located around the power supply facility is issued to the mobile terminal of the user of the electrically powered vehicle in which the CO2free charging is performed. Further, the coupon advance-notice information about the coupon to be issued is notified to the mobile terminal of the user who has the specific attribute. Accordingly, the coupon advance-notice information can be notified by targeting the user who has the specific attribute. As a result, the CO2free charging and the visiting to the shop can be promoted appropriately to the user who has the specific attribute. (2) In a certain embodiment, the user attribute information includes information about a time period in which each of the plurality of users tends to visit the shop. When the specific attribute represents a tendency to visit the shop in a specific time period, the control device extracts a user who tends to visit the shop in the specific time period by making reference to the user attribute information, and notifies the coupon advance-notice information to a mobile terminal of the extracted user. According to the above-described embodiment, the coupon advance-notice information can be notified by targeting the user who tends to visit the shop in the specific time period. (3) In a certain embodiment, the specific time period includes a time period in which a customer attracting rate of the shop is higher than a predetermined rate. The coupon advance-notice information includes information indicating that the coupon is issued in a time period in which the customer attracting rate of the shop is lower than the predetermined rate. According to the above-described embodiment, the user who tends to visit the shop in the time period in which the customer attracting rate of the shop is higher than the predetermined rate (for example, an evening time period in which the shop is considerably crowded) is notified of the advance-notice information about the coupon to be issued in the time period in which the customer attracting rate of the shop is lower than the predetermined rate (for example, a daytime time period on a weekday in which the shop is not so crowded). Accordingly, it can be expected to level out a crowded situation in the shop. Moreover, since the user can receive a profit of the coupon in the time period in which the shop is not so crowded, a waiting time for the CO2free charging can be utilized more effectively. (4) In a certain embodiment, the user attribute information includes location information of each of the plurality of users. When the specific attribute represents presence in a specific place, the control device extracts a user who is present in the specific place by making reference to the user attribute information, and notifies the coupon advance-notice information to a mobile terminal of the extracted user. According to the above-described embodiment, the CO2free charging and the visiting to the shop can be promoted appropriately to the user who is present in the specific place (for example, a different shop located around the shop). The foregoing and other objects, features, aspects and advantages of the present disclosure will become more apparent from the following detailed description of the present disclosure when taken in conjunction with the accompanying drawings.
72,243
11352989
BACKGROUND The present application generally relates to the field of air filters and air filter assemblies, such as those for use with internal combustion engines. An internal combustion engine typically includes an air filter for removing debris, including, dust, dirt, grass clippings, etc. from air entering the engine for combustion processes. The air filter assembly may be housed in a case and include a filter element, which includes filter media, such as filter paper, foam, mesh, or other media. After passing through the filter media, the filtered air is routed to a carburetor or other air-fuel mixing device to be mixed with fuel and then to a combustion chamber of the engine. Removing debris from the air helps to preserve the moving components of the engine, such as the piston and crankshaft, avoiding excess friction and wear, as well as preventing clogging of the fuel delivery system. SUMMARY One embodiment of the invention relates to an internal combustion engine. The engine includes an engine block including a cylinder having a cylinder axis, a piston positioned within the cylinder and configured to reciprocate along the cylinder axis, a crankshaft configured to rotate about a crankshaft axis, an air-fuel mixing device configured to provide an air-fuel mixture to the cylinder, a cyclonic air filter positioned entirely below the air-fuel mixing device, and a duct coupling the cyclonic air filter to the air-fuel mixing device and configured to provide air filtered by the cyclonic air filter to the air-fuel mixing device. Another embodiment of the invention relates to an internal combustion engine. The engine includes an engine block including a cylinder having a cylinder axis, a piston positioned within the cylinder and structured to reciprocate along the cylinder axis, a crankshaft structured to rotate about a crankshaft axis, an air-fuel mixing device structured to provide an air-fuel mixture to the cylinder, an air filter positioned entirely below the air-fuel mixing device, and a duct coupling the air filter to the air-fuel mixing device and structured to provide air filtered by the air filter to the air-fuel mixing device. Another embodiment of the invention relates to an air filter assembly structured to provide filtered air to an engine. The air filter assembly includes a housing including a base and a cap at least partially defining an interior volume of the housing. The cap includes a debris outlet structured to allow debris and air to exit the housing and a channel formed on an interior cap surface structured to direct air and debris toward the debris outlet. The air filter assembly further includes a filter element positioned within the interior volume including a first end portion, a second end portion, and filter media extending between the first end portion and the second end portion. The filter element divides the interior volume into a filtered volume and an unfiltered volume. The air filter assembly further includes a gap between the filter element and the housing structured to allow air to flow between the filter element and the housing, an air intake formed in the base and structured to allow air to flow into the housing, a filtered air outlet formed in the base and in fluid communication with the filtered volume of the filter element, wherein the filtered air outlet is fluidly coupled to an air-fuel mixing device to allow filtered air to exit the housing.
138,820
11528509
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a National Stage application under 35 U.S.C. § 371 of International Application No. PCT/KR2019/011294, filed on Sep. 3, 2019, which claims the benefit of Korean Application No. 10-2018-0106781, filed on Sep. 7, 2018. The disclosures of the prior applications are incorporated by reference in their entirety. TECHNICAL FIELD The present disclosure relates to a video transmission method, a video transmission apparatus, a video reception method, and a video reception apparatus. BACKGROUND A virtual reality (VR) system provides a user with a sense of being in an electronically projected environment. The system for providing VR may be further improved to provide higher quality images and stereophonic sound. A VR system may allow a user to interactively consume VR content. SUMMARY The VR system needs to be improved in order to more efficiently provide a VR environment to users. To this end, data transmission efficiency for transmitting a large amount of data such as VR content, robustness between transmission and reception networks, network flexibility in consideration of mobile reception apparatuses, and methods for efficient playback and signaling need to be proposed. In addition, since general TTML (Timed Text Markup Language)-based subtitles or bitmap-based subtitles are not produced in consideration of 360 video, subtitle-related features and subtitle-related signaling information need to be further extended to be suitable for a use case of VR service in order to provide subtitles suitable for 360 video. In accordance with the object of the present disclosure, provided herein are a video transmission method, a video transmission apparatus, a video reception method, and a video reception apparatus. A video transmission apparatus according to embodiments of the present disclosure includes a target view prediction controller configured to predict a picture for a target viewing position from a texture picture or a depth picture of an anchor viewing position based on target viewing position information (Target view prediction controller); a prediction error controller configured to process a prediction error for the predicted picture based on a source picture of the target viewing position and generate an error-front region map based on the predicted picture and the source picture; a patch packing controller configured to pack the prediction error-processed picture into a patch based on the error-prone region map; and an encoder configured to encode the packed patch based on the texture picture or the depth picture of the anchor viewing position. A video transmission method according to embodiments of the present disclosure includes predicting a picture for a target viewing position from a texture picture or a depth picture of an anchor viewing position based on target viewing position information (Target view prediction); processing a prediction error for the predicted picture based on a source picture of the target viewing position and generating an error-front region map based on the predicted picture and the source picture; packing the prediction error-processed picture into a patch based on the error-prone region map (Patch packing); and encoding the packed patch based on the texture picture or the depth picture of the anchor viewing position (Encoding). In the process of transmitting and receiving 3DoF+ video, a video transmission apparatus and a video reception apparatus according to embodiments of the present disclosure may pack only valid information except information overlapping between images and efficiently deliver the same. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may efficiently transmit video by reducing the number of images. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may provide an image estimation method with high accuracy. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may find information that may cause an error and provide an image estimation method having high error robustness. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may estimate image information and detect a portion with low accuracy and an error. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may configure a patch with low complexity. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may provide encoding and decoding methods which are less burdened. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may efficiently deliver information on a region that cannot be estimated. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may reduce the number of images to be delivered, thereby reducing the amount of data. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may provide signaling information for the above-described effects. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may provide a video transmission/reception system reflecting real-time motion. The video transmission apparatus and the video reception apparatus according to the embodiments of the present disclosure may reduce the burden on a receiver and eliminate latency.
312,859
11321952
CROSS-REFERENCE TO RELATED APPLICATION This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/CN2019/084096, filed Apr. 24, 2019, which claims priority to Chinese Patent Application No. 201810556669.7, filed Jun. 1, 2018, the contents of which are incorporated by reference in the entirety. TECHNICAL FIELD The present invention relates to display technology, more particularly, to a computer-implemented method of alerting a driver of a vehicle, an apparatus for alerting a driver of a vehicle, a vehicle, and a computer-program product. BACKGROUND In present, a car becomes an indispensable tool for transportation in people's daily life. However, many reasons may cause a car accident. One of the most important reasons causing a car accident is fatigue driving. If a driver's fatigue driving status can be detected and the driver can be reminded in time based on his fatigue driving status, the reaction time of the driver will be shortened due to the reminder, resulting in a low chance of having a traffic accident. SUMMARY In one aspect, the present invention provides a computer-implemented method of alerting a driver of a vehicle, comprising obtaining a plurality of consecutive input images during a time interval using a three-dimensional depth camera, a respective one of the plurality of consecutive input images comprising a user sub-image and an object sub-image; deriving three-dimensional coordinates of user feature points in the user sub-image of the respective one of the plurality of consecutive input images using a first classifier; deriving three-dimensional coordinates of object feature points in the object sub-image of the respective one of the plurality of consecutive input images using the first classifier; classifying user posture in the respective one of the plurality of consecutive input images by analyzing the three-dimensional coordinates of user feature points and the three-dimensional coordinates of object feature points using a second classifier; determining presence or absence of a gaze position by using a sub-set of the user feature points to define a sub-region and searching for the gaze position in the sub-region; and generating a driver alert signal based on one or a combination of (1) classification of the user posture and (2) the presence or absence of the gaze position. Optionally, classifying the user posture comprises classifying the user posture into a first type and a second type; and wherein generating the driver alert signal is based on a determination that a first percentage of the plurality of consecutive input images obtained during the time interval determined to be the second type is greater than a first threshold value. Optionally, generating the driver alert signal is based on a determination that the gaze position is absent in a second percentage of the plurality of consecutive input images obtained during the time interval, the second percentage being greater than a second threshold value. Optionally, classifying the user posture comprises classifying the user posture into a first type and a second type; generating the driver alert signal is based on a determination that (1) a first percentage of the plurality of consecutive input images obtained during the time interval determined to be the second type is greater than a first threshold value; and (2) the gaze position is absent in a second percentage of the plurality of consecutive input images obtained during the time interval, the second percentage being greater than a second threshold value. Optionally, determining the presence or absence of the gaze position comprises using the sub-set of the user feature points from a group consisting of a head feature point, a right shoulder feature point, a left shoulder feature point to define the sub-region and searching for the gaze position in the sub-region. Optionally, the computer-implemented method further comprises pre-training a first initial classifier to obtain the first classifier; wherein pre-training the first initial classifier comprises inputting a plurality of first training images into the first initial classifier, a respective one of the plurality of first training images comprising a user sub-image and an object sub-image; inputting training three-dimensional coordinates of user feature points of user sub-images of the plurality of first training images into the first initial classifier; inputting training three-dimensional coordinates of object feature points of object sub-images of the plurality of first training images into the first initial classifier; deriving three-dimensional coordinates of user feature points in the user sub-images of the plurality of first training images using the first initial classifier; deriving three-dimensional coordinates of object feature points in the object sub-images of the plurality of first training images using the first initial classifier; determining a first degree of match between the training three-dimensional coordinates of the user feature points and the three-dimensional coordinates of the user feature points determined by the first initial classifier; determining a second degree of match between the training three-dimensional coordinates of the object feature points and the three-dimensional coordinates of the object feature points determined by the first initial classifier, and tuning the first initial classifier based on the first degree of match and the second degree of match. Optionally, the computer-implemented method further comprises pre-training a second initial classifier to obtain the second classifier; wherein pro-training the second initial classifier comprises inputting a plurality of second training images into the second initial classifier, a respective one of the plurality of second training images comprising a user sub-image and an object sub-image; inputting training classified types respectively for the plurality of second training images into the second initial classifier, the classified types comprising a first type and a second type; inputting training three-dimensional coordinates of user feature points of user sub-images of the plurality of second training images into the second initial classifier; inputting training three-dimensional coordinates of object feature points of object sub-images of the plurality of second training images into the second initial classifier; classifying user postures in the plurality of second training images by analyzing the training three-dimensional coordinates of the user feature points and the three-dimensional coordinates of object feature points using the second initial classifier; determining a degree of match between the training classified types and results of classifying the user postures using the second initial classifier, and tuning the second initial classifier based on the degree of match. Optionally, the first classifier is selected from a group consisting of a random forest classifier, a convolutional neural network classifier, an Adaboost classifier, and an SVM classifier. Optionally, the second classifier is selected from a group consisting of a random forest classifier, a convolutional neural network classifier, Adaboost classifier, and an SVM classifier. Optionally, the user sub-image comprises an image of an upper body of the driver and the object sub-image comprises an image of a driving wheel of the vehicle. In another aspect, the present invention provides an apparatus for alerting a driver of a vehicle, comprising an image capturing device configured to obtaining a plurality of consecutive input images during a time interval using a three-dimensional depth camera, a respective one of the plurality of consecutive input images comprising a user sub-image and an object sub-image; a memory; one or more processors; wherein the memory and the one or more processors are connected with each other, and the memory stores computer-executable instructions for controlling the one or more processors to derive three-dimensional coordinates of user feature points in the user sub-image of the respective one of the plurality of consecutive input images using a first classifier, derive three-dimensional coordinates of object feature points in the object sub-image of the respective one of the plurality of consecutive input images using the first classifier; classify user posture in the respective one of the plurality of consecutive input images by analyzing the three-dimensional coordinates of user feature points and the three-dimensional coordinates of object feature points using a second classifier; determine presence or absence of a gaze position by using a sub-set of the user feature points to define a sub-region and searching for the gaze position in the sub-region; and generate a driver alert signal based on one or a combination of (1) classification of the user posture and (2) the presence or absence of the gaze position. Optionally, the memory stores computer-executable instructions for controlling the one or more processors to classify the user posture into a first type and a second type; and generate the driver alert signal is based on a determination that a first percentage of the plurality of consecutive input images obtained during the time interval determined to be the second type is greater than a first threshold value. Optionally, the memory stores computer-executable instructions for controlling the one or more processors to generate the driver alert signal based on a determination that the gaze position is absent in a second percentage of the plurality of consecutive input images obtained during the time interval, the second percentage being greater than a second threshold value. Optionally, the memory stores computer-executable instructions for controlling the one or more processors to classify the user posture into a first type and a second type; and generate the driver alert signal is based on a determination that (1) a first percentage of the plurality of consecutive input images obtained during the time interval determined to be the second type is greater than a first threshold value; and (2) the gaze position is absent in a second percentage of the plurality of consecutive input images obtained during the time interval, the second percentage being greater than a second threshold value. Optionally, the memory stores computer-executable instructions for controlling the one or more processors to determine the presence or absence of the gaze position using the sub-set of the user feature points from a group consisting of a head feature point, a right shoulder feature point, a left shoulder feature point to define the sub-region and searching for the gaze position in the sub-region. Optionally, the first classifier is selected from a group consisting of a random forest classifier, a convolutional neural network classifier, an Adaboost classifier, and an SVM classifier. Optionally, the second classifier is selected from a group consisting of a random forest classifier, a convolutional neural network classifier, an Adaboost classifier, and an SVM classifier. Optionally, the user sub-image comprises an image of an upper body of the driver and the object sub-image comprises an image of a driving wheel of the vehicle. In another aspect, the present invention provides a vehicle, comprising the apparatus for alerting a driver of a vehicle described herein. In another aspect, the present invention provides a computer-program product comprising a non-transitory tangible computer-readable medium having computer-readable instructions thereon, the computer-readable instructions being executable by a processor to cause the processor to perform deriving three-dimensional coordinates of user feature points in a user sub-image of a respective one of a plurality of consecutive input images using a first classifier, the plurality of consecutive input images being obtained during a time interval using a three-dimensional depth camera, the respective one of the plurality of consecutive input images comprising the user sub-image and an object sub-image; deriving three-dimensional coordinates of object feature points in the object sub-image of the respective one of the plurality of consecutive input images using the first classifier; classifying user posture in the respective one of the plurality of consecutive input images by analyzing the three-dimensional coordinates of user feature points and the three-dimensional coordinates of object feature points using a second classifier; determining presence or absence of a gaze position by using a sub-set of the user feature points to define a sub-region and searching for the gaze position in the sub-region; and generating a driver alert signal based on one or a combination of (1) classification of the user posture and (2) the presence or absence of the gaze position.
108,009
11376322
FIELD OF THE INVENTION The present invention relates to compositions, methods, and kits for eliciting an immune response to a cell that expresses a cytomegalovirus (CMV) antigen. The present invention also relates to methods, compositions, and kits for determining CMV. BACKGROUND OF THE INVENTION Methods for treating cancers include the use of chemotherapeutics, radiation therapy, and surgery. The identification of a number of tumor antigens has led to attempts at developing cell-based therapies. Some methods have relied on first identifying a tumor antigen, i.e., a polypeptide that is expressed preferentially in tumor cells, relative to non-tumor cells. For example, several human tumor antigens have been isolated from melanoma patients, and identified and characterized. CMV is a β-herpesvirus. Human cytomegalovirus (HCMV) is endemic in the human population and it has been reported that the virus does not usually cause clinical disease except in immunocompromised hosts. Some human herpesviruses have been implicated in a number of human malignancies including lymphoma, nasopharyngeal cancer, cervical cancer, and Kaposi's sarcoma. Recently, HCMV antigen expression and detection of intact virus has been reported to occur in some tumors. Despite aggressive multi-modality therapy including surgery, radiation, and chemotherapy, the prognosis for patients with cancer remains relatively poor. Moreover, the non-specific nature of conventional therapy for cancer often results in incapacitating damage to surrounding normal and systemic tissues. Thus, there is a need for the development of effective diagnostic as well as therapeutic and prophylactic strategies that target cancer cells. SUMMARY OF THE INVENTION In one aspect, the present invention provides a method of eliciting in a subject an immune response to a cell that expresses a cytomegalovirus (CMV) antigen. The method comprises: administering to the subject a pharmaceutically acceptable composition comprising at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, wherein the pharmaceutically acceptable composition, when administered to the subject, elicits an immune response to the cell. In another aspect, the present invention provides a pharmaceutically acceptable composition comprising at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, wherein the pharmaceutically acceptable composition, when administered to the subject, elicits an immune response to a cell that expresses a CMV antigen. In some aspects, a prophylactically or therapeutically effective amount of a pharmaceutically acceptable composition is provided by the present invention, wherein the pharmaceutically acceptable composition comprises at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, wherein the pharmaceutically acceptable composition, when administered to the subject, elicits an immune response to a cell that expresses a CMV antigen. In other aspects, the present invention provides a method of eliciting in a subject an immune response to a cell that expresses a CMV antigen, the method comprising: administering to the subject a composition comprising an effective amount of antigen presenting cells, T-lymphocytes, or both, wherein the antigen presenting cells and T lymphocytes have been sensitized in vitro with a sensitizing-effective amount of at least one CMV antigen, wherein the effective amount of antigen presenting cells, T lymphocytes, or both is sufficient to elicit the immune response to the cell that expresses the CMV antigen. In one aspect, the present invention provides a method for making an antigen-presenting cells, the method comprising: contacting antigen-presenting cells with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, in vitro under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells, wherein the antigen-presenting cell presents the at least one CMV antigen. In still a further aspect, the present invention provides a composition comprising antigen-presenting cells contacted with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, in vitro under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells. In some aspects, the present invention provides a method for making lymphocytes, the method comprising: a) contacting antigen-presenting cells with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, in vitro under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells; and b) contacting lymphocytes with the antigen-presenting cells of step a) under conditions sufficient to produce the lymphocytes, wherein the lymphocytes are capable of eliciting an immune response against a cell that expresses a CMV antigen. In other aspects, the present invention provides a composition comprising T lymphocytes contacted with antigen-presenting cells under conditions sufficient to produce T lymphocytes capable of eliciting an immune response against a cell that expresses a CMV antigen, wherein the antigen-presenting cells have been contacted with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, in vitro under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells. In one aspect, a method for treating or reducing the severity of cancer in a subject is provided by the present invention. The method comprises: administering to the subject a therapeutically or prophylactically effective amount of a composition comprising T lymphocytes contacted with antigen-presenting cells under conditions sufficient to produce T lymphocytes capable of eliciting an immune response against a cell that expresses a CMV antigen, wherein the antigen-presenting cells have been contacted with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, in vitro under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells. In another aspect, the present invention provides a method for eliciting in a subject an immune response to a cell that expresses a CMV antigen. The method comprises: administering to the subject a pharmaceutically acceptable composition comprising dendritic cells loaded ex vivo with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, wherein the pharmaceutically acceptable composition, when administered to the subject, elicits an immune response to the cell that expresses a CMV antigen. In some aspects, the present invention provides a method of treating a cell that expresses a CMV antigen, the method comprising administering to a subject a therapeutically or prophylactically effective amount of a pharmaceutically acceptable composition to reduce or inhibit growth or spread of the cell in the subject, wherein the composition comprises: a) at least one CMV antigen or a polynucleotide encoding the at least one CMV antigen; b) an anti-CMV antibody; c) an antigen-presenting cell presenting the at least one CMV antigen, a lymphocyte primed against the CMV antigen, or both; or d) a combination thereof. In other aspects, the present invention provides a method of eliciting in a subject an immune response to a cell that expresses a CMV antigen, the method comprising: administering to the subject a composition comprising an effective amount of antigen-presenting cells, lymphocytes, or both, wherein the antigen-presenting cells and lymphocytes have been sensitized in vitro with a sensitizing-effective amount of at least one CMV antigen, wherein the effective amount of antigen-presenting cells, lymphocytes, or both is sufficient to elicit the immune response to the cell that expresses the CMV antigen. In one aspect, the present invention provides a method of treating a cell that expresses a CMV antigen, the method comprising administering to a subject a composition comprising an effective amount of antigen-presenting cells, lymphocytes, or both, wherein the antigen-presenting cells have been in vitro contacted with at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, under a condition sufficient for the at least one CMV antigen to be presented by the antigen-presenting cells, wherein the lymphocytes have been contacted with antigen-presenting cells presenting the at least one CMV antigen. In another aspect, the present invention provides a method of eliciting in a subject an immune response to a cell that expresses a CMV antigen, the method comprising: administering to the subject a pharmaceutically acceptable composition comprising an anti-CMV antibody. In various other aspects, the present invention provides compositions and methods for determining CMV nucleic acid in a subject, preferably CMV DNA in blood or other biological fluid, for example determining subclinical viremia in a sample of blood obtained from the subject. Accordingly, the compositions and methods provide diagnostic, monitoring, and prognostic tests/assays that complement various diagnostic and/or therapeutic procedures and treatments including methods described herein such as, for example, prophylactic and/or therapeutic treating of a disease or condition associated with a precancerous cell, a cancer cell, or a cell-type predisposed to developing cancer associated with CMV. In other aspects, the present invention provides a kit comprising a pharmaceutically acceptable composition comprising at least one CMV antigen, or nucleic acids encoding the at least one CMV antigen, wherein the pharmaceutically acceptable composition, when administered to a subject, elicits an immune response against a cell that expresses a CMV antigen.
161,967
11378600
BACKGROUND Universal Serial Bus (USB) devices that communicate with a host over USB include USB printers, scanners, digital cameras, storage devices, card readers, and the like. USB based systems may require that a USB host controller be present in the host system, and that the operating system (OS) of the host system support USB and USB Mass Storage Class Devices. USB2 devices may communicate over the USB bus at low speed (LS), full speed (FS), or high speed (HS). A connection between a USB device and a host may be established via a four wire interface that includes a power line, a ground line, and a pair of data line, differential voltage plus (D+) and differential voltage minus (D−), or for the case of USB On-The-Go (OTG), a fifth line named ID (identification pin) may be added. When a USB device connects to the host, the USB device may first pull a D+ line high (or the D− line if the device is a low speed device) using a pull up resistor on the D+ line when connecting as FS (Full Speed) mode. The host may respond by resetting the USB device. If the USB device is a high-speed USB device, the USB device may “chirp” by driving the D− line high during the reset. The host may respond to the “chirp” by alternately driving the D+ and D− lines high. The USB device may then electronically remove the pull up resistor and continue communicating at high speed if both communicating devices are HS capable. Disconnection at high-speed happens when a cable is removed and HS RX terminal on USB device is removed. It results in doubling HS amplitude on the USB host transmitter. The USB2 specification defines a mechanism to detect differential line voltage using differential difference receiver detectors. The success of USB2.0 technology has enjoyed wide adoption in almost every computing device, with tremendous ecosystem support not only in terms of device choice to support various platform features, but also in terms of technology development with well-established hardware IP portfolios and standardized software infrastructure. It is foreseeable that the great asset of USB2.0 technology will continue to benefit the ecosystem for years to come. As power efficiency becomes increasingly critical in today's computing devices, there is a need for IO technology to be optimized for both active and idle power. USB2.0 technology, originally optimized for external device interconnect, is primed to be enhanced for inter-chip interconnect such that the link power can be further optimized. Meantime, silicon technology continues to scale. Device dimensions are getting smaller and therefore more devices can be packed onto a single integrated chip. However, the device reliability challenge arising from the densely packed transistors has become more profound. The manufacturing cost for an advanced process technology to support 3.3V IO signaling has grown exponentially. A low voltage USB2.0 solution is therefore required to address the gap. Embedded USB is a newer standard to fill the gap caused due to advance silicon processes. At system level, eUSB2 to USB2.0 bridge (eUSB2 repeater) is required to support host (SoC) communication to external USB2.0 compliant devices via USB connectors. eUSB2/USB2 and USB2/USB2 repeaters require both squelch detector (SQD) and disconnect detector (DCD) at USB2.0 connector port for highspeed (HS) communication (SQD and DCD for USB2 port and SQD for eUSB port). Each of the SQD and DCD work at 480 Mbps range, but support different functionalities. The invention describes method to combine squelch detector and disconnect detector in an eUSB2 or USB2 repeater. SUMMARY In one embodiment, a circuit is disclosed. The circuit includes an input port, an output port, a squelch detector and a disconnect detector. The squelch detector and the disconnect detector are enabled or disabled by a signal such that only one of the squelch detector and the disconnect detector is active at a given time. When the squelch detector is active, a threshold generator generates a squelch threshold for the squelch detector based on a squelch configuration data indicative of a predefined squelch threshold. When the disconnect detector is active, the threshold generator generates a disconnect threshold for the disconnect detector based on a disconnect configuration data indicative of a predefined disconnect threshold. The circuit may include a mapping table to map the squelch configuration data and the disconnect configuration data and corresponding predefined thresholds. The mapping table may be implemented using a digital to analog converter with a input to output calibration according to the mapping table. In some examples, the circuit may include a RC network coupled with the input port, wherein the RC network includes a first resistor R1and a first capacitor C1, a second resistor R2and a second capacitor C2. The second capacitor C2is one or both of a physical capacitor and a parasitic capacitor. The RC network may be configured such that R1*C1is substantially equal to R2*C2. In some examples, the threshold generator uses a digital to analog converter that is calibrated to output a predefined voltage signal based on the squelch configuration data and the disconnect configuration data. In some examples, the circuit may be used in a universal serial bus (USB) repeater or a USB transceiver or a universal serial bus (USB) to embedded USB (eUSB) repeater. The squelch detector is configured to detect a presence of an input signal at the input port and the squelch detector is active during data reception at a repeater and the disconnect detector is configured to detect a disconnection of a receiver and the disconnect detector is active during data transmission from a repeater. In another embodiment a circuit is disclosed that includes an input port, an output port, a squelch detector, a disconnect detector and an switchable RC network. The squelch detector and the disconnect detector are enabled or disabled by a signal such that only one of the squelch detector and the disconnect detector is active at a given time. When the disconnect detector is active, the switchable RC network is switched to provide a predefined ratio resistor divider between the input and the output of the switchable RC network and when the squelch detector is active, the switchable RC network is bypassed. In some examples, the switchable RC network is coupled with the input port, wherein the RC network includes a first resistor R1and a first capacitor C1, a second resistor R2and a second capacitor C2. The second capacitor C2may be one or both of a physical capacitor and a parasitic capacitor. The switchable RC network includes a first switch and a second switch. The first switch and the second switch are configured to bypass the resistors R1, R2and the capacitor C1when the disconnect detector is inactive and the squelch detector is active. The circuit may be used in a universal serial bus (USB) repeater or in a universal serial bus (USB) to embedded USB (eUSB) repeater. The circuit includes a comparator coupled with the input port and a fix reference voltage equal to a default squelch threshold. The comparator uses the same fix reference voltage when the squelch detector is active and when the disconnect detector is active. The input signal to the comparator coupled with the input port may bypass or pass through a resistor divider depending on whether the squelch or disconnect detector is active.
164,235
11344173
TECHNICAL FIELD The present disclosure relates to a cleaning robot and a cleaning cloth bracket for the cleaning robot, which belongs to the field of small household appliances manufacturing technology. BACKGROUND At present, the floor cleaning robots with mopping function on the market, the cleaning cloth bracket of which can only be lowered by its own gravity, or it is completely fixed and cannot move. When encountering obstacles such as steps, since it cannot be lifted up, the cleaning cloth and the cleaning cloth bracket press against the obstacles, and the robot is stuck, resulting in a reducing of the cleaning efficiency. Chinese application disclosure No. 201710451102.9 discloses a mopping robot, including a bracket and an elastic body, where the bracket has a curved side wall, so that the bracket can be smoothly lifted by the protrusion on the ground, thereby reducing the probability of the cleaning cloth and the cleaning cloth being pressed against. However, since the bracket cannot deform, when the bracket is lifted by the protrusion, it is separated from the ground, and the ground around the protrusion cannot be in contact with the cleaning cloth and cannot be effectively cleaned. In addition, since there is a gap between the side wall and the supporting plate, when the height of the obstacle is between the side wall and the supporting plate, the robot will still get stuck, which reduces the efficiency of the robot and makes the user experience a poor experience. SUMMARY The technical problem to be solved by the present disclosure is to provide a cleaning robot, by increasing the height of the raised portion and providing the soft member between the raised portion and the main body of the cleaning cloth bracket, the range of application of the cleaning robot is improved, the cleaning robot is allowed to overcome higher obstacles, and the cleaning efficiency is improved. The technical problem to be solved by the present disclosure is achieved by the technical solution below: The present disclosure provides a cleaning robot, including a cleaning cloth bracket, where the cleaning cloth bracket includes a main body, a soft member and a raised portion, a cleaning cloth is provided under the cleaning cloth bracket, the cleaning cloth bracket is floatingly disposed at a bottom of a base of the cleaning robot, the raised portion is provided at a front end of the main body through the soft member, and the raised portion is in contact with the bottom of the base. Preferably, the raised portion comprises an inclined surface or an arc surface. Preferably, the soft member comprises an elastic piece, a cloth cover, or a rubber. In order to make the raised portion contact with the base, the raised portion is connected to the bottom of the base through means of gluing, riveting or buckling. Alternatively, the raised portion abuts against the base by support force provided by the soft member. In order to achieve better cleaning effect, the main body is at least partially composed of a plurality of soft brackets. Preferably, the soft brackets are in a shape of a bar, a longitudinal direction of the soft brackets is perpendicular to a forward direction of the cleaning robot, and the plurality of the soft brackets are arranged at intervals along the forward direction of the cleaning robot. Preferably, each of the soft brackets is in a shape of a triangle, and the soft brackets are evenly distributed on the main body. In order to prevent the soft member and the raised porting from being polluted by the dirt, the cleaning cloth is wrapped below the soft member and the raised portion. Preferably, one end of the elastic member abuts the main body, and the other end abuts the bottom of the base. In conclusion, according to the present disclosure, by increasing the height of the raised portion and providing the soft member between the raised portion and the main body of the cleaning cloth bracket, the range of application of the cleaning robot is improved, the cleaning robot is allowed to overcome higher obstacles, and the cleaning efficiency is improved. The technical solution of the present disclosure will be described in detail below with reference to the drawings and specific embodiments.
130,068
11300348
BACKGROUND The present invention relates to a refrigerator having a deep-temperature freezing chamber. A typical refrigerator is a household appliance that stores food at a low temperature and can be divided into a refrigerating chamber and a freezing chamber depending on the temperature of the food stored in the refrigerator. Typically, the refrigerating chamber generally keeps a temperature of 3° C., to 4° C., and the freezing chamber generally keeps a temperature of about −20° C. A freezing chamber with a temperature of about −20° C. is a space in which food is kept in a state of being frozen and is often used by consumers to store food for a long period of time. However, in the existing freezing chamber which keeps a temperature of about −20° C., there are problems that when the meat or seafood is frozen and the water in the cell is frozen, the water is discharged out of the cell and the cell is destroyed, and thus the original taste thereof is lost or texture thereof is changed when the meat or the seafood is cooked after thawing. On the other hand, there are advantages that when meat, seafood, or the like is frozen, a temperature range of the freezing point where the ice forms in the cell is rapidly passed and the cooling thereof is done, the cell destruction can be minimized and, the quality and the texture of the meat are freshly renewed or reproduced and thus cooking is delicious, after thawing. Because of this, high-end restaurants use deep-temperature freezers that can rapidly freeze meat, fish, seafood, or the like. However, unlike restaurants that need to preserve large quantities of food, it is unlikely to purchase deep-temperature freezers such as those used in restaurants since it is not always necessary to use a deep-temperature freezer in regular homes. However, as the quality of life has improved, consumers' desire to eat more delicious foods has become stronger, and thus consumers who want to use deep-temperature freezers have increased. In order to meet the needs of such consumers, there has been developed a household refrigerator in which a deep-temperature freezing chamber is installed in a portion of the freezing chamber. It is preferable that the deep-temperature freezing chamber satisfies a temperature of about −50° C., and such a cryogenic temperature is a temperature that cannot be reached only by a refrigeration cycle using a typical refrigerant. Accordingly, household refrigerators are developed in which includes a separate deep-temperature freezing chamber in which the food is cooled to a temperature of −20° C. by a refrigeration cycle and is cooled to a temperature lower than −20° C. by a thermoelectric element (TEE). However, since the difference in temperature between a freezing chamber of −20° C. and a deep-temperature freezing chamber of −50° C. is considerably large, if structures such as insulation, defrosting, and cold supply which is applied to a design of the existing freezing chamber are applied to the deep-temperature freezing chamber, as it were, it is not easy to implement a temperature of −50° C. On the other hand, in the space of the deep-temperature freezing chamber, there is a cooling portion which is cooler than the deep-temperature freezing chamber and if condensation occurs in this portion, the condensation needs to be removed. However, since the temperature inside the deep-temperature freezing chamber is much lower than the temperature of the freezing chamber, which is the space outside the deep-temperature freezing chamber, as well as the melting point of water, it is unlikely to make defrosting smooth. In addition, when excessive heating of the cooling portion of the deep-temperature freezing chamber for defrosting, since the excessive heating thereof may adversely affect the environment of the deep-temperature freezing chamber, a technique that can minimize the adverse effect is required. In addition, a phenomenon is also an evitable problem which the defrost water is re-frozen by exposing the defrost water to the cryogenic environment in a process of discharging the defrost water generated by defrosting in the deep-temperature freezing chamber. In addition, it is also very difficult to implement a structure for discharging the defrost water. Also, the cryogenic environment of the deep-temperature freezing chamber generates an excessive negative pressure inside the deep-temperature freezing chamber and a structure for relieving the negative pressure while minimizing the cold loss in the deep-temperature freezing chamber is required. In addition, when the deep-temperature freezing chamber is provided while occupying the space of the freezing chamber itself, it is necessary to minimize the volume occupied by the structure for cooling and circulating the cooling air in the deep-temperature freezing chamber since a decrease in the volume capacity of the freezing chamber has to be minimized. In particular, in a case where a cryogenic temperature is implemented by using a thermoelectric element, heat exchange is generated smoothly on both the heat absorption side and the heat generation side of the thermoelectric element, and the cooling air cooled through heat exchange on the heat absorption side has to be circulated smoothly, and heat exchange loss or flow loss shall not be generated while having a simple structure as possible. In addition, there is a concern that the flow rate and the pressure distribution of the grille panel assembly structure of the related art may change, and the freezing of the freezing chamber may not be performed smoothly, due to the volume occupied by the thermoelectric element and the components relating thereto which are installed to implement the cryogenic temperature. SUMMARY The present invention relates to a configuration for cryogenic temperature cooling and an object thereof is to provide a refrigerator that has a defrosting structure of a deep-temperature freezing chamber which does not harm a cryogenic atmosphere of a deep-temperature freezing chamber while reliably defrosting a configuration exposed to the environment of the deep-temperature freezing chamber. An object of embodiments of the present invention is to provide a refrigerator that has negative pressure relieving structure of the deep-temperature freezing chamber which eliminates the negative pressure in a deep-temperature freezing chamber that is generated in a cryogenic environment but does not damage a cryogenic atmosphere of a deep-temperature freezing chamber. An object of embodiments of the present invention is to provide a refrigerator that can simplify the structure by implementing the defrost structure and the negative pressure relieving structure in one configuration and minimize the volume occupied by the defrost structure and the negative pressure relieving structure. An object of embodiments of the present invention is to provide a refrigerator that smoothly discharges defrost water during a defrosting operation of an independent deep-temperature freezing chamber that is cooled to a cryogenic state by a thermoelectric element in a storage space. An object of embodiments of the present invention is to provide refrigerator that can prevent deterioration in performance due to the freezing of an independent deep-temperature freezing chamber which is cooled to a cryogenic state by a thermoelectric element in a storage space. According to an embodiment of the present invention, there is provided a refrigerator including a main body in which a storage space is formed; a deep-temperature freezing chamber that forms a heat insulating space which is independent of the storage space; an evaporator that is provided inside the storage space and cools the storage space; a grille panel assembly which defines the storage space and a space in which the evaporator is accommodated; a thermoelectric element module assembly which is provided at one side of the deep-temperature freezing chamber and includes a thermoelectric element, a heat sink, and a cold sink to cool the deep-temperature freezing chamber to a temperature lower than that of the storage space; a thermoelectric element module accommodation portion that is formed at one side of the grille panel assembly and in which at least a portion of the thermoelectric element module assembly is accommodated; a defrost water guide that is formed to communicate the thermoelectric element module accommodation portion and the space in which the evaporator is accommodated with each other and discharges defrost water generated during a defrost operation of the deep-temperature freezing chamber; and a defrost heater which is provided in the thermoelectric element module accommodation portion and melts the ice driven and dropped during the defrosting operation. During the defrosting operation, a reverse voltage may be applied to the thermoelectric elements to generate heat in the cold sink. The thermoelectric element module accommodation portion may be provided with a cooling fan that adsorbs the air of the deep-temperature freezing chamber and exchanges heat with the thermoelectric element, and then forces the flow of air to be discharged to the deep-temperature freezing chamber. The thermoelectric element module accommodation portion may be formed with an accommodation portion discharge port that communicates with the defrost water guide and a bottom surface of the thermoelectric element module accommodation portion may be inclined toward the accommodation portion discharge port. The defrost water guide may communicate with the bottom surface of the thermoelectric element module accommodation portion and the defrost heater may be disposed on the bottom surface of the thermoelectric element module accommodation portion. The defrost heater may be disposed on the bottom surface of the thermoelectric element module accommodation portion and may be located below the cold sink. The defrost heater includes an accommodation portion heating portion that is bent a plurality of times and disposed along the bottom surface of the thermoelectric element module accommodation portion; and a guide heating portion that extends from one side of the accommodation portion heating portion to the inside of the defrost water guide. The grille panel assembly may include a grille panel that forms a rear wall surface of the storage space and has an absorption port and a discharge port for cooling air; and a shroud that forms a wall surface of the space in which the evaporator is accommodated and is coupled in a state of being spaced apart from the grille panel to form a flow path of the cooling air. The shroud can shield the thermoelectric element module accommodation portion and the thermoelectric element module assembly from behind. The defrost water guide extends from the thermoelectric element module accommodation portion and further extends through the shroud to a space in which the evaporator is accommodated. The shroud may be provided with a through-hole through which the defrost water guide passes, and the defrost water guide may be provided with a lower restraining protrusion protruding from the outside of the through-hole to restrain the defrost water guide from the outside of the through-hole. The defrost water guide includes an extension portion that extends from the thermoelectric element module accommodation portion and guides the defrost water downward; and a rounded portion that is formed to be rounded from the end portion of the extension portion toward the evaporator and guides the defrost water to the evaporator side, in which the rounded portion can be formed on the outer side of the shroud. The defrost water guide is formed such that the rear surface thereof is opened, and the opened rear surface by the shroud is shielded to form a closed flow path through which the defrost water flows. The grille panel is provided with a guide mounting portion which is recessed so as to mount the defrost water guide, and a rear end of the defrost water guide and the rear surface of the grille panel can be positioned on the same plane in a state where the defrost guide is mounted on the guide mounting portion. The rear surface of the defrost water guide is opened, and the opened rear surface of the defrost water guide can be shielded by the shroud when the shroud is mounted. According to another aspect of the present invention, there is provided a refrigerator including: a storage space; a wall body that is positioned behind the storage space and defines a rear boundary of the storage space; a deep-temperature case that is provided inside the storage space and positioned on the front surface of the wall body; and a thermoelectric element module assembly that is positioned at a rear portion of the deep-temperature case and is positioned at a rear surface of a wall body corresponding to a front surface of the wall body where the deep-temperature case is positioned to supply cooling air to the deep-temperature case, in which the thermoelectric element module assembly includes a cooling fan, a cold sink, a thermoelectric element, and a heat sink in order from a front side to a rear side, in which a drain hole is formed in a lower portion of the cold sink for discharging defrost water generated when the cold sink is defrosted, and in which a bottom surface that is formed with a downwardly inclined slope for drain toward the drain hole is provided in a surrounding of the drain hole. The drain hole is provided at the rear side of the wall body and the defrost water can be discharged to the outside of the deep-temperature freezing chamber through the drain hole. A heating wire may be installed between a surface of the slope for drain and the drain hole and the heating wire can be disposed to cover an area larger than that corresponding to the cold sink. Power can be also supplied to the heating wire while power is supplied to the thermoelectric element at least for defrosting the cold sink. The power supplied to the heating wire may be cut off after being further supplied for a predetermined period after the power supplied to the thermoelectric element is cut off for defrosting the cold sink. According to the embodiment of the present invention, as a configuration for cooling at a cryogenic temperature, defrosting with respect to the configuration exposed to the environment of the deep-temperature freezing chamber is surely carried out, but the cryogenic atmosphere of the deep-temperature freezing chamber is not damaged. In addition, according to the present invention, the negative pressure inside the deep-temperature freezing chamber generated in a cryogenic environment is relieved, but the cryogenic atmosphere of the deep-temperature freezing chamber is not damaged. In addition, the present invention implements the defrost structure and the negative pressure relieving structure in a single structure to simplify the structure and minimize the volume occupied by the defrost structure and the negative pressure relieving structure, which is advantageous for securing the internal space of the refrigerator. The thermoelectric element module assembly for cooling the deep-temperature freezing chamber allows the heat sink to pass through the low-temperature refrigerant supplied to the evaporator, thereby increasing the temperature difference between the heat absorption surface and the heat generation surface of the thermoelectric element, and finally, the deep-temperature freezing chamber can implement a cryogenic temperature of about −40° C. to −50° C. In addition, a reverse voltage is applied to the thermoelectric element during the defrosting operation of the deep-temperature freezing chamber to remove the frost and freezing formed on the cold sink side. In addition, the defrosting performance of the ice can be further improved by heating ice blocks inside the thermoelectric element module accommodation portion dropped from the cold sink with the defrost heater. In addition, through the complete defrosting, the cooling air supplied to the inside of the deep-temperature freezing chamber can smoothly flow, and the heat-exchanging performance of the cold sink can be also kept at the best condition. There are advantages that the defrost heater is formed to extend to the inside of the defrost water guide to prevent ice pieces of a small size introduced into the defrost water guide from being frozen and a space can be secured in the inside of the defrost water guide so that flow of the defrost water is always smooth. In addition, the defrost water guide can be kept a firmly fixed state on the grille panel, and even if the cooling air flows between the grille panel and the shroud at a high speed, the cooling air is prevented from flowing to prevent noise and keep the firmly fixed state thereof. In addition, the defrost water guide extends from the inside of the thermoelectric element module accommodation portion to a space where the evaporator outside the shroud is accommodated, so that the defrost water does not flow into a space between the grille panel and the shroud and thus it is possible to prevent the defrost water from being frozen or the cooling air flow path from being blocked. In addition, there is an advantage that the defrost water guide has an end that is formed to be rounded toward the evaporator side to guide the dropping defrost water toward the evaporator and noise generated when the defrost water drops can be prevented.
86,628
11473599
BACKGROUND Field of Disclosure The present disclosure relates generally to a solar surface steering system and a hydraulic actuator, and more particularly to a solar surface steering system using hydraulic actuators for two-dimensional steering of a solar surface and to a two dimensional steering hydraulic actuator for a solar surface. Description of the Related Art Steering is a common technique to increase the energy yield in solar energy photovoltaic panels. Steering increases the geometric efficiency of solar surfaces. Non-steered solar surfaces are less productive compared to steered ones. Further, two-dimensional (2D) steering is more effective than single dimensional (1D) steering. There are several techniques to perform such steering using electrical drives and stepper motors. To increase accuracy, the electrical actuation is performed through various gearing systems. Another steering application is to steer solar reflectors toward a tower target. Although the steering problem must be two-dimensional, the necessary degree of accuracy is much higher compared to photovoltaic steering. Solar surfaces, including photovoltaic panels, solar reflectors for central towers, and parabolic dishes, all need 2D steering. Maximizing total energy output requires increasing either the number of units or the size per unit (or both). The cost of steering mechanisms increases with the size of the units and/or the number of units since the power of electrical motors and the number of motors must both increase. Hydraulic technology offers a solution where a central hydraulic drive can be shared by several or all actuators. The degree of accuracy is not limited by the step size or even micro-step size of electrical motors. In fact any step can be achieved by limiting the flow rate and proper timing of corresponding hydraulic valves. Hydraulic actuators are available in several different types: linear actuators, continuous rotation actuators, and limited angle actuators. In the steering problem, only the linear piston actuator and limited angle rotary actuator can provide steering. Although linear pistons have been conventionally used for steering, linear pistons can be bulky and may not be suitable for dusty environments. The limited angle rotary actuator (also referred to as a “rotary vane actuator”) contains two vanes: a fixed vane and a moving vane; seeFIG. 1. These two vanes divide the cylindrical volume into two regions or cavities, and relative pressure on the moving vane causes it to rotate. This hydraulic action of rotating the moving vane drives the axis rotation, and the axial rotation does the useful work expected from the actuator. The two cavities of the actuator are connected by a proper valve system to high and low hydraulic pressure. To reverse the motion, the pressure direction must be switched. A 4-valve system or a specialized 4-way valve can be used to perform this reversible process. In one example of a known surface steering apparatus is disclosed in patent document U.S. Pat. No. 8,943,817 B2. In this example, a system and method are disclosed for moving an object in one axis including one or more fluid inflatable containers which are arranged to transmit fluid pressure to a plunger, such that a flexible membrane of the fluid inflatable container engages with the plunger and forms a rolling lobe in response to changes in volume. The fluid inflatable containers are enclosed within an enclosure or drum, and a shaft runs axially through the center of the enclosure. However, in this example, the object can only be steered in one rotational dimension. Another example offers a reflective solar tracing system (U.S. Pat. No. 4,586,488A) of the type arranged to reflect light rays from the sun onto a remote solar energy collector. This system provides a two dimensional steering to compensate for altitudinal and azimuthal changes in the position of the sun using a sensor device to point at the sun and provide control signals to a drive mechanism so that the reflector is moved in response to solar movement. Especially for solar tracking devices, systems and methods, a compact steering apparatus that can be shared among several solar devices is desired. Conventional rotary actuators suffer from rotational restrictions, complexity and size. Accordingly, it is one object of the present disclosure to describe a two-dimensional steering hydraulic actuator for a solar surface. The foregoing “Background” description is for the purpose of generally presenting the context of the disclosure. Work of the inventors, to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present invention. SUMMARY OF THE INVENTION A first aspect of the present disclosure provides a solar surface steering system including: a solar surface, a base mount; and a main body having a first rotary vane actuator configured to rotate the solar surface via a first rotating joint, and a second rotary vane actuator configured to rotate the main body of the hydraulic actuator via a second rotating joint connected to the base mount, wherein the first and second rotary vane actuators are affixed to each other and positioned such that a rotational axis of the first rotary vane actuator is orthogonal to a rotational axis of the second rotary vane actuator. A second aspect of the present disclosure provides a two dimensional steering hydraulic actuator for a solar surface including a base mount; and a main body having a first rotary vane actuator configured to rotate the solar surface via a first rotating joint, and a second rotary vane actuator configured to rotate the main body of the hydraulic actuator via a second rotating joint connected to the base mount, wherein the first and second rotary vane actuators are affixed to each other and positioned such that a rotational axis of the first rotary vane actuator is orthogonal to a rotational axis of the second rotary vane actuator. This disclosure describes a simple, cost effective design for a solar surface steering system that is compact, is easily installable, is steady, and has a large angular range in both degrees of freedom without a need for complex, costly, or unreliable electronic mechanisms to realize 2D steering.
258,401
11218839
TECHNICAL FIELD The disclosure herein relates to the field of mobile device indoor navigation and localization. BACKGROUND Users of mobile devices increasingly use and depend upon indoor positioning and navigation applications and features. Particularly, Indoor positioning and navigation of a mobile device carried or worn by a user can be difficult to achieve using satellite-based navigation systems because the satellite-based navigation technology generally relies on the line-of-sight between the mobile device and the satellite. Accordingly, when the connection between the two becomes unavailable, or is only sporadically available, such as within enclosed, or partially enclosed, urban infrastructure and buildings, including hospitals, shopping malls, airports, university campuses and industrial warehouses, the positioning and navigational capability of the satellite-based navigation system becomes unreliable. In turn, indoor navigation and positioning solutions may rely on various sensors including accelerometers, gyroscopes, and magnetometers that may be commonly included in mobile phones and other mobile computing devices, in conjunction with acquired wireless communication signal data to localize the mobile device. Thus, effectiveness of the indoor navigation and positioning solution is directly dependent on the quality of data, sensor or signal, and the manner of utilization of data for localization.
5,831
11238072
TECHNICAL FIELD The present disclosure relates generally to computer architectures for emulating a processing system, and more specifically to a computer architecture for mapping analog data values to a string correlithm object in a correlithm object processing system. BACKGROUND Conventional computers are highly attuned to using operations that require manipulating ordinal numbers, especially ordinal binary integers. The value of an ordinal number corresponds with its position in a set of sequentially ordered number values. These computers use ordinal binary integers to represent, manipulate, and store information. These computers rely on the numerical order of ordinal binary integers representing data to perform various operations such as counting, sorting, indexing, and mathematical calculations. Even when performing operations that involve other number systems (e.g. floating point), conventional computers still resort to using ordinal binary integers to perform any operations. Ordinal based number systems only provide information about the sequence order of the numbers themselves based on their numeric values. Ordinal numbers do not provide any information about any other types of relationships for the data being represented by the numeric values such as similarity. For example, when a conventional computer uses ordinal numbers to represent data samples (e.g. images or audio signals), different data samples are represented by different numeric values. The different numeric values do not provide any information about how similar or dissimilar one data sample is from another. Unless there is an exact match in ordinal number values, conventional systems are unable to tell if a data sample matches or is similar to any other data samples. As a result, conventional computers are unable to use ordinal numbers by themselves for comparing different data samples and instead these computers rely on complex signal processing techniques. Determining whether a data sample matches or is similar to other data samples is not a trivial task and poses several technical challenges for conventional computers. These technical challenges result in complex processes that consume processing power which reduces the speed and performance of the system. The ability to compare unknown data samples to known data samples is crucial for many security applications such as face recognition, voice recognition, and fraud detection. Thus, it is desirable to provide a solution that allows computing systems to efficiently determine how similar different data samples are to each other and to perform operations based on their similarity. SUMMARY Conventional computers are highly attuned to using operations that require manipulating ordinal numbers, especially ordinal binary integers. The value of an ordinal number corresponds with its position in a set of sequentially ordered number values. These computers use ordinal binary integers to represent, manipulate, and store information. These computers rely on the numerical order of ordinal binary integers representing data to perform various operations such as counting, sorting, indexing, and mathematical calculations. Even when performing operations that involve other number systems (e.g. floating point), conventional computers still resort to using ordinal binary integers to perform any operations. Ordinal based number systems only provide information about the sequence order of the numbers themselves based on their numeric values. Ordinal numbers do not provide any information about any other types of relationships for the data being represented by the numeric values such as similarity. For example, when a conventional computer uses ordinal numbers to represent data samples (e.g. images or audio signals), different data samples are represented by different numeric values. The different numeric values do not provide any information about how similar or dissimilar one data sample is from another. Unless there is an exact match in ordinal number values, conventional systems are unable to tell if a data sample matches or is similar to any other data samples. As a result, conventional computers are unable to use ordinal numbers by themselves for comparing different data samples and instead these computers rely on complex signal processing techniques. Determining whether a data sample matches or is similar to other data samples is not a trivial task and poses several technical challenges for conventional computers. These technical challenges result in complex processes that consume processing power which reduces the speed and performance of the system. The ability to compare unknown data samples to known data samples is crucial for many applications such as security application (e.g. face recognition, voice recognition, and fraud detection). The system described in the present application provides a technical solution that enables the system to efficiently determine how similar different objects are to each other and to perform operations based on their similarity. In contrast to conventional systems, the system uses an unconventional configuration to perform various operations using categorical numbers and geometric objects, also referred to as correlithm objects, instead of ordinal numbers. Using categorical numbers and correlithm objects on a conventional device involves changing the traditional operation of the computer to support representing and manipulating concepts as correlithm objects. A device or system may be configured to implement or emulate a special purpose computing device capable of performing operations using correlithm objects. Implementing or emulating a correlithm object processing system improves the operation of a device by enabling the device to perform non-binary comparisons (i.e. match or no match) between different data samples. This enables the device to quantify a degree of similarity between different data samples. This increases the flexibility of the device to work with data samples having different data types and/or formats, and also increases the speed and performance of the device when performing operations using data samples. These technical advantages and other improvements to the device are described in more detail throughout the disclosure. In one embodiment, the system is configured to use binary integers as categorical numbers rather than ordinal numbers which enables the system to determine how similar a data sample is to other data samples. Categorical numbers provide information about similar or dissimilar different data samples are from each other. For example, categorical numbers can be used in facial recognition applications to represent different images of faces and/or features of the faces. The system provides a technical advantage by allowing the system to assign correlithm objects represented by categorical numbers to different data samples based on how similar they are to other data samples. As an example, the system is able to assign correlithm objects to different images of people such that the correlithm objects can be directly used to determine how similar the people in the images are to each other. In other words, the system is able to use correlithm objects in facial recognition applications to quickly determine whether a captured image of a person matches any previously stored images without relying on conventional signal processing techniques. Correlithm object processing systems use new types of data structures called correlithm objects that improve the way a device operates, for example, by enabling the device to perform non-binary data set comparisons and to quantify the similarity between different data samples. Correlithm objects are data structures designed to improve the way a device stores, retrieves, and compares data samples in memory. Correlithm objects also provide a data structure that is independent of the data type and format of the data samples they represent. Correlithm objects allow data samples to be directly compared regardless of their original data type and/or format. A correlithm object processing system uses a combination of a sensor table, a node table, and/or an actor table to provide a specific set of rules that improve computer-related technologies by enabling devices to compare and to determine the degree of similarity between different data samples regardless of the data type and/or format of the data sample they represent. The ability to directly compare data samples having different data types and/or formatting is a new functionality that cannot be performed using conventional computing systems and data structures. In addition, correlithm object processing system uses a combination of a sensor table, a node table, and/or an actor table to provide a particular manner for transforming data samples between ordinal number representations and correlithm objects in a correlithm object domain. Transforming data samples between ordinal number representations and correlithm objects involves fundamentally changing the data type of data samples between an ordinal number system and a categorical number system to achieve the previously described benefits of the correlithm object processing system. Using correlithm objects allows the system or device to compare data samples (e.g. images) even when the input data sample does not exactly match any known or previously stored input values. For example, an input data sample that is an image may have different lighting conditions than the previously stored images. The differences in lighting conditions can make images of the same person appear different from each other. The device uses an unconventional configuration that implements a correlithm object processing system that uses the distance between the data samples which are represented as correlithm objects and other known data samples to determine whether the input data sample matches or is similar to the other known data samples. Implementing a correlithm object processing system fundamentally changes the device and the traditional data processing paradigm. Implementing the correlithm object processing system improves the operation of the device by enabling the device to perform non-binary comparisons of data samples. In other words, the device is able to determine how similar the data samples are to each other even when the data samples are not exact matches. In addition, the device is able to quantify how similar data samples are to one another. The ability to determine how similar data samples are to each other is unique and distinct from conventional computers that can only perform binary comparisons to identify exact matches. A string correlithm object comprising a series of adjacent sub-string correlithm objects whose cores overlap with each other permits data values to be correlated with each other in n-dimensional space. The distance between adjacent sub-string correlithm objects can be selected to create a tighter or looser correlation among the elements of the string correlithm object in n-dimensional space. Thus, where data values have a pre-existing relationship with each other in the real-world, those relationships can be maintained in n-dimensional space if they are represented by sub-string correlithm objects of a string correlithm object. In addition, new data values can be represented by sub-string correlithm objects by interpolating the distance between those and other data values and representing that interpolation with sub-string correlithm objects of a string correlithm object in n-dimensional space. The ability to migrate these relationships between data values in the real world to relationships among correlithm objects provides a significant advance in the ability to record, store, and faithfully reproduce data within different computing environments. The problems associated with comparing data sets and identifying matches based on the comparison are problems necessarily rooted in computer technologies. As described above, conventional systems are limited to a binary comparison that can only determine whether an exact match is found. Emulating a correlithm object processing system provides a technical solution that addresses problems associated with comparing data sets and identifying matches. Using correlithm objects to represent data samples fundamentally changes the operation of a device and how the device views data samples. By implementing a correlithm object processing system, the device can determine the distance between the data samples and other known data samples to determine whether the input data sample matches or is similar to the other known data samples. In addition, the device is able to determine a degree of similarity that quantifies how similar different data samples are to one another. Certain embodiments of the present disclosure may include some, all, or none of these advantages. These advantages and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
24,885
11412756
The present invention relates to a machine for making ice-cream, in particular industrial ice-cream, by conveying a liquid or semi-liquid confectionery mass (which may be a neutral or savory mass, according to the defined flavor), adding air to the conveyed confectionery mass, mixing and emulsifying the confectionery mass with the added air and chilling the mixed and emulsified confectionery mass at a temperature below zero degrees centigrade, typically about −5° C. to −6° C., but also at colder temperature, e.g. −9° C. if a stiffer consistency of the produced ice-cream is desired. The known industrial ice-cream making machines comprise a support and housing structure which accommodates a single production line, consisting of: an inlet conduit with a first end connectable to a source containing a starting confectionery mass and a second end, an inlet pump connected in the inlet conduit, a mixing and chilling chamber with an inlet opening for the confectionery mass, connected to the second end of the inlet conduit and an outlet opening, an outlet conduit with a first end connected to the outlet opening of the mixing and chilling chamber, and a second end, an outlet pump connected in the outlet conduit, an air conduit having a first end connectable to an air source and a second end connected to the inlet conduit at an air supply point between the input pump and the mixing and chilling chamber, a cooling circuit with compression/expansion cycle in heat exchange connection with the mixing and chilling chamber. The ice-making machines of the prior art thus produce a mixed ice-cream mass emulsified with air at a standard temperature of about −5° C. to −6° C. The ice-cream mass must be successively frozen at a temperature of about −9° C. or lower for preservation which is safe from the food safety point of view and stable in terms of the ice-cream shape profile. The ice-cream machines of the prior art are not very versatile, both with reference to production speed in terms of kilograms or liters per hour and in terms of chilling temperature of the ice-cream mass let out from the machine. The production speed, meaning the flow rate of the processed confectionery mass, cannot be varied in a broad range, because the mixing system inside the mixing chamber and also the chilling circuit are usually optimized for a given flow rate, with the consequence that increasing production beyond the standard value would inevitably lead to insufficient emulsification and mixing of the ice-cream mass and insufficient chilling, with consequent instability and liquid residues in the produced ice-cream. On the other hand, the technical features of the compression/expansion chilling circuit do not allow adjusting the chilling temperature of the confectionery mass, unless by turning it on/off in alternating fashion, which would lead to an unacceptable alternating of excessively liquid and excessively frozen zones in the produced ice-cream. A further need felt in the industrial ice-cream production sector is that of being able to refrigerate the ice-cream, even before it is let out from the machine, to a temperature below than the standard temperature of −5° C./−6° C., because for some types of ice-cream the standard temperature does not confer a sufficient mechanical stability to the ice-cream mass to prevent it from “collapsing” under its own weight in the containers even before completing the definitive freezing inside a freezing store or tunnel. Indeed, the contents of the ice-cream trays arranged in the middle of the freezing store, and thus further from the cooling walls, often appears collapsed or flattened, which is less tempting and consequently more difficult to sale. The need itself for a more intense chilling of the ice-cream mass already inside the production machine arises if the ice-cream is packed in transparent containers, in which avoiding smears visible from the outside is desirable. On the other hand, some ice-cream mixtures must be enriched with granules of fruit, nuts, cereals, chocolate or other, applied onto the outer surface of an extrudate of the ice-cream mass and partially squeezed into the ice-cream mass to ensure its adhesion. In this case, chilling at excessively low temperature would stiffen the ice-cream mass and prevent the penetration of additional granules. In these cases, it is therefore desirable to let the ice-cream out from the production machine at a standard temperature of about −5° C./−6° C. or slightly less. The ice-cream making machines of the type described above cannot operate on a case-by-case basis in the various required operating conditions and therefore are usually only used for producing a single type of ice-cream or different types of ice-creams which, in all cases, require the same production conditions. It is therefore the object of the present invention to provide a machine for making ice-cream, in particular industrial ice-cream, having such features as to be adaptable in versatile manner to various production conditions and to different types of ice-cream, in particular with reference to ice-cream production speed and production temperature. These and other objects are achieved by means of an ice-cream making machine comprising: a support and housing structure which accommodates a first production line and a second production line, wherein the first production line comprises:a first inlet conduit with a first end connectable to a source containing a starting confectionery mass and a second end,a first inlet pump connected in the first inlet conduit.a first mixing and chilling chamber with an inlet opening for the confectionery mass, connected to the second end of the first inlet conduit, and an outlet opening,a first outlet conduit with a first end connected to the outlet opening of the first mixing and chilling chamber, and a second end,a first outlet pump connected in the first outlet conduit,a first air conduit having a first end connectable to an air source and a second end connected to the first inlet conduit at a first air supply point between the first inlet pump and the first mixing and chilling chamber,a first cooling circuit with compression/expansion cycle in heat exchange connection with the first mixing and chilling chamber, wherein the second production line comprises:a second inlet conduit with a first end connectable to a source containing a starting confectionery mass and a second end,a second inlet pump connected in the second inlet conduit,a second mixing and chilling chamber with an inlet opening for the confectionery mass, connected to the second end of the second inlet conduit and an outlet opening,a second outlet conduit with a first end connected to the outlet opening of the second mixing and chilling chamber and a second end.a second outlet pump connected in the second outlet conduit,a second air conduit having a first end connectable to an air source and a second end connected to the second inlet conduit at a second air supply point between the second inlet pump and the second mixing and chilling chamber.a second cooling circuit with compression/expansion cycle in heat exchange connection with the second mixing and chilling chamber, wherein the machine further comprises an auxiliary conduit configured to allow to connect the first outlet conduit in communication selectively either to the second inlet conduit or to the inlet opening of the first mixing and chilling chamber and to disconnect them from each other, in such a way that: with the auxiliary conduit in disconnected configuration, the first and the second production line process ice-cream flows independently of each other, and with the auxiliary conduit in connected configuration, the first and the second production line are arranged in series and together process a single ice-cream flow. A machine thus configured allows to vary the production conditions, in particular the production speed, the chilling temperature and the number of ice-cream strings, in versatile manner. In addition to the lower cost of a single machine with respect to a plurality of machines of the prior art, integrating a plurality of production lines in a single machine, i.e. in a single support and housing structure, and in mutually connectable and disconnectable manner, allows a considerable saving of space (the machines of the prior art cannot be stacked one over the other) and interconnections between production lines which have been impossible until now.
198,093
11508106
BACKGROUND 1. Technical Field The present disclosure relates to a display control device, a communication device, a display control method, and a recording medium. 2. Description of the Related Art A technology for facilitating a call performed by using a communication device has been known. Another technology of displaying the content of utterance by a calling counterpart in text through voice recognition has been known (refer to Japanese Laid-open Patent Publication No. 2008-99121 A, for example). Another technology of generating and displaying a pattern or a figure representing lip motion and outputting text information of a voice recognition result of a transmitted voice signal or voice associated with a synthesis voice signal has been known (refer to Japanese Laid-open Patent Publication No. 2006-005440 A, for example). When the calling counterpart is a hearing-impaired person, the technology disclosed in Patent Literature 1 or 2 can be used to allow the hearing-impaired person to easily perform a call. However, when the content of utterance is displayed in text or output in synthesis voice, a nuance intended by the utterer is potentially not conveyed appropriately. In addition, when displayed lip motion is small, the content of utterance potentially cannot be recognized appropriately. SUMMARY It is an object of the present disclosure to at least partially solve the problems in the conventional technology. To solve the above problem and achieve the above object, a display control device according to the present disclosure includes a moving image acquisition unit configured to acquire moving image data obtained through moving image capturing of at least a mouth part of an utterer, a lip detection unit configured to detect a lip part from the moving image data and detect motion of the lip part, a lip motion recognition unit configured to recognize an utterance content from the motion of the lip part detected by the lip detection unit, a voice acquisition unit configured to acquire voice data of uttered voice of the utterer, a voice recognition unit configured to recognize voice from the voice data acquired by the voice acquisition unit, a comparison unit configured to compare a result of the recognition by the voice recognition unit with a result of the recognition by the lip motion recognition unit, a moving image processing unit configured to, when a recognition rate of the result of the recognition by the lip motion recognition unit is lower than a recognition rate of the result of the recognition by the voice recognition unit as a result of the comparison by the comparison unit, generate a moving image enhanced to increase the motion of the lip part detected by the lip detection unit, and a display control unit configured to control a display unit to display the moving image generated by the moving image processing unit. A communication device according to the present disclosure includes the above display control device, and a call processing unit configured to perform call processing. The voice acquisition unit acquires uttered voice at calling, and the moving image processing unit enhances a moving image transmitted by the call processing unit to increase the motion of the lip part detected by the lip detection unit. A communication device according to the present disclosure includes the above display control device, and a call processing unit configured to perform call processing. The voice recognition unit recognizes voice from voice data received and acquired by the call processing unit, and the moving image acquisition unit acquires moving image data received by the call processing unit. A display control method according to the present disclosure includes a moving image acquisition step of acquiring moving image data obtained through moving image capturing of at least a mouth part of an utterer, a lip detection step of detecting a lip part from the moving image data and detecting motion of the lip part, a lip motion recognition step of recognizing an utterance content from the motion of the lip part detected by the lip detection step, a voice acquisition step of acquiring voice data of uttered voice of the utterer, a voice recognition step of recognizing voice from the voice data acquired by the voice acquisition step, a comparison step of comparing a result of the recognition by the voice recognition step with a result of the recognition by the lip motion recognition step, a moving image processing step of, when a recognition rate of the result of the recognition by the lip motion recognition step is lower than a recognition rate of the result of the recognition by the voice recognition step as a result of the comparison by the comparison step, generating a moving image enhanced to increase the motion of the lip part detected by the lip detection step, and a display control step of controlling a display unit to display the moving image generated by the moving image processing step. A non-transitory computer readable recording medium according to the present disclosure storing therein a computer program configured to cause a computer to execute a moving image acquisition step of acquiring moving image data obtained through moving image capturing of at least a mouth part of an utterer, a lip detection step of detecting a lip part from the moving image data and detecting motion of the lip part, a lip motion recognition step of recognizing an utterance content from the motion of the lip part detected by the lip detection step, a voice acquisition step of acquiring voice data of uttered voice of the utterer, a voice recognition step of recognizing voice from the voice data acquired by the voice acquisition step, a comparison step of comparing a result of the recognition by the voice recognition step with a result of the recognition by the lip motion recognition step, a moving image processing step of, when a recognition rate of the result of the recognition by the lip motion recognition step is lower than a recognition rate of the result of the recognition by the voice recognition step as a result of the comparison by the comparison step, generating a moving image enhanced to increase the motion of the lip part detected by the lip detection step, and a display control step of controlling a display unit to display the moving image generated by the moving image processing step. The above and other objects, features, advantages and technical and industrial significance of this disclosure will be better understood by reading the following detailed description of presently preferred embodiments of the disclosure, when considered in connection with the accompanying drawings.
292,610
11327571
TECHNICAL FIELD The present disclosure generally relates to the field of computer input and tracking devices and, more particularly, computer-assisted drawing devices such as a pen or a stylus which tracks user hand movements to create series of point coordinates that represent a drawing or hand writing. BACKGROUND This section describes approaches that could be employed, but are not necessarily approaches that have been previously conceived or employed. Hence, unless explicitly specified otherwise, any approaches described in this section are not prior art to the claims in this application, and any approaches described in this section are not admitted to be prior art by inclusion in this section. Computer-assisted design and drawing applications often require an input device to track user hand movements and translate them to series of computer coordinates representing a drawing or hand writing. Examples of such input devices include digital pens and styluses such as the Apple Pencil™. A digital pen often requires a touch sensitive surface such as an Apple iPad™ to track the positions of the tip of the pen. The use of a touch sensitive surface limits the drawings to the area of the surface, and thus makes such digital pens unsuitable for large drawings when a large touch sensitive surface is expensive or not available. This disclosure describes a new type of digital pen which allows users to draw on any surface, or even in the air without a hard surface. Users can use the new digital pens to draw not only two-dimensional drawings but also drawings in three-dimensional spaces.
113,582