id
stringlengths
3
8
content
stringlengths
100
981k
491738
import os from pathlib import Path from time import sleep from boucanpy.core import logger from boucanpy.core.utils import storage_dir from boucanpy.cli.base import BaseCommand from boucanpy.api_client import ApiClient from boucanpy.http.manager import HttpServerManager class HttpServer(BaseCommand): name = "http-server" aliases = ["http"] description = "run http server" add_log_level = True add_debug = True def __init__(self, *args, **kwargs): self.api_client = None self.http_server = None self.https_server = None super().__init__(*args, **kwargs) @classmethod def parser(cls, parser): parser.add_argument( "-a", "--api-url", default="http://127.0.0.1:8080", action="store", help="api url", ) parser.add_argument("-t", "--api-token", action="store", help="api token") parser.add_argument( "-p", "--port", action="store", type=int, default=80, help="listen port of the http server", ) parser.add_argument( "-l", "--listen", action="store", default="127.0.0.1", help="bind address of the http server", ) parser.add_argument( "-s", "--enable-ssl", action="store_true", help="enable the ssl server" ) parser.add_argument( "--ssl-port", action="store", type=int, default=443, help="listen port of the https server", ) parser.add_argument( "--ssl-listen", action="store", default="127.0.0.1", help="bind address of the https server", ) parser.add_argument( "--ssl-key-path", action="store", default=storage_dir("ssl/devkey.pem"), help="path to ssl key", ) parser.add_argument( "--ssl-cert-path", action="store", default=storage_dir("ssl/devcert.pem"), help="path to ssl cert", ) # also need cert/pem paths parser.add_argument( "--no-sync", action="store_true", help="don't sync api token back to database", ) parser.add_argument( "--no-api-wait", action="store_true", help="don't wait for the api to be up" ) parser.add_argument( "--no-ssl-verify", action="store_true", help="skip ssl verify in the http server's api client", ) parser.add_argument( "-r", "--refresh-ttl", type=int, default=3600, action="store", help="time to wait before polling for new things", ) return parser async def run(self): # TODO: thread issues? verify_ssl = True if bool(self.option("no_ssl_verify")): verify_ssl = False self.api_client = ApiClient( self.get_api_url(), self.get_api_token(), verify_ssl=verify_ssl ) if not self.option("no_api_wait"): if not self.api_client.wait_for_up(): logger.critical( "<EMAIL> - Could not connect to api. quitting" ) self.exit(1) if self.option("no_sync"): logger.info("<EMAIL> - Skipping syncing api token") else: self.api_client.sync() self.boot() self.start_servers() try: count = 0 while self.is_alive(): # zones don't need to be refreshed for http server # may want to do something in the future thought count = count + 1 sleep(1) except KeyboardInterrupt: pass def boot(self): port = self.option("port") listen = self.option("listen") logger.info("<EMAIL> - Building http server on port %d", port) self.http_server = HttpServerManager( port=port, listen=listen, ssl=False, api_client=self.api_client ) if bool(self.option("enable_ssl")): ssl_port = self.option("ssl_port") ssl_listen = self.option("ssl_listen") ssl_key_path = self.option("ssl_key_path") ssl_cert_path = self.option("ssl_cert_path") logger.info( f"<EMAIL> - Building https server manager on port {str(ssl_port)} with {ssl_cert_path} and {ssl_key_path}", ) self.https_server = HttpServerManager( port=ssl_port, listen=ssl_listen, api_client=self.api_client, ssl=True, ssl_cert_path=ssl_cert_path, ssl_key_path=ssl_key_path, ) logger.info( "<EMAIL> - Building https server on port %d", ssl_port ) def start_servers(self): self.http_server.start_thread() if bool(self.option("enable_ssl")): self.https_server.start_thread() def stop_servers(self): self.http_server.stop() if bool(self.option("enable_ssl")): self.https_server.stop() def is_alive(self): _is_alive = self.http_server.is_alive() if bool(self.option("enable_ssl")): _is_alive = _is_alive and self.https_server.is_alive() return _is_alive def get_api_url(self): if os.environ.get("API_URL", None): return os.environ.get("API_URL") return self.option("api_url") def get_api_token(self): if os.environ.get("API_TOKEN", None): return os.environ.get("API_TOKEN") if self.option("api_token", None): return self.option("api_token") logger.critical("api token required") self.exit(1)
491792
import re import pandas as pd from cowidev.utils.clean import clean_count from cowidev.utils.web.scraping import get_soup from cowidev.vax.utils.incremental import enrich_data, increment from cowidev.utils.clean.dates import localdate import datetime def read(source: str) -> pd.Series: soup = get_soup(source) for label in soup.find_all(class_="number-label"): if label.text == "Total vaccins administrรฉs": container = label.parent.parent return pd.Series( data={ "total_vaccinations": parse_total_vaccinations(container), "people_vaccinated": parse_people_vaccinated(container), "people_fully_vaccinated": parse_people_fully_vaccinated(container), "source_url": source, } ) def parse_total_vaccinations(container) -> int: total_vaccinations = clean_count(container.find(class_="number").text) return total_vaccinations def parse_people_vaccinated(container) -> int: people_vaccinated = container.find(class_="cmp-text").text people_vaccinated = re.search(r"Dose 1\:\s([\d\. ]{6,})", people_vaccinated).group( 1 ) people_vaccinated = clean_count(people_vaccinated) return people_vaccinated def parse_people_fully_vaccinated(container) -> int: people_fully_vaccinated = container.find(class_="cmp-text").text people_fully_vaccinated = re.search( r"Dose 2\:\s([\d\. ]{6,})", people_fully_vaccinated ).group(1) people_fully_vaccinated = clean_count(people_fully_vaccinated) return people_fully_vaccinated def enrich_date(ds: pd.Series) -> pd.Series: return enrich_data(ds, "date", localdate("Europe/Luxembourg")) def enrich_location(ds: pd.Series) -> pd.Series: return enrich_data(ds, "location", "Luxembourg") def enrich_vaccine(ds: pd.Series) -> pd.Series: return enrich_data(ds, "vaccine", "Moderna, Oxford/AstraZeneca, Pfizer/BioNTech") def pipeline(ds: pd.Series) -> pd.Series: return ds.pipe(enrich_date).pipe(enrich_location).pipe(enrich_vaccine) def main(paths): source = "https://covid19.public.lu/fr.html" data = read(source).pipe(pipeline) output_file = paths.tmp_vax_out("Luxembourg") previous_data = pd.read_csv(output_file) if previous_data["total_vaccinations"].iloc[-1] >= data["total_vaccinations"]: print("Luxembourg is up to date") return increment( paths=paths, location=data["location"], total_vaccinations=data["total_vaccinations"], people_vaccinated=data["people_vaccinated"], people_fully_vaccinated=data["people_fully_vaccinated"], date=data["date"], source_url=data["source_url"], vaccine=data["vaccine"], ) if __name__ == "__main__": main()
491849
from . import statefulfunction from .statefulfunction import * __all__ = list(statefulfunction.__all__)
491880
import os,os.path,shutil import numpy as np import pickle import dmdd import dmdd_efficiencies as eff def check_min_mass(element='fluorine', Qmin=1., v_esc=544., v_lag=220., mx_guess=1.): experiment = dmdd.Experiment('test',element,Qmin, 40.,100., eff.efficiency_unit) res = experiment.find_min_mass(v_esc=v_esc, v_lag=v_lag, mx_guess=mx_guess) print res,'GeV' if res<0: print 'Problem: try another mx_guess...' def make_UVmodels(return_models=False): SI_Higgs = dmdd.UV_Model('SI_Higgs', ['mass', 'sigma_si'], fixed_params={'fnfp_si': 1}) milicharge = dmdd.UV_Model('Milicharge', ['mass', 'sigma_si_massless'], fixed_params={'fnfp_si_massless': 0}) SD_flavoruniversal = dmdd.UV_Model('SD_fu', ['mass','sigma_sd'], fixed_params={'fnfp_sd': -1.1}) anapole = dmdd.UV_Model('Anapole', ['mass','sigma_anapole']) magdip_heavy = dmdd.UV_Model('Mag.dip.heavy', ['mass','sigma_magdip']) magdip_0 = dmdd.UV_Model('Mag.dip.light', ['mass','sigma_magdip_massless']) elecdip_heavy = dmdd.UV_Model('Elec.dip.heavy', ['mass','sigma_elecdip']) elecdip_0 = dmdd.UV_Model('Elec.dip.light', ['mass','sigma_elecdip_massless']) f1 = dmdd.UV_Model('f1', ['mass','sigma_f1'], fixed_params={'fnfp_f1': 1.}) f2_Higgs = dmdd.UV_Model('f2_Higgs', ['mass','sigma_f2'], fixed_params={'fnfp_f2': -0.05}) #f2_flavoruniversal = dmdd.UV_Model('f2_flavor-universal', ['mass','sigma_f2'], fixed_params={'fnfp_f2': 1.}) f3_Higgs = dmdd.UV_Model('f3_Higgs', ['mass','sigma_f3'], fixed_params={'fnfp_f3': -0.05}) #f3_flavoruniversal = dmdd.UV_Model('f3_flavor-universal', ['mass','sigma_f3'], fixed_params={'fnfp_f3': 1.}) LS = dmdd.UV_Model('LS', ['mass','sigma_LS'], fixed_params={'fnfp_LS': 0.}) models = [SI_Higgs, milicharge, SD_flavoruniversal, anapole, magdip_heavy, magdip_0, elecdip_heavy, elecdip_0, f1, f2_Higgs, f3_Higgs, LS] if return_models: return models def make_experiments(return_experiments=False): xe = dmdd.Experiment('Xe','xenon',5., 40.,100., eff.efficiency_unit) ge = dmdd.Experiment('Ge','germanium',0.4, 100.,100., eff.efficiency_unit) if return_experiments: return [xe,ge] def test_MultinestRun(mass=50,test_fits=False): SI_Higgs = dmdd.UV_Model('SI_Higgs', ['mass', 'sigma_si'], fixed_params={'fnfp_si': 1}) elecdip_heavy = dmdd.UV_Model('Elec.dip.heavy', ['mass','sigma_elecdip']) experiment = make_experiments(return_experiments=True) simmodel = SI_Higgs fitmodel1 = SI_Higgs fitmodel2 = elecdip_heavy pardic = {'sigma_si': 70.,'mass': mass} simname = 'simtest' testrun1 = dmdd.MultinestRun(simname, experiment, simmodel, pardic, fitmodel1, prior_ranges={'mass':(1,1000), 'sigma_si':(0.001,100000), 'sigma_elecdip':(0.001,100000)}) data1 = np.loadtxt(testrun1.simulations[0].datafile) pardic = {'sigma_si': 70.0007,'mass': mass} testrun2 = dmdd.MultinestRun(simname, experiment, simmodel, pardic, fitmodel2, empty_run=False, prior_ranges={'mass':(1,1000), 'sigma_si':(0.001,100000), 'sigma_elecdip':(0.001,100000)}) data2 = np.loadtxt(testrun1.simulations[0].datafile) #simulation datafile should be created only for the first instance of MultinestRun: assert np.allclose(data1, data2) if test_fits: testrun1.fit() testrun1.visualize() testrun2.fit() testrun2.visualize() if (not os.path.exists(testrun1.chains_file)) or (not os.path.exists(testrun1.pickle_file)) or (not os.path.exists(testrun1.stats_file)): raise AssertionError('Stats or chains or pickle are not created or are erased.') plotfile1 = testrun1.chainspath + '2d_posterior_mass_vs_sigma_si.pdf' plotfile2 = testrun1.chainspath + '{}_theoryfitdata_Ge.pdf'.format(simname) plotfile3 = testrun1.chainspath + '{}_theoryfitdata_Xe.pdf'.format(simname) if (not os.path.exists(plotfile1)) or (not os.path.exists(plotfile2)) or (not os.path.exists(plotfile3)): raise AssertionError('Plots are not created or are erased.') if (not os.path.exists(testrun2.chains_file)) or (not os.path.exists(testrun2.pickle_file)) or (not os.path.exists(testrun2.stats_file)): raise AssertionError('Stats or chains or pickle are not created.') plotfile1 = testrun2.chainspath + '2d_posterior_mass_vs_sigma_elecdip.pdf' plotfile2 = testrun2.chainspath + '{}_theoryfitdata_Ge.pdf'.format(simname) plotfile3 = testrun2.chainspath + '{}_theoryfitdata_Xe.pdf'.format(simname) if (not os.path.exists(plotfile1)) or (not os.path.exists(plotfile2)) or (not os.path.exists(plotfile3)): raise AssertionError('Plots are not created.') def test_UVrate(): experiment = dmdd.Experiment('Xe','xenon',5., 40.,10000., eff.efficiency_unit) models = make_UVmodels(return_models=True) mass = 40. qs = np.array([15.]) v_lag = 200. v_rms = 100. v_esc = 600. rho_x = 0.4 sigma_names = {} fnfp_names = {} fnfp_vals = {} for m in models: sigma_names[m.name] = m.param_names[1] if len(m.fixed_params)>0: fnfp_names[m.name] = m.fixed_params.keys()[0] fnfp_vals[m.name] = m.fixed_params.values()[0] else: fnfp_names[m.name] = None fnfp_vals[m.name] = None dRdQs = np.zeros(len(models)) Rs = np.zeros(len(models)) for i,m in enumerate(models): kwargs = {sigma_names[m.name]:1.} if fnfp_names[m.name] is not None: kwargs[fnfp_names[m.name]] = fnfp_vals[m.name] dRdQs[i] = dmdd.rate_UV.dRdQ(qs, mass=mass, element=experiment.element, v_lag=v_lag, v_rms=v_rms, v_esc=v_esc, rho_x=rho_x, **kwargs) Rs[i] = dmdd.rate_UV.R(eff.efficiency_unit, mass=mass, element=experiment.element, Qmin=experiment.Qmin, Qmax=experiment.Qmax, v_lag=v_lag, v_rms=v_rms, v_esc=v_esc, rho_x=rho_x, **kwargs) #print 'dRdQs = {}\n'.format(dRdQs) #print 'Rs = {}\n'.format(Rs) dRdQs_correct = [ 1.27974652e-12, 1.67031585e-13, 6.28936205e-13, 7.76864477e-13, 7.71724584e-13, 5.66164037e-13, 8.40579288e-13, 6.16678247e-13, 4.72480605e-13, 2.59857470e-16, 9.59390104e-16, 1.14295679e-13] Rs_correct = [ 6.15358778e-11, 3.10857259e-11, 3.14982315e-11, 4.14119198e-11, 1.82181891e-11, 3.84877268e-11, 2.35638282e-11, 5.50063883e-11, 1.34702925e-11, 5.82472177e-15, 1.64213483e-14, 2.26028126e-12] assert np.allclose(dRdQs_correct, dRdQs) assert np.allclose(Rs_correct, Rs) ### qs = np.array([8.3,15.7]) logtest1 = dmdd.rate_UV.loglikelihood(qs, eff.efficiency_unit, mass=mass, sigma_si=1.,fnfp_si=1., element=experiment.element, Qmin=experiment.Qmin, Qmax=experiment.Qmax, exposure=experiment.exposure,energy_resolution=True, v_lag=v_lag, v_rms=v_rms, v_esc=v_esc, rho_x=rho_x) logtest2 = dmdd.rate_UV.loglikelihood(qs, eff.efficiency_unit, mass=mass, sigma_si=1.,fnfp_si=1., element=experiment.element, Qmin=experiment.Qmin, Qmax=experiment.Qmax, exposure=experiment.exposure,energy_resolution=False, v_lag=v_lag, v_rms=v_rms, v_esc=v_esc, rho_x=rho_x) #print 'logtest1_correct={}'.format(logtest1) #print 'logtest2_correct={}'.format(logtest2) logtest1_correct=-19.6890210901 logtest2_correct=-13.4627188661 print('correct={} got={}\n'.format(logtest1_correct,logtest1)) print('correct={} got={}\n'.format(logtest2_correct,logtest2)) assert np.isclose(logtest1_correct, logtest1) assert np.isclose(logtest2_correct, logtest2)
491885
import gensim import random import logging # configuration trains = "../../temp_results/word2vec_hindi.txt" create = 1 topn = 10 data_folder = '../data/word2vec_evaluation/' TARGET_SYN = data_folder+'syntactic.questions.txt' TARGET_SEM_OP = data_folder+'semantic_op.questions.txt' TARGET_SEM_BM = data_folder+'semantic_bm.questions.txt' TARGET_SEM_DF = data_folder+'semantic_df.questions.txt' SRC_NOUNS = data_folder+'nouns.txt' SRC_BESTMATCH = data_folder+'bestmatch.txt' SRC_DOESNTFIT = data_folder+'doesntfit.txt' SRC_OPPOSITE = data_folder+'opposite.txt' PATTERN_SYN = [('nouns', 'SI/PL', SRC_NOUNS, 0, 1)] #logger.write(filename=train.strip() + '.result', format='%(asctime)s : %(message)s', level=logging.INFO) print ("TEST") # function create_syntactic_testset # ... creates syntactic test set and writes it into a file # @return void def create_syntactic_testset(): print ("TEST") with open(TARGET_SYN, 'w') as t: for label, short, src, index1, index2 in PATTERN_SYN: t.write(': ' + label + ': ' + short + '\n') for q in create_questions(src, index1, index2): t.write(q + '\n') # function create_semantic_testset # ... creates semantic test set and writes it into a file # @return void def create_semantic_testset(): # opposite print ("TEST") with open(TARGET_SEM_OP, 'w') as t: for q in create_questions(SRC_OPPOSITE): t.write(q + '\n') logging.info('created opposite questions') # best match with open(TARGET_SEM_BM, 'w') as t: groups = open(SRC_BESTMATCH).read().split(':') groups.pop(0) # remove first empty group for group in groups: questions = group.splitlines() questions.pop(0) while questions: for i in range(1,len(questions)): question = questions[0].split('-') + questions[i].split('-') t.write(' '.join(question) + '\n') questions.pop(0) # doesn't fit with open(TARGET_SEM_DF, 'w') as t: for line in open(SRC_DOESNTFIT): words = line.split() for wrongword in words[-1].split('-'): question = ' '.join(words[:3] + [wrongword]) t.write(question + '\n') # function create_questions # ... creates single questions from given source # @param string src source file to load words from # @param integer index2 index of first word in a line to focus on # @param integer index2 index of second word in a line to focus on # @param integer combinate number of combinations with random other lines # @return list of question words def create_questions(src, index1=0, index2=1): # get source content with open(src) as f: content = f.readlines() content = [x.strip() for x in content] questions = [] for line in content: for i in range(0, 10): # get current word pair question = list(line.split('-')) # get random word pair that is not the current random_line = random.choice(list(set(content) - {line})) random_word = list(random_line.split('-')) # merge both word pairs to one question question.extend(random_word) questions.append(' '.join(question)) print (len(questions)) return questions # function test_mostsimilar # ... tests given model to most similar word # @param word2vec model to test # @param string src source file to load words from # @param string label to print current test case # @param integer topn number of top matches def test_mostsimilar(model, src, label='most similar', topn=5): num_lines = sum(1 for line in open(src)) num_questions = 0 num_right = 0 num_topn = 0 # get questions import codecs with codecs.open(src,encoding='utf-8') as f: questions = f.readlines() questions = [x.strip() for x in questions] # test each question for question in questions: words = question.split() # check if all words exist in vocabulary if all(x in model.index2word for x in words): num_questions += 1 bestmatches = model.most_similar(positive=[words[1], words[2]], negative=[words[0]], topn=topn) # best match if words[3] in bestmatches[0]: num_right += 1 # topn match for topmatches in bestmatches[:topn]: if words[3] in topmatches: num_topn += 1 break # calculate result correct_matches = round(num_right/float(num_questions)*100, 1) if num_questions>0 else 0.0 topn_matches = round(num_topn/float(num_questions)*100, 1) if num_questions>0 else 0.0 coverage = round(num_questions/float(num_lines)*100, 1) if num_lines>0 else 0.0 # log result print (correct_matches) print (topn_matches) print (coverage) # function test_mostsimilar # ... tests given model to most similar word # @param word2vec model to test # @param string src source file to load words from # @param integer topn number of top matches def test_mostsimilar_groups(model, src, topn=10): num_lines = 0 num_questions = 0 num_right = 0 num_topn = 0 # test each group groups = open(src).read().split('\n: ') for group in groups: questions = group.splitlines() label = questions.pop(0) label = label[2:] if label.startswith(': ') else label # handle first group num_group_lines = len(questions) num_group_questions = 0 num_group_right = 0 num_group_topn = 0 # test each question of current group for question in questions: words = question.decode('utf-8').split() # check if all words exist in vocabulary if all(x in model.index2word for x in words): num_group_questions += 1 bestmatches = model.most_similar(positive=[words[1], words[2]], negative=[words[0]], topn=topn) # best match if words[3] in bestmatches[0]: num_group_right += 1 # topn match for topmatches in bestmatches[:topn]: if words[3] in topmatches: num_group_topn += 1 break # calculate result correct_group_matches = round(num_group_right/float(num_group_questions)*100, 1) if num_group_questions>0 else 0.0 topn_group_matches = round(num_group_topn/float(num_group_questions)*100, 1) if num_group_questions>0 else 0.0 group_coverage = round(num_group_questions/float(num_group_lines)*100, 1) if num_group_lines>0 else 0.0 # log result # total numbers num_lines += num_group_lines num_questions += num_group_questions num_right += num_group_right num_topn += num_group_topn # calculate result correct_matches = round(num_right/float(num_questions)*100, 1) if num_questions>0 else 0.0 topn_matches = round(num_topn/float(num_questions)*100, 1) if num_questions>0 else 0.0 coverage = round(num_questions/float(num_lines)*100, 1) if num_lines>0 else 0.0 # function test_doesntfit # ... tests given model to most not fitting word # @param word2vec model to test # @param string src source file to load words from def test_doesntfit(model, src): num_lines = sum(1 for line in open(src)) num_questions = 0 num_right = 0 # get questions with open(src) as f: questions = f.readlines() questions = [x.strip() for x in questions] # test each question for question in questions: words = question.decode('utf-8').split() # check if all words exist in vocabulary if all(x in model.index2word for x in words): num_questions += 1 if model.doesnt_match(words) == words[3]: num_right += 1 # calculate result correct_matches = round(num_right/float(num_questions)*100, 1) if num_questions>0 else 0.0 coverage = round(num_questions/float(num_lines)*100, 1) if num_lines>0 else 0.0 if create == 1: create_syntactic_testset() create_semantic_testset() # get trained model model = gensim.models.KeyedVectors.load_word2vec_format(trains.strip()) print ("word 2 vec read successfully.") # execute evaluation test_mostsimilar_groups(model, TARGET_SYN, topn) test_mostsimilar(model, TARGET_SEM_OP, 'opposite', topn) test_mostsimilar(model, TARGET_SEM_BM, 'best match', topn) test_doesntfit(model, TARGET_SEM_DF)
491908
import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as D from torch import Tensor from .functions import * from .common import * class ActorCritic(nn.Module): def __init__(self, in_dim, out_actions, hidden_dim=400, hidden_layers=4, layer_norm=True, gamma=0.999, lambda_gae=0.95, entropy_weight=1e-3, target_interval=100, actor_grad='reinforce', actor_dist='onehot' ): super().__init__() self.in_dim = in_dim self.out_actions = out_actions self.gamma = gamma self.lambda_ = lambda_gae self.entropy_weight = entropy_weight self.target_interval = target_interval self.actor_grad = actor_grad self.actor_dist = actor_dist actor_out_dim = out_actions if actor_dist == 'onehot' else 2 * out_actions self.actor = MLP(in_dim, actor_out_dim, hidden_dim, hidden_layers, layer_norm) self.critic = MLP(in_dim, 1, hidden_dim, hidden_layers, layer_norm) self.critic_target = MLP(in_dim, 1, hidden_dim, hidden_layers, layer_norm) self.critic_target.requires_grad_(False) self.train_steps = 0 def forward_actor(self, features: Tensor) -> D.Distribution: y = self.actor.forward(features).float() # .float() to force float32 on AMP if self.actor_dist == 'onehot': return D.OneHotCategorical(logits=y) if self.actor_dist == 'normal_tanh': return normal_tanh(y) if self.actor_dist == 'tanh_normal': return tanh_normal(y) assert False, self.actor_dist def forward_value(self, features: Tensor) -> Tensor: y = self.critic.forward(features) return y def training_step(self, features: TensorJMF, actions: TensorHMA, rewards: D.Distribution, terminals: D.Distribution, log_only=False ): if not log_only: if self.train_steps % self.target_interval == 0: self.update_critic_target() self.train_steps += 1 reward1: TensorHM = rewards.mean[1:] terminal0: TensorHM = terminals.mean[:-1] terminal1: TensorHM = terminals.mean[1:] # GAE from https://arxiv.org/abs/1506.02438 eq (16) # advantage_gae[t] = advantage[t] + (gamma lambda) advantage[t+1] + (gamma lambda)^2 advantage[t+2] + ... value_t: TensorJM = self.critic_target.forward(features) value0t: TensorHM = value_t[:-1] value1t: TensorHM = value_t[1:] advantage = - value0t + reward1 + self.gamma * (1.0 - terminal1) * value1t advantage_gae = [] agae = None for adv, term in zip(reversed(advantage.unbind()), reversed(terminal1.unbind())): if agae is None: agae = adv else: agae = adv + self.lambda_ * self.gamma * (1.0 - term) * agae advantage_gae.append(agae) advantage_gae.reverse() advantage_gae = torch.stack(advantage_gae) # Note: if lambda=0, then advantage_gae=advantage, then value_target = advantage + value0t = reward + gamma * value1t value_target = advantage_gae + value0t # When calculating losses, should ignore terminal states, or anything after, so: # reality_weight[i] = (1-terminal[0]) (1-terminal[1]) ... (1-terminal[i]) # Note this takes care of the case when initial state features[0] is terminal - it will get weighted by (1-terminals[0]). reality_weight = (1 - terminal0.detach()).log().cumsum(dim=0).exp() # Critic loss value: TensorJM = self.critic.forward(features.detach()) value0: TensorHM = value[:-1] loss_critic = 0.5 * torch.square(value_target.detach() - value0) loss_critic = (loss_critic * reality_weight).mean() # Actor loss policy_distr = self.forward_actor(features.detach()[:-1]) # TODO: we could reuse this from dream() if self.actor_grad == 'reinforce': action_logprob = policy_distr.log_prob(actions.detach()) loss_policy = - action_logprob * advantage_gae.detach() elif self.actor_grad == 'dynamics': loss_policy = - value_target else: assert False, self.actor_grad policy_entropy = policy_distr.entropy() loss_actor = loss_policy - self.entropy_weight * policy_entropy loss_actor = (loss_actor * reality_weight).mean() assert (loss_policy.requires_grad and policy_entropy.requires_grad) or not loss_critic.requires_grad with torch.no_grad(): metrics = dict(loss_critic=loss_critic.detach(), loss_actor=loss_actor.detach(), policy_entropy=policy_entropy.mean(), policy_value=value0[0].mean(), # Value of real states policy_value_im=value0.mean(), # Value of imagined states policy_reward=reward1.mean(), policy_reward_std=reward1.std(), ) tensors = dict(value=value.detach(), value_target=value_target.detach(), value_advantage=advantage.detach(), value_advantage_gae=advantage_gae.detach(), value_weight=reality_weight.detach(), ) return (loss_actor, loss_critic), metrics, tensors def update_critic_target(self): self.critic_target.load_state_dict(self.critic.state_dict()) # type: ignore
491926
import doxygen_basic_notranslate import inspect import string import sys import comment_verifier comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function), r"""\brief Brief description. The comment text \author Some author \return Some number \sa function2""" ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function1), r"""Single line comment """ ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function2), r"""A test of a very very very very very very very very very very very very very very very very very very very very very long comment string.""" ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function3), r"""*Overload 1:* A test for overloaded functions This is function \b one | *Overload 2:* A test for overloaded functions This is function \b two""" ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function4), r"""A test of some mixed tag usage \if CONDITION This \a code fragment shows us something \. \par Minuses: \arg it's senseless \arg it's stupid \arg it's null \warning This may not work as expected \code int main() { while(true); } \endcode \endif""" ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function5), r"""This is a post comment. """ ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function6), r"""Test for default args @param a Some parameter, default is 42""" ) comment_verifier.check(inspect.getdoc(doxygen_basic_notranslate.function7), r"""Test for a parameter with difficult type (mostly for python) @param a Very strange param""" )
491931
import random try: random = random.SystemRandom() except NotImplementedError: pass def get_random_string(length=12, allowed_chars='abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' '0123456789'): return ''.join([random.choice(allowed_chars) for i in range(length)]) def get_user_model(): """ Get the user model that is being used. If the `get_user_model` method is not available, default back to the standard User model provided through `django.contrib.auth`. """ try: from django.contrib.auth import get_user_model return get_user_model() except ImportError: from django.contrib.auth.models import User return User try: from django.utils import timezone now = timezone.now except ImportError: from datetime import datetime now = datetime.now
491947
from django.test import TestCase from ..importer import Importer class ImporterTestCase(TestCase): def test_load(self): """ Test that the loaded attribute is changed appropriately when the importer is loaded. """ importer = Importer('module') self.assertFalse(importer.loaded) importer.load() self.assertTrue(importer.loaded) def test_ensure_loaded(self): """ Test that the load method is called when the importer is not loaded for a decorated function. """ importer = Importer('module') self.assertFalse(importer.loaded) @importer.ensure_loaded def func_a(): return 42 self.assertEqual(func_a(), 42) self.assertTrue(importer.loaded)
491970
import os import subprocess try: from munkicon import worker except ImportError: from .munkicon import worker # Keys: 'mac_os_python_path' # 'mac_os_python_ver' # 'munki_python_path' # 'munki_python_symlink' # 'munki_python_ver' # 'official_python3_path' # 'official_python3_ver' class PythonConditions(object): """Generates information about python versions.""" def __init__(self): self.conditions = self._process() def _python_versions(self): """Gets the version of several Python paths (if they exist).""" result = {'mac_os_python_path': '', 'mac_os_python_ver': '', 'munki_python_path': '', 'munki_python_symlink': '', 'munki_python_ver': '', 'official_python3_path': '', 'official_python3_ver': ''} _munki_pythons = ['/usr/local/munki/munki-python', '/usr/local/munki/munki-python'] if any([os.path.exists(_p) for _p in _munki_pythons]): _munki_python = [_x for _x in _munki_pythons if os.path.exists(_x)][0] else: _munki_python = '' _python_paths = {'mac_os_python_path': '/usr/bin/python', 'munki_python_path': _munki_python, 'official_python3_path': '/usr/local/bin/python3'} for _k, _v in _python_paths.items(): if os.path.exists(_v): _real_path = os.path.realpath(_v) result[_k] = _real_path # Include the munki python symlink in use if _k == 'munki_python_path': result['munki_python_symlink'] = _v # Include the symlink path of official python if _k == 'official_python3_path': result['official_python3_symlink'] = _v _cmd = [_real_path, '--version'] _p = subprocess.Popen(_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _r, _e = _p.communicate() if _p.returncode == 0: _ver = None if _r: if isinstance(_r, bytes): _r = _r.decode('utf-8').strip() _ver = _r.replace('Python ', '') elif _e: if isinstance(_e, bytes): _e = _e.decode('utf-8').strip() _ver = _e.replace('Python ', '') result[_k.replace('_path', '_ver')] = _ver return result def _process(self): """Process all conditions and generate the condition dictionary.""" result = dict() result.update(self._python_versions()) return result def runner(dest): py = PythonConditions() mc = worker.MunkiConWorker(conditions_file=dest, log_src=__file__) mc.write(conditions=py.conditions)
491980
import sys def main(input_filename): test_cases = open(input_filename, 'r') for test in test_cases: test = test.strip() word = list(test.split(' ')[0]) mask = list(test.split(' ')[1]) result = [] for m, w in zip(mask, word): if m == '1': result.append(w.upper()) else: result.append(w.lower()) print(''.join(result)) test_cases.close() if __name__ == '__main__': main(sys.argv[1])
491987
def sum_zero(n): zero_sum_array = [] counter = 1 if n % 2 != 0: zero_sum_array.append(0) n -= 1 while n: zero_sum_array.append(counter) zero_sum_array.append(-counter) counter += 1 n -= 2 return zero_sum_array
492077
from torchsso.utils.logger import Logger # NOQA from torchsso.utils.inv_cupy import inv # NOQA from torchsso.utils.cholesky_cupy import cholesky # NOQA from torchsso.utils.accumulator import TensorAccumulator # NOQA
492112
import copy import itertools from functools import reduce import numpy as np from narwhal.cast import AbstractCast, Cast def count_casts(castlikes): """ Given an iterable of Casts and CastCollections, count the number of individual Casts. """ n = 0 for c in castlikes: if isinstance(c, AbstractCast): n += 1 else: n += count_casts(c) return n def ensureiterable(item): """ Turn *item* into an infinite lazy iterable. """ if not hasattr(item, "__iter__") or isinstance(item, str): return itertools.repeat(item) else: return itertools.cycle(item) def getiterable(kw, name, default): """ Equivalent to dict.get except that it ensures the result is an iterable. """ return ensureiterable(kw.get(name, default)) def _nanmean(arr, axis=0): """ Re-implement nanmean in a way that doesn't fire off warning when there are NaN-filled rows. Note that here axis is the axis to retain, which is not the behaviour of np.nanmean. I did it this way for simplicity, but this might be confusing in the future. """ if axis != 0: arr = np.rollaxis(arr, axis) means = np.empty(arr.shape[0], dtype=arr.dtype) i = 0 for row in arr: valid = row[~np.isnan(row)] if len(valid) > 0: means[i] = np.mean(row[~np.isnan(row)]) else: means[i] = np.nan i += 1 return means def ccmeans(cc): """ Calculate a mean Cast along isopycnals from a CastCollection. """ c0 = max(cc, key=lambda c: c.nvalid()) s0 = c0["sigma"] sharedkeys = set(c0.data.keys()).intersection( *[set(c.data.keys()) for c in cc[1:]]).difference( set(("pres", "botdepth", "time"))) nanmask = reduce(lambda a,b: a*b, [c.nanmask() for c in cc]) data = dict() for key in sharedkeys: arr = np.nan * np.empty((len(cc), len(c0["pres"]))) arr[0,:] = c0[key] for j, c in enumerate(cc[1:]): s = np.convolve(c["sigma"], np.ones(3)/3.0, mode="same") arr[j+1,:] = np.interp(s0, s, c[key]) data[key] = _nanmean(arr, axis=1) data[key][nanmask] = np.nan return Cast(copy.copy(c0["pres"]), **data) def ccmeanp(cc): if False in (np.all(cc[0]["pres"] == c["pres"]) for c in cc): raise ValueError("casts must share pressure levels") p = cc[0]["pres"] # shared keys are those in all casts, minus pressure and botdepth sharedkeys = set(cc[0].data.keys()).intersection( *[set(c.data.keys()) for c in cc[1:]]).difference( set(("pres", "botdepth", "time"))) data = dict() for key in sharedkeys: arr = np.vstack([c.data[key] for c in cc]) data[key] = _nanmean(arr, axis=1) return Cast(p, **data)
492134
import json import sys with open('reports/servers/index.json') as file_: report = json.load(file_) failures = sum(value['behavior'] == 'FAILED' for value in report['websockets'].values()) if failures > 0: sys.exit(1) else: sys.exit(0)
492139
import argparse from preprocess import preprocess import os from pathlib import Path import wave import numpy as np import unicodedata import random from tqdm import tqdm import re import yaml import sys import librosa ## Fairseq ์Šคํƒ€์ผ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ def get_parser(): parser = argparse.ArgumentParser() parser.add_argument( "--root", default='/code/gitRepo/data/aihub/ksponspeech', metavar="DIR", help="root directory containing flac files to index" ) parser.add_argument( "--info", default=None, metavar="DIR", help="์ „์ฒ˜๋ฆฌ ์ถ”๊ฐ€์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ ๊ฒƒ." ) parser.add_argument( "--do_info", action="store_true", help="์ „์ฒ˜๋ฆฌ ์ถ”๊ฐ€์ ์œผ๋กœ ์ˆ˜ํ–‰ํ• ์ง€ ์—ฌ๋ถ€ ํ™•์ธ" ) parser.add_argument( "--do_remove", action="store_true", help="ํ•œ๊ธ€ ์Œ์†Œ๊ฐ€ ์•„๋‹Œ ์ˆซ์ž, ์˜์–ด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ๋Š” ๋ชจ๋“  ๋‹จ์–ด๋ฅผ ์‚ญ์ œํ• ์ง€ ์—ฌ๋ถ€ ํ™•์ธ" ) parser.add_argument( "--token_limit", default=sys.maxsize, type=int, help="์ตœ๋Œ€ ๊ธ€์ž์ˆ˜ ์ฒดํฌ" ) parser.add_argument( "--dest", default='manifest_temp', type=str, metavar="DIR", help="output directory" ) parser.add_argument( "--ext", default="pcm", type=str, metavar="EXT", help="extension to look for" ) parser.add_argument('--preprocess_mode', type=str, default='phonetic', help='Ex) (70%)/(์น  ์‹ญ ํผ์„ผํŠธ) ํ™•๋ฅ ์ด๋ผ๋‹ˆ (๋ญ ๋ญ”)/(๋ชจ ๋ชฌ) ์†Œ๋ฆฌ์•ผ ์ง„์งœ (100%)/(๋ฐฑ ํ”„๋กœ)๊ฐ€ ์™œ ์•ˆ๋ผ?' 'phonetic: ์น  ์‹ญ ํผ์„ผํŠธ ํ™•๋ฅ ์ด๋ผ๋‹ˆ ๋ชจ ๋ชฌ ์†Œ๋ฆฌ์•ผ ์ง„์งœ ๋ฐฑ ํ”„๋กœ๊ฐ€ ์™œ ์•ˆ๋ผ?' 'spelling: 70% ํ™•๋ฅ ์ด๋ผ๋‹ˆ ๋ญ ๋ญ” ์†Œ๋ฆฌ์•ผ ์ง„์งœ 100%๊ฐ€ ์™œ ์•ˆ๋ผ?') parser.add_argument('--output_unit', type=str, default='grapheme', help='character or subword or grapheme') parser.add_argument('--additional_output_unit', type=str, default=None, help='character or subword or grapheme') parser.add_argument("--seed", default=42, type=int, metavar="N", help="random seed") parser.add_argument( "--time", default=None, type=str, metavar="MIN", help="set if you want make split manifest", ) parser.add_argument('--script_path', type=str, default="/code/gitRepo/data/aihub/ksponspeech/KsponSpeech_scripts", help='AIHUB์—์„œ ์ œ๊ณตํ•ด ์ฃผ๋Š” ์Šคํฌ๋ฆฝํŠธ ํด๋”') parser.add_argument( "--del_silence", action="store_true", help="์Œ์„ฑ์ด ์—†๋Š” ๊ณณ์„ ์‚ญ์ œํ•˜๋Š” ๊ฑด ์–ด๋•Œ?" ) return parser def find_index(durations, limit): for idx in range(len(durations)): if sum(durations[:idx]) > limit: return idx return len(durations) def set_seed(seed): random.seed(seed) np.random.seed(seed) def load_yaml(yaml_path): # Read YAML file with open(yaml_path, 'r') as stream: data_loaded = yaml.load(stream, Loader=yaml.FullLoader) return data_loaded def load_info(info_path): if not os.path.isdir(info_path): return {} info_files = [filename for filename in os.listdir(info_path) if '.yaml' in filename] info_data = {} for filename in info_files: file_path = os.path.join(info_path, filename) temp_data = load_yaml(file_path) info_data.update(temp_data) return info_data def save_converted_info(args, name, converted_info): if len(converted_info) == 0: return yaml_dict = {k: v for k, v in sorted(converted_info.items(), key=lambda item: (len(item[0]), item[0]))} with open(os.path.join(args.dest, '{}.yaml'.format(name)), 'w', encoding="utf-8") as write_f: yaml.dump(yaml_dict, write_f, allow_unicode=True, default_style=None, default_flow_style=False) def save_wrong_script(args, name, transcripts, fileinfo, raw_sentences, new_sentences): ## ํ‹€๋ฆฐ ๊ฒƒ ์ €์žฅํ•˜๊ธฐ ## ์•ŒํŒŒ๋ฒณ ์ถ”๊ฐ€ reg = re.compile(r'[A-Z]') yaml_dict = {} for grapheme_transcript, fileitem, raw_sentence, new_sentence in zip(transcripts, fileinfo, raw_sentences, new_sentences): graphemes = grapheme_transcript.split() file_num = Path(fileitem.split()[0]).stem.split("_")[1] assert len(file_num) == 6 for grapheme in graphemes: if grapheme.isdigit() or reg.match(grapheme): yaml_dict[file_num] = str(raw_sentence.replace('\n', '')) if len(yaml_dict) == 0: return ## Sorting yaml_dict = {k: v for k, v in sorted(yaml_dict.items(), key=lambda item: (len(item[0]), item[0]))} with open(os.path.join(args.dest, '{}.yaml'.format(name)), 'w', encoding="utf-8") as write_f: yaml.dump(yaml_dict, write_f, allow_unicode=True, default_style=None, default_flow_style=False) def save_dict(args, transcripts, dict_name='dict.ltr.txt', alphabet_name='alphabet.txt'): vocab_list = list() vocab_freq = list() for grapheme_transcript in transcripts: graphemes = grapheme_transcript.split() for grapheme in graphemes: if grapheme not in vocab_list: vocab_list.append(grapheme) vocab_freq.append(1) else: vocab_freq[vocab_list.index(grapheme)] += 1 ## write ltr vocab_freq, vocab_list = zip(*sorted(zip(vocab_freq, vocab_list), reverse=True)) with open(os.path.join(args.dest, dict_name), 'w') as write_f: for idx, (grpm, freq) in enumerate(zip(vocab_list, vocab_freq)): print("{} {}".format(grpm, freq), file=write_f) ## Write Vocab files with open(os.path.join(args.dest, alphabet_name), 'w', encoding='UTF8') as write_f: print("# Each line in this file represents the Unicode codepoint (UTF-8 encoded)", file=write_f) print("# associated with a numeric label.", file=write_f) print("# A line that starts with # is a comment. You can escape it with \# if you wish", file=write_f) print("# to use '#' as a label.", file=write_f) for token in vocab_list: print(token, file=write_f) ## final token must be \n print('', file=write_f) print("# The last (non-comment) line needs to end with a newline.", file=write_f, end='') return def save_lexicon(args, texts, lexicon_name='lexicon.lst'): vocab_list = {} for text in texts: for word in text.split(): new_word = word + "|" vocab_list[word] = " ".join(new_word) ## Write Vocab files ## Sorting vocab_list = {k: v for k, v in sorted(vocab_list.items(), key=lambda item: item[0])} with open(os.path.join(args.dest, lexicon_name), 'w', encoding='UTF8') as write_f: for k, v in vocab_list.items(): print("{}\t{}".format(k,v), file=write_f) return def save_files(args, file_name, dir_path, fileinfo, texts, transcripts): with open(os.path.join(args.dest, file_name + ".tsv"), 'w') as tsv_out, open( os.path.join(args.dest, file_name + ".ltr"), "w" ) as ltr_out, open( os.path.join(args.dest, file_name + ".wrd"), "w" ) as wrd_out: print(dir_path, file=tsv_out) for tsv_item, wrd_item, ltr_item in zip(fileinfo, texts, transcripts): print(tsv_item, file=tsv_out) print(wrd_item, file=wrd_out) print(ltr_item + " |", file=ltr_out) print("save files [{}]".format(file_name)) return def pcm2wav(pcm_file, channels=1, bit_depth=16, sampling_rate=16000): wav_file = str(Path(pcm_file).with_suffix('.wav')) # Check if the options are valid. if bit_depth % 8 != 0: raise ValueError("bit_depth " + str(bit_depth) + " must be a multiple of 8.") # Read the .pcm file as a binary file and store the data to pcm_data with open(pcm_file, 'rb') as opened_pcm_file: pcm_data = opened_pcm_file.read() with wave.open(wav_file, 'wb') as obj2write: obj2write.setnchannels(channels) obj2write.setsampwidth(bit_depth // 8) obj2write.setframerate(sampling_rate) obj2write.writeframes(pcm_data) return wav_file def load_script(args, script_path, info_data, token_limit=sys.maxsize): assert os.path.isfile(script_path) fileinfo = list() durations = list() texts = list() audio_nums = list() transcripts = list() additional_texts = list() additional_transcripts = list() raw_sentences = list() new_sentences = list() converted_info = {} reg = re.compile(r'.*[a-zA-Z0-9]') limit_count = 0 remove_count = 0 with open(script_path, "r") as f: for line in tqdm(f): convert_flag = False items = line.split(" :: ") file_path = os.path.join(args.root, items[0]) file_path = os.path.realpath(file_path) audio_num = str(Path(file_path).stem.split("_")[1]) raw_sentence = items[1] if len(audio_num) ==6 and audio_num in info_data: raw_sentence = info_data[audio_num] convert_flag=True ## ํ™•์žฅ์ž ํ™•์ธ if args.ext == 'pcm': try: wav = np.memmap(file_path, dtype='h', mode='r').astype('float32') / 32767 sr = 16000 except ValueError: # print('pcm load ์—๋Ÿฌ wave๋กœ ๊ต์ฒด [{}]'.format(file_path)) file_path = pcm2wav(file_path) wav, sr = librosa.load(file_path, sr=16000) elif args.ext in ['flac', 'wav']: wav, sr = librosa.load(file_path, sr=16000) else: raise ValueError("Unsupported extention method : {0}".format(args.ext)) if args.del_silence: non_silence_indices = librosa.effects.split(wav, top_db=30) wav = np.concatenate([wav[start:end] for start, end in non_silence_indices]) frames = len(wav) if len(audio_num) ==6: new_sentence = preprocess(raw_sentence=raw_sentence, mode=args.preprocess_mode, audio_num=audio_num) else: new_sentence = raw_sentence.replace('\n', '') ################################## if len(new_sentence) > token_limit: limit_count+=1 continue if args.do_remove and reg.match(new_sentence) and args.preprocess_mode != 'spelling': converted_info[audio_num] = new_sentence remove_count += 1 continue ################################# ## ์ €์žฅ ๋ชจ๋“œ๋Š” ์—ฌ๊ธฐ์— ์ถ”๊ฐ€ํ•˜๊ธฐ. if args.output_unit == 'grapheme': texts.append(unicodedata.normalize('NFKD', new_sentence).upper()) transcripts.append(" ".join(unicodedata.normalize('NFKD', new_sentence).replace(' ', '|')).upper()) elif args.output_unit == 'character': texts.append(new_sentence.upper()) transcripts.append(" ".join(list(new_sentence.replace(' ', '|').upper()))) else: raise ValueError("Unsupported preprocess method : {0}".format(args.output_unit)) ## ์ €์žฅ ๋ชจ๋“œ๋Š” ์—ฌ๊ธฐ์— ์ถ”๊ฐ€ํ•˜๊ธฐ. if args.additional_output_unit is not None: if args.additional_output_unit == 'grapheme': additional_texts.append(unicodedata.normalize('NFKD', new_sentence).upper()) additional_transcripts.append(" ".join(unicodedata.normalize('NFKD', new_sentence).replace(' ', '|')).upper()) elif args.additional_output_unit == 'character': additional_texts.append(new_sentence.upper()) additional_transcripts.append(" ".join(list(new_sentence.replace(' ', '|').upper()))) else: raise ValueError("Unsupported preprocess method : {0}".format(args.output_unit)) if convert_flag: converted_info[audio_num] = new_sentence ## ๋„ฃ๊ธฐ fileinfo.append("{}\t{}".format(os.path.relpath(file_path, args.root), frames)) durations.append(frames) audio_nums.append(audio_num) raw_sentences.append(raw_sentence) new_sentences.append(new_sentence) print("์ด ๋ฌด์‹œ๋œ ์ˆซ์ž : ", limit_count+remove_count) print("๊ธธ์ด๋ฅผ ๋„˜๊ฒจ์„œ ๋ฌด์‹œ๋œ ์ˆซ์ž : ", limit_count) print("์ˆซ์ž๋“ฑ์ด ์žˆ์–ด์„œ ๋ฌด์‹œ๋œ ์ˆซ์ž : ", remove_count) return fileinfo, durations, texts, audio_nums, transcripts, raw_sentences, new_sentences, converted_info, additional_texts, additional_transcripts def main(args): if not os.path.exists(args.dest): os.makedirs(args.dest) args.root = os.path.realpath(args.root) ## --dataset_path ์— ์žˆ์–ด์•ผ ํ•˜๋Š” ํด๋”๋“ค #for folder in ['KsponSpeech_01','KsponSpeech_02','KsponSpeech_03','KsponSpeech_04','KsponSpeech_05','KsponSpeech_eval']: # if folder not in os.listdir(args.root): # assert os.path.isdir(folder), "root ์œ„์น˜์— ํ•ด๋‹น ํด๋”๊ฐ€ ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. [{}]".format(folder) assert os.path.isdir(args.script_path), "aihub์—์„œ ์ œ๊ณตํ•ด์ฃผ๋Š” ์Šคํฌ๋ฆฝํŠธ ํด๋”๋ฅผ ๋„ฃ์–ด์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. script_path : [{}]".format(args.script_path) ## Info ํŒŒ์ผ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ info_data = {} if args.do_info: ## info ํŒŒ์ผ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ info_data = load_info(args.info) ## .trn ํ™•์žฅ์ž๋งŒ ํ™•์ธํ•จ file_list = [file for file in os.listdir(args.script_path) if Path(file).suffix == '.trn'] assert len(file_list) > 0, "์Šคํฌ๋ฆฝํŠธ ํŒŒ์ผ์ด ํ•œ๊ฐœ๋„ ์—†๋„ค์š” [{}]".format(args.script_path) ## ์Šคํฌ๋ฆฝํŠธ ์ฝ์–ด์˜ค๊ธฐ. script_name = 'train.trn' if script_name in file_list: print("generate [{}]".format(script_name)) fileinfo, durations, texts, audio_nums, transcripts, raw_sentences, new_sentences, converted_info, additional_texts, additional_transcripts = load_script(args, os.path.join(args.script_path, script_name), info_data, token_limit=args.token_limit) fileinfo = np.array(fileinfo) durations = np.array(durations) texts = np.array(texts) transcripts = np.array(transcripts) ## ์ถ”๊ฐ€์šฉ additional_texts = np.array(additional_texts) additional_transcripts = np.array(additional_transcripts) ## lexicon ๋งŒ๋“ค๊ธฐ save_lexicon(args, texts, lexicon_name='lexicon.lst') ## dictionary ์ €์žฅ save_dict(args, transcripts, dict_name='dict.ltr.txt', alphabet_name='alphabet.txt') ## ์ถ”๊ฐ€์šฉ ๋งŒ๋“ค๊ธฐ if args.additional_output_unit is not None: ## lexicon ๋งŒ๋“ค๊ธฐ save_lexicon(args, additional_texts, lexicon_name='add_lexicon.lst') ## dictionary ์ €์žฅ save_dict(args, additional_transcripts, dict_name='add_dict.ltr.txt', alphabet_name='add_alphabet.txt') #save_wrong_script(args, 'train_wrong',transcripts, fileinfo, raw_sentences, new_sentences) save_converted_info(args, 'train_converted', converted_info) ## train ์ด๋ž‘ dev ๋‚˜๋ˆ ์„œ ์ €์žฅ train_ids = [idx for idx, num in enumerate(audio_nums)] limit_idx = len(train_ids) if args.time is not None: random.shuffle(train_ids) assert args.time in ['10min', '1hour', '10hour', '100hour'], '์„ค์ • ์žฌ๋Œ€๋กœ ํ•ด๋ผ...' time_limit = 0 if args.time == '10min': ## 16000 hz * 60์ดˆ * 10๋ถ„ time_limit = 16000 * 60 * 10 if args.time == '1hour': ## 16000 hz * 60์ดˆ * 60๋ถ„ * 1 time_limit = 16000 * 60 * 60 * 1 if args.time == '10hour': ## 16000 hz * 60์ดˆ * 60๋ถ„ * 10 time_limit = 16000 * 60 * 60 * 10 if args.time == '100hour': ## 16000 hz * 60์ดˆ * 60๋ถ„ * 100 time_limit = 16000 * 60 * 60 * 100 limit_idx = find_index(durations[train_ids], time_limit) save_files(args, 'train', args.root, fileinfo[train_ids[:limit_idx]], texts[train_ids[:limit_idx]], transcripts[train_ids[:limit_idx]]) ## ์ถ”๊ฐ€์šฉ ๋งŒ๋“ค๊ธฐ if args.additional_output_unit is not None: save_files(args, 'add_train', args.root, fileinfo[train_ids[:limit_idx]], additional_texts[train_ids[:limit_idx]], additional_transcripts[train_ids[:limit_idx]]) ## ์Šคํฌ๋ฆฝํŠธ ์ฝ์–ด์˜ค๊ธฐ. script_name = 'dev.trn' if script_name in file_list: print("generate [{}]".format(script_name)) fileinfo, durations, texts, audio_nums, transcripts, raw_sentences, new_sentences, converted_info, additional_texts, additional_transcripts = load_script(args, os.path.join(args.script_path, script_name), info_data) save_files(args, 'dev', args.root, fileinfo, texts, transcripts) ## ์ถ”๊ฐ€์šฉ ๋งŒ๋“ค๊ธฐ if args.additional_output_unit is not None: save_files(args, 'add_dev', args.root, fileinfo, additional_texts, additional_transcripts) #save_wrong_script(args, 'dev_wrong', transcripts, fileinfo, raw_sentences, new_sentences) save_converted_info(args, 'dev_converted', converted_info) ## ์Šคํฌ๋ฆฝํŠธ ์ฝ์–ด์˜ค๊ธฐ. script_name = 'eval_other.trn' if script_name in file_list: print("generate [{}]".format(script_name)) fileinfo, durations, texts, audio_nums, transcripts, raw_sentences, new_sentences, converted_info, additional_texts, additional_transcripts = load_script(args, os.path.join(args.script_path, script_name), info_data) save_files(args, 'eval_other', args.root, fileinfo, texts, transcripts) ## ์ถ”๊ฐ€์šฉ ๋งŒ๋“ค๊ธฐ if args.additional_output_unit is not None: save_files(args, 'add_eval_other', args.root, fileinfo, additional_texts, additional_transcripts) #save_wrong_script(args, 'eval_other_wrong', transcripts, fileinfo, raw_sentences, new_sentences) save_converted_info(args, 'eval_other_converted', converted_info) ## ์Šคํฌ๋ฆฝํŠธ ์ฝ์–ด์˜ค๊ธฐ. script_name = 'eval_clean.trn' if script_name in file_list: print("generate [{}]".format(script_name)) fileinfo, durations, texts, audio_nums, transcripts, raw_sentences, new_sentences, converted_info, additional_texts, additional_transcripts = load_script(args, os.path.join(args.script_path, script_name), info_data) save_files(args, 'eval_clean', args.root, fileinfo, texts, transcripts) ## ์ถ”๊ฐ€์šฉ ๋งŒ๋“ค๊ธฐ if args.additional_output_unit is not None: save_files(args, 'add_eval_clean', args.root, fileinfo, additional_texts, additional_transcripts) #save_wrong_script(args, 'eval_clean_wrong', transcripts, fileinfo, raw_sentences, new_sentences) save_converted_info(args, 'eval_clean_converted', converted_info) if __name__ == '__main__': parser = get_parser() args = parser.parse_args() def _print_config(config): import pprint pp = pprint.PrettyPrinter(indent=4) pp.pprint(vars(config)) _print_config(args) main(args)
492157
from typing import List from lib import Migrations, MigrationsConfig from cli import MigrationsCli __version__: str = '0.0.4' __all__: List[str] = [ 'Migrations', 'MigrationsConfig', 'MigrationsCli' ]
492189
import copy import random from dataclasses import dataclass from pathlib import Path import pandas as pd from joblib import dump, load from tqdm import tqdm from deepform.data.add_features import LABEL_COLS, pq_index_and_dir from deepform.document import Document from deepform.logger import logger @dataclass(frozen=True) class DocumentStore: documents: list def __len__(self): return len(self.documents) def __iter__(self): for doc in self.documents: yield doc def __getitem__(self, n): """Return the pre-processed tokens for a specified document.""" return self.documents[n] def random_document(self): return random.choice(self.documents) def sample(self, n=None): if n is None: n = len(self) return DocumentStore(random.sample(self.documents, k=n)) def split(self, val_percent=0.2): """Divide into two DocumentStores, e.g. a training and a validation set.""" docs_copy = copy.deepcopy(self.documents) random.shuffle(docs_copy) split_index = int(val_percent * len(self)) return DocumentStore(docs_copy[:split_index]), DocumentStore( docs_copy[split_index:] ) @staticmethod def open(index_file, config): """Load the documents referenced by `index_file` and apply `config`.""" index_file = Path(index_file) doc_index = pd.read_parquet(index_file) logger.info(f"{len(doc_index)} documents in index") if not config.pad_windows: # Filter out documents that are too short for the curent config. doc_index = doc_index[doc_index["length"] >= config.window_len] # Filter out documents that don't have a sufficiently high match. # doc_index = doc_index[doc_index["best_match"] >= config.target_thresh] logger.info(f"After applying config {len(doc_index)} documents are available") # Sample down to no more than the requested number of documents. num_docs = min(config.len_train, len(doc_index)) doc_index = doc_index.sample(n=num_docs) # Load each of the documents, finishing any necessary feature computation. slug_to_doc = caching_doc_getter(index_file, config) # docs = concurrent.thread_map(slug_to_doc, doc_index["slug"]) labels = doc_index[LABEL_COLS.keys()] docs = [ slug_to_doc(slug, labels.loc[slug]) for slug in tqdm(doc_index.index, desc="Creating docs") ] docs = [d for d in docs if d != None] # noqa: E711 return DocumentStore(docs) def caching_doc_getter(index_file, config): _, pq_root = pq_index_and_dir(index_file) if config.use_data_cache: cache_root = pq_root.parent / "cache" / cache_master_key(config) cache_root.mkdir(parents=True, exist_ok=True) def slug_to_doc(slug, labels): pq_path = pq_root / f"{slug}.parquet" graph_path = pq_root / f"{slug}.graph" if config.use_data_cache: cache_path = cache_root / f"{slug}.joblib" try: with open(cache_path, "rb") as infile: return load(infile) except FileNotFoundError: logger.debug(f"Cache file {cache_path} not found") try: doc = Document.from_parquet(slug, labels, pq_path, graph_path, config) except AssertionError: logger.warning(f"No correct answers for {slug}, skipping") return None if config.use_data_cache: with open(cache_path, "wb") as outfile: dump(doc, outfile) logger.debug(f"Wrote document to cache file {cache_path}") return doc return slug_to_doc def cache_master_key(config): """Create a string determined by any cache-invalidating config elements.""" return ( "str{use_string}_" "vocab{vocab_size}_" "pg{use_page}_" "geom{use_geom}_" "amt{use_amount}_" "pad{pad_windows}_" "len{window_len}" ).format(**config)
492207
import gzip import os from typing import Optional, Dict from kgx.cli.cli_utils import prepare_output_args, prepare_input_args # type: ignore from kgx.transformer import Transformer # type: ignore from kg_covid_19.transform_utils.transform import Transform class GocamTransform(Transform): """ GocamTransform parses GO-CAMs that have been subjected to RDF edge project (REP) pattern. """ def __init__(self, input_dir: str = None, output_dir: str = None): source_name = "GOCAMs" super().__init__(source_name, input_dir, output_dir) def run(self, data_file: Optional[str] = None, **kwargs) -> None: """Method is called and performs needed transformations to process an ontology. Args: data_file: data file to parse Returns: None. """ if not data_file: data_file = os.path.join(self.input_base_dir, 'lifted-go-cams-20200619.nt') if 'input_format' in kwargs: input_format = kwargs['input_format'] if input_format not in {'nt', 'ttl', 'rdf/xml'}: raise ValueError(f"Unsupported input_format: {input_format}") else: input_format = 'nt' self.parse(data_file, input_format, compression=None) def parse(self, data_file: str, input_format: str, compression: Optional[str] = None) -> None: """Processes the data_file. Args: data_file: data file to parse input_format: format of input file compression: compression Returns: None """ print(f"Parsing {data_file}") # define prefix to IRI mappings cmap = { 'REACT': 'http://purl.obolibrary.org/obo/go/extensions/reacto.owl#REACTO_', 'WB': 'http://identifiers.org/wormbase/', 'FB': 'http://identifiers.org/flybase/', 'LEGO': 'http://geneontology.org/lego/', 'GOCAM': 'http://model.geneontology.org/', 'TAIR.LOCUS': 'http://identifiers.org/tair.locus/', 'POMBASE': 'http://identifiers.org/PomBase', 'DICTYBASE.GENE': 'http://identifiers.org/dictybase.gene/', 'XENBASE': 'http://identifiers.org/xenbase/' } # define predicates that are to be treated as node properties np = { 'http://geneontology.org/lego/evidence', 'https://w3id.org/biolink/vocab/subjectActivity', 'https://w3id.org/biolink/vocab/objectActivity', } source: Dict = { 'input': { 'format': input_format, 'compression': compression, 'filename': data_file, }, 'output': { 'format': 'tsv', 'compression': None, 'filename': os.path.join(self.output_dir, self.source_name), }, } input_args = prepare_input_args( key=self.source_name, source=source, output_directory=os.path.join(self.output_dir, self.source_name), prefix_map=cmap, node_property_predicates=np, predicate_mappings=None ) output_args = prepare_output_args( key=self.source_name, source=source, output_directory=os.path.join(self.output_dir, self.source_name), reverse_prefix_map=None, reverse_predicate_mappings=None, property_types=None, ) transformer = Transformer(stream=False) input_args['filename'] = [input_args['filename']] transformer.transform(input_args, output_args)
492228
from compiler.errors import TypedSyntaxError from compiler.static.types import ( TYPED_INT8, TYPED_INT16, PRIM_OP_DIV_INT, PRIM_OP_ADD_INT, ) from .common import StaticTestBase try: import cinderjit except ImportError: cinderjit = None class BinopTests(StaticTestBase): def test_pow_of_int64s_returns_double(self): codestr = """ from __static__ import int64 def foo(): x: int64 = 0 y: int64 = 1 z: int64 = x ** y """ with self.assertRaisesRegex( TypedSyntaxError, "double cannot be assigned to int64" ): self.compile(codestr, modname="foo") def test_int_binop(self): tests = [ ("int8", 1, 2, "/", 0), ("int8", 4, 2, "/", 2), ("int8", 4, -2, "/", -2), ("uint8", 0xFF, 0x7F, "/", 2), ("int16", 4, -2, "/", -2), ("uint16", 0xFF, 0x7F, "/", 2), ("uint32", 0xFFFF, 0x7FFF, "/", 2), ("int32", 4, -2, "/", -2), ("uint32", 0xFF, 0x7F, "/", 2), ("uint32", 0xFFFFFFFF, 0x7FFFFFFF, "/", 2), ("int64", 4, -2, "/", -2), ("uint64", 0xFF, 0x7F, "/", 2), ("uint64", 0xFFFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFFF, "/", 2), ("int8", 1, -2, "-", 3), ("int8", 1, 2, "-", -1), ("int16", 1, -2, "-", 3), ("int16", 1, 2, "-", -1), ("int32", 1, -2, "-", 3), ("int32", 1, 2, "-", -1), ("int64", 1, -2, "-", 3), ("int64", 1, 2, "-", -1), ("int8", 1, -2, "*", -2), ("int8", 1, 2, "*", 2), ("int16", 1, -2, "*", -2), ("int16", 1, 2, "*", 2), ("int32", 1, -2, "*", -2), ("int32", 1, 2, "*", 2), ("int64", 1, -2, "*", -2), ("int64", 1, 2, "*", 2), ("int8", 1, -2, "&", 0), ("int8", 1, 3, "&", 1), ("int16", 1, 3, "&", 1), ("int16", 1, 3, "&", 1), ("int32", 1, 3, "&", 1), ("int32", 1, 3, "&", 1), ("int64", 1, 3, "&", 1), ("int64", 1, 3, "&", 1), ("int8", 1, 2, "|", 3), ("uint8", 1, 2, "|", 3), ("int16", 1, 2, "|", 3), ("uint16", 1, 2, "|", 3), ("int32", 1, 2, "|", 3), ("uint32", 1, 2, "|", 3), ("int64", 1, 2, "|", 3), ("uint64", 1, 2, "|", 3), ("int8", 1, 3, "^", 2), ("uint8", 1, 3, "^", 2), ("int16", 1, 3, "^", 2), ("uint16", 1, 3, "^", 2), ("int32", 1, 3, "^", 2), ("uint32", 1, 3, "^", 2), ("int64", 1, 3, "^", 2), ("uint64", 1, 3, "^", 2), ("int8", 1, 3, "%", 1), ("uint8", 1, 3, "%", 1), ("int16", 1, 3, "%", 1), ("uint16", 1, 3, "%", 1), ("int32", 1, 3, "%", 1), ("uint32", 1, 3, "%", 1), ("int64", 1, 3, "%", 1), ("uint64", 1, 3, "%", 1), ("int8", 1, -3, "%", 1), ("uint8", 1, 0xFF, "%", 1), ("int16", 1, -3, "%", 1), ("uint16", 1, 0xFFFF, "%", 1), ("int32", 1, -3, "%", 1), ("uint32", 1, 0xFFFFFFFF, "%", 1), ("int64", 1, -3, "%", 1), ("uint64", 1, 0xFFFFFFFFFFFFFFFF, "%", 1), ("int8", 1, 2, "<<", 4), ("uint8", 1, 2, "<<", 4), ("int16", 1, 2, "<<", 4), ("uint16", 1, 2, "<<", 4), ("int32", 1, 2, "<<", 4), ("uint32", 1, 2, "<<", 4), ("int64", 1, 2, "<<", 4), ("uint64", 1, 2, "<<", 4), ("int8", 4, 1, ">>", 2), ("int8", -1, 1, ">>", -1), ("uint8", 0xFF, 1, ">>", 127), ("int16", 4, 1, ">>", 2), ("int16", -1, 1, ">>", -1), ("uint16", 0xFFFF, 1, ">>", 32767), ("int32", 4, 1, ">>", 2), ("int32", -1, 1, ">>", -1), ("uint32", 0xFFFFFFFF, 1, ">>", 2147483647), ("int64", 4, 1, ">>", 2), ("int64", -1, 1, ">>", -1), ("uint64", 0xFFFFFFFFFFFFFFFF, 1, ">>", 9223372036854775807), ("int64", 2, 2, "**", 4.0, "double"), ("int16", -1, 1, "**", -1, "double"), ("int32", -1, 1, "**", -1, "double"), ("int64", -1, 1, "**", -1, "double"), ("int64", -2, -3, "**", -0.125, "double"), ("uint8", 0xFF, 2, "**", float(0xFF * 0xFF), "double"), ("uint16", 0xFFFF, 2, "**", float(0xFFFF * 0xFFFF), "double"), ("uint32", 0xFFFFFFFF, 2, "**", float(0xFFFFFFFF * 0xFFFFFFFF), "double"), ( "uint64", 0xFFFFFFFFFFFFFFFF, 1, "**", float(0xFFFFFFFFFFFFFFFF), "double", ), ] for type, x, y, op, res, *output_type_option in tests: if len(output_type_option) == 0: output_type = type else: output_type = output_type_option[0] codestr = f""" from __static__ import {type}, box from __static__ import {output_type} def testfunc(tst): x: {type} = {x} y: {type} = {y} if tst: x = x + 1 y = y + 2 z: {output_type} = x {op} y return box(z), box(x {op} y) """ with self.subTest(type=type, x=x, y=y, op=op, res=res): with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual( f(False), (res, res), f"{type} {x} {op} {y} {res} {output_type}" ) def test_primitive_arithmetic(self): cases = [ ("int8", 127, "*", 1, 127), ("int8", -64, "*", 2, -128), ("int8", 0, "*", 4, 0), ("uint8", 51, "*", 5, 255), ("uint8", 5, "*", 0, 0), ("int16", 3123, "*", -10, -31230), ("int16", -32767, "*", -1, 32767), ("int16", -32768, "*", 1, -32768), ("int16", 3, "*", 0, 0), ("uint16", 65535, "*", 1, 65535), ("uint16", 0, "*", 4, 0), ("int32", (1 << 31) - 1, "*", 1, (1 << 31) - 1), ("int32", -(1 << 30), "*", 2, -(1 << 31)), ("int32", 0, "*", 1, 0), ("uint32", (1 << 32) - 1, "*", 1, (1 << 32) - 1), ("uint32", 0, "*", 4, 0), ("int64", (1 << 63) - 1, "*", 1, (1 << 63) - 1), ("int64", -(1 << 62), "*", 2, -(1 << 63)), ("int64", 0, "*", 1, 0), ("uint64", (1 << 64) - 1, "*", 1, (1 << 64) - 1), ("uint64", 0, "*", 4, 0), ("int8", 127, "//", 4, 31), ("int8", -128, "//", 4, -32), ("int8", 0, "//", 4, 0), ("uint8", 255, "//", 5, 51), ("uint8", 0, "//", 5, 0), ("int16", 32767, "//", -1000, -32), ("int16", -32768, "//", -1000, 32), ("int16", 0, "//", 4, 0), ("uint16", 65535, "//", 5, 13107), ("uint16", 0, "//", 4, 0), ("int32", (1 << 31) - 1, "//", (1 << 31) - 1, 1), ("int32", -(1 << 31), "//", 1, -(1 << 31)), ("int32", 0, "//", 1, 0), ("uint32", (1 << 32) - 1, "//", 500, 8589934), ("uint32", 0, "//", 4, 0), ("int64", (1 << 63) - 1, "//", 2, (1 << 62) - 1), ("int64", -(1 << 63), "//", 2, -(1 << 62)), ("int64", 0, "//", 1, 0), ("uint64", (1 << 64) - 1, "//", (1 << 64) - 1, 1), ("uint64", 0, "//", 4, 0), ("int8", 127, "%", 4, 3), ("int8", -128, "%", 4, 0), ("int8", 0, "%", 4, 0), ("uint8", 255, "%", 6, 3), ("uint8", 0, "%", 5, 0), ("int16", 32767, "%", -1000, 767), ("int16", -32768, "%", -1000, -768), ("int16", 0, "%", 4, 0), ("uint16", 65535, "%", 7, 1), ("uint16", 0, "%", 4, 0), ("int32", (1 << 31) - 1, "%", (1 << 31) - 1, 0), ("int32", -(1 << 31), "%", 1, 0), ("int32", 0, "%", 1, 0), ("uint32", (1 << 32) - 1, "%", 500, 295), ("uint32", 0, "%", 4, 0), ("int64", (1 << 63) - 1, "%", 2, 1), ("int64", -(1 << 63), "%", 2, 0), ("int64", 0, "%", 1, 0), ("uint64", (1 << 64) - 1, "%", (1 << 64) - 1, 0), ("uint64", 0, "%", 4, 0), ] for typ, a, op, b, res in cases: for const in ["noconst", "constfirst", "constsecond"]: if const == "noconst": codestr = f""" from __static__ import {typ} def f(a: {typ}, b: {typ}) -> {typ}: return a {op} b """ elif const == "constfirst": codestr = f""" from __static__ import {typ} def f(b: {typ}) -> {typ}: return {a} {op} b """ elif const == "constsecond": codestr = f""" from __static__ import {typ} def f(a: {typ}) -> {typ}: return a {op} {b} """ with self.subTest(typ=typ, a=a, op=op, b=b, res=res, const=const): with self.in_module(codestr) as mod: f = mod.f act = None if const == "noconst": act = f(a, b) elif const == "constfirst": act = f(b) elif const == "constsecond": act = f(a) self.assertEqual(act, res) def test_int_binop_type_context(self): codestr = f""" from __static__ import box, int8, int16 def f(x: int8, y: int8) -> int: z: int16 = x * y return box(z) """ with self.in_module(codestr) as mod: f = mod.f self.assertInBytecode( f, "CONVERT_PRIMITIVE", TYPED_INT8 | (TYPED_INT16 << 4) ) self.assertEqual(f(120, 120), 14400) def test_mixed_binop(self): with self.assertRaisesRegex( TypedSyntaxError, "cannot add int64 and Literal\\[1\\]" ): self.bind_module( """ from __static__ import ssize_t def f(): x: ssize_t = 1 y = 1 x + y """ ) with self.assertRaisesRegex( TypedSyntaxError, "cannot add Literal\\[1\\] and int64" ): self.bind_module( """ from __static__ import ssize_t def f(): x: ssize_t = 1 y = 1 y + x """ ) def test_mixed_binop_okay(self): codestr = """ from __static__ import ssize_t, box def f(): x: ssize_t = 1 y = x + 1 return box(y) """ with self.in_module(codestr) as mod: f = mod.f self.assertEqual(f(), 2) def test_mixed_binop_okay_1(self): codestr = """ from __static__ import ssize_t, box def f(): x: ssize_t = 1 y = 1 + x return box(y) """ with self.in_module(codestr) as mod: f = mod.f self.assertEqual(f(), 2) def test_inferred_primitive_type(self): codestr = """ from __static__ import ssize_t, box def f(): x: ssize_t = 1 y = x return box(y) """ with self.in_module(codestr) as mod: f = mod.f self.assertEqual(f(), 1) def test_mixed_binop_sign(self): """mixed signed/unsigned ops should be promoted to signed""" codestr = """ from __static__ import int8, uint8, box def testfunc(): x: uint8 = 42 y: int8 = 2 return box(x / y) """ code = self.compile(codestr) f = self.find_code(code) self.assertInBytecode(f, "PRIMITIVE_BINARY_OP", PRIM_OP_DIV_INT) with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 21) codestr = """ from __static__ import int8, uint8, box def testfunc(): x: int8 = 42 y: uint8 = 2 return box(x / y) """ code = self.compile(codestr) f = self.find_code(code) self.assertInBytecode(f, "PRIMITIVE_BINARY_OP", PRIM_OP_DIV_INT) with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 21) codestr = """ from __static__ import uint32, box def testfunc(): x: uint32 = 2 a = box(x / -2) return box(x ** -2) """ with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 0.25) codestr = """ from __static__ import int32, box def testfunc(): x: int32 = 2 return box(x ** -2) """ with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 0.25) codestr = """ from __static__ import uint32, box def testfunc(): x: uint32 = 2 return box(x ** -2) """ with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 0.25) codestr = """ from __static__ import int8, uint8, box def testfunc(): x: int8 = 4 y: uint8 = 2 return box(x ** y) """ with self.assertRaisesRegex(TypedSyntaxError, "cannot pow int8 and uint8"): self.compile(codestr) codestr = """ from __static__ import int8, uint8, box def testfunc(): x: uint8 = 2 y: int8 = -3 return box(x ** y) """ with self.assertRaisesRegex(TypedSyntaxError, "cannot pow uint8 and int8"): self.compile(codestr) codestr = """ from __static__ import uint8, box, double def testfunc(): x: uint8 = 2 y: double = -3.0 return box(x ** y) """ with self.assertRaisesRegex(TypedSyntaxError, "cannot pow uint8 and double"): self.compile(codestr) def test_double_binop(self): tests = [ (1.732, 2.0, "+", 3.732), (1.732, 2.0, "-", -0.268), (1.732, 2.0, "/", 0.866), (1.732, 2.0, "*", 3.464), (1.732, 2, "+", 3.732), (2.5, 2, "**", 6.25), (2.5, 2.5, "**", 9.882117688026186), ] if cinderjit is not None: # test for division by zero tests.append((1.732, 0.0, "/", float("inf"))) for x, y, op, res in tests: codestr = f""" from __static__ import double, box def testfunc(tst): x: double = {x} y: double = {y} z: double = x {op} y return box(z) """ with self.subTest(type=type, x=x, y=y, op=op, res=res): with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(False), res, f"{type} {x} {op} {y} {res}") def test_double_binop_with_literal(self): codestr = f""" from __static__ import double, unbox def f(): y: double = 1.2 y + 1.0 """ f = self.run_code(codestr)["f"] f() def test_subclass_binop(self): codestr = """ class C: pass class D(C): pass def f(x: C, y: D): return x + y """ code = self.compile(codestr, modname="foo") f = self.find_code(code, "f") self.assertInBytecode(f, "BINARY_ADD") def test_mixed_add_reversed(self): codestr = """ from __static__ import int8, uint8, int64, box, int16 def testfunc(tst=False): x: int8 = 42 y: int16 = 2 if tst: x += 1 y += 1 return box(y + x) """ code = self.compile(codestr) f = self.find_code(code) self.assertInBytecode(f, "PRIMITIVE_BINARY_OP", PRIM_OP_ADD_INT) with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 44) def test_mixed_tri_add(self): codestr = """ from __static__ import int8, uint8, int64, box def testfunc(tst=False): x: uint8 = 42 y: int8 = 2 z: int64 = 3 if tst: x += 1 y += 1 return box(x + y + z) """ code = self.compile(codestr) f = self.find_code(code) self.assertInBytecode(f, "PRIMITIVE_BINARY_OP", PRIM_OP_ADD_INT) with self.in_module(codestr) as mod: f = mod.testfunc self.assertEqual(f(), 47) def test_mixed_tri_add_unsigned(self): """promote int/uint to int, can't add to uint64""" codestr = """ from __static__ import int8, uint8, uint64, box def testfunc(tst=False): x: uint8 = 42 y: int8 = 2 z: uint64 = 3 return box(x + y + z) """ with self.assertRaisesRegex(TypedSyntaxError, "cannot add int16 and uint64"): self.compile(codestr) def test_literal_int_binop_inferred_type(self): """primitive literal doesn't wrongly carry through arithmetic""" for rev in [False, True]: with self.subTest(rev=rev): op = "1 + x" if rev else "x + 1" codestr = f""" from __static__ import int64 def f(x: int64): reveal_type({op}) """ self.type_error(codestr, "'int64'", f"reveal_type({op})") def test_error_type_ctx_left_operand_mismatch(self): codestr = f""" from __static__ import int64 def f(k: int64): l = [1, 2, 3] # slices cannot be primitives, so this is invalid l[:k + 1] = [0] return l """ self.type_error(codestr, "int64 cannot be assigned to dynamic", f"k + 1")
492285
from mayan.apps.events.classes import EventModelRegistry from mayan.apps.testing.tests.base import BaseTestCase from ..models import DownloadFile, SharedUploadedFile from ..settings import ( setting_download_file_expiration_interval, setting_shared_uploaded_file_expiration_interval ) from .mixins import DownloadFileTestMixin, SharedUploadedFileTestMixin class DownloadFileModelTestCase(DownloadFileTestMixin, BaseTestCase): def test_download_file_expiration(self): setting_download_file_expiration_interval.set(value=60) self._create_test_download_file() self.assertEqual(DownloadFile.objects.stale().count(), 0) setting_download_file_expiration_interval.set(value=0) self.assertEqual(DownloadFile.objects.stale().count(), 1) def test_method_get_absolute_url_without_content_object(self): self._create_test_download_file() self.assertFalse(self.test_download_file.get_absolute_url()) def test_method_get_absolute_url_with_content_object(self): self._create_test_object() self.TestModel.add_to_class( name='get_absolute_url', value=lambda self: 'test_value' ) EventModelRegistry.register(model=self.TestModel) self._create_test_download_file(content_object=self.test_object) self.assertTrue(self.test_download_file.get_absolute_url()) class SharedUploadedFileManagerTestCase( SharedUploadedFileTestMixin, BaseTestCase ): def test_shared_uploaded_expiration(self): setting_shared_uploaded_file_expiration_interval.set(value=60) self._create_test_shared_uploaded_file() self.assertEqual(SharedUploadedFile.objects.stale().count(), 0) setting_shared_uploaded_file_expiration_interval.set(value=0) self.assertEqual(SharedUploadedFile.objects.stale().count(), 1)
492300
import unittest from kafka.tools.protocol.requests import ArgumentError from kafka.tools.protocol.requests.offset_commit_v2 import OffsetCommitV2Request class OffsetCommitV2RequestTests(unittest.TestCase): def test_process_arguments(self): val = OffsetCommitV2Request.process_arguments(['groupname', '16', 'membername', '76', 'topicname', '4,2', 'nexttopic', '9,3']) assert val == {'group_id': 'groupname', 'group_generation_id': 16, 'member_id': 'membername', 'retention_time': 76, 'topics': [{'topic': 'topicname', 'partitions': [{'partition': 4, 'offset': 2, 'metadata': None}]}, {'topic': 'nexttopic', 'partitions': [{'partition': 9, 'offset': 3, 'metadata': None}]}]} def test_process_arguments_notenough(self): self.assertRaises(ArgumentError, OffsetCommitV2Request.process_arguments, ['groupname', '16', 'membername', '76', 'topicname']) def test_process_arguments_nonnumeric(self): self.assertRaises(ArgumentError, OffsetCommitV2Request.process_arguments, ['groupname', 'foo', 'membername', '76', 'topicname', '4,2']) self.assertRaises(ArgumentError, OffsetCommitV2Request.process_arguments, ['groupname', '16', 'membername', 'foo', 'topicname', '4,2'])
492306
import asyncio from aiokafka import AIOKafkaProducer, AIOKafkaConsumer from aiokafka.helpers import create_ssl_context from kafka.structs import TopicPartition context = create_ssl_context( cafile="./ca-cert", # CA used to sign certificate. # `CARoot` of JKS store container certfile="./cert-signed", # Signed certificate keyfile="./cert-key", # Private Key file of `certfile` certificate password="<PASSWORD>" ) async def produce_and_consume(): # Produce producer = AIOKafkaProducer( bootstrap_servers='localhost:9093', security_protocol="SSL", ssl_context=context) await producer.start() try: msg = await producer.send_and_wait( 'my_topic', b"Super Message", partition=0) finally: await producer.stop() consumer = AIOKafkaConsumer( "my_topic", bootstrap_servers='localhost:9093', security_protocol="SSL", ssl_context=context) await consumer.start() try: consumer.seek(TopicPartition('my_topic', 0), msg.offset) fetch_msg = await consumer.getone() finally: await consumer.stop() print("Success", msg, fetch_msg) if __name__ == "__main__": asyncio.run(produce_and_consume())
492314
from caresjpsutil import PythonLogger #This is the module that writes output file from a template ##thoughts: write copied part first, then write changeble part HEADER = ''' &ADMS_HEADER Comment = "This is an ADMS parameter file" Model = "ADMS" Version = 5.2 FileVersion = 8 Complete = 1 / ''' SUP = ''' &ADMS_PARAMETERS_SUP SupSiteName = "terrain dispersion site" SupProjectName = "chlorine leakage tank dispersion" SupUseAddInput = {2} SupAddInputPath = "{3}" SupReleaseType = 0 SupModelBuildings = 1 SupModelComplexTerrain = {0} SupModelCoastline = 0 SupPufType = 0 SupCalcChm = {1} SupCalcDryDep = 0 SupCalcWetDep = {4} SupCalcPlumeVisibility = 1 SupModelFluctuations = 0 SupModelRadioactivity = 0 SupModelOdours = 0 SupOdourUnits = "ou_e" SupPaletteType = 1 SupUseTimeVaryingEmissions = 0 SupTimeVaryingEmissionsType = 0 SupTimeVaryingVARPath = " " SupTimeVaryingFACPath = " " SupTimeVaryingEmissionFactorsWeekday = 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 SupTimeVaryingEmissionFactorsSaturday = 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 SupTimeVaryingEmissionFactorsSunday = 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 / ''' MET = ''' &ADMS_PARAMETERS_MET MetLatitude = {1} MetDataSource = 0 MetDataFileWellFormedPath = "{0}" MetWindHeight = 1.0e+1 MetWindInSectors = 0 MetWindSectorSizeDegrees = 1.0e+1 MetDataIsSequential = 0 MetUseSubset = 0 MetSubsetHourStart = 1 MetSubsetDayStart = 1 MetSubsetMonthStart = 1 MetSubsetYearStart = 2016 MetSubsetHourEnd = 0 MetSubsetDayEnd = 1 MetSubsetMonthEnd = 1 MetSubsetYearEnd = 2017 MetUseVerticalProfile = 0 MetVerticalProfilePath = " " Met_DS_RoughnessMode = 1 Met_DS_Roughness = 1.0e+0 Met_DS_UseAdvancedMet = 0 Met_DS_SurfaceAlbedoMode = 1 Met_DS_SurfaceAlbedo = 2.3e-1 Met_DS_PriestlyTaylorMode = 1 Met_DS_PriestlyTaylor = 1.0e+0 Met_DS_MinLmoMode = 1 Met_DS_MinLmo = 3.45e+1 Met_DS_PrecipFactorMode = 1 Met_DS_PrecipFactor = 4.5e-1 Met_MS_RoughnessMode = 3 Met_MS_Roughness = 1.0e-1 Met_MS_UseAdvancedMet = 0 Met_MS_SurfaceAlbedoMode = 3 Met_MS_SurfaceAlbedo = 2.3e-1 Met_MS_PriestlyTaylorMode = 3 Met_MS_PriestlyTaylor = 1.0e+0 Met_MS_MinLmoMode = 3 Met_MS_MinLmo = 1.0e+0 MetHeatFluxType = 0 MetInclBoundaryLyrHt = 0 MetInclSurfaceTemp = 1 MetInclLateralSpread = 0 MetInclRelHumidity = 0 MetHandNumEntries = 1 MetWindSpeed = 3.06e+0 MetWindDirection = 6.0e+1 MetJulianDayNum = 2.47e+2 MetLocalTime = 5.0e+0 MetCloudAmount = 5.0e+0 MetSurfaceHeatFlux = 0.0e+0 MetBoundaryLayerHeight = 8.00e+2 MetSurfaceTemp = 2.8e+1 MetLateralSpread = 7.5e+0 MetYear = 2017 MetRelHumidity = 7.4e+1 / ''' HIL = r''' &ADMS_PARAMETERS_HIL HilGridSize = 2 HilUseTerFile = 1 HilUseRoughFile = 0 HilTerrainPath = "C:\JPS_DATA\workingdir\JPS\ADMS\hkterrainlatestupdated.ter" HilRoughPath = " " HilCreateFlowField = 1 / ''' FLC = ''' &ADMS_PARAMETERS_CST CstPoint1X = 0.0e+0 CstPoint1Y = 0.0e+0 CstPoint2X = -1.000e+3 CstPoint2Y = 1.000e+3 CstLandPointX = 5.00e+2 CstLandPointY = 5.00e+2 / &ADMS_PARAMETERS_FLC FlcAvgTime = 9.00e+2 FlcUnitsPollutants = "ug/m3" FlcUnitsIsotopes = "Bq/m3" FlcCalcToxicResponse = 0 FlcToxicExp = 1.0e+0 FlcCalcPercentiles = 0 FlcNumPercentiles = 0 FlcCalcPDF = 0 FlcPDFMode = 0 FlcNumPDF = 0 / ''' #todo:should retreive it from kb GRD = ''' &ADMS_PARAMETERS_GRD GrdType = 0 GrdCoordSysType = 0 GrdSpacingType = 0 GrdRegularMin = {0} {1} 0.00e+0 1.0e+1 0.0e+0 0.0e+0 GrdRegularMax = {2} {3} 3.00e+1 1.000e+3 3.30e+2 0.0e+0 GrdRegularNumPoints = 80 80 4 10 12 1 GrdVarSpaceNumPointsX = 0 GrdVarSpaceNumPointsY = 0 GrdVarSpaceNumPointsZ = 0 GrdVarSpaceNumPointsR = 0 GrdVarSpaceNumPointsTh = 0 GrdVarSpaceNumPointsZp = 0 GrdPtsNumPoints = 0 0 GrdPolarCentreX = 0.0e+0 GrdPolarCentreY = 0.0e+0 GrdPtsUsePointsFile = 1 GrdPtsPointsFilePath = " " / ''' PUFGAM = ''' &ADMS_PARAMETERS_PUF PufStart = 1.00e+2 PufStep = 1.00e+2 PufNumSteps = 10 / &ADMS_PARAMETERS_GAM GamCalcDose = 0 / ''' BKG = ''' &ADMS_PARAMETERS_BKG BkgFilePath = "{0}" BkgFixedLevels = 0 / ''' ETC = ''' &ADMS_PARAMETERS_ETC SrcNumSources = {0} PolNumPollutants = 19 PolNumIsotopes = 0 / ''' CHM = ''' &ADMS_PARAMETERS_CHM ChmScheme = 2 / ''' MAP = ''' &ADMS_MAPPERPROJECT ProjectFilePath = " " / ''' POLD = ''' &ADMS_POLLUTANT_DETAILS PolName = "CO2" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 5.47e-1 PolBkgLevel = 4.14e+5 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "NOx" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 5.2e-1 PolBkgLevel = 6.0e+1 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "NO2" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 1.5e-3 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 5.2e-1 PolBkgLevel = 4.41e+1 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "NO" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 1.5e-3 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 8.0e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "O3" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 5.0e-1 PolBkgLevel = 6.899e+1 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "VOC" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 3.1e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "SO2" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 1.2e-2 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = {0} PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 3.7e-1 PolBkgLevel = 1.513e+1 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "PM10" PolPollutantType = 1 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 0 PolParTermVelocityKnown = 0 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-5 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = {1} PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 1.0e+0 PolBkgLevel = 5.63e+1 PolBkgUnits = "ug/m3" / &ADMS_POLLUTANT_DETAILS PolName = "PM2.5" PolPollutantType = 1 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 0 PolParTermVelocityKnown = 0 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 2.5e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 3.552e-1 PolWetWashoutB = 5.394e-1 PolConvFactor = 1.0e+0 PolBkgLevel = 8.0e+0 PolBkgUnits = "ug/m3" / &ADMS_POLLUTANT_DETAILS PolName = "CO" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 8.6e-1 PolBkgLevel = 1.222e+3 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "BENZENE" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 3.1e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "BUTADIENE" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 1 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 0.0e+0 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 4.5e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "HCl" PolPollutantType = 0 PolGasDepVelocityKnown = 1 PolGasDepositionVelocity = 0.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 0.0e+0 PolWetWashoutA = 3.0e-4 PolWetWashoutB = 6.6e-1 PolConvFactor = 6.589e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "Cl2" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 5.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 1.0e-4 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 3.5e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "CH3Cl" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 0.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 1.0e-4 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 4.922e-1 PolBkgLevel = 6.0e-1 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "ISOBUTYLENE" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 0.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 1.0e-4 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 4.43e-1 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "NH3" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 0.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 0 PolWetWashout = 1.0e-4 PolWetWashoutA = 5.0e-3 PolWetWashoutB = 6.4e-1 PolConvFactor = 1.462e+0 PolBkgLevel = 6.0e+0 PolBkgUnits = "ppb" / &ADMS_POLLUTANT_DETAILS PolName = "HC" PolPollutantType = 0 PolGasDepVelocityKnown = 0 PolGasDepositionVelocity = 0.0e+0 PolGasType = 0 PolParDepVelocityKnown = 1 PolParTermVelocityKnown = 1 PolParNumDepositionData = 1 PolParDepositionVelocity = 0.0e+0 PolParTerminalVelocity = 0.0e+0 PolParDiameter = 1.0e-6 PolParDensity = 1.000e+3 PolParMassFraction = 1.0e+0 PolWetWashoutKnown = 1 PolWetWashout = 1.0e-4 PolWetWashoutA = 1.0e-4 PolWetWashoutB = 6.4e-1 PolConvFactor = 0.802e+0 PolBkgLevel = 0.0e+0 PolBkgUnits = "ppb" / ''' class admsAplWriter(object): def __init__(self, data, address): self.data = data self.address = address #main function def write(self): pythonLogger = PythonLogger('admsAplWriter.py') pythonLogger.postInfoToLogServer('writing to ' + self.address) #if contains this data, execute the corresponding writing function with open(self.address, 'w') as file: self.writeStr(file, HEADER) #self.writeStr(file,SUP) self.writeTemp(file,SUP,[self.data['terrindicator'],self.data['chemindicator'],self.data['night'],self.data['dirnight'],self.data['wetindicator']]) self.writeTemp(file,MET,[self.data['Met'],self.data['Lat']]) self.writeBdn(file, self.data['Bdn']) self.writeStr(file,HIL) self.writeStr(file,FLC) self.writeTemp(file,GRD,self.data['Grd']) self.writeStr(file,PUFGAM) self.writeOpt(file,self.data['Opt']) self.writeStr(file,CHM) self.writeTemp(file,BKG,[self.data['Bkg']]) self.writeStr(file,ETC.format(len(self.data['Src']))) self.writeCoordSys(file, self.data['CoordiSys'])# a special case, to be unified in future #self.writeCoordSys(file, self.data['CoordiSys'])# a special case, to be unified in future self.writeStr(file,MAP) #self.writeStr(file,POLD) self.writeTemp(file,POLD,[self.data['so2washout'],self.data['pm10washout']]) #self.writeTemp(self.data['OPT']) #del self.data['OPT'] self.writePol(file,self.data['Pol']) self.writeSrc(file, self.data['Src']) # for category,value in self.data.items(): # self.__getattribute__('write'+category)(file, value) #to be canceled in future, no copy all pythonLogger.postInfoToLogServer('finished writing to ' + self.address) def writeAttr(self, file, obj): for attr in [a for a in dir(obj) if not a.startswith('_') and a not in ['index', 'count'] ] : #todo: if obj is a list #print (attr) attrV = getattr(obj, attr) #if is function, don't print at all if callable(attrV): break #format str with quote first if isinstance(attrV, str): attrV = '"{}"'.format(attrV) if isinstance(attrV, (list, tuple)): file.write(attr+'='+' '.join(['{}'.format('"'+i+'"' if isinstance(i, str) else i) for i in attrV])+'\n' ) else: file.write('{0}= {1}\n'.format(attr, attrV)) def writeSrc(self, file, srcs): print('writing src') for src in srcs: file.write('&ADMS_SOURCE_DETAILS\n') self.writeAttr(file, src) file.write('/\n') def writePol(self, file, pol): print('writing extra pol') file.write('&ADMS_POLLUTANT_DETAILS\n') self.writeAttr(file, pol) file.write('/\n') def quoteStr(self, item): if isinstance(item, str): return '\"{0}\"'.format(item) return item def writeBdn(self, file, bdn): print('writing bdn') file.write("&ADMS_PARAMETERS_BLD\n") self.writeAttr(file, bdn) file.write("/\n") def writeOpt(self, file, bdn): print('writing Opt') file.write("&ADMS_PARAMETERS_OPT\n") self.writeAttr(file, bdn) file.write("/\n") def writeCoordSys(self, file, csys = 28992): self.writeTemp(file, '&ADMS_COORDINATESYSTEM\nProjectedEPSG = {0}\n', [csys] ) # self.writeTemp(file, '&ADMS_COORDINATESYSTEM\nProjectedEPSG = {0}\n', [28992] ) file.write("/\n") def writeStr(self, file, ori): ###Todo file.write(ori) file.write('\n') def writeTemp(self, file, temp, data): print(data) self.writeStr( file, temp.format(*data)) #a = admsAplWriter(template = '', data={'Grd':100, 'Bdn': 10}) #a.write()
492333
import inspect import operator from functools import reduce from typing import Any, Optional from rest_framework.fields import empty from rest_framework.request import Request from .param_settings import ParamSettings from rest_typed.utils import inspect_complex_type def get_nested_value(dic: dict, path: str, fallback=None) -> Any: try: return reduce(operator.getitem, path.split("."), dic) except (TypeError, KeyError, ValueError): return fallback def get_default_value(param: inspect.Parameter) -> Any: if ( not is_default_used_to_pass_settings(param) and param.default is not inspect.Parameter.empty ): return param.default return empty def is_default_used_to_pass_settings(param: inspect.Parameter) -> bool: return get_explicit_param_settings(param) is not None def get_explicit_param_settings(param: inspect.Parameter) -> Optional[ParamSettings]: try: param_type = param.default.param_type return param.default except AttributeError: return None def is_implicit_body_param(param: inspect.Parameter) -> bool: t = inspect_complex_type(param.annotation) return t is not None def is_explicit_request_param(param: inspect.Parameter) -> bool: return param.annotation is Request def is_implicit_request_param(param: inspect.Parameter) -> bool: return param.name == "request" and param.annotation is inspect.Parameter.empty def find_request(original_args: list) -> Request: for arg in original_args: if isinstance(arg, Request): return arg raise Exception("Could not find request in args:" + str(original_args))
492352
from llvm.core import Type void = Type.void() char = Type.int(8) short = Type.int(16) int = Type.int(32) int16 = short int32 = int int64 = Type.int(64) float = Type.float() double = Type.double() # platform dependent def _determine_sizes(): import ctypes # Makes following assumption: # sizeof(py_ssize_t) == sizeof(ssize_t) == sizeof(size_t) any_size_t = getattr(ctypes, 'c_ssize_t', ctypes.c_size_t) return ctypes.sizeof(ctypes.c_void_p) * 8, ctypes.sizeof(any_size_t) * 8 pointer_size, _py_ssize_t_bits = _determine_sizes() intp = {32: int32, 64: int64}[pointer_size] npy_intp = Type.int(pointer_size) py_ssize_t = Type.int(_py_ssize_t_bits) # pointers pointer = Type.pointer void_p = pointer(char) char_p = pointer(char) npy_intp_p = pointer(npy_intp) # vector def vector(ty, ct): return Type.vector(ty, 4)
492375
from setuptools import setup, find_packages import versioneer DISTNAME = 'mynn' DESCRIPTION = 'A pure-Python neural network library' LICENSE = 'MIT' AUTHOR = '<NAME>' AUTHOR_EMAIL = '<EMAIL>' URL = 'https://github.com/davidmascharka/MyNN' CLASSIFIERS = [ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Intended Audience :: Science/Research", "Intended Audience :: Education", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering", ] INSTALL_REQUIRES = ['numpy >= 1.13', 'mygrad >= 1.6'] TESTS_REQUIRE = ['pytest >= 3.8', 'hypothesis >= 4.6'] LONG_DESCRIPTION = """ MyNN is a simple NumPy-centric neural network library that builds on top of MyGrad. It provides convenient wrappers for such functionality as - Convenient neural network layers (e.g. convolutional, dense, batch normalization, dropout) - Weight initialization functions (e.g. Glorot, He, uniform, normal) - Neural network activation functions (e.g. elu, glu, tanh, sigmoid) - Common loss functions (e.g. cross-entropy, KL-divergence, Huber loss) - Optimization algorithms (e.g. sgd, adadelta, adam, rmsprop) MyNN comes complete with several examples to ramp you up to being a fluent user of the library. It was written as an extension to MyGrad for rapid prototyping of neural networks with minimal dependencies, a clean codebase with excellent documentation, and as a learning tool. """ if __name__ == '__main__': setup( name=DISTNAME, version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license=LICENSE, author=AUTHOR, classifiers=CLASSIFIERS, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_ocntent_type="text/markdown", url=URL, python_requires=">=3.6", packages=find_packages(), install_requires=INSTALL_REQUIRES, tests_require=TESTS_REQUIRE, )
492376
import numpy as np import heapq from operator import itemgetter from copy import copy class SDRRL(object): def __init__(self, numState, numHidden, numAction, initMinWeight, initMaxWeight): self._numState = numState self._numHidden = numHidden self._numAction = numAction self._actionDelta = np.zeros((numAction, 1)) self._hiddenStates = np.zeros((numHidden, 1)) self._stimuli = np.zeros((numHidden, 1)) self._sparsities = np.zeros((numHidden, 1)) self._biases = np.zeros((numHidden, 1)) self._weightsFF = np.random.randn(numHidden, numState) * (initMaxWeight - initMinWeight) + initMinWeight self._weightsQ = np.random.randn(1, numHidden) * (initMaxWeight - initMinWeight) + initMinWeight self._tracesQ = np.zeros((1, numHidden)) self._weightsAction = np.random.randn(numAction, numHidden) * (initMaxWeight - initMinWeight) + initMinWeight self._prevV = 0.0 self._alphaFF = 0.0 self._alphaAction = 0.1 self._alphaQ = 0.001 self._alphaBias = 0.0 self._gamma = 0.97 self._lambda = 0.92 self._activeRatio = 0.1 self._noise = 0.05 def simStep(self, reward, state): numActive = int(self._activeRatio * self._numHidden) self._stimuli = np.dot(self._weightsFF, state) activations = self._stimuli - self._biases # Generate tuples for sorting heap = [(activations.item(0), 0)] for i in range(1, self._numHidden): heapq.heappush(heap, (activations.item(i), i)) # Use sorted information for inhibition hiddenStatesPrev = copy(self._hiddenStates) self._sparsities = np.zeros((self._numHidden, 1)) nLargest = heapq.nlargest(numActive, heap, key=itemgetter(0)) # Inhibition for i in range(0, numActive): self._sparsities[nLargest[i][1]] = 1.0 self._hiddenStates = np.multiply(self._sparsities, activations) # Q q = np.dot(self._weightsQ, self._hiddenStates).item(0) # Action action = np.tanh(np.dot(self._weightsAction, self._hiddenStates)) actionExp = copy(action) for i in range(0, self._numAction): if np.random.rand() < self._noise: actionExp[i] = np.random.rand() * 2.0 - 1.0 #actionExp = np.minimum(1.0, np.maximum(-1.0, action + np.random.randn(self._numAction, 1) * self._noise)) # Reconstruction recon = np.dot(self._weightsFF.T, self._hiddenStates) delta = state - recon # Update self._weightsFF += self._alphaFF * np.dot(self._hiddenStates, delta.T) tdError = reward + self._gamma * q - self._prevV self._tracesQ = np.maximum(self._tracesQ * self._lambda, hiddenStatesPrev.T) self._weightsQ += self._alphaQ * tdError * self._tracesQ if tdError > 0.0: self._weightsAction += self._alphaAction * np.dot(self._actionDelta, hiddenStatesPrev.T) self._biases += self._alphaBias * (self._stimuli - self._biases) self._prevV = q self._actionDelta = actionExp - action return actionExp
492409
import torch.nn as nn import torch.nn.functional as F from base.base_net import BaseNet class CIFAR10_LeNet(BaseNet): def __init__(self, rep_dim=256, bias_terms=False): super().__init__() self.rep_dim = rep_dim self.pool = nn.MaxPool2d(2, 2) # Encoder network self.conv1 = nn.Conv2d(3, 32, 5, bias=bias_terms, padding=2) nn.init.xavier_normal_(self.conv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=bias_terms) self.conv2 = nn.Conv2d(32, 64, 5, bias=bias_terms, padding=2) nn.init.xavier_normal_(self.conv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=bias_terms) self.conv3 = nn.Conv2d(64, 128, 5, bias=bias_terms, padding=2) nn.init.xavier_normal_(self.conv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=bias_terms) self.fc1 = nn.Linear(128 * 4 * 4, 512, bias=bias_terms) nn.init.xavier_normal_(self.fc1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn1d1 = nn.BatchNorm1d(512, eps=1e-04, affine=bias_terms) self.fc2 = nn.Linear(512, self.rep_dim, bias=bias_terms) nn.init.xavier_normal_(self.fc2.weight) def forward(self, x): x = x.view(-1, 3, 32, 32) x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(int(x.size(0)), -1) x = self.fc1(x) x = F.leaky_relu(self.bn1d1(x)) x = self.fc2(x) return x
492417
from .MultimodalManipulationDataset import MultimodalManipulationDataset from .MultimodalManipulationDataset_robust import MultimodalManipulationDataset_robust from .ProcessForce import ProcessForce from .ToTensor import ToTensor
492464
import gym import torch from load_policy import load_policy from model import Agent from train import BehavioralCloning, DAgger, Eval class Config(): seed = 3 envname = 'Humanoid-v2' env = gym.make(envname) method = 'DA' # BC: Behavioral Cloning DA: DAgger device = torch.device('cuda') expert_path = './experts/' model_save_path = './models/' n_expert_rollouts = 30 # number of rollouts from expert n_dagger_rollouts = 10 # number of new rollouts from learned model for a DAgger iteration n_dagger_iter = 10 # number of DAgger iterations n_eval_rollouts = 10 # number of rollouts for evaluating a policy L2 = 0.00001 lr = 0.0001 epochs = 20 batch_size = 64 eval_steps = 500 def main(): config = Config() print('*' * 20, config.envname, config.method, '*' * 20) env = config.env if config.seed: env.seed(config.seed) torch.manual_seed(config.seed) agent = Agent(env.observation_space.shape[0], env.action_space.shape[0]).to(config.device) expert = load_policy(config.expert_path + config.envname + '.pkl') method = config.method if method == 'BC': agent = BehavioralCloning(config, agent, expert) elif method == 'DA': agent = DAgger(config, agent, expert) else: NotImplementedError(method) avrg_mean, avrg_std = Eval(config, expert) print('[expert] avrg_mean:{:.2f} avrg_std:{:.2f}'.format(avrg_mean, avrg_std)) avrg_mean, avrg_std = Eval(config, agent) print('[agent] avrg_mean:{:.2f} avrg_std:{:.2f}'.format(avrg_mean, avrg_std)) if __name__ == '__main__': main()
492473
from typing import Callable class ForWithProgress: def __init__(self, total: int, every_nth: int, run_both_on_every: bool, run_on_start: bool): self._total = total self._every_nth = every_nth self._run_both_on_every = run_both_on_every self._run_on_start = run_on_start def every_nth(self, every_nth_action: Callable[[int], None], every_action: Callable[[int, bool], None])->None: def must_run_nth(current: int) -> bool: if current == 0 and self._run_on_start: return True if current == 0: return False return current % self._every_nth == 0 for i in range(self._total+1): must = must_run_nth(i) if must: every_nth_action(i) if must and not self._run_both_on_every: continue every_action(i, must)
492475
from django.contrib import admin from . import models @admin.register(models.Model) class ModelAdmin(admin.ModelAdmin): list_display = ("name",)
492500
import numpy as np from ba3l.ingredients.ingredient import Ingredient # credit: https://github.com/iBelieveCJM/Tricks-of-Semi-supervisedDeepLeanring-Pytorch/blob/master/utils/ramps.py def pseudo_rampup(T1, T2): def warpper(epoch): if epoch > T1: alpha = (epoch - T1) / (T2 - T1) if epoch > T2: alpha = 1.0 else: alpha = 0.0 return alpha return warpper def exp_rampup(rampup_length): """Exponential rampup from https://arxiv.org/abs/1610.02242""" def warpper(epoch): if epoch < rampup_length: epoch = np.clip(epoch, 0.5, rampup_length) phase = 1.0 - epoch / rampup_length return float(np.exp(-5.0 * phase * phase)) else: return 1.0 return warpper def linear_rampup(rampup_length): """Linear rampup""" def warpper(epoch): if epoch < rampup_length: return epoch / rampup_length else: return 1.0 return warpper def linear_rampdown(rampdown_length, start=0, last_value=0): """Linear rampup -(start)- (rampdown_length) \ _(for the rest) """ def warpper(epoch): if epoch <= start: return 1. elif epoch - start < rampdown_length: return last_value + (1. - last_value) * (rampdown_length - epoch + start) / rampdown_length else: return last_value return warpper def exp_rampdown(rampdown_length, num_epochs): """Exponential rampdown from https://arxiv.org/abs/1610.02242""" def warpper(epoch): if epoch >= (num_epochs - rampdown_length): ep = .5 * (epoch - (num_epochs - rampdown_length)) return float(np.exp(-(ep * ep) / rampdown_length)) else: return 1.0 return warpper def cosine_rampdown(rampdown_length, num_epochs): """Cosine rampdown from https://arxiv.org/abs/1608.03983""" def warpper(epoch): if epoch >= (num_epochs - rampdown_length): ep = .5 * (epoch - (num_epochs - rampdown_length)) return float(.5 * (np.cos(np.pi * ep / rampdown_length) + 1)) else: return 1.0 return warpper def exp_warmup(rampup_length, rampdown_length, num_epochs): rampup = exp_rampup(rampup_length) rampdown = exp_rampdown(rampdown_length, num_epochs) def warpper(epoch): return rampup(epoch) * rampdown(epoch) return warpper def exp_warmup_linear_down(warmup, rampdown_length, start_rampdown, last_value): rampup = exp_rampup(warmup) rampdown = linear_rampdown(rampdown_length, start_rampdown, last_value) def warpper(epoch): return rampup(epoch) * rampdown(epoch) return warpper def test_warmup(): warmup = exp_warmup(20, 100, 150) for ep in range(500): print(warmup(ep)) def test_warmupl(): warmup = exp_warmup_linear_down(20, 100, 50, 0.001) for ep in range(500): print(warmup(ep)) def cosine_cycle(cycle_len=20,ramp_down_start=100,last_lr_value=0.01): """Cosine rampdown from https://arxiv.org/abs/1608.03983""" ramp_down_start = cycle_len+ (ramp_down_start-1)//cycle_len*(cycle_len) print("adjusted ramp_down_start:",ramp_down_start) def warpper(epoch): ep = (epoch+cycle_len//2.)/(1.*cycle_len) if epoch>ramp_down_start: return last_lr_value return float(last_lr_value + (1.-last_lr_value)* .5 * (np.cos(2.*np.pi * ep) + 1)) return warpper if __name__ == '__main__': test= exp_warmup_linear_down(20, 100, 50, 150) for i in range(250): print(test(i))
492505
import torch from typing_extensions import TypedDict class ConfigMap(TypedDict): rank : int local_rank : int world_size : int local_size : int calc_stream : torch.cuda.Stream load_stream : torch.cuda.Stream load_event : torch.cuda.Event barrier_stream : torch.cuda.Stream loss_scale_factor : float loss_scale_steps : int gradient_inspect : bool comm : 'NCCLCommunicator' config = ConfigMap() def rank(): """ Returns the global rank of the current process. (0 ~ world_size-1) """ return config['rank'] def world_size(): """ Returns the total number of workers across all nodes. """ return config['world_size']
492515
def gather_writable_check_list(hook, check_list, **kwargs): pass def before_project_updated(hook, project_uploader, **kwargs): pass def after_project_updated(hook, project_uploader, **kwargs): pass def before_resource_group_updated(hook, resource_group_uploader, **kwargs): pass def after_resource_group_updated(hook, resource_group_uploader, **kwargs): pass def add_framework_version_update_writable_files(hook, from_version, to_version, writable_file_paths, **kwargs): pass def before_framework_version_updated(hook, from_version, to_version, **kwargs): pass def after_framework_version_updated(hook, from_version, to_version, **kwargs): pass
492536
import os from numpy.testing import assert_allclose from glue_geospatial.data_factory import is_geospatial, geospatial_reader DATA = os.path.join(os.path.dirname(__file__), 'data') def test_geospatial(tmpdir): assert not is_geospatial(os.path.join(DATA, 'plain.tif')) assert is_geospatial(os.path.join(DATA, 'simplegeo.tif')) data = geospatial_reader(os.path.join(DATA, 'simplegeo.tif')) assert data.shape == (18, 24) assert_allclose(data.coords.pixel_to_world_values(9, 12), (-3.9716666666666676, 2.9816666666666665))
492540
from datetime import date from gazette.spiders.base.imprensa_oficial import ImprensaOficialSpider class BaMunizFerreiraSpider(ImprensaOficialSpider): name = "ba_muniz_ferreira" allowed_domains = ["pmmunizferreiraba.imprensaoficial.org"] start_date = date(2014, 12, 1) end_date = date(2021, 1, 19) url_base = "http://pmmunizferreiraba.imprensaoficial.org/{}" TERRITORY_ID = "2922201"
492593
import argparse import numpy as np import os import tensorflow as tf import time import pickle import scipy.io import skimage.transform import matplotlib.pyplot as plt import augmentation as augm import evaluation import tensorboard as tb from datetime import datetime np.set_printoptions(suppress=True, precision=4) joint_names = np.array(['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip', 'rhip', 'nose', 'torso']) # star like model with chain-like inference (just to test) # joint_dependence = {'lsho': ['nose', 'lelb'], 'lelb': ['lsho', 'lwri'], 'lwri': ['lelb'], # 'rsho': ['nose', 'relb'], 'relb': ['rsho', 'rwri'], 'rwri': ['relb'], # 'lhip': ['nose'], 'rhip': ['nose'], 'nose': ['lsho', 'rsho', 'lhip', 'rhip']} joint_dependence = {} # Fully-connected PGM for joint in joint_names: joint_dependence[joint] = [joint_cond for joint_cond in joint_names if joint_cond != joint] def model(x, n_joints): """ A computational graph for the part detector (CNN). Note that the size of heat maps is 8 times smaller (due to a convolution with stride=2 and 2 max pooling layers) than the original image. However, even such huge downsampling preserves satisfactory localization, and significantly saves computational power. :param x: full resolution image hps.batch_size x 480 x 720 x 3 :return: predicted heat map hps.batch_size x 60 x 90 x n_joints. """ # First convolutional layer - maps one grayscale image to 32 feature maps. n_filters = np.array([64, 128, 256, 512, 512]) # n_filters = np.array([128, 128, 128, 512, 512]) if hps.debug: n_filters = n_filters // 4 x1 = x x1 = conv_layer(x1, 5, 2, 3, n_filters[0], 'conv1_fullres') # result: 360x240 x1 = max_pool_layer(x1, 2, 2) # result: 180x120 x1 = conv_layer(x1, 5, 1, n_filters[0], n_filters[1], 'conv2_fullres') # result: 180x120 x1 = max_pool_layer(x1, 2, 2) # result: 180x60 x1 = conv_layer(x1, 5, 1, n_filters[1], n_filters[2], 'conv3_fullres') # result: 90x60 x1 = conv_layer(x1, 9, 1, n_filters[2], n_filters[3], 'conv4_fullres') # result: 90x60 x2 = tf.image.resize_images(x, [int(x.shape[1]) // 2, int(x.shape[2]) // 2]) x2 = conv_layer(x2, 5, 2, 3, n_filters[0], 'conv1_halfres') # result: 180x120 x2 = max_pool_layer(x2, 2, 2) # result: 90x60 x2 = conv_layer(x2, 5, 1, n_filters[0], n_filters[1], 'conv2_halfres') # result: 90x60 x2 = max_pool_layer(x2, 2, 2) # result: 45x30 x2 = conv_layer(x2, 5, 1, n_filters[1], n_filters[2], 'conv3_halfres') # result: 45x30 x2 = conv_layer(x2, 9, 1, n_filters[2], n_filters[3], 'conv4_halfres') # result: 45x30 x2 = tf.image.resize_images(x2, [int(x1.shape[1]), int(x1.shape[2])]) x3 = tf.image.resize_images(x, [int(x.shape[1]) // 4, int(x.shape[2]) // 4]) x3 = conv_layer(x3, 5, 2, 3, n_filters[0], 'conv1_quarterres') # result: 90x60 x3 = max_pool_layer(x3, 2, 2) # result: 45x30 x3 = conv_layer(x3, 5, 1, n_filters[0], n_filters[1], 'conv2_quarterres') # result: 45x30 x3 = max_pool_layer(x3, 2, 2) # result: 23x15 x3 = conv_layer(x3, 5, 1, n_filters[1], n_filters[2], 'conv3_quarterres') # result: 23x15 x3 = conv_layer(x3, 9, 1, n_filters[2], n_filters[3], 'conv4_quarterres') # result: 23x15 x3 = tf.image.resize_images(x3, [int(x1.shape[1]), int(x1.shape[2])]) x = x1 + x2 + x3 x /= 3 # to compensate for summing up - should improve the convergence x = conv_layer(x, 9, 1, n_filters[3], n_filters[4], 'conv5') # result: 90x60 x = conv_layer(x, 9, 1, n_filters[4], n_joints, 'conv6', last_layer=True) # result: 90x60 return x def conv_mrf(A, B): """ :param A: conv kernel 1 x 120 x 180 x 1 (prior) :param B: input heatmaps: hps.batch_size x 60 x 90 x 1 (likelihood) :return: C is hps.batch_size x 60 x 90 x 1 """ B = tf.transpose(B, [1, 2, 3, 0]) B = tf.reverse(B, axis=[0, 1]) # [h, w, 1, b], we flip kernel to get convolution, and not cross-correlation # conv between 1 x 120 x 180 x 1 and 60 x 90 x 1 x ? => 1 x 61 x 91 x ? C = tf.nn.conv2d(A, B, strides=[1, 1, 1, 1], padding='VALID') # 1 x 61 x 91 x ? # C = C[:, :hm_height, :hm_width, :] # 1 x 60 x 90 x ? C = tf.image.resize_images(C, [hm_height, hm_width]) C = tf.transpose(C, [3, 1, 2, 0]) return C def spatial_model(heat_map): """ Implementation of the spatial model in log space (given by Eq. 2 in the original paper). :param heat_map: is produced by model as the unary distributions: hps.batch_size x 60 x 90 x n_joints """ def relu_pos(x, eps=0.00001): """ It is described in the paper, but we decided not to use it. Instead we apply softplus everywhere. """ return tf.maximum(x, eps) def softplus(x): softplus_alpha = 5 return 1 / softplus_alpha * tf.nn.softplus(softplus_alpha * x) delta = 10 ** -6 # for numerical stability heat_map_hat = [] with tf.variable_scope('bn_sm'): heat_map = tf.contrib.layers.batch_norm(heat_map, decay=0.9, center=True, scale=True, is_training=flag_train) for joint_id, joint_name in enumerate(joint_names[:n_joints]): with tf.variable_scope(joint_name): hm = heat_map[:, :, :, joint_id:joint_id + 1] marginal_energy = tf.log(softplus(hm) + delta) # heat_map: batch_size x 90 x 60 x 1 for cond_joint in joint_dependence[joint_name]: cond_joint_id = np.where(joint_names == cond_joint)[0][0] prior = softplus(pairwise_energies[joint_name + '_' + cond_joint]) likelihood = softplus(heat_map[:, :, :, cond_joint_id:cond_joint_id + 1]) bias = softplus(pairwise_biases[joint_name + '_' + cond_joint]) marginal_energy += tf.log(conv_mrf(prior, likelihood) + bias + delta) heat_map_hat.append(marginal_energy) return tf.stack(heat_map_hat, axis=3)[:, :, :, :, 0] def batch_norm(x): x = tf.contrib.layers.batch_norm(x, decay=0.9, center=True, scale=True, is_training=flag_train, trainable=train_pd) return x def conv2d(x, W, stride): """conv2d returns a 2d convolution layer with full stride.""" return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME') def weight_variable(shape, fc=False): """weight_variable generates a weight variable of a given shape. Uses He initialization.""" if not fc: n_in = shape[0] * shape[1] * shape[2] n_out = shape[0] * shape[1] * shape[3] else: n_in = shape[0] n_out = shape[1] initial = tf.truncated_normal(shape, stddev=np.sqrt(2.0 / n_in)) return tf.get_variable('weights', initializer=initial, trainable=train_pd) def bias_variable(shape, init=0.0, name='biases'): """bias_variable generates a bias variable of a given shape.""" initial = tf.constant(init, shape=shape) return tf.get_variable(name, initializer=initial, trainable=train_pd) def conv_layer(x, size, stride, n_in, n_out, name, last_layer=False): with tf.variable_scope(name): w = weight_variable([size, size, n_in, n_out]) b = bias_variable([n_out]) pre_activ = conv2d(x, w, stride) + b if not last_layer: activ = tf.nn.relu(pre_activ) activ = batch_norm(activ) else: activ = pre_activ # we do it out of the namescope to show it separately in Tensorboard tb.var_summary(pre_activ, name) tf.summary.image('f_activ_' + name, activ[:, :, :, 7:8], 3) return activ def max_pool_layer(x, size, stride): """max_pool_2x2 downsamples a feature map by 2X.""" return tf.nn.max_pool(x, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME') def fully_connected(x, n_in, n_out, name): with tf.name_scope(name): w = weight_variable([n_in, n_out], fc=True) b = bias_variable([n_out]) return tf.matmul(x, w) + b def get_next_batch(X, Y, batch_size, shuffle=False): n_batches = len(X) // batch_size if shuffle: x_idx = np.random.permutation(len(X))[:n_batches * hps.batch_size] else: x_idx = np.arange(len(X))[:n_batches * hps.batch_size] for batch_idx in x_idx.reshape([n_batches, hps.batch_size]): batch_x, batch_y = X[batch_idx], Y[batch_idx] yield batch_x, batch_y def weight_decay(var_pattern): """ L2 weight decay loss, based on all weights that have var_pattern in their name var_pattern - a substring of a name of weights variables that we want to use in Weight Decay. """ costs = [] for var in tf.global_variables(): if var.op.name.find(var_pattern) != -1: costs.append(tf.nn.l2_loss(var)) return tf.add_n(costs) def get_var_by_name(var_name_to_find): return [v for v in tf.trainable_variables() if v.name == var_name_to_find][0] def spatial_softmax(hm): hm_height, hm_width, n_joints = int(hm.shape[1]), int(hm.shape[2]), int(hm.shape[3]) hm = tf.reshape(hm, [-1, hm_height * hm_width, n_joints]) hm = tf.nn.softmax(logits=hm, dim=1) hm = tf.reshape(hm, [-1, hm_height, hm_width, n_joints]) return hm def softmax_cross_entropy(hm1, hm2): """ Softmax applied over 2 spatial dimensions (for this we do reshape) followed by cross-entropy. hm1, hm2: tensor of size [n_images, height, width, n_joints] """ # MSE: tf.reduce_mean((hm1 - hm2) ** 2) * hm_height * hm_width * n_joints hm_height, hm_width, n_joints = int(hm1.shape[1]), int(hm1.shape[2]), int(hm1.shape[3]) hm1 = tf.reshape(hm1, [-1, hm_height*hm_width, n_joints]) hm2 = tf.reshape(hm2, [-1, hm_height*hm_width, n_joints]) # Element-wise sigmoid with binary cross-entropy on top of them: # loss_list = [] # for i in range(n_joints): # loss_i = tf.nn.sigmoid_cross_entropy_with_logits(logits=hm1[:, :, i], labels=hm2[:, :, i]) # loss_list.append(loss_i) # loss = tf.stack(loss_list, axis=1) # Our choice: softmax applied over 2 spatial dimensions followed by cross-entropy loss = tf.nn.softmax_cross_entropy_with_logits(logits=hm1, labels=hm2, dim=1) return tf.reduce_mean(loss) def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def avg_tensor_list(tensor_list): tensors = tf.stack(axis=0, values=tensor_list) return tf.reduce_mean(tensors, axis=0) def eval_error(X_np, Y_np, sess, batch_size): """Get all predictions for a dataset by running it in small batches.""" n_batches = len(X_np) // hps.batch_size mse_pd_val, mse_sm_val, det_rate_pd_val, det_rate_sm_val = 0.0, 0.0, 0.0, 0.0 for batch_x, batch_y in get_next_batch(X_np, Y_np, hps.batch_size): v1, v2, v3, v4 = sess.run([loss_pd, loss_sm, det_rate_pd, det_rate_sm], feed_dict={x_in: batch_x, y_in: batch_y, flag_train: False}) mse_pd_val, mse_sm_val = mse_pd_val + v1, mse_sm_val + v2 det_rate_pd_val, det_rate_sm_val = det_rate_pd_val + v3, det_rate_sm_val + v4 return mse_pd_val / n_batches, mse_sm_val / n_batches, det_rate_pd_val / n_batches, det_rate_sm_val / n_batches def get_dataset(): """ Note, that in order to have these files you need to run `data.py` first. """ x_train = np.load('x_train_flic.npy') x_test = np.load('x_test_flic.npy') y_train = np.load('y_train_flic.npy') y_test = np.load('y_test_flic.npy') return x_train, y_train, x_test, y_test def get_pairwise_distr(): with open('pairwise_distribution.pickle', 'rb') as handle: return pickle.load(handle) def grad_renorm(gs_vs, norm): """ It is useful to stabilize the training, especially with high amount of weight decay. """ grads, vars = zip(*gs_vs) grads, _ = tf.clip_by_global_norm(grads, norm) gs_vs = zip(grads, vars) return gs_vs def get_gpu_memory(gpus): """ Small heuristic to calculate the amount of memory needed for each GPU in case of multi-gpu training. """ if len(gpus) >= 5: return 0.4 elif len(gpus) >= 3: return 0.5 elif len(gpus) == 2: return 0.6 else: return 0.6 def get_different_scales(x, pad_array, crop_array, orig_h, orig_w): x_new = [] for pad_c in pad_array: n_pad_h = round(orig_h * (pad_c - 1) / 2) n_pad_w = round(orig_w * (pad_c - 1) / 2) x_pad = np.lib.pad(x, ((n_pad_h, n_pad_h), (n_pad_w, n_pad_w), (0, 0)), 'constant', constant_values=0) x_orig_size = skimage.transform.resize(x_pad, (orig_h, orig_w)) x_new.append(x_orig_size) for crop_c in crop_array: h1 = round((1-crop_c)/2*orig_h) h2 = h1 + round(crop_c*orig_h) w1 = round((1-crop_c)/2*orig_w) w2 = w1 + round(crop_c*orig_w) x_crop = x[h1:h2, w1:w2] x_orig_size = skimage.transform.resize(x_crop, (orig_h, orig_w)) x_new.append(x_orig_size) # for i in range(9): # plt.figure(i) # plt.imshow(x_new[i]) # plt.savefig('img/img_'+str(i)+'.png', dpi=300) # plt.clf() return np.array(x_new) def scale_hm_back(hms, pad_array, crop_array, orig_h, orig_w): hms_new = [] for i, crop_c in enumerate(pad_array): crop_c = 1 / crop_c h1 = round((1-crop_c)/2*orig_h) h2 = h1 + round(crop_c*orig_h) w1 = round((1-crop_c)/2*orig_w) w2 = w1 + round(crop_c*orig_w) hm_crop = hms[i][h1:h2, w1:w2] hm_orig_size = skimage.transform.resize(hm_crop, (orig_h, orig_w)) hms_new.append(hm_orig_size) for i, pad_c in enumerate(crop_array): pad_c = 1 / pad_c n_pad_h = round(orig_h * (pad_c - 1) / 2) n_pad_w = round(orig_w * (pad_c - 1) / 2) hm_pad = np.lib.pad(hms[i+len(pad_array)], ((n_pad_h, n_pad_h), (n_pad_w, n_pad_w), (0, 0)), 'constant', constant_values=0) hm_orig_size = skimage.transform.resize(hm_pad, (orig_h, orig_w)) hms_new.append(hm_orig_size) # for i in range(9): # plt.figure(i) # plt.imshow(x_new[i][:, :, 8]) # plt.savefig('img/img_'+str(i)+'_processed.png', dpi=300) # plt.clf() # plt.imshow(hms[i][:, :, 8]) # plt.savefig('img/img_'+str(i)+'_orig.png', dpi=300) # plt.clf() return np.array(hms_new) def get_predictions(X_np, Y_np, sess): """ Get all predictions for a dataset by running it in small batches. We use a multi-scale evaluation procedure proposed in "Learning human pose estimation features with convolutional networks". We strongly suspect that this procedure was used in the original paper. However, they do not report it. Without this procedure it's impossible to reproduce their part detector. """ def argmax_hm(hm): hm = np.squeeze(hm) hm = np.reshape(hm, [hm_height * hm_width, n_joints]) coords_raw = np.argmax(hm, axis=0) # [n_images, n_joints] # Now we obtain real spatial coordinates for each image and for each joint coords_x = coords_raw // hm_width coords_y = coords_raw - coords_x * hm_width coords_xy = np.stack([coords_x, coords_y], axis=0) return coords_xy n = 1100 X_np, Y_np = X_np[:n], Y_np[:n] drs_pd, drs_sm, pred_coords_pd, pred_coords_sm = [], [], [], [] pad_array, crop_array = [1.1, 1.2, 1.3, 1.4], [0.7, 0.8, 0.9, 1.0] for x_np, y_np in zip(X_np, Y_np): x_np_diff_scales = get_different_scales(x_np, pad_array, crop_array, in_height, in_width) y_np = np.repeat(np.expand_dims(y_np, 0), x_np_diff_scales.shape[0], axis=0) hm_pd_np, hm_sm_np = sess.run([hm_pred_pd, hm_pred_sm], feed_dict={x_in: x_np_diff_scales, y_in: y_np, flag_train: False}) hm_pd_np = scale_hm_back(hm_pd_np, pad_array, crop_array, hm_height, hm_width) hm_sm_np = scale_hm_back(hm_sm_np, pad_array, crop_array, hm_height, hm_width) # argmax over 1st dimension to get the most confident prediction for each joint # hm_pd_np = np.max(hm_pd_np, axis=0, keepdims=True) # hm_sm_np = np.max(hm_sm_np, axis=0, keepdims=True) hm_pd_np = np.expand_dims(np.average(hm_pd_np, axis=0), 0) hm_sm_np = np.expand_dims(np.average(hm_sm_np, axis=0), 0) pred_coords_pd.append(argmax_hm(hm_pd_np)) pred_coords_sm.append(argmax_hm(hm_sm_np)) # input aggregated hm and get det_rate dr_pd, dr_sm = sess.run([wrist_det_rate10_pd, wrist_det_rate10_sm], feed_dict={hm_pred_pd: hm_pd_np, hm_pred_sm: hm_sm_np, y_in: y_np, flag_train: False}) drs_pd.append(dr_pd) drs_sm.append(dr_sm) print('test_dr: {} {}'.format(np.average(drs_pd), np.average(drs_sm))) return np.stack(pred_coords_pd, axis=2), np.stack(pred_coords_sm, axis=2) parser = argparse.ArgumentParser(description='Define hyperparameters.') parser.add_argument('--debug', action='store_true', help='True if we want to debug.') parser.add_argument('--train', action='store_true', help='True if we want to train the model.') parser.add_argument('--gpus', nargs='+', type=int, default=[6], help='GPU indices.') parser.add_argument('--restore', action='store_true', help='True if we want to restore the model.') parser.add_argument('--use_sm', action='store_true', help='True if we want to use the Spatial Model.') parser.add_argument('--data_augm', action='store_true', help='True if we want to use data augmentation.') parser.add_argument('--n_epochs', type=int, default=30, help='Number of epochs.') parser.add_argument('--batch_size', type=int, default=14, help='Batch size.') parser.add_argument('--optimizer', type=str, default='adam', help='momentum or adam') parser.add_argument('--lr', type=float, default=0.001, help='Learning rate.') parser.add_argument('--lmbd', type=float, default=0.001, help='Regularization coefficient.') hps = parser.parse_args() # returns a Namespace object, new fields can be set like hps.abc = 10 gpu_memory = get_gpu_memory(hps.gpus) train_pd = True # to train the part detector or not best_model_name = '2018-02-17 11:34:12_lr=0.001_lambda=0.001_bs=14-76' model_path = 'models_ex' time_start = time.time() cur_timestamp = str(datetime.now())[:-7] # get rid of milliseconds model_name = '{}_lr={}_lambda={}_bs={}'.format(cur_timestamp, hps.lr, hps.lmbd, hps.batch_size) tb_folder = 'tb' tb_train_iter = '{}/{}/train_iter'.format(tb_folder, model_name) # is not used, but can be useful for debugging tb_train = '{}/{}/train'.format(tb_folder, model_name) tb_test = '{}/{}/test'.format(tb_folder, model_name) tb_log_iters = False n_eval_ex = 512 if hps.debug else 1100 joints_to_eval = [2] # for example, 2 - left wrist, 5 - right wrist, 8 - nose, 'all' - all joints det_radius = 10 # moderate detection radius n_joints = 9 # excluding "torso-joint", which is 10-th x_train, y_train, x_test, y_test = get_dataset() pairwise_distr_np = get_pairwise_distr() n_train, in_height, in_width, n_colors = x_train.shape[0:4] n_test, hm_height, hm_width = y_test.shape[0:3] if hps.debug: n_train, n_test = 1024, 512 # for debugging purposes we take only a small subset train_idx, test_idx = np.random.permutation(x_train.shape[0])[:n_train], np.random.permutation(x_test.shape[0])[:n_test] x_train, y_train, x_test, y_test = x_train[train_idx], y_train[train_idx], x_test[test_idx], y_test[test_idx] # Main hyperparameters n_updates_total = hps.n_epochs * n_train // hps.batch_size lr_decay_n_updates = [round(0.7 * n_updates_total), round(0.8 * n_updates_total), round(0.9 * n_updates_total)] lr_decay_coefs = [hps.lr, hps.lr / 2, hps.lr / 5, hps.lr / 10] img_tb_from = 450 # 50 or 450 img_tb_to = img_tb_from + hps.batch_size graph = tf.Graph() with graph.as_default(), tf.device('/cpu:0'): x_in = tf.placeholder(tf.float32, [None, in_height, in_width, n_colors], name='input_full') if hps.use_sm: pairwise_energies, pairwise_biases = {}, {} for joint in joint_names[:n_joints]: for cond_joint in joint_dependence[joint]: joint_key = joint + '_' + cond_joint tensor = tf.convert_to_tensor(pairwise_distr_np[joint_key], dtype=tf.float32) pairwise_energy_jj = tf.reshape(tensor, [1, tensor.shape[0].value, tensor.shape[1].value, 1]) pairwise_energies[joint_key] = tf.get_variable('energy_' + joint_key, initializer=pairwise_energy_jj) init = tf.constant(0.00001, shape=[1, hm_height, hm_width, 1]) pairwise_biases[joint_key] = tf.get_variable('bias_' + joint_key, initializer=init) y_in = tf.placeholder(tf.float32, [None, hm_height, hm_width, n_joints+1], name='heat_map') flag_train = tf.placeholder(tf.bool, name='is_training') n_iters_tf = tf.get_variable('n_iters', initializer=0, trainable=False) lr_tf = tf.train.piecewise_constant(n_iters_tf, lr_decay_n_updates, lr_decay_coefs) # Data augmentation: we apply the same random transformations both to images and heat maps if hps.data_augm: x_batch, hm_target_batch = tf.cond(flag_train, lambda: augm.augment_train(x_in, y_in), lambda: augm.augment_test(x_in, y_in)) else: x_batch, hm_target_batch = x_in, y_in if hps.optimizer == 'adam': opt = tf.train.AdamOptimizer(lr_tf) elif hps.optimizer == 'momentum': opt = tf.train.MomentumOptimizer(learning_rate=lr_tf, momentum=0.9) else: raise Exception('wrong optimizer') # Calculate the gradients for each model tower. tower_grads, losses, det_rates_pd, det_rates_sm, hms_pred_pd, hms_pred_sm = [], [], [], [], [], [] mses_pd, mses_sm = [], [] imgs_per_gpu = hps.batch_size // len(hps.gpus) with tf.variable_scope(tf.get_variable_scope()): for i in range(len(hps.gpus)): with tf.device('/gpu:%d' % i), tf.name_scope('tower_%d' % i) as scope: # Dequeues one batch for the GPU id_from, id_to = i*imgs_per_gpu, i*imgs_per_gpu + imgs_per_gpu x, hm_target = x_batch[id_from:id_to], hm_target_batch[id_from:id_to] # Calculate the loss for one tower of the CIFAR model. This function # constructs the entire CIFAR model but shares the variables across all towers. # The whole heat map prediction model is here hm_pred_pd_logit = model(x, n_joints) hm_pred_pd = spatial_softmax(hm_pred_pd_logit) hms_pred_pd.append(hm_pred_pd) if hps.use_sm: # To disambiguate multiple people on the same image hm_pred_pd_with_torso = tf.concat([hm_pred_pd, hm_target[:, :, :, n_joints:]], axis=3) hm_pred_sm_logit = spatial_model(hm_pred_pd_with_torso) hm_pred_sm = spatial_softmax(hm_pred_sm_logit) hms_pred_sm.append(hm_pred_sm) else: # for compatibility with Tensorboard, we should have this variable hm_pred_sm_logit, hm_pred_sm = hm_pred_pd_logit, hm_pred_pd hms_pred_sm.append(hm_pred_sm) with tf.name_scope('loss'): loss_pd = softmax_cross_entropy(hm_pred_pd_logit, hm_target[:, :, :, :n_joints]) loss_sm = softmax_cross_entropy(hm_pred_sm_logit, hm_target[:, :, :, :n_joints]) loss_tower = loss_pd + loss_sm + hps.lmbd * weight_decay(var_pattern='weights') losses.append(loss_tower) mses_pd.append(loss_tower) mses_sm.append(loss_tower) with tf.name_scope('evaluation'): wrist_det_rate10_pd = evaluation.det_rate(hm_pred_pd, hm_target[:, :, :, :n_joints], normalized_radius=det_radius, joints=joints_to_eval) wrist_det_rate10_sm = evaluation.det_rate(hm_pred_sm, hm_target[:, :, :, :n_joints], normalized_radius=det_radius, joints=joints_to_eval) det_rates_pd.append(wrist_det_rate10_pd) det_rates_sm.append(wrist_det_rate10_sm) # Reuse variables for the next tower. tf.get_variable_scope().reuse_variables() update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): # Calculate the gradients for the batch of data on this tower. grads_vars_in_tower = opt.compute_gradients(loss_tower) # Keep track of the gradients across all towers. tower_grads.append(grads_vars_in_tower) # We must calculate the mean of each gradient. Note that this is the # synchronization point across all towers. grads_vars = average_gradients(tower_grads) loss = avg_tensor_list(losses) det_rate_pd = avg_tensor_list(det_rates_pd) det_rate_sm = avg_tensor_list(det_rates_sm) mses_pd = avg_tensor_list(mses_pd) mses_sm = avg_tensor_list(mses_sm) hms_pred_pd = tf.concat(hms_pred_pd, axis=0) hms_pred_sm = tf.concat(hms_pred_sm, axis=0) grads_vars = grad_renorm(grads_vars, 4.0) train_step = opt.apply_gradients(grads_vars, global_step=n_iters_tf) # # Track the moving averages of all trainable variables. We did not use it in the final evaluation. # variable_averages = tf.train.ExponentialMovingAverage(0.99, n_iters_tf) # variables_averages_op = variable_averages.apply(tf.trainable_variables()) # # # Group all updates to into a single train op. # train_step = tf.group(apply_gradient_op, variables_averages_op) tf.summary.image('input', x_batch, 30) if hps.use_sm: for key in pairwise_energies: tf.summary.image('pairwise_potential_' + key, pairwise_energies[key], 30) tf.summary.image('pairwise_biases_' + key, pairwise_biases[key], 30) tb.var_summary(pairwise_energies[key], 'pairwise_energies_' + key) tb.var_summary(pairwise_biases[key], 'pairwise_biases_' + key) tb.main_summaries(grads_vars) tb.show_img_plus_hm(x_batch, hm_target_batch[:, :, :, :n_joints], joint_names[:n_joints], in_height, in_width, 'target') tb.show_img_plus_hm(x_batch, hms_pred_pd, joint_names[:n_joints], in_height, in_width, 'pred_part_detector') tb.show_img_plus_hm(x_batch, hms_pred_sm, joint_names[:n_joints], in_height, in_width, 'pred_spatial_model') tb_merged = tf.summary.merge_all() train_iters_writer = tf.summary.FileWriter(tb_train_iter, flush_secs=30) train_writer = tf.summary.FileWriter(tb_train, flush_secs=30) test_writer = tf.summary.FileWriter(tb_test, flush_secs=30) # saver_old = tf.train.Saver(var_list=[v for v in tf.global_variables() if 'bn_sm' not in v.name]) saver = tf.train.Saver(max_to_keep=50) gpu_options = tf.GPUOptions(visible_device_list=str(hps.gpus)[1:-1], per_process_gpu_memory_fraction=gpu_memory) config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) with tf.Session(config=config, graph=graph) as sess: if not hps.restore: sess.run(tf.global_variables_initializer()) else: saver.restore(sess, model_path + '/' + best_model_name) # vars_to_init = [var for var in tf.global_variables() if 'energy' in var.op.name or 'bias_' in var.op.name] # vars_to_init = [var for var in tf.global_variables() if 'bn_sm' in var.op.name] # sess.run(tf.variables_initializer(vars_to_init + [n_iters_tf])) # sess.run(tf.global_variables_initializer()) print('trainable:', tf.trainable_variables(), sep='\n') if hps.train: tb.run_summary(sess, train_writer, tb_merged, 0, feed_dict={x_in: x_train[img_tb_from:img_tb_to], y_in: y_train[img_tb_from:img_tb_to], flag_train: False}) tb.run_summary(sess, test_writer, tb_merged, 0, feed_dict={x_in: x_test[img_tb_from:img_tb_to], y_in: y_test[img_tb_from:img_tb_to], flag_train: False}) train_mse_pd, train_mse_sm, train_dr_pd, train_dr_sm = eval_error(x_train[:n_eval_ex], y_train[:n_eval_ex], sess, hps.batch_size) test_mse_pd, test_mse_sm, test_dr_pd, test_dr_sm = eval_error(x_test[:n_eval_ex], y_test[:n_eval_ex], sess, hps.batch_size) print( 'Epoch {:d} test_dr {:.3f} {:.3f} train_dr {:.3f} {:.3f} test_mse {:.5f} {:.5f} train_mse {:.5f} {:.5f}'. format(0, test_dr_pd, test_dr_sm, train_dr_pd, train_dr_sm, test_mse_pd, test_mse_sm, train_mse_pd, train_mse_sm)) tb.write_summary(test_writer, [test_mse_pd, test_mse_sm, test_dr_pd, test_dr_sm], ['main/mse_pd', 'main/mse_sm', 'main/det_rate_pd', 'main/det_rate_sm'], 0) tb.write_summary(train_writer, [train_mse_pd, train_mse_sm, train_dr_pd, train_dr_sm], ['main/mse_pd', 'main/mse_sm', 'main/det_rate_pd', 'main/det_rate_sm'], 0) global_iter = 0 for epoch in range(1, hps.n_epochs + 1): for x_train_batch, y_train_batch in get_next_batch(x_train, y_train, hps.batch_size, shuffle=True): global_iter += 1 if tb_log_iters: _, summary = sess.run([train_step, tb_merged], feed_dict={x_in: x_train_batch, y_in: y_train_batch, flag_train: True}) train_iters_writer.add_summary(summary, global_iter) else: sess.run(train_step, feed_dict={x_in: x_train_batch, y_in: y_train_batch, flag_train: True}) tb.run_summary(sess, train_writer, tb_merged, epoch, feed_dict={ x_in: x_train[img_tb_from:img_tb_to], y_in: y_train[img_tb_from:img_tb_to], flag_train: False}) tb.run_summary(sess, test_writer, tb_merged, epoch, feed_dict={ x_in: x_test[img_tb_from:img_tb_to], y_in: y_test[img_tb_from:img_tb_to], flag_train: False}) train_mse_pd, train_mse_sm, train_dr_pd, train_dr_sm = eval_error(x_train[:n_eval_ex], y_train[:n_eval_ex], sess, hps.batch_size) test_mse_pd, test_mse_sm, test_dr_pd, test_dr_sm = eval_error(x_test[:n_eval_ex], y_test[:n_eval_ex], sess, hps.batch_size) print('Epoch {:d} test_dr {:.3f} {:.3f} train_dr {:.3f} {:.3f} test_mse {:.5f} {:.5f} train_mse {:.5f} {:.5f}'. format(epoch, test_dr_pd, test_dr_sm, train_dr_pd, train_dr_sm, test_mse_pd, test_mse_sm, train_mse_pd, train_mse_sm)) tb.write_summary(test_writer, [test_mse_pd, test_mse_sm, test_dr_pd, test_dr_sm], ['main/mse_pd', 'main/mse_sm', 'main/det_rate_pd', 'main/det_rate_sm'], epoch) tb.write_summary(train_writer, [train_mse_pd, train_mse_sm, train_dr_pd, train_dr_sm], ['main/mse_pd', 'main/mse_sm', 'main/det_rate_pd', 'main/det_rate_sm'], epoch) # Save the model on each epoch after half of epochs are done if epoch > hps.n_epochs // 2: if not os.path.exists(model_path): os.makedirs(model_path) saver.save(sess, '{}/{}'.format(model_path, model_name), global_step=epoch) else: tb.run_summary(sess, train_writer, tb_merged, 0, feed_dict={x_in: x_train[img_tb_from:img_tb_to], y_in: y_train[img_tb_from:img_tb_to], flag_train: False}) tb.run_summary(sess, test_writer, tb_merged, 0, feed_dict={x_in: x_test[img_tb_from:img_tb_to], y_in: y_test[img_tb_from:img_tb_to], flag_train: False}) pred_coords_pd, pred_coords_sm = get_predictions(x_test, y_test, sess) scipy.io.savemat('matlab/predictions.mat', {'flic_pred_pd': pred_coords_pd, 'flic_pred_sm': pred_coords_sm}) train_writer.close() test_writer.close() train_iters_writer.close() print('Done in {:.2f} min\n\n'.format((time.time() - time_start) / 60))
492620
import math import numpy as np import matplotlib.pyplot as plt from porousmedialab.phcalc import Acid import seaborn as sns from matplotlib.colors import ListedColormap sns.set_style("whitegrid") def custom_plot(lab, x, y, ttl='', y_lbl='', x_lbl=''): plt.figure() ax = plt.subplot(111) plt.plot(x, y, lw=3) plt.title(ttl) plt.xlim(x[0], x[-1]) plt.ylabel(y_lbl) plt.xlabel(x_lbl) ax.grid(linestyle='-', linewidth=0.2) return ax def plot_batch_rates(batch, *args, **kwargs): for rate in sorted(batch.estimated_rates): plt.figure() plot_batch_rate(batch, rate, *args, **kwargs) def plot_batch_rate(batch, rate, time_factor=1): plt.plot(batch.time * time_factor, batch.estimated_rates[rate][0] / time_factor, label=rate, lw=3) plt.ylabel('Rate, $[\Delta C/\Delta T]$') plt.xlabel('Time, [T]') plt.legend(frameon=1) plt.grid(linestyle='-', linewidth=0.2) def plot_batch_deltas(batch, *args, **kwargs): for element in sorted(batch.species): plt.figure() plot_batch_delta(batch, element, *args, **kwargs) def plot_batch_delta(batch, element, time_factor=1): plt.plot(batch.time[1:] * time_factor, batch.species[element] ['rates'][0] / time_factor, label=element, lw=3) plt.ylabel('Rate of change, $[\Delta C/ \Delta T]$') plt.xlabel('Time, [T]') plt.legend(frameon=1) plt.grid(linestyle='-', linewidth=0.2) def saturation_index_countour(lab, elem1, elem2, Ks, labels=False): plt.figure() plt.title('Saturation index %s%s' % (elem1, elem2)) resoluion = 100 n = math.ceil(lab.time.size / resoluion) plt.xlabel('Time') z = np.log10((lab.species[elem1]['concentration'][:, ::n] + 1e-8) * ( lab.species[elem2]['concentration'][:, ::n] + 1e-8) / lab.constants[Ks]) lim = np.max(abs(z)) lim = np.linspace(-lim - 0.1, +lim + 0.1, 51) X, Y = np.meshgrid(lab.time[::n], -lab.x) plt.xlabel('Time') CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette( "RdBu_r", 101)), origin='lower', levels=lim, extend='both') if labels: plt.clabel(CS, inline=1, fontsize=10, colors='w') # cbar = plt.colorbar(CS) if labels: plt.clabel(CS, inline=1, fontsize=10, colors='w') cbar = plt.colorbar(CS) plt.ylabel('Depth') ax = plt.gca() ax.ticklabel_format(useOffset=False) cbar.ax.set_ylabel('Saturation index %s%s' % (elem1, elem2)) return ax def plot_fractions(lab): for component in lab.acid_base_components: if isinstance(component['pH_object'], Acid): plt.figure() for idx in range(len(component['species'])): plt.plot(lab.time, lab.species[component['species'][idx]] ['alpha'][0, :], label=component['species'][idx]) plt.ylabel('Fraction') plt.xlabel('Time') plt.legend(frameon=1) plt.grid(linestyle='-', linewidth=0.2) def all_plot_depth_index(lab, *args, **kwargs): for element in sorted(lab.species): plt.figure() plot_depth_index(lab, element, *args, **kwargs, ax=None) def plot_depth_index(lab, element, idx=0, time_to_plot=False, time_factor=1, ax=None): if ax is None: ax = plt.subplot(111) if element == 'Temperature': ax.set_title('Temperature') ax.set_ylabel('Temperature, C') elif element == 'pH': ax.set_title('pH') ax.set_ylabel('pH') else: ax.set_ylabel('Concentration') if time_to_plot: num_of_elem = int(time_to_plot / lab.dt) else: num_of_elem = len(lab.time) t = lab.time[-num_of_elem:] * time_factor ax.set_xlabel('Time') if isinstance(element, str): ax.plot(t, lab.species[element]['concentration'] [idx][-num_of_elem:], lw=3) ax.set_title(element + ' concentration') elif isinstance(element, (list, tuple)): for e in element: ax.plot(t, lab.species[e]['concentration'] [idx][-num_of_elem:], lw=3, label=e) ax.legend(frameon=1) ax.grid(linestyle='-', linewidth=0.2) return ax def plot_depths(lab, element, depths=[0, 1, 2, 3, 4], time_to_plot=False): plt.figure() ax = plt.subplot(111) if element == 'Temperature': plt.title('Temperature at specific depths') plt.ylabel('Temperature, C') else: plt.title(element + ' concentration at specific depths') plt.ylabel('Concentration') if time_to_plot: num_of_elem = int(time_to_plot / lab.dt) else: num_of_elem = len(lab.time) t = lab.time[-num_of_elem:] plt.xlabel('Time') for depth in depths: lbl = str(depth) plt.plot(t, lab.species[element]['concentration'][int( depth / lab.dx)][-num_of_elem:], lw=3, label=lbl) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax.grid(linestyle='-', linewidth=0.2) return ax def plot_times(lab, element, time_slices=[0, 1, 2, 3, 4]): plt.figure() ax = plt.subplot(111) if element == 'Temperature': plt.title('Temperature profile') plt.xlabel('Temperature, C') else: plt.title(element + ' concentration') plt.xlabel('Concentration') plt.ylabel('Depth, cm') for tms in time_slices: lbl = 'at time: %.2f ' % (tms) plt.plot(lab.species[element]['concentration'][ :, int(tms / lab.dt)], -lab.x, lw=3, label=lbl) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), ncol=2) ax.grid(linestyle='-', linewidth=0.2) return ax def plot_profiles(lab): for element in sorted(lab.species): plot_profile(lab, element) def plot_profile(lab, element): plt.figure() plt.plot(lab.profiles[element], -lab.x, sns.xkcd_rgb["denim blue"], lw=3, label=element) if element == 'Temperature': plt.title('Temperature profile') plt.xlabel('Temperature, C') elif element == 'pH': plt.title('pH profile') plt.xlabel('pH') else: plt.title('%s concentration' % (element, )) plt.xlabel('Concentration') plt.ylabel('Depth') ax = plt.gca() ax.ticklabel_format(useOffset=False) ax.grid(linestyle='-', linewidth=0.2) plt.legend() plt.tight_layout() return ax def plot_contourplots(lab, **kwargs): for element in sorted(lab.species): contour_plot(lab, element, **kwargs) def contour_plot(lab, element, labels=False, days=False, last_year=False): plt.figure() plt.title(element + ' concentration') resoluion = 100 n = math.ceil(lab.time.size / resoluion) if last_year: k = n - int(1 / lab.dt) else: k = 1 if days: X, Y = np.meshgrid(lab.time[k::n] * 365, -lab.x) plt.xlabel('Time') else: X, Y = np.meshgrid(lab.time[k::n], -lab.x) plt.xlabel('Time') z = lab.species[element]['concentration'][:, k - 1:-1:n] CS = plt.contourf(X, Y, z, 51, cmap=ListedColormap( sns.color_palette("Blues", 51)), origin='lower') if labels: plt.clabel(CS, inline=1, fontsize=10, colors='w') cbar = plt.colorbar(CS) plt.ylabel('Depth') ax = plt.gca() ax.ticklabel_format(useOffset=False) cbar.ax.set_ylabel('%s [M/V]' % element) if element == 'Temperature': plt.title('Temperature contour plot') cbar.ax.set_ylabel('Temperature, C') if element == 'pH': plt.title('pH contour plot') cbar.ax.set_ylabel('pH') return ax def plot_contourplots_of_rates(lab, **kwargs): rate = sorted(lab.estimated_rates) for r in rate: contour_plot_of_rates(lab, r, **kwargs) def contour_plot_of_rates(lab, r, labels=False, last_year=False): plt.figure() plt.title('{}'.format(r)) resoluion = 100 n = math.ceil(lab.time.size / resoluion) if last_year: k = n - int(1 / lab.dt) else: k = 1 z = lab.estimated_rates[r][:, k - 1:-1:n] # lim = np.max(np.abs(z)) # lim = np.linspace(-lim - 0.1, +lim + 0.1, 51) X, Y = np.meshgrid(lab.time[k::n], -lab.x) plt.xlabel('Time') CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap( sns.color_palette("Blues", 51))) if labels: plt.clabel(CS, inline=1, fontsize=10, colors='w') cbar = plt.colorbar(CS) plt.ylabel('Depth') ax = plt.gca() ax.ticklabel_format(useOffset=False) cbar.ax.set_ylabel('Rate %s [M/V/T]' % r) return ax def plot_contourplots_of_deltas(lab, **kwargs): elements = sorted(lab.species) if 'Temperature' in elements: elements.remove('Temperature') for element in elements: contour_plot_of_delta(lab, element, **kwargs) def contour_plot_of_delta(lab, element, labels=False, last_year=False): plt.figure() plt.title('Rate of %s consumption/production' % element) resoluion = 100 n = math.ceil(lab.time.size / resoluion) if last_year: k = n - int(1 / lab.dt) else: k = 1 z = lab.species[element]['rates'][:, k - 1:-1:n] lim = np.max(np.abs(z)) lim = np.linspace(-lim - 0.1, +lim + 0.1, 51) X, Y = np.meshgrid(lab.time[k:-1:n], -lab.x) plt.xlabel('Time') CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette( "RdBu_r", 101)), origin='lower', levels=lim, extend='both') if labels: plt.clabel(CS, inline=1, fontsize=10, colors='w') cbar = plt.colorbar(CS) plt.ylabel('Depth') ax = plt.gca() ax.ticklabel_format(useOffset=False) cbar.ax.set_ylabel('Rate of %s change $[\Delta/T]$' % element) return ax
492628
from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.platform import test from self_driving.segnet import segnet_vgg import tensorflow as tf import numpy as np NUM_CLASSES = 11 class PoolingTest(test.TestCase): def testMaxPoolingWithArgmax(self): # MaxPoolWithArgMax is implemented only on CUDA. if not test.is_gpu_available(cuda_only=True): return '''[[[[ 1. 2.] [ 3. 4.] [ 5. 6.]] [[ 7. 8.] [ 9. 10.] [ 11. 12.]] [[ 13. 14.] [ 15. 16.] [ 17. 18.]]]]''' tensor_input = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0] with self.test_session(use_gpu=True) as sess: t = constant_op.constant(tensor_input, shape=[1, 3, 3, 2]) out_op, argmax_op = segnet_vgg.max_pool_with_argmax(t) out, argmax = sess.run([out_op, argmax_op]) self.assertShapeEqual(out, out_op) self.assertShapeEqual(argmax, argmax_op) '''[[[9, 10] [11, 12]] [[15, 16] [17, 18]]]''' self.assertAllClose(out.ravel(), [9., 10., 11., 12., 15., 16., 17., 18.]) self.assertAllEqual(argmax.ravel(), [8, 9, 10, 11, 14, 15, 16, 17]) def testMaxUnpoolingWithArgmax(self): '''[[[[ 1. 2.] [ 3. 4.] [ 5. 6.]] [[ 7. 8.] [ 9. 10.] [ 11. 12.]] [[ 13. 14.] [ 15. 16.] [ 17. 18.]]]]''' tensor_input = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0] with self.test_session(use_gpu=True) as sess: t = constant_op.constant(tensor_input, shape=[1, 3, 3, 2]) out_op, argmax_op = segnet_vgg.max_pool_with_argmax(t) out_op = segnet_vgg.max_unpool_with_argmax(out_op, argmax_op, output_shape=np.int64([1, 3, 3, 2])) out = sess.run([out_op]) self.assertAllClose(out, [[[[[ 0., 0.], [ 0., 0.], [ 0., 0.]], [[ 0., 0.], [ 9., 10.], [ 11., 12.]], [[ 0., 0.], [ 15., 16.], [ 17., 18.]]]]]) def testGetBias(self): with self.test_session(use_gpu=True) as sess: bias = segnet_vgg.get_bias("conv1_1") sess.run(tf.global_variables_initializer()) self.assertEqual(bias.get_shape(), [64,]) self.assertAllClose(tf.reduce_sum(bias).eval(), 32.08903503417969) def testGetConvFilter(self): with self.test_session(use_gpu=True) as sess: weight = segnet_vgg.get_conv_filter("conv1_1") sess.run(tf.global_variables_initializer()) self.assertEqual(weight.get_shape(), [3, 3, 3, 64]) self.assertAllClose(tf.reduce_sum(weight).eval(), -4.212705612182617) def testConvLayerWithBn(self): config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' tensor_input = tf.ones([10, 495, 289, 3], tf.float32) with self.test_session(use_gpu=True, config = config) as sess: conv_op = segnet_vgg.conv_layer_with_bn(tensor_input, tf.constant(True), "conv1_1") sess.run(tf.global_variables_initializer()) conv_out = sess.run([conv_op]) self.assertEqual(np.array(conv_out).shape, (1, 10, 495, 289, 64)) def testDeconvLayerWithBn(self): config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' tensor_input = tf.ones([10, 495, 289, 3], tf.float32) with self.test_session(use_gpu=True, config = config) as sess: conv_op = segnet_vgg.deconv_layer_with_bn(tensor_input, [3, 3, 3, 128], tf.constant(True), "conv1_1") sess.run(tf.global_variables_initializer()) conv_out = sess.run([conv_op]) self.assertEqual(np.array(conv_out).shape, (1, 10, 495, 289, 128)) def testInference(self): config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' train_data = tf.ones([10, 495, 289, 3], tf.float32) with self.test_session(use_gpu=True, config = config) as sess: model_op = segnet_vgg.inference(train_data) sess.run(tf.global_variables_initializer()) model_out = sess.run([model_op]) self.assertEqual(np.array(model_out).shape, (1, 10, 495, 289, NUM_CLASSES)) if __name__ == "__main__": test.main()
492629
from napari.components.cursor import Cursor def test_cursor(): """Test creating cursor object""" cursor = Cursor() assert cursor is not None
492647
from starGen import * import numpy as np import sys, os, traceback from timeout import timeout, TimeoutError from common import * from scipy.optimize import linear_sum_assignment time = int(os.getenv("TIMEOUT",30)) error = os.getenv("ERROR", 5) required = int(os.getenv("REQUIRED",10)) def grade(guess, actual): correct = 0 wrong = 0 guess = set(guess) for g in guess: if g in actual: correct += 1 else : wrong += 1 return (correct, wrong) @timeout(time) def makeTest(stars_xyz): try: viewable, view_indices, targetV = genQuestion(stars_xyz) for v in viewable: sys.stdout.write("%f,\t%f,\t%f\n" % (v[0], v[1], v[2])) sys.stdout.write("\n") #print(f"TargetV (debug): {str(targetV)}") #print(f"View indices (debug): {str(view_indices)}") #create_3d_scatter_graph(viewable) while True: sys.stdout.write("Index Guesses (Comma Delimited):\n") sys.stdout.flush() guess = sys.stdin.readline().strip() if len(guess) == 0: return False guesses = guess.split(",") if len(guesses) < required: print("More stars please, try again! (%d required)" % required) continue try: guess_indices = set(map(int, guesses)) except ValueError: print("Non Integer Detected, try again") continue if len(guess_indices) < len(guesses): print("Tried to use duplicates huh....") continue (correct, wrong) = grade(guess_indices, view_indices) if (wrong > error): print("Too many were incorrect, try again") elif (correct < required): print("Not enough were correct, try again") else: break except TimeoutError as e: raise e except Exception: traceback.print_exc() return False return True def dumpStars(stars_xyz, f): for row in stars_xyz: f.write(",\t".join(map(lambda x: str(x), row))) f.write("\n") f.write("\n") if __name__ == "__main__": seed = 8036002836425871957 # int(os.getenv("SEED", 2020)) flag = os.getenv("FLAG", "FooBarFlag") TrialCount = os.getenv("TRIALS", 5) np.random.seed(seed % 0xFFFFFFFF) stars_xyz = genStars() filename = "catalog.txt" with open(filename, "w+") as f: dumpStars(stars_xyz, f) #create_3d_scatter_graph(stars_xyz) for ii in range(0,TrialCount): try: win = makeTest(stars_xyz) except TimeoutError: sys.stdout.write("Timeout, Bye\n") sys.exit(1) if not win: sys.stdout.write("Failed...\n") sys.exit(2) sys.stdout.write("%d Left...\n" % (TrialCount - ii -1)) sys.stdout.flush() sys.stdout.write(flag) sys.stdout.write("\n") sys.stdout.flush() sys.exit(0)
492685
from docxcompose.utils import xpath class StructuredDocumentTags(object): """Structured Document Tags (aka Content Controls)""" def __init__(self, doc): self.doc = doc def tags_by_alias(self, alias): """Get Structured Document Tags by alias.""" return xpath( self.doc.element.body, './/w:sdt/w:sdtPr/w:alias[@w:val="%s"]/ancestor::w:sdt' % alias) def set_text(self, alias, text): """Set the text content of all Structured Document Tags identified by an alias. Only plain text SDTs are supported. """ tags = self.tags_by_alias(alias) for tag in tags: # Ignore if it's not a plain text SDT if not xpath(tag, './w:sdtPr/w:text'): continue content = xpath(tag, './w:sdtContent') if not content: continue showing_placeholder = xpath(tag, './w:sdtPr/w:showingPlcHdr') text_elements = xpath(content[0], './/w:r/w:t') if text_elements: text_elements[0].text = text if showing_placeholder: # Remove placeholder marker and style showing_placeholder[0].getparent().remove( showing_placeholder[0]) run_props = xpath(text_elements[0].getparent(), './w:rPr') if run_props: text_elements[0].getparent().remove(run_props[0]) # Remove any other text elements if len(text_elements) > 1: for el in text_elements[1:]: if el.getparent() == text_elements[0].getparent(): el.getparent().remove(el) else: el.getparent().getparent().remove(el.getparent()) def get_text(self, alias): """Get the text content of the first Structured Document Tag identified by the given alias. """ tags = self.tags_by_alias(alias) for tag in tags: # Ignore if it's not a plain text SDT if not xpath(tag, './w:sdtPr/w:text'): continue text_elements = xpath(tag, './w:sdtContent//w:r/w:t') if text_elements: return text_elements[0].text
492691
import asyncio import datetime import os import pytz import re import logging from logging.handlers import TimedRotatingFileHandler import discord from discord.ext import commands from utils import customchecks, sql, punishmentshelper workDir = os.getcwd() logDir = os.path.join(workDir, "logs") if not os.path.exists(logDir): os.makedirs(logDir) fh = TimedRotatingFileHandler("logs/log", "midnight", encoding="utf-8", backupCount=7) fh.setFormatter(logging.Formatter(fmt="[%(asctime)s] [%(name)-19s] %(levelname)-8s: %(message)s", datefmt="%Y-%m-%dT%H:%M:%S%z")) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter(fmt="[%(asctime)s] %(levelname)-8s: %(message)s", datefmt="%Y-%m-%dT%H:%M:%S%z")) logging.basicConfig(handlers=[fh, ch], level=logging.INFO) logger = logging.getLogger('root') intents = discord.Intents.none() intents.bans = True intents.guilds = True intents.members = True intents.messages = True intents.presences = True if "UBOT" not in os.environ: logger.critical("Couldn't find a token. Please enter one in the UBOT environment variable. " "The bot will not run without it") raise customchecks.NoTokenError() async def initdb(): """ Initializes the database (makes sure that all tables are present) """ tables = [table[0] for table in await sql.fetch("SELECT name FROM sqlite_master WHERE type='table'")] if any(table not in tables for table in ["servers", "faq", "prefixes", "modroles"]): if "servers" not in tables: await sql.execute("CREATE TABLE servers (serverid varchar(18) PRIMARY KEY, joinleavechannel varchar(18), comment text, muteroleid varchar(18))") if "faq" not in tables: await sql.execute("CREATE TABLE faq (serverid varchar(18), title text, content text, image text, creator varchar(18), timestamp timestamptz, link text)") if "prefixes" not in tables: await sql.execute("CREATE TABLE prefixes (serverid varchar(18), prefix text)") if "modroles" not in tables: await sql.execute("CREATE TABLE modroles (serverid varchar(18), roleid varchar(18))") if "mutes" not in tables: await sql.execute("CREATE TABLE mutes (serverid varchar(18), userid varchar(18), until timestamptz)") if "bans" not in tables: await sql.execute("CREATE TABLE bans (serverid varchar(18), userid varchar(18), until timestamptz)") async def get_prefix(bot: commands.AutoShardedBot, message: discord.Message): """ Returns the prefix(es) for the bot """ prefixes = await sql.fetch("SELECT prefix FROM prefixes WHERE serverid=?", str(message.guild.id)) prefixes = [prefix[0] for prefix in [prefix[0] for prefix in prefixes]] return commands.when_mentioned_or(*prefixes)(bot, message) if prefixes else commands.when_mentioned(bot, message) bot = commands.AutoShardedBot(command_prefix=get_prefix, intents=intents) @bot.event async def on_command_error(ctx: commands.Context, error: Exception): origerror = getattr(error, "original", error) if isinstance(origerror, commands.errors.CommandNotFound): pass elif isinstance(origerror, commands.MissingPermissions): description = origerror.args[0].replace('run command', f'use the command `{ctx.command}`') em = discord.Embed(title="Error", description=description, colour=discord.Colour.red()) await ctx.send(embed=em) elif isinstance(origerror, customchecks.NotAModError): em = discord.Embed(title="Error", description=f"You are not a moderator on this server.\n" + f"For modifying moderator roles, see `{ctx.prefix}help modroles`", colour=discord.Colour.red()) await ctx.send(embed=em) elif isinstance(origerror, discord.errors.Forbidden): em = discord.Embed(title="Error", description="I don't have sufficient permissions to do that.", colour=discord.Colour.red()) await ctx.send(embed=em) else: try: errorMsg = origerror.message except AttributeError: errorMsg = str(origerror) em = discord.Embed(title="Error", description=f"I've encountered an error ({type(origerror)}). Please contact my creator. ```{errorMsg}```", colour=discord.Colour.red()) await ctx.send(embed=em) raise error @bot.event async def on_ready(): # In case the bot was off when leaving/joining a guild logger.info("Verifying guilds match DB") guilds = bot.guilds guildIds = [guild.id for guild in guilds] missingGuildIds = [guildId for guildId in guildIds if len(await sql.fetch("SELECT 1 FROM servers WHERE serverid=?", str(guildId))) == 0] for guildId in missingGuildIds: logger.debug(f"Added guild with id {guildId} to DB") await sql.initserver(guildId) undeletedGuildIds = [guildId[0] for guildId in await sql.fetch("SELECT serverid FROM servers") if int(guildId[0]) not in guildIds] for guildId in undeletedGuildIds: logger.debug(f"Removed guild with id {guildId} from DB") await sql.deleteserver(guildId) unfinishedMutes = await sql.fetch("SELECT * FROM mutes") utcnow = pytz.utc.localize(datetime.datetime.utcnow()) for serverid, userid, until in unfinishedMutes: if until is None: continue until = datetime.datetime.strptime(until, "%Y-%m-%d %H:%M:%S%z") roleid = (await sql.fetch("SELECT muteroleid FROM servers WHERE serverid=?", serverid))[0][0] guild = bot.get_guild(int(serverid)) if roleid is not None: role = guild.get_role(int(roleid)) else: role = None member = guild.get_member(int(userid)) if utcnow >= until: if member is not None and role is not None: await member.remove_roles(role, reason="Temporary mute ended.") await sql.execute("DELETE FROM mutes WHERE serverid=? AND userid=?", serverid, userid) else: duration = (until - utcnow).total_seconds() asyncio.ensure_future(punishmentshelper.ensure_unmute(guild, int(userid), duration, role, partialDuration=True)) unfinishedBans = await sql.fetch("SELECT * FROM bans") for serverid, userid, until in unfinishedBans: until = datetime.datetime.strptime(until, "%Y-%m-%d %H:%M:%S%z") guild = bot.get_guild(int(serverid)) guildBans = await guild.bans() userid = int(userid) for _, user in guildBans: if user.id == userid: break else: await sql.execute("DELETE FROM bans WHERE serverid=? AND userid=?", serverid, userid) continue if utcnow >= until: user = await guild.unban(user, reason="Temporary ban ended.") await sql.execute("DELETE FROM bans WHERE serverid=? AND userid=?", serverid, userid) else: duration = (until - utcnow).total_seconds() asyncio.ensure_future(punishmentshelper.ensure_unban(guild, user, duration, partialDuration=True)) logger.info(f"Logged in as: {bot.user.name} - {bot.user.id}") logger.info(f"Serving {len(bot.users)} users in {len(guilds)} server{('s' if len(guilds) > 1 else '')}") @bot.event async def on_guild_join(guild: discord.Guild): logger.info(f"Joined server \'{guild.name}\' - {guild.id}") await sql.initserver(guild.id) @bot.event async def on_guild_remove(guild: discord.Guild): logger.info(f"Left server \'{guild.name}\' - {guild.id}") await sql.deleteserver(guild.id) wikiEx = re.compile(r"\[\[(.*?)\]\]") negativeWikiEx = re.compile(r"\`[\S\s]*?\[\[(.*?)\]\][\S\s]*?\`") modEx = re.compile(r"\>\>(.*?)\<\<") negativeModEx = re.compile(r"\`[\S\s]*?\>\>(.*?)\<\<[\S\s]*?\`") @bot.event async def on_message(message: discord.Message): if not isinstance(message.channel, discord.abc.GuildChannel): return msg = message.content comment = await sql.fetch("SELECT comment FROM servers WHERE serverid=?", str(message.guild.id)) comment = comment[0][0] if len(comment) > 0 and str(comment[0]) != "None" else None wikiSearch = None if not wikiEx.search(msg) or negativeWikiEx.search(msg) else wikiEx.search(msg).group(1) modSearch = None if not modEx.search(msg) or negativeModEx.search(msg) else modEx.search(msg).group(1) if wikiSearch or modSearch: ctx = await bot.get_context(message) if wikiSearch: await ctx.invoke(bot.get_command("wiki"), searchterm=wikiSearch) elif modSearch: await ctx.invoke(bot.get_command("linkmod"), modname=modSearch) else: if comment is not None: message.content = message.content.split(comment)[0] await bot.process_commands(message) @bot.event async def on_member_join(member: discord.Member): joinLeaveRow = await sql.fetch("SELECT joinleavechannel FROM servers WHERE serverid=?", str(member.guild.id)) if len(joinLeaveRow) > 0: # To avoid errors if the bot was the one removed joinLeaveID = joinLeaveRow[0][0] if joinLeaveID is not None: joinLeaveChannel = bot.get_channel(int(joinLeaveID)) await joinLeaveChannel.send(f"**Join** - {member.mention}, account created at {member.created_at.isoformat()}.\n" f"ID {member.id}. {member.guild.member_count} members.") muteRow = await sql.fetch("SELECT * FROM mutes WHERE userid=?", str(member.id)) if len(muteRow) > 0: muteRow = muteRow[0] roleRow = await sql.fetch("SELECT muteroleid FROM servers WHERE serverid=?", str(member.guild.id)) if roleRow[0][0] is not None: role = member.guild.get_role(int(roleRow[0][0])) else: role = None if muteRow[2] is not None and role is not None: utcnow = pytz.utc.localize(datetime.datetime.utcnow()) until = datetime.datetime.strptime(muteRow[2], "%Y-%m-%d %H:%M:%S%z") if utcnow < until: await member.add_roles(role) # ensure_unmute is already running elif role is not None: await member.add_roles(role) @bot.event async def on_member_remove(member: discord.Member): joinLeaveRow = await sql.fetch("SELECT joinleavechannel FROM servers WHERE serverid=?", str(member.guild.id)) if len(joinLeaveRow) > 0: joinLeaveID = joinLeaveRow[0][0] if joinLeaveID is not None: joinLeaveChannel = bot.get_channel(int(joinLeaveID)) await joinLeaveChannel.send(f"**Leave** - {member.name}. ID {member.id}.\n" f"{member.guild.member_count} members.") @bot.event async def on_member_ban(guild: discord.Guild, user: discord.User): joinLeaveRow = await sql.fetch("SELECT joinleavechannel FROM servers WHERE serverid=?", str(guild.id)) if len(joinLeaveRow) > 0: joinLeaveID = joinLeaveRow[0][0] if joinLeaveID is not None: joinLeaveChannel = bot.get_channel(int(joinLeaveID)) await joinLeaveChannel.send(f"**Ban** - {user.name}, ID {user.id}.\n") if __name__ == "__main__": asyncio.get_event_loop().run_until_complete(initdb()) hadError = False coglist = [] for root, directories, files in os.walk("cogs"): for filename in files: filepath = os.path.join(root, filename) if filepath.endswith(".py"): coglist.append(filepath.split(".py")[0].replace(os.sep, ".")) logger.debug("Loading cogs") for cog in coglist: logger.debug(f"Loading {cog}") try: bot.load_extension(cog) logger.debug(f"Loaded {cog} successfully") except Exception: logger.exception(f"Failed to load cog: {cog}") hadError = True if hadError: logger.warning("Error during cog loading") else: logger.info("Successfully loaded all cogs") bot.run(os.environ["UBOT"], bot=True, reconnect=True)
492708
from scipy import interpolate from cached_property import cached_property import numpy as np try: import matplotlib.pyplot as plt except: plt = None from devito import Dimension from devito.function import SparseTimeFunction __all__ = ['PointSource', 'Receiver', 'Shot', 'WaveletSource', 'RickerSource', 'GaborSource', 'TimeAxis'] class TimeAxis(object): """ Data object to store the time axis. Exactly three of the four key arguments must be prescribed. Because of remainder values it is not possible to create a time axis that exactly adhears to the inputs therefore start, stop, step and num values should be taken from the TimeAxis object rather than relying upon the input values. The four possible cases are: start is None: start = step*(1 - num) + stop step is None: step = (stop - start)/(num - 1) num is None: num = ceil((stop - start + step)/step); because of remainder stop = step*(num - 1) + start stop is None: stop = step*(num - 1) + start :param start:(Optional) Start of time axis. :param step: (Optional) Time interval. :param: num: (Optional) Number of values (Note: this is the number of intervals + 1). stop value is reset to correct for remainder. :param stop: (Optional) End time. """ def __init__(self, start=None, step=None, num=None, stop=None): try: if start is None: start = step*(1 - num) + stop elif step is None: step = (stop - start)/(num - 1) elif num is None: num = int(np.ceil((stop - start + step)/step)) stop = step*(num - 1) + start elif stop is None: stop = step*(num - 1) + start else: raise ValueError("Only three of start, step, num and stop may be set") except: raise ValueError("Three of args start, step, num and stop may be set") if not isinstance(num, int): raise TypeError("input argument must be of type int") self.start = start self.stop = stop self.step = step self.num = num def __str__(self): return "TimeAxis: start=%g, stop=%g, step=%g, num=%g" % \ (self.start, self.stop, self.step, self.num) def _rebuild(self): return TimeAxis(start=self.start, stop=self.stop, num=self.num) @cached_property def time_values(self): return np.linspace(self.start, self.stop, self.num) class PointSource(SparseTimeFunction): """Symbolic data object for a set of sparse point sources :param name: Name of the symbol representing this source. :param grid: :class:`Grid` object defining the computational domain. :param time_range: :class:`TimeAxis` TimeAxis(start, step, num) object. :param npoint: (Optional) number of sparse points represented by this source. :param data: (Optional) data values to initialise point data. :param coordinates: (Optional) point coordinates for this source. :param space_order: (Optional) space discretization order. :param time_order: (Optional) time discretization order (defaults to 2). :param dtype: (Optional) data type of the buffered data. :param dimension: (Optional) class:`Dimension` object for representing the number of points in this source. """ def __new__(cls, **kwargs): name = kwargs.pop('name') grid = kwargs.pop('grid') time_range = kwargs.pop('time_range') time_order = kwargs.pop('time_order', 2) p_dim = kwargs.pop('dimension', Dimension(name='p_%s' % name)) coordinates = kwargs.pop('coordinates', kwargs.pop('coordinates_data', None)) # Either `npoint` or `coordinates` must be provided npoint = kwargs.pop('npoint', None) if npoint is None: if coordinates is None: raise TypeError("Need either `npoint` or `coordinates`") npoint = coordinates.shape[0] # Create the underlying SparseTimeFunction object obj = SparseTimeFunction.__new__(cls, name=name, grid=grid, dimensions=(grid.time_dim, p_dim), npoint=npoint, nt=time_range.num, time_order=time_order, coordinates=coordinates, **kwargs) obj._time_range = time_range._rebuild() # If provided, copy initial data into the allocated buffer data = kwargs.get('data') if data is not None: obj.data[:] = data return obj @cached_property def time_values(self): return self._time_range.time_values @property def time_range(self): return self._time_range def resample(self, dt=None, num=None, rtol=1e-5, order=3): # Only one of dt or num may be set. if dt is None: assert num is not None else: assert num is None start, stop = self._time_range.start, self._time_range.stop dt0 = self._time_range.step if dt is None: new_time_range = TimeAxis(start=start, stop=stop, num=num) dt = new_time_range.step else: new_time_range = TimeAxis(start=start, stop=stop, step=dt) if np.isclose(dt, dt0): return nsamples, ntraces = self.data.shape new_traces = np.zeros((new_time_range.num, ntraces)) for i in range(ntraces): tck = interpolate.splrep(self._time_range.time_values, self.data[:, i], k=order) new_traces[:, i] = interpolate.splev(new_time_range.time_values, tck) # Return new object return PointSource(name=self.name, grid=self.grid, data=new_traces, time_range=new_time_range, coordinates=self.coordinates.data) # Pickling support _pickle_kwargs = SparseTimeFunction._pickle_kwargs + ['time_range'] _pickle_kwargs.remove('nt') # `nt` is inferred from `time_range` Receiver = PointSource Shot = PointSource class WaveletSource(PointSource): """ Abstract base class for symbolic objects that encapsulate a set of sources with a pre-defined source signal wavelet. :param name: Name for the resulting symbol :param grid: :class:`Grid` object defining the computational domain. :param f0: Peak frequency for Ricker wavelet in kHz :param time_values: Discretized values of time in ms """ def __new__(cls, *args, **kwargs): npoint = kwargs.pop('npoint', 1) obj = PointSource.__new__(cls, npoint=npoint, **kwargs) obj.f0 = kwargs.get('f0') for p in range(npoint): obj.data[:, p] = obj.wavelet(obj.f0, obj.time_values) return obj def __init__(self, *args, **kwargs): if not self._cached(): super(WaveletSource, self).__init__(*args, **kwargs) def wavelet(self, f0, t): """ Defines a wavelet with a peak frequency f0 at time t. :param f0: Peak frequency in kHz :param t: Discretized values of time in ms """ raise NotImplementedError('Wavelet not defined') def show(self, idx=0, wavelet=None): """ Plot the wavelet of the specified source. :param idx: Index of the source point for which to plot wavelet :param wavelet: Prescribed wavelet instead of one from this symbol :param time: Prescribed time instead of time from this symbol """ wavelet = wavelet or self.data[:, idx] plt.figure() plt.plot(self.time_values, wavelet) plt.xlabel('Time (ms)') plt.ylabel('Amplitude') plt.tick_params() plt.show() # Pickling support _pickle_kwargs = PointSource._pickle_kwargs + ['f0'] class RickerSource(WaveletSource): """ Symbolic object that encapsulate a set of sources with a pre-defined Ricker wavelet: http://subsurfwiki.org/wiki/Ricker_wavelet :param name: Name for the resulting symbol :param grid: :class:`Grid` object defining the computational domain. :param f0: Peak frequency for Ricker wavelet in kHz :param time: Discretized values of time in ms """ def wavelet(self, f0, t): """ Defines a Ricker wavelet with a peak frequency f0 at time t. :param f0: Peak frequency in kHz :param t: Discretized values of time in ms """ r = (np.pi * f0 * (t - 1./f0)) return (1-2.*r**2)*np.exp(-r**2) class GaborSource(WaveletSource): """ Symbolic object that encapsulate a set of sources with a pre-defined Gabor wavelet: https://en.wikipedia.org/wiki/Gabor_wavelet :param name: Name for the resulting symbol :param grid: :class:`Grid` object defining the computational domain. :param f0: Peak frequency for Ricker wavelet in kHz :param time: Discretized values of time in ms """ def wavelet(self, f0, t): """ Defines a Gabor wavelet with a peak frequency f0 at time t. :param f0: Peak frequency in kHz :param t: Discretized values of time in ms """ agauss = 0.5 * f0 tcut = 1.5 / agauss s = (t-tcut) * agauss return np.exp(-2*s**2) * np.cos(2 * np.pi * s)
492727
import os from typing import List from unittest import TestCase from message_passing_nn.data.data_preprocessor import DataPreprocessor from message_passing_nn.model.trainer import Trainer from message_passing_nn.infrastructure.file_system_repository import FileSystemRepository from message_passing_nn.usecase.grid_search import GridSearch from message_passing_nn.utils.saver import Saver from tests.fixtures.matrices_and_vectors import BASE_GRAPH, BASE_GRAPH_NODE_FEATURES class TestTraining(TestCase): def setUp(self) -> None: self.features = BASE_GRAPH_NODE_FEATURES self.adjacency_matrix = BASE_GRAPH self.labels = BASE_GRAPH.view(-1) self.dataset = 'training-test-data' self.tests_data_directory = 'tests/test_data/' tests_model_directory = 'tests/model_checkpoints' tests_results_directory = 'tests/grid_search_results' device = "cpu" self.data_path = self.tests_data_directory + self.dataset + "/" self.repository = FileSystemRepository(self.tests_data_directory, self.dataset) self.data_preprocessor = DataPreprocessor() self.data_preprocessor.enable_test_mode() self.model_trainer = Trainer(self.data_preprocessor, device) self.saver = Saver(tests_model_directory, tests_results_directory) def test_start_for_multiple_batches_of_the_same_size(self): # Given dataset_size = 6 grid_search_dictionary = { "model": ["RNN"], "epochs": [10], "batch_size": [3], "validation_split": [0.2], "test_split": [0.1], "loss_function": ["MSE"], "optimizer": ["SGD"], "time_steps": [1], "validation_period": [5] } grid_search = GridSearch(self.data_path, self.data_preprocessor, self.model_trainer, grid_search_dictionary, self.saver, test_mode=True) adjacency_matrix_filenames, features_filenames, labels_filenames = self._save_test_data(dataset_size) # When losses = grid_search.start() configuration_id = list(losses["training_loss"].keys())[0] # Then self.assertTrue(losses["training_loss"][configuration_id][grid_search_dictionary["epochs"][0]] > 0.0) self.assertTrue( losses["validation_loss"][configuration_id][grid_search_dictionary["validation_period"][0]] > 0.0) self.assertTrue(losses["test_loss"][configuration_id]["final_epoch"] > 0.0) # Tear down self._remove_files(dataset_size, features_filenames, adjacency_matrix_filenames, labels_filenames) def test_start_for_multiple_batches_of_differing_size(self): # Given dataset_size = 5 grid_search_dictionary = { "model": ["RNN"], "epochs": [10], "batch_size": [3], "validation_split": [0.2], "test_split": [0.1], "loss_function": ["MSE"], "optimizer": ["SGD"], "time_steps": [1], "validation_period": [5] } grid_search = GridSearch(self.data_path, self.data_preprocessor, self.model_trainer, grid_search_dictionary, self.saver, test_mode=True) adjacency_matrix_filenames, features_filenames, labels_filenames = self._save_test_data(dataset_size) # When losses = grid_search.start() configuration_id = list(losses["training_loss"].keys())[0] # Then self.assertTrue(losses["training_loss"][configuration_id][grid_search_dictionary["epochs"][0]] > 0.0) self.assertTrue( losses["validation_loss"][configuration_id][grid_search_dictionary["validation_period"][0]] > 0.0) self.assertTrue(losses["test_loss"][configuration_id]["final_epoch"] > 0.0) # Tear down self._remove_files(dataset_size, features_filenames, adjacency_matrix_filenames, labels_filenames) def test_start_a_grid_search(self): # Given dataset_size = 6 grid_search_dictionary = { "model": ["RNN"], "epochs": [10, 15], "batch_size": [3, 4], "validation_split": [0.2], "test_split": [0.1], "loss_function": ["MSE"], "optimizer": ["SGD"], "time_steps": [1], "validation_period": [5] } grid_search = GridSearch(self.data_path, self.data_preprocessor, self.model_trainer, grid_search_dictionary, self.saver, test_mode=True) adjacency_matrix_filenames, features_filenames, labels_filenames = self._save_test_data(dataset_size) # When losses = grid_search.start() configuration_id = list(losses["training_loss"].keys())[0] # Then self.assertTrue(losses["training_loss"][configuration_id][grid_search_dictionary["epochs"][0]] > 0.0) self.assertTrue( losses["validation_loss"][configuration_id][grid_search_dictionary["validation_period"][0]] > 0.0) self.assertTrue(losses["test_loss"][configuration_id]["final_epoch"] > 0.0) # Tear down self._remove_files(dataset_size, features_filenames, adjacency_matrix_filenames, labels_filenames) def _save_test_data(self, dataset_size): features_filenames = [str(i) + '_training_features' + '.pickle' for i in range(dataset_size)] adjacency_matrix_filenames = [str(i) + '_training_adjacency-matrix' '.pickle' for i in range(dataset_size)] labels_filenames = [str(i) + '_training_labels' '.pickle' for i in range(dataset_size)] for i in range(dataset_size): self.repository.save(features_filenames[i], self.features) self.repository.save(adjacency_matrix_filenames[i], self.adjacency_matrix) self.repository.save(labels_filenames[i], self.labels) return adjacency_matrix_filenames, features_filenames, labels_filenames def _remove_files(self, dataset_size: int, features_filenames: List[str], adjacency_matrix_filenames: List[str], labels_filenames: List[str]) -> None: for i in range(dataset_size): os.remove(self.tests_data_directory + self.dataset + "/" + features_filenames[i]) os.remove(self.tests_data_directory + self.dataset + "/" + adjacency_matrix_filenames[i]) os.remove(self.tests_data_directory + self.dataset + "/" + labels_filenames[i])
492754
import sqlite3 import os def do_migration(conf): db_path = os.path.join(conf.data_dir, "lbrynet.sqlite") connection = sqlite3.connect(db_path) cursor = connection.cursor() cursor.executescript("alter table blob add last_announced_time integer;") cursor.executescript("alter table blob add single_announce integer;") cursor.execute("update blob set next_announce_time=0") connection.commit() connection.close()
492783
import datetime import logging import threading from . import util class Cache: def __init__(self): self._cache = {} self._lock = threading.Lock() def get(self, key): with self._lock: entry = self._cache.get(key) if not entry: return None timestamp, value = entry if util.next_update_time(timestamp) <= datetime.datetime.utcnow(): logging.info("cache entry '%s' is expired", key) del self._cache[key] return None return value def put(self, key, value): with self._lock: logging.info("writing '%s' to inproc cache", key) self._cache[key] = datetime.datetime.utcnow(), value
492841
from typing import Union import numpy as np from experiments.utils import sample_uniform_weights from simulation.outcome_generators import (OutcomeGenerator, generate_outcome_tcga) class TCGASimulator(OutcomeGenerator): def __init__( self, id_to_graph_dict: dict, noise_mean: float = 0.0, noise_std: float = 1.0, dim_covariates: int = 25, ): super().__init__( id_to_graph_dict=id_to_graph_dict, noise_mean=noise_mean, noise_std=noise_std, ) self.covariates_weights = sample_uniform_weights( num_weights=3, dim_covariates=dim_covariates ) def set_id_to_graph_dict(self, id_to_graph_dict: dict) -> None: self.id_to_graph_dict = id_to_graph_dict def generate_outcomes_for_units( self, pca_features: list, unit_features: list, treatment_ids: list ) -> np.ndarray: return self.__generate_outcomes( pca_features=pca_features, unit_features=unit_features, treatment_ids=treatment_ids, ) def generate_outcomes_for_unit( self, pca_features, unit_features, treatment_ids ) -> np.ndarray: pca_features = np.repeat( np.expand_dims(pca_features, axis=0), len(treatment_ids), axis=0 ) unit_features = np.repeat( np.expand_dims(unit_features, axis=0), len(treatment_ids), axis=0 ) return self.__generate_outcomes( pca_features=pca_features, unit_features=unit_features, treatment_ids=treatment_ids, ) def __generate_outcomes( self, pca_features: Union[list, np.ndarray], unit_features: Union[list, np.ndarray], treatment_ids: list, ) -> np.ndarray: outcomes = [] for pca_features, unit_features, treatment_id in zip( pca_features, unit_features, treatment_ids ): prop = self.id_to_graph_dict[treatment_id]["prop"] outcome = ( generate_outcome_tcga( unit_features=unit_features, pca_features=pca_features, prop=prop, random_weights=self.covariates_weights, ) + self._sample_noise() ) outcomes.append(outcome) return np.array(outcomes).squeeze()
492871
from torch import nn as nn from torch.nn import functional as F class ConvLayer(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, conv_type, transpose=False): super(ConvLayer, self).__init__() self.transpose = transpose self.stride = stride self.kernel_size = kernel_size self.conv_type = conv_type # How many channels should be normalised as one group if GroupNorm is activated # WARNING: Number of channels has to be divisible by this number! NORM_CHANNELS = 8 if self.transpose: self.filter = nn.ConvTranspose1d(n_inputs, n_outputs, self.kernel_size, stride, padding=kernel_size-1) else: self.filter = nn.Conv1d(n_inputs, n_outputs, self.kernel_size, stride) if conv_type == "gn": assert(n_outputs % NORM_CHANNELS == 0) self.norm = nn.GroupNorm(n_outputs // NORM_CHANNELS, n_outputs) elif conv_type == "bn": self.norm = nn.BatchNorm1d(n_outputs, momentum=0.01) # Add you own types of variations here! def forward(self, x): # Apply the convolution if self.conv_type == "gn" or self.conv_type == "bn": out = F.relu(self.norm((self.filter(x)))) else: # Add your own variations here with elifs conditioned on "conv_type" parameter! assert(self.conv_type == "normal") out = F.leaky_relu(self.filter(x)) return out def get_input_size(self, output_size): # Strided conv/decimation if not self.transpose: curr_size = (output_size - 1)*self.stride + 1 # o = (i-1)//s + 1 => i = (o - 1)*s + 1 else: curr_size = output_size # Conv curr_size = curr_size + self.kernel_size - 1 # o = i + p - k + 1 # Transposed if self.transpose: assert ((curr_size - 1) % self.stride == 0)# We need to have a value at the beginning and end curr_size = ((curr_size - 1) // self.stride) + 1 assert(curr_size > 0) return curr_size def get_output_size(self, input_size): # Transposed if self.transpose: assert(input_size > 1) curr_size = (input_size - 1)*self.stride + 1 # o = (i-1)//s + 1 => i = (o - 1)*s + 1 else: curr_size = input_size # Conv curr_size = curr_size - self.kernel_size + 1 # o = i + p - k + 1 assert (curr_size > 0) # Strided conv/decimation if not self.transpose: assert ((curr_size - 1) % self.stride == 0) # We need to have a value at the beginning and end curr_size = ((curr_size - 1) // self.stride) + 1 return curr_size
492890
import operator import numpy import numba class Dependent(object): def __init__(self, **available): self.available = available def __getitem__(self, where): return self.available[where] @numba.extending.typeof_impl.register(Dependent) def _Dependent_typeof(val, c): return DependentType(list(val.available)) class DependentType(numba.types.Type): def __init__(self, available): self.available = available self.requested = set() super(DependentType, self).__init__(name="DependentType({0})".format(", ".join(sorted(self.available)))) def request(self, name): if name not in self.requested: self.requested.add(name) @numba.typing.templates.infer class _DependentType_type_getitem(numba.typing.templates.AbstractTemplate): key = "static_getitem" def generic(self, args, kwargs): if len(args) == 2 and len(kwargs) == 0: objtype, where = args print("checking type", objtype, where) objtype.request(where) return numba.types.int64 @numba.extending.register_model(DependentType) class DependentModel(numba.datamodel.models.StructModel): def __init__(self, dmm, fe_type): print("making model", fe_type) print("requested", fe_type.requested) members = [] super(DependentModel, self).__init__(dmm, fe_type, members) @numba.extending.unbox(DependentType) def _JaggedArray_unbox(typ, obj, c): print("unboxing", typ) print("requested", typ.requested) out = numba.cgutils.create_struct_proxy(typ)(c.context, c.builder) is_error = numba.cgutils.is_not_null(c.builder, c.pyapi.err_occurred()) return numba.extending.NativeValue(out._getvalue(), is_error) @numba.extending.lower_builtin("static_getitem", DependentType, numba.types.StringLiteral) def _DependentType_lower_static_getitem(context, builder, sig, args): print("lowering", sig.args[0], sig.args[1].literal_value) return context.get_constant(numba.types.int64, 999) obj = Dependent(one=999, two=999, three=999) @numba.njit def f(x): return x["one"] print(f(obj)) print(f(obj)) @numba.njit def g(x): return x["two"] print(g(obj)) print(g(obj)) print(f(obj)) obj = Dependent(one=999, two=999, three=999) print(f(obj)) print(g(obj)) obj = Dependent(one=999, two=999, three=999) @numba.njit def h(x): return f(x) print(h(obj))
492902
from gym_kuka_mujoco.utils.kinematics import forwardKin, inverseKin, identity_quat from gym_kuka_mujoco.utils.quaternion import mat2Quat import numpy as np def hole_insertion_samples(sim, nsamples=10, range=(0, 0.05)): # The points to be transformed. pos = np.array([0., 0., 0.]) peg_body_id = sim.model.body_name2id('peg') tip_site_id = sim.model.site_name2id('peg_tip') tip_body_pos = sim.model.site_pos[tip_site_id] # The desired world coordinates hole_id = sim.model.body_name2id('hole') world_pos_desired, _ = forwardKin(sim, np.zeros(3), identity_quat, hole_id) world_pos_delta = np.zeros((nsamples, 3)) world_pos_delta[:,2] = np.linspace(range[0], range[1], nsamples) world_pos_desired = world_pos_delta + world_pos_desired world_quat = np.array([0., 1., 0., 0.]) # Compute the forward kinematics q_nom = np.zeros(7) q_init = np.zeros(7) upper = np.array([1e-6, np.inf, 1e-6, np.inf, 1e-6, np.inf, np.inf]) lower = -upper q_sol = [] for w_pos in world_pos_desired: q_opt = inverseKin(sim, q_init, q_nom, tip_body_pos, w_pos, world_quat, peg_body_id, upper=upper, lower=lower) q_sol.append(q_opt) return q_sol def hole_insertion_samples_unrestricted(sim, nsamples=10, insertion_range=(0, 0.05), raise_on_fail=False): # The points to be transformed. pos = np.array([0., 0., 0.]) peg_body_id = sim.model.body_name2id('peg') tip_site_id = sim.model.site_name2id('peg_tip') tip_body_pos = sim.model.site_pos[tip_site_id] # The desired world coordinates hole_id = sim.model.body_name2id('hole') hole_pos_delta = np.zeros((nsamples, 3)) hole_pos_delta[:,2] = np.linspace(insertion_range[0], insertion_range[1], nsamples) world_pos_desired = [] world_quat_desired = [] world_quat = np.array([0., 1., 0., 0.]) for i in range(nsamples): pos_desired, mat_desired = forwardKin(sim, hole_pos_delta[i,:], world_quat, hole_id) world_pos_desired.append(pos_desired) world_quat_desired.append(mat2Quat(mat_desired)) # Compute the forward kinematics q_nom = np.zeros(7) q_init = np.zeros(7) upper = sim.model.jnt_range[:, 1] lower = sim.model.jnt_range[:, 0] q_sol = [] for w_pos, w_quat in zip(world_pos_desired, world_quat_desired): q_opt = inverseKin(sim, q_init, q_nom, tip_body_pos, w_pos, w_quat, peg_body_id, upper=upper, lower=lower, raise_on_fail=raise_on_fail) q_sol.append(q_opt) q_init = q_opt.copy() # warm start the next solution return q_sol
492937
from mypy.nodes import SymbolTableNode from mypy.plugin import AnalyzeTypeContext from mypy.types import Instance from mypy.types import Type as MypyType from mypy.types import UnionType from typing_extensions import final from classes.contrib.mypy.semanal.variadic_generic import ( analize_variadic_generic, ) from classes.contrib.mypy.validation import validate_supports @final class VariadicGeneric(object): """ Variadic generic support for ``Supports`` type. We also need to validate that all type args of ``Supports`` are subtypes of ``AssociatedType``. """ __slots__ = ('_associated_type_node',) def __init__(self, associated_type_node: SymbolTableNode) -> None: """We need ``AssociatedType`` fullname here.""" self._associated_type_node = associated_type_node def __call__(self, ctx: AnalyzeTypeContext) -> MypyType: """Main entry point.""" analyzed_type = analize_variadic_generic( validate_callback=self._validate, ctx=ctx, ) if isinstance(analyzed_type, Instance): return analyzed_type.copy_modified( args=[UnionType.make_union(analyzed_type.args)], ) return analyzed_type def _validate(self, instance: Instance, ctx: AnalyzeTypeContext) -> bool: return validate_supports.check_type( instance, self._associated_type_node, ctx, )
492940
import numpy as np import cv2 import os SRC_VIDEOS_DIR = '/home/deepano/workspace/dataset/roadSign/video' DIST_FRAME_DIR = '/home/deepano/workspace/dataset/roadSign/frame' def get_frame(src_video_dir, dist_frame_dir, fps): for _file in os.listdir(src_video_dir): video_file = os.path.join(src_video_dir, _file) print(video_file) cap=cv2.VideoCapture(video_file) count = 0 while (True): ret,frame=cap.read() if ret == True: if not os.path.isdir(dist_frame_dir): # Create the log directory if it doesn't exist os.makedirs(dist_frame_dir) #if count % frame_name = _file.split('.')[0] + '_' + str(count) + '.jpg' frame_file = os.path.join(dist_frame_dir, frame_name) cv2.imwrite(frame_file, frame) count += 1 else: break cap.release() def main(): get_frame(SRC_VIDEOS_DIR, DIST_FRAME_DIR, 0) if __name__=="__main__": main()
492948
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.contrib.staticfiles.urls import staticfiles_urlpatterns try: from wagtail.admin import urls as wagtailadmin_urls from wagtail.core import urls as wagtail_urls from wagtail.documents import urls as wagtaildocs_urls except ImportError: from wagtail.wagtailadmin import urls as wagtailadmin_urls from wagtail.wagtailcore import urls as wagtail_urls from wagtail.wagtaildocs import urls as wagtaildocs_urls urlpatterns = [ url(r'^django-admin/', admin.site.urls), url(r'^admin/', include(wagtailadmin_urls)), url(r'^documents/', include(wagtaildocs_urls)), url(r'', include(wagtail_urls)), ] urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
492994
from pathlib import Path from typing import Union import cv2 import numpy as np def load_rgb(file_path: Union[str, Path]) -> np.ndarray: image = cv2.imread(str(file_path)) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) images = { "with_faces": { "image": load_rgb("tests/data/13.jpg"), "faces": [ { "bbox": [256.9, 93.64, 336.79, 201.76], "score": 1.0, "landmarks": [ [286.17, 134.94], [323.32, 135.28], [309.15, 161.34], [283.74, 168.48], [320.72, 168.48], ], }, { "bbox": [436.62, 118.5, 510.04, 211.13], "score": 1.0, "landmarks": [[460.96, 155.7], [494.47, 154.35], [480.52, 175.92], [464.73, 188.05], [491.9, 187.53]], }, { "bbox": [657.3, 156.87, 729.81, 245.78], "score": 1.0, "landmarks": [[665.64, 187.11], [696.5, 196.97], [670.65, 214.76], [666.92, 220.2], [689.45, 228.91]], }, ], }, "with_no_faces": { "image": load_rgb("tests/data/no_face.jpg"), "faces": [{"bbox": [], "score": -1, "landmarks": []}], }, }
493002
from pyanp.priority import * import numpy as np from scipy.stats.mstats import gmean a = np.array([ [1, 2, 5], [1/2, 1, 3], [1/5, 1/3, 1] ]) print(pri_eigen(a)) vals = [ [2, 5/3], [2*3, 5], [3, 5/2] ] means = [gmean(row) for row in vals] b = utmrowlist_to_npmatrix(means) print(b) print(means) print(incon_std(b)) means = [np.mean(row) for row in vals] b = utmrowlist_to_npmatrix(means) print(b) print(means) print(incon_std(b))
493022
import hypothesis as hp from hypothesis import strategies as st import time import pypeln as pl import cytoolz as cz MAX_EXAMPLES = 10 @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) def test_flat_map_square(nums): def _generator(x): yield x yield x + 1 yield x + 2 nums_py = map(lambda x: x ** 2, nums) nums_py = cz.mapcat(_generator, nums_py) nums_py = list(nums_py) nums_pl = pl.sync.map(lambda x: x ** 2, nums) nums_pl = pl.sync.flat_map(_generator, nums_pl) nums_pl = list(nums_pl) assert nums_pl == nums_py @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) def test_flat_map_square_workers(nums): def _generator(x): yield x yield x + 1 yield x + 2 nums_py = map(lambda x: x ** 2, nums) nums_py = cz.mapcat(_generator, nums_py) nums_py = list(nums_py) nums_pl = pl.sync.map(lambda x: x ** 2, nums) nums_pl = pl.sync.flat_map(_generator, nums_pl, workers=3) nums_pl = list(nums_pl) assert sorted(nums_pl) == sorted(nums_py)
493039
from django.apps import AppConfig class DatasetsConfig(AppConfig): name = 'datasets' verbose_name = 'Scaleout Datasets'
493065
import requests.packages from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
493084
from cv2 import cv2 import numpy as np from keras_squeezenet import SqueezeNet from keras.optimizers import Adam from keras.utils import np_utils from keras.layers import Activation, Dropout, Convolution2D, GlobalAveragePooling2D from keras.models import Sequential import tensorflow as tf import os IMG_SAVE_PATH = 'image_data' CLASS_MAP = { "none":0, "one":1, "two":2, "three":3, "four":4, "five":5, "six":6 } NUM_CLASSES = len(CLASS_MAP) def mapper(val): return CLASS_MAP[val] def get_model(): model = Sequential([ SqueezeNet(input_shape=(227, 227, 3), include_top=False), Dropout(0.5), Convolution2D(NUM_CLASSES, (1, 1), padding='valid'), Activation('relu'), GlobalAveragePooling2D(), Activation('softmax') ]) return model # load images from the directory dataset = [] for directory in os.listdir(IMG_SAVE_PATH): path = os.path.join(IMG_SAVE_PATH, directory) if not os.path.isdir(path): continue for item in os.listdir(path): # to make sure no hidden files get in our way if item.startswith("."): continue img = cv2.imread(os.path.join(path, item)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (227, 227)) dataset.append([img, directory]) ''' dataset = [ [[...], 'one'], [[...], 'two'], ... ] ''' data, labels = zip(*dataset) labels = list(map(mapper, labels)) ''' labels: one,two,three... one hot encoded: [1,0,0,0,0,0,0], [0,1,0,0,0,0,0], [0,0,1,0,0,0,0],... ''' # one hot encode the labels labels = np_utils.to_categorical(labels) # define the model model = get_model() model.compile( optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'] ) # start training model.fit(np.array(data), np.array(labels), epochs=10) # save the model for later use model.save("Hand-cricket2-model.h5")
493090
import tensorflow as tf from avb.decoders import get_reconstr_err, get_decoder_mean, get_interpolations from avb.utils import * from avb.ops import * from avb.validate import run_tests from avb.validate.ais import AIS from avb.iaf import IAFVAE, apply_iaf from tqdm import tqdm import time import ipdb def test(encoder, decoder, iaf_layers, x_test, config): log_dir = config['log_dir'] eval_dir = config['eval_dir'] results_dir = os.path.join(eval_dir, "results") z_dim = config['z_dim'] batch_size = config['batch_size'] ais_nchains = config['test_ais_nchains'] test_nais = config['test_nais'] z_sampled = tf.random_normal([batch_size, z_dim]) iaf_test = IAFVAE(encoder, decoder, iaf_layers, x_test, z_sampled, config, is_training=False) stats_scalar = { 'loss': iaf_test.loss, } stats_dist = { 'ELBO': iaf_test.ELBO, 'KL': iaf_test.KL, 'reconst_err': iaf_test.reconst_err, 'z': iaf_test.z_real, } params_posterior = [] #iaf_test.z_mean, iaf_test.log_z_std, iaf_test.a] def energy0(z, theta): E = tf.reduce_sum( 0.5 * tf.square(z) + 0.5 * np.log(2*np.pi), [1] ) return E # z_mean = theta[0] # log_z_std = theta[1] # a = theta[2] # logq = get_pdf_gauss(z_mean, log_z_std, z) # # # IAF layers # _, logq = apply_iaf(iaf_layers, a, z, logq) # # return -logq def get_z0(theta): return tf.random_normal([batch_size, z_dim]) run_tests(decoder, stats_scalar, stats_dist, iaf_test.x_real, params_posterior, energy0, get_z0, config, )
493157
import milan import exponential import hepmass import estimator import cvx_estimator import gauss_estimator import time import pandas as pd import numpy import math def main(): ps = numpy.linspace(0, 1, 21) ps[0] = 0.01 ps[-1] = 0.99 k = 7 datasets = { "milan": milan.data, "exponential": exponential.data, "hepmass": hepmass.data } isLog = { "milan": True, "exponential": False, "hepmass": False } solvers = { "lp": cvx_estimator.CvxEstimator(k,1000,solver="lp"), "maxent": cvx_estimator.CvxEstimator(k,1000,solver="maxent"), "mindensity": cvx_estimator.CvxEstimator(k,1000,solver="mindensity"), "gaussian": gauss_estimator.GaussEstimator(k), } results = [] for dname in datasets: print(dname) data = datasets[dname] distributions = {} num_trials = { "lp": 500, "maxent": 10, "mindensity": 50, "gaussian": 1000, } # num_trials = { # "lp": 10, # "maxent": 1, # "mindensity": 1, # "gaussian": 1, # } for sname in solvers: print(sname) e = solvers[sname] if isLog[dname]: e.set_statistics( data["ranges"][2], data["ranges"][3], data["sLogMoments"][:k] ) else: e.set_statistics( data["ranges"][0], data["ranges"][1], data["sMoments"][:k] ) distributions[sname] = e.solve() start_time = time.time() for i in range(num_trials[sname]): e.solve() end_time = time.time() for p in ps: q_est = e.estimate(p) if isLog[dname]: q_est = math.exp(q_est) results.append({ "dataset": dname, "size_param": k, "sketch": sname, "query_time": ((end_time-start_time)/num_trials[sname]) * 1e9, "q": "{0:.3g}".format(p), "quantile_estimate": q_est }) pd.DataFrame(results).to_csv("lesion_results.csv", index=False) # import matplotlib.pyplot as plt # import numpy as np # plt.figure() # xs = np.linspace(0, 1, 1000) # for sname in solvers: # plt.plot(xs, distributions[sname], label=sname) # plt.legend() # plt.show() if __name__ == "__main__": main()
493181
import numpy as np from scipy.stats import norm def black_scholes(t=40, r=4.00, v=32.00, K=60, St=62, type='c'): """ Parameters: K : Excercise Price St: Current Stock Price v : Volatility in percentage r : Risk free rate in percentage t : Time to expiration in days type: Type of option 'c' for call 'p' for put default: 'c' """ # if type = 'c' or 'C' call option else put option try: type=type.lower() if(type=='c'): option_type='call' else: option_type='put' except: option_type='put' #Check time try: #convert time in days to years t=t/365 except: raise TypeError("Enter numerical value for time") #Check risk free rate try: #convert percentage to decimal r=r/100 except: raise TypeError("Enter numerical value for risk free rate") #Check volatility try: #convert percentage to decimal v=v/100 except: raise TypeError("Enter numerical value for volatility") #Check Stock Price try: St=St+0 except: raise TypeError("Enter numerical value for stock price") #Check Exercise Price try: K=K+0 except: raise TypeError("Enter numerical value for Exercise price") n1=np.log(St/K) n2=(r+(np.power(v,2)/2))*t d=v*(np.sqrt(t)) d1=(n1+n2)/d d2=d1-(v*np.sqrt(t)) if type=='c': N_d1=norm.cdf(d1) N_d2=norm.cdf(d2) else: N_d1=norm.cdf(-d1) N_d2=norm.cdf(-d2) A=(St*N_d1) B=(K*N_d2*(np.exp(-r*t))) if type=='c': val=A-B val_int=max(0,St-K) else: val=B-A val_int=max(0,K-St) val_time=val-val_int # Option values in dictionary value={'option value':val, 'intrinsic value':val_int, 'time value':val_time} #CALCULATE OPTION GREEKS if type=='c': delta=N_d1 theta=(-((St*v*np.exp(-np.power(d1,2)/2))/(np.sqrt(8*np.pi*t)))-(N_d2*r*K*np.exp(-r*t)))/365 rho=t*K*N_d2*np.exp(-r*t)/100 else: delta=-N_d1 theta=(-((St*v*np.exp(-np.power(d1,2)/2))/(np.sqrt(8*np.pi*t)))+(N_d2*r*K*np.exp(-r*t)))/365 rho=-t*K*N_d2*np.exp(-r*t)/100 gamma=(np.exp(-np.power(d1,2)/2))/(St*v*np.sqrt(2*np.pi*t)) vega=(St*np.sqrt(t)*np.exp(-np.power(d1,2)/2))/(np.sqrt(2*np.pi)*100) #Option greeks in Dictionary greeks={'delta':delta, 'gamma':gamma, 'theta':theta, 'vega':vega, 'rho':rho} return {'value':value, 'greeks':greeks}
493222
from flask import session, request, render_template from app import app, LINK, get_url from requests import post from json import loads @app.route('/sys_sign_in', methods=['POST']) def signin(): x = request.form if not all([i in x for i in ('login', 'pass')]): return render_template('message.html', cont='3') req = post(LINK, json={'method': 'profile.auth', 'login': x['login'], 'pass': x['pass']}).text if len(req) <= 3: return render_template('message.html', cont=req) req = loads(req) session['token'] = req['token'] session['id'] = req['id'] return get_url(request.args.get('url'))
493227
from styx_msgs.msg import TrafficLight import numpy as np import rospkg import os import rospy import tensorflow as tf import cv2 from cv_bridge import CvBridge, CvBridgeError from sensor_msgs.msg import Image class TLClassifier(object): def __init__(self): #TODO load classifier self.color_th = 15 rospack = rospkg.RosPack() model_dir = os.path.join(rospack.get_path('tl_detector/light_classification'), 'model') model_path = os.path.join(model_dir, 'frozen_inference_graph.pb') self.config = tf.ConfigProto() # load object detection graph self.graph = self.load_graph(model_path, self.config) # tensorflow session self.sess = tf.Session(graph=self.graph, config=self.config) # definition of input and output tensors for the detection graph. self.image_tensor = self.graph.get_tensor_by_name('image_tensor:0') # each box represents a part of the image in which a specific object has been located. self.boxes = self.graph.get_tensor_by_name('detection_boxes:0') # for each detected object the score represents the confidence level. self.scores = self.graph.get_tensor_by_name('detection_scores:0') # this is the MS COCO dataset class, we only need class 10 for the traffic light. self.classes = self.graph.get_tensor_by_name('detection_classes:0') # minimum required confidence for traffic lights self.confidence_th = 0.1 # Traffic light publisher. self.bridge = CvBridge() self.tl_image = rospy.Publisher('/tl_detector/traffic_light', Image, queue_size=1) rospy.loginfo('tl_classifier init complete') # Function to load a graph from a proto buf file. def load_graph(self, model, config): with tf.Session(graph = tf.Graph(), config=config) as sess: assert tf.get_default_session() is sess gd = tf.GraphDef() with tf.gfile.Open(model, 'rb') as f: data = f.read() gd.ParseFromString(data) tf.import_graph_def(gd, name='') graph = tf.get_default_graph() #print('Graph v' + str(graph.version) + ', nodes: ' + ', '.join([n.name for n in graph.as_graph_def().node])) return graph def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ #TODO implement light color prediction image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return self.predict_detection(image) def predict_detection(self, image): h, w, _ = image.shape image_exp = cv2.resize(image, (300, 300)) image_exp = np.expand_dims(image, axis=0) boxes, scores, classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={self.image_tensor: image_exp} ) # post processing boxes = np.squeeze(boxes) classes = np.squeeze(classes).astype(np.int32) scores = np.squeeze(scores) # Get the box with the highest score. conf_max = 0 idx = -1 for i in range(boxes.shape[0]): if scores[i] > self.confidence_th and classes[i] == 10: if scores[i] > conf_max: conf_max = scores[i] idx = i prediction = TrafficLight.UNKNOWN # if there is a traffic light with high confidence (max confidence traffic light is selected) if idx != -1: # create a tuple for the box box = tuple(boxes[idx].tolist()) # corners of the box top, left, bottom, right = box # resize and expand a little more left = int(max(0, (left * w) - 3)) top = int(max(0, (top * h) - 5)) bottom = int(min(h, (bottom * h) + 5)) right = int(min(w, (right * w) + 3)) box = left, top, right, bottom ROI = image[top:bottom, left:right] tl_image = cv2.resize(ROI, (32, 32)) self.tl_image.publish(self.bridge.cv2_to_imgmsg(tl_image, "rgb8")) #rospy.loginfo(ROI.shape) #rospy.loginfo(box) prediction = self.predict_color(ROI) else: # publish empty image self.tl_image.publish(self.bridge.cv2_to_imgmsg(cv2.cvtColor(np.zeros((32, 32), np.uint8), cv2.COLOR_GRAY2RGB), "rgb8")) #rospy.loginfo(prediction) return prediction def predict_color(self, image): """ image: cv2.Image (RGB) """ R = image[:,:,0] G = image[:,:,1] R_area = np.sum(R > R.max() - 5) G_area = np.sum(G > G.max() - 5) #rospy.loginfo(G_area) prediction = TrafficLight.UNKNOWN if R_area >= self.color_th and G_area <= self.color_th: prediction = TrafficLight.RED elif R_area >= self.color_th and G_area >= self.color_th: prediction = TrafficLight.YELLOW elif G_area >= self.color_th: prediction = TrafficLight.GREEN else: prediction = TrafficLight.UNKNOWN if prediction == TrafficLight.RED: print("red") elif prediction == TrafficLight.YELLOW: print("yellow") elif prediction == TrafficLight.GREEN: print("green") else: print("unknown - clear") return prediction
493240
import logging import os import signal import yaml import time from flask import Flask, jsonify, request from gevent.pywsgi import WSGIServer from triggerflow.service import storage from triggerflow.service.worker import Worker from triggerflow import eventsources import threading app = Flask(__name__) app.debug = False workers = {} monitors = {} config_map = None trigger_storage = None CONFIG_MAP_PATH = 'config_map.yaml' def authenticate_request(db, auth): if not auth or 'username' not in auth or 'password' not in auth: return False password = db.get_auth(username=auth['username']) return password and password == auth['password'] @app.before_request def before_request_func(): pass # if not authenticate_request(trigger_storage, request.auth): # return jsonify('Unauthorized'), 401 @app.route('/workspace/<workspace>', methods=['POST']) def create_worker(workspace): """ This method gets the request parameters and starts a new thread worker that will act as the event-processor for the the specific trigger workspace. It returns 400 error if the provided parameters are not correct. """ if not trigger_storage.workspace_exists(workspace): return jsonify('Workspace {} does not exists in the database'.format(workspace)), 400 if workspace in monitors: return jsonify('Workspace {} is already created'.format(workspace)), 400 logging.info('New request to create workspace {}'.format(workspace)) start_worker_monitor(workspace) return jsonify('Created workspace {}'.format(workspace)), 201 def start_worker_monitor(workspace): """ Auxiliary method to monitor a worker triggers """ global monitors logging.info('Starting {} workspace monitor'.format(workspace)) def monitor(): if len(trigger_storage.get(workspace, 'triggers')) > 1: start_worker(workspace) while True: if trigger_storage.new_trigger(workspace): start_worker(workspace) else: break monitors[workspace] = threading.Thread(target=monitor, daemon=True) monitors[workspace].start() def start_worker(workspace): """ Auxiliary method to start a worker """ global workers if workspace not in workers or not workers[workspace].is_alive(): logging.info('Starting {} workspace'.format(workspace)) workers[workspace] = Worker(workspace, config_map) workers[workspace].start() @app.route('/workspace/<workspace>', methods=['DELETE']) def delete_worker(workspace): logging.info('New request to delete workspace {}'.format(workspace)) global workers, monitors if workspace not in monitors and workspace not in workers: return jsonify('Workspace {} is not active'.format(workspace)), 400 else: if workspace in workers: if workers[workspace].is_alive(): workers[workspace].stop_worker() del workers[workspace] del monitors[workspace] return jsonify('Workspace {} deleted'.format(workspace)), 200 @app.route('/workspace/<workspace>/timeout', methods=['POST']) def timeout(workspace): logging.info('New request to add timeout'.format(workspace)) timeout_data = request.get_json(force=True, silent=True) if timeout_data is None: return jsonify('Parameters error'), 400 def _timeout(timeout_data): logging.debug('Starting event source instance') logging.debug(timeout_data) event_source_class = getattr(eventsources, '{}'.format(timeout_data['event_source']['class'])) event_source = event_source_class(**timeout_data['event_source']['parameters']) time.sleep(timeout_data['seconds']) timeout_data['event']['type'] = 'event.triggerflow.timeout' event_source.publish_cloudevent(timeout_data['event']) logging.debug('Event {} sent after {} secodns'.format(timeout_data['event'], timeout_data['seconds'])) timeout_thread = threading.Thread(target=_timeout, args=(timeout_data.copy(),)) timeout_thread.start() logging.debug('Timeout set for workspace {}'.format(workspace)) return jsonify('Timeout set'.format(workspace)), 201 def main(): global config_map, trigger_storage, workers # Create process group os.setpgrp() logger = logging.getLogger() logger.setLevel(logging.DEBUG) component = os.getenv('INSTANCE', 'triggerflow-controller') # Make sure we log to the console stream_handler = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s.%(msecs)03dZ][%(levelname)s][triggerflow] %(message)s', datefmt="%Y-%m-%dT%H:%M:%S") stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logging.info('Starting Triggerflow Controller') # also log to file if /logs is present if os.path.isdir('/logs'): fh = logging.FileHandler('/logs/{}_logs.log'.format(component)) fh.setFormatter(formatter) logger.addHandler(fh) logging.info('Loading private credentials') with open(CONFIG_MAP_PATH, 'r') as config_file: config_map = yaml.safe_load(config_file) # Instantiate trigger storage client logging.info('Creating trigger storage client') backend = config_map['trigger_storage']['backend'] trigger_storage_class = getattr(storage, backend.capitalize() + 'TriggerStorage') trigger_storage = trigger_storage_class(**config_map['trigger_storage']['parameters']) port = int(os.getenv('PORT', 5000)) server = WSGIServer(('', port), app, log=logging.getLogger()) logging.info('Triggerflow service started on port {}'.format(port)) workspaces = trigger_storage.list_workspaces() for wsp in workspaces: start_worker(wsp) try: server.serve_forever() except KeyboardInterrupt: print('exiting...') finally: # Kill all child processes os.killpg(0, signal.SIGKILL) if __name__ == '__main__': main()
493301
from .version import __version__ from .core import * from .topology import * from .exterior import * from .printing import *
493323
import ajenti from ajenti.api import * from ajenti.plugins import * ajenti.edition += '+vh' info = PluginInfo( title='Ajenti V Virtual Hosting', description='Adds easy web hosting management to Ajenti', icon='globe', dependencies=[ PluginDependency('main'), PluginDependency('services'), ], ) destroyed_configs = [] def init(): import api import extensions import main import ipc import processes import gate_static import gate_proxy import gate_fcgi
493333
from layout import ListInfoData from layout import FieldMetadata class ListInfoItemMetadata: # private final ListInfoData infoData # private String variableName # def __init__(self, infoData, _type, value): self.infoData = infoData self.type = _type self.value = value self.variableName = "" def getIsText(self): return self.type.type == FieldMetadata.TEXT def getIsLast(self): return self.infoData.isLast(self)
493339
import json import os class Config: def __init__(self): if self.exists(): print("Loading the config.json") self.read() else: print("config.json file doesn't exist") self.config = {} def package_root_path(self, value=None): if value is not None: self.config["package_root_path"] = value else: return self.config["package_root_path"] def repo_root_path(self, value=None): if value is not None: self.config["repo_root_path"] = value else: return self.config["repo_root_path"] def refresh(self): self.read() def read(self): with open("config.json", "r") as config_file: self.config = json.load(config_file) def save(self): with open("config.json", "w+") as config_file: config_file.write(json.dumps(self.config, indent=4, sort_keys=True)) def exists(self): return os.path.exists("config.json")
493412
from PyQt5.QtCore import QModelIndex, QRect from PyQt5.QtWidgets import QAbstractItemView from inselect.lib.inselect_error import InselectError from inselect.lib.utils import debug_print from inselect.gui.roles import PixmapRole, RectRole, MetadataValidRole from inselect.gui.utils import update_selection_model from .boxes_scene import BoxesScene class GraphicsItemView(QAbstractItemView): """Qt have used 'view' in two different contexts: the model-view architecture and the graphics/view framework, henceforth MV and GV respectively. This class is a MV view that acts as an interface between MV and GV. A limited number of events are passed between the two systems: * changes in selection * changes in boxes' position and size (RectRole) * addition of boxes * deletion of boxes * metadata valid status (MetadataValidRole) * TODO box verified status """ # Based on idea in: # http://stackoverflow.com/questions/3188584/how-to-use-qt-model-view-framework-with-the-graphics-view-framework def __init__(self, parent=None): super(GraphicsItemView, self).__init__(parent) self.scene = BoxesScene(self, parent) # List of QGraphicsRectItem self._rows = [] self.handling_selection_update = False self.scene.selectionChanged.connect(self.scene_selection_changed) def reset(self): """QAbstractItemView virtual """ debug_print('GraphicsItemView.reset') super(GraphicsItemView, self).reset() model = self.model() self.scene.new_document(model.data(QModelIndex(), PixmapRole)) # Build up new mapping rows = [None] * model.rowCount() for row in range(model.rowCount()): index = model.index(row, 0) rows[row] = self.scene.add_box(index.data(RectRole), index.data(MetadataValidRole)) self._rows = rows def show_alternative_pixmap(self, pixmap): """Show or clear an alternative pixmap in place of the document's usual pixmap. pixmaps should either be a QPixmap of the same dimensions as the documents pixmap (which is shown) or None (which clears any existing alternative pixmap) """ debug_print('show_alternative_pixmap', pixmap) model = self.model() pixmap = pixmap if pixmap else model.data(QModelIndex(), PixmapRole) self.scene.set_pixmap(pixmap) def rowsInserted(self, parent, start, end): """QAbstractItemView slot """ debug_print('GraphicsItemView.rowsInserted', start, end) # New boxes but are coming but their rects are not yet known. # Create new items with zero height and zero width rects - actual rects # will be set in dataChanged() n = 1 + end - start new = [None] * n rect = QRect(0, 0, 0, 0) for row in range(n): new[row] = self.scene.add_box(rect, False) self._rows[start:start] = new def dataChanged(self, topLeft, bottomRight, roles=[]): """QAbstractItemView virtual """ debug_print('GraphicsItemView.dataChanged', topLeft.row(), bottomRight.row()) for row in range(topLeft.row(), 1 + bottomRight.row()): item = self._rows[row] # new is a QRect - integer coordinates index = self.model().index(row, 0) item.set_rect(index.data(RectRole)) item.set_isvalid(index.data(MetadataValidRole)) def rowsAboutToBeRemoved(self, parent, start, end): """QAbstractItemView slot """ debug_print('GraphicsItemView.rowsAboutToBeRemoved', start, end) if self.handling_selection_update: debug_print('Unexpected handling_selection_update in ' 'GraphicsItemView.rowsAboutToBeRemoved') # Ignore the selectionChanged() notifications that the scene will send # for every item that is about to be removed. self.handling_selection_update = True try: # TODO Context for this for item in self._rows[start:end]: self.scene.removeItem(item) finally: self.handling_selection_update = False # Remove items self._rows[start:end] = [] def selectionChanged(self, selected, deselected): """QAbstractItemView virtual """ # Tell the scene about the new selection # TODO LH Use a timer to implement a delayed refresh if not self.handling_selection_update: # TODO Context for this debug_print('GraphicsItemView.selectionChanged') self.handling_selection_update = True try: current = set(self.scene.selectedItems()) new = set(self._rows[i.row()] for i in self.selectionModel().selectedIndexes()) for item in new.difference(current): item.setSelected(True) item.update() for item in current.difference(new): item.setSelected(False) item.update() if new: for view in self.scene.views(): view.zoom_to_items(new) finally: self.handling_selection_update = False def rows_of_items(self, items): """Returns a generator of row numbers of the list of QGraphicsItems """ # TODO LH This is horrible # TODO LH Use a view to support changes to self._rows during iteration? return (self._rows.index(i) for i in items) def indexes_of_items(self, items): """Returns a generator of indexes of the list of QGraphicsItems """ # TODO LH Use a view to support changes to self._rows during iteration? return (self.model().index(row, 0) for row in self.rows_of_items(items)) def items_of_rows(self, rows): """Returns an iterable of QGraphicsItems for the given rows """ return (self._rows[r] for r in rows) def items_of_indexes(self, indexes): """Returns an iterable of QGraphicsItems for the given indexes """ return (self._rows[i.row()] for i in indexes) def scene_selection_changed(self): """scene.selectionChanged slot """ # TODO LH Fix dreadful performance when selection changing as a result # of mouse drag if not self.handling_selection_update: debug_print('GraphicsItemView.scene_selection_changed') # TODO Context for this self.handling_selection_update = True try: new_selection = set(self.rows_of_items(self.scene.selectedItems())) update_selection_model(self.model(), self.selectionModel(), new_selection) finally: self.handling_selection_update = False def scene_item_rects_updated(self, items): """The user moved or resized items in the scene """ debug_print('GraphicsItemView.item_rects_updated') for index, item in zip(self.indexes_of_items(items), items): # item.sceneBoundingRect() is the items rects in the correct # coordinates system debug_print('Row [{0}] updated'.format(index.row())) rect = item.sceneBoundingRect() # Cumbersome conversion to ints rect = QRect(rect.left(), rect.top(), rect.width(), rect.height()) self.model().setData(index, rect, RectRole) def scene_box_added(self, rect): """The user added a box """ m = self.model() row = len(self._rows) if not m.insertRow(row): raise InselectError('Could not insert row') else: # Cumbersome conversion to ints rect = QRect(rect.left(), rect.top(), rect.width(), rect.height()) if not m.setData(m.index(row, 0), rect, RectRole): raise InselectError('Could not set rect') else: # Select the new box self.scene.clearSelection() item = next(self.items_of_rows([row])) item.setSelected(True) item.update()
493414
import math from seamless.highlevel import Context, Cell import json ctx = Context() ctx.pi = math.pi ctx.doubleit = lambda a: 2 * a ctx.doubleit.hash_pattern = {"*": "#"} ctx.doubleit.a = ctx.pi ctx.twopi = ctx.doubleit ctx.translate() graph = ctx.get_graph() print(json.dumps( graph, indent=2, sort_keys=True)) json.dump(graph, open("twopi-deepcell.seamless", "w"), indent=2, sort_keys=True) ctx.compute() print(ctx.pi.value) print(ctx.twopi.value) ctx.doubleit.code = lambda a: 42 ctx.compute() print(ctx.pi.value) print(ctx.twopi.value) ctx.translate(force=True) ctx.compute() print(ctx.pi.value) print(ctx.twopi.value) print() ctx.doubleit.code = lambda a: 2 * a ctx.compute() print(ctx.pi.value) print(ctx.twopi.value) graph = ctx.get_graph() json.dump(graph, open("twopi-deepcell-result.seamless", "w"), indent=2, sort_keys=True) archive = ctx.get_zip() with open("twopi-deepcell-result.zip", "wb") as f: f.write(archive) import os os.system("md5sum twopi-deepcell.seamless twopi-deepcell-result.seamless twopi-deepcell-result.zip")
493449
from builtins import range from mrq.helpers import ratelimit import time def test_helpers_ratelimit(worker): worker.start_deps() assert ratelimit("k3", 1, per=1) == 1 assert ratelimit("k3", 1, per=1) == 0 assert ratelimit("k3", 1, per=1) == 0 for i in range(0, 10): r = ratelimit("k", 10, per=1) assert r == 10 - i assert ratelimit("k", 10, per=1) == 0 assert ratelimit("k2", 5, per=1) == 5 # We *could* have failures there if we go over a second but we've not seen # it much so far. for i in range(0, 100): assert ratelimit("k", 10, per=1) == 0 # TODO: test the "per" argument a bit better. time.sleep(1) assert ratelimit("k", 10, per=1) == 10 assert ratelimit("k", 10, per=1) == 9 # This is actually another counter. assert ratelimit("k", 10, per=10) == 10 assert ratelimit("k", 10, per=10) == 9 worker.stop_deps()
493467
import torch.nn as nn class PoseDecoder(nn.Module): def __init__(self, input_channels): super().__init__() self.nl = nn.ReLU() self.squeeze = nn.Conv2d(input_channels, 256, 1) self.conv_1 = nn.Conv2d(256, 256, 3, 1, 1) self.conv_2 = nn.Conv2d(256, 256, 3, 1, 1) self.conv_3 = nn.Conv2d(256, 6, 1) # The original monodepth2 PoseDecoder # included a constant multiplication by # 0.01 in the forward pass, possibly to # make x_angle and x_translation tiny at # the beginning of training for stability. # In my opinion this hurts performance # with weight_decay enabled. # Scaling the initial weights should have # a similar effect. self.conv_3.weight.data *= 0.01 self.conv_3.bias.data *= 0.01 def forward(self, x): x = self.squeeze(x) x = self.nl(x) x = self.conv_1(x) x = self.nl(x) x = self.conv_2(x) x = self.nl(x) x = self.conv_3(x) x = x.mean((3, 2)).view(-1, 1, 1, 6) x_angle = x[..., :3] x_translation = x[..., 3:] return x_angle, x_translation
493474
import numpy as np import os from PIL import Image from keras.preprocessing import image def preprocess_input(x): x = x.astype(np.float32) x /= 255. return x def decode_output(x): x = x.astype(np.float32) x *= 255. return x def make_paths_from_directory(root): input_paths = [] for dirpath, dirnames, filenames in os.walk(root): for filename in filenames: filepath = os.path.join(dirpath, filename) with open(filepath, 'rb') as fp: magic = fp.read(8) if magic.startswith(b'GIF89a') or magic.startswith(b'GIF87a'): filetype = 'gif' elif magic == b'\xff\xd8\xff\xe0\x00\x10JF': filetype = 'jpeg' elif magic.startswith(b'\x89PNG'): filetype = 'png' else: print(' unsupported file type', repr(magic), filepath) continue input_paths.append(filepath) return input_paths def make_arrays_from_paths(paths, preprocess=None, target_size=None): rv = [] for path in paths: img = image.load_img(path, target_size=target_size) ar = image.img_to_array(img) if preprocess: ar = preprocess(ar) rv.append(ar) return np.array(rv) def generate_img(xgenerater): num_generate_imgs = 144 z_dim = xgenerater.input_shape[-1] z = np.random.normal(size=(num_generate_imgs, 1, 1, z_dim)) x_gen = xgenerater.predict_on_batch(z) x_gen = decode_output(x_gen) x_gen = np.clip(x_gen, 0., 255.).astype(np.uint8) # Concatenate generated images grid_size = int(np.sqrt(num_generate_imgs)) rows = [] for i in range(0, num_generate_imgs, grid_size): row = np.concatenate(x_gen[i:i+grid_size], axis=1) rows.append(row) concatenated = np.concatenate(rows, axis=0) return Image.fromarray(concatenated) def reconstruct_img(x, xgen, zgen): """ x assumes x_train xgen: trained xgenerater zgen: trained zgenerater """ # original images ind = np.random.permutation(len(x)) num_generate_imgs = 144 x = (x[ind])[:num_generate_imgs//2] x = x.astype(np.uint8) # generated images x_copy = np.copy(x) x_copy = x_copy.astype(np.float32) x_copy = preprocess_input(x_copy) z_gen = zgen.predict_on_batch(x_copy) x_gen = xgen.predict_on_batch(z_gen) x_gen = decode_output(x_gen) x_gen = np.clip(x_gen, 0., 255.).astype(np.uint8) grid_size = int(np.sqrt(num_generate_imgs)) cols = [] for i in range(0, num_generate_imgs//2, grid_size): col_orig = np.concatenate(x[i:i+grid_size], axis=0) col_gen = np.concatenate(x_gen[i:i+grid_size], axis=0) col = np.concatenate([col_orig, col_gen], axis=1) cols.append(col) concatenated = np.concatenate(cols, axis=1) return Image.fromarray(concatenated)
493491
import numpy as np import random import config class DataProvider: def __init__(self, nparray_path): print('Load data for STN ...') self.imgs_trans = np.load(nparray_path + 'SE_transformed_imgs_with_W.npy') img_embd_sz_arr = np.load(nparray_path + 'img_embd_sz.npy') self.feed_size = self.imgs_trans.shape[0] self.img_sz = (int(img_embd_sz_arr[0]), int(img_embd_sz_arr[1]), 4) self.cnt = 0 idx_train = list(range(0, self.feed_size)) #random.sample(range(self.feed_size), self.feed_size) # self.batch_test = self.imgs_trans[idx_test, ...] self.batch_train = self.imgs_trans[idx_train, ...] print('Image size: ', self.img_sz) print('Finished uploading np array, Train data shape:', self.batch_train.shape, ', feed size: ', self.feed_size) def next_batch(self, batch_size, data_type): batch_img = None if data_type == 'train': if config.stn['ordered_batch']: # (use ordered batch size) if self.cnt+batch_size <= self.feed_size: idx = list(range(self.cnt, self.cnt+batch_size)) self.cnt = self.cnt+(batch_size//7) else: idx = list(range(self.feed_size-batch_size, self.feed_size)) self.cnt = 0 # END DEBUG (use ordered batch size) else: # (use random batch size) idx = random.sample(range(len(self.batch_train)), batch_size) # print("idx: ", idx) batch_img = self.batch_train[idx, ...] elif data_type == 'test': batch_img = self.batch_train return batch_img
493519
from django.contrib import admin from django.db import models from django.forms import TextInput from django.utils.safestring import mark_safe from ..core.admin import DittoItemModelAdmin from .models import Account, Photo, Photoset, User @admin.register(Account) class AccountAdmin(admin.ModelAdmin): list_display = ( "user", "has_credentials", "is_active", "time_created", "time_modified", ) fieldsets = ( (None, {"fields": ("user", "is_active",)}), ( "API", { "fields": ("api_key", "api_secret",), "description": ( "Keys and secrets require creation of an app at " '<a href="https://www.flickr.com/services/apps/create/apply/">' "flickr.com/...</a>" ), }, ), ( "Data", {"classes": ("collapse",), "fields": ("time_created", "time_modified",)}, ), ) formfield_overrides = { # Make the inputs full-width. models.CharField: {"widget": TextInput(attrs={"class": "vLargeTextField"})}, } readonly_fields = ( "time_created", "time_modified", ) def has_credentials(self, obj): return obj.has_credentials() has_credentials.boolean = True @admin.register(User) class UserAdmin(admin.ModelAdmin): list_display = ( "show_avatar", "realname", "username", "fetch_time", ) list_display_links = ( "show_avatar", "realname", ) fieldsets = ( ( None, { "fields": ( "realname", "username", "nsid", "is_pro", "location", "description", "photos_url", "profile_url", "avatar", "photos_count", "photos_views", "photos_first_date", "photos_first_date_taken", "timezone_id", ) }, ), ( "Data", { "classes": ("collapse",), "fields": ( "iconserver", "iconfarm", "raw", "fetch_time", "time_created", "time_modified", ), }, ), ) readonly_fields = ( "raw", "fetch_time", "time_created", "time_modified", ) search_fields = ( "realname", "username", ) def show_avatar(self, instance): return mark_safe( '<img src="%s" width="24" height="24" />' % (instance.avatar_url) ) show_avatar.short_description = "" @admin.register(Photoset) class PhotosetAdmin(admin.ModelAdmin): list_display = ( "title", "flickr_created_time", "fetch_time", ) list_display_links = ("title",) fieldsets = ( ( None, { "fields": ( "user", "title", "description", "primary_photo", "flickr_id", "photo_count", "video_count", "view_count", "comment_count", "last_update_time", "flickr_created_time", "photos", ) }, ), ( "Data", { "classes": ("collapse",), "fields": ("raw", "fetch_time", "time_created", "time_modified",), }, ), ) readonly_fields = ( "raw", "fetch_time", "time_created", "time_modified", ) search_fields = ( "title", "description", ) raw_id_fields = ( "primary_photo", "photos", ) class TaggedPhotoInline(admin.TabularInline): model = Photo.tags.through raw_id_fields = ("tag",) @admin.register(Photo) class PhotoAdmin(DittoItemModelAdmin): list_display = ( "title", "show_thumb", "post_time", "taken_time", ) list_display_links = ( "title", "show_thumb", ) list_filter = ( "post_time", "fetch_time", ) date_hierarchy = "post_time" search_fields = [ "title", "description", ] fieldsets = ( ( None, { "fields": ( "show_image", "user", "title", "description", "summary", "permalink", "is_private", "flickr_id", "media", "license", "original_file", "video_original_file", ) }, ), ( "Times", { "classes": ("collapse",), "fields": ( "post_time", "post_year_str", "last_update_time", "taken_time", "taken_year_str", "taken_granularity", "taken_unknown", ), }, ), ( "Counts, secrets, server, etc", { "classes": ("collapse",), "fields": ( "view_count", "comment_count", "secret", "original_secret", "server", "farm", "rotation", "original_format", "safety_level", "has_people", ), }, ), ( "Sizes", { "classes": ("collapse",), "fields": ( ("thumbnail_width", "thumbnail_height",), ("small_width", "small_height",), ("small_320_width", "small_320_height",), ("medium_width", "medium_height",), ("medium_640_width", "medium_640_height",), ("medium_800_width", "medium_800_height",), ("large_width", "large_height",), ("large_1600_width", "large_1600_height",), ("large_2048_width", "large_2048_height",), ("x_large_3k_width", "x_large_3k_height",), ("x_large_4k_width", "x_large_4k_height",), ("x_large_5k_width", "x_large_5k_height",), ("x_large_6k_width", "x_large_6k_height",), ("original_width", "original_height",), ("mobile_mp4_width", "mobile_mp4_height",), ("site_mp4_width", "site_mp4_height",), ("hd_mp4_width", "hd_mp4_height",), ("video_original_width", "video_original_height",), ), }, ), ( "Location", { "classes": ("collapse",), "fields": ( "geo_is_private", ("latitude", "longitude",), "location_accuracy", "location_context", "location_place_id", "location_woeid", "locality_name", "locality_place_id", "locality_woeid", "county_name", "county_place_id", "county_woeid", "region_name", "region_place_id", "region_woeid", "country_name", "country_place_id", "country_woeid", ), }, ), ( "EXIF", { "classes": ("collapse",), "fields": ( "exif_camera", "exif_lens_model", "exif_aperture", "exif_exposure", "exif_flash", "exif_focal_length", "exif_iso", ), }, ), ( "Data", { "classes": ("collapse",), "fields": ( "raw", "sizes_raw", "exif_raw", "fetch_time", "time_created", "time_modified", ), }, ), ) radio_fields = {"media": admin.HORIZONTAL} readonly_fields = ( "post_year_str", "taken_year_str", "show_image", "raw", "fetch_time", "time_created", "time_modified", "sizes_raw", "exif_raw", ) formfield_overrides = { # Make the inputs full-width. models.CharField: {"widget": TextInput(attrs={"class": "vLargeTextField"})}, } inlines = [ TaggedPhotoInline, ] raw_id_fields = ("user",) def show_thumb(self, instance): return mark_safe( '<img src="%s" width="%s" height="%s" />' % ( instance.thumbnail_url, instance.thumbnail_width, instance.thumbnail_height, ) ) show_thumb.short_description = "Thumbnail" def show_image(self, instance): return mark_safe( '<img src="%s" width="%s" height="%s" />' % (instance.small_url, instance.small_width, instance.small_height) ) show_image.short_description = "Small image" def taken_year_str(self, instance): "So Admin doesn't add a comma, like '2,016'." return str(instance.taken_year) taken_year_str.short_description = "Taken year"
493530
import logging from collections import defaultdict from typing import Dict, List, Sequence, Any, Optional, Union, cast from .encoding import flip_bloom_filter from .pprlindex import PPRLIndex, ReversedIndexResult from .signature_generator import generate_signatures from .stats import reversed_index_per_strategy_stats, reversed_index_stats from .validation import PSigConfig class PPRLIndexPSignature(PPRLIndex): """Class that implements the PPRL indexing technique: Reference scalability entity resolution using probability signatures on parallel databases. This class includes an implementation of p-sig algorithm. """ def __init__(self, config: Union[PSigConfig, Dict]) -> None: """Initialize the class and set the required parameters. Arguments: - config: Configuration for P-Sig reverted index. """ if isinstance(config, dict): config = PSigConfig.parse_obj(config) config = cast(PSigConfig, config) super().__init__(config) self.blocking_features = config.blocking_features self.filter_config = config.filter self.blocking_config = config.blocking_filter self.signature_strategies = config.signatures self.rec_id_col = config.record_id_column def build_reversed_index(self, data: Sequence[Sequence], header: Optional[List[str]] = None): """Build inverted index given P-Sig method. """ feature_to_index = self.get_feature_to_index_map(data, header) self.set_blocking_features_index(self.blocking_features, feature_to_index) # Build index of records if self.rec_id_col is None: record_ids = list(range(len(data))) else: record_ids = [x[self.rec_id_col] for x in data] reversed_index_per_strategy = \ [defaultdict(list) for _ in range(len(self.signature_strategies))] # type: List[Dict[str, List[Any]]] # Build inverted index # {signature -> record ids} for rec_id, dtuple in zip(record_ids, data): signatures = generate_signatures(self.signature_strategies, dtuple, feature_to_index) for i, signature in enumerate(signatures): reversed_index_per_strategy[i][signature].append(rec_id) reversed_index_per_strategy = [self.filter_reversed_index(data, reversed_index) for reversed_index in reversed_index_per_strategy] # somehow the reversed_index of the first strategy gets overwritten in the next step. Thus, we generate the # statistics of the different strategies first. strategy_stats = reversed_index_per_strategy_stats(reversed_index_per_strategy, len(data)) # combine the reversed indices into one filtered_reversed_index = reversed_index_per_strategy[0] for rev_idx in reversed_index_per_strategy[1:]: filtered_reversed_index.update(rev_idx) # check if final inverted index is empty if len(filtered_reversed_index) == 0: raise ValueError('P-Sig: All records are filtered out!') # compute coverage information entities = set() for recids in filtered_reversed_index.values(): for rid in recids: entities.add(rid) coverage = len(entities) / len(record_ids) if coverage < 1: logging.warning( f'The P-Sig configuration leads to incomplete coverage ({round(coverage * 100, 2)}%)!\n' f'This means that not all records are part of at least one block. You can increase coverage by ' f'adjusting the filter to be less aggressive or by finding signatures that produce smaller block sizes.' ) # map signatures in reversed_index into bloom filter num_hash_func = self.blocking_config.number_of_hash_functions bf_len = self.blocking_config.bloom_filter_length reversed_index = {} # type: Dict[str, List[Any]] for signature, rec_ids in filtered_reversed_index.items(): bf_set = str(tuple(flip_bloom_filter(signature, bf_len, num_hash_func))) if bf_set in reversed_index: reversed_index[bf_set].extend(rec_ids) else: reversed_index[bf_set] = rec_ids # create some statistics around the blocking results stats = reversed_index_stats(reversed_index) stats['statistics_per_strategy'] = strategy_stats stats['coverage'] = coverage return ReversedIndexResult(reversed_index, stats) def filter_reversed_index(self, data: Sequence[Sequence], reversed_index: Dict): # Filter inverted index based on ratio n = len(data) # filter blocks based on filter type filter_type = self.filter_config.type if filter_type == "ratio": min_occur_ratio = self.filter_config.min max_occur_ratio = self.filter_config.max reversed_index = {k: v for k, v in reversed_index.items() if n * max_occur_ratio > len(v) > n * min_occur_ratio} elif filter_type == "count": min_occur_count = self.filter_config.min max_occur_count = self.filter_config.max reversed_index = {k: v for k, v in reversed_index.items() if max_occur_count > len(v) > min_occur_count} else: raise NotImplementedError("Don't support {} filter yet.".format(filter_type)) return reversed_index
493569
import argparse import math from datetime import datetime import h5py import numpy as np import tensorflow as tf import socket import importlib import os import sys import os.path from os import path import json import pickle BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) # model sys.path.append(os.path.join(BASE_DIR, 'utils')) sys.path.append(os.path.join(BASE_DIR, '..')) sys.path.append(os.path.join(BASE_DIR, 'tf_ops/nn_distance')) import tf_nndistance import shutil import time import mesh_utils import objloader SHAPENET_BASEDIR = '/orion/group/ShapeNetManifold_10000/' parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--category', default="chair", help='Which single class to use') parser.add_argument('--num_point', type=int, default=2048, help='Point Number [default: 2048]') parser.add_argument('--batch_size', type=int, default=64, help='Batch Size during training [default: 32]') parser.add_argument('--num_candidates', type=int, default=50, help='Number of \'nearest neighbors\' to take.') parser.add_argument('--generate_negatives', default = False, help='for generating negatives [default: False]') parser.add_argument('--data_split', default = "train", help='which data split to use') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point GPU_INDEX = FLAGS.gpu OBJ_CAT = FLAGS.category NUM_CANDIDATES = FLAGS.num_candidates GENERATE_NEGS = FLAGS.generate_negatives DATA_SPLIT = FLAGS.data_split HOSTNAME = socket.gethostname() np.random.seed(0) #### Get point clouds for each object instance with open('../shapenetcore_v2_split.json') as json_file: data = json.load(json_file) train_data = data[DATA_SPLIT] num_categories = len(list(train_data.keys())) idx = -1 for i in range(num_categories): cat_name = train_data[str(i)]["category"] if (cat_name == OBJ_CAT): idx = i break synsetid = train_data[str(idx)]["synsetid"] model_names = train_data[str(idx)]["model_names"] num_samples = train_data[str(idx)]["num_samples"] print("Category Name: "+cat_name) print("Synsetid: "+synsetid) print("Num samples: "+str(num_samples)) #####h5 file handles def save_dataset(fname, pcs): cloud = np.stack([pc for pc in pcs]) fout = h5py.File(fname) fout.create_dataset('data', data=cloud, compression='gzip', dtype='float32') fout.close() def load_h5(h5_filename): f = h5py.File(h5_filename) data = f['data'][:] return data # ##load obj files and get point clouds start_time = time.time() fname = DATA_SPLIT +"_"+OBJ_CAT+".h5" if not path.exists(fname): OBJ_POINTCLOUDS = [] for i in range(len(model_names)): ref_model_name = model_names[i] ref_filename = os.path.join(SHAPENET_BASEDIR, synsetid, ref_model_name, 'models', 'model_normalized.obj') V, F, VT, FT, VN, FN, face_mat, kdmap = objloader.LoadSimpleOBJ_manifold(ref_filename) idx_pts = np.arange(V.shape[0]) np.random.shuffle(idx_pts) if(V.shape[0]<NUM_POINT): pass pc = mesh_utils.mesh_to_pc(V, F, num_points=NUM_POINT) OBJ_POINTCLOUDS.append(pc) if (i%50==0): print("Time elapsed: "+str(time.time()-start_time)+" sec for "+str(i)+" samples.") OBJ_POINTCLOUDS = np.array(OBJ_POINTCLOUDS) save_dataset(fname, OBJ_POINTCLOUDS) OBJ_POINTCLOUDS = load_h5(fname) print(OBJ_POINTCLOUDS.shape) print("Loading and sampling time: "+str(time.time()-start_time)+" sec") print("Done processing h5 files.") def chamfer_loss(pc1, pc2): """ pred: BxNx3, label: BxNx3, """ dists_forward,_,dists_backward,_ = tf_nndistance.nn_distance(pc1, pc2) # loss = dists_forward+dists_backward loss = tf.reduce_mean(dists_forward+dists_backward, axis=1) return loss def evaluate(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl_1 = tf.placeholder(tf.float32, shape=(BATCH_SIZE, NUM_POINT, 3)) pointclouds_pl_2 = tf.placeholder(tf.float32, shape=(BATCH_SIZE, NUM_POINT, 3)) chamfer_distance = chamfer_loss(pointclouds_pl_1, pointclouds_pl_2) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Init variables init = tf.global_variables_initializer() sess.run(init) ops = {'pointclouds_pl_1': pointclouds_pl_1, 'pointclouds_pl_2': pointclouds_pl_2, 'chamfer_distance': chamfer_distance, } epoch_loss = eval_one_epoch(sess, ops) def eval_one_epoch(sess, ops): """ ops: dict mapping from string to tf ops """ current_data = OBJ_POINTCLOUDS num_batches = current_data.shape[0]//BATCH_SIZE candidates_idx = [] start_time = time.time() for j in range(current_data.shape[0]): curr_pc = current_data[j, :, :] curr_pc = np.expand_dims(curr_pc, axis=0) curr_pc = np.tile(curr_pc, (BATCH_SIZE, 1, 1)) #To compare chamfer_distances = [] for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE batch_data = current_data[start_idx:end_idx, :, :] feed_dict = {ops['pointclouds_pl_1']: curr_pc, ops['pointclouds_pl_2']: batch_data,} chamfer_distance = sess.run([ops['chamfer_distance']], feed_dict=feed_dict) chamfer_distance = np.array(chamfer_distance)[0] for i in range(BATCH_SIZE): chamfer_distances.append(chamfer_distance[i]) for extra in range((num_batches)*BATCH_SIZE, current_data.shape[0]): extra_pc = current_data[extra, :, :] extra_pc = np.expand_dims(extra_pc, axis=0) extra_pc = np.tile(extra_pc, (BATCH_SIZE, 1, 1)) feed_dict = {ops['pointclouds_pl_1']: curr_pc, ops['pointclouds_pl_2']: extra_pc,} chamfer_distance = sess.run([ops['chamfer_distance']], feed_dict=feed_dict) chamfer_distance = np.array(chamfer_distance)[0] #Only the first pair is not a placeholder chamfer_distances.append(chamfer_distance[0]) chamfer_distances = np.array(chamfer_distances) if (GENERATE_NEGS): #Get random 25 from (1/3, 2/3) * num_samples and 25 from (2/3, 1) * num_samples num_samples = chamfer_distances.shape[0] idx = np.argsort(chamfer_distances) med_cd_idx = idx[int(num_samples/3):2*int(num_samples/3)] m_idx_select = np.random.choice(med_cd_idx.shape[0], int(NUM_CANDIDATES/2), replace=False) med_cd_idx_selected = med_cd_idx[m_idx_select] far_cd_idx = idx[2*int(num_samples/3):] f_idx_select = np.random.choice(far_cd_idx.shape[0], int(NUM_CANDIDATES/2), replace=False) far_cd_idx_selected = far_cd_idx[f_idx_select] selected = np.concatenate((med_cd_idx_selected, far_cd_idx_selected), axis=0) candidates_idx.append(selected) ###Gets top 50 chamfer distance candidates else: idx = np.argsort(chamfer_distances) ## sorted but slower runtime #Remove itself idx_candidates = np.delete(idx, np.argwhere(idx==j)) candidates_idx.append(idx_candidates[:NUM_CANDIDATES]) if (j%100==0): print("Time elapsed: "+str(time.time()-start_time)+" sec for "+str(j)+" samples.") print(candidates_idx[0]) print(candidates_idx[100]) if (GENERATE_NEGS): filename = 'candidates_' + DATA_SPLIT + '_'+OBJ_CAT+'_negatives.pickle' else: filename = 'candidates_' + DATA_SPLIT + '_'+OBJ_CAT+'_retrieval.pickle' with open(filename, 'w') as handle: pickle.dump(candidates_idx, handle, protocol=pickle.HIGHEST_PROTOCOL) print(filename) print("Done.") if __name__ == "__main__": evaluate()
493674
import os, sys import subprocess TOOLS_DIR = "tools" def RunCommand(cmds): ret = 0 cmds[0] = "{}/{}/{}.py".format(os.getcwd(), TOOLS_DIR, cmds[0]) if os.path.exists(cmds[0]): cmds.insert(0, "python3") ret = subprocess.call(cmds) else: print("Invalid command: ", cmds[0]) ret = -1 return ret # ----- Main Entry Point ----- # argc = len(sys.argv) i = 1 while i < argc: cmds = [sys.argv[i]] while True: if i < argc - 1 and sys.argv[i+1][0] == "-": cmds.append(sys.argv[i+1][1:]) i = i + 1 else: break print("\n------------------------------") print("Executing: ", cmds[0]) if len(cmds) > 1: print("With arguments: {}".format(", ".join(cmds[1:]))) if RunCommand(cmds) != 0: break i = i + 1
493679
import numpy as np from .util import zero_pad, format_json from .grouping import group_rows from .constants import log, _log_time _MIN_BIN_COUNT = 20 _TOL_FREQ = 1e-3 def rotationally_invariant_identifier(mesh, length=6, as_json=False, json_digits=None): ''' Given an input mesh, return a vector or string that has the following properties: * invariant to rotation of the mesh * robust to different tesselation of the surfaces * meshes that are similar but not identical return values that are close in euclidean distance Does this by computing the area- weighted distribution of the radius (from the center of mass). Arguments --------- mesh: Trimesh length: number of terms to compute of the identifier as_json: whether to return the identifier as json (vs 1D float array) Returns --------- identifer: if not as_json: (length) float array of unique identifier else: same as above, but serialized as json ''' frequency_count = int(length - 2) # calculate the mass properties of the mesh, which is doing a surface integral to # find the center of volume of the mesh mass_properties = mesh.mass_properties(skip_inertia=True) vertex_radii = np.sum((mesh.vertices.view(np.ndarray) - mesh.center_mass) ** 2, axis=1) ** .5 # since we will be computing the shape distribution of the radii, we need to make sure there # are enough values to populate more than one sample per bin. bin_count = int(np.min([256, mesh.vertices.shape[0] * 0.2, mesh.faces.shape[0] * 0.2])) # if any of the frequency checks fail, we will use this zero length vector as the # formatted information for the identifier freq_formatted = np.zeros(frequency_count) if bin_count > _MIN_BIN_COUNT: face_area = mesh.area_faces face_radii = vertex_radii[mesh.faces].reshape(-1) area_weight = np.tile((face_area.reshape((-1, 1)) * (1.0 / 3.0)), (1, 3)).reshape(-1) if face_radii.std() > 1e-3: freq_formatted = fft_freq_histogram(face_radii, bin_count=bin_count, frequency_count=frequency_count, weight=area_weight) # using the volume (from surface integral), surface area, and top frequencies identifier = np.hstack((mass_properties['volume'], mass_properties['surface_area'], freq_formatted)) if as_json: # return as a json string rather than an array return format_json(identifier) return identifier def fft_freq_histogram(data, bin_count, frequency_count=4, weight=None): data = np.reshape(data, -1) if weight is None: weight = np.ones(len(data)) hist, bin_edges = np.histogram(data, weights=weight, bins=bin_count) # we calculate the fft of the radius distribution fft = np.abs(np.fft.fft(hist)) # the magnitude is dependant on our weighting being good # frequency should be more solid in more cases freq = np.fft.fftfreq(data.size, d=(bin_edges[1] - bin_edges[0])) + bin_edges[0] # now we must select the top FREQ_COUNT frequencies # if there are a bunch of frequencies whose components are very close in magnitude, # just picking the top FREQ_COUNT of them is non-deterministic # thus we take the top frequencies which have a magnitude that is distingushable # and we zero pad if this means fewer values available fft_top = fft.argsort()[-(frequency_count + 1):] fft_ok = np.diff(fft[fft_top]) > _TOL_FREQ if fft_ok.any(): fft_start = np.nonzero(fft_ok)[0][0] + 1 fft_top = fft_top[fft_start:] freq_final = np.sort(freq[fft_top]) else: freq_final = [] freq_formatted = zero_pad(freq_final, frequency_count) return freq_formatted @_log_time def merge_duplicates(meshes): ''' Given a list of meshes, find meshes which are duplicates and merge them. Arguments --------- meshes: (n) list of meshes Returns --------- merged: (m) list of meshes where (m <= n) ''' # so we can use advanced indexing meshes = np.array(meshes) # by default an identifier is a 1D float array with 6 elements hashes = [i.identifier for i in meshes] groups = group_rows(hashes, digits=1) merged = [None] * len(groups) for i, group in enumerate(groups): quantity = 0 metadata = {} for mesh in meshes[group]: # if metadata exists don't nuke it if 'quantity' in mesh.metadata: quantity += mesh.metadata['quantity'] else: quantity += 1 metadata.update(mesh.metadata) metadata['quantity'] = int(quantity) metadata['original_index'] = group merged[i] = meshes[group[0]] merged[i].metadata = metadata log.info('merge_duplicates reduced part count from %d to %d', len(meshes), len(merged)) return np.array(merged)
493691
Runtime.createAndStart("sweety", "Sweety") sweety.chatBot.startSession("default", "wikiTestFR") sweety.chatBot.setPredicate("default","name","unknow") wdf = Runtime.createAndStart("wikiDataFetcher", "WikiDataFetcher") wdf.setLanguage("fr") wdf.setWebSite("frwiki") # Add route from webKitSpeechRecognition to Program AB sweety.ear.addTextListener(sweety.chatBot) # Add route from Program AB to html filter sweety.chatBot.addTextListener(sweety.htmlFilter) # Add route from html filter to mouth sweety.htmlFilter.addListener("publishText", python.name, "talk"); sweety.mouth.setLanguage("FR"); sweety.mouth.setVoice("Antoine"); print cutStart("Le chat") def talk(data): sweety.mouth.speak(data) print "Saying :", data def askWiki(start,query): query = unicode(query,'utf-8') answer = ( start + " " + query + " est " + wdf.getDescription(query)) print " send aswer to the bot : " + answer sweety.chatBot.getResponse("say " + answer) def getProperty(query, ID, what): query = unicode(query,'utf-8') what = unicode(what,'utf-8') print " query : " + query answer = ( query +" " + what + " " + wdf.getSnak(query,ID)) print " send aswer to the bot : " + answer sweety.chatBot.getResponse("say " + answer)
493781
import os from test.podman_testcase import PodmanTestCase import podman from podman import FoldedString pod = None class TestPodsCtnrs(PodmanTestCase): @classmethod def setUpClass(cls): # Populate storage super().setUpClass() @classmethod def tearDownClass(cls): super().tearDownClass() def setUp(self): self.tmpdir = os.environ['TMPDIR'] self.host = os.environ['PODMAN_HOST'] self.pclient = podman.Client(self.host) def test_010_populate(self): global pod pod = self.pclient.pods.create('pod1') self.assertEqual('pod1', pod.name) img = self.pclient.images.get('docker.io/library/alpine:latest') ctnr = img.container(pod=pod.id) pod.refresh() self.assertEqual('1', pod.numberofcontainers) self.assertEqual(ctnr.id, pod.containersinfo[0]['id']) def test_015_one_shot(self): global pod details = pod.inspect() state = FoldedString(details.containers[0]['state']) self.assertEqual(state, 'configured') pod = pod.start() status = FoldedString(pod.containersinfo[0]['status']) # Race on whether container is still running or finished self.assertIn(status, ('stopped', 'exited', 'running')) pod = pod.restart() status = FoldedString(pod.containersinfo[0]['status']) self.assertIn(status, ('stopped', 'exited', 'running')) # Pod kill is broken, so use stop for now killed = pod.stop() self.assertEqual(pod, killed) def test_999_remove(self): global pod ident = pod.remove(force=True) self.assertEqual(ident, pod.id) with self.assertRaises(StopIteration): next(self.pclient.pods.list())
493825
from .blocks import conv_block from .transform_block import transformation_block from tensorflow import keras from tensorflow.keras import layers import tensorflow as tf def get_shape_segmentation_model(num_points: int, num_classes: int) -> keras.Model: input_points = keras.Input(shape=(num_points, 3)) # PointNet Classification Network. transformed_inputs = transformation_block( input_points, num_features=3, name="input_transformation_block" ) features_64 = conv_block(transformed_inputs, filters=64, name="features_64") features_128_1 = conv_block(features_64, filters=128, name="features_128_1") features_128_2 = conv_block(features_128_1, filters=128, name="features_128_2") transformed_features = transformation_block( features_128_2, num_features=128, name="transformed_features" ) features_512 = conv_block(transformed_features, filters=512, name="features_512") features_2048 = conv_block(features_512, filters=2048, name="pre_maxpool_block") global_features = layers.MaxPool1D(pool_size=num_points, name="global_features")( features_2048 ) global_features = tf.tile(global_features, [1, num_points, 1]) # Segmentation Head segmentation_input = layers.Concatenate(name="segmentation_input")( [ features_64, features_128_1, features_128_2, transformed_features, features_512, global_features, ] ) segmentation_features = conv_block( segmentation_input, filters=128, name="segmentation_features" ) prefinal_outputs = layers.Conv1D( num_classes, kernel_size=1, name="pre_final_layer" )(segmentation_features) outputs = layers.Activation("softmax", dtype="float32", name="segmentation_head")( prefinal_outputs ) return keras.Model(input_points, outputs)
493865
import zlib import sys import argparse print('\033[0;32m'+"Zlib file decompressor : " + '1.0' + " Updated: " + 'May 15, 2018' +'\033[0;39m') parser = argparse.ArgumentParser(description='\033[0;31m'+'Decompress a zlib file'+'\033[0;39m') parser.add_argument("-input", metavar='file', type=str, default="file.zlib", help='Input zlib file (default: %(default)s)') parser.add_argument("-output", metavar='file', type=str, default="file.out", help='Output decompressed file (default: %(default)s)') args = parser.parse_args() str_object1 = open(args.input, 'rb').read() str_object2 = zlib.decompress(str_object1) f = open(args.output, 'wb') f.write(str_object2) f.close()
493876
import nltk sentences1 = nltk.corpus.treebank.tagged_sents()[17] print(nltk.ne_chunk(sentences1, binary=True)) sentences2 = nltk.corpus.treebank.tagged_sents()[7] print(nltk.ne_chunk(sentences2, binary=True)) print(nltk.ne_chunk(sentences2))
493934
from tool.runners.python import SubmissionPy class EvqnaSubmission(SubmissionPy): def rotate_trig(self, u, v, angle): if angle == 90: return -v, u elif angle == 180: return -u, -v elif angle == 270: return v, -u def run(self, s): instructions = s.splitlines() x, y = 0, 0 u, v = 10, 1 for ins in instructions: action, val = ins[0], int(ins[1:]) if action == 'L': u, v = self.rotate_trig(u, v, val) elif action == 'R': u, v = self.rotate_trig(u, v, 360 - val) elif action == 'F': x += val * u y += val * v elif action == 'N': v += val elif action == 'S': v -= val elif action == 'E': u += val elif action == 'W': u -= val return abs(x) + abs(y)
493964
import importlib import pytest from zope.interface import Interface from pyramid.testing import Configurator from pyramid.httpexceptions import HTTPNotFound from clld.db.models.common import Contribution, ValueSet, Language, Language_files from clld.interfaces import IMapMarker, IDataTable from clld.web.adapters.download import N3Dump @pytest.fixture def config(): config_ = Configurator( root_package=importlib.import_module('clld.web'), settings={ 'sqlalchemy.url': 'sqlite://', 'clld.pacific_centered_maps': True}) config_.include('clld.web.app') return config_ def test_CLLDRequest(env): c = env['request'].db.query(Contribution).first() env['request'].resource_url(c, ext='geojson') assert env['request'].ctx_for_url('/some/path/to/nowhere') is None assert env['request'].ctx_for_url('/') env['request'].file_url(Language_files(id='1', object=Language.first())) assert env['request'].get_datatable('valuesets', ValueSet) assert env['request'].contact_email_address.startswith('from.settings') def test_menu_item(env): from clld.web.app import menu_item assert menu_item('contributions', None, env['request']) def test_ctx_factory(request_factory): from clld.web.app import ctx_factory for model, route in [ (Contribution, 'contributions'), (ValueSet, 'valuesets'), (Language, 'languages'), ]: obj = model.first() with request_factory(matchdict={'id': obj.id}, matched_route=route) as req: ctx_factory(model, 'index', req) ctx_factory(model, 'rsc', req) with request_factory(matchdict={'id': 'xxx'}) as req: with pytest.raises(HTTPNotFound): ctx_factory(Contribution, 'rsc', req) def test_MapMarker(env): marker = env['request'].registry.getUtility(IMapMarker) assert marker(None, env['request']) def test_add_config_from_file(testsdir): from clld.web.app import add_settings_from_file config = Configurator() add_settings_from_file(config, testsdir / 'test.ini') assert 'app:main.use' in config.registry.settings def test_config(config): class IF(Interface): pass # should have no effect, because a resource with this name is registered by # default: config.register_menu('languages', ('sources', dict(label='References'))) config.register_resource('language', None, None) config.register_resource('testresource', Language, IF, with_index=True, test=True) config.register_download(N3Dump(Language, 'clld')) config.add_301('/301pattern', 'http://example.org') config.add_410('/410pattern') def test_no_overwrite_registration(config): config.register_utility(1, IMapMarker) assert config.registry.queryUtility(IMapMarker) == 1 config.register_utility(2, IMapMarker) assert config.registry.queryUtility(IMapMarker) == 2 config.register_utility(3, IMapMarker, overwrite=False) assert config.registry.queryUtility(IMapMarker) == 2 config.register_datatable('route', 1) assert config.registry.queryUtility(IDataTable, name='route') == 1 config.register_datatable('route', 2, overwrite=False) assert config.registry.queryUtility(IDataTable, name='route') == 1 def test_includeme_error(tmp_path, capsys): import sys sys.path.append(str(tmp_path)) pkg = tmp_path.joinpath('failingapp') pkg.mkdir() pkg.joinpath('__init__.py').write_text('#\n', 'ascii') pkg.joinpath('util.py').write_text('import xyzxyz', 'ascii') config = Configurator( root_package=importlib.import_module('failingapp'), settings={'sqlalchemy.url': 'sqlite://'}) with pytest.raises(ImportError): config.include('clld.web.app') out, err = capsys.readouterr() assert 'failingapp.util' in out sys.path.pop()
493986
import requests.api from requests.auth import HTTPBasicAuth from amqpstorm.compatibility import urlparse from amqpstorm.management.exception import ApiConnectionError from amqpstorm.management.exception import ApiError class HTTPClient(object): def __init__(self, api_url, username, password, timeout): self._auth = HTTPBasicAuth(username, password) self._timeout = timeout self._base_url = api_url def get(self, path, payload=None, headers=None): """HTTP GET operation. :param path: URI Path :param payload: HTTP Body :param headers: HTTP Headers :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :return: Response """ return self._request('get', path, payload, headers) def post(self, path, payload=None, headers=None): """HTTP POST operation. :param path: URI Path :param payload: HTTP Body :param headers: HTTP Headers :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :return: Response """ return self._request('post', path, payload, headers) def delete(self, path, payload=None, headers=None): """HTTP DELETE operation. :param path: URI Path :param payload: HTTP Body :param headers: HTTP Headers :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :return: Response """ return self._request('delete', path, payload, headers) def put(self, path, payload=None, headers=None): """HTTP PUT operation. :param path: URI Path :param payload: HTTP Body :param headers: HTTP Headers :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :return: Response """ return self._request('put', path, payload, headers) def _request(self, method, path, payload=None, headers=None): """HTTP operation. :param method: Operation type (e.g. post) :param path: URI Path :param payload: HTTP Body :param headers: HTTP Headers :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :return: Response """ url = urlparse.urljoin(self._base_url, 'api/%s' % path) headers = headers or {} headers['content-type'] = 'application/json' try: response = requests.request(method, url, auth=self._auth, data=payload, headers=headers, timeout=self._timeout) except requests.RequestException as why: raise ApiConnectionError(str(why)) json_response = self._get_json_output(response) self._check_for_errors(response, json_response) return json_response @staticmethod def _get_json_output(response): """Get JSON output from the HTTP response. :param requests.Response response: :return: Json payload """ try: content = response.json() except ValueError: content = None return content @staticmethod def _check_for_errors(response, json_response): """Check payload for errors. :param response: HTTP response :param json_response: Json response :raises ApiError: Raises if the remote server encountered an error. :return: """ status_code = response.status_code try: response.raise_for_status() except requests.HTTPError as why: raise ApiError(str(why), reply_code=status_code) if isinstance(json_response, dict) and 'error' in json_response: raise ApiError(json_response['error'], reply_code=status_code)
493999
import json import os from termcolor import cprint import colorama from pyvoc import pyvoc from pyvoc.check_config import check_config_dir, config_dir_path from pyvoc.settings import USER_GROUP_ENTRIES_LIMIT colorama.init() # create an empty vocabulary group file def create_new_vocab_group(group_path, group_number): pyvoc.stop_loading_animation() cprint("creating ", color="cyan", attrs=["bold"], end="") cprint("vocabulary group number {}...".format(group_number), color="green") with open(group_path, "w") as f: json.dump({}, f) # selects the first user group which has the space for one more word def select_user_group(): path = os.path.join(config_dir_path(), "usergroups.json") usergroups = dict() with open(path, "r") as f: usergroups = json.load(f) for user_group_number, group_entries in usergroups.items(): if group_entries < USER_GROUP_ENTRIES_LIMIT: return user_group_number cprint("No space left for new entries in user groups.", color="red") exit() def check_if_group_full(group_number): path = os.path.join(config_dir_path(), "usergroups.json") with open(path, "r") as f: content = json.load(f) if content[str(group_number)] >= USER_GROUP_ENTRIES_LIMIT: cprint( "cannot add more words to group number {}".format(group_number), color="yellow", ) exit() def counter_increment(group_number): path = os.path.join(config_dir_path(), "usergroups.json") with open(path, "r") as f: content = json.load(f) content[str(group_number)] += 1 with open(path, "w") as f: json.dump(content, f) def add_word_to_vocab(word, parsed_response, group_number=None): check_config_dir() config_path = config_dir_path() definition = {word: parsed_response} if not group_number: group_number = select_user_group() group_path = os.path.join(config_dir_path(), "group" + str(group_number) + ".json") if not os.path.isfile(group_path): create_new_vocab_group(group_path, group_number) check_if_group_full(group_number) pyvoc.stop_loading_animation() cprint("\nwriting to vocabulary group...", color="yellow") with open(group_path, "r") as f: content = json.load(f) content.update(definition) with open(group_path, "w") as f: json.dump(content, f, ensure_ascii=False) # increase the count of word entries in the group by 1 counter_increment(group_number) # add word (not definition) to all_words.json with open(os.path.join(config_path, "all_words.json"), "r") as f: all_words = json.load(f) all_words.update({word: True}) with open(os.path.join(config_path, "all_words.json"), "w") as f: json.dump(all_words, f) cprint("word added to ", color="green", end="") cprint("group number {}".format(group_number), color="cyan", attrs=["bold"]) def list_all_groups(): # reading user groups name and size usergroups_path = os.path.join(config_dir_path(), "usergroups.json") with open(usergroups_path, "r") as f: user_group_numbers = json.load(f) default_group_numbers = {101: 800, 102: 800, 103: 800} pyvoc.stop_loading_animation() # print user groups cprint("\nUSER GROUPS", color="cyan", on_color="on_grey") cprint("Group no.", color="green", end=" " * (14 - len("Group no"))) cprint("No. of words") for group in user_group_numbers: cprint(group, color="green", end=" " * (15 - len(str(group)))) cprint(str(user_group_numbers[group])) # print default groups cprint("\nDEFAULT GROUP", color="cyan", on_color="on_grey") cprint("Group no.", color="green", end=" " * (14 - len("Group no"))) cprint("No. of words") for group in default_group_numbers: cprint(group, color="green", end=" " * (15 - len(str(group)))) cprint(str(default_group_numbers[group])) exit()
494015
import time # time.time() return the time in seconds since the epoch as a floating point number def chour(t): hour = t / 3600 print("The number of hours has passed since epoch is %f" % hour) def cminute(t): minute = t / 60 print("The number of minutes has passed since epoch is %f" % minute) def cseconds(t): seconds = t print("The number of seconds has passed since epoch is %f" % seconds) def num_day(): sec = time.time() num_day = sec / (60*60*24) print("The number of days has passed since epoch is %f" % num_day) num_day() chour(time.time()) cminute(time.time()) cseconds(time.time())
494032
import cvcomm class ControlVault2: NAME = 'Broadcom ControlVault 2' turn_on_seq1 = [ "10 2f 04 00", "10 2f 1d 03 05 90 65", "10 2f 2d 00", "10 2f 11 01 f7", "01 27 fc 0c 08 00 01 00 01 00 00 00 00 00 00 00", ] turn_on_seq2 = [ "10 20 00 01 01", "10 20 01 02 01 00", "10 20 02 67 01 b9 64 01 00 ff ff 50 00 8b 13 00 10 00 06 00 00 00 00 00 ff 00 00 00 ff 00 00 04 00 00 00 00 03 00 00 00 03 00 0c 00 00 0d 00 00 00 00 00 00 00 00 00 00 33 23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02 53 3b 0f 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00", "10 20 02 90 0a ca 05 00 00 00 00 2c 80 01 01 b0 05 01 03 03 03 08 b5 03 01 03 ff c9 0d 24 00 00 00 01 00 bb 00 e4 00 0a 01 02 d6 0d 01 02 00 00 00 00 00 01 00 01 5a 00 8a b2 02 e8 03 c8 1e 06 1f 00 0a 00 30 00 04 24 00 1c 00 75 00 77 00 76 00 1c 00 03 00 0a 00 56 01 00 00 40 04 d7 01 07 dd 32 00 00 00 29 16 08 08 06 04 00 00 00 1f 27 0a 6d 20 00 52 20 00 00 00 01 85 00 00 32 1f 00 00 02 0a 16 00 02 55 55 55 55 55 55 55 55 55 55 55 55 55 1e", "10 20 02 06 01 b7 03 02 00 01", "10 2f 06 01 01", "10 20 02 0e 02 51 08 20 79 ff ff ff ff ff ff 58 01 07", "10 21 00 07 02 04 03 02 05 03 03", "10 20 02 17 01 29 14 46 66 6d 01 01 11 02 02 07 ff 03 02 00 13 04 01 64 07 01 03", "10 20 02 1a 02 61 14 46 66 6d 01 01 11 02 02 07 ff 03 02 00 13 04 01 64 07 01 03 60 01 07", "10 20 02 10 05 30 01 04 31 01 00 32 01 40 38 01 00 50 01 02", "10 20 02 05 01 00 02 fa 00", "10 20 02 0b 01 c2 08 01 08 00 04 80 c3 c9 01", "10 21 03 0d 06 00 01 01 01 02 01 80 01 82 01 06 01", ] def __init__(self, device): self.device = device self.communicator = cvcomm.ControlVaultCommunicator(device) def turn_on(self): self.communicator.ctrl_transfer(0x41, 0, 1, 3) self.communicator.talk(self.turn_on_seq1) self.communicator.ctrl_transfer(0x41, 1, 0, 3) self.communicator.talk(self.turn_on_seq2) self.communicator.ctrl_transfer(0x41, 1, 1, 3) def turn_off(self): self.communicator.ctrl_transfer(0x41, 1, 0, 3) self.communicator.ctrl_transfer(0x41, 0, 0, 3) def reset(self): self.device.reset()
494044
from __future__ import absolute_import from django.conf import settings from appconf import AppConf class AjaxAppConf(AppConf): AJAX_AUTHENTICATION = 'ajax.authentication.BaseAuthentication'
494046
from typing import Dict, Any from .module import Module from .parameter import Parameter _dict_methods = ['__setitem__', '__getitem__', '__delitem__', '__len__', '__iter__', '__contains__', 'update', 'keys', 'values', 'items', 'clear', 'pop'] class ModuleDict(Module, dict): # use dict for auto-complete """ Essentially this exposes some methods of `Module._modules`. """ def __init__(self, modules: Dict[Any, Module] = None): super().__init__() for method in _dict_methods: setattr(self, method, getattr(self._modules, method)) if modules is not None: self.update(modules) def forward(self): raise RuntimeError("ModuleDict is not callable") # Do we need a factory for it? class ParameterDict(Module, dict): def __init__(self, parameters: Dict[Any, Parameter] = None): super().__init__() for method in _dict_methods: setattr(self, method, getattr(self._modules, method)) if parameters is not None: self.update(parameters) def forward(self): raise RuntimeError("ParameterDict is not callable")
494063
import tensorflow as tf class SmoothL1Loss(tf.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. loss_weight (float, optional): The weight of loss. """ def __init__(self, beta=1.0, loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.loss_weight = loss_weight def __call__(self, pred, target, weight=None, avg_factor=None, **kwargs): """Forward function. Args: pred (tf.Tensor): The prediction. target (tf.Tensor): The learning target of the prediction. weight (tf.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert pred.shape == target.shape and tf.size(target) > 0 diff = tf.abs(pred - target) loss = tf.where(diff < self.beta, 0.5 * diff * diff / self.beta, diff - 0.5 * self.beta) if weight is not None: loss = loss * weight loss = loss * self.loss_weight if avg_factor: return tf.reduce_sum(loss) / avg_factor else: return tf.reduce_mean(loss)
494075
import os import sys import numpy as np from torch.utils.data import Dataset Cross_Subject = [1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38] class NTU60Subject(Dataset): def __init__(self, root, meta, frames_per_clip=23, step_between_clips=2, num_points=2048, train=True): super(NTU60Subject, self).__init__() self.videos = [] self.labels = [] self.index_map = [] index = 0 with open(meta, 'r') as f: for line in f: name, nframes = line.split() subject = int(name[9:12]) if train: if subject in Cross_Subject: label = int(name[-3:]) - 1 nframes = int(nframes) for t in range(0, nframes-step_between_clips*(frames_per_clip-1), step_between_clips): self.index_map.append((index, t)) index += 1 self.labels.append(label) self.videos.append(os.path.join(root, name+'.npz')) else: if subject not in Cross_Subject: label = int(name[-3:]) - 1 nframes = int(nframes) for t in range(0, nframes-step_between_clips*(frames_per_clip-1), step_between_clips): self.index_map.append((index, t)) index += 1 self.labels.append(label) self.videos.append(os.path.join(root, name+'.npz')) self.frames_per_clip = frames_per_clip self.step_between_clips = step_between_clips self.num_points = num_points self.train = train self.num_classes = max(self.labels) + 1 def __len__(self): return len(self.index_map) def __getitem__(self, idx): index, t = self.index_map[idx] video = self.videos[index] video = np.load(video, allow_pickle=True)['data'] * 100 label = self.labels[index] clip = [video[t+i*self.step_between_clips] for i in range(self.frames_per_clip)] for i, p in enumerate(clip): if p.shape[0] > self.num_points: r = np.random.choice(p.shape[0], size=self.num_points, replace=False) else: repeat, residue = self.num_points // p.shape[0], self.num_points % p.shape[0] r = np.random.choice(p.shape[0], size=residue, replace=False) r = np.concatenate([np.arange(p.shape[0]) for _ in range(repeat)] + [r], axis=0) clip[i] = p[r, :] clip = np.array(clip) if self.train: # scale the points scales = np.random.uniform(0.9, 1.1, size=3) clip = clip * scales return clip.astype(np.float32), label, index if __name__ == '__main__': dataset = NTU60Subject(root='/home/yuhading/Data/HeheFan/pami/data/ntu/video', meta='/home/yuhading/Data/HeheFan/pami/data/ntu/ntu60.list', frames_per_clip=16) clip, label, video_idx = dataset[0] data = clip[0] print(data[:,0].max()-data[:,0].min()) print(data[:,1].max()-data[:,1].min()) print(data[:,2].max()-data[:,2].min()) #print(clip) print(label) print(video_idx) print(dataset.num_classes)
494089
import random from CellModeller.Regulation.ModuleRegulator import ModuleRegulator from CellModeller.Biophysics.BacterialModels.CLBacterium import CLBacterium from CellModeller.GUI import Renderers import numpy import math N0 = 10 def setup(sim): # Set biophysics, signalling, and regulation models biophys = CLBacterium(sim, jitter_z=False, gamma = 100, max_cells=100000, max_planes=1) regul = ModuleRegulator(sim, sim.moduleName) # use this file for reg too # Only biophys and regulation sim.init(biophys, regul, None, None) #biophys.addPlane((0,0,0),(0,0,1),1.0) #Base plane #biophys.addPlane((10,0,0),(-1,0,0),1.0) #biophys.addPlane((-10,0,0),(1,0,0),1.0) #biophys.addPlane((0,10,0),(0,-1,0),1.0) #biophys.addPlane((0,-10,0),(0,1,0),1.0) sim.addCell(cellType=0, pos=(0,0,0)) # Add some objects to draw the models therenderer = Renderers.GLBacteriumRenderer(sim) sim.addRenderer(therenderer) sim.pickleSteps = 1 def init(cell): cell.targetVol = 3.5 + random.uniform(0.0,0.5) cell.growthRate = 1.0 cell.n_a = N0//2 cell.n_b = N0 - cell.n_a def update(cells): for (id, cell) in cells.items(): cell.color = [0.1, cell.n_a/3.0, cell.n_b/3.0] if cell.volume > cell.targetVol: cell.divideFlag = True def divide(parent, d1, d2): d1.targetVol = 3.5 + random.uniform(0.0,0.5) d2.targetVol = 3.5 + random.uniform(0.0,0.5) plasmids = [0]*parent.n_a*2 + [1]*parent.n_b*2 random.shuffle(plasmids) d1.n_a = 0 d1.n_b = 0 d2.n_a = 0 d2.n_b = 0 for p in plasmids[:N0]: if p == 0: d1.n_a +=1 else: d1.n_b +=1 for p in plasmids[N0:2*N0]: if p == 0: d2.n_a +=1 else: d2.n_b +=1 assert parent.n_a + parent.n_b == N0 assert d1.n_a + d1.n_b == N0 assert d2.n_a + d2.n_b == N0 assert parent.n_a*2 == d1.n_a+d2.n_a assert parent.n_b*2 == d1.n_b+d2.n_b assert parent.n_a > 0 or (d1.n_a == 0 and d2.n_a == 0) assert parent.n_b > 0 or (d1.n_b == 0 and d2.n_b == 0)
494093
from collections import deque import gym import numpy as np from gym import spaces, logger from gym.utils import seeding class SnakeAction(object): LEFT = 0 RIGHT = 1 UP = 2 DOWN = 3 class BoardColor(object): BODY_COLOR = np.array([0, 0, 0], dtype=np.uint8) FOOD_COLOR = np.array([0, 255, 0], dtype=np.uint8) SPACE_COLOR = np.array([255, 255, 255], dtype=np.uint8) class SnakeEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], } def __init__(self, observation_mode='rgb', energy_consum=False): self.observation_mode = observation_mode self.energy_consum = energy_consum self.width = 42 self.height = 42 self.action_space = spaces.Discrete(4) if observation_mode == 'rgb': self.observation_space = spaces.Box(low=0, high=256, shape=(self.width * 2, self.height * 2, 3), dtype=np.float32) else: self.observation_space = spaces.Box(low=0, high=255, shape=(self.width, self.height, 1), dtype=np.uint8) self.snake = Snake() self.foods = [] self.n_foods = 5 self.viewer = None self.np_random = np.random def set_foods(self, n): self.n_foods = n def reset(self): self.snake.body.clear() self.foods.clear() empty_cells = self.get_empty_cells() empty_cells = self.snake.init(empty_cells, self.np_random) self.foods = [empty_cells[i] for i in self.np_random.choice(len(empty_cells), self.n_foods, replace=False)] import pdb pdb.set_trace() return self.get_observation() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action)) snake_tail = self.snake.step(action) self.snake.reward = 0. if self.energy_consum: self.snake.reward -= 0.01 if self.snake.head in self.foods: self.snake.reward += 1. self.snake.body.append(snake_tail) self.foods.remove(self.snake.head) empty_cells = self.get_empty_cells() food = empty_cells[self.np_random.choice(len(empty_cells))] self.foods.append(food) # snake collided wall if self.is_collided_wall(self.snake.head): self.snake.reward -= 1. self.snake.done = True # snake bite itself if self.snake.head in list(self.snake.body)[1:]: self.snake.reward -= 1. self.snake.done = True self.snake.reward = np.clip(self.snake.reward, -1., 1.) return self.get_observation(), self.snake.reward, self.snake.done, {} def get_observation(self): if self.observation_mode == 'rgb': return self.get_image() else: observation = np.zeros((self.width, self.height), dtype=np.uint8) for x, y in self.snake.body: try: observation[x][y] = 100 except: pass for food in self.foods: x, y = food observation[x][y] = 200 return observation[:, :, None] def get_image(self): board_width = 2 * self.width board_height = 2 * self.height cell_size = 2 board = Board(board_height, board_width) for x, y in self.snake.body: board.fill_cell((x * cell_size, y * cell_size), cell_size, BoardColor.BODY_COLOR) for food in self.foods: x, y = food board.fill_cell((x * cell_size, y * cell_size), cell_size, BoardColor.FOOD_COLOR) return board.board def get_empty_cells(self): empty_cells = [(x, y) for x in range(self.width) for y in range(self.height)] for cell in self.snake.body: if cell in empty_cells: empty_cells.remove(cell) for food in self.foods: if food in empty_cells: empty_cells.remove(food) return empty_cells def is_collided_wall(self, head): x, y = head if x < 0 or x > (self.width - 1) or y < 0 or y > (self.height - 1): return True return False def render(self, mode='human'): img = self.get_image() if mode == 'rgb_array': return img elif mode == 'human': if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.SimpleImageViewer() self.viewer.imshow(img) return self.viewer.isopen class Snake(object): def __init__(self): self.body = deque() self.prev_act = None self.done = False self.reward = 0. def step(self, action): if not self.done: if not self.is_valid_action(action): action = self.prev_act self.prev_act = action x, y = self.head if action == SnakeAction.LEFT: self.body.appendleft((x, y - 1)) if action == SnakeAction.RIGHT: self.body.appendleft((x, y + 1)) if action == SnakeAction.UP: self.body.appendleft((x - 1, y)) if action == SnakeAction.DOWN: self.body.appendleft((x + 1, y)) return self.body.pop() @property def head(self): return self.body[0] def is_valid_action(self, action): if len(self.body) == 1: return True horizontal_actions = [SnakeAction.LEFT, SnakeAction.RIGHT] vertical_actions = [SnakeAction.UP, SnakeAction.DOWN] if self.prev_act in horizontal_actions: return action in vertical_actions return action in horizontal_actions def init(self, empty_cells, np_random): self.body.clear() self.done = False self.reward = 0. self.prev_act = None start_head = empty_cells[np_random.choice(len(empty_cells))] self.body.appendleft(start_head) empty_cells.remove(start_head) return empty_cells class Board(object): def __init__(self, height, weight): self.board = np.empty((height, weight, 3), dtype=np.uint8) self.board[:, :, :] = BoardColor.SPACE_COLOR def fill_cell(self, vertex, cell_size, color): x, y = vertex self.board[x:x + cell_size, y:y + cell_size, :] = color class SnakeEnvMC(SnakeEnv): def __init__(self): super().__init__(observation_mode='rgb') snake_env = SnakeEnvMC() if __name__ == '__main__': ss = SnakeEnv() ss.reset()