Create dataset.py
Browse files- dataset.py +55 -0
dataset.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import datasets
|
| 3 |
+
|
| 4 |
+
_CITATION = """\
|
| 5 |
+
@dataset{qasim2025animalsounds,
|
| 6 |
+
title = {Animal Sound Classification Dataset},
|
| 7 |
+
author = {Muhammad Qasim},
|
| 8 |
+
year = {2025},
|
| 9 |
+
url = {https://huggingface.co/datasets/MuhammadQASIM111/Animal_Sound_Classification}
|
| 10 |
+
}
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
_DESCRIPTION = """\
|
| 14 |
+
A meticulously curated dataset of labeled animal sounds (dogs, cats, cows) for audio classification tasks. The dataset contains trimmed and cleaned audio clips with labels.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
_HOMEPAGE = "https://huggingface.co/datasets/MuhammadQASIM111/Animal_Sound_Classification"
|
| 18 |
+
|
| 19 |
+
_LICENSE = "mit"
|
| 20 |
+
|
| 21 |
+
_URLS = {
|
| 22 |
+
"train": "ML1_features.csv"
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
class AnimalSoundClassification(datasets.GeneratorBasedBuilder):
|
| 26 |
+
def _info(self):
|
| 27 |
+
return datasets.DatasetInfo(
|
| 28 |
+
description=_DESCRIPTION,
|
| 29 |
+
features=datasets.Features({
|
| 30 |
+
"audio": datasets.Value("string"), # path to audio file or URL
|
| 31 |
+
"label": datasets.ClassLabel(names=["dog", "cat", "cow"]),
|
| 32 |
+
}),
|
| 33 |
+
supervised_keys=("audio", "label"),
|
| 34 |
+
homepage=_HOMEPAGE,
|
| 35 |
+
license=_LICENSE,
|
| 36 |
+
citation=_CITATION,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
def _split_generators(self, dl_manager):
|
| 40 |
+
data_path = dl_manager.download_and_extract(_URLS["train"])
|
| 41 |
+
return [
|
| 42 |
+
datasets.SplitGenerator(
|
| 43 |
+
name=datasets.Split.TRAIN,
|
| 44 |
+
gen_kwargs={"filepath": data_path},
|
| 45 |
+
),
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
def _generate_examples(self, filepath):
|
| 49 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
| 50 |
+
reader = csv.DictReader(csv_file)
|
| 51 |
+
for id_, row in enumerate(reader):
|
| 52 |
+
yield id_, {
|
| 53 |
+
"audio": row["audio"], # Make sure column name matches your CSV
|
| 54 |
+
"label": row["label"].lower(), # Lowercasing to match ClassLabel names
|
| 55 |
+
}
|