MuhammadQASIM111 commited on
Commit
e6b8f6e
Β·
verified Β·
1 Parent(s): 3aea4ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -37
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- dataset:
3
  name: Animal Sound Classification Dataset
4
- dataset_type: audio-classification
5
  license: mit
6
  annotations_creators:
7
  - expert-generated
@@ -10,8 +10,7 @@ dataset:
10
  task_categories:
11
  - audio-classification
12
  pretty_name: Animal Sound Classification
13
- size_categories:
14
- - 1<n<1.1K
15
  tags:
16
  - animal-sounds
17
  - audio
@@ -20,26 +19,48 @@ dataset:
20
  - MFCC
21
  - open-dataset
22
  - sound-recognition
23
- dataset_info:
24
- features:
25
- - name: audio
26
- type: audio
27
- - name: label
28
- type: string
29
- splits:
30
- - name: train
31
- num_bytes: TO_BE_FILLED
32
- num_examples: TO_BE_FILLED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  creators:
34
  - name: Muhammad Qasim
35
  url: https://github.com/MuhammadQasim111
36
  license: mit
37
- pretty_name: Animal Sound Classification
38
  ---
39
 
40
  # 🐾 Animal Sound Classification Dataset
41
 
42
- > **A meticulously handcrafted dataset of labeled animal sounds for Machine Learning & Audio Classification tasks.**
43
  > **Built with love, precision, and open-source spirit.**
44
 
45
  ---
@@ -47,11 +68,8 @@ pretty_name: Animal Sound Classification
47
  ## πŸ“– Dataset Details
48
 
49
  ### πŸ“ Dataset Description
50
- The **Animal Sound Classification Dataset** contains curated audio clips of **dogs, cats, cows**, and more, extracted from longer recordings and meticulously trimmed to create clean, high-quality sound samples.
51
 
52
- Over a period of **two months**, I manually processed, trimmed, and labeled each audio file. I also prepared the dataset for ML pipelines by extracting **MFCC (Mel-Frequency Cepstral Coefficients)** features to ensure seamless integration for developers and researchers.
53
-
54
- ALL THE HECTIC WORK OF MINE IS SERVED TO YOU ON A DISH, FOR FREE OF COST!
55
 
56
  - **Curated by:** Muhammad Qasim
57
  - **Funded by:** Self-initiated Open-Source Project
@@ -69,12 +87,14 @@ ALL THE HECTIC WORK OF MINE IS SERVED TO YOU ON A DISH, FOR FREE OF COST!
69
  ## πŸš€ Uses
70
 
71
  ### βœ… Direct Use
 
72
  - Audio classification model training.
73
  - Sound recognition AI systems.
74
  - Educational apps that teach animal sounds.
75
  - Wildlife and livestock sound monitoring AI.
76
 
77
- ### 🚫 Out-of-Scope Use
 
78
  - Speech Recognition tasks.
79
  - Use in sensitive environments without proper augmentation.
80
  - Misuse for deceptive simulations.
@@ -83,19 +103,58 @@ ALL THE HECTIC WORK OF MINE IS SERVED TO YOU ON A DISH, FOR FREE OF COST!
83
 
84
  ## πŸ—‚οΈ Dataset Structure
85
 
86
- | Field Name | Type | Description |
87
- |------------|--------|------------------------------------|
88
- | audio | Audio | The sound clip (.wav file) |
89
- | label | String | Animal class label (e.g., "dog") |
90
-
91
- ### Folder Structure
92
- ```bash
93
- animal-sounds-dataset/
94
- β”œβ”€β”€ data/
95
- β”‚ β”œβ”€β”€ dog_bark_1.wav
96
- β”‚ β”œβ”€β”€ cat_meow_2.wav
97
- β”‚ β”œβ”€β”€ cow_moo_3.wav
98
- β”‚
99
- β”œβ”€β”€ dataset.py
100
- β”œβ”€β”€ dataset_infos.json
101
- └── README.md
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ dataset_info:
3
  name: Animal Sound Classification Dataset
4
+ type: audio-classification
5
  license: mit
6
  annotations_creators:
7
  - expert-generated
 
10
  task_categories:
11
  - audio-classification
12
  pretty_name: Animal Sound Classification
13
+ size_categories: 1K<n<10K
 
14
  tags:
15
  - animal-sounds
16
  - audio
 
19
  - MFCC
20
  - open-dataset
21
  - sound-recognition
22
+ features:
23
+ - name: filename
24
+ type: string
25
+ - name: mfcc_1
26
+ type: float64
27
+ - name: mfcc_2
28
+ type: float64
29
+ - name: mfcc_3
30
+ type: float64
31
+ - name: mfcc_4
32
+ type: float64
33
+ - name: mfcc_5
34
+ type: float64
35
+ - name: mfcc_6
36
+ type: float64
37
+ - name: mfcc_7
38
+ type: float64
39
+ - name: mfcc_8
40
+ type: float64
41
+ - name: mfcc_9
42
+ type: float64
43
+ - name: mfcc_10
44
+ type: float64
45
+ - name: mfcc_11
46
+ type: float64
47
+ - name: mfcc_12
48
+ type: float64
49
+ - name: mfcc_13
50
+ type: float64
51
+ splits:
52
+ - name: train
53
+ num_bytes: 114400
54
+ num_examples: 1045
55
  creators:
56
  - name: Muhammad Qasim
57
  url: https://github.com/MuhammadQasim111
58
  license: mit
 
59
  ---
60
 
61
  # 🐾 Animal Sound Classification Dataset
62
 
63
+ > **A meticulously handcrafted dataset of labeled animal sounds for Machine Learning & Audio Classification tasks.**
64
  > **Built with love, precision, and open-source spirit.**
65
 
66
  ---
 
68
  ## πŸ“– Dataset Details
69
 
70
  ### πŸ“ Dataset Description
 
71
 
72
+ The **Animal Sound Classification Dataset** contains curated audio clips of **dogs, cats, cows**, and more, extracted from longer recordings and meticulously trimmed to create clean, high-quality sound samples. Over a period of **two months**, I manually processed, trimmed, and labeled each audio file. I also prepared the dataset for ML pipelines by extracting **MFCC (Mel-Frequency Cepstral Coefficients)** features to ensure seamless integration for developers and researchers.
 
 
73
 
74
  - **Curated by:** Muhammad Qasim
75
  - **Funded by:** Self-initiated Open-Source Project
 
87
  ## πŸš€ Uses
88
 
89
  ### βœ… Direct Use
90
+
91
  - Audio classification model training.
92
  - Sound recognition AI systems.
93
  - Educational apps that teach animal sounds.
94
  - Wildlife and livestock sound monitoring AI.
95
 
96
+ ### ❌ Out-of-Scope Use
97
+
98
  - Speech Recognition tasks.
99
  - Use in sensitive environments without proper augmentation.
100
  - Misuse for deceptive simulations.
 
103
 
104
  ## πŸ—‚οΈ Dataset Structure
105
 
106
+ ### Data Instances
107
+
108
+ | Field Name | Type | Description |
109
+ |------------|------|-------------|
110
+ | filename | string | Name of the audio file |
111
+ | mfcc_1 | float64 | First MFCC feature |
112
+ | mfcc_2 | float64 | Second MFCC feature |
113
+ | ... | ... | ... |
114
+ | mfcc_13 | float64 | Thirteenth MFCC feature |
115
+
116
+ ### Data Fields
117
+
118
+ - `filename`: Name of the audio file.
119
+ - `mfcc_1` to `mfcc_13`: Mel-frequency cepstral coefficients (MFCCs) extracted from the audio files.
120
+
121
+ ### Data Splits
122
+
123
+ | Split | Number of Examples | Total Size |
124
+ |-------|--------------------|------------|
125
+ | Train | 1045 | 114.4 KB |
126
+
127
+ ---
128
+
129
+ ## πŸ“₯ Dataset Creation
130
+
131
+ ### Curation Rationale
132
+
133
+ The dataset was created to facilitate research and development in the field of audio classification, particularly focusing on animal sounds. The goal is to provide a high-quality, ready-to-use dataset for machine learning practitioners and researchers.
134
+
135
+ ### Source Data
136
+
137
+ #### Initial Data Collection and Normalization
138
+
139
+ - **Data Collection:** Audio clips were collected from various sources and manually trimmed to isolate individual animal sounds.
140
+ - **Annotations:** Each audio clip was labeled with the corresponding animal class.
141
+ - **Who are the annotators?** The annotations were generated by an expert.
142
+
143
+ ### Personal and Sensitive Information
144
+
145
+ The dataset does not contain any personal or sensitive information.
146
+
147
+ ---
148
+
149
+ ## πŸ“œ Additional Information
150
+
151
+ ### Dataset Curators
152
+
153
+ Muhammad Qasim
154
+
155
+ ### Licensing Information
156
+
157
+ MIT License
158
+
159
+ ### Citation Information
160
+