Fix_Forge_neo / backend /loader.py
Mightys's picture
Upload 212 files
6728bc2 verified
import importlib
import logging
import os
import huggingface_guess
import torch
from diffusers import DiffusionPipeline
from transformers import modeling_utils
import backend.args
from backend import memory_management
from backend.diffusion_engine.chroma import Chroma
from backend.diffusion_engine.flux import Flux
from backend.diffusion_engine.lumina import Lumina2
from backend.diffusion_engine.qwen import QwenImage
from backend.diffusion_engine.sd15 import StableDiffusion
from backend.diffusion_engine.sdxl import StableDiffusionXL, StableDiffusionXLRefiner
from backend.diffusion_engine.wan import Wan
from backend.diffusion_engine.zimage import ZImage
from backend.nn.clip import IntegratedCLIP
from backend.nn.unet import IntegratedUNet2DConditionModel
from backend.nn.vae import IntegratedAutoencoderKL
from backend.nn.wan_vae import WanVAE
from backend.operations import using_forge_operations
from backend.state_dict import load_state_dict, try_filter_state_dict
from backend.utils import (
beautiful_print_gguf_state_dict_statics,
load_torch_file,
read_arbitrary_config,
)
possible_models = [StableDiffusion, StableDiffusionXLRefiner, StableDiffusionXL, Chroma, Flux, Wan, QwenImage, Lumina2, ZImage]
logging.getLogger("diffusers").setLevel(logging.ERROR)
dir_path = os.path.dirname(__file__)
def load_huggingface_component(guess, component_name, lib_name, cls_name, repo_path, state_dict):
config_path = os.path.join(repo_path, component_name)
if component_name in ["feature_extractor", "safety_checker"]:
return None
if lib_name in ["transformers", "diffusers"]:
if component_name == "scheduler":
cls = getattr(importlib.import_module(lib_name), cls_name)
return cls.from_pretrained(os.path.join(repo_path, component_name))
if component_name.startswith("tokenizer"):
cls = getattr(importlib.import_module(lib_name), cls_name)
comp = cls.from_pretrained(os.path.join(repo_path, component_name))
comp._eventual_warn_about_too_long_sequence = lambda *args, **kwargs: None
return comp
if cls_name == "AutoencoderKL":
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have VAE state dict!"
config = IntegratedAutoencoderKL.load_config(config_path)
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
model = IntegratedAutoencoderKL.from_config(config)
if "decoder.up_blocks.0.resnets.0.norm1.weight" in state_dict.keys(): # diffusers format
state_dict = huggingface_guess.diffusers_convert.convert_vae_state_dict(state_dict)
load_state_dict(model, state_dict, ignore_start="loss.")
return model
if cls_name in ["AutoencoderKLWan", "AutoencoderKLQwenImage"]:
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have VAE state dict!"
config = WanVAE.load_config(config_path)
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
model = WanVAE.from_config(config)
load_state_dict(model, state_dict)
return model
if component_name.startswith("text_encoder") and cls_name in ["CLIPTextModel", "CLIPTextModelWithProjection"]:
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have CLIP state dict!"
from transformers import CLIPTextConfig, CLIPTextModel
config = CLIPTextConfig.from_pretrained(config_path)
to_args = dict(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype())
with modeling_utils.no_init_weights():
with using_forge_operations(**to_args, manual_cast_enabled=True):
model = IntegratedCLIP(CLIPTextModel, config, add_text_projection=True).to(**to_args)
load_state_dict(model, state_dict, ignore_errors=["transformer.text_projection.weight", "transformer.text_model.embeddings.position_ids", "logit_scale"], log_name=cls_name)
return model
if cls_name == "Qwen2_5_VLForConditionalGeneration":
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have Qwen 2.5 state dict!"
from backend.nn.llm.llama import Qwen25_7BVLI
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, "nf4", "fp4", "gguf"]:
print(f"Using Detected Qwen2.5 Data Type: {state_dict_dtype}")
storage_dtype = state_dict_dtype
if state_dict_dtype in ["nf4", "fp4", "gguf"]:
print("Using pre-quant state dict!")
if state_dict_dtype in ["gguf"]:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f"Using Default Qwen2.5 Data Type: {storage_dtype}")
if storage_dtype in ["nf4", "fp4", "gguf"]:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = Qwen25_7BVLI(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = Qwen25_7BVLI(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=["lm_head.weight"])
return model
if cls_name == "Gemma2Model":
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have Gemma2 state dict!"
from backend.nn.llm.llama import Gemma2_2B
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, "nf4", "fp4", "gguf"]:
print(f"Using Detected Gemma2 Data Type: {state_dict_dtype}")
storage_dtype = state_dict_dtype
if state_dict_dtype in ["nf4", "fp4", "gguf"]:
print("Using pre-quant state dict!")
if state_dict_dtype in ["gguf"]:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f"Using Default Gemma2 Data Type: {storage_dtype}")
if storage_dtype in ["nf4", "fp4", "gguf"]:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = Gemma2_2B(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = Gemma2_2B(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=[])
return model
if cls_name == "Qwen3Model":
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have Qwen3 state dict!"
from backend.nn.llm.llama import Qwen3_4B
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, "nf4", "fp4", "gguf"]:
print(f"Using Detected Qwen3 Data Type: {state_dict_dtype}")
storage_dtype = state_dict_dtype
if state_dict_dtype in ["nf4", "fp4", "gguf"]:
print("Using pre-quant state dict!")
if state_dict_dtype in ["gguf"]:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f"Using Default Qwen3 Data Type: {storage_dtype}")
if storage_dtype in ["nf4", "fp4", "gguf"]:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = Qwen3_4B(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = Qwen3_4B(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=[])
return model
if cls_name in ["T5EncoderModel", "UMT5EncoderModel"]:
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have T5 state dict!"
if filename := state_dict.get("transformer.filename", None):
if memory_management.is_device_cpu(memory_management.text_encoder_device()):
raise SystemError("nunchaku T5 does not support CPU!")
from backend.nn.svdq import SVDQT5
print("Using Nunchaku T5")
model = SVDQT5(filename)
return model
from backend.nn.t5 import IntegratedT5
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, "nf4", "fp4", "gguf"]:
print(f"Using Detected T5 Data Type: {state_dict_dtype}")
storage_dtype = state_dict_dtype
if state_dict_dtype in ["nf4", "fp4", "gguf"]:
print("Using pre-quant state dict!")
if state_dict_dtype in ["gguf"]:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f"Using Default T5 Data Type: {storage_dtype}")
if storage_dtype in ["nf4", "fp4", "gguf"]:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = IntegratedT5(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = IntegratedT5(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=["transformer.encoder.embed_tokens.weight", "logit_scale"])
return model
if cls_name in ["UNet2DConditionModel", "FluxTransformer2DModel", "ChromaTransformer2DModel", "WanTransformer3DModel", "QwenImageTransformer2DModel", "Lumina2Transformer2DModel", "ZImageTransformer2DModel"]:
assert isinstance(state_dict, dict) and len(state_dict) > 16, "You do not have model state dict!"
model_loader = None
_nz = False # Nunchaku Z-Image
if cls_name == "UNet2DConditionModel":
model_loader = lambda c: IntegratedUNet2DConditionModel.from_config(c)
elif cls_name == "FluxTransformer2DModel":
if guess.nunchaku:
from backend.nn.svdq import SVDQFluxTransformer2DModel
model_loader = lambda c: SVDQFluxTransformer2DModel(c)
else:
from backend.nn.flux import IntegratedFluxTransformer2DModel
model_loader = lambda c: IntegratedFluxTransformer2DModel(**c)
elif cls_name == "ChromaTransformer2DModel":
from backend.nn.chroma import IntegratedChromaTransformer2DModel
model_loader = lambda c: IntegratedChromaTransformer2DModel(**c)
elif cls_name == "WanTransformer3DModel":
from backend.nn.wan import WanModel
model_loader = lambda c: WanModel(**c)
elif cls_name == "QwenImageTransformer2DModel":
if guess.nunchaku:
from backend.nn.svdq import NunchakuQwenImageTransformer2DModel
model_loader = lambda c: NunchakuQwenImageTransformer2DModel(**c)
else:
from backend.nn.qwen import QwenImageTransformer2DModel
model_loader = lambda c: QwenImageTransformer2DModel(**c)
elif cls_name in ("Lumina2Transformer2DModel", "ZImageTransformer2DModel"):
if guess.nunchaku:
from backend.nn.svdq import patch_nunchaku_zimage
guess.unet_config.pop("filename")
precision = guess.unet_config.pop("precision")
rank = guess.unet_config.pop("rank")
_nz = True
from backend.nn.lumina import NextDiT
model_loader = lambda c: NextDiT(**c)
unet_config = guess.unet_config.copy()
state_dict_parameters = memory_management.state_dict_parameters(state_dict)
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
storage_dtype = memory_management.unet_dtype(model_params=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
unet_storage_dtype_overwrite = backend.args.dynamic_args.get("forge_unet_storage_dtype")
if unet_storage_dtype_overwrite is not None:
storage_dtype = unet_storage_dtype_overwrite
elif state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, "nf4", "fp4", "gguf"]:
print(f"Using Detected UNet Type: {state_dict_dtype}")
storage_dtype = state_dict_dtype
if state_dict_dtype in ["nf4", "fp4", "gguf"]:
print("Using pre-quant state dict!")
if state_dict_dtype in ["gguf"]:
beautiful_print_gguf_state_dict_statics(state_dict)
load_device = memory_management.get_torch_device()
computation_dtype = memory_management.get_computation_dtype(load_device, parameters=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
offload_device = memory_management.unet_offload_device()
if storage_dtype in ["nf4", "fp4", "gguf"]:
initial_device = memory_management.unet_initial_load_device(parameters=state_dict_parameters, dtype=computation_dtype)
with using_forge_operations(device=initial_device, dtype=computation_dtype, manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = model_loader(unet_config)
else:
initial_device = memory_management.unet_initial_load_device(parameters=state_dict_parameters, dtype=storage_dtype)
need_manual_cast = storage_dtype != computation_dtype
to_args = dict(device=initial_device, dtype=storage_dtype)
with using_forge_operations(operations=False if _nz else None, **to_args, manual_cast_enabled=need_manual_cast):
model = model_loader(unet_config).to(**to_args)
if _nz:
model = patch_nunchaku_zimage(model, precision, rank)
load_state_dict(model, state_dict)
if hasattr(model, "_internal_dict"):
model._internal_dict = unet_config
else:
model.config = unet_config
model.storage_dtype = storage_dtype
model.computation_dtype = computation_dtype
model.load_device = load_device
model.initial_device = initial_device
model.offload_device = offload_device
return model
print(f"Skipped: {component_name} = {lib_name}.{cls_name}")
return None
def replace_state_dict(sd: dict[str, torch.Tensor], asd: dict[str, torch.Tensor], guess, path: os.PathLike):
vae_key_prefix = guess.vae_key_prefix[0]
text_encoder_key_prefix = guess.text_encoder_key_prefix[0]
if "enc.blk.0.attn_k.weight" in asd:
gguf_t5_format = { # city96
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
asd_new = {}
for k, v in asd.items():
for s, d in gguf_t5_format.items():
k = k.replace(s, d)
asd_new[k] = v
for k in ("shared.weight",):
asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
asd.clear()
asd = asd_new
if "blk.0.attn_norm.weight" in asd:
gguf_llm_format = { # city96
"blk.": "model.layers.",
"attn_norm": "input_layernorm",
"attn_q_norm.": "self_attn.q_norm.",
"attn_k_norm.": "self_attn.k_norm.",
"attn_v_norm.": "self_attn.v_norm.",
"attn_q": "self_attn.q_proj",
"attn_k": "self_attn.k_proj",
"attn_v": "self_attn.v_proj",
"attn_output": "self_attn.o_proj",
"ffn_up": "mlp.up_proj",
"ffn_down": "mlp.down_proj",
"ffn_gate": "mlp.gate_proj",
"ffn_norm": "post_attention_layernorm",
"token_embd": "model.embed_tokens",
"output_norm": "model.norm",
"output.weight": "lm_head.weight",
}
asd_new = {}
for k, v in asd.items():
for s, d in gguf_llm_format.items():
k = k.replace(s, d)
asd_new[k] = v
for k in ("model.embed_tokens.weight",):
asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
asd.clear()
asd = asd_new
# sd / sdxl / wan # wan
if "decoder.conv_in.weight" in asd or "decoder.middle.0.residual.0.gamma" in asd:
keys_to_delete = [k for k in sd if k.startswith(vae_key_prefix)]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[vae_key_prefix + k] = v
## identify model type
flux_test_key = "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale"
svdq_test_key = "model.diffusion_model.single_transformer_blocks.0.mlp_fc1.qweight"
legacy_test_key = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
model_type = "-"
if legacy_test_key in sd:
match sd[legacy_test_key].shape[1]:
case 768:
model_type = "sd1"
case 1280:
model_type = "xlrf" # sdxl refiner model
case 2048:
model_type = "sdxl"
elif flux_test_key in sd or svdq_test_key in sd:
model_type = "flux"
## prefixes used by various model types for CLIP-L
prefix_L = {
"-": None,
"sd1": "cond_stage_model.transformer.",
"xlrf": None,
"sdxl": "conditioner.embedders.0.transformer.",
"flux": "text_encoders.clip_l.transformer.",
}
## prefixes used by various model types for CLIP-G
prefix_G = {
"-": None,
"sd1": None,
"xlrf": "conditioner.embedders.0.model.transformer.",
"sdxl": "conditioner.embedders.1.model.transformer.",
"flux": None,
}
## VAE format 0 (extracted from model, could be sd1/sdxl)
if "first_stage_model.decoder.conv_in.weight" in asd:
if model_type in ("sd1", "xlrf", "sdxl"):
assert asd["first_stage_model.decoder.conv_in.weight"].shape[1] == 4
for k, v in asd.items():
sd[k] = v
## CLIP-G
CLIP_G = {"conditioner.embedders.1.model.transformer.resblocks.0.ln_1.bias": "conditioner.embedders.1.model.transformer.", "text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm1.bias": "text_encoders.clip_g.transformer.", "text_model.encoder.layers.0.layer_norm1.bias": "", "transformer.resblocks.0.ln_1.bias": "transformer."} # key to identify source model old_prefix
for CLIP_key in CLIP_G.keys():
if CLIP_key in asd and asd[CLIP_key].shape[0] == 1280:
new_prefix = prefix_G[model_type]
old_prefix = CLIP_G[CLIP_key]
if new_prefix is not None:
if "resblocks" not in CLIP_key: # need to convert
def convert_transformers(statedict, prefix_from, prefix_to, number):
keys_to_replace = {
"{}text_model.embeddings.position_embedding.weight": "{}positional_embedding",
"{}text_model.embeddings.token_embedding.weight": "{}token_embedding.weight",
"{}text_model.final_layer_norm.weight": "{}ln_final.weight",
"{}text_model.final_layer_norm.bias": "{}ln_final.bias",
"text_projection.weight": "{}text_projection",
}
resblock_to_replace = {
"layer_norm1": "ln_1",
"layer_norm2": "ln_2",
"mlp.fc1": "mlp.c_fc",
"mlp.fc2": "mlp.c_proj",
"self_attn.out_proj": "attn.out_proj",
}
for x in keys_to_replace: # remove trailing 'transformer.' from new prefix
k = x.format(prefix_from)
statedict[keys_to_replace[x].format(prefix_to[:-12])] = statedict.pop(k)
for resblock in range(number):
for y in ["weight", "bias"]:
for x in resblock_to_replace:
k = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}resblocks.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
statedict[k_to] = statedict.pop(k)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.q_proj", y)
weightsQ = statedict.pop(k_from)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.k_proj", y)
weightsK = statedict.pop(k_from)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.v_proj", y)
weightsV = statedict.pop(k_from)
k_to = "{}resblocks.{}.attn.in_proj_{}".format(prefix_to, resblock, y)
statedict[k_to] = torch.cat((weightsQ, weightsK, weightsV))
return statedict
asd = convert_transformers(asd, old_prefix, new_prefix, 32)
for k, v in asd.items():
sd[k] = v
elif old_prefix == "":
for k, v in asd.items():
new_k = new_prefix + k
sd[new_k] = v
else:
for k, v in asd.items():
new_k = k.replace(old_prefix, new_prefix)
sd[new_k] = v
## CLIP-L
CLIP_L = {"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias": "cond_stage_model.transformer.", "conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm1.bias": "conditioner.embedders.0.transformer.", "text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm1.bias": "text_encoders.clip_l.transformer.", "text_model.encoder.layers.0.layer_norm1.bias": "", "transformer.resblocks.0.ln_1.bias": "transformer."} # key to identify source model old_prefix
for CLIP_key in CLIP_L.keys():
if CLIP_key in asd and asd[CLIP_key].shape[0] == 768:
new_prefix = prefix_L[model_type]
old_prefix = CLIP_L[CLIP_key]
if new_prefix is not None:
if "resblocks" in CLIP_key: # need to convert
def transformers_convert(statedict, prefix_from, prefix_to, number):
keys_to_replace = {
"positional_embedding": "{}text_model.embeddings.position_embedding.weight",
"token_embedding.weight": "{}text_model.embeddings.token_embedding.weight",
"ln_final.weight": "{}text_model.final_layer_norm.weight",
"ln_final.bias": "{}text_model.final_layer_norm.bias",
"text_projection": "text_projection.weight",
}
resblock_to_replace = {
"ln_1": "layer_norm1",
"ln_2": "layer_norm2",
"mlp.c_fc": "mlp.fc1",
"mlp.c_proj": "mlp.fc2",
"attn.out_proj": "self_attn.out_proj",
}
for k in keys_to_replace:
statedict[keys_to_replace[k].format(prefix_to)] = statedict.pop(k)
for resblock in range(number):
for y in ["weight", "bias"]:
for x in resblock_to_replace:
k = "{}resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
statedict[k_to] = statedict.pop(k)
k_from = "{}resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
weights = statedict.pop(k_from)
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
statedict[k_to] = weights[shape_from * x : shape_from * (x + 1)]
return statedict
asd = transformers_convert(asd, old_prefix, new_prefix, 12)
for k, v in asd.items():
sd[k] = v
elif old_prefix == "":
for k, v in asd.items():
new_k = new_prefix + k
sd[new_k] = v
else:
for k, v in asd.items():
new_k = k.replace(old_prefix, new_prefix)
sd[new_k] = v
if "encoder.block.0.layer.0.SelfAttention.k.weight" in asd:
_key = "umt5xxl" if asd["shared.weight"].size(0) == 256384 else "t5xxl"
keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}{_key}.")]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
if k == "spiece_model":
continue
sd[f"{text_encoder_key_prefix}{_key}.transformer.{k}"] = v
elif "encoder.block.0.layer.0.SelfAttention.k.qweight" in asd:
keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}t5xxl.")]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}t5xxl.transformer.{k}"] = True
sd[f"{text_encoder_key_prefix}t5xxl.transformer.filename"] = str(path)
if "model.layers.0.post_feedforward_layernorm.weight" in asd:
assert "model.layers.0.self_attn.q_norm.weight" not in asd
for k, v in asd.items():
if k == "spiece_model":
continue
sd[f"{text_encoder_key_prefix}gemma2_2b.{k}"] = v
elif "model.layers.0.self_attn.k_proj.bias" in asd:
weight = asd["model.layers.0.self_attn.k_proj.bias"]
assert weight.shape[0] == 512
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}qwen25_7b.{k}"] = v
elif "model.layers.0.post_attention_layernorm.weight" in asd:
assert "model.layers.0.self_attn.q_norm.weight" in asd
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}qwen3_4b.transformer.{k}"] = v
return sd
def preprocess_state_dict(sd):
if not any(k.startswith("model.diffusion_model") for k in sd.keys()):
sd = {f"model.diffusion_model.{k}": v for k, v in sd.items()}
return sd
def split_state_dict(sd, additional_state_dicts: list = None):
sd, metadata = load_torch_file(sd, return_metadata=True)
sd = preprocess_state_dict(sd)
guess = huggingface_guess.guess(sd)
if getattr(guess, "nunchaku", False) and ("Z-Image" in guess.huggingface_repo or "Qwen" in guess.huggingface_repo):
import json
from nunchaku.utils import get_precision_from_quantization_config
quantization_config = json.loads(metadata["quantization_config"])
guess.unet_config.update(
{
"precision": get_precision_from_quantization_config(quantization_config),
"rank": quantization_config.get("rank", 32),
}
)
if isinstance(additional_state_dicts, list):
for asd in additional_state_dicts:
_asd = load_torch_file(asd)
sd = replace_state_dict(sd, _asd, guess, asd)
del _asd
guess.clip_target = guess.clip_target(sd)
guess.model_type = guess.model_type(sd)
guess.ztsnr = "ztsnr" in sd
sd = guess.process_vae_state_dict(sd)
state_dict = {guess.unet_target: try_filter_state_dict(sd, guess.unet_key_prefix), guess.vae_target: try_filter_state_dict(sd, guess.vae_key_prefix)}
sd = guess.process_clip_state_dict(sd)
for k, v in guess.clip_target.items():
state_dict[v] = try_filter_state_dict(sd, [k + "."])
state_dict["ignore"] = sd
print_dict = {k: len(v) for k, v in state_dict.items()}
print(f"StateDict Keys: {print_dict}")
del state_dict["ignore"]
return state_dict, guess
@torch.inference_mode()
def forge_loader(sd: os.PathLike, additional_state_dicts: list[os.PathLike] = None):
try:
state_dicts, estimated_config = split_state_dict(sd, additional_state_dicts=additional_state_dicts)
except Exception as e:
from modules.errors import display
display(e, "forge_loader")
raise ValueError("Failed to recognize model type!")
repo_name = estimated_config.huggingface_repo
backend.args.dynamic_args["kontext"] = "kontext" in str(sd).lower()
backend.args.dynamic_args["edit"] = "qwen" in str(sd).lower() and "edit" in str(sd).lower()
backend.args.dynamic_args["nunchaku"] = getattr(estimated_config, "nunchaku", False)
if getattr(estimated_config, "nunchaku", False):
estimated_config.unet_config["filename"] = str(sd)
local_path = os.path.join(dir_path, "huggingface", repo_name)
config: dict = DiffusionPipeline.load_config(local_path)
huggingface_components = {}
for component_name, v in config.items():
if isinstance(v, list) and len(v) == 2:
lib_name, cls_name = v
component_sd = state_dicts.pop(component_name, None)
component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
if component_sd is not None:
del component_sd
if component is not None:
huggingface_components[component_name] = component
del state_dicts
yaml_config = None
yaml_config_prediction_type = None
try:
from pathlib import Path
import yaml
config_filename = os.path.splitext(sd)[0] + ".yaml"
if Path(config_filename).is_file():
with open(config_filename, "r") as stream:
yaml_config = yaml.safe_load(stream)
except ImportError:
pass
prediction_types = {
"EPS": "epsilon",
"V_PREDICTION": "v_prediction",
"FLUX": "const",
"FLOW": "const",
}
has_prediction_type = "scheduler" in huggingface_components and hasattr(huggingface_components["scheduler"], "config") and "prediction_type" in huggingface_components["scheduler"].config
if yaml_config is not None:
yaml_config_prediction_type: str = yaml_config.get("model", {}).get("params", {}).get("parameterization", "") or yaml_config.get("model", {}).get("params", {}).get("denoiser_config", {}).get("params", {}).get("scaling_config", {}).get("target", "")
if yaml_config_prediction_type == "v" or yaml_config_prediction_type.endswith(".VScaling"):
yaml_config_prediction_type = "v_prediction"
else:
# Use estimated prediction config if no suitable prediction type found
yaml_config_prediction_type = ""
if has_prediction_type:
if yaml_config_prediction_type:
huggingface_components["scheduler"].config.prediction_type = yaml_config_prediction_type
else:
huggingface_components["scheduler"].config.prediction_type = prediction_types.get(estimated_config.model_type.name, huggingface_components["scheduler"].config.prediction_type)
for M in possible_models:
if any(type(estimated_config) is x for x in M.matched_guesses):
return M(estimated_config=estimated_config, huggingface_components=huggingface_components)
print("Failed to recognize model type!")
return None