|
|
import torch |
|
|
from huggingface_guess import model_list |
|
|
from huggingface_guess.utils import resize_to_batch_size |
|
|
|
|
|
from backend import args, memory_management |
|
|
from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects |
|
|
from backend.modules.k_prediction import PredictionDiscreteFlow |
|
|
from backend.patcher.clip import CLIP |
|
|
from backend.patcher.unet import UnetPatcher |
|
|
from backend.patcher.vae import VAE |
|
|
from backend.text_processing.umt5_engine import UMT5TextProcessingEngine |
|
|
|
|
|
|
|
|
|
|
|
refiner_shift: float = None |
|
|
|
|
|
|
|
|
class Wan(ForgeDiffusionEngine): |
|
|
matched_guesses = [model_list.WAN21_T2V, model_list.WAN21_I2V] |
|
|
|
|
|
def __init__(self, estimated_config, huggingface_components): |
|
|
super().__init__(estimated_config, huggingface_components) |
|
|
self.is_inpaint = False |
|
|
|
|
|
clip = CLIP(model_dict={"umt5xxl": huggingface_components["text_encoder"]}, tokenizer_dict={"umt5xxl": huggingface_components["tokenizer"]}) |
|
|
|
|
|
vae = VAE(model=huggingface_components["vae"], is_wan=True) |
|
|
vae.first_stage_model.latent_format = self.model_config.latent_format |
|
|
|
|
|
k_predictor = PredictionDiscreteFlow(estimated_config) |
|
|
|
|
|
unet = UnetPatcher.from_model(model=huggingface_components["transformer"], diffusers_scheduler=None, k_predictor=k_predictor, config=estimated_config) |
|
|
|
|
|
self.text_processing_engine_t5 = UMT5TextProcessingEngine( |
|
|
text_encoder=clip.cond_stage_model.umt5xxl, |
|
|
tokenizer=clip.tokenizer.umt5xxl, |
|
|
) |
|
|
|
|
|
self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None) |
|
|
self.forge_objects_original = self.forge_objects.shallow_copy() |
|
|
self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy() |
|
|
|
|
|
self.use_shift = True |
|
|
self.is_wan = True |
|
|
|
|
|
global refiner_shift |
|
|
if refiner_shift is not None: |
|
|
self.forge_objects.unet.model.predictor.set_parameters(shift=refiner_shift) |
|
|
refiner_shift = None |
|
|
|
|
|
@torch.inference_mode() |
|
|
def get_learned_conditioning(self, prompt: list[str]): |
|
|
memory_management.load_model_gpu(self.forge_objects.clip.patcher) |
|
|
global refiner_shift |
|
|
shift = getattr(prompt, "distilled_cfg_scale", 8.0) |
|
|
self.forge_objects.unet.model.predictor.set_parameters(shift=shift) |
|
|
refiner_shift = shift |
|
|
return self.text_processing_engine_t5(prompt) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def get_prompt_lengths_on_ui(self, prompt): |
|
|
token_count = len(self.text_processing_engine_t5.tokenize([prompt])[0]) |
|
|
return token_count, max(510, token_count) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def image_to_video(self, length: int, start_image: torch.Tensor, noise: torch.Tensor): |
|
|
_, h, w, c = start_image.shape |
|
|
|
|
|
_image = torch.ones((length, h, w, c), device=start_image.device, dtype=start_image.dtype) * 0.5 |
|
|
_image[: start_image.shape[0]] = start_image |
|
|
|
|
|
concat_latent_image = self.forge_objects.vae.encode(_image[:, :, :, :3]) |
|
|
mask = torch.ones((1, 1, noise.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) |
|
|
mask[:, :, : ((start_image.shape[0] - 1) // 4) + 1] = 0.0 |
|
|
|
|
|
image = concat_latent_image |
|
|
|
|
|
extra_channels = self.forge_objects.unet.model.diffusion_model.in_dim - 16 |
|
|
|
|
|
for i in range(0, image.shape[1], 16): |
|
|
image[:, i : i + 16] = self.forge_objects.vae.first_stage_model.process_in(image[:, i : i + 16]) |
|
|
image = resize_to_batch_size(image, noise.shape[0]) |
|
|
|
|
|
if image.shape[1] > (extra_channels - 4): |
|
|
image = image[:, : (extra_channels - 4)] |
|
|
|
|
|
if mask.shape[1] != 4: |
|
|
mask = torch.mean(mask, dim=1, keepdim=True) |
|
|
mask = (1.0 - mask).to(image) |
|
|
if mask.shape[-3] < noise.shape[-3]: |
|
|
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode="constant", value=0) |
|
|
if mask.shape[1] == 1: |
|
|
mask = mask.repeat(1, 4, 1, 1, 1) |
|
|
mask = resize_to_batch_size(mask, noise.shape[0]) |
|
|
|
|
|
_concat_mask_index = 0 |
|
|
|
|
|
if _concat_mask_index != 0: |
|
|
z = torch.cat((image[:, :_concat_mask_index], mask, image[:, _concat_mask_index:]), dim=1) |
|
|
else: |
|
|
z = torch.cat((mask, image), dim=1) |
|
|
|
|
|
args.dynamic_args["concat_latent"] = z |
|
|
|
|
|
@torch.inference_mode() |
|
|
def encode_first_stage(self, x): |
|
|
length, c, h, w = x.shape |
|
|
assert c == 3 |
|
|
if length > 1: |
|
|
x = x[0].unsqueeze(0) |
|
|
start_image = x.movedim(1, -1) * 0.5 + 0.5 |
|
|
latent = torch.zeros([1, 16, ((length - 1) // 4) + 1, h // 8, w // 8], device=self.forge_objects.vae.device) |
|
|
self.image_to_video(length, start_image, latent) |
|
|
sample = self.forge_objects.vae.first_stage_model.process_in(latent) |
|
|
return sample.to(x) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def decode_first_stage(self, x): |
|
|
sample = self.forge_objects.vae.first_stage_model.process_out(x) |
|
|
sample = self.forge_objects.vae.decode(sample).movedim(-1, 2) * 2.0 - 1.0 |
|
|
return sample.to(x) |
|
|
|