text
stringlengths
33
722k
RibPedicleLocation of intervertebral discSpinous processTransverse processVertebral bodyABIntervertebral foramenVertebral bodyLocation of intervertebral discFig. 2.17 Radiograph of lumbar region of vertebral column. A. Anteroposterior view. B. Lateral view.
RibTransverse processPedicleSpinous process of LIVALocation ofintervertebral discVertebral body of LIIIIntervertebral foramenBFig. 2.18 Development of the vertebrae.Fig. 2.19 Typical vertebra.Fig. 2.20 Regional vertebrae. A. Typical cervical vertebra.B. Atlas and axis. C. Typical thoracic vertebra. D. Typical lumbar vertebra.
E. Sacrum. F. Coccyx.Transverse processDensDensForamen transversariumSuperior viewSuperior viewSuperior viewPosterior viewPosterosuperior viewBAnterior tuberclePosterior tubercleAnterior archLateral massPosterior archFacet for densFacet for occipital condyleImpressionsfor alarligamentsAlarligamentsTectorial membrane (upper partof posterior longitudinal ligament)PosteriorlongitudinalligamentFacets forattachment ofalar ligamentsAtlas (CI vertebra)Atlas (CI vertebra) and Axis (CII vertebra)Atlas (CIvertebra)and Axis(CII vertebra)and baseof skullAxis (CII vertebra)Transverse ligament of atlasTransverse ligament of atlasVertebral bodyTransverse processTransverseprocessSpinousprocessMammillaryprocessSpinousprocessSuperior viewLateral viewSuperior viewFacet for articulationwith tubercle ofits own ribDemifacet for articulationwith head of rib belowDemifacet for articulationwith head of its own ribCDApical ligamentof densInferior longitudinalband of cruciformligament
Anterior viewDorsolateral viewPosterior viewFacet for articulation with pelvic boneEFAnterior sacral foraminaPosterior sacral foraminaCoccygeal cornuIncomplete sacral canal
Fig. 2.21 Radiograph showing CI (atlas) and CII (axis) vertebrae. Open mouth, anteroposterior (odontoid peg) view.
Superior articularfacet of CIIDensInferior articular faceton lateral mass of CI
Fig. 2.22 Intervertebral foramen.Fig. 2.23 Spaces between adjacent vertebral arches in the lumbar region.
Fig. 2.24 T1-weighted MR image in the sagittal plane demonstrating a lumbosacral myelomeningocele. There is an absence of laminae and spinous processes in the lumbosacral region.
Fig. 2.25 Radiograph of the lumbar region of the vertebral column demonstrating a wedge fracture of the L1 vertebra. This condition is typically seen in patients with osteoporosis.
Fig. 2.26 Radiograph of the lumbar region of the vertebral column demonstrating three intrapedicular needles, all of which have been placed into the middle of the vertebral bodies. The high-density material is radiopaque bone cement, which has been injected as a liquid that will harden.
Fig. 2.27 Severe scoliosis. A. Radiograph, anteroposterior view. B. Volume-rendered CT, anterior view.
Fig. 2.28 Sagittal CT showing kyphosis.Fig. 2.29 Variations in vertebral number. A. Fused vertebral bodies of cervical vertebrae. B. Hemivertebra. C. Axial slice MRI through the LV vertebra. The iliolumbar ligament runs from the tip of the LV vertebra transverse process to the iliac crest.
Fused bodies of cervical vertebraeAHemivertebraPartial lumbarization of first sacral vertebraBFig. 2.30 A. MRI of a spine with multiple collapsed vertebrae due to diffuse metastatic myeloma infiltration. B1, B2. Positron emission tomography CT (PETCT) study detecting cancer cells in the spine that have high glucose metabolism.
Fig. 2.31 Intervertebral joints.Anulus fibrosusNucleus pulposusLayer of hyalinecartilageFig. 2.32 Zygapophysial joints.Fig. 2.33 Uncovertebral joint.Fig. 2.34 Disc protrusion. T2-weighted magnetic resonance images of the lumbar region of the vertebral column. A. Sagittal plane.
B. Axial plane.Fig. 2.35 Anterior and posterior longitudinal ligaments of vertebral column.
Fig. 2.36 Ligamenta flava.Fig. 2.37 Supraspinous ligament and ligamentum nuchae.Fig. 2.38 Interspinous ligaments.Fig. 2.39 Axial slice MRI through the lumbar spine demonstrating bilateral hypertrophy of the ligamentum flavum.
Fig. 2.40 Radiograph of lumbar region of vertebral column, oblique view (“Scottie dog”). A. Normal radiograph of lumbar region of vertebral column, oblique view. In this view, the transverse process (nose), pedicle (eye), superior articular process (ear), inferior articular process (front leg), and pars interarticularis (neck) resemble a dog. A fracture of the pars interarticularis is visible as a break in the neck of the dog, or the appearance of a collar. B. Fracture of pars interarticularis. C. CT of lumbar spine shows fracture of the LV pars interarticularis.
Fig. 2.41 A. Anterior lumbar interbody fusion (ALIF). B. Posterior lumbar interbody fusion (PLIF).
Fig. 2.42 Superficial group of back muscles—trapezius and latissimus dorsi.
Spinous process of CVIIAcromionSpine of scapulaIliac crestGreater occipital nerve(posterior ramus of C2)Third occipital nerve(posterior ramus of C3)Medial branches of posterior ramiLateral branches of posterior ramiTrapeziusLatissimus dorsiThoracolumbar fascia
Fig. 2.43 Superficial group of back muscles—trapezius and latissimus dorsi, with rhomboid major, rhomboid minor, and levator scapulae located deep to trapezius in the superior part of the back.
Fig. 2.44 Innervation and blood supply of trapezius.TrapeziusLatissimus dorsiRhomboid minorRhomboid majorLevator scapulaeAccessory nerve [XI]Superficial branch of transverse cervical artery
Fig. 2.45 Rhomboid muscles and levator scapulae.Fig. 2.46 Innervation and blood supply of the rhomboid muscles.
Dorsal scapular nerveTrapeziusLatissimus dorsiRhomboid minorRhomboid majorLevator scapulaeSuperficial branch of transverse cervical arteryDeep branch of transverse cervical artery
Fig. 2.47 Intermediate group of back muscles—serratus posterior muscles.Fig. 2.48 Thoracolumbar fascia and the deep back muscles (transverse section).
Fig. 2.49 Deep group of back muscles—spinotransversales muscles (splenius capitis and splenius cervicis).
Fig. 2.50 Deep group of back muscles—erector spinae muscles.Spinous process of CVIIIliac crestSplenius capitisLongissimus capitis Ligamentum nuchaeLongissimus thoracisLongissimus cervicisSpinalis thoracisSpinalisIliocostalis lumborum Iliocostalis thoracisIliocostalis cervicisIliocostalisLongissimus
Fig. 2.51 Deep group of back muscles—transversospinales and segmental muscles.
Spinous process of CVIIObliquus capitis inferiorObliquus capitis superiorRectus capitis posterior minorRectus capitis posterior majorSemispinalis thoracisIntertransversariusErector spinaeRotatores thoracis(short, long)Levatores costarum(short, long)Semispinalis capitisMultifidus
Fig. 2.52 Deep group of back muscles—suboccipital muscles. This also shows the borders of the suboccipital triangle.
Spinous process of CIIPosterior ramus of C1Obliquus capitis superior Rectus capitis posterior minorObliquus capitis inferiorRectus capitis posterior majorSplenius capitisSplenius capitisLongissimus capitisSemispinalis cervicisSemispinalis capitisSemispinalis capitisVertebral artery
Fig. 2.53 Spinal cord.End of spinalcord LI–LIIConus medullarisInferior part ofarachnoid materEnd of subarachnoidspace SIICervicalenlargement(of spinal cord)Lumbosacralenlargement(of spinal cord)FilumterminalePial partDural partPedicles ofvertebrae
Fig. 2.54 Features of the spinal cord.Fig. 2.55 Arteries that supply the spinal cord. A. Anterior view of spinal cord (not all segmental spinal arteries are shown).
B. Segmental supply of spinal cord.Posterior spinal arteryADeep cervical arteryCostocervical trunkThyrocervical trunkSubclavian arteryPosterior intercostalarterySegmentalspinal arteryArtery of Adamkiewicz(branch fromsegmentalspinal artery)Ascending cervicalarteryVertebral arterySegmental medullaryarteriesAnterior spinal arterySegmental medullaryarteries (branch fromsegmental spinalartery)Lateral sacral arterySegmentalspinal artery
Fig. 2.56 Veins that drain the spinal cord.Fig. 2.57 MRI of the spine. There is discitis of the T10-T11 intervertebral disc with destruction of the adjacent endplates. There is also a prevertebral abscess and an epidural abscess, which impinges the cord.
Fig. 2.58 CT at the level of CI demonstrates two breaks in the closed ring of the atlas following an axial-loading injury.
Fig. 2.59 Meninges.Fig. 2.60 Arrangement of structures in the vertebral canal and the back (lumbar region).
Crura of diaphragmAortaPsoasDuraQuadratus lumborumInternal vertebral plexus of veinsin extradural spaceErector spinae musclesLigamenta flavaSupraspinous ligamentInterspinous ligamentLumbar arteryVeinCauda equinaSkinVertebraIntervertebral discIntervertebral foramenLaminaPediclePosterior longitudinal ligament
Fig. 2.61 Basic organization of a spinal nerve.Fig. 2.62 Course of spinal nerves in the vertebral canal.
1121110112233445595678412345678123C8T1T2T3T4T5T6T7T8T9T10T11T12L1L2L3L4L5S1S2S3S4S5CoC7C6C5C4Cervical enlargement(of spinal cord)C2C3C1Lumbosacral enlargement(of spinal cord)Cauda equinaPedicles of vertebraeSpinal ganglion
Fig. 2.63 Nomenclature of the spinal nerves.Nerve C1 emerges betweenskull and CI vertebraNerve C8 emerges inferior topedicle of CVII vertebraNerves C2 to C7 emergesuperior to pediclesNerves T1 to Co emergeinferior to pedicles oftheir respective vertebraeC2C1C3C4C5C6C7C8T1CICVIITIPedicleTransition innomenclatureof nervesT2
Fig. 2.64 Normal appearance of the back. A. In women. B. In men.
Fig. 2.65 Normal curvatures of the vertebral column.Fig. 2.66 Back of a woman with major palpable bony landmarks indicated.
Spine of scapulaInferior angle of scapulaMedial border of scapulaPosition of externaloccipital protuberancePosterior superior iliac spineIliac crest
Fig. 2.67 The back with the positions of vertebral spinous processes and associated structures indicated. A. In a man. B. In a woman with neck flexed. The prominent CVII and TI vertebral spinous processes are labeled. C. In a woman with neck flexed to accentuate the ligamentum nuchae.
Tip of coccyxSII vertebral spinous processTXII vertebral spinous processTVII vertebral spinous processTIII vertebral spinous processTI vertebral spinous processRoot of spine of scapulaInferior angle of scapulaHighest point of iliac crestIliac crestSacral dimpleCVII vertebral spinous processCII vertebral spinous processPosition of externaloccipital protuberanceLIV vertebral spinous processA
Fig. 2.68 Back with the ends of the spinal cord and subarachnoid space indicated. A. In a man.
Back with the ends of the spinal cord and subarachnoid space indicated. B. In a woman lying on her side in a fetal position, which accentuates the lumbar vertebral spinous processes and opens the spaces between adjacent vertebral arches. Cerebrospinal fluid can be withdrawn from the subarachnoid space in lower lumbar regions without endangering the spinal cord.
Tip of coccyxSII vertebral spinous processTXII vertebral spinous processInferior end of spinal cord(normally betweenLI and LII vertebra)Inferior end ofsubarachnoid spaceALIV vertebral spinous process
LIV vertebral spinous processNeedleLV vertebral spinous processTip of coccyxBFig. 2.69 Back muscles. A. In a man with latissimus dorsi, trapezius, and erector spinae muscles outlined.
Back muscles. B. In a man with arms abducted to accentuate the lateral margins of the latissimus dorsi muscles. C. In a woman with scapulae externally rotated and forcibly retracted to accentuate the rhomboid muscles.
Fig. 2.70 MRI of the lumbar spine reveals posterior herniation of the L2-3 disc resulting in compression of the cauda equina filaments.
Table 2.1 Superficial (appendicular) group of back musclesTable 2.2 Intermediate (respiratory) group of back musclesTable 2.3 Spinotransversales musclesTable 2.4 Erector spinae group of back musclesTable 2.5 Transversospinales group of back musclesTable 2.6 Segmental back musclesTable 2.7 Suboccipital group of back musclesIn the clinicSpina bifida is a disorder in which the two sides of vertebral arches, usually in lower vertebrae, fail to fuse during development, resulting in an “open” vertebral canal (Fig. 2.24). There are two types of spina bifida.
The commonest type is spina bifida occulta, in which there is a defect in the vertebral arch of LV or SI. This defect occurs in as many as 10% of individuals and results in failure of the posterior arch to fuse in the midline. Clinically, the patient is asymptomatic, although physical examination may reveal a tuft of hair over the spinous processes.
The more severe form of spina bifida involves complete failure of fusion of the posterior arch at the lumbosacral junction, with a large outpouching of the meninges. This may contain cerebrospinal fluid (a meningocele) or a portion of the spinal cord (a myelomeningocele). These abnormalities may result in a variety of neurological deficits, including problems with walking and bladder function.
In the clinicVertebroplasty is a relatively new technique in which the body of a vertebra can be filled with bone cement (typically methyl methacrylate). The indications for the technique include vertebral body collapse and pain from the vertebral body, which may be secondary to tumor infiltration. The procedure is most commonly performed for osteoporotic wedge fractures, which are a considerable cause of morbidity and pain in older patients.
Osteoporotic wedge fractures (Fig. 2.25) typically occur in the thoracolumbar region, and the approach to performing vertebroplasty is novel and relatively straightforward. The procedure is performed under sedation or light general anesthetic. Using X-ray guidance the pedicle is identified on the anteroposterior image. A metal cannula is placed through the pedicle into the vertebral body. Liquid bone cement is injected via the cannula into the vertebral body (Fig. 2.26). The function of the bone cement is two-fold. First, it increases the strength of the vertebral body and prevents further loss of height. Furthermore, as the bone cement sets, there is a degree of heat generated that is believed to disrupt pain nerve endings. Kyphoplasty is a similar technique that aims to restore some or all of the lost vertebral body height from the wedge fracture by injecting liquid bone cement into the vertebral body.
In the clinicScoliosis is an abnormal lateral curvature of the vertebral column (Fig. 2.27).
A true scoliosis involves not only the curvature (rightor left-sided) but also a rotational element of one vertebra upon another.
The commonest types of scoliosis are those for which we have little understanding about how or why they occur and are termed idiopathic scoliosis. It is thought that there is some initial axial rotation of the vertebrae, which then alters the locations of the mechanical compressive and distractive forces applied through the vertebral growth plates, leading to changes in speed of bone growth and ultimately changes to spinal curvature. These are never present at birth and tend to occur in either the infantile, juvenile, or adolescent age groups. The vertebral bodies and posterior elements (pedicles and laminae) are normal in these patients.
When a scoliosis is present from birth (congenital scoliosis) it is usually associated with other developmental abnormalities. In these patients, there is a strong association with other abnormalities of the chest wall, genitourinary tract, and heart disease. This group of patients needs careful evaluation by many specialists.
A rare but important group of scoliosis is that in which the muscle is abnormal. Muscular dystrophy is the commonest example. The abnormal muscle does not retain the normal alignment of the vertebral column, and curvature develops as a result. A muscle biopsy is needed to make the diagnosis.
Other disorders that can produce scoliosis include bone tumors, spinal cord tumors, and localized disc protrusions.
In the clinicKyphosis is abnormal curvature of the vertebral column in the thoracic region, producing a “hunchback” deformity. This condition occurs in certain disease states, the most dramatic of which is usually secondary to tuberculosis infection of a thoracic vertebral body, where the kyphosis becomes angulated at the site of the lesion. This produces the gibbus deformity, a deformity that was prevalent before the use of antituberculous medication (Fig. 2.28).
In the clinicLordosis is abnormal curvature of the vertebral column in the lumbar region, producing a swayback deformity.
In the clinicThere are usually seven cervical vertebrae, although in certain diseases these may be fused. Fusion of cervical vertebrae (Fig. 2.29A) can be associated with other abnormalities, for example Klippel-Feil syndrome, in which there is fusion of vertebrae CI and CII or CV and CVI, and may be associated with a high-riding abnormalities.
Variations in the number of thoracic vertebrae also are well described.
One of the commonest abnormalities in the lumbar vertebrae is a partial fusion of vertebra LV with the sacrum (sacralization of the lumbar vertebra). Partial separation of vertebra SI from the sacrum (lumbarization of first sacral vertebra) may also occur (Fig. 2.29B). The LV vertebra can usually be identified by the iliolumbar ligament, which is a band of connective tissue that runs from the tip of the transverse process of LV to the iliac crest bilaterally (Fig. 2.29C).
A hemivertebra occurs when a vertebra develops only on one side (Fig. 2.29B).
In the clinicThe vertebrae and cancerThe vertebrae are common sites for metastatic disease (secondary spread of cancer cells). When cancer cells grow within the vertebral bodies and the posterior elements, they interrupt normal bone cell turnover, leading to either bone destruction or formation and destroying the mechanical properties of the bone. A minor injury may therefore lead to vertebral collapse (Fig. 2.30A). Cancer cells have a much higher glucose metabolism compared with normal adjacent bone cells. These metastatic cancer cells can therefore be detected by administering radioisotope-labeled glucose to a patient and then tracing where the labeled glucose has been metabolized (Fig. 2.30B). Importantly, vertebrae that contain extensive metastatic disease may extrude fragments of tumor into the vertebral canal, compressing nerves and the spinal cord.
In the clinicOsteoporosis is a pathophysiologic condition in which bone quality is normal but the quantity of bone is deficient. It is a metabolic bone disorder that commonly occurs in women in their 50s and 60s and in men in their 70s.
Many factors influence the development of osteoporosis, including genetic predetermination, level of activity and nutritional status, and, in particular, estrogen levels in women.
Typical complications of osteoporosis include “crush” vertebral body fractures, distal fractures of the radius, and hip fractures.
With increasing age and poor-quality bone, patients are more susceptible to fracture. Healing tends to be impaired in these elderly patients, who consequently require long hospital stays and prolonged rehabilitation.
Patients likely to develop osteoporosis can be identified by dual-photon X-ray absorptiometry (DXA) scanning. Low-dose X-rays are passed through the bone, and by counting the number of photons detected and knowing the dose given, the number of X-rays absorbed by the bone can be calculated. The amount of X-ray absorption can be directly correlated with the bone mass, and this can be used to predict whether a patient is at risk for osteoporotic fractures.
In the clinicBack pain is an extremely common disorder. It can be related to mechanical problems or to disc protrusion impinging on a nerve. In cases involving discs, it may be necessary to operate and remove the disc that is pressing on the nerve.
Not infrequently, patients complain of pain and no immediate cause is found; the pain is therefore attributed to mechanical discomfort, which may be caused by degenerative disease. One of the treatments is to pass a needle into the facet joint and inject it with local anesthetic and corticosteroid.
In the clinicHerniation of intervertebral discsThe discs between the vertebrae are made up of a central portion (the nucleus pulposus) and a complex series of fibrous rings (anulus fibrosus). A tear can occur within the anulus fibrosus through which the material of the nucleus pulposus can track. After a period of time, this material may track into the vertebral canal or into the intervertebral foramen to impinge on neural structures (Fig. 2.34). This is a common cause of back pain. A disc may protrude posteriorly to directly impinge on the cord or the roots of the lumbar nerves, depending on the level, or may protrude posterolaterally adjacent to the pedicle and impinge on the descending root.
In cervical regions of the vertebral column, cervical disc protrusions often become ossified and are termed disc osteophyte bars.
In the clinicSome diseases have a predilection for synovial joints rather than symphyses. A typical example is rheumatoid arthritis, which primarily affects synovial joints and synovial bursae, resulting in destruction of the joint and its lining. Symphyses are usually preserved.
In the clinicThe ligamenta flava are important structures associated with the vertebral canal (Fig. 2.39). In degenerative conditions of the vertebral column, the ligamenta flava may hypertrophy. This is often associated with hypertrophy and arthritic change of the zygapophysial joints. In combination, zygapophysial joint hypertrophy, ligamenta flava hypertrophy, and a mild disc protrusion can reduce the dimensions of the vertebral canal, producing the syndrome of spinal stenosis.
In the clinicVertebral fractures can occur anywhere along the vertebral column. In most instances, the fracture will heal under appropriate circumstances. At the time of injury, it is not the fracture itself but related damage to the contents of the vertebral canal and the surrounding tissues that determines the severity of the patient’s condition.
Vertebral column stability is divided into three arbitrary clinical “columns”: the anterior column consists of the vertebral bodies and the anterior longitudinal ligament; the middle column comprises the vertebral body and the posterior longitudinal ligament; and the posterior column is made up of the ligamenta flava, interspinous ligaments, supraspinous ligaments, and the ligamentum nuchae in the cervical vertebral column.
Destruction of one of the clinical columns is usually a stable injury requiring little more than rest and appropriate analgesia. Disruption of two columns is highly likely to be unstable and requires fixation and immobilization. A three-column spinal injury usually results in a significant neurological event and requires fixation to prevent further extension of the neurological defect and to create vertebral column stability.
At the craniocervical junction, a complex series of ligaments create stability. If the traumatic incident disrupts craniocervical stability, the chances of a significant spinal cord injury are extremely high. The consequences are quadriplegia. In addition, respiratory function may be compromised by paralysis of the phrenic nerve (which arises from spinal nerves C3 to C5), and severe hypotension (low blood pressure) may result from central disruption of the sympathetic part of the autonomic division of the nervous system.
Mid and lower cervical vertebral column disruption may produce a range of complex neurological problems involving the upper and lower limbs, although below the level of C5, respiratory function is unlikely to be compromised.
Lumbar vertebral column injuries are rare. When they occur, they usually involve significant force. Knowing that a significant force is required to fracture a vertebra, one must assess the abdominal organs and the rest of the axial skeleton for further fractures and visceral rupture.
Vertebral injuries may also involve the soft tissues and supporting structures between the vertebrae. Typical examples of this are the unifacetal and bifacetal cervical vertebral dislocations that occur in hyperflexion injuries.
The pars interarticularis is a clinical term to describe the specific region of a vertebra between the superior and inferior facet (zygapophysial) joints (Fig. 2.40A). This region is susceptible to trauma, especially in athletes.
If a fracture occurs around the pars interarticularis, the vertebral body may slip anteriorly and compress the vertebral canal.
The most common sites for pars interarticularis fractures are the LIV and LV levels (Fig. 2.40B,C). (Clinicians often refer to parts of the back in shorthand terms that are not strictly anatomical; for example, facet joints and apophyseal joints are terms used instead of zygapophysial joints, and spinal column is used instead of vertebral column.)
It is possible for a vertebra to slip anteriorly upon its inferior counterpart without a pars interarticularis fracture. Usually this is related to abnormal anatomy of the facet joints, facet joint degenerative change. This disorder is termed spondylolisthesis.
In the clinicSurgical procedures on the backA prolapsed intervertebral disc may impinge upon the meningeal (thecal) sac, cord, and most commonly the nerve root, producing symptoms attributable to that level. In some instances the disc protrusion will undergo a degree of involution that may allow symptoms to resolve without intervention. In some instances pain, loss of function, and failure to resolve may require surgery to remove the disc protrusion.
It is of the utmost importance that the level of the disc protrusion is identified before surgery. This may require MRI scanning and on-table fluoroscopy to prevent operating on the wrong level. A midline approach to the right or to the left of the spinous processes will depend upon the most prominent site of the disc bulge. In some instances removal of the lamina will increase the potential space and may relieve symptoms. Some surgeons perform a small fenestration (windowing) within the ligamentum flavum. This provides access to the canal. The meningeal sac and its contents are gently retracted, exposing the nerve root and the offending disc. The disc is dissected free, removing its effect on the nerve root and the canal.
Spinal fusion is performed when it is necessary to fuse one vertebra with the corresponding superior or inferior vertebra, and in some instances multilevel fusion may be necessary. Indications are varied, though they include stabilization after fracture, stabilization related to tumor infiltration, and stabilization when mechanical pain is produced either from the disc or from the posterior elements.
There are a number of surgical methods in which a fusion can be performed, through either a posterior approach and fusing the posterior elements, an anterior approach by removal of the disc and either disc replacement or anterior fusion, or in some instances a 360° fusion where the posterior elements and the vertebral bodies are fused (Fig. 2.41A,B).
In the clinicWeakness in the trapezius, caused by an interruption of the accessory nerve [XI], may appear as drooping of the shoulder, inability to raise the arm above the head because of impaired rotation of the scapula, or weakness in attempting to raise the shoulder (i.e., shrug the shoulder against resistance).
A weakness in, or an inability to use, the latissimus dorsi, resulting from an injury to the thoracodorsal nerve, diminishes the capacity to pull the body upward while climbing or doing a pull-up.
An injury to the dorsal scapular nerve, which innervates the rhomboids, may result in a lateral shift in the position of the scapula on the affected side (i.e., the normal position of the scapula is lost because of the affected muscle’s inability to prevent antagonistic muscles from pulling the scapula laterally).
In the clinicThe intervertebral discs are poorly vascularized; however, infection within the bloodstream can spread to the discs from the terminal branches of the spinal arteries within the vertebral body endplates, which lie immediately adjacent to the discs (Fig. 2.57). Common sources of infection include the lungs and urinary tract.