text
stringlengths
33
722k
In the clinicFractures of the atlas and axisFractures of vertebra CI (the atlas) and vertebra CII (the axis) can potentially lead to the worst types of spinal cord injury including death and paralysis due to injury of the brainstem, which contains the cardiac and respiratory centers. The atlas is a closed ring with no vertebral body. Axial-loading injuries, such as hitting the head while diving into shallow water or hitting the head on the roof of a car in a motor vehicle accident, can cause a “burst” type of fracture, where the ring breaks at more than one site (Fig. 2.58). The British neurosurgeon, Geoffrey Jefferson, first described this fracture pattern in 1920, so these types of fractures are often called Jefferson fractures.
Fractures of the axis usually occur due to severe hyperextension and flexion, which can result in fracture of the tip of the dens, base of the dens, or through the body of the atlas. In judicial hangings, there is hyperextension and distraction injury causing fracture through the atlas pedicles and spondylolisthesis of C2 on C3. This type of fracture is often called a hangman’s fracture.
In many cases of upper neck injuries, even in the absence of fractures to the atlas or axis, there may be injury to the atlanto-axial ligaments, which can render the neck unstable and pose severe risk to the brainstem and upper spinal cord.
In the clinicAn injury to the spinal cord in the cervical portion of the vertebral column can lead to varying degrees of impairment of sensory and motor function (paralysis) in all 4 limbs, termed quadriplegia or tetraplegia. An injury in upper levels of the cervical vertebral column can result in death because of loss of innervation to the diaphragm. An injury to the spinal cord below the level of TI can lead to varying degrees of impairment in motor and sensory function (paralysis) in the lower limbs, termed paraplegia.
In the clinicA lumbar tap (puncture) is carried out to obtain a sample of CSF for examination. In addition, passage of a needle or conduit into the subarachnoid space (CSF space) is used to inject antibiotics, chemotherapeutic agents, and anesthetics.
The lumbar region is an ideal site to access the subarachnoid space because the spinal cord terminates around the level of the disc between vertebrae LI and LII in the adult. The subarachnoid space extends to the region of the lower border of the SII vertebra. There is therefore a large CSF-filled space containing lumbar and sacral nerve roots but no spinal cord.
Depending on the clinician’s preference, the patient is placed in the lateral or prone position. A needle is passed in the midline in between the spinous processes into the extradural space. Further advancement punctures the dura and arachnoid mater to enter the subarachnoid space. Most needles push the roots away from the tip without causing the patient any symptoms. Once the needle is in the subarachnoid space, fluid can be aspirated. In some situations, it is important to measure CSF pressure.
Local anesthetics can be injected into the extradural space or the subarachnoid space to anesthetize the sacral and lumbar nerve roots. Such anesthesia is useful for operations on the pelvis and the legs, which can then be carried out without the need for general anesthesia. When procedures are carried out, the patient must be in the erect position and not lying on his or her side or in the head-down position. If a patient lies on his or her side, the anesthesia is likely to be unilateral. If the patient is placed in the head-down position, the anesthetic can pass cranially and potentially depress respiration.
In some instances, anesthesiologists choose to carry out extradural anesthesia. A needle is placed through the skin, supraspinous ligament, interspinous ligament, and ligamenta flava into the areolar tissue and fat around the dura mater. Anesthetic agent is introduced and diffuses around the vertebral canal to anesthetize the exiting nerve roots and diffuse into the subarachnoid space.
In the clinicHerpes zoster is the virus that produces chickenpox in children. In some patients the virus remains dormant in the cells of the spinal ganglia. Under certain circumstances, the virus becomes activated and travels along the neuronal bundles to the areas supplied by that nerve (the dermatome). A rash ensues, which is characteristically exquisitely painful. Importantly, this typical dermatomal distribution is characteristic of this disorder.
In the clinicBack pain is an extremely common condition affecting almost all individuals at some stage during their life. It is of key clinical importance to identify whether the back pain relates to the vertebral column and its attachments or relates to other structures.
The failure to consider other potential structures that may produce back pain can lead to significant mortality and morbidity. Pain may refer to the back from a number of organs situated in the retroperitoneum. Pancreatic pain in particular refers to the back and may be associated with pancreatic cancer and pancreatitis. Renal pain, which may be produced by stones in the renal collecting system or renal tumors, also typically refers to the back. More often than not this is usually unilateral; however, it can produce central posterior back pain. Enlarged lymph nodes in the preand para-aortic region may produce central posterior back pain and may be a sign of solid tumor malignancy, infection, or Hodgkin’s lymphoma. An enlarging abdominal aorta (abdominal aortic aneurysm) may cause back pain as it enlarges without rupture. Therefore it is critical to think of this structure as a potential cause of back pain, because treatment will be lifesaving. Moreover, a ruptured abdominal aortic aneurysm may also cause acute back pain in the first instance.
In all patients back pain requires careful assessment not only of the vertebral column but also of the chest and abdomen in order not to miss other important anatomical structures that may produce signs and symptoms radiating to the back.
A 50-year-old man was brought to the emergency department with severe lower back pain that had started several days ago. In the past 24 hours he has had two episodes of fecal incontinence and inability to pass urine and now reports numbness and weakness in both his legs.
The attending physician performed a physical examination and found that the man had reduced strength during knee extension and when dorsiflexing his feet and toes. He also had reduced reflexes in his knees and ankles, numbness in the perineal (saddle) region, as well as reduced anal sphincter tone.
The patient’s symptoms and physical examination findings raised serious concern for compression of multiple lumbar and sacral nerve roots in the spine, affecting both motor and sensory pathways. His reduced power in extending his knees and reduced knee reflexes was suggestive of compression of the L4 nerve roots. His reduced ability to dorsiflex his feet and toes was suggestive of compression of the L5 nerve roots. His reduced ankle reflexes was suggestive of compression of the S1 and S2 nerve roots, and his perineal numbness was suggestive of compression of the S3, S4, and S5 nerve roots.
A diagnosis of cauda equina syndrome was made, and the patient was transferred for an urgent MRI scan, which confirmed the presence of a severely herniating L2-3 disc compressing the cauda equina, giving rise to the cauda equina syndrome (Fig. 2.70). The patient underwent surgical decompression of the cauda equina and made a full recovery.
The collection of lumbar and sacral nerve roots beyond the conus medullaris has a horsetail-like appearance, from which it derives its name “cauda equina.” Compression of the cauda equina may be caused by a herniating disc (as in this case), fracture fragments following traumatic injury, tumor, abscess, or severe degenerative stenosis of the central canal.
Cauda equina syndrome is classed as a surgical emergency to prevent permanent and irreversible damage to the compressed nerve roots.
A 45-year-old man was involved in a serious car accident. On examination he had a severe injury to the cervical region of his vertebral column with damage to the spinal cord. In fact, his breathing became erratic and stopped.
If the cervical spinal cord injury is above the level of C5, breathing is likely to stop. The phrenic nerve takes origin from C3, C4, and C5 and supplies the diaphragm. Breathing may not cease immediately if the lesion is just below C5, but does so as the cord becomes edematous and damage progresses superiorly. In addition, some respiratory and ventilatory exchange may occur by using neck muscles plus the sternocleidomastoid and trapezius muscles, which are innervated by the accessory nerve [XI].
The patient was unable to sense or move his upper and lower limbs.
The patient has paralysis of the upper and lower limbs and is therefore quadriplegic. If breathing is unaffected, the lesion is below the level of C5 or at the level of C5. The nerve supply to the upper limbs is via the brachial plexus, which begins at the C5 level. The site of the spinal cord injury is at or above the C5 level.
It is important to remember that although the cord has been transected in the cervical region, the cord below this level is intact. Reflex activity may therefore occur below the injury, but communication with the brain is lost.
A 25-year-old woman complained of increasing lumbar back pain. Over the ensuing weeks she was noted to have an enlarging lump in the right groin, which was mildly tender to touch. On direct questioning, the patient also complained of a productive cough with sputum containing mucus and blood, and she had a mild temperature.
The chest radiograph revealed a cavitating apical lung mass, which explains the pulmonary history.
Given the age of the patient a primary lung cancer is unlikely. The hemoptysis (coughing up blood in the sputum) and the rest of the history suggest the patient has a lung infection. Given the chest radiographic findings of a cavity in the apex of the lung, a diagnosis of tuberculosis (TB) was made. This was confirmed by bronchoscopy and aspiration of pus, which was cultured.
During the patient’s pulmonary infection, the tuberculous bacillus had spread via the blood to vertebra LI. The bone destruction began in the cancellous bone of the vertebral body close to the intervertebral discs. This disease progressed and eroded into the intervertebral disc, which became infected. The disc was destroyed, and the infected disc material extruded around the disc anteriorly and passed into the psoas muscle sheath. This is not an uncommon finding for a tuberculous infection of the lumbar portion of the vertebral column.
As the infection progressed, the pus spread within the psoas muscle sheath beneath the inguinal ligament to produce a hard mass in the groin. This is a typical finding for a psoas abscess.
Fortunately for the patient, there was no evidence of any damage within the vertebral canal.
The patient underwent a radiologically guided drainage of the psoas abscess and was treated for over 6 months with a long-term antibiotic regimen. She made an excellent recovery with no further symptoms, although the cavities within the lungs remain. It healed with sclerosis.
A 72-year-old fit and healthy man was brought to the emergency department with severe back pain beginning at the level of the shoulder blades and extending to the midlumbar region. The pain was of relatively acute onset and was continuous. The patient was able to walk to the gurney as he entered the ambulance; however, at the emergency department the patient complained of inability to use both legs.
The attending physician examined the back thoroughly and found no significant abnormality. He noted that there was reduced sensation in both legs, and there was virtually no power in extensor or flexor groups. The patient was tachycardic, which was believed to be due to pain, and the blood pressure obtained in the ambulance measured 120/80 mm Hg. It was noted that the patient’s current blood pressure was 80/40 mm Hg; however, the patient did not complain of typical clinical symptoms of hypotension.
On first inspection, it is difficult to “add up” these clinical symptoms and signs. In essence we have a progressive paraplegia associated with severe back pain and an anomaly in blood pressure measurements, which are not compatible with the clinical state of the patient.
It was deduced that the blood pressure measurements were obtained in different arms, and both were reassessed.
The blood pressure measurements were true. In the right arm the blood pressure measured 120/80 mm Hg and in the left arm the blood pressure measured 80/40 mm Hg. This would imply a deficiency of blood to the left arm.
The patient was transferred from the emergency department to the CT scanner, and a scan was performed that included the chest, abdomen, and pelvis.
The CT scan demonstrated a dissecting thoracic aortic aneurysm. Aortic dissection occurs when the tunica intima and part of the tunica media of the wall of the aorta become separated from the remainder of the tunica media and the tunica adventitia of the aorta wall. This produces a false lumen. Blood passes not only in the true aortic lumen but also through a small hole into the wall of the aorta and into the false lumen. It often reenters the true aortic lumen inferiorly. This produces two channels through which blood may flow. The process of the aortic dissection produces considerable pain for the patient and is usually of rapid onset. Typically the pain is felt between the shoulder blades and radiating into the back, and although the pain is not from the back musculature or the vertebral column, careful consideration of structures other than the back should always be sought.
The difference in the blood pressure between the two arms indicates the level at which the dissection has begun. The “point of entry” is proximal to the left subclavian artery. At this level a small flap has been created, which limits the blood flow to the left upper limb, giving the low blood pressure recording. The brachiocephalic trunk has not been affected by the aortic dissection, and hence blood flow remains appropriate to the right upper limb.
The paraplegia was caused by ischemia to the spinal cord.
The blood supply to the spinal cord is from a single anterior spinal artery and two posterior spinal arteries. These arteries are fed via segmental spinal arteries at every vertebral level. There are a number of reinforcing arteries (segmental medullary arteries) along the length of the spinal cord—the largest of which is the artery of Adamkiewicz. This artery of Adamkiewicz, a segmental medullary artery, typically arises from the lower thoracic or upper lumbar region, and unfortunately during this patient’s aortic dissection, the origin of this vessel was disrupted. This produces acute spinal cord ischemia and has produced the paraplegia in the patient.
Unfortunately, the dissection extended, the aorta ruptured, and the patient succumbed.
A 55-year-old woman came to her physician with sensory alteration in the right gluteal (buttock) region and in the intergluteal (natal) cleft. Examination also demonstrated low-grade weakness of the muscles of the foot and subtle weakness of the extensor hallucis longus, extensor digitorum longus, and fibularis tertius on the right. The patient also complained of some mild pain symptoms posteriorly in the right gluteal region.
A lesion was postulated in the left sacrum.Pain in the right sacro-iliac region could easily be attributed to the sacro-iliac joint, which is often very sensitive to pain. The weakness of the intrinsic muscles of the foot and the extensor hallucis longus, extensor digitorum longus, and fibularis tertius muscles raises the possibility of an abnormality affecting the nerves exiting the sacrum and possibly the lumbosacral junction. The altered sensation around the gluteal region toward the anus would also support these anatomical localizing features.
An X-ray was obtained of the pelvis.The X-ray appeared on first inspection unremarkable. However, the patient underwent further investigation, including CT and MRI, which demonstrated a large destructive lesion involving the whole of the left sacrum extending into the anterior sacral foramina at the S1, S2, and S3 levels. Interestingly, plain radiographs of the sacrum may often appear normal on first inspection, and further imaging should always be sought in patients with a suspected sacral abnormality.
The lesion was expansile and lytic.Most bony metastases are typically nonexpansile. They may well erode the bone, producing lytic type of lesions, or may become very sclerotic (prostate metastases and breast metastases). From time to time we see a mixed pattern of lytic and sclerotic.
There are a number of uncommon instances in which certain metastases are expansile and lytic. These typically occur in renal metastases and may be seen in multiple myeloma. The anatomical importance of these specific tumors is that they often expand and impinge upon other structures. The expansile nature of this patient’s tumor within the sacrum was the cause for compression of the sacral nerve roots, producing her symptoms.
The patient underwent a course of radiotherapy, had the renal tumor excised, and is currently undergoing a course of chemoimmunotherapy.
122.e1 122.e2Conceptual Overview • Relationship to Other RegionsFig. 2.20, cont’dFig. 2.20, cont’dIn the clinic—cont’dFig. 2.55, cont’dFig. 2.68, cont’dFig. 2.69, cont’dThe thorax is an irregularly shaped cylinder with a narrow opening (superior thoracic aperture) superiorly and a relatively large opening (inferior thoracic aperture) inferiorly (Fig. 3.1). The superior thoracic aperture is open, allowing continuity with the neck; the inferior thoracic aperture is closed by the diaphragm.
The musculoskeletal wall of the thorax is flexible and consists of segmentally arranged vertebrae, ribs, and muscles and the sternum.
The thoracic cavity enclosed by the thoracic wall and the diaphragm is subdivided into three major compartments: a left and a right pleural cavity, each surrounding a lung, and the mediastinum.
The mediastinum is a thick, flexible soft tissue partition oriented longitudinally in a median sagittal position. It contains the heart, esophagus, trachea, major nerves, and major systemic blood vessels.
The pleural cavities are completely separated from each other by the mediastinum. Therefore abnormal events in one pleural cavity do not necessarily affect the other cavity. This also means that the mediastinum can be entered surgically without opening the pleural cavities.
Another important feature of the pleural cavities is that they extend above the level of rib I. The apex of each lung actually extends into the root of the neck. As a consequence, abnormal events in the root of the neck can involve the adjacent pleura and lung, and events in the adjacent pleura and lung can involve the root of the neck.
One of the most important functions of the thorax is breathing. The thorax not only contains the lungs but also provides the machinery necessary—the diaphragm, thoracic wall, and ribs—for effectively moving air into and out of the lungs.
Up and down movements of the diaphragm and changes in the lateral and anterior dimensions of the thoracic wall, caused by movements of the ribs, alter the volume of the thoracic cavity and are key elements in breathing.
Protection of vital organsThe thorax houses and protects the heart, lungs, and great vessels. Because of the upward domed shape of the diaphragm, the thoracic wall also offers protection to some important abdominal viscera.
Much of the liver lies under the right dome of the diaphragm, and the stomach and spleen lie under the left. The posterior aspects of the superior poles of the kidneys lie on the diaphragm and are anterior to rib XII, on the right, and to ribs XI and XII, on the left.
The mediastinum acts as a conduit for structures that pass completely through the thorax from one body region to another and for structures that connect organs in the thorax to other body regions.
The esophagus, vagus nerves, and thoracic duct pass through the mediastinum as they course between the abdomen and neck.
The phrenic nerves, which originate in the neck, also pass through the mediastinum to penetrate and supply the diaphragm.
Other structures such as the trachea, thoracic aorta, and superior vena cava course within the mediastinum en route to and from major visceral organs in the thorax.
The thoracic wall consists of skeletal elements and muscles (Fig. 3.1):
Posteriorly, it is made up of twelve thoracic vertebrae and their intervening intervertebral discs;
Laterally, the wall is formed by ribs (twelve on each side) and three layers of flat muscles, which span the intercostal spaces between adjacent ribs, move the ribs, and provide support for the intercostal spaces;
Anteriorly, the wall is made up of the sternum, which consists of the manubrium of sternum, body of sternum, and xiphoid process.
The manubrium of sternum, angled posteriorly on the body of sternum at the manubriosternal joint, forms the sternal angle, which is a major surface landmark used by clinicians in performing physical examinations of the thorax.
The anterior (distal) end of each rib is composed of costal cartilage, which contributes to the mobility and elasticity of the wall.
All ribs articulate with thoracic vertebrae posteriorly. Most ribs (from rib II to IX) have three articulations with the vertebral column. The head of each rib articulates with the body of its own vertebra and with the body of the vertebra above (Fig. 3.2). As these ribs curve posteriorly, each also articulates with the transverse process of its vertebra.
Anteriorly, the costal cartilages of ribs I to VII articulate with the sternum.
The costal cartilages of ribs VIII to X articulate with the inferior margins of the costal cartilages above them. Ribs XI and XII are called floating ribs because they do not articulate with other ribs, costal cartilages, or the sternum. Their costal cartilages are small, only covering their tips.
The skeletal framework of the thoracic wall provides extensive attachment sites for muscles of the neck, abdomen, back, and upper limbs.
A number of these muscles attach to ribs and function as accessory respiratory muscles; some of them also stabilize the position of the first and last ribs.
Completely surrounded by skeletal elements, the superior thoracic aperture consists of the body of vertebra TI posteriorly, the medial margin of rib I on each side, and the manubrium anteriorly.
The superior margin of the manubrium is in approximately the same horizontal plane as the intervertebral disc between vertebrae TII and TIII.
The first ribs slope inferiorly from their posterior articulation with vertebra TI to their anterior attachment to the manubrium. Consequently, the plane of the superior thoracic aperture is at an oblique angle, facing somewhat anteriorly.
At the superior thoracic aperture, the superior aspects of the pleural cavities, which surround the lungs, lie on either side of the entrance to the mediastinum (Fig. 3.3).
Structures that pass between the upper limb and thorax pass over rib I and the superior part of the pleural cavity as they enter and leave the mediastinum. Structures that pass between the neck and head and the thorax pass more vertically through the superior thoracic aperture.
The inferior thoracic aperture is large and expandable. Bone, cartilage, and ligaments form its margin (Fig. 3.4A).
The inferior thoracic aperture is closed by the diaphragm, and structures passing between the abdomen and thorax pierce or pass posteriorly to the diaphragm.
Skeletal elements of the inferior thoracic aperture are: the body of vertebra TXII posteriorly, rib XII and the distal end of rib XI posterolaterally, the distal cartilaginous ends of ribs VII to X, which unite to form the costal margin anterolaterally, and the xiphoid process anteriorly.
The joint between the costal margin and sternum lies roughly in the same horizontal plane as the intervertebral disc between vertebrae TIX and TX. In other words, the posterior margin of the inferior thoracic aperture is inferior to the anterior margin.
When viewed anteriorly, the inferior thoracic aperture is tilted superiorly.
The musculotendinous diaphragm seals the inferior thoracic aperture (Fig. 3.4B).
Generally, muscle fibers of the diaphragm arise radially, from the margins of the inferior thoracic aperture, and converge into a large central tendon.
Because of the oblique angle of the inferior thoracic aperture, the posterior attachment of the diaphragm is inferior to the anterior attachment.
The diaphragm is not flat; rather, it “balloons” superiorly, on both the right and left sides, to form domes. The right dome is higher than the left, reaching as far as rib V.
As the diaphragm contracts, the height of the domes decreases and the volume of the thorax increases.
The esophagus and inferior vena cava penetrate the diaphragm; the aorta passes posterior to the diaphragm.
The mediastinum is a thick midline partition that extends from the sternum anteriorly to the thoracic vertebrae posteriorly, and from the superior thoracic aperture to the inferior thoracic aperture.
A horizontal plane passing through the sternal angle and the intervertebral disc between vertebrae TIV and TV separates the mediastinum into superior and inferior parts (Fig. 3.5). The inferior part is further subdivided by the pericardium, which encloses the pericardial cavity surrounding the heart. The pericardium and heart constitute the middle mediastinum.
The anterior mediastinum lies between the sternum and the pericardium; the posterior mediastinum lies between the pericardium and thoracic vertebrae.
The two pleural cavities are situated on either side of the mediastinum (Fig. 3.6).
Each pleural cavity is completely lined by a mesothelial membrane called the pleura.
During development, the lungs grow out of the mediastinum, becoming surrounded by the pleural cavities. As a result, the outer surface of each organ is covered by pleura.
Each lung remains attached to the mediastinum by a root formed by the airway, pulmonary blood vessels, lymphatic tissues, and nerves.
The pleura lining the walls of the cavity is the parietal pleura, whereas that reflected from the mediastinum at the roots and onto the surfaces of the lungs is the visceral pleura. Only a potential space normally exists between the visceral pleura covering lung and the parietal pleura lining the wall of the thoracic cavity.
The lung does not completely fill the potential space of the pleural cavity, resulting in recesses, which do not contain lung and are important for accommodating changes in lung volume during breathing. The costodiaphragmatic recess, which is the largest and clinically most important recess, lies inferiorly between the thoracic wall and diaphragm.
The superior thoracic aperture opens directly into the root of the neck (Fig. 3.7).
The superior aspect of each pleural cavity extends approximately 2 to 3 cm above rib I and the costal cartilage into the neck. Between these pleural extensions, major visceral structures pass between the neck and superior mediastinum. In the midline, the trachea lies immediately anterior to the esophagus. Major blood vessels and nerves pass in and out of the thorax at the superior thoracic aperture anteriorly and laterally to these structures.