|
import numpy as np |
|
import torch as t |
|
import torch.nn as nn |
|
import jukebox.utils.dist_adapter as dist |
|
|
|
from jukebox.transformer.ops import LayerNorm |
|
from jukebox.prior.autoregressive import ConditionalAutoregressive2D |
|
from jukebox.prior.conditioners import Conditioner, LabelConditioner |
|
from jukebox.data.labels import EmptyLabeller, Labeller |
|
|
|
from jukebox.utils.torch_utils import assert_shape |
|
from jukebox.utils.dist_utils import print_once |
|
from jukebox.vqvae.vqvae import calculate_strides |
|
|
|
|
|
""" |
|
Model the prior on vq codes conditioned on timing, artist, genre, lyrics and codes from levels above. |
|
To condition on the timing, genre and artist, we use the LabelConditioner class |
|
To condition on the codes from the level above, we use the Conditioner class |
|
To condition on lyrics, we allow two types of priors: |
|
- Separate Encoder Decoder: This is the usual encoder-decoder style transformer. The encoder transformer autoregressively |
|
models the lyrics, and we use its last layer to produce keys/values that are attened to by the decoder transformer |
|
- Single Encoder Decoder: This is a simplification where we combine them into a single model. We merge the text vocab |
|
and VQ vocab into a single large vocab, and the lyric tokens and VQ tokens into a single longer sequence of tokens which |
|
we autoregressively model together. |
|
""" |
|
class SimplePrior(nn.Module): |
|
def __init__(self, z_shapes, l_bins, encoder, decoder, level, |
|
downs_t, strides_t, labels, prior_kwargs, x_cond_kwargs, y_cond_kwargs, |
|
prime_kwargs, copy_input, labels_v3=False, |
|
merged_decoder=False, single_enc_dec=False): |
|
super().__init__() |
|
|
|
self.use_tokens = prime_kwargs.pop('use_tokens') |
|
self.n_tokens = prime_kwargs.pop('n_tokens') |
|
self.prime_loss_fraction = prime_kwargs.pop('prime_loss_fraction') |
|
|
|
self.copy_input = copy_input |
|
if self.copy_input: |
|
prime_kwargs['bins'] = l_bins |
|
|
|
self.z_shapes = z_shapes |
|
self.levels = len(self.z_shapes) |
|
|
|
self.z_shape = self.z_shapes[level] |
|
|
|
self.level = level |
|
assert level < self.levels, f"Total levels {self.levels}, got level {level}" |
|
|
|
self.l_bins = l_bins |
|
|
|
|
|
self.encoder = encoder |
|
self.decoder = decoder |
|
|
|
|
|
self.x_cond = (level != (self.levels - 1)) |
|
self.cond_level = level + 1 |
|
|
|
|
|
self.y_cond = labels |
|
|
|
self.single_enc_dec = single_enc_dec |
|
|
|
if self.x_cond: |
|
self.conditioner_blocks = nn.ModuleList() |
|
conditioner_block = lambda _level: Conditioner(input_shape=z_shapes[_level], |
|
bins=l_bins, |
|
down_t=downs_t[_level], |
|
stride_t=strides_t[_level], |
|
**x_cond_kwargs) |
|
if dist.get_rank() == 0: print(f"Conditioning on 1 above level(s)") |
|
self.conditioner_blocks.append(conditioner_block(self.cond_level)) |
|
|
|
|
|
if self.y_cond: |
|
self.n_time = self.z_shape[0] |
|
self.y_emb = LabelConditioner(n_time=self.n_time,include_time_signal=not self.x_cond,**y_cond_kwargs) |
|
|
|
|
|
if single_enc_dec: |
|
|
|
self.prior_shapes = [(self.n_tokens,), prior_kwargs.pop('input_shape')] |
|
self.prior_bins = [prime_kwargs['bins'], prior_kwargs.pop('bins')] |
|
self.prior_dims = [np.prod(shape) for shape in self.prior_shapes] |
|
self.prior_bins_shift = np.cumsum([0, *self.prior_bins])[:-1] |
|
self.prior_width = prior_kwargs['width'] |
|
print_once(f'Creating cond. autoregress with prior bins {self.prior_bins}, ') |
|
print_once(f'dims {self.prior_dims}, ') |
|
print_once(f'shift {self.prior_bins_shift}') |
|
print_once(f'input shape {sum(self.prior_dims)}') |
|
print_once(f'input bins {sum(self.prior_bins)}') |
|
print_once(f'Self copy is {self.copy_input}') |
|
|
|
self.prime_loss_dims, self.gen_loss_dims = self.prior_dims[0], self.prior_dims[1] |
|
self.total_loss_dims = self.prime_loss_dims + self.gen_loss_dims |
|
self.prior = ConditionalAutoregressive2D(input_shape=(sum(self.prior_dims),), |
|
bins=sum(self.prior_bins), |
|
x_cond=(self.x_cond or self.y_cond), y_cond=True, |
|
prime_len=self.prime_loss_dims, |
|
**prior_kwargs) |
|
|
|
else: |
|
|
|
if self.n_tokens != 0 and self.use_tokens: |
|
from jukebox.transformer.ops import Conv1D |
|
prime_input_shape = (self.n_tokens,) |
|
self.prime_loss_dims = np.prod(prime_input_shape) |
|
self.prime_acts_width, self.prime_state_width = prime_kwargs['width'], prior_kwargs['width'] |
|
self.prime_prior = ConditionalAutoregressive2D(input_shape=prime_input_shape, x_cond=False, y_cond=False, |
|
only_encode=True, |
|
**prime_kwargs) |
|
self.prime_state_proj = Conv1D(self.prime_acts_width, self.prime_state_width, init_scale=prime_kwargs['init_scale']) |
|
self.prime_state_ln = LayerNorm(self.prime_state_width) |
|
self.prime_bins = prime_kwargs['bins'] |
|
self.prime_x_out = nn.Linear(self.prime_state_width, self.prime_bins, bias=False) |
|
nn.init.normal_(self.prime_x_out.weight, std=0.02 * prior_kwargs['init_scale']) |
|
else: |
|
self.prime_loss_dims = 0 |
|
self.gen_loss_dims = np.prod(self.z_shape) |
|
self.total_loss_dims = self.prime_loss_dims + self.gen_loss_dims |
|
self.prior = ConditionalAutoregressive2D(x_cond=(self.x_cond or self.y_cond), y_cond=self.y_cond, |
|
encoder_dims = self.prime_loss_dims, merged_decoder=merged_decoder, |
|
**prior_kwargs) |
|
|
|
self.n_ctx = self.gen_loss_dims |
|
self.downsamples = calculate_strides(strides_t, downs_t) |
|
self.cond_downsample = self.downsamples[level+1] if level != self.levels - 1 else None |
|
self.raw_to_tokens = np.prod(self.downsamples[:level+1]) |
|
self.sample_length = self.n_ctx*self.raw_to_tokens |
|
if labels: |
|
self.labels_v3 = labels_v3 |
|
self.labeller = Labeller(self.y_emb.max_bow_genre_size, self.n_tokens, self.sample_length, v3=self.labels_v3) |
|
else: |
|
self.labeller = EmptyLabeller() |
|
|
|
print(f"Level:{level}, Cond downsample:{self.cond_downsample}, Raw to tokens:{self.raw_to_tokens}, Sample length:{self.sample_length}") |
|
|
|
|
|
def get_y(self, labels, start, get_indices=False): |
|
if isinstance(self.labeller, EmptyLabeller): |
|
return None |
|
y = labels['y'].clone() |
|
|
|
|
|
y[:, 2] = int(self.sample_length) |
|
|
|
|
|
y[:, 1:2] = y[:, 1:2] + int(start * self.raw_to_tokens) |
|
|
|
|
|
indices = self.labeller.set_y_lyric_tokens(y, labels) |
|
if get_indices: |
|
return y, indices |
|
else: |
|
return y |
|
|
|
def get_z_conds(self, zs, start, end): |
|
if self.level != self.levels - 1: |
|
assert start % self.cond_downsample == end % self.cond_downsample == 0 |
|
z_cond = zs[self.level + 1][:,start//self.cond_downsample:end//self.cond_downsample] |
|
assert z_cond.shape[1] == self.n_ctx//self.cond_downsample |
|
z_conds = [z_cond] |
|
else: |
|
z_conds = None |
|
return z_conds |
|
|
|
def prior_preprocess(self, xs, conds): |
|
N = xs[0].shape[0] |
|
for i in range(len(xs)): |
|
x, shape, dims = xs[i], self.prior_shapes[i], self.prior_dims[i] |
|
bins, bins_shift = int(self.prior_bins[i]), int(self.prior_bins_shift[i]) |
|
assert isinstance(x, t.cuda.LongTensor), x |
|
assert (0 <= x).all() and (x < bins).all() |
|
|
|
xs[i] = (xs[i] + bins_shift).view(N, -1) |
|
|
|
for i in range(len(conds)): |
|
cond, shape, dims = conds[i], self.prior_shapes[i], self.prior_dims[i] |
|
if cond is not None: |
|
assert_shape(cond, (N, dims, self.prior_width)) |
|
else: |
|
conds[i] = t.zeros((N, dims, self.prior_width), dtype=t.float, device='cuda') |
|
|
|
return t.cat(xs, dim=1), t.cat(conds, dim=1) |
|
|
|
def prior_postprocess(self, z): |
|
N = z.shape[0] |
|
dims = (self.prior_dims[0], z.shape[1] - self.prior_dims[0]) |
|
|
|
xs = list(t.split(z, dims, dim=1)) |
|
|
|
for i in range(len(xs)): |
|
|
|
|
|
shape = self.prior_shapes[i] |
|
bins, bins_shift = int(self.prior_bins[i]), int(self.prior_bins_shift[i]) |
|
|
|
xs[i] = (xs[i] - bins_shift).view(N, -1, *shape[1:]) |
|
xs[i] = t.clamp(xs[i], min=0) |
|
assert (xs[i] < bins).all(), f'rank: {dist.get_rank()}, bins: {bins}, dims {dims}, shape {shape}, prior_shape {self.prior_shapes}, bins_shift {bins_shift}, xs[i]: {xs[i]}' |
|
|
|
return xs[-1] |
|
|
|
def x_emb(self, z_conds): |
|
z_conds = z_conds[:self.cond_level - self.level] |
|
assert len(z_conds) == len(self.conditioner_blocks) == self.cond_level - self.level, f"Expected {len(z_conds)} == {len(self.conditioner_blocks)} == {self.cond_level} - {self.level}" |
|
x_cond = None |
|
for z_cond, conditioner_block in reversed(list(zip(z_conds, self.conditioner_blocks))): |
|
x_cond = conditioner_block(z_cond, x_cond) |
|
return x_cond |
|
|
|
def encode(self, x, start_level=None, end_level=None, bs_chunks=1): |
|
if start_level == None: |
|
start_level = self.level |
|
if end_level == None: |
|
end_level = self.levels |
|
|
|
with t.no_grad(): |
|
zs = self.encoder(x, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks) |
|
return zs |
|
|
|
def decode(self, zs, start_level=None, end_level=None, bs_chunks=1): |
|
if start_level == None: |
|
start_level = self.level |
|
if end_level == None: |
|
end_level = self.levels |
|
|
|
assert len(zs) == end_level - start_level |
|
with t.no_grad(): |
|
x_out = self.decoder(zs, start_level=start_level, end_level=end_level, bs_chunks=bs_chunks) |
|
return x_out |
|
|
|
def get_cond(self, z_conds, y): |
|
if y is not None: |
|
assert y.shape[1] == 4 + self.y_emb.max_bow_genre_size + self.n_tokens, f"Expected {4} + {self.y_emb.max_bow_genre_size} + {self.n_tokens}, got {y.shape[1]}" |
|
n_labels = y.shape[1] - self.n_tokens |
|
y, prime = y[:,:n_labels], y[:,n_labels:] |
|
else: |
|
y, prime = None, None |
|
y_cond, y_pos = self.y_emb(y) if self.y_cond else (None, None) |
|
x_cond = self.x_emb(z_conds) if self.x_cond else y_pos |
|
return x_cond, y_cond, prime |
|
|
|
def sample(self, n_samples, z=None, z_conds=None, y=None, fp16=False, temp=1.0, top_k=0, top_p=0.0, |
|
chunk_size=None, sample_tokens=None): |
|
N = n_samples |
|
if z is not None: assert z.shape[0] == N, f"Expected shape ({N},**), got shape {z.shape}" |
|
if y is not None: assert y.shape[0] == N, f"Expected shape ({N},**), got shape {y.shape}" |
|
if z_conds is not None: |
|
for z_cond in z_conds: |
|
assert z_cond.shape[0] == N, f"Expected shape ({N},**), got shape {z_cond.shape}" |
|
|
|
no_past_context = (z is None or z.shape[1] == 0) |
|
if dist.get_rank() == 0: |
|
name = {True: 'Ancestral', False: 'Primed'}[no_past_context] |
|
print(f"{name} sampling {n_samples} samples with temp={temp}, top_k={top_k}, top_p={top_p}") |
|
|
|
with t.no_grad(): |
|
|
|
x_cond, y_cond, prime = self.get_cond(z_conds, y) |
|
if self.single_enc_dec: |
|
|
|
if no_past_context: |
|
z, x_cond = self.prior_preprocess([prime], [None, x_cond]) |
|
else: |
|
z, x_cond = self.prior_preprocess([prime, z], [None, x_cond]) |
|
if sample_tokens is not None: |
|
sample_tokens += self.n_tokens |
|
z = self.prior.primed_sample(n_samples, z, x_cond, y_cond, fp16=fp16, temp=temp, |
|
top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens) |
|
z = self.prior_postprocess(z) |
|
else: |
|
encoder_kv = self.get_encoder_kv(prime, fp16=fp16, sample=True) |
|
if no_past_context: |
|
z = self.prior.sample(n_samples, x_cond, y_cond, encoder_kv, fp16=fp16, temp=temp, top_k=top_k, |
|
top_p=top_p, sample_tokens=sample_tokens) |
|
else: |
|
z = self.prior.primed_sample(n_samples, z, x_cond, y_cond, encoder_kv, fp16=fp16, temp=temp, |
|
top_k=top_k, top_p=top_p, chunk_size=chunk_size, sample_tokens=sample_tokens) |
|
if sample_tokens is None: |
|
assert_shape(z, (N, *self.z_shape)) |
|
return z |
|
|
|
def get_encoder_kv(self, prime, fp16=False, sample=False): |
|
if self.n_tokens != 0 and self.use_tokens: |
|
if sample: |
|
self.prime_prior.cuda() |
|
N = prime.shape[0] |
|
prime_acts = self.prime_prior(prime, None, None, None, fp16=fp16) |
|
assert_shape(prime_acts, (N, self.prime_loss_dims, self.prime_acts_width)) |
|
assert prime_acts.dtype == t.float, f'Expected t.float, got {prime_acts.dtype}' |
|
encoder_kv = self.prime_state_ln(self.prime_state_proj(prime_acts)) |
|
assert encoder_kv.dtype == t.float, f'Expected t.float, got {encoder_kv.dtype}' |
|
if sample: |
|
self.prime_prior.cpu() |
|
if fp16: |
|
encoder_kv = encoder_kv.half() |
|
else: |
|
encoder_kv = None |
|
return encoder_kv |
|
|
|
def get_prime_loss(self, encoder_kv, prime_t): |
|
if self.use_tokens: |
|
encoder_kv = encoder_kv.float() |
|
encoder_kv = self.prime_x_out(encoder_kv) |
|
prime_loss = nn.functional.cross_entropy(encoder_kv.view(-1, self.prime_bins), prime_t.view(-1)) / np.log(2.) |
|
else: |
|
prime_loss = t.tensor(0.0, device='cuda') |
|
return prime_loss |
|
|
|
def z_forward(self, z, z_conds=[], y=None, fp16=False, get_preds=False, get_attn_weights=False): |
|
""" |
|
Arguments: |
|
get_attn_weights (bool or set): Makes forward prop dump |
|
self-attention softmaxes to self.prior.transformer.ws. Either a |
|
set of layer indices indicating which layers to store, or a |
|
boolean value indicating whether to dump all. |
|
""" |
|
assert isinstance(get_attn_weights, (bool, set)) |
|
if get_attn_weights: |
|
self.prior.transformer.set_record_attn(get_attn_weights) |
|
x_cond, y_cond, prime = self.get_cond(z_conds, y) |
|
if self.copy_input: |
|
prime = z[:,:self.n_tokens] |
|
if self.single_enc_dec: |
|
z, x_cond = self.prior_preprocess([prime, z], [None, x_cond]) |
|
(prime_loss, gen_loss), preds = self.prior(z, x_cond, y_cond, fp16=fp16, get_sep_loss=True, get_preds=get_preds) |
|
else: |
|
encoder_kv = self.get_encoder_kv(prime, fp16=fp16) |
|
prime_loss = self.get_prime_loss(encoder_kv, prime) |
|
gen_loss, preds = self.prior(z, x_cond, y_cond, encoder_kv, fp16=fp16, get_preds=get_preds) |
|
loss = (self.prime_loss_fraction*prime_loss*self.prime_loss_dims/self.total_loss_dims) + \ |
|
(gen_loss*self.gen_loss_dims/self.total_loss_dims) |
|
metrics=dict(bpd=gen_loss.clone().detach(), prime_loss=prime_loss.clone().detach(), |
|
gen_loss=gen_loss.clone().detach()) |
|
if get_preds: |
|
metrics["preds"] = preds.clone().detach() |
|
if get_attn_weights: |
|
ws = self.prior.transformer.ws |
|
self.prior.transformer.set_record_attn(False) |
|
return ws |
|
else: |
|
return loss, metrics |
|
|
|
def forward(self, x, y=None, fp16=False, decode=False, get_preds=False): |
|
bs = x.shape[0] |
|
z, *z_conds = self.encode(x, bs_chunks=bs) |
|
loss, metrics = self.z_forward(z=z, z_conds=z_conds, y=y, fp16=fp16, get_preds=get_preds) |
|
if decode: |
|
x_out = self.decode([z, *z_conds]) |
|
else: |
|
x_out = None |
|
return x_out, loss, metrics |
|
|