|
import os |
|
import csv |
|
import time |
|
import argparse |
|
import jsonlines |
|
import pandas as pd |
|
from statistics import mean |
|
from jinja2 import Environment, FileSystemLoader |
|
from utils import pass_at_k_continuous_vals, diff_bleu, post_process_generations, statistical_significance_test, remove_comments, remove_blank_lines,get_files_with_syntax_errors |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data_subset", type = str, default = "latency", help = "latency/resource_util/runtime_efficiency/maintenance/security") |
|
parser.add_argument("--model", type = str, default = "wizardcoder", help = "model name") |
|
parser.add_argument("--model_path", type = str, required = True, help = "HF path for OS models") |
|
parser.add_argument("--prompt", type = str, default = "base_prompt", help = "base_prompt/coding_concepts/chain_of_thought/one-shot") |
|
parser.add_argument("--num_samples", type = int, default = 1, help = "Number of samples") |
|
parser.add_argument("--score_k", type = str, default = "1,5,10,20", help = "K value for score@k (should not be greater than num_samples and can be comma-separated)") |
|
parser.add_argument("--metric", type = str, default = "runtime", help = "runtime/diffbleu/codeql-diffbleu") |
|
args = parser.parse_args() |
|
|
|
args.model = args.model_path.split("/")[-1] |
|
|
|
generations_path = os.path.join("generations", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples", "generated_outputs.jsonl") |
|
|
|
if(args.metric == "classification"): |
|
|
|
generations_path = os.path.join("generations", "classification", args.data_subset, os.path.split(args.model_path)[1], args.prompt, f"{args.num_samples}_samples", "generated_outputs.jsonl") |
|
|
|
left_predictions = [] |
|
right_predictions = [] |
|
left_labels = [] |
|
right_labels = [] |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
for generation in reader: |
|
|
|
left_predictions.append(generation['left_output']) |
|
left_labels.append(generation['classification_left_label']) |
|
right_predictions.append(generation['right_output']) |
|
right_labels.append(generation['classification_right_label']) |
|
|
|
left_accuracy = sum([1 if prediction == label else 0 for prediction, label in zip(left_predictions, left_labels)]) / len(left_labels) |
|
left_consistency = sum([1 if prediction is not None else 0 for prediction in left_predictions]) / len(left_predictions) |
|
right_accuracy = sum([1 if prediction == label else 0 for prediction, label in zip(right_predictions, right_labels)]) / len(right_labels) |
|
right_consistency = sum([1 if prediction is not None else 0 for prediction in right_predictions]) / len(right_predictions) |
|
|
|
joint_accuracy = [1 if left_prediction == left_label and |
|
right_prediction == right_label else 0 |
|
for left_prediction, left_label, right_prediction, right_label |
|
in zip(left_predictions, left_labels, right_predictions, right_labels)] |
|
|
|
joint_accuracy = sum(joint_accuracy) / len(joint_accuracy) |
|
|
|
result_string = {"Model":args.model, "left_accuracy":round((left_accuracy*100),1), "right_accuracy":round((right_accuracy*100),1), "joint_accuracy":round((joint_accuracy*100),1), "left_consistency":round((left_consistency*100),1), "right_consistency":round((right_consistency*100),1)} |
|
|
|
output_path = os.path.join("evaluation_results","classification",args.data_subset,os.path.split(args.model_path)[1],args.prompt,f"{args.num_samples}_samples") |
|
|
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
|
|
samples = pd.DataFrame([result_string]) |
|
samples.to_json(os.path.join(output_path,"results.jsonl"), orient="records", lines=True) |
|
print("{}".format(result_string)) |
|
|
|
|
|
|
|
elif args.metric == "runtime": |
|
|
|
start_time = time.time() |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
samples = [] |
|
|
|
for generation in reader: |
|
|
|
parsed_generations = [] |
|
|
|
for l in range(args.num_samples): |
|
|
|
generated_answers = post_process_generations(generated_answers=generation['generated_answers'][l], model = args.model, prompt = args.prompt, pl = generation['pl'])[1] |
|
parsed_generations.append(generated_answers) |
|
|
|
samples.append(dict(problem_id = generation['problem_id'], submission_id_v0 = generation['submission_id_v0'], cpu_time_v0 = generation['cpu_time_v0'], cpu_time_v1 = generation['cpu_time_v1'], input=generation['source_code'], target=generation['target_code'], |
|
generated_answers=parsed_generations, inference_time=generation['inference_time'])) |
|
|
|
samples = pd.DataFrame(samples) |
|
path = os.path.join("src", "evaluation", "pie-perf", "generated_outputs.jsonl") |
|
samples.to_json(path, orient="records", lines = True) |
|
|
|
env = Environment(loader = FileSystemLoader(os.path.join("src", "evaluation", "pie-perf", "data", "sample"))) |
|
template = env.get_template('sample_eval_config_template.yaml') |
|
output_path = os.path.join("evaluation_results", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples", "generated_outputs.report") |
|
rendered_yaml = template.render(output_path = output_path) |
|
config_file_path = os.path.join("src", "evaluation", "pie-perf", "data", "sample", "sample_eval_config.yaml") |
|
f=open(config_file_path, "w") |
|
f.write(rendered_yaml) |
|
f.close() |
|
path = os.path.split(output_path)[0] |
|
|
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
run_file = os.path.join("src", "evaluation", "pie-perf", "src", "codenet_eval", "run_eval.py") |
|
|
|
os.system(f'python3 {run_file} --eval_config {config_file_path}') |
|
k_values = list(map(int,args.score_k.split(","))) |
|
scores = statistical_significance_test(output_path,args.num_samples,k_values) |
|
|
|
results = {"model":args.model, "prompt":args.prompt, "num_samples":args.num_samples} |
|
|
|
for i,j in zip(range(2,len(results),3),range(len(k_values))): |
|
|
|
results[f"Average Speedups@{k_values[j]},{args.num_samples}"] = scores[i-2] |
|
results[f"Correct@{k_values[j]},{args.num_samples}"] = scores[i-1] |
|
results[f"Improvements@{k_values[j]},{args.num_samples}"] = scores[i] |
|
|
|
samples = pd.DataFrame([results]) |
|
samples.to_json(os.path.join(path, "results.jsonl"), orient="records", lines=True) |
|
print("{}".format(results)) |
|
|
|
|
|
elif args.metric == "diffbleu": |
|
|
|
k_values = list(map(int,args.score_k.split(","))) |
|
overall_score={} |
|
|
|
for k in k_values: |
|
overall_score[k] = [] |
|
|
|
passed = 0 |
|
count = 0 |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
for generation in reader: |
|
|
|
count += 1 |
|
scores = [] |
|
|
|
for l in range(args.num_samples): |
|
|
|
generated_answers = post_process_generations(generated_answers = generation['generated_answers'][l], model = args.model, prompt = args.prompt, pl = generation['pl']) |
|
passed += generated_answers[0] |
|
diff_score_bleu = diff_bleu(source_code = generation['source_code'], target = generation['target_code'], generated_answers = generated_answers[1], pl = generation['pl']) |
|
scores.append(diff_score_bleu) |
|
|
|
scores.sort(reverse = True) |
|
|
|
for k in k_values: |
|
|
|
overall_score[k].append(pass_at_k_continuous_vals(n = args.num_samples, k = k, vals = scores)) |
|
|
|
scores = [] |
|
scores.append((passed*100)/(count*args.num_samples)) |
|
results = {"model":args.model, "prompt":args.prompt, "num_samples":args.num_samples} |
|
|
|
for k in k_values: |
|
|
|
results[f"Score@{k},{args.num_samples}"] = round(mean(overall_score[k])*100,1) |
|
scores.append(round(mean(overall_score[k])*100,1)) |
|
|
|
results["Passed"] = (passed*100)/(count*args.num_samples) |
|
samples = pd.DataFrame([results]) |
|
path = os.path.join("evaluation_results", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples") |
|
|
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
samples.to_json(os.path.join(path,"results_{}.jsonl".format(args.metric)), orient="records", lines=True) |
|
print("Pass Rate: {}, DiffBleu Score: {}".format(scores[0], scores[1])) |
|
|
|
|
|
elif args.metric == "codeql": |
|
|
|
all_check_paths={} |
|
query_lang = {} |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
for generation in reader: |
|
|
|
query = generation['codeql_check'].split("/")[-1].split(".ql")[0] |
|
|
|
all_check_paths[query]=generation['codeql_check'] |
|
|
|
code_path="evaluation_results/edit/{}/{}/{}/{}_samples/generated_code/{}/".format(args.data_subset, args.model, args.prompt, args.num_samples, query) |
|
|
|
if not os.path.exists(code_path): |
|
os.makedirs(code_path) |
|
|
|
if(generation['pl'] == "python"): |
|
ext = ".py" |
|
pl = "Python" |
|
query_lang[query] = "python" |
|
else: |
|
ext = ".c" |
|
pl = "C" |
|
query_lang[query] = "cpp" |
|
|
|
for index in range(len(generation['generated_answers'])): |
|
|
|
code_path_indexed = code_path + "{}_{}{}".format(generation['file_path'].split("/")[-2]+"_"+generation['file_path'].split("/")[-1].split(ext)[0], index, ext) |
|
|
|
f = open(code_path_indexed,"w+") |
|
|
|
generated_answers = post_process_generations(generated_answers=generation['generated_answers'][index], model=args.model, prompt=args.prompt, pl=generation['pl'])[1] |
|
|
|
code = remove_comments(generated_answers, generation['pl']) |
|
|
|
if remove_blank_lines(code).strip() == "": |
|
generated_answers = generation['source_code'] |
|
|
|
f.write(generated_answers) |
|
|
|
f.close() |
|
|
|
if(pl == "C"): |
|
|
|
f = open(code_path+"Makefile", "w+") |
|
f.write("SRCS=$(wildcard *.c)\nOBJS=$(SRCS:.c=.o)\n\nall: $(OBJS)\n\n%.o: %.c\n gcc -g -O -c $< -o $@ || (echo \"Deleting $<\" && echo \"$<\" >> rejected_files.log && mv $< $<.reject)\n\nclean:\n\trm -rf *.o") |
|
f.close() |
|
|
|
for query in all_check_paths.keys(): |
|
|
|
code_path_generations = "evaluation_results/edit/{}/{}/{}/{}_samples/generated_code/".format(args.data_subset, args.model, args.prompt, args.num_samples) |
|
|
|
code_path_db = "evaluation_results/edit/{}/{}/{}/{}_samples/generated_code_db/".format(args.data_subset, args.model, args.prompt, args.num_samples) |
|
if not os.path.exists(code_path_db): |
|
os.makedirs(code_path_db) |
|
|
|
code_path_results="evaluation_results/edit/{}/{}/{}/{}_samples/generated_code_results/".format(args.data_subset, args.model, args.prompt, args.num_samples) |
|
if not os.path.exists(code_path_results): |
|
os.makedirs(code_path_results) |
|
|
|
os.system("codeql-home/codeql/codeql database create --quiet --language={} --source-root={}{} {}{}".format(query_lang[query], code_path_generations, query, code_path_db, query)) |
|
os.system("codeql-home/codeql/codeql database analyze --rerun {}{} {} --format=csv --output={}{}.csv --threads=0".format(code_path_db, query, all_check_paths[query], code_path_results, query)) |
|
|
|
k_values = list(map(int,args.score_k.split(","))) |
|
overall_score={} |
|
|
|
for k in k_values: |
|
overall_score[k] = [] |
|
|
|
syntax_errors = {} |
|
syn_errors = [] |
|
done = [] |
|
scores_dump = [] |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
parsed = 0 |
|
|
|
for generation in reader: |
|
query = generation['codeql_check'].split("/")[-1].split(".ql")[0] |
|
|
|
code_path ="evaluation_results/edit/{}/{}/{}/{}_samples/generated_code/{}/".format(args.data_subset, args.model, args.prompt, args.num_samples, query) |
|
scores = [] |
|
code_path_results = "evaluation_results/edit/{}/{}/{}/{}_samples/generated_code_results/{}.csv".format(args.data_subset, args.model, args.prompt, args.num_samples, query) |
|
code_path_generations = "evaluation_results/edit/{}/{}/{}/{}_samples/generated_code/{}/".format(args.data_subset, args.model, args.prompt, args.num_samples, query) |
|
code_path_db = "evaluation_results/edit/{}/{}/{}/{}_samples/generated_code_db/".format(args.data_subset, args.model, args.prompt, args.num_samples) |
|
|
|
errors=[] |
|
|
|
with open(code_path_results) as f: |
|
csvfile = csv.reader(f) |
|
for error in csvfile: |
|
errors.append(error[-5].split("/")[1]) |
|
|
|
errors = list(set(errors)) |
|
index = 0 |
|
scores = [] |
|
ans = [] |
|
syn=get_files_with_syntax_errors(generated_code_path = code_path_generations, codeql_db_path = code_path_db, query = query) |
|
|
|
if(len(syn)>0 and query not in done): |
|
|
|
syn_errors += syn |
|
try: |
|
syntax_errors[query] += syn |
|
except: |
|
syntax_errors[query] = syn |
|
|
|
done.append(query) |
|
|
|
for index in range(len(generation['generated_answers'])): |
|
|
|
if(generation['pl'] == "python"): |
|
ext = ".py" |
|
pl = "Python" |
|
else: |
|
ext = ".c" |
|
pl = "C" |
|
|
|
filename = "{}_{}{}".format(generation['file_path'].split("/")[-2]+"_"+generation['file_path'].split("/")[-1].split(ext)[0], index, ext) |
|
|
|
index += 1 |
|
|
|
if(filename in errors or filename in syn_errors): |
|
scores.append(0) |
|
else: |
|
scores.append(1) |
|
|
|
scores.sort(reverse = True) |
|
|
|
for k in k_values: |
|
|
|
overall_score[k].append(pass_at_k_continuous_vals(n = args.num_samples, k = k, vals = scores)) |
|
|
|
scores_dump.append(scores) |
|
scores=[] |
|
|
|
path = os.path.join("evaluation_results", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples") |
|
f = open(os.path.join(path,"results.txt"), 'w') |
|
f.write(str(scores_dump)) |
|
f.close() |
|
results = {"model":args.model, "prompt":args.prompt, "num_samples":args.num_samples} |
|
|
|
for k in k_values: |
|
|
|
results[f"Score@{k},{args.num_samples}"] = round(mean(overall_score[k])*100,1) |
|
|
|
results["syntax_errors"] = syntax_errors |
|
results["no_of_syntax"] = len(syn_errors) |
|
samples = pd.DataFrame([results]) |
|
path = os.path.join("evaluation_results", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples") |
|
samples.to_json(os.path.join(path, "results_{}.jsonl".format(args.metric)), orient="records", lines=True) |
|
print("{}".format(results)) |
|
|
|
|
|
|
|
|
|
elif args.metric == "codeql-diffbleu": |
|
k_values = list(map(int, args.score_k.split(","))) |
|
overall_score = {} |
|
|
|
for k in k_values: |
|
overall_score[k] = [] |
|
|
|
generations_path = os.path.join("generations","edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples", "generated_outputs.jsonl") |
|
|
|
passed = 0 |
|
count = 0 |
|
|
|
with jsonlines.open(generations_path) as reader: |
|
|
|
res_path = os.path.split(generations_path)[0].split('/') |
|
res_path.insert(1,"evaluation_results") |
|
res_path = os.path.join("/".join(res_path[1:]), "results.txt") |
|
codeql_results = eval(open(res_path).read()) |
|
|
|
for generation,res in zip(reader, codeql_results): |
|
|
|
scores=[] |
|
count += 1 |
|
|
|
for l in range(len(generation['generated_answers'])): |
|
|
|
generated_answers=post_process_generations(generated_answers = generation['generated_answers'][l], model = args.model, prompt = args.prompt, pl = generation['pl']) |
|
passed += generated_answers[0] |
|
diff_score_bleu=res[l]*diff_bleu(source_code = generation['source_code'], target = generation['target_code'], generated_answers = generated_answers[1], pl = generation['pl']) |
|
scores.append(diff_score_bleu) |
|
|
|
scores.sort(reverse = True) |
|
|
|
for k in k_values: |
|
overall_score[k].append(pass_at_k_continuous_vals(n = args.num_samples, k = k, vals = scores)) |
|
|
|
scores = [] |
|
scores.append((passed*100)/(count*args.num_samples)) |
|
results = {"model":args.model, "prompt":args.prompt, "num_samples":args.num_samples} |
|
|
|
for k in k_values: |
|
|
|
results[f"Score@{k},{args.num_samples}"] = round(mean(overall_score[k])*100,1) |
|
scores.append(round(mean(overall_score[k])*100,1)) |
|
|
|
results["Passed"] = (passed*100)/(count*args.num_samples) |
|
scores.append((passed*100)/(count*args.num_samples)) |
|
samples = pd.DataFrame([results]) |
|
path = os.path.join("evaluation_results", "edit", args.data_subset, args.model, args.prompt, f"{args.num_samples}_samples") |
|
samples.to_json(os.path.join(path,"results_{}.jsonl".format(args.metric)), orient="records", lines=True) |
|
print("{}".format(results)) |