|
import torch |
|
import pdb |
|
|
|
from transformers import AutoTokenizer, HfArgumentParser, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments |
|
from datasets import load_dataset |
|
from peft import LoraConfig, PeftModel |
|
from trl import SFTTrainer |
|
import os |
|
import random |
|
|
|
def sft(ScriptArguments, model_id, formatting_func, datasets, save_path): |
|
parser = HfArgumentParser(ScriptArguments) |
|
script_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4" |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
quantization_config=quantization_config, |
|
torch_dtype=torch.float32, |
|
attn_implementation="sdpa" if not script_args.use_flash_attention_2 else "flash_attention_2" |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
lora_config = LoraConfig( |
|
r=script_args.lora_r, |
|
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
lora_alpha=script_args.lora_alpha, |
|
lora_dropout=script_args.lora_dropout |
|
) |
|
|
|
train_dataset = load_dataset('json', data_files={'train': datasets['train'], 'test': datasets['valid']}, split='train') |
|
|
|
training_arguments = TrainingArguments( |
|
output_dir=save_path, |
|
per_device_train_batch_size=script_args.per_device_train_batch_size, |
|
gradient_accumulation_steps=script_args.gradient_accumulation_steps, |
|
optim=script_args.optim, |
|
save_steps=script_args.save_steps, |
|
logging_steps=script_args.logging_steps, |
|
learning_rate=script_args.learning_rate, |
|
max_grad_norm=script_args.max_grad_norm, |
|
max_steps=script_args.max_steps, |
|
warmup_ratio=script_args.warmup_ratio, |
|
lr_scheduler_type=script_args.lr_scheduler_type, |
|
gradient_checkpointing=script_args.gradient_checkpointing, |
|
fp16=script_args.fp16, |
|
bf16=script_args.bf16, |
|
) |
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
args=training_arguments, |
|
train_dataset=train_dataset, |
|
peft_config=lora_config, |
|
packing=False, |
|
tokenizer=tokenizer, |
|
max_seq_length=script_args.max_seq_length, |
|
formatting_func=formatting_func, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
load_in_8bit=False, |
|
torch_dtype=torch.float32, |
|
device_map={"": "cuda:0"}, |
|
) |
|
|
|
lora_model = PeftModel.from_pretrained( |
|
base_model, |
|
os.path.join(save_path, "checkpoint-{}".format(script_args.max_steps)), |
|
device_map={"": "cuda:0"}, |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
model = lora_model.merge_and_unload() |
|
lora_model.train(False) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model.save_pretrained(os.path.join(save_path, "merged_model")) |
|
tokenizer.save_pretrained(os.path.join(save_path, "merged_model")) |