input
stringlengths
3.41k
3.87k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_greater_eq { all_rows ; year left ; 1970 } ; conference joined ; hoosier heartland } } ; 2 } = true Output:
[ "select the rows whose year left record is greater than or equal to 1970 . among these rows , select the rows whose conference joined record fuzzily matches to hoosier heartland . the number of such rows is 2 ." ]
task110-c8515ab096f04746abc54c7571dbc2ab
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { all_rows ; time ; 21.0 } = true Output:
[ "for the time records of all rows , most of them are less than 21.0 ." ]
task110-c31f2d2e49194b76a36f7169ca5ba098
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { all_rows ; erp / power w ; 5000 } } ; 3 } = true Output:
[ "select the rows whose erp power w record is greater than 5000 . the number of such rows is 3 ." ]
task110-a523aa3ec14b4bd99014ffbe1158c483
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; points } ; team } ; paulistano } = true Output:
[ "select the row whose points record of all rows is maximum . the team record of this row is paulistano ." ]
task110-32c275b6d94344f3a447d93616b3909b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; nation ; united states } ; fastest time ( s ) } ; 66.98 s } = true Output:
[ "select the rows whose nation record fuzzily matches to united states . the sum of the fastest time s record of these rows is 66.98 s ." ]
task110-3618d5764fde4f50a15a91795d77d825
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; date ; 19 april 1975 } = true Output:
[ "for the date records of all rows , all of them fuzzily match to 19 april 1975 ." ]
task110-daaa9cde065c4984ab869b7c8696d932
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; victor ; stalemate } } ; 2 } = true Output:
[ "select the rows whose victor record fuzzily matches to stalemate . the number of such rows is 2 ." ]
task110-dcfdbea1392340cd9f9615e08ef083d5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; score } ; 2.375 } = true Output:
[ "the average of the score record of all rows is 2.375 ." ]
task110-57ba6306c4094c3788c1a36003c5564c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; crowd ; 10000 } } ; and { eq { hop { filter_less { all_rows ; crowd ; 10000 } ; home team } ; geelong } ; and { eq { hop { filter_less { all_rows ; crowd ; 10000 } ; away team } ; north melbourne } ; eq { hop { filter_less { all_rows ; crowd ; 10000 } ; venue } ; kardinia park } } } } = true Output:
[ "select the rows whose crowd record is less than 10000 . there is only one such row in the table . the home team record of this unqiue row is geelong . the away team record of this unqiue row is north melbourne . the venue record of this unqiue row is kardinia park ." ]
task110-7cb9cfc39a9a4813a2b0398f35f2783a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; start } ; year } ; 1952 } = true Output:
[ "select the row whose start record of all rows is minimum . the year record of this row is 1952 ." ]
task110-ac77416c81d44ab29681a95ce14f426d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; venue ; punt road oval } ; crowd } ; hop { filter_eq { all_rows ; venue ; glenferrie oval } ; crowd } } = true Output:
[ "select the rows whose venue record fuzzily matches to punt road oval . take the crowd record of this row . select the rows whose venue record fuzzily matches to glenferrie oval . take the crowd record of this row . the first record is greater than the second record ." ]
task110-a395db8653b74c13a332916080060fbb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; event ; wc beijing } ; rank points } ; 23 } = true Output:
[ "select the rows whose event record fuzzily matches to wc beijing . the sum of the rank points record of these rows is 23 ." ]
task110-a764597ccac245d180d4daefce056849
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; wins } ; club } ; warrnambool } = true Output:
[ "select the row whose wins record of all rows is maximum . the club record of this row is warrnambool ." ]
task110-306064f7ac9a40338532a2155c571663
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; country ; belgium } ; total } ; hop { filter_eq { all_rows ; country ; brazil } ; total } } = true Output:
[ "select the rows whose country record fuzzily matches to belgium . take the total record of this row . select the rows whose country record fuzzily matches to brazil . take the total record of this row . the first record is less than the second record ." ]
task110-8409c93e3d6a4c09a2c7ed6b0daac634
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; club ; landskrona bois } ; first season of current spell } ; hop { filter_eq { all_rows ; club ; ängelholms ff } ; first season of current spell } } = true Output:
[ "select the rows whose club record fuzzily matches to landskrona bois . take the first season of current spell record of this row . select the rows whose club record fuzzily matches to ängelholms ff . take the first season of current spell record of this row . the first record is less than the second record ." ]
task110-75f051ba8d964377b4306b23e2cc77ee
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; runs ; 2 } ; player } ; dene hills } = true Output:
[ "select the row whose runs record of all rows is 2nd maximum . the player record of this row is dene hills ." ]
task110-a4f1ac1aec8a4a7a9db0d4b80cfcdfe9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; region } } ; 5 } = true Output:
[ "select the rows whose region record is arbitrary . the number of such rows is 5 ." ]
task110-261deb4d8f544f2e95e8bac85a4d78a0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { all_rows ; us viewers ( million ) ; 1.0 } = true Output:
[ "for the us viewers million records of all rows , most of them are greater than or equal to 1.0 ." ]
task110-219a069cd4fb4f60958579e56510173f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; wins ; 18 } } ; eq { hop { filter_eq { all_rows ; wins ; 18 } ; club } ; rc celta de vigo } } = true Output:
[ "select the rows whose wins record is equal to 18 . there is only one such row in the table . the club record of this unqiue row is rc celta de vigo ." ]
task110-f39d94653f8d4d14b64df600dc43de8a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; capacity ( mw ) ; 1 } ; wind farm } ; codling } = true Output:
[ "select the row whose capacity mw record of all rows is 1st maximum . the wind farm record of this row is codling ." ]
task110-da4b84a5b0d047628e6cf3902dc1d068
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; played ; 16 } = true Output:
[ "for the played records of all rows , most of them are equal to 16 ." ]
task110-8f0a27c3c0774daa98c771a1548b8b2f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { filter_eq { all_rows ; constructor ; cooper - climax } ; circuit ; goodwood } } ; eq { hop { filter_eq { filter_eq { all_rows ; constructor ; cooper - climax } ; circuit ; goodwood } ; date } ; 30 march } } = true Output:
[ "select the rows whose constructor record fuzzily matches to cooper climax . among these rows , select the rows whose circuit record fuzzily matches to goodwood . there is only one such row in the table . the date record of this unqiue row is 30 march ." ]
task110-ae9bbdbe7184489a8a9ca5418fca20f8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; location ; japan } } ; 8 } = true Output:
[ "select the rows whose location record fuzzily matches to japan . the number of such rows is 8 ." ]
task110-5293eb3615874ff49a99edfcdc3d4185
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; population ( 2010 census ) ; 5000 } } ; eq { hop { filter_less { all_rows ; population ( 2010 census ) ; 5000 } ; district } ; intramuros } } = true Output:
[ "select the rows whose population 2010 census record is less than 5000 . there is only one such row in the table . the district record of this unqiue row is intramuros ." ]
task110-5dede8555d3e4e0d92ce9060490e73c5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; location ; seattle } } ; 3 } = true Output:
[ "select the rows whose location record fuzzily matches to seattle . the number of such rows is 3 ." ]
task110-a78b2d892cb1482ca0ce64fbd9f3877f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; size } ; school } ; mitchell } = true Output:
[ "select the row whose size record of all rows is maximum . the school record of this row is mitchell ." ]
task110-2a2c631169d34e0aba6825498beb2a3c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; team ( s ) ; stegell motorsports } } ; 4 } = true Output:
[ "select the rows whose team s record fuzzily matches to stegell motorsports . the number of such rows is 4 ." ]
task110-07847cdf250a4da9a001f28a6119cf58
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_greater { all_rows ; us viewers ( million ) ; 9.0 } } ; eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 9.0 } ; title } ; pilot } } = true Output:
[ "select the rows whose us viewers million record is greater than 9.0 . there is only one such row in the table . the title record of this unqiue row is pilot ." ]
task110-64eeb4a9590c4d5e851f2492f099e200
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; to par } ; -2.19 } = true Output:
[ "the average of the to par record of all rows is 2.19 ." ]
task110-4047b5a23b604f819fe365b654e61691
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; rank ; 3 } ; name } ; matuzalém } = true Output:
[ "select the row whose rank record of all rows is 3rd minimum . the name record of this row is matuzalém ." ]
task110-ece66e1fdca64a2abbea8c74b8f81530
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; 1st leg } ; team 1 } ; flamengo } = true Output:
[ "select the row whose 1st leg record of all rows is maximum . the team 1 record of this row is flamengo ." ]
task110-07b4fff5c49b4b02b3c8ac4309aee235
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; points } ; 16.88 } = true Output:
[ "the average of the points record of all rows is 16.88 ." ]
task110-6cc8f2b1346342e1bbe771c1f6e40d3a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; no in season ; 1 / 2 } ; us viewers ( million ) } ; hop { filter_eq { all_rows ; no in season ; 16 } ; us viewers ( million ) } } = true Output:
[ "select the rows whose no in season record fuzzily matches to 1 2 . take the us viewers million record of this row . select the rows whose no in season record fuzzily matches to 16 . take the us viewers million record of this row . the first record is greater than the second record ." ]
task110-1220f89cef924876a278fea0fefb1c5a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_eq { all_rows ; opponents ; fulham } ; result ; 1-1 } } ; 2 } = true Output:
[ "select the rows whose opponents record fuzzily matches to fulham . among these rows , select the rows whose result record fuzzily matches to 11 . the number of such rows is 2 ." ]
task110-443a4e5420574c929affa93de2ffd353
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_less { all_rows ; home team score ; 15 } ; crowd ; 15000 } } ; 3 } = true Output:
[ "select the rows whose home team score record is less than 15 . among these rows , select the rows whose crowd record is greater than 15000 . the number of such rows is 3 ." ]
task110-54a9e950fc174766bfbe2c9206c0afec
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; bleeding time ; unaffected } } ; 6 } = true Output:
[ "select the rows whose bleeding time record fuzzily matches to unaffected . the number of such rows is 6 ." ]
task110-0d1fc64a55d54f4390c6d7bc1772ab25
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_eq { all_rows ; outcome ; winner } ; surface ; clay } } ; 4 } = true Output:
[ "select the rows whose outcome record fuzzily matches to winner . among these rows , select the rows whose surface record fuzzily matches to clay . the number of such rows is 4 ." ]
task110-0d846f33e1e94b51a0d61493441f4ea8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; date ; 2 } ; venue } ; bahrain national stadium , manama } = true Output:
[ "select the row whose date record of all rows is 2nd minimum . the venue record of this row is bahrain national stadium , manama ." ]
task110-ed33826163564c49b7dd3bf069eadc5e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; name ; yogyakarta documentary film festival } ; est } ; hop { filter_eq { all_rows ; name ; vibgyor international film festival } ; est } } = true Output:
[ "select the rows whose name record fuzzily matches to yogyakarta documentary film festival . take the est record of this row . select the rows whose name record fuzzily matches to vibgyor international film festival . take the est record of this row . the first record is less than the second record ." ]
task110-dfd27942136b4f02bcb00ed6a25c3b36
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_greater_eq { all_rows ; date ; december 3 , 1989 } ; attendance ; 10000 } } ; 3 } = true Output:
[ "select the rows whose date record is greater than or equal to december 3 , 1989 . among these rows , select the rows whose attendance record is greater than 10000 . the number of such rows is 3 ." ]
task110-e1099d349b924c0bb57f962c834088a9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; issue price } ; 395.1 } = true Output:
[ "the sum of the issue price record of all rows is 395.1 ." ]
task110-e07b697a107e4f29b226e18707be6615
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; total } ; nation } ; east germany ( gdr ) } = true Output:
[ "select the row whose total record of all rows is maximum . the nation record of this row is east germany gdr ." ]
task110-4e041e5bbea74c23a8f50714d3ccf557
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; points } ; club } ; gilfach goch rfc } = true Output:
[ "select the row whose points record of all rows is maximum . the club record of this row is gilfach goch rfc ." ]
task110-c4cd2ecbc5be42009ecb079191c096fa
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { filter_eq { all_rows ; laps ; 64 } ; points ; 15 } = true Output:
[ "select the rows whose laps record is equal to 64 . for the points records of these rows , most of them are greater than or equal to 15 ." ]
task110-b60e45b8a9804bedaf9513416c98868a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { all_rows ; number of electorates ( 2009 ) ; 140000 } = true Output:
[ "for the number of electorates 2009 records of all rows , most of them are greater than or equal to 140000 ." ]
task110-7eaed0445c5e40a5ba73ac5e17bac5e2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; leading scorer } ; 28.5 } = true Output:
[ "the average of the leading scorer record of all rows is 28.5 ." ]
task110-9792692e0a0448d6be1bc08c43176bd1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { max { filter_eq { all_rows ; position ; guard } ; height in ft } ; 6 - 8 } = true Output:
[ "select the rows whose position record fuzzily matches to guard . the maximum height in ft record of these rows is 6 8 ." ]
task110-cd8f1b6139044af7b3bfeb496ee23447
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; weeks on top } ; 3 } = true Output:
[ "the average of the weeks on top record of all rows is 3 ." ]
task110-07a0063077634073a924a48654b20714
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { filter_eq { all_rows ; dutch cup ; finalist } ; postseason ; champion } = true Output:
[ "select the rows whose dutch cup record fuzzily matches to finalist . for the postseason records of these rows , most of them fuzzily match to champion ." ]
task110-155c03fbbb614a47afe9c43ed06d2f92
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; date ; april } = true Output:
[ "for the date records of all rows , most of them fuzzily match to april ." ]
task110-4887d8488c864817b7722092777d3ab1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 20240 } = true Output:
[ "the average of the attendance record of all rows is 20240 ." ]
task110-27607bd703634ac0b4da4225a12204aa
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; host ; kettering } } ; 2 } = true Output:
[ "select the rows whose host record fuzzily matches to kettering . the number of such rows is 2 ." ]
task110-1f52f0a1d60a42a88bc1eecf4073af3f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; notes ; enid } ; built } ; hop { filter_eq { all_rows ; notes ; snowdon } ; built } } = true Output:
[ "select the rows whose notes record fuzzily matches to enid . take the built record of this row . select the rows whose notes record fuzzily matches to snowdon . take the built record of this row . the first record is less than the second record ." ]
task110-494c356cea91437c8dbaf08b66ec5cda
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; club team ; plymouth whalers ( ohl ) } } ; eq { hop { filter_eq { all_rows ; club team ; plymouth whalers ( ohl ) } ; player } ; stefan noesen } } = true Output:
[ "select the rows whose club team record fuzzily matches to plymouth whalers ohl . there is only one such row in the table . the player record of this unqiue row is stefan noesen ." ]
task110-c76a435a3f22450eb8d4b2b2bee19412
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; points ; 67 } } ; 2 } = true Output:
[ "select the rows whose points record is equal to 67 . the number of such rows is 2 ." ]
task110-c64cb63dacce49fb9fbaadaf770b18a8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; directed by ; guy bee } } ; eq { hop { filter_eq { all_rows ; directed by ; guy bee } ; title } ; family matters } } = true Output:
[ "select the rows whose directed by record fuzzily matches to guy bee . there is only one such row in the table . the title record of this unqiue row is family matters ." ]
task110-1ebd70544253497d814d78920ce9a4a1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; points } ; november } ; 29 } = true Output:
[ "select the row whose points record of all rows is maximum . the november record of this row is 29 ." ]
task110-7f61eae809b645d6808cb867028c306d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { filter_eq { all_rows ; visitor ; spurs } ; attendance ; 1 } ; home } ; jazz } = true Output:
[ "select the rows whose visitor record fuzzily matches to spurs . select the row whose attendance record of these rows is 1st maximum . the home record of this row is jazz ." ]
task110-66abe54dbe5e49b9a0a91ae807918834
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_greater { all_rows ; december ; 15 } ; score ; 4-2 } } ; 2 } = true Output:
[ "select the rows whose december record is greater than 15 . among these rows , select the rows whose score record fuzzily matches to 42 . the number of such rows is 2 ." ]
task110-d13515fd2c4e47519b0983281d31626e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; year ; 1967 } ; points } ; 2 } = true Output:
[ "select the rows whose year record is equal to 1967 . the sum of the points record of these rows is 2 ." ]
task110-2b2116c6597a4c7db96ebf153a70e70c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { max { all_rows ; laps } ; 325 } = true Output:
[ "the maximum laps record of all rows is 325 ." ]
task110-58863646030f49ab8fe59349ed5154e0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; viewers ( millions ) } ; 54.22 million } = true Output:
[ "the sum of the viewers millions record of all rows is 54.22 million ." ]
task110-fec2036aa7e34cedb231d9f6c55a96aa
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; number of electorates ( 2003 ) } ; name } ; niwari } = true Output:
[ "select the row whose number of electorates 2003 record of all rows is maximum . the name record of this row is niwari ." ]
task110-a02047d7118d456f9ba86f6193f041c4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; score } ; 100 } = true Output:
[ "the average of the score record of all rows is 100 ." ]
task110-8e3eb8882d5a463cb701833eb7bcebbf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; average ratings } ; romaji title } ; densha otoko } = true Output:
[ "select the row whose average ratings record of all rows is maximum . the romaji title record of this row is densha otoko ." ]
task110-562634995e7a45e79e08a0856c19aa65
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; time / retired ; +1 lap } } ; 3 } = true Output:
[ "select the rows whose time retired record fuzzily matches to +1 lap . the number of such rows is 3 ." ]
task110-6414c9ff74544e9a822df7cd7531d767
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; reason for change ; resigned } = true Output:
[ "for the reason for change records of all rows , most of them fuzzily match to resigned ." ]
task110-8ad679d210ae404994927b1ba35a7d6b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; maximum seating capacity ; unknown } } ; 4 } = true Output:
[ "select the rows whose maximum seating capacity record fuzzily matches to unknown . the number of such rows is 4 ." ]
task110-b5485c5140fd487bb17df700c2e5baa8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; attendance ; 1 } ; date } ; january 19 } = true Output:
[ "select the row whose attendance record of all rows is 1st maximum . the date record of this row is january 19 ." ]
task110-c08361cb0a8d4686b1b04d295d4a637c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; capacity ; 2 } ; stadium } ; sydney sports ground } = true Output:
[ "select the row whose capacity record of all rows is 2nd maximum . the stadium record of this row is sydney sports ground ." ]
task110-ea51279d934b41dea38e7c04f6f30542
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; attendance } ; opponent } ; new york giants } = true Output:
[ "select the row whose attendance record of all rows is maximum . the opponent record of this row is new york giants ." ]
task110-677e332a422e49b2815dc863b309727c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; season ; 2009 } ; giant slalom } ; hop { filter_eq { all_rows ; season ; 2011 } ; giant slalom } } = true Output:
[ "select the rows whose season record fuzzily matches to 2009 . take the giant slalom record of this row . select the rows whose season record fuzzily matches to 2011 . take the giant slalom record of this row . the first record is less than the second record ." ]
task110-87da7fad48cb4ee691571c77dd882366
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; school / club team ; wisconsin } } ; eq { hop { filter_eq { all_rows ; school / club team ; wisconsin } ; player } ; todd nelson } } = true Output:
[ "select the rows whose school club team record fuzzily matches to wisconsin . there is only one such row in the table . the player record of this unqiue row is todd nelson ." ]
task110-5817860dc65f4f829d09dacfd9fe8386
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; date of successors formal installation } ; successor } ; john parker hale ( r ) } = true Output:
[ "select the row whose date of successors formal installation record of all rows is minimum . the successor record of this row is john parker hale r ." ]
task110-14d864f3809b4e9aad4d264dd08270e6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; episodes ; 11 } = true Output:
[ "for the episodes records of all rows , most of them are equal to 11 ." ]
task110-7db0f27f479a40d79a1ea2b1769e4e53
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; wins } ; .12 } = true Output:
[ "the average of the wins record of all rows is .12 ." ]
task110-4be27f00978543cb892d265bb1924d4b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; channel ; rai 2 } ; launch date } ; hop { filter_eq { all_rows ; channel ; canale 5 } ; launch date } } = true Output:
[ "select the rows whose channel record fuzzily matches to rai 2 . take the launch date record of this row . select the rows whose channel record fuzzily matches to canale 5 . take the launch date record of this row . the first record is less than the second record ." ]
task110-fd7d48d4205545a587341535105ec44b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; surface ; clay } = true Output:
[ "for the surface records of all rows , all of them fuzzily match to clay ." ]
task110-06a9b058cd4b4f46bdcd7922c0b6bde5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; position ; m } } ; 4 } = true Output:
[ "select the rows whose position record fuzzily matches to m . the number of such rows is 4 ." ]
task110-19c20e4c1b3a4c1494521dad4e6c3092
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; name ; sally foster } ; time } ; hop { filter_eq { all_rows ; name ; anne poleska } ; time } } = true Output:
[ "select the rows whose name record fuzzily matches to sally foster . take the time record of this row . select the rows whose name record fuzzily matches to anne poleska . take the time record of this row . the first record is less than the second record ." ]
task110-ec7c5de90a6948c196d229c59d932d6c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; ceased to be consort ; husband 's death } } ; 3 } = true Output:
[ "select the rows whose ceased to be consort record fuzzily matches to husband s death . the number of such rows is 3 ." ]
task110-d68a9c7da55e4a44973747a1ba764206
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; venue ; glasgow } } ; 6 } = true Output:
[ "select the rows whose venue record fuzzily matches to glasgow . the number of such rows is 6 ." ]
task110-93c97a106ec54a91b4a362169bbb95da
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; kit maker ; erreà } } ; eq { hop { filter_eq { all_rows ; kit maker ; erreà } ; team } ; middlesbrough } } = true Output:
[ "select the rows whose kit maker record fuzzily matches to erreà . there is only one such row in the table . the team record of this unqiue row is middlesbrough ." ]
task110-a3fd1eb7ef3d4f15a5a897cb82d63ffe
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; player } } ; 5 } = true Output:
[ "select the rows whose player record is arbitrary . the number of such rows is 5 ." ]
task110-50e1796cb21d4d58be07d9ae64ee6f10
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less { all_rows ; year ; 2010 } } ; 3 } = true Output:
[ "select the rows whose year record is less than 2010 . the number of such rows is 3 ." ]
task110-40c0e2305703400cbd72558e4604aaec
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; points ; 0 } } ; 3 } = true Output:
[ "select the rows whose points record is equal to 0 . the number of such rows is 3 ." ]
task110-0af1920f7a2c4e2c96963ed9bb88e73b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { all_rows ; gold ; 1 } = true Output:
[ "for the gold records of all rows , most of them are greater than or equal to 1 ." ]
task110-73186de644874e869d5a19b7a4365dfb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; skip ; xu xiaoming } ; season } ; hop { filter_eq { all_rows ; skip ; wang fengchun } ; season } } = true Output:
[ "select the rows whose skip record fuzzily matches to xu xiaoming . take the season record of this row . select the rows whose skip record fuzzily matches to wang fengchun . take the season record of this row . the first record is less than the second record ." ]
task110-b73e99a9b64840c6b17974301c0d9237
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; number } ; unit numbers } ; 254001 - 254032 } = true Output:
[ "select the row whose number record of all rows is maximum . the unit numbers record of this row is 254001 254032 ." ]
task110-fa1853475ed0414c8ebe673cd226bec2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; year ; 1985 } ; points } ; 8 } = true Output:
[ "select the rows whose year record is equal to 1985 . the sum of the points record of these rows is 8 ." ]
task110-82e953a25b6442e2bed685d1801002bf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less { all_rows ; age ; 25 } } ; 2 } = true Output:
[ "select the rows whose age record is less than 25 . the number of such rows is 2 ." ]
task110-c9c690d9722d48139e7002359a38a374
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; points ; 15 } } ; eq { hop { filter_less { all_rows ; points ; 15 } ; club ( city / town ) } ; santel 's ( santa elena ) } } = true Output:
[ "select the rows whose points record is less than 15 . there is only one such row in the table . the club city town record of this unqiue row is santel s santa elena ." ]
task110-39908549116d4f99a8b57b2fe6e2c0d8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { all_rows ; crowd ; 10,000 } = true Output:
[ "for the crowd records of all rows , most of them are greater than 10,000 ." ]
task110-5d8ce802e01345ddae782106e23158ba
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; winning amount ; rs 10 , 00000 } = true Output:
[ "for the winning amount records of all rows , most of them fuzzily match to rs 10 , 00000 ." ]
task110-c410726f7a5448bb8cc9a08707e373cc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater_eq { all_rows ; points ; 20 } } ; 3 } = true Output:
[ "select the rows whose points record is greater than or equal to 20 . the number of such rows is 3 ." ]
task110-aef4b9bcf777429fb97fbb798ea9a0b2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; player ; sam torrance } ; to par } ; hop { filter_eq { all_rows ; player ; ben crenshaw } ; to par } } = true Output:
[ "select the rows whose player record fuzzily matches to sam torrance . take the to par record of this row . select the rows whose player record fuzzily matches to ben crenshaw . take the to par record of this row . the first record is less than the second record ." ]
task110-b07b7a70817b48ec92c05213a46be5cb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; played ; 30 } = true Output:
[ "for the played records of all rows , all of them are equal to 30 ." ]
task110-20fb629af5164cc5bcc6078499fd27bf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { all_rows ; crowd ; 20000 } } ; 4 } = true Output:
[ "select the rows whose crowd record is greater than 20000 . the number of such rows is 4 ." ]
task110-3dcfd8a87a404148bd87f30922b6b3fe
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; points } ; 490 } = true Output:
[ "the sum of the points record of all rows is 490 ." ]
task110-b0076754e50d4bca9e17cb5342be3f85
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; total dismissals } ; no } ; 13 } = true Output:
[ "select the row whose total dismissals record of all rows is maximum . the no record of this row is 13 ." ]
task110-1caa1f57051a4507a848cab61821cb5c