input
stringlengths
3.41k
3.87k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 17392 } = true Output:
[ "the average of the attendance record of all rows is 17392 ." ]
task110-e1ca3dbfccf4453cb2edfdfbc3a38ba5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; network ; abc } = true Output:
[ "for the network records of all rows , all of them fuzzily match to abc ." ]
task110-dffc7da6829e4618b9451c086c2ad750
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; year ; 2 } ; year } ; 2012 } = true Output:
[ "select the row whose year record of all rows is 2nd maximum . the year record of this row is 2012 ." ]
task110-3273958eb04c4788bdaf145e493f9fef
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; event ; 110 m hurdles } = true Output:
[ "for the event records of all rows , most of them fuzzily match to 110 m hurdles ." ]
task110-8182d1c805854c08a4b63c8bc28c06d6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; gold } ; 3.7 } = true Output:
[ "the average of the gold record of all rows is 3.7 ." ]
task110-bb7cb599867242679bb2a32c82b934c2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; nationality ; serbia } } ; eq { hop { filter_eq { all_rows ; nationality ; serbia } ; player } ; aleksandar radojeviä ‡ } } = true Output:
[ "select the rows whose nationality record fuzzily matches to serbia . there is only one such row in the table . the player record of this unqiue row is aleksandar radojeviä ‡ ." ]
task110-45890bed99314e19a8ba1f41db2c4eb1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; home team ; manchester city } ; score } ; hop { filter_eq { all_rows ; home team ; arsenal } ; score } } = true Output:
[ "select the rows whose home team record fuzzily matches to manchester city . take the score record of this row . select the rows whose home team record fuzzily matches to arsenal . take the score record of this row . the first record is greater than the second record ." ]
task110-ca2c9274fe9441fcb1a47b65129e11fb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_greater { all_rows ; us viewers ( million ) ; 1.7 } } ; eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 1.7 } ; no } ; 7 } } = true Output:
[ "select the rows whose us viewers million record is greater than 1.7 . there is only one such row in the table . the no record of this unqiue row is 7 ." ]
task110-a711f2b2d4c24693b95d09145ab6ab1a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less { filter_eq { all_rows ; nation ; kenya } ; time ; 30:34 } } ; 2 } = true Output:
[ "select the rows whose nation record fuzzily matches to kenya . among these rows , select the rows whose time record is less than 30:34 . the number of such rows is 2 ." ]
task110-9504774dd7bc4ef7a8e5f0707d5b8677
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; 3 ghz } ; eq { hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number } ; core i7 - 3940xm } } = true Output:
[ "select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz . the model number record of the row with superlative frequency record is core i7 3940xm ." ]
task110-78e0833ade214e9ca5a12cde143cd3cd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; the mole } } ; 14 } = true Output:
[ "select the rows whose the mole record is arbitrary . the number of such rows is 14 ." ]
task110-91fc87c297e9458885e23b650ab43ee0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_eq { all_rows ; venue ; queen 's park oval , port of spain } ; date ; 2006 } } ; 2 } = true Output:
[ "select the rows whose venue record fuzzily matches to queen s park oval , port of spain . among these rows , select the rows whose date record fuzzily matches to 2006 . the number of such rows is 2 ." ]
task110-f1133003e3fb4345aeeacdbd31f02819
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; pictorials ; girls } = true Output:
[ "for the pictorials records of all rows , most of them fuzzily match to girls ." ]
task110-88c6bef1e87e42dbbaca13b8eb6c5acf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; time ; 6:21.11 } } ; eq { hop { filter_eq { all_rows ; time ; 6:21.11 } ; country } ; estonia } } = true Output:
[ "select the rows whose time record fuzzily matches to 6:21.11 . there is only one such row in the table . the country record of this unqiue row is estonia ." ]
task110-74463ba6b01444a0bbe4add6cfd5daf1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; wins } ; 0.6 } = true Output:
[ "the average of the wins record of all rows is 0.6 ." ]
task110-0501f367aff846f0920fc2eae5241b63
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; result ; injured } } ; eq { hop { filter_eq { all_rows ; result ; injured } ; week } ; 5 } } = true Output:
[ "select the rows whose result record fuzzily matches to injured . there is only one such row in the table . the week record of this unqiue row is 5 ." ]
task110-cf0f4414fefc409cb88227e93b3758d7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { all_rows ; loans received ; 0 } = true Output:
[ "for the loans received records of all rows , most of them are greater than 0 ." ]
task110-946f5a1cb5a940339575c0fa4d8a73df
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; playoffs ; did not qualify } } ; 2 } = true Output:
[ "select the rows whose playoffs record fuzzily matches to did not qualify . the number of such rows is 2 ." ]
task110-02c0ab0dcaae4ea6bef8be0b9d25037e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; rank } ; 20 } = true Output:
[ "the average of the rank record of all rows is 20 ." ]
task110-6620c6a3529c4fd681f252ab19d21d02
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; player ; leron mitchell } ; pick } ; hop { filter_eq { all_rows ; player ; aaron wagner } ; pick } } = true Output:
[ "select the rows whose player record fuzzily matches to leron mitchell . take the pick record of this row . select the rows whose player record fuzzily matches to aaron wagner . take the pick record of this row . the first record is less than the second record ." ]
task110-41b99cf09e39437ebaff3dfb031f5990
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; ceased operation ; failed at launch } } ; eq { hop { filter_eq { all_rows ; ceased operation ; failed at launch } ; name } ; injun 2 } } = true Output:
[ "select the rows whose ceased operation record fuzzily matches to failed at launch . there is only one such row in the table . the name record of this unqiue row is injun 2 ." ]
task110-d522a464029546c6989a629ee9342d09
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; p1 diameter ( mm ) ; 10.77 } } ; 2 } = true Output:
[ "select the rows whose p1 diameter mm record is equal to 10.77 . the number of such rows is 2 ." ]
task110-42aa768fee1546648437d3252eab5f6c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; displacement ; 3.9 } = true Output:
[ "for the displacement records of all rows , most of them are equal to 3.9 ." ]
task110-7d0c7d5c60c34eaba33da57b94729395
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { less { hop { filter_eq { all_rows ; couple ; jason & edyta } ; score } ; hop { filter_eq { all_rows ; couple ; kristi & mark } ; score } } ; and { eq { hop { filter_eq { all_rows ; couple ; jason & edyta } ; score } ; 23 ( 8 , 7 , 8 ) } ; eq { hop { filter_eq { all_rows ; couple ; kristi & mark } ; score } ; 27 ( 9 , 9 , 9 ) } } } = true Output:
[ "select the rows whose couple record fuzzily matches to jason edyta . take the score record of this row . select the rows whose couple record fuzzily matches to kristi mark . take the score record of this row . the first record is less than the second record . the score record of the first row is 23 8 , 7 , 8 . the score record of the second row is 27 9 , 9 , 9 ." ]
task110-1e3a699c406b42f68d14163956ad6f49
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; enrollment ; 2 } ; school } ; fort wayne carroll } = true Output:
[ "select the row whose enrollment record of all rows is 2nd maximum . the school record of this row is fort wayne carroll ." ]
task110-be6aeed7b31544a7a470893bc3b14eaf
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater_eq { all_rows ; first elected ; 2000 } } ; 5 } = true Output:
[ "select the rows whose first elected record is greater than or equal to 2000 . the number of such rows is 5 ." ]
task110-bca37739ae6547fc97b41a9f3a565777
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; publisher ; walker } } ; 6 } = true Output:
[ "select the rows whose publisher record fuzzily matches to walker . the number of such rows is 6 ." ]
task110-fb7f7426cf7b44a4b005b6561a76f06a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; opened } ; name } ; ben 10 - ultimate mission } = true Output:
[ "select the row whose opened record of all rows is maximum . the name record of this row is ben 10 ultimate mission ." ]
task110-9794bb844bb24acdab568135668deb8c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; country ; england } } = true Output:
[ "select the rows whose country record fuzzily matches to england . there is only one such row in the table ." ]
task110-6c787c351ebc4c16b98a4a51e06f40e1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; name ; ray lindwall } ; wickets } ; hop { filter_eq { all_rows ; name ; clarrie grimmett } ; wickets } } ; 12 } = true Output:
[ "select the rows whose name record fuzzily matches to ray lindwall . take the wickets record of this row . select the rows whose name record fuzzily matches to clarrie grimmett . take the wickets record of this row . the first record is 12 larger than the second record ." ]
task110-0af2f9f5c6d14d7dbf8db89511cd3c43
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; joined ; 2007 } } ; 2 } = true Output:
[ "select the rows whose joined record is equal to 2007 . the number of such rows is 2 ." ]
task110-d56010b25d1243d8ae43ce0390323241
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; country ; canada } = true Output:
[ "for the country records of all rows , most of them fuzzily match to canada ." ]
task110-25eff88cea5145a4ba6466cb6e74fda9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; races } ; 7.6 } = true Output:
[ "the average of the races record of all rows is 7.6 ." ]
task110-9a7bce69c36d46939773992dd721228d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; country ; kazakhstan } } ; eq { hop { filter_eq { all_rows ; country ; kazakhstan } ; athlete } ; inga dudchenko } } = true Output:
[ "select the rows whose country record fuzzily matches to kazakhstan . there is only one such row in the table . the athlete record of this unqiue row is inga dudchenko ." ]
task110-15493b56aae04ba1a1d482dc9c760b33
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_all { all_rows ; location } } ; 7 } = true Output:
[ "select the rows whose location record is arbitrary . the number of such rows is 7 ." ]
task110-19f2303006fc4ac7aec62a956390306b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; nationality ; rome } = true Output:
[ "for the nationality records of all rows , most of them fuzzily match to rome ." ]
task110-579e6734f75241d98073579391c558c8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; round } ; name } ; joseph addai } = true Output:
[ "select the row whose round record of all rows is minimum . the name record of this row is joseph addai ." ]
task110-a66cbc1fcd924fc0802c4a0c4144f5d6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; directed by ; jon cassar } } ; 5 } = true Output:
[ "select the rows whose directed by record fuzzily matches to jon cassar . the number of such rows is 5 ." ]
task110-4756eeecddf349e5b2b0bdcd8717e2b0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; capacity ; 15042 } } ; eq { hop { filter_eq { all_rows ; capacity ; 15042 } ; home venue } ; sangju civic stadium } } = true Output:
[ "select the rows whose capacity record is equal to 15042 . there is only one such row in the table . the home venue record of this unqiue row is sangju civic stadium ." ]
task110-bc785db1733e403dbad285652a9f1f63
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; candidates ; 2 } ; incumbent } ; elijah cummings } = true Output:
[ "select the row whose candidates record of all rows is 2nd maximum . the incumbent record of this row is elijah cummings ." ]
task110-dfa121ffe9d1471ab89e263c0dfcf7f6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; title ; rumble } ; original air date } ; hop { filter_eq { all_rows ; title ; sweetie } ; original air date } } = true Output:
[ "select the rows whose title record fuzzily matches to rumble . take the original air date record of this row . select the rows whose title record fuzzily matches to sweetie . take the original air date record of this row . the first record is less than the second record ." ]
task110-97f9feacf7e64745a736db0eba1e8716
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; first elected ; 2 } ; district } ; louisiana 2 } = true Output:
[ "select the row whose first elected record of all rows is 2nd minimum . the district record of this row is louisiana 2 ." ]
task110-a038ffed4b3844a7817aa3578c901857
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; winner ; luke youlden } } ; eq { hop { filter_eq { all_rows ; winner ; luke youlden } ; race title } ; mallala } } = true Output:
[ "select the rows whose winner record fuzzily matches to luke youlden . there is only one such row in the table . the race title record of this unqiue row is mallala ." ]
task110-084472dd8c95441bb3a2acddc3f062ca
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; year joined ; 1932 } } ; 7 } = true Output:
[ "select the rows whose year joined record is equal to 1932 . the number of such rows is 7 ." ]
task110-4144ec6e9bec492aaf3cec3e4360a890
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_less { all_rows ; sets ; 5 } ; event ; wimbledon } } ; 2 } = true Output:
[ "select the rows whose sets record is less than 5 . among these rows , select the rows whose event record fuzzily matches to wimbledon . the number of such rows is 2 ." ]
task110-2a92f9047edd4c459647a7b855494788
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; competition ; uefa euro 2004 qualifying } } ; eq { hop { filter_eq { all_rows ; competition ; uefa euro 2004 qualifying } ; date } ; 2003 - 02 - 04 } } = true Output:
[ "select the rows whose competition record fuzzily matches to uefa euro 2004 qualifying . there is only one such row in the table . the date record of this unqiue row is 2003 02 04 ." ]
task110-8a7940a6b753435082d64c6f41db015e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; days with frost } ; 15.67 } = true Output:
[ "the average of the days with frost record of all rows is 15.67 ." ]
task110-f681ed81bc0748f9a60c84f7f7f583bd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; date ; 25 october } = true Output:
[ "for the date records of all rows , most of them fuzzily match to 25 october ." ]
task110-5c66b7b4bfa24ff98fcfbb5bcb629027
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; surface ; carpet } } ; eq { hop { filter_eq { all_rows ; surface ; carpet } ; tournament } ; kyoto } } = true Output:
[ "select the rows whose surface record fuzzily matches to carpet . there is only one such row in the table . the tournament record of this unqiue row is kyoto ." ]
task110-4a04c8e624b140d4b8838ff108c0d91d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { filter_eq { all_rows ; opponent ; detroit red wings } ; score ; 3-3 } } ; eq { hop { filter_eq { filter_eq { all_rows ; opponent ; detroit red wings } ; score ; 3-3 } ; december } ; 6 } } = true Output:
[ "select the rows whose opponent record fuzzily matches to detroit red wings . among these rows , select the rows whose score record fuzzily matches to 33 . there is only one such row in the table . the december record of this unqiue row is 6 ." ]
task110-8eb4fd019eaf4e219ae223091a6f6945
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_greater { all_rows ; population density ( per km square ) ; 100 } = true Output:
[ "for the population density per km square records of all rows , all of them are greater than 100 ." ]
task110-6b664f3fe40c47668db3bbc668d16236
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; no of barangays } ; city / municipality } ; binangonan } = true Output:
[ "select the row whose no of barangays record of all rows is maximum . the city municipality record of this row is binangonan ." ]
task110-141ed2e7bd204d84a41262539bd95a05
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; owner ; eternacom } } ; eq { hop { filter_eq { all_rows ; owner ; eternacom } ; frequency } ; 103.5 fm } } = true Output:
[ "select the rows whose owner record fuzzily matches to eternacom . there is only one such row in the table . the frequency record of this unqiue row is 103.5 fm ." ]
task110-e7ea5a5ced5f401aaf6f6a8d6942bfe7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_greater { all_rows ; 2004 ; 1000 } } ; eq { hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament } ; year end ranking } } = true Output:
[ "select the rows whose 2004 record is greater than 1000 . there is only one such row in the table . the tournament record of this unqiue row is year end ranking ." ]
task110-dfdf05ba9bdb4434a5585b877b61b757
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; venue ; victoria park } } ; and { eq { hop { filter_eq { all_rows ; venue ; victoria park } ; home team } ; collingwood } ; eq { hop { filter_eq { all_rows ; venue ; victoria park } ; away team } ; north melbourne } } } = true Output:
[ "select the rows whose venue record fuzzily matches to victoria park . there is only one such row in the table . the home team record of this unqiue row is collingwood . the away team record of this unqiue row is north melbourne ." ]
task110-713578c572114d66b2e8484198cf35a9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; points } ; opponent } ; ottawa senators } = true Output:
[ "select the row whose points record of all rows is maximum . the opponent record of this row is ottawa senators ." ]
task110-2ba1faae18d543d8bac41e9b93085e52
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; opponents ; anne hobbs andrew castle } ; year } ; hop { filter_eq { all_rows ; opponents ; gretchen magers kelly jones } ; year } } ; -1 year } = true Output:
[ "select the rows whose opponents record fuzzily matches to anne hobbs andrew castle . take the year record of this row . select the rows whose opponents record fuzzily matches to gretchen magers kelly jones . take the year record of this row . the second record is 1 year larger than the first record ." ]
task110-630f95675fd445adb15629cdbd6dc588
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { filter_eq { all_rows ; previous conference ; northern indiana } ; mascot ; roughriders } } ; eq { hop { filter_eq { filter_eq { all_rows ; previous conference ; northern indiana } ; mascot ; roughriders } ; school } ; east chicago roosevelt } } = true Output:
[ "select the rows whose previous conference record fuzzily matches to northern indiana . among these rows , select the rows whose mascot record fuzzily matches to roughriders . there is only one such row in the table . the school record of this unqiue row is east chicago roosevelt ." ]
task110-dc57bcdcf2a34c79b90c033c311c0448
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; issue price ; 79.95 } } ; 2 } = true Output:
[ "select the rows whose issue price record is equal to 79.95 . the number of such rows is 2 ." ]
task110-9c078c6e7bc54678a044de5183260d5a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; points } ; 97 } = true Output:
[ "the sum of the points record of all rows is 97 ." ]
task110-2669b9bd0b5d4fc782441ed1f4df249c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 45585 } = true Output:
[ "the average of the attendance record of all rows is 45585 ." ]
task110-d13afa28d40f486c96505623bfdbec07
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { filter_eq { all_rows ; location attendance ; skydome } ; high points ; damon stoudamire } = true Output:
[ "select the rows whose location attendance record fuzzily matches to skydome . for the high points records of these rows , most of them fuzzily match to damon stoudamire ." ]
task110-433f76a0b1b04d3c802dc85b69464db5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; gold } ; .8 } = true Output:
[ "the average of the gold record of all rows is .8 ." ]
task110-307301dfc2ab45ef836433cf489f6a27
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; races ; 16 } } ; and { eq { hop { filter_eq { all_rows ; races ; 16 } ; year } ; 2012 } ; eq { hop { filter_eq { all_rows ; races ; 16 } ; riders } ; alex de angelis } } } = true Output:
[ "select the rows whose races record is equal to 16 . there is only one such row in the table . the year record of this unqiue row is 2012 . the riders record of this unqiue row is alex de angelis ." ]
task110-9a5f4119f0a9442a93bf911acd439bd2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; manner of departure ; gardening leave 1 } } ; eq { hop { filter_eq { all_rows ; manner of departure ; gardening leave 1 } ; club } ; kedah fa } } = true Output:
[ "select the rows whose manner of departure record fuzzily matches to gardening leave 1 . there is only one such row in the table . the club record of this unqiue row is kedah fa ." ]
task110-1f9550bb94d34a78b36bd557fe832387
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_greater { all_rows ; place ; 1 } ; points jury ; 30 } } ; 4 } = true Output:
[ "select the rows whose place record is greater than 1 . among these rows , select the rows whose points jury record is greater than 30 . the number of such rows is 4 ." ]
task110-3d7a5a854c3d4a97a8d7736dd24266a2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } } ; and { eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } ; no } ; 1 } ; eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } ; title } ; two of a kind } } } = true Output:
[ "select the rows whose us viewers million record is greater than 11.0 . there is only one such row in the table . the no record of this unqiue row is 1 . the title record of this unqiue row is two of a kind ." ]
task110-b7bcb1050084429c945ccebc04d9e481
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 18728 } = true Output:
[ "the average of the attendance record of all rows is 18728 ." ]
task110-adb072c4ccbd49fd897a04c4b252a404
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; tournament ; us open } ; events } ; hop { filter_eq { all_rows ; tournament ; pga championship } ; events } } = true Output:
[ "select the rows whose tournament record fuzzily matches to us open . take the events record of this row . select the rows whose tournament record fuzzily matches to pga championship . take the events record of this row . the first record is greater than the second record ." ]
task110-e850d7a05d4243adb54fa10dc74112a8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; result ; lose } } ; 5 } = true Output:
[ "select the rows whose result record fuzzily matches to lose . the number of such rows is 5 ." ]
task110-38cbce998f5c4e12b0129718e1a0ceb6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; matches } ; 51 } = true Output:
[ "the average of the matches record of all rows is 51 ." ]
task110-53aeaca1740d412b8e964f92963090dd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_greater_eq { filter_eq { all_rows ; street address ; gold avenue sw } ; height ft / m ; 180 } = true Output:
[ "select the rows whose street address record fuzzily matches to gold avenue sw . for the height ft m records of these rows , all of them are greater than or equal to 180 ." ]
task110-9943e988e23240f1b7f1952b198baf67
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; position ; rb } } ; 3 } = true Output:
[ "select the rows whose position record fuzzily matches to rb . the number of such rows is 3 ." ]
task110-509a2776251246c0a356b4fffd8183d1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; best score ; 30 } } ; 7 } = true Output:
[ "select the rows whose best score record fuzzily matches to 30 . the number of such rows is 7 ." ]
task110-2a8b0d1f2ea44d88a2de1e85da6d33d5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; result } ; opponent } ; st louis rams } = true Output:
[ "select the row whose result record of all rows is maximum . the opponent record of this row is st louis rams ." ]
task110-0636eb6a3a5040b097ab45979965c62b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; date ; 2 } ; tournament } ; moulins } = true Output:
[ "select the row whose date record of all rows is 2nd minimum . the tournament record of this row is moulins ." ]
task110-5a619f5e0b424c87b56c6ca69948c3d2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { filter_eq { all_rows ; date ; december } ; final score ; w } = true Output:
[ "select the rows whose date record fuzzily matches to december . for the final score records of these rows , most of them fuzzily match to w ." ]
task110-f2d98366c40f4361b1120711b8d868cb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; constellation ; hydra } } ; eq { hop { filter_eq { all_rows ; constellation ; hydra } ; ngc number } ; 5078 } } = true Output:
[ "select the rows whose constellation record fuzzily matches to hydra . there is only one such row in the table . the ngc number record of this unqiue row is 5078 ." ]
task110-42e602814e5244d2a8570162bfcb43ae
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; result ; re - elected } } ; 2 } = true Output:
[ "select the rows whose result record fuzzily matches to re elected . the number of such rows is 2 ." ]
task110-2271cdc7574c47cca13d78b8e7409bf2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; opponent ; chicago blackhawks } } ; eq { hop { filter_eq { all_rows ; opponent ; chicago blackhawks } ; game } ; 36 } } = true Output:
[ "select the rows whose opponent record fuzzily matches to chicago blackhawks . there is only one such row in the table . the game record of this unqiue row is 36 ." ]
task110-ad067918c5854af7b2dfb78f0b52bc31
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; competition ; uefa europa league } } ; 4 } = true Output:
[ "select the rows whose competition record fuzzily matches to uefa europa league . the number of such rows is 4 ." ]
task110-74859ddbd6b1425794f5de77aafd2cd6
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { all_rows ; silver ; 1 } = true Output:
[ "for the silver records of all rows , most of them are greater than or equal to 1 ." ]
task110-f74d57c53eeb4f909949664aa0c97a78
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; result ; t } } = true Output:
[ "select the rows whose result record fuzzily matches to t . there is only one such row in the table ." ]
task110-0b5bf6072c7e43978071b37673251757
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; competition ; euro } } ; eq { hop { filter_eq { all_rows ; competition ; euro } ; date } ; 29 october 1975 } } = true Output:
[ "select the rows whose competition record fuzzily matches to euro . there is only one such row in the table . the date record of this unqiue row is 29 october 1975 ." ]
task110-bfc657f8a4964141a533c40d4ad1ecfd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { filter_eq { all_rows ; team ; pescarolo sport } ; laps ; 300 } = true Output:
[ "select the rows whose team record fuzzily matches to pescarolo sport . for the laps records of these rows , most of them are greater than 300 ." ]
task110-7259d118c2fd4bf69e3c6ce323edef05
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; venue ; china } } = true Output:
[ "select the rows whose venue record fuzzily matches to china . there is only one such row in the table ." ]
task110-c2082359536f4eabba80c5fc7e6d6255
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; goals } ; player } ; mile sterjovski } = true Output:
[ "select the row whose goals record of all rows is maximum . the player record of this row is mile sterjovski ." ]
task110-29b69e74ab76457db7e79e9e497bf789
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; loses ; 3 } ; club } ; nevėžis kėdainiai } = true Output:
[ "select the row whose loses record of all rows is 3rd maximum . the club record of this row is nevėžis kėdainiai ." ]
task110-b8e843a6d2b44523a8ab267d6c797fc2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; school ; leo } ; year joined } ; hop { filter_eq { all_rows ; school ; south adams } ; year joined } } ; -20 years } = true Output:
[ "select the rows whose school record fuzzily matches to leo . take the year joined record of this row . select the rows whose school record fuzzily matches to south adams . take the year joined record of this row . the second record is 20 years larger than the first record ." ]
task110-0f73261faade4bd4a4244c411bca61e3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; date ; december 3 , 1967 } ; attendance } ; hop { filter_eq { all_rows ; date ; december 17 , 1967 } ; attendance } } = true Output:
[ "select the rows whose date record fuzzily matches to december 3 , 1967 . take the attendance record of this row . select the rows whose date record fuzzily matches to december 17 , 1967 . take the attendance record of this row . the first record is greater than the second record ." ]
task110-7b98fb480c934e579482fbcca3215ee3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; viewers ( in millions ) } ; 9.1 } = true Output:
[ "the average of the viewers in millions record of all rows is 9.1 ." ]
task110-154d1c063cd74c28af7f6394f7ae8851
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { hop { filter_eq { all_rows ; trim ; xe ( 2009 ) } ; transmission } ; hop { filter_eq { all_rows ; trim ; xr ( 2009 ) } ; transmission } } ; and { eq { hop { filter_eq { all_rows ; trim ; xe ( 2009 ) } ; transmission } ; 6 - speed 6t40 } ; eq { hop { filter_eq { all_rows ; trim ; xr ( 2009 ) } ; transmission } ; 6 - speed 6t40 } } } = true Output:
[ "select the rows whose trim record fuzzily matches to xe 2009 . take the transmission record of this row . select the rows whose trim record fuzzily matches to xr 2009 . take the transmission record of this row . the first record fuzzily matches to the second record . the transmission record of the first row is 6 speed 6t40 . the transmission record of the second row is 6 speed 6t40 ." ]
task110-655ccb3840bc41b58537b975b48731bb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; surface ; hard } } ; eq { hop { filter_eq { all_rows ; surface ; hard } ; tournament } ; westende } } = true Output:
[ "select the rows whose surface record fuzzily matches to hard . there is only one such row in the table . the tournament record of this unqiue row is westende ." ]
task110-6bc325f1018f41dabacca045ba271830
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_less { all_rows ; seating ; 100000 } = true Output:
[ "for the seating records of all rows , most of them are less than 100000 ." ]
task110-889e459c508f4b83aa3e6119275fa077
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; winning driver ; jackie stewart } } ; 2 } = true Output:
[ "select the rows whose winning driver record fuzzily matches to jackie stewart . the number of such rows is 2 ." ]
task110-311fa48ba2c24fc8b2a07dc6b4cfd101
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; nominating festival ; prix uip valladolid } } ; 2 } = true Output:
[ "select the rows whose nominating festival record fuzzily matches to prix uip valladolid . the number of such rows is 2 ." ]
task110-3b68840cdef8499fb162274451bf4d2f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; opposing teams ; new zealand } ; against } ; 18 } = true Output:
[ "select the rows whose opposing teams record fuzzily matches to new zealand . the sum of the against record of these rows is 18 ." ]
task110-d5fdd9eec30241ae815dacfd0dff285c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; player ; wayne walker } ; overall pick } ; hop { filter_eq { all_rows ; player ; john yarno } ; overall pick } } = true Output:
[ "select the rows whose player record fuzzily matches to wayne walker . take the overall pick record of this row . select the rows whose player record fuzzily matches to john yarno . take the overall pick record of this row . the first record is less than the second record ." ]
task110-4247ba2e5b784212a52ec4b8d5fbb3d5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_less_eq { all_rows ; start ; 20 } } ; 5 } = true Output:
[ "select the rows whose start record is less than or equal to 20 . the number of such rows is 5 ." ]
task110-aeef75e8d05f4b029c5db625f91d8350
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; round ; 1 } = true Output:
[ "for the round records of all rows , most of them are equal to 1 ." ]
task110-50ed0cb336d14faf95867a0a612634c5