input
stringlengths 3.41k
3.87k
| output
sequencelengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; attendance } ; 17392 } = true
Output:
| [
"the average of the attendance record of all rows is 17392 ."
] | task110-e1ca3dbfccf4453cb2edfdfbc3a38ba5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_eq { all_rows ; network ; abc } = true
Output:
| [
"for the network records of all rows , all of them fuzzily match to abc ."
] | task110-dffc7da6829e4618b9451c086c2ad750 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; year ; 2 } ; year } ; 2012 } = true
Output:
| [
"select the row whose year record of all rows is 2nd maximum . the year record of this row is 2012 ."
] | task110-3273958eb04c4788bdaf145e493f9fef |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; event ; 110 m hurdles } = true
Output:
| [
"for the event records of all rows , most of them fuzzily match to 110 m hurdles ."
] | task110-8182d1c805854c08a4b63c8bc28c06d6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; gold } ; 3.7 } = true
Output:
| [
"the average of the gold record of all rows is 3.7 ."
] | task110-bb7cb599867242679bb2a32c82b934c2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; nationality ; serbia } } ; eq { hop { filter_eq { all_rows ; nationality ; serbia } ; player } ; aleksandar radojeviä ‡ } } = true
Output:
| [
"select the rows whose nationality record fuzzily matches to serbia . there is only one such row in the table . the player record of this unqiue row is aleksandar radojeviä ‡ ."
] | task110-45890bed99314e19a8ba1f41db2c4eb1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; home team ; manchester city } ; score } ; hop { filter_eq { all_rows ; home team ; arsenal } ; score } } = true
Output:
| [
"select the rows whose home team record fuzzily matches to manchester city . take the score record of this row . select the rows whose home team record fuzzily matches to arsenal . take the score record of this row . the first record is greater than the second record ."
] | task110-ca2c9274fe9441fcb1a47b65129e11fb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_greater { all_rows ; us viewers ( million ) ; 1.7 } } ; eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 1.7 } ; no } ; 7 } } = true
Output:
| [
"select the rows whose us viewers million record is greater than 1.7 . there is only one such row in the table . the no record of this unqiue row is 7 ."
] | task110-a711f2b2d4c24693b95d09145ab6ab1a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_less { filter_eq { all_rows ; nation ; kenya } ; time ; 30:34 } } ; 2 } = true
Output:
| [
"select the rows whose nation record fuzzily matches to kenya . among these rows , select the rows whose time record is less than 30:34 . the number of such rows is 2 ."
] | task110-9504774dd7bc4ef7a8e5f0707d5b8677 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { eq { max { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; 3 ghz } ; eq { hop { argmax { filter_eq { all_rows ; l3 cache ; 8 mb } ; frequency } ; model number } ; core i7 - 3940xm } } = true
Output:
| [
"select the rows whose l3 cache record fuzzily matches to 8 mb . the maximum frequency record of these rows is 3 ghz . the model number record of the row with superlative frequency record is core i7 3940xm ."
] | task110-78e0833ade214e9ca5a12cde143cd3cd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_all { all_rows ; the mole } } ; 14 } = true
Output:
| [
"select the rows whose the mole record is arbitrary . the number of such rows is 14 ."
] | task110-91fc87c297e9458885e23b650ab43ee0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { filter_eq { all_rows ; venue ; queen 's park oval , port of spain } ; date ; 2006 } } ; 2 } = true
Output:
| [
"select the rows whose venue record fuzzily matches to queen s park oval , port of spain . among these rows , select the rows whose date record fuzzily matches to 2006 . the number of such rows is 2 ."
] | task110-f1133003e3fb4345aeeacdbd31f02819 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; pictorials ; girls } = true
Output:
| [
"for the pictorials records of all rows , most of them fuzzily match to girls ."
] | task110-88c6bef1e87e42dbbaca13b8eb6c5acf |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; time ; 6:21.11 } } ; eq { hop { filter_eq { all_rows ; time ; 6:21.11 } ; country } ; estonia } } = true
Output:
| [
"select the rows whose time record fuzzily matches to 6:21.11 . there is only one such row in the table . the country record of this unqiue row is estonia ."
] | task110-74463ba6b01444a0bbe4add6cfd5daf1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; wins } ; 0.6 } = true
Output:
| [
"the average of the wins record of all rows is 0.6 ."
] | task110-0501f367aff846f0920fc2eae5241b63 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; result ; injured } } ; eq { hop { filter_eq { all_rows ; result ; injured } ; week } ; 5 } } = true
Output:
| [
"select the rows whose result record fuzzily matches to injured . there is only one such row in the table . the week record of this unqiue row is 5 ."
] | task110-cf0f4414fefc409cb88227e93b3758d7 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_greater { all_rows ; loans received ; 0 } = true
Output:
| [
"for the loans received records of all rows , most of them are greater than 0 ."
] | task110-946f5a1cb5a940339575c0fa4d8a73df |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; playoffs ; did not qualify } } ; 2 } = true
Output:
| [
"select the rows whose playoffs record fuzzily matches to did not qualify . the number of such rows is 2 ."
] | task110-02c0ab0dcaae4ea6bef8be0b9d25037e |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; rank } ; 20 } = true
Output:
| [
"the average of the rank record of all rows is 20 ."
] | task110-6620c6a3529c4fd681f252ab19d21d02 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; player ; leron mitchell } ; pick } ; hop { filter_eq { all_rows ; player ; aaron wagner } ; pick } } = true
Output:
| [
"select the rows whose player record fuzzily matches to leron mitchell . take the pick record of this row . select the rows whose player record fuzzily matches to aaron wagner . take the pick record of this row . the first record is less than the second record ."
] | task110-41b99cf09e39437ebaff3dfb031f5990 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; ceased operation ; failed at launch } } ; eq { hop { filter_eq { all_rows ; ceased operation ; failed at launch } ; name } ; injun 2 } } = true
Output:
| [
"select the rows whose ceased operation record fuzzily matches to failed at launch . there is only one such row in the table . the name record of this unqiue row is injun 2 ."
] | task110-d522a464029546c6989a629ee9342d09 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; p1 diameter ( mm ) ; 10.77 } } ; 2 } = true
Output:
| [
"select the rows whose p1 diameter mm record is equal to 10.77 . the number of such rows is 2 ."
] | task110-42aa768fee1546648437d3252eab5f6c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; displacement ; 3.9 } = true
Output:
| [
"for the displacement records of all rows , most of them are equal to 3.9 ."
] | task110-7d0c7d5c60c34eaba33da57b94729395 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { less { hop { filter_eq { all_rows ; couple ; jason & edyta } ; score } ; hop { filter_eq { all_rows ; couple ; kristi & mark } ; score } } ; and { eq { hop { filter_eq { all_rows ; couple ; jason & edyta } ; score } ; 23 ( 8 , 7 , 8 ) } ; eq { hop { filter_eq { all_rows ; couple ; kristi & mark } ; score } ; 27 ( 9 , 9 , 9 ) } } } = true
Output:
| [
"select the rows whose couple record fuzzily matches to jason edyta . take the score record of this row . select the rows whose couple record fuzzily matches to kristi mark . take the score record of this row . the first record is less than the second record . the score record of the first row is 23 8 , 7 , 8 . the score record of the second row is 27 9 , 9 , 9 ."
] | task110-1e3a699c406b42f68d14163956ad6f49 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; enrollment ; 2 } ; school } ; fort wayne carroll } = true
Output:
| [
"select the row whose enrollment record of all rows is 2nd maximum . the school record of this row is fort wayne carroll ."
] | task110-be6aeed7b31544a7a470893bc3b14eaf |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_greater_eq { all_rows ; first elected ; 2000 } } ; 5 } = true
Output:
| [
"select the rows whose first elected record is greater than or equal to 2000 . the number of such rows is 5 ."
] | task110-bca37739ae6547fc97b41a9f3a565777 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; publisher ; walker } } ; 6 } = true
Output:
| [
"select the rows whose publisher record fuzzily matches to walker . the number of such rows is 6 ."
] | task110-fb7f7426cf7b44a4b005b6561a76f06a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; opened } ; name } ; ben 10 - ultimate mission } = true
Output:
| [
"select the row whose opened record of all rows is maximum . the name record of this row is ben 10 ultimate mission ."
] | task110-9794bb844bb24acdab568135668deb8c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: only { filter_eq { all_rows ; country ; england } } = true
Output:
| [
"select the rows whose country record fuzzily matches to england . there is only one such row in the table ."
] | task110-6c787c351ebc4c16b98a4a51e06f40e1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { diff { hop { filter_eq { all_rows ; name ; ray lindwall } ; wickets } ; hop { filter_eq { all_rows ; name ; clarrie grimmett } ; wickets } } ; 12 } = true
Output:
| [
"select the rows whose name record fuzzily matches to ray lindwall . take the wickets record of this row . select the rows whose name record fuzzily matches to clarrie grimmett . take the wickets record of this row . the first record is 12 larger than the second record ."
] | task110-0af2f9f5c6d14d7dbf8db89511cd3c43 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; joined ; 2007 } } ; 2 } = true
Output:
| [
"select the rows whose joined record is equal to 2007 . the number of such rows is 2 ."
] | task110-d56010b25d1243d8ae43ce0390323241 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; country ; canada } = true
Output:
| [
"for the country records of all rows , most of them fuzzily match to canada ."
] | task110-25eff88cea5145a4ba6466cb6e74fda9 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; races } ; 7.6 } = true
Output:
| [
"the average of the races record of all rows is 7.6 ."
] | task110-9a7bce69c36d46939773992dd721228d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; country ; kazakhstan } } ; eq { hop { filter_eq { all_rows ; country ; kazakhstan } ; athlete } ; inga dudchenko } } = true
Output:
| [
"select the rows whose country record fuzzily matches to kazakhstan . there is only one such row in the table . the athlete record of this unqiue row is inga dudchenko ."
] | task110-15493b56aae04ba1a1d482dc9c760b33 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_all { all_rows ; location } } ; 7 } = true
Output:
| [
"select the rows whose location record is arbitrary . the number of such rows is 7 ."
] | task110-19f2303006fc4ac7aec62a956390306b |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; nationality ; rome } = true
Output:
| [
"for the nationality records of all rows , most of them fuzzily match to rome ."
] | task110-579e6734f75241d98073579391c558c8 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmin { all_rows ; round } ; name } ; joseph addai } = true
Output:
| [
"select the row whose round record of all rows is minimum . the name record of this row is joseph addai ."
] | task110-a66cbc1fcd924fc0802c4a0c4144f5d6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; directed by ; jon cassar } } ; 5 } = true
Output:
| [
"select the rows whose directed by record fuzzily matches to jon cassar . the number of such rows is 5 ."
] | task110-4756eeecddf349e5b2b0bdcd8717e2b0 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; capacity ; 15042 } } ; eq { hop { filter_eq { all_rows ; capacity ; 15042 } ; home venue } ; sangju civic stadium } } = true
Output:
| [
"select the rows whose capacity record is equal to 15042 . there is only one such row in the table . the home venue record of this unqiue row is sangju civic stadium ."
] | task110-bc785db1733e403dbad285652a9f1f63 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; candidates ; 2 } ; incumbent } ; elijah cummings } = true
Output:
| [
"select the row whose candidates record of all rows is 2nd maximum . the incumbent record of this row is elijah cummings ."
] | task110-dfa121ffe9d1471ab89e263c0dfcf7f6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; title ; rumble } ; original air date } ; hop { filter_eq { all_rows ; title ; sweetie } ; original air date } } = true
Output:
| [
"select the rows whose title record fuzzily matches to rumble . take the original air date record of this row . select the rows whose title record fuzzily matches to sweetie . take the original air date record of this row . the first record is less than the second record ."
] | task110-97f9feacf7e64745a736db0eba1e8716 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmin { all_rows ; first elected ; 2 } ; district } ; louisiana 2 } = true
Output:
| [
"select the row whose first elected record of all rows is 2nd minimum . the district record of this row is louisiana 2 ."
] | task110-a038ffed4b3844a7817aa3578c901857 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; winner ; luke youlden } } ; eq { hop { filter_eq { all_rows ; winner ; luke youlden } ; race title } ; mallala } } = true
Output:
| [
"select the rows whose winner record fuzzily matches to luke youlden . there is only one such row in the table . the race title record of this unqiue row is mallala ."
] | task110-084472dd8c95441bb3a2acddc3f062ca |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; year joined ; 1932 } } ; 7 } = true
Output:
| [
"select the rows whose year joined record is equal to 1932 . the number of such rows is 7 ."
] | task110-4144ec6e9bec492aaf3cec3e4360a890 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { filter_less { all_rows ; sets ; 5 } ; event ; wimbledon } } ; 2 } = true
Output:
| [
"select the rows whose sets record is less than 5 . among these rows , select the rows whose event record fuzzily matches to wimbledon . the number of such rows is 2 ."
] | task110-2a92f9047edd4c459647a7b855494788 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; competition ; uefa euro 2004 qualifying } } ; eq { hop { filter_eq { all_rows ; competition ; uefa euro 2004 qualifying } ; date } ; 2003 - 02 - 04 } } = true
Output:
| [
"select the rows whose competition record fuzzily matches to uefa euro 2004 qualifying . there is only one such row in the table . the date record of this unqiue row is 2003 02 04 ."
] | task110-8a7940a6b753435082d64c6f41db015e |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; days with frost } ; 15.67 } = true
Output:
| [
"the average of the days with frost record of all rows is 15.67 ."
] | task110-f681ed81bc0748f9a60c84f7f7f583bd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; date ; 25 october } = true
Output:
| [
"for the date records of all rows , most of them fuzzily match to 25 october ."
] | task110-5c66b7b4bfa24ff98fcfbb5bcb629027 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; surface ; carpet } } ; eq { hop { filter_eq { all_rows ; surface ; carpet } ; tournament } ; kyoto } } = true
Output:
| [
"select the rows whose surface record fuzzily matches to carpet . there is only one such row in the table . the tournament record of this unqiue row is kyoto ."
] | task110-4a04c8e624b140d4b8838ff108c0d91d |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { filter_eq { all_rows ; opponent ; detroit red wings } ; score ; 3-3 } } ; eq { hop { filter_eq { filter_eq { all_rows ; opponent ; detroit red wings } ; score ; 3-3 } ; december } ; 6 } } = true
Output:
| [
"select the rows whose opponent record fuzzily matches to detroit red wings . among these rows , select the rows whose score record fuzzily matches to 33 . there is only one such row in the table . the december record of this unqiue row is 6 ."
] | task110-8eb4fd019eaf4e219ae223091a6f6945 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_greater { all_rows ; population density ( per km square ) ; 100 } = true
Output:
| [
"for the population density per km square records of all rows , all of them are greater than 100 ."
] | task110-6b664f3fe40c47668db3bbc668d16236 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; no of barangays } ; city / municipality } ; binangonan } = true
Output:
| [
"select the row whose no of barangays record of all rows is maximum . the city municipality record of this row is binangonan ."
] | task110-141ed2e7bd204d84a41262539bd95a05 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; owner ; eternacom } } ; eq { hop { filter_eq { all_rows ; owner ; eternacom } ; frequency } ; 103.5 fm } } = true
Output:
| [
"select the rows whose owner record fuzzily matches to eternacom . there is only one such row in the table . the frequency record of this unqiue row is 103.5 fm ."
] | task110-e7ea5a5ced5f401aaf6f6a8d6942bfe7 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_greater { all_rows ; 2004 ; 1000 } } ; eq { hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament } ; year end ranking } } = true
Output:
| [
"select the rows whose 2004 record is greater than 1000 . there is only one such row in the table . the tournament record of this unqiue row is year end ranking ."
] | task110-dfdf05ba9bdb4434a5585b877b61b757 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; venue ; victoria park } } ; and { eq { hop { filter_eq { all_rows ; venue ; victoria park } ; home team } ; collingwood } ; eq { hop { filter_eq { all_rows ; venue ; victoria park } ; away team } ; north melbourne } } } = true
Output:
| [
"select the rows whose venue record fuzzily matches to victoria park . there is only one such row in the table . the home team record of this unqiue row is collingwood . the away team record of this unqiue row is north melbourne ."
] | task110-713578c572114d66b2e8484198cf35a9 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; points } ; opponent } ; ottawa senators } = true
Output:
| [
"select the row whose points record of all rows is maximum . the opponent record of this row is ottawa senators ."
] | task110-2ba1faae18d543d8bac41e9b93085e52 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { diff { hop { filter_eq { all_rows ; opponents ; anne hobbs andrew castle } ; year } ; hop { filter_eq { all_rows ; opponents ; gretchen magers kelly jones } ; year } } ; -1 year } = true
Output:
| [
"select the rows whose opponents record fuzzily matches to anne hobbs andrew castle . take the year record of this row . select the rows whose opponents record fuzzily matches to gretchen magers kelly jones . take the year record of this row . the second record is 1 year larger than the first record ."
] | task110-630f95675fd445adb15629cdbd6dc588 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { filter_eq { all_rows ; previous conference ; northern indiana } ; mascot ; roughriders } } ; eq { hop { filter_eq { filter_eq { all_rows ; previous conference ; northern indiana } ; mascot ; roughriders } ; school } ; east chicago roosevelt } } = true
Output:
| [
"select the rows whose previous conference record fuzzily matches to northern indiana . among these rows , select the rows whose mascot record fuzzily matches to roughriders . there is only one such row in the table . the school record of this unqiue row is east chicago roosevelt ."
] | task110-dc57bcdcf2a34c79b90c033c311c0448 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; issue price ; 79.95 } } ; 2 } = true
Output:
| [
"select the rows whose issue price record is equal to 79.95 . the number of such rows is 2 ."
] | task110-9c078c6e7bc54678a044de5183260d5a |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { all_rows ; points } ; 97 } = true
Output:
| [
"the sum of the points record of all rows is 97 ."
] | task110-2669b9bd0b5d4fc782441ed1f4df249c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; attendance } ; 45585 } = true
Output:
| [
"the average of the attendance record of all rows is 45585 ."
] | task110-d13afa28d40f486c96505623bfdbec07 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { filter_eq { all_rows ; location attendance ; skydome } ; high points ; damon stoudamire } = true
Output:
| [
"select the rows whose location attendance record fuzzily matches to skydome . for the high points records of these rows , most of them fuzzily match to damon stoudamire ."
] | task110-433f76a0b1b04d3c802dc85b69464db5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; gold } ; .8 } = true
Output:
| [
"the average of the gold record of all rows is .8 ."
] | task110-307301dfc2ab45ef836433cf489f6a27 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; races ; 16 } } ; and { eq { hop { filter_eq { all_rows ; races ; 16 } ; year } ; 2012 } ; eq { hop { filter_eq { all_rows ; races ; 16 } ; riders } ; alex de angelis } } } = true
Output:
| [
"select the rows whose races record is equal to 16 . there is only one such row in the table . the year record of this unqiue row is 2012 . the riders record of this unqiue row is alex de angelis ."
] | task110-9a5f4119f0a9442a93bf911acd439bd2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; manner of departure ; gardening leave 1 } } ; eq { hop { filter_eq { all_rows ; manner of departure ; gardening leave 1 } ; club } ; kedah fa } } = true
Output:
| [
"select the rows whose manner of departure record fuzzily matches to gardening leave 1 . there is only one such row in the table . the club record of this unqiue row is kedah fa ."
] | task110-1f9550bb94d34a78b36bd557fe832387 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_greater { filter_greater { all_rows ; place ; 1 } ; points jury ; 30 } } ; 4 } = true
Output:
| [
"select the rows whose place record is greater than 1 . among these rows , select the rows whose points jury record is greater than 30 . the number of such rows is 4 ."
] | task110-3d7a5a854c3d4a97a8d7736dd24266a2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } } ; and { eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } ; no } ; 1 } ; eq { hop { filter_greater { all_rows ; us viewers ( million ) ; 11.0 } ; title } ; two of a kind } } } = true
Output:
| [
"select the rows whose us viewers million record is greater than 11.0 . there is only one such row in the table . the no record of this unqiue row is 1 . the title record of this unqiue row is two of a kind ."
] | task110-b7bcb1050084429c945ccebc04d9e481 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; attendance } ; 18728 } = true
Output:
| [
"the average of the attendance record of all rows is 18728 ."
] | task110-adb072c4ccbd49fd897a04c4b252a404 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; tournament ; us open } ; events } ; hop { filter_eq { all_rows ; tournament ; pga championship } ; events } } = true
Output:
| [
"select the rows whose tournament record fuzzily matches to us open . take the events record of this row . select the rows whose tournament record fuzzily matches to pga championship . take the events record of this row . the first record is greater than the second record ."
] | task110-e850d7a05d4243adb54fa10dc74112a8 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; result ; lose } } ; 5 } = true
Output:
| [
"select the rows whose result record fuzzily matches to lose . the number of such rows is 5 ."
] | task110-38cbce998f5c4e12b0129718e1a0ceb6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; matches } ; 51 } = true
Output:
| [
"the average of the matches record of all rows is 51 ."
] | task110-53aeaca1740d412b8e964f92963090dd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: all_greater_eq { filter_eq { all_rows ; street address ; gold avenue sw } ; height ft / m ; 180 } = true
Output:
| [
"select the rows whose street address record fuzzily matches to gold avenue sw . for the height ft m records of these rows , all of them are greater than or equal to 180 ."
] | task110-9943e988e23240f1b7f1952b198baf67 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; position ; rb } } ; 3 } = true
Output:
| [
"select the rows whose position record fuzzily matches to rb . the number of such rows is 3 ."
] | task110-509a2776251246c0a356b4fffd8183d1 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; best score ; 30 } } ; 7 } = true
Output:
| [
"select the rows whose best score record fuzzily matches to 30 . the number of such rows is 7 ."
] | task110-2a8b0d1f2ea44d88a2de1e85da6d33d5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; result } ; opponent } ; st louis rams } = true
Output:
| [
"select the row whose result record of all rows is maximum . the opponent record of this row is st louis rams ."
] | task110-0636eb6a3a5040b097ab45979965c62b |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmin { all_rows ; date ; 2 } ; tournament } ; moulins } = true
Output:
| [
"select the row whose date record of all rows is 2nd minimum . the tournament record of this row is moulins ."
] | task110-5a619f5e0b424c87b56c6ca69948c3d2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { filter_eq { all_rows ; date ; december } ; final score ; w } = true
Output:
| [
"select the rows whose date record fuzzily matches to december . for the final score records of these rows , most of them fuzzily match to w ."
] | task110-f2d98366c40f4361b1120711b8d868cb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; constellation ; hydra } } ; eq { hop { filter_eq { all_rows ; constellation ; hydra } ; ngc number } ; 5078 } } = true
Output:
| [
"select the rows whose constellation record fuzzily matches to hydra . there is only one such row in the table . the ngc number record of this unqiue row is 5078 ."
] | task110-42e602814e5244d2a8570162bfcb43ae |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; result ; re - elected } } ; 2 } = true
Output:
| [
"select the rows whose result record fuzzily matches to re elected . the number of such rows is 2 ."
] | task110-2271cdc7574c47cca13d78b8e7409bf2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; opponent ; chicago blackhawks } } ; eq { hop { filter_eq { all_rows ; opponent ; chicago blackhawks } ; game } ; 36 } } = true
Output:
| [
"select the rows whose opponent record fuzzily matches to chicago blackhawks . there is only one such row in the table . the game record of this unqiue row is 36 ."
] | task110-ad067918c5854af7b2dfb78f0b52bc31 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; competition ; uefa europa league } } ; 4 } = true
Output:
| [
"select the rows whose competition record fuzzily matches to uefa europa league . the number of such rows is 4 ."
] | task110-74859ddbd6b1425794f5de77aafd2cd6 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_greater_eq { all_rows ; silver ; 1 } = true
Output:
| [
"for the silver records of all rows , most of them are greater than or equal to 1 ."
] | task110-f74d57c53eeb4f909949664aa0c97a78 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: only { filter_eq { all_rows ; result ; t } } = true
Output:
| [
"select the rows whose result record fuzzily matches to t . there is only one such row in the table ."
] | task110-0b5bf6072c7e43978071b37673251757 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; competition ; euro } } ; eq { hop { filter_eq { all_rows ; competition ; euro } ; date } ; 29 october 1975 } } = true
Output:
| [
"select the rows whose competition record fuzzily matches to euro . there is only one such row in the table . the date record of this unqiue row is 29 october 1975 ."
] | task110-bfc657f8a4964141a533c40d4ad1ecfd |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_greater { filter_eq { all_rows ; team ; pescarolo sport } ; laps ; 300 } = true
Output:
| [
"select the rows whose team record fuzzily matches to pescarolo sport . for the laps records of these rows , most of them are greater than 300 ."
] | task110-7259d118c2fd4bf69e3c6ce323edef05 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: only { filter_eq { all_rows ; venue ; china } } = true
Output:
| [
"select the rows whose venue record fuzzily matches to china . there is only one such row in the table ."
] | task110-c2082359536f4eabba80c5fc7e6d6255 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { argmax { all_rows ; goals } ; player } ; mile sterjovski } = true
Output:
| [
"select the row whose goals record of all rows is maximum . the player record of this row is mile sterjovski ."
] | task110-29b69e74ab76457db7e79e9e497bf789 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { hop { nth_argmax { all_rows ; loses ; 3 } ; club } ; nevėžis kėdainiai } = true
Output:
| [
"select the row whose loses record of all rows is 3rd maximum . the club record of this row is nevėžis kėdainiai ."
] | task110-b8e843a6d2b44523a8ab267d6c797fc2 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { diff { hop { filter_eq { all_rows ; school ; leo } ; year joined } ; hop { filter_eq { all_rows ; school ; south adams } ; year joined } } ; -20 years } = true
Output:
| [
"select the rows whose school record fuzzily matches to leo . take the year joined record of this row . select the rows whose school record fuzzily matches to south adams . take the year joined record of this row . the second record is 20 years larger than the first record ."
] | task110-0f73261faade4bd4a4244c411bca61e3 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: greater { hop { filter_eq { all_rows ; date ; december 3 , 1967 } ; attendance } ; hop { filter_eq { all_rows ; date ; december 17 , 1967 } ; attendance } } = true
Output:
| [
"select the rows whose date record fuzzily matches to december 3 , 1967 . take the attendance record of this row . select the rows whose date record fuzzily matches to december 17 , 1967 . take the attendance record of this row . the first record is greater than the second record ."
] | task110-7b98fb480c934e579482fbcca3215ee3 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { avg { all_rows ; viewers ( in millions ) } ; 9.1 } = true
Output:
| [
"the average of the viewers in millions record of all rows is 9.1 ."
] | task110-154d1c063cd74c28af7f6394f7ae8851 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { eq { hop { filter_eq { all_rows ; trim ; xe ( 2009 ) } ; transmission } ; hop { filter_eq { all_rows ; trim ; xr ( 2009 ) } ; transmission } } ; and { eq { hop { filter_eq { all_rows ; trim ; xe ( 2009 ) } ; transmission } ; 6 - speed 6t40 } ; eq { hop { filter_eq { all_rows ; trim ; xr ( 2009 ) } ; transmission } ; 6 - speed 6t40 } } } = true
Output:
| [
"select the rows whose trim record fuzzily matches to xe 2009 . take the transmission record of this row . select the rows whose trim record fuzzily matches to xr 2009 . take the transmission record of this row . the first record fuzzily matches to the second record . the transmission record of the first row is 6 speed 6t40 . the transmission record of the second row is 6 speed 6t40 ."
] | task110-655ccb3840bc41b58537b975b48731bb |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: and { only { filter_eq { all_rows ; surface ; hard } } ; eq { hop { filter_eq { all_rows ; surface ; hard } ; tournament } ; westende } } = true
Output:
| [
"select the rows whose surface record fuzzily matches to hard . there is only one such row in the table . the tournament record of this unqiue row is westende ."
] | task110-6bc325f1018f41dabacca045ba271830 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_less { all_rows ; seating ; 100000 } = true
Output:
| [
"for the seating records of all rows , most of them are less than 100000 ."
] | task110-889e459c508f4b83aa3e6119275fa077 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; winning driver ; jackie stewart } } ; 2 } = true
Output:
| [
"select the rows whose winning driver record fuzzily matches to jackie stewart . the number of such rows is 2 ."
] | task110-311fa48ba2c24fc8b2a07dc6b4cfd101 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_eq { all_rows ; nominating festival ; prix uip valladolid } } ; 2 } = true
Output:
| [
"select the rows whose nominating festival record fuzzily matches to prix uip valladolid . the number of such rows is 2 ."
] | task110-3b68840cdef8499fb162274451bf4d2f |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: round_eq { sum { filter_eq { all_rows ; opposing teams ; new zealand } ; against } ; 18 } = true
Output:
| [
"select the rows whose opposing teams record fuzzily matches to new zealand . the sum of the against record of these rows is 18 ."
] | task110-d5fdd9eec30241ae815dacfd0dff285c |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: less { hop { filter_eq { all_rows ; player ; wayne walker } ; overall pick } ; hop { filter_eq { all_rows ; player ; john yarno } ; overall pick } } = true
Output:
| [
"select the rows whose player record fuzzily matches to wayne walker . take the overall pick record of this row . select the rows whose player record fuzzily matches to john yarno . take the overall pick record of this row . the first record is less than the second record ."
] | task110-4247ba2e5b784212a52ec4b8d5fbb3d5 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: eq { count { filter_less_eq { all_rows ; start ; 20 } } ; 5 } = true
Output:
| [
"select the rows whose start record is less than or equal to 20 . the number of such rows is 5 ."
] | task110-aeef75e8d05f4b029c5db625f91d8350 |
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command.
Here are the definitions of logical operators:
1. count: returns the number of rows in the view
2. only: returns whether there is exactly one row in the view
3. hop: returns the value under the header column of the row
4. and: returns the boolean operation result of two arguments
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column
6. nth max/nth min: returns the n-th max/n-th min of the values under the header column
7. argmax/argmin: returns the row with the max/min value in header column
8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column
9. eq/not eq: returns if the two arguments are equal
10. round eq: returns if the two arguments are roughly equal under certain tolerance
11. greater/less: returns if argument 1 is greater/less than argument 2
12. diff: returns the difference between two arguments
13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3
14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3
15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3
16. filter all: returns the view itself for the case of describing the whole table
17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3
18. all greater/less: returns whether all the values under the header column are greater/less than argument 3
19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3
20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3
21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3
22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3
Positive Example 1 -
Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true
Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Positive Example 2 -
Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true
Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Negative Example 1 -
Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true
Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Negative Example 2 -
Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true
Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Now complete the following example -
Input: most_eq { all_rows ; round ; 1 } = true
Output:
| [
"for the round records of all rows , most of them are equal to 1 ."
] | task110-50ed0cb336d14faf95867a0a612634c5 |