input
stringlengths
3.41k
3.87k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { filter_eq { all_rows ; coach ; brian noble } ; main article ; 4 } ; lost } ; 7 } = true Output:
[ "select the rows whose coach record fuzzily matches to brian noble . select the row whose main article record of these rows is 4th minimum . the lost record of this row is 7 ." ]
task110-906fc1006bcd4a3db48229882e46d266
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; no built } ; 84 } = true Output:
[ "the sum of the no built record of all rows is 84 ." ]
task110-5e7efc30dce64345a2537b02f982d9d3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; react ; 5 } ; name } ; christopher williams } = true Output:
[ "select the row whose react record of all rows is 5th minimum . the name record of this row is christopher williams ." ]
task110-8a2c9808418644878c22e82df285c7e8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; location attendance ; 1 } ; date } ; december 27 } = true Output:
[ "select the row whose location attendance record of all rows is 1st maximum . the date record of this row is december 27 ." ]
task110-1cd81832dd23432a8b9e14dbf6b731b0
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; time / retired ; engine } } ; eq { hop { filter_eq { all_rows ; time / retired ; engine } ; driver } ; jo bonnier } } = true Output:
[ "select the rows whose time retired record fuzzily matches to engine . there is only one such row in the table . the driver record of this unqiue row is jo bonnier ." ]
task110-6b90968ef280491bae421c1a4ac32344
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater_eq { all_rows ; points 1 ; 30 } = true Output:
[ "for the points 1 records of all rows , most of them are greater than or equal to 30 ." ]
task110-2707910916974fa9949905c23559eaad
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; torque ( nm ) / rpm } ; model / engine } ; 2.0 duratec he } = true Output:
[ "select the row whose torque nm rpm record of all rows is maximum . the model engine record of this row is 2.0 duratec he ." ]
task110-1259195233c14061ae43628df33109b5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; tries for } ; 475 } = true Output:
[ "the sum of the tries for record of all rows is 475 ." ]
task110-0ba099402f46471c9d938e482a7d4711
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; assists } ; 54 } = true Output:
[ "the sum of the assists record of all rows is 54 ." ]
task110-4bc22a4b06f74c27b12659734a54a3bc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; score } ; 1.67 } = true Output:
[ "the average of the score record of all rows is 1.67 ." ]
task110-c1d7582bf14a4db0b5454e2f5828a1d3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; cartridge ; .357 sig } ; max pressure } ; hop { filter_eq { all_rows ; cartridge ; .380 acp } ; max pressure } } = true Output:
[ "select the rows whose cartridge record fuzzily matches to .357 sig . take the max pressure record of this row . select the rows whose cartridge record fuzzily matches to .380 acp . take the max pressure record of this row . the first record is greater than the second record ." ]
task110-c2f6cfeaae8946249e4a3d06d1e407a4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; team ; rothmans honda } = true Output:
[ "for the team records of all rows , most of them fuzzily match to rothmans honda ." ]
task110-9de5d7d36e074edd9ee3a61f90de0672
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; position ; 1 } ; draws } ; hop { filter_eq { all_rows ; position ; 2 } ; draws } } = true Output:
[ "select the rows whose position record fuzzily matches to 1 . take the draws record of this row . select the rows whose position record fuzzily matches to 2 . take the draws record of this row . the first record is greater than the second record ." ]
task110-66aff45cd1394f0695da77e8579b29a3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; college ; miami ( fla ) } } ; 2 } = true Output:
[ "select the rows whose college record fuzzily matches to miami fla . the number of such rows is 2 ." ]
task110-160234c447194bff854b79442870f903
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; country ; united states } } ; 12 } = true Output:
[ "select the rows whose country record fuzzily matches to united states . the number of such rows is 12 ." ]
task110-6060a0082d9249ec94fdc7c755d2eb2f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; maidens } ; 2 } = true Output:
[ "the average of the maidens record of all rows is 2 ." ]
task110-334f0b1d89bd4ee8ad5f21bfaf1f772c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; points } ; 56 } = true Output:
[ "the sum of the points record of all rows is 56 ." ]
task110-2e40cbe314314183a8f5c6bda3fd4cd9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; date ; march } } ; eq { hop { filter_eq { all_rows ; date ; march } ; goal } ; 3 } } = true Output:
[ "select the rows whose date record fuzzily matches to march . there is only one such row in the table . the goal record of this unqiue row is 3 ." ]
task110-c0756de418364764bdedb5aece887976
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; car ; 2 } ; player } ; john ritcher } = true Output:
[ "select the row whose car record of all rows is 2nd maximum . the player record of this row is john ritcher ." ]
task110-525160d5b82a4099886f3fea0a80eac1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; of seats won ; 10 } } ; eq { hop { filter_less { all_rows ; of seats won ; 10 } ; election } ; 1993 } } = true Output:
[ "select the rows whose of seats won record is less than 10 . there is only one such row in the table . the election record of this unqiue row is 1993 ." ]
task110-fded0791ef53429988acae1a40de861c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { min { filter_eq { all_rows ; game site ; rfk stadium } ; date } ; september 13 , 1987 } = true Output:
[ "select the rows whose game site record fuzzily matches to rfk stadium . the minimum date record of these rows is september 13 , 1987 ." ]
task110-6b572278cd524e9b97021d0324cfd483
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; event ; ifc wc 13 - warriors challenge } } ; 2 } = true Output:
[ "select the rows whose event record fuzzily matches to ifc wc 13 warriors challenge . the number of such rows is 2 ." ]
task110-323a46f5f043442f82074584fe36baa7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; agg } ; team 1 } ; canon yaoundé } = true Output:
[ "select the row whose agg record of all rows is maximum . the team 1 record of this row is canon yaoundé ." ]
task110-5c9dd299c5d642d49cb9d740d806b248
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; overall pick ; 3 } ; player } ; dennis byrd } = true Output:
[ "select the row whose overall pick record of all rows is 3rd minimum . the player record of this row is dennis byrd ." ]
task110-390dcc0608f041b7b0b2e631f88587cc
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; score ; 68 } = true Output:
[ "for the score records of all rows , most of them are equal to 68 ." ]
task110-661b05489fd74b90bba8b095f15e3cd2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } } ; -1125 } = true Output:
[ "select the rows whose ship name record fuzzily matches to ashantian . take the tonnage grt record of this row . select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage grt record of this row . the second record is 1125 larger than the first record ." ]
task110-5ebdca4aa31f4b098899ee45f3790371
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { max { filter_eq { all_rows ; opponent ; san francisco 49ers } ; attendance } ; 65551 } ; eq { hop { argmax { filter_eq { all_rows ; opponent ; san francisco 49ers } ; attendance } ; date } ; november 11 , 1979 } } = true Output:
[ "select the rows whose opponent record fuzzily matches to san francisco 49ers . the maximum attendance record of these rows is 65551 . the date record of the row with superlative attendance record is november 11 , 1979 ." ]
task110-4be0f0ff015e4e62a4a6ccfa7cf3fe1e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; notes ; short film } = true Output:
[ "for the notes records of all rows , most of them fuzzily match to short film ." ]
task110-339cda0f39a84263872d64d241daea06
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { filter_eq { all_rows ; date ; june 11 } ; high assists } ; hop { filter_eq { all_rows ; date ; june 10 } ; high assists } } = true Output:
[ "select the rows whose date record fuzzily matches to june 11 . take the high assists record of this row . select the rows whose date record fuzzily matches to june 10 . take the high assists record of this row . the first record fuzzily matches to the second record ." ]
task110-7a5f7770cf95407d8833280bb6a3b317
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_less { all_rows ; place ; 5 } ; result ; 30 % } } ; 2 } = true Output:
[ "select the rows whose place record is less than 5 . among these rows , select the rows whose result record is greater than 30 . the number of such rows is 2 ." ]
task110-c2006d0d531a4c3dafc4bdae3fb6014b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; nation ; sweden } ; silver } ; hop { filter_eq { all_rows ; nation ; denmark } ; silver } } = true Output:
[ "select the rows whose nation record fuzzily matches to sweden . take the silver record of this row . select the rows whose nation record fuzzily matches to denmark . take the silver record of this row . the first record is greater than the second record ." ]
task110-36cc1574e27d4360af537556097ab469
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; livery ; fragonset black } } ; 3 } = true Output:
[ "select the rows whose livery record fuzzily matches to fragonset black . the number of such rows is 3 ." ]
task110-8d8e73cdc434449bbb55c398513b8139
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; season ; 2003 / 04 } ; goals } ; hop { filter_eq { all_rows ; season ; 2004 / 05 } ; goals } } = true Output:
[ "select the rows whose season record fuzzily matches to 2003 04 . take the goals record of this row . select the rows whose season record fuzzily matches to 2004 05 . take the goals record of this row . the first record is greater than the second record ." ]
task110-98b941aa95634f00a328a6e8a398b5a2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; date ; september 25 } ; attendance } ; hop { filter_eq { all_rows ; date ; september 18 } ; attendance } } = true Output:
[ "select the rows whose date record fuzzily matches to september 25 . take the attendance record of this row . select the rows whose date record fuzzily matches to september 18 . take the attendance record of this row . the first record is greater than the second record ." ]
task110-eaa85de7333f45899afa27e73d8bfc2a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { all_rows ; high points ; 20 } = true Output:
[ "for the high points records of all rows , most of them are greater than 20 ." ]
task110-a5a00202ad3b4fe39d345cf87ff00bf8
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; nationality ; canada } } ; 2 } = true Output:
[ "select the rows whose nationality record fuzzily matches to canada . the number of such rows is 2 ." ]
task110-e2236278d05a46af82eea76862e01512
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; season ; 5 } ; team } ; runcorn highfield } = true Output:
[ "select the row whose season record of all rows is 5th minimum . the team record of this row is runcorn highfield ." ]
task110-7c3ccc72a7734176a2094777d4a62367
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; high points ; eric gordon } = true Output:
[ "for the high points records of all rows , most of them fuzzily match to eric gordon ." ]
task110-9f789b5191e7451287fab732a5a2fbdb
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; total } ; 284.5 } = true Output:
[ "the average of the total record of all rows is 284.5 ." ]
task110-3f15e5e92cc144ea85f6002f3c21e025
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; location ; china } } ; 6 } = true Output:
[ "select the rows whose location record fuzzily matches to china . the number of such rows is 6 ." ]
task110-d0ac0f2127e34595a97da14098b576b1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_eq { all_rows ; country ; united states } ; score ; 67 } } ; 5 } = true Output:
[ "select the rows whose country record fuzzily matches to united states . among these rows , select the rows whose score record is greater than 67 . the number of such rows is 5 ." ]
task110-0aacccdc1467495eac8fe788d1314b44
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_less { all_rows ; founded ; 1800 } } ; eq { hop { filter_less { all_rows ; founded ; 1800 } ; institution } ; university of louisville } } = true Output:
[ "select the rows whose founded record is less than 1800 . there is only one such row in the table . the institution record of this unqiue row is university of louisville ." ]
task110-9cbe982ccc6d4cad9085f7ccf43f35c9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { hop { filter_eq { all_rows ; date ; 16 august 2000 } ; competition } ; hop { filter_eq { all_rows ; date ; 22 august 2007 } ; competition } } ; and { eq { hop { filter_eq { all_rows ; date ; 16 august 2000 } ; competition } ; friendly } ; eq { hop { filter_eq { all_rows ; date ; 22 august 2007 } ; competition } ; friendly } } } = true Output:
[ "select the rows whose date record fuzzily matches to 16 august 2000 . take the competition record of this row . select the rows whose date record fuzzily matches to 22 august 2007 . take the competition record of this row . the first record fuzzily matches to the second record . the competition record of the first row is friendly . the competition record of the second row is friendly ." ]
task110-53bd607c281743739d9cedfec13a30a5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; rider ; steve plater } ; speed } ; hop { filter_eq { all_rows ; rider ; denver robb } ; speed } } = true Output:
[ "select the rows whose rider record fuzzily matches to steve plater . take the speed record of this row . select the rows whose rider record fuzzily matches to denver robb . take the speed record of this row . the first record is greater than the second record ." ]
task110-d30e4cdd10024e40a86c690cac202b36
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; time } ; name } ; tyson gay } = true Output:
[ "select the row whose time record of all rows is minimum . the name record of this row is tyson gay ." ]
task110-ef4365b691b04f0fb633c8a2e5a3967a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; rnd ; 3 } ; date } ; 1 march } = true Output:
[ "select the row whose rnd record of all rows is 3rd minimum . the date record of this row is 1 march ." ]
task110-60a6db4181f74213a5316bbce8a1ca13
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: only { filter_eq { all_rows ; athlete ; tony geal } } = true Output:
[ "select the rows whose athlete record fuzzily matches to tony geal . there is only one such row in the table ." ]
task110-a9c1d9b65d7d42d1aa0cb848a46169b1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; date ; sunday , november 16 } ; attendance } ; hop { filter_eq { all_rows ; date ; monday , december 22 } ; attendance } } = true Output:
[ "select the rows whose date record fuzzily matches to sunday , november 16 . take the attendance record of this row . select the rows whose date record fuzzily matches to monday , december 22 . take the attendance record of this row . the first record is greater than the second record ." ]
task110-551f75d6aeb5430da6dea33668e8c23e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; crowd } ; 80962 } = true Output:
[ "the sum of the crowd record of all rows is 80962 ." ]
task110-b3ea63f386a74ecb92e55b956d84f508
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; drawn } ; 2.55 } = true Output:
[ "the average of the drawn record of all rows is 2.55 ." ]
task110-1ab4694bbb3d478cac9f701642c4b896
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { diff { hop { filter_eq { all_rows ; name ; benito lorenzi } ; rank } ; hop { filter_eq { all_rows ; name ; christian vieri } ; rank } } ; -2 } = true Output:
[ "select the rows whose name record fuzzily matches to benito lorenzi . take the rank record of this row . select the rows whose name record fuzzily matches to christian vieri . take the rank record of this row . the second record is 2 larger than the first record ." ]
task110-e834439eeea0423a93e734e4104ec23d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { eq { nth_min { all_rows ; year ; 2 } ; 1974 } ; eq { hop { nth_argmin { all_rows ; year ; 2 } ; partner } ; roscoe tanner } } = true Output:
[ "the 2nd minimum year record of all rows is 1974 . the partner record of the row with 2nd minimum year record is roscoe tanner ." ]
task110-3d8f9e9a43b14ccb90ecb55f2e983f9b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; country ; japan } } ; eq { hop { filter_eq { all_rows ; country ; japan } ; rank } ; 4 } } = true Output:
[ "select the rows whose country record fuzzily matches to japan . there is only one such row in the table . the rank record of this unqiue row is 4 ." ]
task110-fece932f51f045bc97a5d497351dd1ac
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { all_rows ; population ( 2011 - 01 - 01 ) ; 511840 } = true Output:
[ "for the population 2011 01 01 records of all rows , most of them are greater than 511840 ." ]
task110-ca386681dc62412ea907a52ba45406a4
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; points ; 0 } } ; eq { hop { filter_eq { all_rows ; points ; 0 } ; artist } ; photogenique } } = true Output:
[ "select the rows whose points record is equal to 0 . there is only one such row in the table . the artist record of this unqiue row is photogenique ." ]
task110-0a7e99ca81d046a88f7ba772cf9873f2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; notes ; not published in book form } } ; 9 } = true Output:
[ "select the rows whose notes record fuzzily matches to not published in book form . the number of such rows is 9 ." ]
task110-6d181e31aab84545be9852ce3c867a6a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; category ; best actress in a musical } = true Output:
[ "for the category records of all rows , most of them fuzzily match to best actress in a musical ." ]
task110-5254406577ad46a1b6b450638739efe2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; imports } ; country } ; china } = true Output:
[ "select the row whose imports record of all rows is maximum . the country record of this row is china ." ]
task110-6813f6e91beb412482640ffdd8ac349e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; competition ; european championships } = true Output:
[ "for the competition records of all rows , most of them fuzzily match to european championships ." ]
task110-2a3fd8b2dbcf418686292f18235e4a9c
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; nominee ; raymond massey } ; year } ; hop { filter_eq { all_rows ; nominee ; anthony hopkins } ; year } } = true Output:
[ "select the rows whose nominee record fuzzily matches to raymond massey . take the year record of this row . select the rows whose nominee record fuzzily matches to anthony hopkins . take the year record of this row . the first record is less than the second record ." ]
task110-3cea75e5230e47ccbf8c3f6bffa4e6ec
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; date ; 11 } ; field } ; cawley memorial stadium } = true Output:
[ "select the row whose date record of all rows is 11th minimum . the field record of this row is cawley memorial stadium ." ]
task110-f04a02e81db8471bb83ed28052df727b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; 1st round ; 2 - 0 } } ; 3 } = true Output:
[ "select the rows whose 1st round record fuzzily matches to 2 0 . the number of such rows is 3 ." ]
task110-193e6727b4014c199484170c34ab7824
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_eq { all_rows ; result ; loss } = true Output:
[ "for the result records of all rows , most of them fuzzily match to loss ." ]
task110-41ce4ae216b648c68d27a91b907a6c54
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; points ; 1 } ; club } ; pentyrch rfc } = true Output:
[ "select the row whose points record of all rows is 1st maximum . the club record of this row is pentyrch rfc ." ]
task110-937db46580ea4a2bb1e10ccb0b126047
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_greater { filter_greater { all_rows ; elevation ( m ) ; 3000 } ; prominence ( m ) ; 2400 } = true Output:
[ "select the rows whose elevation m record is greater than 3000 . for the prominence m records of these rows , all of them are greater than 2400 ." ]
task110-9949b91b122b4de3b2e773a23cf8691b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { less { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } } ; and { eq { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; january 8 , 2003 } ; eq { hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } ; may 19 , 2008 } } } = true Output:
[ "select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row . select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row . the first record is less than the second record . the premiered record of the first row is january 8 , 2003 . the premiered record of the second row is may 19 , 2008 ." ]
task110-4ac3fedcf44a42c2bce1dff7ac428cf2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; player ; fedor dmitriev } ; year born } ; hop { filter_eq { all_rows ; player ; anton ponkrashov } ; year born } } = true Output:
[ "select the rows whose player record fuzzily matches to fedor dmitriev . take the year born record of this row . select the rows whose player record fuzzily matches to anton ponkrashov . take the year born record of this row . the first record is less than the second record ." ]
task110-6bdfc2ef0ddf4e19aa4e8758a8b69b80
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; crowd ; 15000 } } ; 3 } = true Output:
[ "select the rows whose crowd record is equal to 15000 . the number of such rows is 3 ." ]
task110-f63dbc398905460e967a0485023c9633
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; school ; emmanuel christian school } ; size } ; hop { filter_eq { all_rows ; school ; wabash high school } ; size } } = true Output:
[ "select the rows whose school record fuzzily matches to emmanuel christian school . take the size record of this row . select the rows whose school record fuzzily matches to wabash high school . take the size record of this row . the first record is less than the second record ." ]
task110-4b4897eb9cd942a1abe13ad303b68e7e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: most_greater { filter_eq { all_rows ; date ; october } ; attendance ; 50000 } = true Output:
[ "select the rows whose date record fuzzily matches to october . for the attendance records of these rows , most of them are greater than 50000 ." ]
task110-ff79a75bfa8b4a25bc93ecc091bf230b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { filter_eq { all_rows ; date ; december } ; game site ; rich stadium } } ; 2 } = true Output:
[ "select the rows whose date record fuzzily matches to december . among these rows , select the rows whose game site record fuzzily matches to rich stadium . the number of such rows is 2 ." ]
task110-52329e960468430b9b1ca8e3f9b206a3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; runs } ; batsmen } ; graham gooch ken mcewan } = true Output:
[ "select the row whose runs record of all rows is maximum . the batsmen record of this row is graham gooch ken mcewan ." ]
task110-f77a5bf5a19441c2bd7f2b1641e600e7
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; 1st ship delivery date ; 2 } ; yard name } ; pendleton shipyards corp } = true Output:
[ "select the row whose 1st ship delivery date record of all rows is 2nd maximum . the yard name record of this row is pendleton shipyards corp ." ]
task110-20ff16d1d88e4b68be00ab392f80ff93
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; air date ; 2006 } = true Output:
[ "for the air date records of all rows , all of them fuzzily match to 2006 ." ]
task110-a213697644974cf98a3c60fced4ea968
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; ceased to be duchess ; husband 's execution } } ; eq { hop { filter_eq { all_rows ; ceased to be duchess ; husband 's execution } ; name } ; louise marie adélaïde de bourbon } } = true Output:
[ "select the rows whose ceased to be duchess record fuzzily matches to husband s execution . there is only one such row in the table . the name record of this unqiue row is louise marie adélaïde de bourbon ." ]
task110-07740c61ba90425bb9eca9d4f02d0c84
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; nation ; romania } ; bronze } ; hop { filter_eq { all_rows ; nation ; soviet union } ; bronze } } = true Output:
[ "select the rows whose nation record fuzzily matches to romania . take the bronze record of this row . select the rows whose nation record fuzzily matches to soviet union . take the bronze record of this row . the first record is greater than the second record ." ]
task110-83d425a9d18a41ce807b1a30c926029f
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmin { all_rows ; pick } ; nhl team } ; hartford whalers } = true Output:
[ "select the row whose pick record of all rows is minimum . the nhl team record of this row is hartford whalers ." ]
task110-1273bf9879a649d89e03a024279ca3b3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; matches ; 2 } ; name } ; glenn mcgrath } = true Output:
[ "select the row whose matches record of all rows is 2nd maximum . the name record of this row is glenn mcgrath ." ]
task110-cd012be285494aaabbb9e9b22b2c9332
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; state / territory ; queensland } } ; 6 } = true Output:
[ "select the rows whose state territory record fuzzily matches to queensland . the number of such rows is 6 ." ]
task110-4badd89d39d94a04bf19e1eb6a10a5e2
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { all_rows ; crowd } ; 129,800 } = true Output:
[ "the sum of the crowd record of all rows is 129,800 ." ]
task110-428e7764109b46ff92b899091d2932f1
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; first elected ; 1 } ; incumbent } ; dale alford } = true Output:
[ "select the row whose first elected record of all rows is 1st maximum . the incumbent record of this row is dale alford ." ]
task110-8c5ebd6dac714eff955bb9ca4453fd36
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; attendance } ; 43174 } = true Output:
[ "the average of the attendance record of all rows is 43174 ." ]
task110-ffddd17ce8ef47ecbeb265a6c593785b
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; pick } ; 94 } = true Output:
[ "the average of the pick record of all rows is 94 ." ]
task110-c114dcfc279c4c8d9a095526e10b5463
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; laps } ; 19 } = true Output:
[ "the average of the laps record of all rows is 19 ." ]
task110-855a14f6ffbb4d0eae929b5851b6eeab
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: less { hop { filter_eq { all_rows ; player ; curtis hunt } ; rd } ; hop { filter_eq { all_rows ; player ; carl valimont } ; rd } } = true Output:
[ "select the rows whose player record fuzzily matches to curtis hunt . take the rd record of this row . select the rows whose player record fuzzily matches to carl valimont . take the rd record of this row . the first record is less than the second record ." ]
task110-41942c7bdcc74fac8091496a2804ad18
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: greater { hop { filter_eq { all_rows ; opponent ; dallas cowboys } ; attendance } ; hop { filter_eq { all_rows ; opponent ; philadelphia eagles } ; attendance } } = true Output:
[ "select the rows whose opponent record fuzzily matches to dallas cowboys . take the attendance record of this row . select the rows whose opponent record fuzzily matches to philadelphia eagles . take the attendance record of this row . the first record is greater than the second record ." ]
task110-aa4fc26be5f04c25933b68fa43a63c6a
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; location ; brazil } } ; eq { hop { filter_eq { all_rows ; location ; brazil } ; race name } ; tour de santa catarina } } = true Output:
[ "select the rows whose location record fuzzily matches to brazil . there is only one such row in the table . the race name record of this unqiue row is tour de santa catarina ." ]
task110-8a52ce53a55f47e49f72738df8e399c5
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; entrant ; tyrrell racing organisation } } ; eq { hop { filter_eq { all_rows ; entrant ; tyrrell racing organisation } ; year } ; 1966 } } = true Output:
[ "select the rows whose entrant record fuzzily matches to tyrrell racing organisation . there is only one such row in the table . the year record of this unqiue row is 1966 ." ]
task110-4e9f35a407224dd39e0598db632f960d
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmin { all_rows ; year ; 4 } ; song title } ; hrudayam ekkadunnadi } = true Output:
[ "select the row whose year record of all rows is 4th minimum . the song title record of this row is hrudayam ekkadunnadi ." ]
task110-9f96555e1fe3411c805d087e98815e2e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { argmax { all_rows ; passengers } ; city } ; atlanta , ga } = true Output:
[ "select the row whose passengers record of all rows is maximum . the city record of this row is atlanta , ga ." ]
task110-91b05f99a55947109fe4dc0a20a46e00
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_eq { all_rows ; 1st party ; liberal } } ; 4 } = true Output:
[ "select the rows whose 1st party record fuzzily matches to liberal . the number of such rows is 4 ." ]
task110-4e09e423f4da450b96a7f84b4605abfd
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { avg { all_rows ; away team score } ; 11.36 } = true Output:
[ "the average of the away team score record of all rows is 11.36 ." ]
task110-bd6cbcfa6c7c4f55aca9c8016fbc4de9
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; venue } ; lake oval } = true Output:
[ "select the row whose crowd record of all rows is 2nd maximum . the venue record of this row is lake oval ." ]
task110-212a518ec9aa49ccbefc6ea89d6d02ed
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: all_eq { all_rows ; away captain ; joe darling } = true Output:
[ "for the away captain records of all rows , all of them fuzzily match to joe darling ." ]
task110-601ca3b067e34973aaa2fa0ba4b7d498
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: and { only { filter_eq { all_rows ; college ; san diego state } } ; eq { hop { filter_eq { all_rows ; college ; san diego state } ; name } ; freddie keiaho } } = true Output:
[ "select the rows whose college record fuzzily matches to san diego state . there is only one such row in the table . the name record of this unqiue row is freddie keiaho ." ]
task110-559e6aa0de174bed936011236547a25e
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { hop { nth_argmax { all_rows ; negotiable debt at mid - 2005 ( us dollar bn equivalent ) ; 2 } ; currency } ; us dollar } = true Output:
[ "select the row whose negotiable debt at mid 2005 us dollar bn equivalent record of all rows is 2nd maximum . the currency record of this row is us dollar ." ]
task110-bed4f42068c3408da3a856067e403aa3
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: round_eq { sum { filter_eq { all_rows ; result ; final } ; jury votes } ; 29 } = true Output:
[ "select the rows whose result record fuzzily matches to final . the sum of the jury votes record of these rows is 29 ." ]
task110-77082477168b473794a160a610e1bb29
Definition: In this task, you are given commands (in terms of logical operations) to select relevant rows from the given table. Your job is to generate a natural language interpretation of the given command. Here are the definitions of logical operators: 1. count: returns the number of rows in the view 2. only: returns whether there is exactly one row in the view 3. hop: returns the value under the header column of the row 4. and: returns the boolean operation result of two arguments 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column 6. nth max/nth min: returns the n-th max/n-th min of the values under the header column 7. argmax/argmin: returns the row with the max/min value in header column 8. nth argmax/nth argmin: returns the row with the n-th max/min value in header column 9. eq/not eq: returns if the two arguments are equal 10. round eq: returns if the two arguments are roughly equal under certain tolerance 11. greater/less: returns if argument 1 is greater/less than argument 2 12. diff: returns the difference between two arguments 13. filter eq/not eq: returns the subview whose values under the header column is equal/not equal to argument 3 14. filter greater/less: returns the subview whose values under the header column is greater/less than argument 3 15. filter greater eq /less eq: returns the subview whose values under the header column is greater/less or equal than argument 3 16. filter all: returns the view itself for the case of describing the whole table 17. all eq/not eq: returns whether all the values under the header column are equal/not equal to argument 3 18. all greater/less: returns whether all the values under the header column are greater/less than argument 3 19. all greater eq/less eq: returns whether all the values under the header column are greater/less or equal to argument 3 20. most eq/not eq: returns whether most of the values under the header column are equal/not equal to argument 3 21. most greater/less: returns whether most of the values under the header column are greater/less than argument 3 22. most greater eq/less eq: returns whether most of the values under the header column are greater/less or equal to argument 3 Positive Example 1 - Input: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } = true Output: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Positive Example 2 - Input: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } = true Output: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Negative Example 1 - Input: round_eq { avg { filter_eq { all_rows ; country ; united states } ; to par } ; -7.6 } = true Output: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Negative Example 2 - Input: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } = true Output: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Now complete the following example - Input: eq { count { filter_greater { filter_greater { all_rows ; crowd ; 20000 } ; home team score ; 10 } } ; 2 } = true Output:
[ "select the rows whose crowd record is greater than 20000 . among these rows , select the rows whose home team score record is greater than 10 . the number of such rows is 2 ." ]
task110-e31a8671ceb94850be883b8ac051431b