|
import ast |
|
import json |
|
import os |
|
import re |
|
import traceback |
|
from typing import List, Optional, Dict |
|
|
|
|
|
def normalize_trait(trait): |
|
trait = '_'.join(trait.split()) |
|
normalized_trait = ''.join(trait.split("'")) |
|
return normalized_trait |
|
|
|
def normalize_gene_symbols(gene_symbols: List[str]) -> List[Optional[str]]: |
|
"""Use gene synonym information extracted from the NCBI Gene database to normalize gene symbols in a list, and |
|
return a list of normalized symbols. Unmatched symbols are converted to None. |
|
""" |
|
with open("./metadata/gene_synonym.json", "r") as f: |
|
synonym_dict = json.load(f) |
|
return [synonym_dict.get(g) for g in gene_symbols] |
|
|
|
def get_question_pairs(file_path): |
|
""" |
|
Reads a JSON metadata file and returns a list of trait-condition pairs as questions. |
|
""" |
|
with open(file_path, 'r') as f: |
|
task_info = json.load(f) |
|
all_traits = sorted(list(task_info.keys())) |
|
all_pairs = [] |
|
for trait in all_traits: |
|
all_pairs.append((trait, None)) |
|
for condition in task_info[trait]['conditions']: |
|
all_pairs.append((trait, condition)) |
|
return all_pairs |
|
|
|
def check_slow_inference(model: str) -> bool: |
|
""" |
|
Checks if the model is a slow inference model by parsing the model name. |
|
""" |
|
|
|
substrings = re.findall(r'[a-z0-9]+', model.lower()) |
|
|
|
|
|
has_slow_marker = any(s in ['o1', 'o3', 'r1'] for s in substrings) |
|
has_mini = 'mini' in substrings |
|
|
|
return has_slow_marker and not has_mini |
|
|
|
def check_recent_openai_model(model: str) -> bool: |
|
""" |
|
Checks if the model is a recent OpenAI model (with updated system prompt role) by parsing the model name. |
|
""" |
|
substrings = re.findall(r'[a-z0-9]+', model.lower()) |
|
has_recent_marker = any(s in ['o1', 'o3'] for s in substrings) |
|
|
|
return has_recent_marker |
|
|
|
def extract_function_code(file_path, function_names): |
|
""" |
|
Extracts the code of specific functions from a Python file. |
|
|
|
Args: |
|
file_path (str): Path to the Python file. |
|
function_names (list): List of function names to extract. |
|
|
|
Returns: |
|
dict: A dictionary where keys are function names, and values are their code as strings. |
|
""" |
|
with open(file_path, 'r') as file: |
|
source_code = file.read() |
|
tree = ast.parse(source_code) |
|
extracted_codes = [] |
|
|
|
for node in ast.walk(tree): |
|
if isinstance(node, ast.FunctionDef) and node.name in function_names: |
|
function_code = ast.get_source_segment(source_code, node) |
|
extracted_codes.append(function_code) |
|
|
|
return '\n\n'.join(extracted_codes) |
|
|
|
|
|
def load_last_cohort_info(version_dir): |
|
try: |
|
with open(os.path.join(version_dir, "last_cohort_info.json"), "r") as f: |
|
return json.load(f) |
|
except FileNotFoundError: |
|
return None |
|
|
|
|
|
def save_last_cohort_info(version_dir, cohort_info): |
|
with open(os.path.join(version_dir, "last_cohort_info.json"), "w") as f: |
|
json.dump(cohort_info, f) |
|
|
|
|
|
def delete_corrupted_files(output_dir, cohort): |
|
out_gene_dir = os.path.join(output_dir, 'gene_data') |
|
out_clinical_dir = os.path.join(output_dir, 'clinical_data') |
|
out_code_dir = os.path.join(output_dir, 'code') |
|
for this_dir in [output_dir, out_gene_dir, out_clinical_dir, out_code_dir]: |
|
ext = "py" if this_dir == out_code_dir else "csv" |
|
file_path = os.path.join(this_dir, f"{cohort}.{ext}") |
|
if os.path.exists(file_path): |
|
os.remove(file_path) |
|
|
|
|
|
def load_completed_tasks(version_dir): |
|
""" |
|
Load the set of completed tasks from a JSON file. |
|
If the file doesn't exist, return an empty set. |
|
""" |
|
file_path = os.path.join(version_dir, "completed_tasks.json") |
|
if not os.path.exists(file_path): |
|
return set() |
|
try: |
|
with open(file_path, "r") as file: |
|
return {tuple(task) for task in json.load(file)} |
|
except json.JSONDecodeError: |
|
traceback.print_exc() |
|
return set() |
|
|
|
|
|
def add_completed_task(task, version_dir): |
|
""" |
|
Add a single completed task to the JSON file. |
|
""" |
|
completed_tasks = load_completed_tasks(version_dir) |
|
completed_tasks.add(task) |
|
|
|
os.makedirs(version_dir, exist_ok=True) |
|
file_path = os.path.join(version_dir, "completed_tasks.json") |
|
with open(file_path, "w") as file: |
|
json.dump([list(task) for task in completed_tasks], file) |
|
|
|
|
|
def gene_precision(pred: List[str], ref: List[str]) -> float: |
|
""" |
|
Calculate precision of predicted genes against reference set. |
|
""" |
|
if len(pred): |
|
precision = sum([p in ref for p in pred]) / len(pred) |
|
else: |
|
if len(ref): |
|
precision = 0 |
|
else: |
|
precision = 1 |
|
return precision |
|
|
|
|
|
def gene_recall(pred: List[str], ref: List[str]) -> float: |
|
""" |
|
Calculate recall of predicted genes against reference set. |
|
""" |
|
if len(ref): |
|
recall = sum([p in pred for p in ref]) / len(ref) |
|
else: |
|
if len(pred): |
|
recall = 0 |
|
else: |
|
recall = 1 |
|
return recall |
|
|
|
|
|
def gene_f1(pred: List[str], ref: List[str]) -> float: |
|
""" |
|
Calculate F1 score between predicted and reference gene sets. |
|
""" |
|
prec = gene_precision(pred, ref) |
|
rec = gene_recall(pred, ref) |
|
if prec + rec == 0: |
|
return 0 |
|
f1 = 2 * (prec * rec) / (prec + rec) |
|
return f1 |
|
|
|
|
|
def evaluate_gene_selection(pred: List[str], ref: List[str]) -> Dict[str, float]: |
|
""" |
|
Evaluate the performance of predicted gene selection against a reference set. |
|
|
|
Args: |
|
pred (List[str]): List of predicted gene symbols. |
|
ref (List[str]): List of reference (ground truth) gene symbols. |
|
|
|
Returns: |
|
Dict[str, float]: Dictionary containing precision, recall, F1 score, and Jaccard similarity. |
|
""" |
|
return { |
|
'precision': gene_precision(pred, ref) * 100, |
|
'recall': gene_recall(pred, ref) * 100, |
|
'f1': gene_f1(pred, ref) * 100, |
|
} |