H2Retrieval / new /main.py
Limour's picture
Upload main.py
6ca116a verified
raw
history blame
5.77 kB
import pandas as pd
import os
import gzip
import random
import re
from tqdm import tqdm
from collections import defaultdict
def get_all_files_in_directory(directory, ext=''):
all_files = []
for root, dirs, files in os.walk(directory):
root = root[len(directory):]
if root.startswith('\\') or root.startswith('/'):
root = root[1:]
for file in files:
if file.endswith(ext):
file_path = os.path.join(root, file)
all_files.append(file_path)
return all_files
reg_q = re.compile(r'''['"“”‘’「」『』]''')
reg_e = re.compile(r'''[?!。?!]''')
def readOne(filePath):
with gzip.open(filePath, 'rt', encoding='utf-8') if filePath.endswith('.gz') else open(filePath,
encoding='utf-8') as f:
retn = []
cache = ''
for line in f:
line = reg_q.sub('', line) # 删除引号
if len(cache) + len(line) < 384:
cache += line
continue
if not bool(reg_e.findall(line)):
cache += line
retn.append(cache.strip())
cache = ''
continue
i = 1
s = 0
while i <= len(line):
if len(cache) + (i - s) < 384: # 每 384 切一行
i = (384 - len(cache)) + s
if i > len(line):
break
cache += line[s:i]
s = i
if line[i-1] in ('?', '!', '。', '?', '!'):
cache += line[s:i]
s = i
retn.append(cache.strip())
cache = ''
i += 1
if len(line) > s:
cache += line[s:]
cache = cache.strip()
if cache:
retn.append(cache)
return retn
def load_dataset(path):
df = pd.read_parquet(path, engine="pyarrow")
return df
def load_all_dataset(path, convert=False):
qrels_pd = load_dataset(path + r'\qrels.parquet')
corpus = load_dataset(path + r'\corpus.parquet')
queries = load_dataset(path + r'\queries.parquet')
if convert:
qrels = defaultdict(dict)
for i, e in tqdm(qrels_pd.iterrows(), desc="load_all_dataset: Converting"):
qrels[e['qid']][e['cid']] = e['score']
else:
qrels = qrels_pd
return corpus, queries, qrels
def save_dataset(path, df):
return df.to_parquet(
path,
engine="pyarrow",
compression="gzip",
index=False
)
def save_all_dataset(path, corpus, queries, qrels):
save_dataset(path + r"\corpus.parquet", corpus)
save_dataset(path + r"\queries.parquet", queries)
save_dataset(path + r"\qrels.parquet", qrels)
def create_dataset(corpus, queries, qrels):
corpus_pd = pd.DataFrame(corpus, columns=['cid', 'text'])
queries_pd = pd.DataFrame(queries, columns=['qid', 'text'])
qrels_pd = pd.DataFrame(qrels, columns=['qid', 'cid', 'score'])
corpus_pd['cid'] = corpus_pd['cid'].astype(str)
queries_pd['qid'] = queries_pd['qid'].astype(str)
qrels_pd['qid'] = qrels_pd['qid'].astype(str)
qrels_pd['cid'] = qrels_pd['cid'].astype(str)
qrels_pd['score'] = qrels_pd['score'].astype(int)
return corpus_pd, queries_pd, qrels_pd
def sample_from_dataset(corpus, queries, qrels, k=5000):
sample_k = sorted(random.sample(queries['qid'].to_list(), k=k))
queries_pd = queries[queries['qid'].isin(sample_k)]
qrels_pd = qrels[qrels['qid'].isin(sample_k)]
corpus_pd = corpus[corpus['cid'].isin(qrels_pd['cid'])]
return corpus_pd, queries_pd, qrels_pd
path = r'D:\datasets\h-corpus\h-ss-corpus'
rawcorpus = get_all_files_in_directory(path, '.txt.gz')
corpus = []
queries = []
qrels = []
for sub_path in tqdm(rawcorpus, desc="Reading all data..."):
tmp = readOne(os.path.join(path, sub_path))
if len(tmp) < 5:
continue
阈值 = max(len(tmp) // 4, 4) # 大约每个文件抽 4*5 = 20 条语料
# print(阈值)
old_rand = None
for i in range(len(tmp)):
rand = random.randint(0, 阈值)
if rand == 0 and (old_rand is None or old_rand != 0):
queries.append((sub_path, i/(len(tmp)-1), tmp[i]))
elif rand <= 4 or old_rand == 0:
corpus.append((sub_path, i/(len(tmp)-1), tmp[i]))
rand = 1
else:
pass
old_rand = rand
tmp = random.sample(range(len(queries)), k=5000)
tmp.sort()
queries = [queries[i] for i in tmp]
sidx = 0
for qid, q in tqdm(enumerate(queries), desc="计算 qrels 中..."):
mt = False
for cid in range(sidx, len(corpus)):
c = corpus[cid]
if q[0] == c[0]:
mt = True
ss = 1 - abs(q[1] - c[1])
qrels.append((qid, cid, 100 * ss))
else:
if mt:
if qid + 1 < len(queries) and q[0] != queries[qid+1][0]:
sidx = cid + 1
break
corpus_ = [(cid, c[2]) for cid, c in enumerate(corpus)]
queries_ = [(qid, q[2]) for qid, q in enumerate(queries)]
path = r'D:\datasets\H2Retrieval\new_fix'
corpus_pd, queries_pd, qrels_pd = create_dataset(corpus_, queries_, qrels)
tmp = corpus_pd[corpus_pd['cid'].isin(qrels_pd['cid'])]
corpus_pd = tmp
save_all_dataset(path + r'\data', corpus_pd, queries_pd, qrels_pd)
save_all_dataset(path + r'\data_sample1k', *sample_from_dataset(corpus_pd, queries_pd, qrels_pd, k=1000))
# save_all_dataset(path + r'\data_sample1k', *sample_from_dataset(*load_all_dataset(r'D:\datasets\H2Retrieval\new\data_sample5k'), k=1000))
# tmp = load_all_dataset(r'D:\datasets\H2Retrieval\new\data')