|
|
|
from sentence_transformers import SentenceTransformer |
|
import pandas as pd |
|
from collections import defaultdict |
|
import torch |
|
from tqdm import tqdm |
|
from new.test_pytrec_eval import ndcg_in_all |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
else: |
|
device = torch.device('cpu') |
|
|
|
|
|
def load_dataset(path): |
|
df = pd.read_parquet(path, engine="pyarrow") |
|
return df |
|
|
|
|
|
def load_all_dataset(path, convert=False): |
|
qrels_pd = load_dataset(path + r'\qrels.parquet') |
|
corpus = load_dataset(path + r'\corpus.parquet') |
|
queries = load_dataset(path + r'\queries.parquet') |
|
if convert: |
|
qrels = defaultdict(dict) |
|
for i, e in tqdm(qrels_pd.iterrows(), desc="load_all_dataset: Converting"): |
|
qrels[e['qid']][e['cid']] = e['score'] |
|
else: |
|
qrels = qrels_pd |
|
return corpus, queries, qrels |
|
|
|
|
|
corpus, queries, qrels = load_all_dataset(r'D:\datasets\H2Retrieval\new\data_sample1k') |
|
|
|
|
|
randEmbed = True |
|
if randEmbed: |
|
corpusEmbeds = torch.rand((1, len(corpus))) |
|
queriesEmbeds = torch.rand((len(queries), 1)) |
|
else: |
|
with torch.no_grad(): |
|
path = r'D:\models\bce' |
|
model = SentenceTransformer(path, device='cuda:0') |
|
|
|
corpusEmbeds = model.encode(corpus['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=32) |
|
queriesEmbeds = model.encode(queries['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=32) |
|
|
|
queriesEmbeds = torch.tensor(queriesEmbeds, device=device) |
|
corpusEmbeds = corpusEmbeds.T |
|
corpusEmbeds = torch.tensor(corpusEmbeds, device=device) |
|
|
|
|
|
@torch.no_grad() |
|
def getTopK(corpusEmbeds, qEmbeds, qid, k=200): |
|
scores = qEmbeds @ corpusEmbeds |
|
top_k_indices = torch.argsort(scores, descending=True)[:k] |
|
scores = scores.cpu() |
|
top_k_indices = top_k_indices.cpu() |
|
retn = [] |
|
for x in top_k_indices: |
|
x = int(x) |
|
retn.append((qid, corpus['cid'][x], float(scores[x]))) |
|
return retn |
|
|
|
def print_ndcgs(k): |
|
with torch.no_grad(): |
|
results = [] |
|
for i in tqdm(range(len(queries)), desc="Converting"): |
|
results.extend(getTopK(corpusEmbeds, queriesEmbeds[i], queries['qid'][i], k=k)) |
|
|
|
results = pd.DataFrame(results, columns=['qid', 'cid', 'score']) |
|
results['score'] = results['score'].astype(float) |
|
tmp = ndcg_in_all(qrels, results) |
|
ndcgs = torch.tensor([x for x in tmp.values()], device=device) |
|
|
|
mean = torch.mean(ndcgs) |
|
std = torch.std(ndcgs) |
|
|
|
print(f'NDCG@{k}: {mean*100:.2f}±{std*100:.2f}') |
|
|
|
print_ndcgs(5) |
|
print_ndcgs(10) |
|
print_ndcgs(15) |
|
print_ndcgs(20) |
|
print_ndcgs(30) |
|
|
|
|
|
|
|
|
|
|
|
|