|
|
|
import pytrec_eval |
|
|
|
from sentence_transformers import SentenceTransformer |
|
import pandas as pd |
|
from collections import defaultdict |
|
import torch |
|
from tqdm import tqdm |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
else: |
|
device = torch.device('cpu') |
|
|
|
def load_dataset(path): |
|
df = pd.read_parquet(path, engine="pyarrow") |
|
return df |
|
|
|
path = r'D:\datasets\H2Retrieval\data_sample5k' |
|
qrels_pd = load_dataset(path + r'\qrels.parquet.gz') |
|
corpus = load_dataset(path + r'\corpus.parquet.gz') |
|
queries = load_dataset(path + r'\queries.parquet.gz') |
|
|
|
qrels = defaultdict(dict) |
|
for i, e in qrels_pd.iterrows(): |
|
qrels[e['qid']][e['cid']] = e['score'] |
|
|
|
model = SentenceTransformer(r'D:\models\tao', device='cuda:0') |
|
|
|
corpusEmbeds = model.encode(corpus['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=8) |
|
queriesEmbeds = model.encode(queries['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=8) |
|
|
|
queriesEmbeds = torch.tensor(queriesEmbeds, device=device) |
|
corpusEmbeds = corpusEmbeds.T |
|
corpusEmbeds = torch.tensor(corpusEmbeds, device=device) |
|
|
|
def getTopK(corpusEmbeds, qEmbeds, k=10): |
|
scores = qEmbeds @ corpusEmbeds |
|
top_k_indices = torch.argsort(scores, descending=True)[:k] |
|
scores = scores.cpu() |
|
top_k_indices = top_k_indices.cpu() |
|
retn = {} |
|
for x in top_k_indices: |
|
x = int(x) |
|
retn[corpus['cid'][x]] = float(scores[x]) |
|
return retn |
|
|
|
results = {} |
|
for i in tqdm(range(len(queries)), desc="Converting"): |
|
results[queries['qid'][i]] = getTopK(corpusEmbeds, queriesEmbeds[i]) |
|
|
|
evaluator = pytrec_eval.RelevanceEvaluator(qrels, {'ndcg'}) |
|
tmp = evaluator.evaluate(results) |
|
ndcg = 0 |
|
for x in tmp.values(): |
|
ndcg += x['ndcg'] |
|
ndcg /= len(queries) |
|
|
|
print(f'ndcg_10: {ndcg*100:.2f}%') |