pearl_benchmark / eval.py
Lihuchen's picture
Update eval.py
c2dc5e2 verified
raw
history blame contribute delete
No virus
18.4 kB
import argparse
import timeit
import numpy as np
import random
import json
import torch
import math
import time
import faiss
import pandas as pd
import random
from torch import nn, optim, rand, sum as tsum, reshape, save
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from autofj.datasets import load_data
from datasets import load_dataset
from scipy.stats.stats import pearsonr
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning import seed_everything, LightningModule, Trainer
from torch.utils.data import DataLoader, Dataset
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import normalized_mutual_info_score
def eval_bird(model, dataset, device, batch_size=4):
text_list = []
scores = []
for row in dataset:
p1, p2, score = row["term1"], row["term2"], row["relatedness score"]
text_list.append((p1, p2))
scores.append(score)
cos_sim = nn.CosineSimilarity(dim=1)
cos_sim_list = []
for i in range(0, len(text_list), batch_size):
batch_text_list = text_list[i:i+batch_size]
temp1, temp2 = zip(*batch_text_list)
temp1, temp2 = list(temp1), list(temp2)
input1 = model(temp1, device)
input2 = model(temp2, device)
sim = cos_sim(input1, input2)
sim = (sim + 1) / 2.0
cos_sim_list.extend(sim.tolist())
cor, _ = pearsonr(cos_sim_list, scores)
#print('spearman score of BIRD is {a}'.format(a=cor))
return cor
def eval_turney(model, dataset, device, batch_size=4):
data_list = list()
for row in dataset:
data_list.append(list((row["query"], row["label"], row["candidate_1"], row["candidate_2"], row["candidate_3"], row["candidate_4"])))
num_correct = 0
for components in data_list:
emb = encode_in_batch(model, batch_size=batch_size, text_list=components, device=device)
emb = torch.stack(emb).cpu().detach().numpy()
query = emb[0, :]
matrix = emb[1:, :]
scores = np.dot(matrix, query)
chosen = np.argmax(scores)
if chosen == 0:
num_correct += 1
accuracy = num_correct / len(data_list)
return accuracy
def eval_ppdb(model, dataset, device, batch_size=4):
phrase1_list = [item["phrase_1"] for item in dataset]
phrase2_list = [item["phrase_2"] for item in dataset]
label = [item["label"] for item in dataset]
#print('loaded! size = {a}'.format(a=len(phrase1_list)))
phrase1_emb_tensor_list = encode_in_batch(model, batch_size, phrase1_list, device)
phrase2_emb_tensor_list = encode_in_batch(model, batch_size, phrase2_list, device)
label_list = [1 if e == 'pos' else 0 for e in label]
combined = list(zip(phrase1_emb_tensor_list, phrase2_emb_tensor_list, label_list))
random.shuffle(combined)
phrase1_emb_tensor_list_shuffled, phrase2_emb_tensor_list_shuffled, label_list_shuffled = zip(*combined)
label_tensor = torch.FloatTensor(label_list_shuffled)
phrase1_tensor, phrase2_tensor, label = torch.stack(phrase1_emb_tensor_list_shuffled), torch.stack(phrase2_emb_tensor_list_shuffled), label_tensor
phrase1_tensor.to(device)
phrase2_tensor.to(device)
label_tensor.to(device)
split1 = math.ceil(phrase1_tensor.size()[0] * 0.7)
split2 = math.ceil(phrase1_tensor.size()[0] * 0.85)
train_dataset = ParaphraseDataset(phrase1_tensor[:split1, :],
phrase2_tensor[:split1, :],
label_tensor[:split1])
valid_dataset = ParaphraseDataset(phrase1_tensor[split1:split2, :],
phrase2_tensor[split1:split2, :],
label_tensor[split1:split2])
test_dataset = ParaphraseDataset(phrase1_tensor[split2:, :],
phrase2_tensor[split2:, :],
label_tensor[split2:])
early_stop_callback = EarlyStopping(monitor='epoch_val_accuracy', min_delta=0.00, patience=5, verbose=False,
mode='max')
model = ProbingModel(input_dim=phrase1_tensor.shape[1] * 2,
train_dataset=train_dataset,
valid_dataset=valid_dataset,
test_dataset=test_dataset)
trainer = Trainer(max_epochs=100, min_epochs=3, callbacks=[early_stop_callback], gpus=[torch.cuda.current_device()])
# trainer.tune(model)
trainer.fit(model)
result = trainer.test(test_dataloaders=model.test_dataloader())
# Your statements here
stop = timeit.default_timer()
#print('Time: ', stop - start)
return result[0]['epoch_test_accuracy']
def eval_clustering(model, dataset, device, batch_size=4, name="conll"):
label_dict = dict()
if 'conll' in name:
label_dict = {'PER': 0, 'LOC': 1, 'ORG': 2}
elif 'bc5cdr' in name:
label_dict = {'Chemical': 0, 'Disease': 1}
num_class = len(label_dict)
phrases, labels = list(), list()
for row in dataset:
entity = row['entity']
if entity is None:entity="NA"
label = row['label']
phrases.append(entity)
labels.append(label)
#print('loaded! the size of data is {a}'.format(a=len(phrases)))
phrase_emb_tensor = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, phrases, device)])
kmeans = KMeans(n_clusters=num_class, random_state=0).fit(phrase_emb_tensor)
nmi_score = normalized_mutual_info_score(labels, kmeans.labels_)
return nmi_score
def eval_retrieval(model, kb_dataset, test_dataset, batch_size=16, device='cuda:0'):
start_time = time.time()
e_names = [row["entity_name"] for row in kb_dataset]
#print('entity name = {a}'.format(a=len(e_names)))
sen_embeddings = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, e_names, device)])
sen_embeddings = np.array(sen_embeddings, dtype=np.float32)
#print('entity emb = {a}'.format(a=len(sen_embeddings)))
shape = np.shape(sen_embeddings)
end_time = time.time()
#print("initial --- %s seconds ---" % (round((end_time - start_time), 5)))
start_time = time.time()
m = 24 # number of centroid IDs in final compressed vectors
bits = 8 # number of bits in each centroid
nlist = 100
quantizer = faiss.IndexFlatL2(shape[-1]) # we keep the same L2 distance flat index
emb_index = faiss.IndexIVFPQ(quantizer, shape[-1], nlist, m, bits)
emb_index.train(sen_embeddings)
emb_index.add(sen_embeddings)
end_time = time.time()
#print("index --- %s seconds ---" % (round((end_time - start_time), 5)))
start_time = time.time()
cnt, wrong_cnt = 0, 0
mentions = [row["query"] for row in test_dataset]
labels = [row["label"] for row in test_dataset]
batch_emb = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, mentions, device)])
D, I = emb_index.search(batch_emb, 1)
predicts = [e_names[i[0]] for i in I]
for mention, label, predict in zip(mentions, labels, predicts):
cnt += 1
if predict != label:
wrong_cnt += 1
acc = (cnt - wrong_cnt) * 1.0 / cnt
#print('top-1 accuracy of yago = {a}'.format(a=acc))
end_time = time.time()
#print("search --- %s seconds ---" % (round((end_time - start_time), 5)))
return acc
def eval_single_aotufj(dataset, model, device, batch_size):
cos_sim = nn.CosineSimilarity(dim=1)
left_table, right_table, gt_table = load_data(dataset)
left_table = list(left_table.title)
right_table = list(right_table.title)
left_label, right_label = list(gt_table.title_l), list(gt_table.title_r)
gt_label = dict(zip(right_label, left_label))
all_embs = [t.detach() for t in encode_in_batch(model, batch_size, left_table+right_table, device)]
all_embs = torch.stack(all_embs)
left_embs, right_embs = all_embs[:len(left_table)], all_embs[len(left_table):]
acc_cnt, total = 0, 0
for index, r_t_emb in enumerate(right_embs):
r_t = right_table[index]
if r_t not in gt_label:continue
g_t = gt_label[r_t]
r_t_emb = torch.unsqueeze(r_t_emb, dim=0)
score = cos_sim(r_t_emb, left_embs)
pred_i = torch.argmax(score).item()
predicted = left_table[pred_i]
if predicted == g_t:
acc_cnt += 1
total += 1
acc = acc_cnt * 1.0 / total
#print('acc = {a}'.format(a=acc))
return acc
def eval_autofj(model, dataset, device, batch_size=4):
table_names = [row["Dataset"] for row in dataset]
acc_list = list()
for t_name in table_names:
acc = eval_single_aotufj(dataset=t_name, model=model, device=device, batch_size=batch_size)
print(t_name, acc)
acc_list.append(acc)
avg_acc = sum(acc_list) / len(acc_list)
#print('average acc over 50 datasets = {a}'.format(a=avg_acc))
return avg_acc
class ParaphraseDataset(Dataset):
def __init__(self, phrase1_tensor, phrase2_tensor, label_tensor ):
self.concat_input = torch.cat( (phrase1_tensor, phrase2_tensor), 1 )
self.label = label_tensor
def __getitem__(self, index):
return (self.concat_input[index], self.label[index])
def __len__(self):
return self.concat_input.size()[0]
def encode_in_batch(model, batch_size, text_list, device):
all_emb_tensor_list = []
for i in range( 0, len(text_list), batch_size ):
batch_text_list = text_list[i:i+batch_size]
batch_emb_list = model(batch_text_list, device)
if len(list(batch_emb_list.size())) < 2: batch_emb_list = torch.unsqueeze(batch_emb_list, dim=0)
all_emb_tensor_list.extend(batch_emb_list)
return [t.detach() for t in all_emb_tensor_list]
def load_entity(entity_path):
e_names = list()
cnt = 0
for line in open(entity_path, encoding='utf8'):
cnt += 1
#if cnt > 1000:break
e_name = line.strip()
e_names.append(e_name)
return {'mention':e_names, 'entity':e_names}
class ProbingModel(LightningModule):
def __init__(self, input_dim=1536, train_dataset=None, valid_dataset=None, test_dataset=None):
super(ProbingModel, self).__init__()
# Network layers
self.input_dim = input_dim
self.linear = nn.Linear(self.input_dim, 256)
self.linear2 = nn.Linear(256, 1)
self.output = nn.Sigmoid()
# Hyper-parameters, that we will auto-tune using lightning!
self.lr = 0.0001
self.batch_size = 200
# datasets
self.train_dataset = train_dataset
self.valid_dataset = valid_dataset
self.test_dataset = test_dataset
def forward(self, x):
x1 = self.linear(x)
x1a = F.relu(x1)
x2 = self.linear2(x1a)
output = self.output(x2)
return reshape(output, (-1,))
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)
def train_dataloader(self):
loader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True)
return loader
def val_dataloader(self):
loader = DataLoader(self.valid_dataset, batch_size=self.batch_size, shuffle=False)
return loader
def test_dataloader(self):
loader = DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=False)
return loader
def compute_accuracy(self, y_hat, y):
with torch.no_grad():
y_pred = (y_hat >= 0.5)
y_pred_f = y_pred.float()
num_correct = tsum(y_pred_f == y)
denom = float(y.size()[0])
accuracy = torch.div(num_correct, denom)
return accuracy
def training_step(self, batch, batch_nb):
mode = 'train'
x, y = batch
y_hat = self(x)
loss = F.binary_cross_entropy(y_hat, y)
accuracy = self.compute_accuracy(y_hat, y)
#self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True)
#self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True)
return {f'loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}}
def train_epoch_end(self, outputs):
mode = 'train'
loss_mean = sum([o[f'loss'] for o in outputs]) / len(outputs)
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs)
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False)
#print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}')
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False)
#print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}')
def validation_step(self, batch, batch_nb):
mode = 'val'
x, y = batch
y_hat = self(x)
loss = F.binary_cross_entropy(y_hat, y)
accuracy = self.compute_accuracy(y_hat, y)
self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True)
self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True)
return {f'{mode}_loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}}
def validation_epoch_end(self, outputs):
mode = 'val'
loss_mean = sum([o[f'{mode}_loss'] for o in outputs]) / len(outputs)
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs)
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False)
#print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}')
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False)
#print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}')
def test_step(self, batch, batch_nb):
mode = 'test'
x, y = batch
y_hat = self(x)
loss = F.binary_cross_entropy(y_hat, y)
accuracy = self.compute_accuracy(y_hat, y)
self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True)
self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True)
return {f'{mode}_loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}}
def test_epoch_end(self, outputs):
mode = 'test'
loss_mean = sum([o[f'{mode}_loss'] for o in outputs]) / len(outputs)
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs)
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False)
# print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}')
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False)
# print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}')
class PearlSmallModel(nn.Module):
def __init__(self):
super().__init__()
model_name = "Lihuchen/pearl_small"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def average_pool(self, last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def forward(self, x, device):
# Tokenize the input texts
batch_dict = self.tokenizer(x, max_length=128, padding=True, truncation=True, return_tensors='pt')
batch_dict = batch_dict.to(device)
outputs = self.model(**batch_dict)
phrase_vec = self.average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
return phrase_vec.detach()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='evaluate phrase embeddings')
parser.add_argument('-batch_size', help='the number of samples in one batch', type=int, default=32)
args = parser.parse_args()
model = PearlSmallModel()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
batch_size = args.batch_size
ppdb_dataset = load_dataset("Lihuchen/pearl_benchmark", "ppdb", split="test")
ppbd_score = eval_ppdb(model, ppdb_dataset, device=device, batch_size=batch_size)
print("ppdb: ", ppbd_score)
ppdb_filtered_dataset = load_dataset("Lihuchen/pearl_benchmark", "ppdb_filtered", split="test")
ppbd_filtered_score = eval_ppdb(model, ppdb_filtered_dataset, device=device, batch_size=batch_size)
print("ppdb_filetered: ", ppbd_filtered_score)
turney_dataset = load_dataset("Lihuchen/pearl_benchmark", "turney", split="test")
turney_score = eval_turney(model, turney_dataset, device=device, batch_size=batch_size)
print("turney: ", turney_score)
bird_dataset = load_dataset("Lihuchen/pearl_benchmark", "bird", split="test")
bird_score = eval_bird(model, bird_dataset, device=device, batch_size=batch_size)
print("bird: ", bird_score)
yago_kb_dataset = load_dataset("Lihuchen/pearl_benchmark", "kb", split="yago")
yago_test_dataset = load_dataset("Lihuchen/pearl_benchmark", "yago", split="test")
yago_score = eval_retrieval(model, yago_kb_dataset, yago_test_dataset, device=device, batch_size=batch_size)
print("yago: ", yago_score)
umls_kb_dataset = load_dataset("Lihuchen/pearl_benchmark", "kb", split="umls")
umls_test_dataset = load_dataset("Lihuchen/pearl_benchmark", "umls", split="test")
umls_score = eval_retrieval(model, umls_kb_dataset, umls_test_dataset, device=device, batch_size=batch_size)
print("umls: ", umls_score)
conll_dataset = load_dataset("Lihuchen/pearl_benchmark", "conll", split="test")
conll_score = eval_clustering(model, device=device, batch_size=batch_size, name="conll")
print("conll: ", conll_score)
bc5cdr_dataset = load_dataset("Lihuchen/pearl_benchmark", "bc5cdr", split="test")
bc5cdr_score = eval_clustering(model, bc5cdr_dataset, device=device, batch_size=batch_size, name="bc5cdr")
print("bc5cdr: ", bc5cdr_score)
autofj_dataset = load_dataset("Lihuchen/pearl_benchmark", "autofj", split="test")
autofj_score = eval_autofj(model, autofj_dataset, device=device, batch_size=batch_size)
print("autofj: ", autofj_score)