Datasets:
Formats:
csv
Languages:
English
Size:
1M - 10M
ArXiv:
Tags:
pearl benchmark
phrase embeddings
entity retrieval
entity clustering
fuzzy join
entity matching
License:
import argparse | |
import timeit | |
import numpy as np | |
import random | |
import json | |
import torch | |
import math | |
import time | |
import faiss | |
import pandas as pd | |
import random | |
from torch import nn, optim, rand, sum as tsum, reshape, save | |
from torch.utils.data import DataLoader, Dataset | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel | |
from autofj.datasets import load_data | |
from datasets import load_dataset | |
from scipy.stats.stats import pearsonr | |
from pytorch_lightning.callbacks import EarlyStopping | |
from pytorch_lightning import seed_everything, LightningModule, Trainer | |
from torch.utils.data import DataLoader, Dataset | |
from sklearn.cluster import KMeans | |
from sklearn.metrics.cluster import normalized_mutual_info_score | |
def eval_bird(model, dataset, device, batch_size=4): | |
text_list = [] | |
scores = [] | |
for row in dataset: | |
p1, p2, score = row["term1"], row["term2"], row["relatedness score"] | |
text_list.append((p1, p2)) | |
scores.append(score) | |
cos_sim = nn.CosineSimilarity(dim=1) | |
cos_sim_list = [] | |
for i in range(0, len(text_list), batch_size): | |
batch_text_list = text_list[i:i+batch_size] | |
temp1, temp2 = zip(*batch_text_list) | |
temp1, temp2 = list(temp1), list(temp2) | |
input1 = model(temp1, device) | |
input2 = model(temp2, device) | |
sim = cos_sim(input1, input2) | |
sim = (sim + 1) / 2.0 | |
cos_sim_list.extend(sim.tolist()) | |
cor, _ = pearsonr(cos_sim_list, scores) | |
#print('spearman score of BIRD is {a}'.format(a=cor)) | |
return cor | |
def eval_turney(model, dataset, device, batch_size=4): | |
data_list = list() | |
for row in dataset: | |
data_list.append(list((row["query"], row["label"], row["candidate_1"], row["candidate_2"], row["candidate_3"], row["candidate_4"]))) | |
num_correct = 0 | |
for components in data_list: | |
emb = encode_in_batch(model, batch_size=batch_size, text_list=components, device=device) | |
emb = torch.stack(emb).cpu().detach().numpy() | |
query = emb[0, :] | |
matrix = emb[1:, :] | |
scores = np.dot(matrix, query) | |
chosen = np.argmax(scores) | |
if chosen == 0: | |
num_correct += 1 | |
accuracy = num_correct / len(data_list) | |
return accuracy | |
def eval_ppdb(model, dataset, device, batch_size=4): | |
phrase1_list = [item["phrase_1"] for item in dataset] | |
phrase2_list = [item["phrase_2"] for item in dataset] | |
label = [item["label"] for item in dataset] | |
#print('loaded! size = {a}'.format(a=len(phrase1_list))) | |
phrase1_emb_tensor_list = encode_in_batch(model, batch_size, phrase1_list, device) | |
phrase2_emb_tensor_list = encode_in_batch(model, batch_size, phrase2_list, device) | |
label_list = [1 if e == 'pos' else 0 for e in label] | |
combined = list(zip(phrase1_emb_tensor_list, phrase2_emb_tensor_list, label_list)) | |
random.shuffle(combined) | |
phrase1_emb_tensor_list_shuffled, phrase2_emb_tensor_list_shuffled, label_list_shuffled = zip(*combined) | |
label_tensor = torch.FloatTensor(label_list_shuffled) | |
phrase1_tensor, phrase2_tensor, label = torch.stack(phrase1_emb_tensor_list_shuffled), torch.stack(phrase2_emb_tensor_list_shuffled), label_tensor | |
phrase1_tensor.to(device) | |
phrase2_tensor.to(device) | |
label_tensor.to(device) | |
split1 = math.ceil(phrase1_tensor.size()[0] * 0.7) | |
split2 = math.ceil(phrase1_tensor.size()[0] * 0.85) | |
train_dataset = ParaphraseDataset(phrase1_tensor[:split1, :], | |
phrase2_tensor[:split1, :], | |
label_tensor[:split1]) | |
valid_dataset = ParaphraseDataset(phrase1_tensor[split1:split2, :], | |
phrase2_tensor[split1:split2, :], | |
label_tensor[split1:split2]) | |
test_dataset = ParaphraseDataset(phrase1_tensor[split2:, :], | |
phrase2_tensor[split2:, :], | |
label_tensor[split2:]) | |
early_stop_callback = EarlyStopping(monitor='epoch_val_accuracy', min_delta=0.00, patience=5, verbose=False, | |
mode='max') | |
model = ProbingModel(input_dim=phrase1_tensor.shape[1] * 2, | |
train_dataset=train_dataset, | |
valid_dataset=valid_dataset, | |
test_dataset=test_dataset) | |
trainer = Trainer(max_epochs=100, min_epochs=3, callbacks=[early_stop_callback], gpus=[torch.cuda.current_device()]) | |
# trainer.tune(model) | |
trainer.fit(model) | |
result = trainer.test(test_dataloaders=model.test_dataloader()) | |
# Your statements here | |
stop = timeit.default_timer() | |
#print('Time: ', stop - start) | |
return result[0]['epoch_test_accuracy'] | |
def eval_clustering(model, dataset, device, batch_size=4, name="conll"): | |
label_dict = dict() | |
if 'conll' in name: | |
label_dict = {'PER': 0, 'LOC': 1, 'ORG': 2} | |
elif 'bc5cdr' in name: | |
label_dict = {'Chemical': 0, 'Disease': 1} | |
num_class = len(label_dict) | |
phrases, labels = list(), list() | |
for row in dataset: | |
entity = row['entity'] | |
if entity is None:entity="NA" | |
label = row['label'] | |
phrases.append(entity) | |
labels.append(label) | |
#print('loaded! the size of data is {a}'.format(a=len(phrases))) | |
phrase_emb_tensor = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, phrases, device)]) | |
kmeans = KMeans(n_clusters=num_class, random_state=0).fit(phrase_emb_tensor) | |
nmi_score = normalized_mutual_info_score(labels, kmeans.labels_) | |
return nmi_score | |
def eval_retrieval(model, kb_dataset, test_dataset, batch_size=16, device='cuda:0'): | |
start_time = time.time() | |
e_names = [row["entity_name"] for row in kb_dataset] | |
#print('entity name = {a}'.format(a=len(e_names))) | |
sen_embeddings = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, e_names, device)]) | |
sen_embeddings = np.array(sen_embeddings, dtype=np.float32) | |
#print('entity emb = {a}'.format(a=len(sen_embeddings))) | |
shape = np.shape(sen_embeddings) | |
end_time = time.time() | |
#print("initial --- %s seconds ---" % (round((end_time - start_time), 5))) | |
start_time = time.time() | |
m = 24 # number of centroid IDs in final compressed vectors | |
bits = 8 # number of bits in each centroid | |
nlist = 100 | |
quantizer = faiss.IndexFlatL2(shape[-1]) # we keep the same L2 distance flat index | |
emb_index = faiss.IndexIVFPQ(quantizer, shape[-1], nlist, m, bits) | |
emb_index.train(sen_embeddings) | |
emb_index.add(sen_embeddings) | |
end_time = time.time() | |
#print("index --- %s seconds ---" % (round((end_time - start_time), 5))) | |
start_time = time.time() | |
cnt, wrong_cnt = 0, 0 | |
mentions = [row["query"] for row in test_dataset] | |
labels = [row["label"] for row in test_dataset] | |
batch_emb = np.array([t.cpu().detach().numpy() for t in encode_in_batch(model, batch_size, mentions, device)]) | |
D, I = emb_index.search(batch_emb, 1) | |
predicts = [e_names[i[0]] for i in I] | |
for mention, label, predict in zip(mentions, labels, predicts): | |
cnt += 1 | |
if predict != label: | |
wrong_cnt += 1 | |
acc = (cnt - wrong_cnt) * 1.0 / cnt | |
#print('top-1 accuracy of yago = {a}'.format(a=acc)) | |
end_time = time.time() | |
#print("search --- %s seconds ---" % (round((end_time - start_time), 5))) | |
return acc | |
def eval_single_aotufj(dataset, model, device, batch_size): | |
cos_sim = nn.CosineSimilarity(dim=1) | |
left_table, right_table, gt_table = load_data(dataset) | |
left_table = list(left_table.title) | |
right_table = list(right_table.title) | |
left_label, right_label = list(gt_table.title_l), list(gt_table.title_r) | |
gt_label = dict(zip(right_label, left_label)) | |
all_embs = [t.detach() for t in encode_in_batch(model, batch_size, left_table+right_table, device)] | |
all_embs = torch.stack(all_embs) | |
left_embs, right_embs = all_embs[:len(left_table)], all_embs[len(left_table):] | |
acc_cnt, total = 0, 0 | |
for index, r_t_emb in enumerate(right_embs): | |
r_t = right_table[index] | |
if r_t not in gt_label:continue | |
g_t = gt_label[r_t] | |
r_t_emb = torch.unsqueeze(r_t_emb, dim=0) | |
score = cos_sim(r_t_emb, left_embs) | |
pred_i = torch.argmax(score).item() | |
predicted = left_table[pred_i] | |
if predicted == g_t: | |
acc_cnt += 1 | |
total += 1 | |
acc = acc_cnt * 1.0 / total | |
#print('acc = {a}'.format(a=acc)) | |
return acc | |
def eval_autofj(model, dataset, device, batch_size=4): | |
table_names = [row["Dataset"] for row in dataset] | |
acc_list = list() | |
for t_name in table_names: | |
acc = eval_single_aotufj(dataset=t_name, model=model, device=device, batch_size=batch_size) | |
print(t_name, acc) | |
acc_list.append(acc) | |
avg_acc = sum(acc_list) / len(acc_list) | |
#print('average acc over 50 datasets = {a}'.format(a=avg_acc)) | |
return avg_acc | |
class ParaphraseDataset(Dataset): | |
def __init__(self, phrase1_tensor, phrase2_tensor, label_tensor ): | |
self.concat_input = torch.cat( (phrase1_tensor, phrase2_tensor), 1 ) | |
self.label = label_tensor | |
def __getitem__(self, index): | |
return (self.concat_input[index], self.label[index]) | |
def __len__(self): | |
return self.concat_input.size()[0] | |
def encode_in_batch(model, batch_size, text_list, device): | |
all_emb_tensor_list = [] | |
for i in range( 0, len(text_list), batch_size ): | |
batch_text_list = text_list[i:i+batch_size] | |
batch_emb_list = model(batch_text_list, device) | |
if len(list(batch_emb_list.size())) < 2: batch_emb_list = torch.unsqueeze(batch_emb_list, dim=0) | |
all_emb_tensor_list.extend(batch_emb_list) | |
return [t.detach() for t in all_emb_tensor_list] | |
def load_entity(entity_path): | |
e_names = list() | |
cnt = 0 | |
for line in open(entity_path, encoding='utf8'): | |
cnt += 1 | |
#if cnt > 1000:break | |
e_name = line.strip() | |
e_names.append(e_name) | |
return {'mention':e_names, 'entity':e_names} | |
class ProbingModel(LightningModule): | |
def __init__(self, input_dim=1536, train_dataset=None, valid_dataset=None, test_dataset=None): | |
super(ProbingModel, self).__init__() | |
# Network layers | |
self.input_dim = input_dim | |
self.linear = nn.Linear(self.input_dim, 256) | |
self.linear2 = nn.Linear(256, 1) | |
self.output = nn.Sigmoid() | |
# Hyper-parameters, that we will auto-tune using lightning! | |
self.lr = 0.0001 | |
self.batch_size = 200 | |
# datasets | |
self.train_dataset = train_dataset | |
self.valid_dataset = valid_dataset | |
self.test_dataset = test_dataset | |
def forward(self, x): | |
x1 = self.linear(x) | |
x1a = F.relu(x1) | |
x2 = self.linear2(x1a) | |
output = self.output(x2) | |
return reshape(output, (-1,)) | |
def configure_optimizers(self): | |
return optim.Adam(self.parameters(), lr=self.lr) | |
def train_dataloader(self): | |
loader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True) | |
return loader | |
def val_dataloader(self): | |
loader = DataLoader(self.valid_dataset, batch_size=self.batch_size, shuffle=False) | |
return loader | |
def test_dataloader(self): | |
loader = DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=False) | |
return loader | |
def compute_accuracy(self, y_hat, y): | |
with torch.no_grad(): | |
y_pred = (y_hat >= 0.5) | |
y_pred_f = y_pred.float() | |
num_correct = tsum(y_pred_f == y) | |
denom = float(y.size()[0]) | |
accuracy = torch.div(num_correct, denom) | |
return accuracy | |
def training_step(self, batch, batch_nb): | |
mode = 'train' | |
x, y = batch | |
y_hat = self(x) | |
loss = F.binary_cross_entropy(y_hat, y) | |
accuracy = self.compute_accuracy(y_hat, y) | |
#self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True) | |
#self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True) | |
return {f'loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}} | |
def train_epoch_end(self, outputs): | |
mode = 'train' | |
loss_mean = sum([o[f'loss'] for o in outputs]) / len(outputs) | |
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs) | |
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False) | |
#print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}') | |
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False) | |
#print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}') | |
def validation_step(self, batch, batch_nb): | |
mode = 'val' | |
x, y = batch | |
y_hat = self(x) | |
loss = F.binary_cross_entropy(y_hat, y) | |
accuracy = self.compute_accuracy(y_hat, y) | |
self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True) | |
self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True) | |
return {f'{mode}_loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}} | |
def validation_epoch_end(self, outputs): | |
mode = 'val' | |
loss_mean = sum([o[f'{mode}_loss'] for o in outputs]) / len(outputs) | |
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs) | |
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False) | |
#print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}') | |
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False) | |
#print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}') | |
def test_step(self, batch, batch_nb): | |
mode = 'test' | |
x, y = batch | |
y_hat = self(x) | |
loss = F.binary_cross_entropy(y_hat, y) | |
accuracy = self.compute_accuracy(y_hat, y) | |
self.log(f'{mode}_loss', loss, on_epoch=True, on_step=True) | |
self.log(f'{mode}_accuracy', accuracy, on_epoch=True, on_step=True) | |
return {f'{mode}_loss': loss, f'{mode}_accuracy': accuracy, 'log': {f'{mode}_loss': loss}} | |
def test_epoch_end(self, outputs): | |
mode = 'test' | |
loss_mean = sum([o[f'{mode}_loss'] for o in outputs]) / len(outputs) | |
accuracy_mean = sum([o[f'{mode}_accuracy'] for o in outputs]) / len(outputs) | |
self.log(f'epoch_{mode}_loss', loss_mean, on_epoch=True, on_step=False) | |
# print(f'\nThe end of epoch {mode} loss is {loss_mean.item():.4f}') | |
self.log(f'epoch_{mode}_accuracy', accuracy_mean, on_epoch=True, on_step=False) | |
# print(f'\nThe end of epoch {mode} accuracy is {accuracy_mean.item():.4f}') | |
class PearlSmallModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
model_name = "Lihuchen/pearl_small" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name) | |
def average_pool(self, last_hidden_states, attention_mask): | |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) | |
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | |
def forward(self, x, device): | |
# Tokenize the input texts | |
batch_dict = self.tokenizer(x, max_length=128, padding=True, truncation=True, return_tensors='pt') | |
batch_dict = batch_dict.to(device) | |
outputs = self.model(**batch_dict) | |
phrase_vec = self.average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | |
return phrase_vec.detach() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='evaluate phrase embeddings') | |
parser.add_argument('-batch_size', help='the number of samples in one batch', type=int, default=32) | |
args = parser.parse_args() | |
model = PearlSmallModel() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
batch_size = args.batch_size | |
ppdb_dataset = load_dataset("Lihuchen/pearl_benchmark", "ppdb", split="test") | |
ppbd_score = eval_ppdb(model, ppdb_dataset, device=device, batch_size=batch_size) | |
print("ppdb: ", ppbd_score) | |
ppdb_filtered_dataset = load_dataset("Lihuchen/pearl_benchmark", "ppdb_filtered", split="test") | |
ppbd_filtered_score = eval_ppdb(model, ppdb_filtered_dataset, device=device, batch_size=batch_size) | |
print("ppdb_filetered: ", ppbd_filtered_score) | |
turney_dataset = load_dataset("Lihuchen/pearl_benchmark", "turney", split="test") | |
turney_score = eval_turney(model, turney_dataset, device=device, batch_size=batch_size) | |
print("turney: ", turney_score) | |
bird_dataset = load_dataset("Lihuchen/pearl_benchmark", "bird", split="test") | |
bird_score = eval_bird(model, bird_dataset, device=device, batch_size=batch_size) | |
print("bird: ", bird_score) | |
yago_kb_dataset = load_dataset("Lihuchen/pearl_benchmark", "kb", split="yago") | |
yago_test_dataset = load_dataset("Lihuchen/pearl_benchmark", "yago", split="test") | |
yago_score = eval_retrieval(model, yago_kb_dataset, yago_test_dataset, device=device, batch_size=batch_size) | |
print("yago: ", yago_score) | |
umls_kb_dataset = load_dataset("Lihuchen/pearl_benchmark", "kb", split="umls") | |
umls_test_dataset = load_dataset("Lihuchen/pearl_benchmark", "umls", split="test") | |
umls_score = eval_retrieval(model, umls_kb_dataset, umls_test_dataset, device=device, batch_size=batch_size) | |
print("umls: ", umls_score) | |
conll_dataset = load_dataset("Lihuchen/pearl_benchmark", "conll", split="test") | |
conll_score = eval_clustering(model, device=device, batch_size=batch_size, name="conll") | |
print("conll: ", conll_score) | |
bc5cdr_dataset = load_dataset("Lihuchen/pearl_benchmark", "bc5cdr", split="test") | |
bc5cdr_score = eval_clustering(model, bc5cdr_dataset, device=device, batch_size=batch_size, name="bc5cdr") | |
print("bc5cdr: ", bc5cdr_score) | |
autofj_dataset = load_dataset("Lihuchen/pearl_benchmark", "autofj", split="test") | |
autofj_score = eval_autofj(model, autofj_dataset, device=device, batch_size=batch_size) | |
print("autofj: ", autofj_score) | |