|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
_OPEN_SLU_CITATION = """\
|
|
xxx"""
|
|
|
|
_OPEN_SLU_DESCRIPTION = """\
|
|
xxx"""
|
|
|
|
_ATIS_DESCRIPTION = """\
|
|
@article{wang2019superglue,
|
|
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
|
|
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
|
|
journal={arXiv preprint arXiv:1905.00537},
|
|
year={2019}
|
|
}
|
|
Note that each SuperGLUE dataset has its own citation. Please see the source to
|
|
get the correct citation for each contained dataset.
|
|
"""
|
|
|
|
_BOOLQ_CITATION = """\
|
|
@inproceedings{clark2019boolq,
|
|
title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
|
|
author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
|
|
booktitle={NAACL},
|
|
year={2019}
|
|
}"""
|
|
|
|
|
|
class OpenSLUConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for OpenSLU."""
|
|
|
|
def __init__(self, features, data_url, citation, url, intent_label_classes=None, slot_label_classes=None, **kwargs):
|
|
"""BuilderConfig for OpenSLU.
|
|
Args:
|
|
features: `list[string]`, list of the features that will appear in the
|
|
feature dict. Should not include "label".
|
|
data_url: `string`, url to download the zip file from.
|
|
citation: `string`, citation for the data set.
|
|
url: `string`, url for information about the data set.
|
|
intent_label_classes: `list[string]`, the list of classes for the intent label
|
|
slot_label_classes: `list[string]`, the list of classes for the slot label
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
|
|
|
|
super(OpenSLUConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
|
|
self.features = features
|
|
self.intent_label_classes = intent_label_classes
|
|
self.slot_label_classes = slot_label_classes
|
|
self.data_url = data_url
|
|
self.citation = citation
|
|
self.url = url
|
|
|
|
|
|
class OpenSLU(datasets.GeneratorBasedBuilder):
|
|
"""The SuperGLUE benchmark."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
OpenSLUConfig(
|
|
name="atis",
|
|
description=_ATIS_DESCRIPTION,
|
|
features=["text"],
|
|
data_url="https://huggingface.co/datasets/LightChen2333/OpenSLU/resolve/main/atis.tar.gz",
|
|
citation="",
|
|
url="",
|
|
),
|
|
OpenSLUConfig(
|
|
name="snips",
|
|
description=_ATIS_DESCRIPTION,
|
|
features=["text"],
|
|
data_url="https://huggingface.co/datasets/LightChen2333/OpenSLU/resolve/main/snips.tar.gz",
|
|
citation="",
|
|
url="",
|
|
),
|
|
OpenSLUConfig(
|
|
name="mix-atis",
|
|
description=_ATIS_DESCRIPTION,
|
|
features=["text"],
|
|
data_url="https://huggingface.co/datasets/LightChen2333/OpenSLU/resolve/main/mix-atis.tar.gz",
|
|
citation="",
|
|
url="",
|
|
),
|
|
OpenSLUConfig(
|
|
name="mix-snips",
|
|
description=_ATIS_DESCRIPTION,
|
|
features=["text"],
|
|
data_url="https://huggingface.co/datasets/LightChen2333/OpenSLU/resolve/main/mix-snips.tar.gz",
|
|
citation="",
|
|
url="",
|
|
),
|
|
]
|
|
|
|
def _info(self):
|
|
features = {feature: datasets.Sequence(datasets.Value("string")) for feature in self.config.features}
|
|
features["slot"] = datasets.Sequence(datasets.Value("string"))
|
|
features["intent"] = datasets.Value("string")
|
|
|
|
return datasets.DatasetInfo(
|
|
description=_OPEN_SLU_DESCRIPTION + self.config.description,
|
|
features=datasets.Features(features),
|
|
homepage=self.config.url,
|
|
citation=self.config.citation + "\n" + _OPEN_SLU_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
print(self.config.data_url)
|
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
|
|
|
|
task_name = _get_task_name_from_data_url(self.config.data_url)
|
|
print(dl_dir)
|
|
print(task_name)
|
|
dl_dir = os.path.join(dl_dir, task_name)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"data_file": os.path.join(dl_dir, "train.jsonl"),
|
|
"split": datasets.Split.TRAIN,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"data_file": os.path.join(dl_dir, "dev.jsonl"),
|
|
"split": datasets.Split.VALIDATION,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"data_file": os.path.join(dl_dir, "test.jsonl"),
|
|
"split": datasets.Split.TEST,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, data_file, split):
|
|
with open(data_file, encoding="utf-8") as f:
|
|
for index, line in enumerate(f):
|
|
row = json.loads(line)
|
|
yield index, row
|
|
|
|
|
|
def _cast_label(label):
|
|
"""Converts the label into the appropriate string version."""
|
|
if isinstance(label, str):
|
|
return label
|
|
elif isinstance(label, bool):
|
|
return "True" if label else "False"
|
|
elif isinstance(label, int):
|
|
assert label in (0, 1)
|
|
return str(label)
|
|
else:
|
|
raise ValueError("Invalid label format.")
|
|
|
|
|
|
def _get_record_entities(passage):
|
|
"""Returns the unique set of entities."""
|
|
text = passage["text"]
|
|
entity_spans = list()
|
|
for entity in passage["entities"]:
|
|
entity_text = text[entity["start"]: entity["end"] + 1]
|
|
entity_spans.append({"text": entity_text, "start": entity["start"], "end": entity["end"] + 1})
|
|
entity_spans = sorted(entity_spans, key=lambda e: e["start"])
|
|
entity_texts = set(e["text"] for e in entity_spans)
|
|
return entity_texts, entity_spans
|
|
|
|
|
|
def _get_record_answers(qa):
|
|
"""Returns the unique set of answers."""
|
|
if "answers" not in qa:
|
|
return []
|
|
answers = set()
|
|
for answer in qa["answers"]:
|
|
answers.add(answer["text"])
|
|
return sorted(answers)
|
|
|
|
|
|
def _get_task_name_from_data_url(data_url):
|
|
return data_url.split("/")[-1].split(".")[0]
|
|
|