|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SQUAD: The Stanford Question Answering Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
|
|
_URLS = { |
|
"train": "train.json", |
|
"dev": "dev_incomplete.json", |
|
"test": "openbook_beam_5.json" |
|
} |
|
|
|
|
|
class SquadConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SQUAD.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQUAD. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SquadConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Squad(datasets.GeneratorBasedBuilder): |
|
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SquadConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
print(filepath) |
|
with open(filepath, 'rb') as f: |
|
data = json.load(f) |
|
print("example data: ", data[0]) |
|
print("number of data: ", len(data)) |
|
print("data keys: ", data[0].keys()) |
|
for line in data: |
|
yield key, { |
|
"context": line['context'], |
|
"question": line["question"], |
|
"id": line["id"], |
|
"answers": line['answers'] |
|
} |
|
key += 1 |
|
|