|
|
""" |
|
|
Document Segmentation Agent |
|
|
|
|
|
A lightweight agent that coordinates with the document segmentation MCP server |
|
|
to analyze document structure and prepare segments for other agents. |
|
|
""" |
|
|
|
|
|
import os |
|
|
import logging |
|
|
from typing import Dict, Any, Optional |
|
|
|
|
|
from mcp_agent.agents.agent import Agent |
|
|
from utils.llm_utils import get_preferred_llm_class |
|
|
|
|
|
|
|
|
class DocumentSegmentationAgent: |
|
|
""" |
|
|
Intelligent document segmentation agent with semantic analysis capabilities. |
|
|
|
|
|
This enhanced agent provides: |
|
|
1. **Semantic Document Classification**: Content-based document type identification |
|
|
2. **Adaptive Segmentation Strategy**: Algorithm integrity and semantic coherence preservation |
|
|
3. **Planning Agent Optimization**: Segment preparation specifically optimized for downstream agents |
|
|
4. **Quality Intelligence Validation**: Advanced metrics for completeness and technical accuracy |
|
|
5. **Algorithm Completeness Protection**: Ensures critical algorithms and formulas remain intact |
|
|
|
|
|
Key improvements over traditional segmentation: |
|
|
- Semantic content analysis vs mechanical structure splitting |
|
|
- Dynamic character limits based on content complexity |
|
|
- Enhanced relevance scoring for planning agents |
|
|
- Algorithm and formula integrity preservation |
|
|
- Content type-aware segmentation strategies |
|
|
""" |
|
|
|
|
|
def __init__(self, logger: Optional[logging.Logger] = None): |
|
|
self.logger = logger or self._create_default_logger() |
|
|
self.mcp_agent = None |
|
|
|
|
|
def _create_default_logger(self) -> logging.Logger: |
|
|
"""Create default logger if none provided""" |
|
|
logger = logging.getLogger(f"{__name__}.DocumentSegmentationAgent") |
|
|
logger.setLevel(logging.INFO) |
|
|
return logger |
|
|
|
|
|
async def __aenter__(self): |
|
|
"""Async context manager entry""" |
|
|
await self.initialize() |
|
|
return self |
|
|
|
|
|
async def __aexit__(self, exc_type, exc_val, exc_tb): |
|
|
"""Async context manager exit""" |
|
|
await self.cleanup() |
|
|
|
|
|
async def initialize(self): |
|
|
"""Initialize the MCP agent connection""" |
|
|
try: |
|
|
self.mcp_agent = Agent( |
|
|
name="DocumentSegmentationCoordinator", |
|
|
instruction="""You are an intelligent document segmentation coordinator that leverages advanced semantic analysis for optimal document processing. |
|
|
|
|
|
Your enhanced capabilities include: |
|
|
1. **Semantic Content Analysis**: Coordinate intelligent document type classification based on content semantics rather than structural patterns |
|
|
2. **Algorithm Integrity Protection**: Ensure algorithm blocks, formulas, and related content maintain logical coherence |
|
|
3. **Adaptive Segmentation Strategy**: Select optimal segmentation approaches (semantic_research_focused, algorithm_preserve_integrity, concept_implementation_hybrid, etc.) |
|
|
4. **Quality Intelligence Validation**: Assess segmentation quality using enhanced metrics for completeness, relevance, and technical accuracy |
|
|
5. **Planning Agent Optimization**: Ensure segments are specifically optimized for ConceptAnalysisAgent, AlgorithmAnalysisAgent, and CodePlannerAgent needs |
|
|
|
|
|
**Key Principles**: |
|
|
- Prioritize content semantics over mechanical structure |
|
|
- Preserve algorithm and formula completeness |
|
|
- Optimize for downstream agent token efficiency |
|
|
- Ensure technical content integrity |
|
|
- Provide actionable quality assessments |
|
|
|
|
|
Use the enhanced document-segmentation tools to deliver superior segmentation results that significantly improve planning agent performance.""", |
|
|
server_names=["document-segmentation", "filesystem"], |
|
|
) |
|
|
|
|
|
|
|
|
await self.mcp_agent.__aenter__() |
|
|
|
|
|
|
|
|
self.llm = await self.mcp_agent.attach_llm(get_preferred_llm_class()) |
|
|
|
|
|
self.logger.info("DocumentSegmentationAgent initialized successfully") |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Failed to initialize DocumentSegmentationAgent: {e}") |
|
|
raise |
|
|
|
|
|
async def cleanup(self): |
|
|
"""Cleanup resources""" |
|
|
if self.mcp_agent: |
|
|
try: |
|
|
await self.mcp_agent.__aexit__(None, None, None) |
|
|
except Exception as e: |
|
|
self.logger.warning(f"Error during cleanup: {e}") |
|
|
|
|
|
async def analyze_and_prepare_document( |
|
|
self, paper_dir: str, force_refresh: bool = False |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Perform intelligent semantic analysis and create optimized document segments. |
|
|
|
|
|
This method coordinates with the enhanced document segmentation server to: |
|
|
- Classify document type using semantic content analysis |
|
|
- Select optimal segmentation strategy (semantic_research_focused, algorithm_preserve_integrity, etc.) |
|
|
- Preserve algorithm and formula integrity |
|
|
- Optimize segments for downstream planning agents |
|
|
|
|
|
Args: |
|
|
paper_dir: Path to the paper directory |
|
|
force_refresh: Whether to force re-analysis with latest algorithms |
|
|
|
|
|
Returns: |
|
|
Dict containing enhanced analysis results and intelligent segment information |
|
|
""" |
|
|
try: |
|
|
self.logger.info(f"Starting document analysis for: {paper_dir}") |
|
|
|
|
|
|
|
|
md_files = [f for f in os.listdir(paper_dir) if f.endswith(".md")] |
|
|
if not md_files: |
|
|
raise ValueError(f"No markdown file found in {paper_dir}") |
|
|
|
|
|
|
|
|
message = f"""Please perform intelligent semantic analysis and segmentation for the document in directory: {paper_dir} |
|
|
|
|
|
Use the analyze_and_segment_document tool with these parameters: |
|
|
- paper_dir: {paper_dir} |
|
|
- force_refresh: {force_refresh} |
|
|
|
|
|
**Focus on these enhanced objectives**: |
|
|
1. **Semantic Document Classification**: Identify document type using content semantics (research_paper, algorithm_focused, technical_doc, etc.) |
|
|
2. **Intelligent Segmentation Strategy**: Select the optimal strategy based on content analysis: |
|
|
- `semantic_research_focused` for research papers with high algorithm density |
|
|
- `algorithm_preserve_integrity` for algorithm-heavy documents |
|
|
- `concept_implementation_hybrid` for mixed concept/implementation content |
|
|
3. **Algorithm Completeness**: Ensure algorithm blocks, formulas, and related descriptions remain logically connected |
|
|
4. **Planning Agent Optimization**: Create segments that maximize effectiveness for ConceptAnalysisAgent, AlgorithmAnalysisAgent, and CodePlannerAgent |
|
|
|
|
|
After segmentation, get a document overview and provide: |
|
|
- Quality assessment of semantic segmentation approach |
|
|
- Algorithm/formula integrity verification |
|
|
- Recommendations for planning agent optimization |
|
|
- Technical content completeness evaluation""" |
|
|
|
|
|
result = await self.llm.generate_str(message=message) |
|
|
|
|
|
self.logger.info("Document analysis completed successfully") |
|
|
|
|
|
|
|
|
return { |
|
|
"status": "success", |
|
|
"paper_dir": paper_dir, |
|
|
"analysis_result": result, |
|
|
"segments_available": True, |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error in document analysis: {e}") |
|
|
return { |
|
|
"status": "error", |
|
|
"paper_dir": paper_dir, |
|
|
"error_message": str(e), |
|
|
"segments_available": False, |
|
|
} |
|
|
|
|
|
async def get_document_overview(self, paper_dir: str) -> Dict[str, Any]: |
|
|
""" |
|
|
Get overview of document structure and segments. |
|
|
|
|
|
Args: |
|
|
paper_dir: Path to the paper directory |
|
|
|
|
|
Returns: |
|
|
Dict containing document overview information |
|
|
""" |
|
|
try: |
|
|
message = f"""Please provide an intelligent overview of the enhanced document segmentation for: {paper_dir} |
|
|
|
|
|
Use the get_document_overview tool to retrieve: |
|
|
- **Semantic Document Classification**: Document type and confidence score |
|
|
- **Adaptive Segmentation Strategy**: Strategy used and reasoning |
|
|
- **Segment Intelligence**: Total segments with enhanced metadata |
|
|
- **Content Type Distribution**: Breakdown by algorithm, concept, formula, implementation content |
|
|
- **Quality Intelligence Assessment**: Completeness, coherence, and planning agent optimization |
|
|
|
|
|
Provide a comprehensive analysis focusing on: |
|
|
1. Semantic vs structural segmentation quality |
|
|
2. Algorithm and formula integrity preservation |
|
|
3. Segment relevance for downstream planning agents |
|
|
4. Technical content distribution and completeness""" |
|
|
|
|
|
result = await self.llm.generate_str(message=message) |
|
|
|
|
|
return { |
|
|
"status": "success", |
|
|
"paper_dir": paper_dir, |
|
|
"overview_result": result, |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error getting document overview: {e}") |
|
|
return {"status": "error", "paper_dir": paper_dir, "error_message": str(e)} |
|
|
|
|
|
async def validate_segmentation_quality(self, paper_dir: str) -> Dict[str, Any]: |
|
|
""" |
|
|
Validate the quality of document segmentation. |
|
|
|
|
|
Args: |
|
|
paper_dir: Path to the paper directory |
|
|
|
|
|
Returns: |
|
|
Dict containing validation results |
|
|
""" |
|
|
try: |
|
|
|
|
|
overview_result = await self.get_document_overview(paper_dir) |
|
|
|
|
|
if overview_result["status"] != "success": |
|
|
return overview_result |
|
|
|
|
|
|
|
|
message = f"""Based on the intelligent document overview for {paper_dir}, please evaluate the enhanced segmentation quality using advanced criteria. |
|
|
|
|
|
**Enhanced Quality Assessment Factors**: |
|
|
1. **Semantic Coherence**: Do segments maintain logical content boundaries vs mechanical structural splits? |
|
|
2. **Algorithm Integrity**: Are algorithm blocks, formulas, and related explanations kept together? |
|
|
3. **Content Type Optimization**: Are different content types (algorithm, concept, formula, implementation) properly identified and scored? |
|
|
4. **Planning Agent Effectiveness**: Will ConceptAnalysisAgent, AlgorithmAnalysisAgent, and CodePlannerAgent receive optimal information? |
|
|
5. **Dynamic Sizing**: Are segments adaptively sized based on content complexity rather than fixed limits? |
|
|
6. **Technical Completeness**: Are critical technical details preserved without fragmentation? |
|
|
|
|
|
**Provide specific recommendations for**: |
|
|
- Semantic segmentation improvements |
|
|
- Algorithm/formula integrity enhancements |
|
|
- Planning agent optimization opportunities |
|
|
- Content distribution balance adjustments""" |
|
|
|
|
|
validation_result = await self.llm.generate_str(message=message) |
|
|
|
|
|
return { |
|
|
"status": "success", |
|
|
"paper_dir": paper_dir, |
|
|
"validation_result": validation_result, |
|
|
"overview_data": overview_result, |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error validating segmentation quality: {e}") |
|
|
return {"status": "error", "paper_dir": paper_dir, "error_message": str(e)} |
|
|
|
|
|
|
|
|
async def run_document_segmentation_analysis( |
|
|
paper_dir: str, logger: Optional[logging.Logger] = None, force_refresh: bool = False |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Convenience function to run document segmentation analysis. |
|
|
|
|
|
Args: |
|
|
paper_dir: Path to the paper directory |
|
|
logger: Optional logger instance |
|
|
force_refresh: Whether to force re-analysis |
|
|
|
|
|
Returns: |
|
|
Dict containing analysis results |
|
|
""" |
|
|
async with DocumentSegmentationAgent(logger=logger) as agent: |
|
|
|
|
|
analysis_result = await agent.analyze_and_prepare_document( |
|
|
paper_dir, force_refresh=force_refresh |
|
|
) |
|
|
|
|
|
if analysis_result["status"] == "success": |
|
|
|
|
|
validation_result = await agent.validate_segmentation_quality(paper_dir) |
|
|
analysis_result["validation"] = validation_result |
|
|
|
|
|
return analysis_result |
|
|
|
|
|
|
|
|
|
|
|
async def prepare_document_segments( |
|
|
paper_dir: str, logger: Optional[logging.Logger] = None |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Prepare intelligent document segments optimized for planning agents. |
|
|
|
|
|
This enhanced function leverages semantic analysis to create segments that: |
|
|
- Preserve algorithm and formula integrity |
|
|
- Optimize for ConceptAnalysisAgent, AlgorithmAnalysisAgent, and CodePlannerAgent |
|
|
- Use adaptive character limits based on content complexity |
|
|
- Maintain technical content completeness |
|
|
|
|
|
Called from the orchestration engine (Phase 3.5) to prepare documents |
|
|
before the planning phase with superior segmentation quality. |
|
|
|
|
|
Args: |
|
|
paper_dir: Path to the paper directory containing markdown file |
|
|
logger: Optional logger instance for tracking |
|
|
|
|
|
Returns: |
|
|
Dict containing enhanced preparation results and intelligent metadata |
|
|
""" |
|
|
try: |
|
|
logger = logger or logging.getLogger(__name__) |
|
|
logger.info(f"Preparing document segments for: {paper_dir}") |
|
|
|
|
|
|
|
|
result = await run_document_segmentation_analysis( |
|
|
paper_dir=paper_dir, |
|
|
logger=logger, |
|
|
force_refresh=False, |
|
|
) |
|
|
|
|
|
if result["status"] == "success": |
|
|
logger.info("Document segments prepared successfully") |
|
|
|
|
|
|
|
|
segments_dir = os.path.join(paper_dir, "document_segments") |
|
|
|
|
|
return { |
|
|
"status": "success", |
|
|
"paper_dir": paper_dir, |
|
|
"segments_dir": segments_dir, |
|
|
"segments_ready": True, |
|
|
"analysis_summary": result.get("analysis_result", ""), |
|
|
"validation_summary": result.get("validation", {}).get( |
|
|
"validation_result", "" |
|
|
), |
|
|
} |
|
|
else: |
|
|
logger.error( |
|
|
f"Document segmentation failed: {result.get('error_message', 'Unknown error')}" |
|
|
) |
|
|
return { |
|
|
"status": "error", |
|
|
"paper_dir": paper_dir, |
|
|
"segments_ready": False, |
|
|
"error_message": result.get( |
|
|
"error_message", "Document segmentation failed" |
|
|
), |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error preparing document segments: {e}") |
|
|
return { |
|
|
"status": "error", |
|
|
"paper_dir": paper_dir, |
|
|
"segments_ready": False, |
|
|
"error_message": str(e), |
|
|
} |
|
|
|