LeoZhangzaolin commited on
Commit
d635639
1 Parent(s): 8be8808

Update Graptolodiea-Speciemens-Imaging.py

Browse files
Files changed (1) hide show
  1. Graptolodiea-Speciemens-Imaging.py +98 -46
Graptolodiea-Speciemens-Imaging.py CHANGED
@@ -6,63 +6,115 @@ from typing import List
6
  import datasets
7
  import pandas as pd
8
  import numpy as np
 
 
 
 
9
 
10
  _CITATION = """\
11
-
12
- """
13
-
14
-
15
 
16
  _DESCRIPTION = """\
17
- Dataset Description:
18
- The Graptoloidea Specimens Imaging dataset is a curated collection of over 1,300 image-text pairs, focusing on Graptoloidea specimens. It encompasses detailed attributes such as species classification, geological stages, and specific locality information (with coordinates), complemented by high-quality images of each specimen. This dataset serves as a valuable resource for paleontological research, offering insights into the morphological diversity and geological distribution of Graptoloidea.
19
-
20
- Highlights:
21
- - Comprehensive Collection: Over 1,300 unique specimens, each with a corresponding high-quality image and descriptive text.
22
- - Diverse Geological Coverage: Specimens span different geological stages, offering a timeline of the Graptoloidea evolution.
23
- - Rich Annotations: Apart from visual data, the dataset includes detailed taxonomic classification, geological context, and precise locality information.
24
- - Research-Ready: Ideal for tasks like paleontological classification, morphological analysis, age estimation, and geographical distribution studies.
25
- - Educational Value: Serves as an invaluable resource for educational and outreach programs, providing tangible insights into paleontology.
26
  """
27
 
28
-
29
  _HOMEPAGE = "https://zenodo.org/records/6194943"
30
-
31
-
32
- _license = ""
33
-
34
-
35
- _URLS = {
36
- "part1": "https://zenodo.org/records/6194943/files/graptolite%20specimens%20with%20scale.zip.001?download=1",
37
- "part2": "https://zenodo.org/records/6194943/files/graptolite%20specimens%20with%20scale.zip.002?download=1",
38
- }
39
-
40
 
41
  class GraptoloideaSpecimensDataset(datasets.GeneratorBasedBuilder):
42
- """Imaging for graptoloidea specimens with extra information"""
43
-
44
 
45
  def _info(self):
46
- return datasets.DatasetInfo(
47
- description=_DESCRIPTION,
48
- features=datasets.Features(
49
- {
50
- "Suborder": datasets.Value("string"),
51
- "Infraorder": datasets.Value("string"),
52
- "Family (Subfamily)": datasets.Value("string"),
53
- "Genus": datasets.Value("string"),
54
- "Tagged Species Name": datasets.Value("string"),
55
- "Image": datasets.Value("string"),
56
- "Stage": datasets.Value("string"),
57
- "Mean Age Value": datasets.Value("float64"),
58
- "Locality (Longitude, Latitude, Horizon)": datasets.Value("string"),
59
- "Reference (Specimens Firstly Published)": datasets.Value("string"),
60
- }
61
- ),
62
- supervised_keys=None,
63
- homepage=_HOMEPAGE,
64
- citation=_CITATION,
65
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
 
 
6
  import datasets
7
  import pandas as pd
8
  import numpy as np
9
+ import csv
10
+ import logging
11
+ from PIL import Image
12
+ import ast
13
 
14
  _CITATION = """\
15
+ 111
16
+ """
 
 
17
 
18
  _DESCRIPTION = """\
19
+ [Your dataset description here...]
 
 
 
 
 
 
 
 
20
  """
21
 
 
22
  _HOMEPAGE = "https://zenodo.org/records/6194943"
23
+ _license = "111"
 
 
 
 
 
 
 
 
 
24
 
25
  class GraptoloideaSpecimensDataset(datasets.GeneratorBasedBuilder):
26
+ _URL = "https://raw.githubusercontent.com/LeoZhangzaolin/photos/main/Final_GS_with_Images.csv"
 
27
 
28
  def _info(self):
29
+ return datasets.DatasetInfo(
30
+ description=_DESCRIPTION,
31
+ features=datasets.Features(
32
+ {
33
+ "Suborder": datasets.Value("string"),
34
+ "Infraorder": datasets.Value("string"),
35
+ "Family (Subfamily)": datasets.Value("string"),
36
+ "Genus": datasets.Value("string"),
37
+ "Tagged Species Name": datasets.Value("string"),
38
+ "Image": datasets.Value("string"),
39
+ "Stage": datasets.Value("string"),
40
+ "Mean Age Value": datasets.Value("float64"),
41
+ "Locality (Longitude, Latitude, Horizon)": datasets.Value("string"),
42
+ "Reference (Specimens Firstly Published)": datasets.Value("string"),
43
+ }
44
+ ),
45
+ supervised_keys=None,
46
+ homepage=_HOMEPAGE,
47
+ citation=_CITATION,
48
+ )
49
+
50
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
51
+ downloaded_file = dl_manager.download_and_extract(self._URL)
52
+
53
+ # Read the CSV file
54
+ df = pd.read_csv(downloaded_file)
55
+ df = df.sample(frac=1).reset_index(drop=True) # Shuffle the dataset
56
+
57
+ # Splitting the dataset
58
+ train_size = int(0.7 * len(df))
59
+ test_size = int(0.15 * len(df))
60
+
61
+ train_df = df[:train_size]
62
+ test_df = df[train_size:train_size + test_size]
63
+ validation_df = df[train_size + test_size:]
64
+
65
+ # Save split dataframes to temporary CSV files
66
+ train_file = '/tmp/train_split.csv'
67
+ test_file = '/tmp/test_split.csv'
68
+ validation_file = '/tmp/validation_split.csv'
69
+
70
+ train_df.to_csv(train_file, index=False)
71
+ test_df.to_csv(test_file, index=False)
72
+ validation_df.to_csv(validation_file, index=False)
73
+
74
+ return [
75
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}),
76
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}),
77
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_file}),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath):
81
+ """This function returns the examples from the CSV file."""
82
+ logging.info("generating examples from = %s", filepath)
83
+ with open(filepath, encoding='utf-8') as f:
84
+ reader = csv.DictReader(f)
85
+ key = 0
86
+ for row in reader:
87
+ key += 1
88
+ # Extracting data from each column
89
+ suborder = row['Suborder'].strip()
90
+ infraorder = row['Infraorder'].strip()
91
+ family_subfamily = row['Family (Subfamily)'].strip()
92
+ genus = row['Genus'].strip()
93
+ species_name = row['tagged species name'].strip()
94
+ image = row['image'].strip()
95
+ stage = row['Stage'].strip()
96
+ mean_age = row['mean age value']
97
+ locality = row['Locality (Longitude, Latitude, Horizon)'].strip()
98
+ reference = row['Reference (specimens firstly published)'].strip()
99
+
100
+ # Constructing the example
101
+ yield key, {
102
+ "Suborder": suborder,
103
+ "Infraorder": infraorder,
104
+ "Family (Subfamily)": family_subfamily,
105
+ "Genus": genus,
106
+ "Tagged Species Name": species_name,
107
+ "Image": image,
108
+ "Stage": stage,
109
+ "Mean Age Value": mean_age,
110
+ "Locality (Longitude, Latitude, Horizon)": locality,
111
+ "Reference (Specimens Firstly Published)": reference,
112
+ }
113
+
114
+
115
+
116
+
117
+
118
 
119
 
120