|
"""Graptoloidea Specimens dataset.""" |
|
|
|
import os |
|
import random |
|
from typing import List |
|
import datasets |
|
import pandas as pd |
|
import numpy as np |
|
import csv |
|
import logging |
|
from PIL import Image |
|
import ast |
|
|
|
_CITATION = """\ |
|
@dataset{Xu2022graptolitespecimens |
|
title = {High-resolution images of 1550 Ordovician to Silurian graptolite specimens for global correlation and shale gas exploration}, |
|
author = {Honghe Xu}, |
|
year = {2022}, |
|
url = {https://zenodo.org/records/6194943}, |
|
publisher = {Zenodo} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset includes high-quality images of specimens, each meticulously tagged with taxonomic details such as suborder, infraorder, family, and genus. |
|
Additionally, the dataset is enriched with crucial metadata like the geological stage, mean age value, and specific locality coordinates (longitude, latitude, and horizon). |
|
References to original specimen publications are also provided, ensuring comprehensive documentation for academic rigor. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/6194943" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/LeoZhangzaolin/photos/main/Final_GS_with_Images5.csv" |
|
|
|
class GraptoloideaSpecimensDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset script retrives my processed dataset. It stands as a vital resource for researchers and enthusiasts in the field of paleontology |
|
, particularly those focusing on graptolites. Its compilation not only aids in the study of these fascinating creatures but also contributes |
|
significantly to our understanding of Earth's biological and geological past. |
|
""" |
|
_URL = _URL |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"Suborder": datasets.Value("string"), |
|
"Infraorder": datasets.Value("string"), |
|
"Family (Subfamily)": datasets.Value("string"), |
|
"Genus": datasets.Value("string"), |
|
"tagged species name": datasets.Value("string"), |
|
"image": datasets.Value("string"), |
|
"Stage": datasets.Value("string"), |
|
"mean age value": datasets.Value("float64"), |
|
"Locality (Longitude, Latitude, Horizon)": datasets.Value("string"), |
|
"Reference (specimens firstly published)": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license = _LICENSE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloaded_file = dl_manager.download_and_extract(self._URL) |
|
|
|
|
|
df = pd.read_csv(downloaded_file) |
|
df = df.sample(frac=1).reset_index(drop=True) |
|
|
|
|
|
train_size = int(0.7 * len(df)) |
|
test_size = int(0.15 * len(df)) |
|
|
|
train_df = df[:train_size] |
|
test_df = df[train_size:train_size + test_size] |
|
validation_df = df[train_size + test_size:] |
|
|
|
|
|
train_file = '/tmp/train_split.csv' |
|
test_file = '/tmp/test_split.csv' |
|
validation_file = '/tmp/validation_split.csv' |
|
|
|
train_df.to_csv(train_file, index=False) |
|
test_df.to_csv(test_file, index=False) |
|
validation_df.to_csv(validation_file, index=False) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_file}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples.""" |
|
logging.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding='utf-8') as f: |
|
reader = csv.DictReader(f) |
|
key = 0 |
|
for row in reader: |
|
key += 1 |
|
|
|
suborder = row['Suborder'].strip() |
|
infraorder = row['Infraorder'].strip() |
|
family_subfamily = row['Family (Subfamily)'].strip() |
|
genus = row['Genus'].strip() |
|
species_name = row['tagged species name'].strip() |
|
image = row['image'].strip() |
|
stage = row['Stage'].strip() |
|
mean_age = row['mean age value'] |
|
locality = row['Locality (Longitude, Latitude, Horizon)'].strip() |
|
reference = row['Reference (specimens firstly published)'].strip() |
|
|
|
|
|
yield key, { |
|
"Suborder": suborder, |
|
"Infraorder": infraorder, |
|
"Family (Subfamily)": family_subfamily, |
|
"Genus": genus, |
|
"tagged species name": species_name, |
|
"image": image, |
|
"Stage": stage, |
|
"mean age value": mean_age, |
|
"Locality (Longitude, Latitude, Horizon)": locality, |
|
"Reference (specimens firstly published)": reference, |
|
} |
|
|
|
|