Datasets:
Tasks:
Audio Classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
voice-anti-spoofing
License:
import os | |
import datasets | |
_CITATION = """\ | |
@InProceedings{Todisco2019, | |
Title = {{ASV}spoof 2019: {F}uture {H}orizons in {S}poofed and {F}ake {A}udio {D}etection}, | |
Author = {Todisco, Massimiliano and | |
Wang, Xin and | |
Sahidullah, Md and | |
Delgado, H ́ector and | |
Nautsch, Andreas and | |
Yamagishi, Junichi and | |
Evans, Nicholas and | |
Kinnunen, Tomi and | |
Lee, Kong Aik}, | |
booktitle = {Proc. of Interspeech 2019}, | |
Year = {2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This is a database used for the Third Automatic Speaker Verification Spoofing | |
and Countermeasuers Challenge, for short, ASVspoof 2019 (http://www.asvspoof.org) | |
organized by Junichi Yamagishi, Massimiliano Todisco, Md Sahidullah, Héctor | |
Delgado, Xin Wang, Nicholas Evans, Tomi Kinnunen, Kong Aik Lee, Ville Vestman, | |
and Andreas Nautsch in 2019. | |
""" | |
_HOMEPAGE = "https://datashare.ed.ac.uk/handle/10283/3336" | |
_LICENSE = "http://opendatacommons.org/licenses/by/1.0/" | |
_URLS = { | |
"LA": "https://datashare.ed.ac.uk/bitstream/handle/10283/3336/LA.zip", | |
"PA": "https://datashare.ed.ac.uk/bitstream/handle/10283/3336/PA.zip", | |
} | |
class ASVSpoof2019(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="LA", version=VERSION, description="Logical access (LA)"), | |
datasets.BuilderConfig(name="PA", version=VERSION, description="Physical access (PA)"), | |
] | |
DEFAULT_CONFIG_NAME = "LA" | |
def _info(self): | |
if self.config.name == "LA": | |
features = datasets.Features( | |
{ | |
"speaker_id": datasets.Value("string"), | |
"audio_file_name": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"system_id": datasets.Value("string"), | |
"key": datasets.ClassLabel(names=["bonafide", "spoof"]), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"speaker_id": datasets.Value("string"), | |
"audio_file_name": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"environment_id": datasets.Value("string"), | |
"attack_id": datasets.Value("string"), | |
"key": datasets.ClassLabel(names=["bonafide", "spoof"]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=("audio", "key"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"metadata_filepath": os.path.join( | |
data_dir, | |
self.config.name, | |
f"ASVspoof2019_{self.config.name}_cm_protocols", | |
f"ASVspoof2019.{self.config.name}.cm.train.trn.txt", | |
), | |
"audios_dir": os.path.join( | |
data_dir, self.config.name, f"ASVspoof2019_{self.config.name}_train", "flac" | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"metadata_filepath": os.path.join( | |
data_dir, | |
self.config.name, | |
f"ASVspoof2019_{self.config.name}_cm_protocols", | |
f"ASVspoof2019.{self.config.name}.cm.dev.trl.txt", | |
), | |
"audios_dir": os.path.join( | |
data_dir, self.config.name, f"ASVspoof2019_{self.config.name}_dev", "flac" | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"metadata_filepath": os.path.join( | |
data_dir, | |
self.config.name, | |
f"ASVspoof2019_{self.config.name}_cm_protocols", | |
f"ASVspoof2019.{self.config.name}.cm.eval.trl.txt", | |
), | |
"audios_dir": os.path.join( | |
data_dir, self.config.name, f"ASVspoof2019_{self.config.name}_eval", "flac" | |
), | |
}, | |
), | |
] | |
def _generate_examples(self, metadata_filepath, audios_dir): | |
with open(metadata_filepath) as f: | |
for i, line in enumerate(f.readlines()): | |
if self.config.name == "LA": | |
speaker_id, audio_file_name, _, system_id, key = line.strip().split() | |
result = { | |
"speaker_id": speaker_id, | |
"audio_file_name": audio_file_name, | |
"system_id": system_id, | |
"key": key, | |
} | |
elif self.config.name == "PA": | |
speaker_id, audio_file_name, environment_id, attack_id, key = line.strip().split() | |
result = { | |
"speaker_id": speaker_id, | |
"audio_file_name": audio_file_name, | |
"environment_id": environment_id, | |
"attack_id": attack_id, | |
"key": key, | |
} | |
result["audio"] = os.path.join(audios_dir, audio_file_name + ".flac") | |
yield i, result | |