Datasets:
Tasks:
Translation
Lawrence Adu-Gyamfi
commited on
Commit
•
b0b69c2
1
Parent(s):
8df7da3
First version of the akan_audio dataset
Browse files- asr_nlpghana.py +162 -0
asr_nlpghana.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" NLPGhana Voice Dataset"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
#_DATA_URL = "https://zenodo.org/record/4641533/files/ak.tar.gz?download=1"
|
25 |
+
#_DATA_URL = 'https://www.dropbox.com/s/o6k13voiy8kdhhk/ak.tar.gz?dl=1'
|
26 |
+
_DATA_URL = "ak.tar.gz"
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
This work is comprised of audio data of Twi, a low resourced language spoken by the Akan people in Ghana.
|
33 |
+
This has been adapted by NLPGhana.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://ghananlp.org/"
|
37 |
+
|
38 |
+
_LICENSE = ""
|
39 |
+
|
40 |
+
_LANGUAGES = {
|
41 |
+
"ak": {
|
42 |
+
"Language": "Twi",
|
43 |
+
"Date": "2023-07-08",
|
44 |
+
"Size": "753 MB",
|
45 |
+
"Version": "tw_05_2023-07-08",
|
46 |
+
},
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
class NLPGhanaVoiceConfig(datasets.BuilderConfig):
|
51 |
+
"""BuilderConfig for NLPGhana."""
|
52 |
+
|
53 |
+
def __init__(self, name, sub_version, **kwargs):
|
54 |
+
"""
|
55 |
+
Args:
|
56 |
+
data_dir: `string`, the path to the folder containing the files in the
|
57 |
+
downloaded .tar
|
58 |
+
citation: `string`, citation for the data set
|
59 |
+
url: `string`, url for information about the data set
|
60 |
+
**kwargs: keyword arguments forwarded to super.
|
61 |
+
"""
|
62 |
+
self.sub_version = sub_version
|
63 |
+
self.language = kwargs.pop("language", None)
|
64 |
+
self.date_of_snapshot = kwargs.pop("date", None)
|
65 |
+
self.size = kwargs.pop("size", None)
|
66 |
+
description = f"NLPGhana speech to text dataset in {self.language} version {self.sub_version} of {self.date_of_snapshot}. The dataset has a size of {self.size}"
|
67 |
+
super(NLPGhanaVoiceConfig, self).__init__(
|
68 |
+
name=name, version=datasets.Version("1.0.5", ""), description=description, **kwargs
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class NLPGhanaVoice(datasets.GeneratorBasedBuilder):
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
NLPGhanaVoiceConfig(
|
76 |
+
name=lang_id,
|
77 |
+
language=_LANGUAGES[lang_id]["Language"],
|
78 |
+
sub_version=_LANGUAGES[lang_id]["Version"],
|
79 |
+
date=_LANGUAGES[lang_id]["Date"],
|
80 |
+
size=_LANGUAGES[lang_id]["Size"],
|
81 |
+
)
|
82 |
+
for lang_id in _LANGUAGES.keys()
|
83 |
+
]
|
84 |
+
|
85 |
+
def _info(self):
|
86 |
+
features = datasets.Features(
|
87 |
+
{
|
88 |
+
"user_id": datasets.Value("string"),
|
89 |
+
"path": datasets.Value("string"),
|
90 |
+
"text": datasets.Value("string"),
|
91 |
+
"durationMsec": datasets.Value("int64"),
|
92 |
+
"sampleRate": datasets.Value("int64"),
|
93 |
+
"speaker_gender": datasets.Value("string"),
|
94 |
+
"mother_tongue": datasets.Value("string"),
|
95 |
+
"date": datasets.Value("string"),
|
96 |
+
}
|
97 |
+
)
|
98 |
+
|
99 |
+
return datasets.DatasetInfo(
|
100 |
+
description=_DESCRIPTION,
|
101 |
+
features=features,
|
102 |
+
supervised_keys=None,
|
103 |
+
homepage=_HOMEPAGE,
|
104 |
+
license=_LICENSE,
|
105 |
+
citation=None,
|
106 |
+
)
|
107 |
+
|
108 |
+
def _split_generators(self, dl_manager):
|
109 |
+
"""Returns SplitGenerators."""
|
110 |
+
dl_path = dl_manager.download_and_extract(_DATA_URL)
|
111 |
+
abs_path_to_data = os.path.join(dl_path, self.config.name)
|
112 |
+
abs_path_to_clips = os.path.join(abs_path_to_data, "clips")
|
113 |
+
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
gen_kwargs={
|
118 |
+
"filepath": os.path.join(abs_path_to_data, "train.tsv"),
|
119 |
+
"path_to_clips": abs_path_to_clips,
|
120 |
+
},
|
121 |
+
),
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TEST,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepath": os.path.join(abs_path_to_data, "test.tsv"),
|
126 |
+
"path_to_clips": abs_path_to_clips,
|
127 |
+
},
|
128 |
+
),
|
129 |
+
datasets.SplitGenerator(
|
130 |
+
name=datasets.Split.VALIDATION,
|
131 |
+
gen_kwargs={
|
132 |
+
"filepath": os.path.join(abs_path_to_data, "validation.tsv"),
|
133 |
+
"path_to_clips": abs_path_to_clips,
|
134 |
+
},
|
135 |
+
),
|
136 |
+
]
|
137 |
+
|
138 |
+
def _generate_examples(self, filepath, path_to_clips):
|
139 |
+
""" Yields examples. """
|
140 |
+
data_fields = list(self._info().features.keys())
|
141 |
+
path_idx = data_fields.index("path")
|
142 |
+
|
143 |
+
with open(filepath, encoding="utf-8") as f:
|
144 |
+
lines = f.readlines()
|
145 |
+
headline = lines[0]
|
146 |
+
|
147 |
+
column_names = headline.strip().split("\t")
|
148 |
+
assert (
|
149 |
+
column_names == data_fields
|
150 |
+
), f"The file should have {data_fields} as column names, but has {column_names}"
|
151 |
+
|
152 |
+
for id_, line in enumerate(lines[1:]):
|
153 |
+
field_values = line.strip().split("\t")
|
154 |
+
|
155 |
+
# set absolute path for mp3 audio file
|
156 |
+
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx])
|
157 |
+
|
158 |
+
# if data is incomplete, fill with empty values
|
159 |
+
if len(field_values) < len(data_fields):
|
160 |
+
field_values += (len(data_fields) - len(field_values)) * ["''"]
|
161 |
+
|
162 |
+
yield id_, {key: value for key, value in zip(data_fields, field_values)}
|