dataset / models /sage_edge_conv.py
LZYFirecn's picture
Upload folder using huggingface_hub
f829d47 verified
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import LSTM
from torch.nn import Linear
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size
from torch_geometric.utils import to_dense_batch
from torch_scatter import scatter
from torch_sparse import SparseTensor, matmul
class SAGEEdgeConv(MessagePassing):
def __init__(
self,
in_channels: Union[int, Tuple[int, int]],
out_channels: int,
edge_dim: int,
aggr: str = 'mean',
normalize: bool = False,
root_weight: bool = True,
project: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(aggr=aggr if aggr != 'lstm' else None, node_dim=0)
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.root_weight = root_weight
self.project = project
if isinstance(in_channels, int):
in_channels = (in_channels, in_channels)
if self.project:
self.lin = Linear(in_channels[0], in_channels[0], bias=True)
if self.aggr is None:
self.fuse = False # No "fused" message_and_aggregate.
self.lstm = LSTM(in_channels[0], in_channels[0], batch_first=True)
self.lin_t = Linear(edge_dim, in_channels[0], bias=bias)
self.lin_l = Linear(in_channels[0], out_channels, bias=bias)
if self.root_weight:
self.lin_r = Linear(in_channels[1], out_channels, bias=False)
self.reset_parameters()
def reset_parameters(self):
if self.project:
self.lin.reset_parameters()
if self.aggr is None:
self.lstm.reset_parameters()
self.lin_l.reset_parameters()
if self.root_weight:
self.lin_r.reset_parameters()
def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_attr: OptTensor = None,
size: Size = None) -> Tensor:
if isinstance(x, Tensor):
x: OptPairTensor = (x, x)
if self.project and hasattr(self, 'lin'):
x = (self.lin(x[0]).relu(), x[1])
# propagate_type: (x: OptPairTensor, edge_attr: OptTensor)
out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size)
out = self.lin_l(out)
x_r = x[1]
if self.root_weight and x_r is not None:
out += self.lin_r(x_r)
if self.normalize:
out = F.normalize(out, p=2., dim=-1)
return out
def message(self, x_j: Tensor, edge_attr: Tensor) -> Tensor:
return x_j + self.lin_t(edge_attr)
def message_and_aggregate(self, adj_t: SparseTensor,
x: OptPairTensor) -> Tensor:
adj_t = adj_t.set_value(None, layout=None)
return matmul(adj_t, x[0], reduce=self.aggr)
def aggregate(self, x: Tensor, index: Tensor, ptr: Optional[Tensor] = None,
dim_size: Optional[int] = None) -> Tensor:
if self.aggr is not None:
return scatter(x, index, dim=self.node_dim, dim_size=dim_size,
reduce=self.aggr)
# LSTM aggregation:
if ptr is None and not torch.all(index[:-1] <= index[1:]):
raise ValueError(f"Can not utilize LSTM-style aggregation inside "
f"'{self.__class__.__name__}' in case the "
f"'edge_index' tensor is not sorted by columns. "
f"Run 'sort_edge_index(..., sort_by_row=False)' "
f"in a pre-processing step.")
x, mask = to_dense_batch(x, batch=index, batch_size=dim_size)
out, _ = self.lstm(x)
return out[:, -1]
def __repr__(self) -> str:
aggr = self.aggr if self.aggr is not None else 'lstm'
return (f'{self.__class__.__name__}({self.in_channels}, '
f'{self.out_channels}, aggr={aggr})')