dataset / edge_aware_gnn_node.py
LZYFirecn's picture
Upload folder using huggingface_hub
f829d47 verified
import os
import pickle
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../..', '..', '..')))
from models.edge_conv import EdgeConvConv
from models.sage_edge_conv import SAGEEdgeConv
from models.mlp import MLP
import torch.nn.functional as F
import numpy as np
import torch
import torch_geometric.transforms as T
from torch_geometric.loader import NeighborLoader
from torch_geometric import seed_everything
import tqdm
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score
from torch_geometric.loader import NeighborSampler
from torch_geometric.nn import SAGEConv, TransformerConv, GINEConv, EdgeConv, GeneralConv
from torch.nn import Linear
import argparse
class GNN(torch.nn.Module):
def __init__(self, hidden_channels, edge_dim, num_layers, model_type):
super().__init__()
self.convs = torch.nn.ModuleList()
if model_type == 'GraphSAGE':
self.conv = SAGEEdgeConv(hidden_channels, hidden_channels, edge_dim=edge_dim)
elif model_type == 'GraphTransformer':
self.conv = TransformerConv((-1, -1), hidden_channels, edge_dim=edge_dim)
elif model_type == 'GINE':
self.conv = GINEConv(Linear(hidden_channels, hidden_channels), edge_dim=edge_dim)
elif model_type == 'EdgeConv':
self.conv = EdgeConvConv(Linear(2 * hidden_channels + edge_dim, hidden_channels), train_eps=True,
edge_dim=edge_dim)
elif model_type == 'GeneralConv':
self.conv = GeneralConv((-1, -1), hidden_channels, in_edge_channels=edge_dim)
else:
raise NotImplementedError('Model type not implemented')
for _ in range(num_layers):
self.convs.append(self.conv)
def forward(self, x, edge_index, edge_attr):
for i, conv in enumerate(self.convs):
x = conv(x, edge_index, edge_attr=edge_attr)
x = x.relu() if i != len(self.convs) - 1 else x
return x
class Classifier(torch.nn.Module):
def __init__(self, hidden_channels, out_channels):
super().__init__()
self.lin1 = Linear(hidden_channels, hidden_channels // 4)
self.lin2 = Linear(hidden_channels // 4, out_channels)
def forward(self, x):
x = self.lin1(x).relu()
x = self.lin2(x)
return x
class Model(torch.nn.Module):
def __init__(self, hidden_channels, out_channels, edge_dim, num_layers, model_type):
super().__init__()
self.model_type = model_type
if model_type != 'MLP':
self.gnn = GNN(hidden_channels, edge_dim, num_layers, model_type=model_type)
self.classifier = Classifier(hidden_channels, out_channels)
def forward(self, data):
x = data.x
if self.model_type != 'MLP':
x = self.gnn(x, data.edge_index, data.edge_attr)
pred = self.classifier(x)
return pred
if __name__ == '__main__':
seed_everything(66)
parser = argparse.ArgumentParser()
parser.add_argument('--data_type', '-dt', type=str, default='reddit', help='Data type')
parser.add_argument('--emb_type', '-et', type=str, default='GPT-3.5-TURBO', help='Embedding type') # TODO: set edge dim
parser.add_argument('--model_type', '-mt', type=str, default='MLP', help='Model type')
args = parser.parse_args()
# Dataset = Children(root='.')
# data = Dataset[0] # TODO: Citation code in TAG
with open(f'./reddit_graph.pkl', 'rb') as f:
data = pickle.load(f)
print(data)
num_nodes = len(data.text_nodes)
num_edges = len(data.text_edges)
# map node labels
node_labels=data.node_labels.tolist()
label_to_int = {label: i for i, label in enumerate(set(node_labels))}
data.y = torch.tensor([label_to_int[label] for label in node_labels]).long()
# data split
train_ratio = 0.8
val_ratio = 0.1
num_train_paper = int(num_nodes * train_ratio)
num_val_paper = int(num_nodes * val_ratio)
num_test_paper = num_nodes - num_train_paper - num_val_paper
paper_indices = torch.randperm(num_nodes)
data.train_mask = torch.zeros(num_nodes, dtype=torch.bool)
data.val_mask = torch.zeros(num_nodes, dtype=torch.bool)
data.test_mask = torch.zeros(num_nodes, dtype=torch.bool)
data.train_mask[paper_indices[:num_val_paper]] = 1
data.val_mask[paper_indices[num_val_paper:num_val_paper + num_val_paper ]] = 1
data.test_mask[paper_indices[-num_test_paper:]] = 1
data.num_classes = max(data.y) + 1
data.num_nodes = num_nodes
del data.text_nodes
del data.text_node_labels
del data.text_edges
# set hidden channels and edge dim for diff emb type
if args.emb_type != 'None':
data.x = torch.load(f'./reddit_graph-openai-node.pt').squeeze().float()
data.edge_attr = torch.load(f'./reddit_graph-openai-edge.pt').squeeze().float()
if args.emb_type == 'GPT-3.5-TURBO':
edge_dim = 1536
node_dim = 1536
elif args.emb_type == 'Large_Bert':
edge_dim = 1024
node_dim = 1024
elif args.emb_type == 'BERT':
edge_dim = 768
node_dim = 768
else:
raise NotImplementedError('Embedding type not implemented')
else:
data.x = torch.load(f'./reddit_graph-openai-node.pt').squeeze().float()
data.edge_attr = torch.randn(num_edges, 1024).squeeze().float()
edge_dim = 1024
node_dim = 1024
# Make sure all attributes of data are contiguous
data.x = data.x.contiguous()
data.edge_index = data.edge_index.contiguous()
print(data)
# Now create the NeighborLoaders
train_loader = NeighborLoader(data, input_nodes=data.train_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=True)
val_loader = NeighborLoader(data, input_nodes=data.val_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=False)
test_loader = NeighborLoader(data, input_nodes=data.test_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=False)
train_loader = NeighborLoader(data, input_nodes=data.train_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=True)
val_loader = NeighborLoader(data, input_nodes=data.val_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=False)
test_loader = NeighborLoader(data, input_nodes=data.test_mask, num_neighbors=[10, 10], batch_size=1024, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
model = Model(hidden_channels=node_dim, out_channels=data.num_classes, edge_dim=edge_dim, num_layers=2, model_type=args.model_type)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(1, 10):
model.train()
total_examples = total_loss = 0
for batch in tqdm.tqdm(train_loader):
optimizer.zero_grad()
batch = batch.to(device)
batch_size = batch.batch_size
out = model(batch)
loss = criterion(out, batch.y)
loss.backward()
optimizer.step()
total_examples += batch_size
total_loss += float(loss) * batch_size
if epoch % 1 == 0 and epoch != 0:
print('Validation begins')
model.eval()
with torch.no_grad():
preds = []
ground_truths = []
for batch in tqdm.tqdm(val_loader):
batch = batch.to(device)
out = model(batch)
pred = F.softmax(out, dim=1)
preds.append(pred)
ground_truths.append(batch.y)
pred = torch.cat(preds, dim=0).cpu().numpy()
ground_truth = torch.cat(ground_truths, dim=0).cpu().numpy()
# F1 Score
y_pred_labels = np.argmax(pred, axis=1) # 获得预测类别
f1 = f1_score(ground_truth, y_pred_labels, average='weighted')
print(f"F1 score: {f1:.4f}")
# ACC
accuracy = accuracy_score(ground_truth, y_pred_labels)
print(f"Validation Accuracy: {accuracy:.4f}")