|
import math |
|
|
|
import numpy as np |
|
import skimage |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
from PIL import Image, ImageDraw |
|
|
|
from modules import images, processing, devices |
|
from modules.processing import Processed, process_images |
|
from modules.shared import opts, cmd_opts, state |
|
|
|
|
|
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05): |
|
|
|
def _fft2(data): |
|
if data.ndim > 2: |
|
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128) |
|
for c in range(data.shape[2]): |
|
c_data = data[:, :, c] |
|
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho") |
|
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c]) |
|
else: |
|
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) |
|
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho") |
|
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :]) |
|
|
|
return out_fft |
|
|
|
def _ifft2(data): |
|
if data.ndim > 2: |
|
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128) |
|
for c in range(data.shape[2]): |
|
c_data = data[:, :, c] |
|
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho") |
|
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c]) |
|
else: |
|
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) |
|
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho") |
|
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :]) |
|
|
|
return out_ifft |
|
|
|
def _get_gaussian_window(width, height, std=3.14, mode=0): |
|
window_scale_x = float(width / min(width, height)) |
|
window_scale_y = float(height / min(width, height)) |
|
|
|
window = np.zeros((width, height)) |
|
x = (np.arange(width) / width * 2. - 1.) * window_scale_x |
|
for y in range(height): |
|
fy = (y / height * 2. - 1.) * window_scale_y |
|
if mode == 0: |
|
window[:, y] = np.exp(-(x ** 2 + fy ** 2) * std) |
|
else: |
|
window[:, y] = (1 / ((x ** 2 + 1.) * (fy ** 2 + 1.))) ** (std / 3.14) |
|
|
|
return window |
|
|
|
def _get_masked_window_rgb(np_mask_grey, hardness=1.): |
|
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3)) |
|
if hardness != 1.: |
|
hardened = np_mask_grey[:] ** hardness |
|
else: |
|
hardened = np_mask_grey[:] |
|
for c in range(3): |
|
np_mask_rgb[:, :, c] = hardened[:] |
|
return np_mask_rgb |
|
|
|
width = _np_src_image.shape[0] |
|
height = _np_src_image.shape[1] |
|
num_channels = _np_src_image.shape[2] |
|
|
|
np_src_image = _np_src_image[:] * (1. - np_mask_rgb) |
|
np_mask_grey = (np.sum(np_mask_rgb, axis=2) / 3.) |
|
img_mask = np_mask_grey > 1e-6 |
|
ref_mask = np_mask_grey < 1e-3 |
|
|
|
windowed_image = _np_src_image * (1. - _get_masked_window_rgb(np_mask_grey)) |
|
windowed_image /= np.max(windowed_image) |
|
windowed_image += np.average(_np_src_image) * np_mask_rgb |
|
|
|
src_fft = _fft2(windowed_image) |
|
src_dist = np.absolute(src_fft) |
|
src_phase = src_fft / src_dist |
|
|
|
|
|
rng = np.random.default_rng(0) |
|
|
|
noise_window = _get_gaussian_window(width, height, mode=1) |
|
noise_rgb = rng.random((width, height, num_channels)) |
|
noise_grey = (np.sum(noise_rgb, axis=2) / 3.) |
|
noise_rgb *= color_variation |
|
for c in range(num_channels): |
|
noise_rgb[:, :, c] += (1. - color_variation) * noise_grey |
|
|
|
noise_fft = _fft2(noise_rgb) |
|
for c in range(num_channels): |
|
noise_fft[:, :, c] *= noise_window |
|
noise_rgb = np.real(_ifft2(noise_fft)) |
|
shaped_noise_fft = _fft2(noise_rgb) |
|
shaped_noise_fft[:, :, :] = np.absolute(shaped_noise_fft[:, :, :]) ** 2 * (src_dist ** noise_q) * src_phase |
|
|
|
brightness_variation = 0. |
|
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2. |
|
|
|
|
|
shaped_noise = np.real(_ifft2(shaped_noise_fft)) |
|
shaped_noise -= np.min(shaped_noise) |
|
shaped_noise /= np.max(shaped_noise) |
|
shaped_noise[img_mask, :] = skimage.exposure.match_histograms(shaped_noise[img_mask, :] ** 1., contrast_adjusted_np_src[ref_mask, :], channel_axis=1) |
|
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb |
|
|
|
matched_noise = shaped_noise[:] |
|
|
|
return np.clip(matched_noise, 0., 1.) |
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "Outpaint Canvas Region" |
|
|
|
def show(self, is_img2img): |
|
return is_img2img |
|
|
|
def ui(self, is_img2img): |
|
if not is_img2img: |
|
return None |
|
|
|
canvasButton = gr.Button("Show/Hide Canvas") |
|
leftcoord = gr.Slider(label="Left start coord", minimum=-400, maximum=2048, step=1, value=0, elem_id="leftCoord") |
|
topcoord = gr.Slider(label="top start coord", minimum=-400, maximum=2048, step=1, value=0, elem_id="topCoord") |
|
dummy = gr.Slider(label="unused", minimum=-1, maximum=1, step=1, value=0) |
|
|
|
canvasButton.click(None, [], dummy, _js="(x) => { let grap = document.body.children[0];\ |
|
let tabDiv = grap.shadowRoot.getElementById('tab_img2img');\ |
|
let img2imgDiv = grap.shadowRoot.getElementById('img2img_image');\ |
|
let imgB64 = img2imgDiv.children[2].children[0].children[1].src;\ |
|
let canvDiv = grap.shadowRoot.getElementById('outDrawCanvasDiv');\ |
|
let canv = grap.shadowRoot.getElementById('outDrawCanvas');\ |
|
console.info('run',canvDiv);\ |
|
if (!canvDiv) {\ |
|
canvDiv = document.createElement('div');\ |
|
canvDiv.id = 'outDrawCanvasDiv';\ |
|
canv = document.createElement('canvas');\ |
|
canv.id = 'outDrawCanvas';\ |
|
canvDiv.append(canv);\ |
|
tabDiv.append(canvDiv);\ |
|
canvDiv.style.display = 'none';\ |
|
canvDiv.style.position = 'absolute';\ |
|
canvDiv.style.left = '50px';\ |
|
canvDiv.style.right = '50px';\ |
|
canvDiv.style.top = '50px';\ |
|
canvDiv.style.bottom = '50px';\ |
|
canvDiv.style.zIndex = '1000';\ |
|
canvDiv.style.background = '#d0d0d0';\ |
|
canvDiv.style.overflow = 'auto';\ |
|
canv.onclick = function(event) {\ |
|
event.stopPropagation();\ |
|
let rect = canv.getBoundingClientRect();\ |
|
let x = event.clientX - rect.left;\ |
|
let y = event.clientY - rect.top;\ |
|
if (x>canv.width-512 || y>canv.height-512) return;\ |
|
let ctx = canv.getContext('2d');\ |
|
ctx.fillStyle = 'black';\ |
|
ctx.fillRect(0, 0, canv.width, canv.height);\ |
|
ctx.drawImage(canv.storeImage, 400, 400, canv.width-800, canv.height-800);\ |
|
ctx.beginPath();\ |
|
ctx.lineWidth = '2';\ |
|
ctx.strokeStyle = 'white';\ |
|
ctx.rect(x, y, 512, 512);\ |
|
ctx.stroke();\ |
|
grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[0].value = x - 400;\ |
|
grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[1].value = x - 400;\ |
|
grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[0].value = y -400;\ |
|
grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[1].value = y - 400;\ |
|
grap.shadowRoot.getElementById('leftCoord').getElementsByTagName('input')[0].dispatchEvent(new Event('input'));\ |
|
grap.shadowRoot.getElementById('topCoord').getElementsByTagName('input')[0].dispatchEvent(new Event('input'));\ |
|
}\ |
|
}\ |
|
console.info(canvDiv.style.display);\ |
|
if (canvDiv.style.display!=='none') {\ |
|
canvDiv.style.display = 'none';\ |
|
return 0;\ |
|
}\ |
|
if (canv && imgB64) {\ |
|
let ctx = canv.getContext('2d');\ |
|
let image = new Image();\ |
|
image.onload = function() {\ |
|
console.info('onLoad');\ |
|
canv.width = this.width;\ |
|
canv.height = this.height;\ |
|
ctx.drawImage(this, 0, 0);\ |
|
let pixelData = ctx.getImageData(0, 0, canv.width, canv.height).data;\ |
|
let firstX = 9999;\ |
|
let firstY = 9999;\ |
|
let lastX = 0;\ |
|
let lastY = 0;\ |
|
for (let y=0;y<this.height;y=y+10) {\ |
|
for (let x=0;x<this.width;x++) {\ |
|
if (pixelData[y*this.width*3+x*3] || pixelData[y*this.width*3+x*3+1] || pixelData[y*this.width*3+x*3+2]) {\ |
|
if (x<firstX) firstX = x;\ |
|
if (x>lastX) lastX = x;\ |
|
}\ |
|
}\ |
|
}\ |
|
for (let x=0;x<this.width;x=x+10) {\ |
|
for (let y=0;y<this.height;y++) {\ |
|
if (pixelData[y*this.width*3+x*3] || pixelData[y*this.width*3+x*3+1] || pixelData[y*this.width*3+x*3+2]) {\ |
|
if (y<firstY) firstY = y;\ |
|
if (y>lastY) lastY = y;\ |
|
}\ |
|
}\ |
|
}\ |
|
if (lastX<firstX || lastY < firstY) return 0;\ |
|
canv.width = (lastX - firstX) + 800;\ |
|
canv.style.width = canv.width + 'px';\ |
|
canv.height = (lastY - firstY) + 800;\ |
|
canv.style.height = canv.height + 'px';\ |
|
ctx.fillStyle = 'black';\ |
|
ctx.fillRect(0, 0, canv.width, canv.height);\ |
|
ctx.drawImage(image, 400, 400, (lastX - firstX), (lastY - firstY));\ |
|
canvDiv.style.display = 'block';\ |
|
canvDiv.style.position = 'fixed';\ |
|
canvDiv.style.left = '400px';\ |
|
canvDiv.style.width = 'calc(100% - 400px)';\ |
|
canvDiv.style.top = '0px';\ |
|
canvDiv.style.height = '100%';\ |
|
canv.storeImage = this; \ |
|
};\ |
|
console.info('loading image');\ |
|
image.src = imgB64;\ |
|
};\ |
|
return 0}") |
|
return [leftcoord, topcoord,canvasButton,dummy] |
|
|
|
def run(self, p, leftcoord, topcoord,canvasButton,dummy): |
|
initial_seed = None |
|
initial_info = None |
|
p.mask_blur = 0 |
|
p.inpaint_full_res = False |
|
p.do_not_save_samples = True |
|
p.do_not_save_grid = True |
|
origInBaseLeft = 0 |
|
origInBaseTop = 0 |
|
workItemLeft = leftcoord |
|
workItemTop = topcoord |
|
newwidth = p.init_images[0].width |
|
newheight = p.init_images[0].height |
|
if leftcoord<0: |
|
newwidth = newwidth - leftcoord |
|
origInBaseLeft = -leftcoord |
|
workItemLeft = 0 |
|
if topcoord<0: |
|
newheight = newheight - topcoord |
|
origInBaseTop = -topcoord |
|
workItemTop = 0 |
|
if leftcoord + p.width > newwidth: |
|
newwidth = leftcoord + p.width |
|
if topcoord + p.height > newheight: |
|
newheight = topcoord + p.height |
|
newBase = Image.new("RGB", (newwidth, newheight), "black") |
|
newBase.paste(p.init_images[0], (origInBaseLeft, origInBaseTop)) |
|
workItem = Image.new("RGB", (p.width, p.height)) |
|
region = newBase.crop((workItemLeft, workItemTop, workItemLeft+p.width, workItemTop + p.height)) |
|
workItem.paste(region, (0,0)) |
|
workData = np.array(workItem).astype(np.float32) / 255.0 |
|
mask = Image.new("L", (p.width, p.height),color=255) |
|
maskData = np.array(mask) |
|
for y in range(p.height): |
|
for x in range(p.width): |
|
if workData[y][x][0] + workData[y][x][1] + workData[y][x][2] > 0.001: |
|
maskData[y][x] = 0 |
|
p.image_mask = Image.fromarray(maskData, mode="L") |
|
np_image = (np.asarray(workItem) / 255.0).astype(np.float64) |
|
np_mask = (np.asarray(p.image_mask.convert('RGB')) / 255.0).astype(np.float64) |
|
noised = get_matched_noise(np_image, np_mask) |
|
workItem = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") |
|
workImages = [] |
|
for n in range(p.batch_size): |
|
workImages.append(workItem) |
|
p.init_images = workImages |
|
p.latent_mask = None |
|
proc = process_images(p) |
|
results = [] |
|
for n in range(p.batch_size): |
|
proc_img = proc.images[n] |
|
final_image = newBase.copy() |
|
final_image.paste(proc_img,(workItemLeft,workItemTop)) |
|
proc.images[n] = final_image |
|
return proc |
|
|