image
imagewidth (px)
46
1.73k
latex_formula
stringlengths
6
300
\[k_{i}= \frac{x_{i}}{ \sum x_{i}}\]
\[X_{t_{2}}-X_{t_{1}}, \ldots,X_{t_{n}}-X_{t_{n-1}}\]
\[\sum_{i=1}^{n+1}i= \sum_{i=1}^{n}i+(n+1)= \frac{n(n+1)}{2}+n+1\]
\[\lim_{y \rightarrow xf(y)=f(x)}\]
\[b^{3}-3/2b\]
\[1 \pm \sqrt{2}\]
\[\frac{n+1-1}{n+1}= \frac{n}{n+1}\]
\[\frac{ \sqrt{6}+ \sqrt{2}}{4}\]
\[(y^{ \frac{1}{b}})^{b} \leq(x^{ \frac{1}{b}})^{b}\]
\[\frac{3x}{3}+ \frac{1}{3}= \frac{4}{3}\]
\[-39\]
\[milli\]
\[\theta+e \alpha\]
\[\Delta^{kx}\]
\[F(b)-F(a)\]
\[\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})3}\]
\[\sum_{i=1}^{n}a^{2}=a^{2} \sum_{i=1}^{n}1=na^{2}\]
\[\sin x-x \cos x\]
\[1,000_{,}000_{,}000\]
\[c_{x}c_{x+1}\]
\[G \times H\]
\[\sum_{k=1}^{n}a_{k}= \sum_{i=1}^{n}a= \sum_{j=1}^{n}a_{j}\]
\[a^{n}+( \frac{1}{a})^{n}\]
\[r \geq 1\]
\[\mu \geq 0\]
\[\frac{3 \times 3^{2}}{2}+ \frac{5 \times(-5)^{2}}{2}= \frac{3 \times v_{1}^{2}}{2}+ \frac{5 \times v_{2}^{2}}{2}\]
\[Y_{t+1}\]
\[\sqrt{4x^{5}+x}\]
\[17\]
\[1-2a+b-2ab=1-2b+a-2ab\]
\[x^{i}e_{i}= \sum_{i}x^{i}e_{i}\]
\[\frac{319}{28}=11.39\]
\[- \frac{11 \pi}{8}\]
\[[ \frac{1}{2} \sin^{2}(1)]-[ \frac{1}{2} \sin^{2}(0)]\]
\[\alpha^{2}+ \beta^{2}=( \alpha+ \beta)^{2}-2 \alpha \beta\]
\[0+A\]
\[f^{(i+k)}(0)=f^{(i)}(0)f^{(k)}(0)\]
\[S/V\]
\[\frac{n_{A}}{n}\]
\[f(x)= \frac{ \infty}{ \infty}\]
\[[B]\]
\[60^{o}\]
\[n \geq 0\]
\[\lim \frac{|a_{n+1}x|}{|a_{n}|}<1\]
\[\log a+ \log b= \log ab\]
\[\sum_{k=1}^{n}(ca_{k})=c \sum_{i=1}^{n}(a_{k})\]
\[3N-3-2=3N-5\]
\[\int cdx\]
\[g(y)-g(x)\]
\[t-s\]
\[-y-5(1)\]
\[q_{eq}=1-p_{eq}\]
\[\int \frac{1}{p}dp= \int \frac{z}{a}dt\]
\[x^{3}(x-(2x+3)(2x-3))\]
\[(x+2y)(x^{2}-2xy+4y^{2})\]
\[w_{1}+w_{2}\]
\[E/[E,E]\]
\[\lim_{x \rightarrow 0}f(x)\]
\[\sqrt{2} \sqrt{2}=2\]
\[\lim_{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{4i^{2}}{n^{2}}\]
\[\int_{a}^{b}f(x)dx= \int_{a}^{b}g(x)dx\]
\[\sum F_{x}\]
\[( \frac{1}{n \pi}- \frac{ \cos(n \pi)}{n \pi})+( \frac{1}{n \pi}- \frac{ \cos(n \pi)}{n \pi})\]
\[M=E-e \sin E\]
\[f(1.99999)=3.99999\]
\[\sin \alpha \sin \beta= \frac{1}{2}[ \cos( \alpha- \beta)- \cos( \alpha+ \beta)]\]
\[\int \sum_{j=0}^{ \infty}a_{j}z^{j}dz= \sum_{j=1}^{ \infty} \frac{a_{j-1}}{j}x^{j}\]
\[(1-2^{-s})(1+ \frac{1}{2^{s}}+ \frac{1}{3^{s}}+ \frac{1}{4^{s}}+ \frac{1}{5^{s}}+ \ldots)\]
\[e^{x}+18x+12\]
\[\sum Y_{i}\]
\[\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\]
\[\frac{-6x}{-6}< \frac{18}{-6}\]
\[\frac{1}{ \sqrt{2}}+ \frac{1}{ \sqrt{2}}i\]
\[\cos(x-y)= \cos x \cos y+ \sin x \sin y\]
\[y \in B\]
\[a^{2}+a=a^{2}+a+1-1=-1\]
\[\sqrt{7}+2 \sqrt{7}\]
\[e_{PVT}\]
\[(d-1)(d+1)\]
\[\int \frac{dx}{x}+ \int \frac{2}{x+1}dx\]
\[\frac{6 \div 2}{10 \div 2}= \frac{3}{5}\]
\[\int x \sin xdx\]
\[\frac{1}{2} \int_{1}^{5} \cos(u)du\]
\[\tan(- \theta)=- \tan \theta\]
\[x= \beta\]
\[kg\]
\[\frac{1}{5}+ \frac{3}{5}= \frac{1+3}{5}= \frac{4}{5}\]
\[8+7\]
\[( \cos \theta+i \sin \theta)^{n}= \cos n \theta+i \sin n \theta\]
\[P_{1}\]
\[ds\]
\[8z^{7}+24cz^{5}+24c^{2}z^{3}+8cz^{3}+8c^{3}z+8c^{2}z\]
\[1=1(1)(1)\]
\[a(b+k)=ab+ak\]
\[x \rightarrow 0\]
\[Im\]
\[x_{B5}\]
\[\int f(ax)dx= \frac{1}{a} \int f(x)dx\]
\[( \frac{a}{b})^{n}= \frac{a^{n}}{b^{n}}\]
\[\frac{3}{8}\]