image
imagewidth (px) 46
1.73k
| latex_formula
stringlengths 6
300
|
---|---|
\[k_{i}= \frac{x_{i}}{ \sum x_{i}}\] |
|
\[X_{t_{2}}-X_{t_{1}}, \ldots,X_{t_{n}}-X_{t_{n-1}}\] |
|
\[\sum_{i=1}^{n+1}i= \sum_{i=1}^{n}i+(n+1)= \frac{n(n+1)}{2}+n+1\] |
|
\[\lim_{y \rightarrow xf(y)=f(x)}\] |
|
\[b^{3}-3/2b\] |
|
\[1 \pm \sqrt{2}\] |
|
\[\frac{n+1-1}{n+1}= \frac{n}{n+1}\] |
|
\[\frac{ \sqrt{6}+ \sqrt{2}}{4}\] |
|
\[(y^{ \frac{1}{b}})^{b} \leq(x^{ \frac{1}{b}})^{b}\] |
|
\[\frac{3x}{3}+ \frac{1}{3}= \frac{4}{3}\] |
|
\[-39\] |
|
\[milli\] |
|
\[\theta+e \alpha\] |
|
\[\Delta^{kx}\] |
|
\[F(b)-F(a)\] |
|
\[\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})3}\] |
|
\[\sum_{i=1}^{n}a^{2}=a^{2} \sum_{i=1}^{n}1=na^{2}\] |
|
\[\sin x-x \cos x\] |
|
\[1,000_{,}000_{,}000\] |
|
\[c_{x}c_{x+1}\] |
|
\[G \times H\] |
|
\[\sum_{k=1}^{n}a_{k}= \sum_{i=1}^{n}a= \sum_{j=1}^{n}a_{j}\] |
|
\[a^{n}+( \frac{1}{a})^{n}\] |
|
\[r \geq 1\] |
|
\[\mu \geq 0\] |
|
\[\frac{3 \times 3^{2}}{2}+ \frac{5 \times(-5)^{2}}{2}= \frac{3 \times v_{1}^{2}}{2}+ \frac{5 \times v_{2}^{2}}{2}\] |
|
\[Y_{t+1}\] |
|
\[\sqrt{4x^{5}+x}\] |
|
\[17\] |
|
\[1-2a+b-2ab=1-2b+a-2ab\] |
|
\[x^{i}e_{i}= \sum_{i}x^{i}e_{i}\] |
|
\[\frac{319}{28}=11.39\] |
|
\[- \frac{11 \pi}{8}\] |
|
\[[ \frac{1}{2} \sin^{2}(1)]-[ \frac{1}{2} \sin^{2}(0)]\] |
|
\[\alpha^{2}+ \beta^{2}=( \alpha+ \beta)^{2}-2 \alpha \beta\] |
|
\[0+A\] |
|
\[f^{(i+k)}(0)=f^{(i)}(0)f^{(k)}(0)\] |
|
\[S/V\] |
|
\[\frac{n_{A}}{n}\] |
|
\[f(x)= \frac{ \infty}{ \infty}\] |
|
\[[B]\] |
|
\[60^{o}\] |
|
\[n \geq 0\] |
|
\[\lim \frac{|a_{n+1}x|}{|a_{n}|}<1\] |
|
\[\log a+ \log b= \log ab\] |
|
\[\sum_{k=1}^{n}(ca_{k})=c \sum_{i=1}^{n}(a_{k})\] |
|
\[3N-3-2=3N-5\] |
|
\[\int cdx\] |
|
\[g(y)-g(x)\] |
|
\[t-s\] |
|
\[-y-5(1)\] |
|
\[q_{eq}=1-p_{eq}\] |
|
\[\int \frac{1}{p}dp= \int \frac{z}{a}dt\] |
|
\[x^{3}(x-(2x+3)(2x-3))\] |
|
\[(x+2y)(x^{2}-2xy+4y^{2})\] |
|
\[w_{1}+w_{2}\] |
|
\[E/[E,E]\] |
|
\[\lim_{x \rightarrow 0}f(x)\] |
|
\[\sqrt{2} \sqrt{2}=2\] |
|
\[\lim_{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n} \frac{4i^{2}}{n^{2}}\] |
|
\[\int_{a}^{b}f(x)dx= \int_{a}^{b}g(x)dx\] |
|
\[\sum F_{x}\] |
|
\[( \frac{1}{n \pi}- \frac{ \cos(n \pi)}{n \pi})+( \frac{1}{n \pi}- \frac{ \cos(n \pi)}{n \pi})\] |
|
\[M=E-e \sin E\] |
|
\[f(1.99999)=3.99999\] |
|
\[\sin \alpha \sin \beta= \frac{1}{2}[ \cos( \alpha- \beta)- \cos( \alpha+ \beta)]\] |
|
\[\int \sum_{j=0}^{ \infty}a_{j}z^{j}dz= \sum_{j=1}^{ \infty} \frac{a_{j-1}}{j}x^{j}\] |
|
\[(1-2^{-s})(1+ \frac{1}{2^{s}}+ \frac{1}{3^{s}}+ \frac{1}{4^{s}}+ \frac{1}{5^{s}}+ \ldots)\] |
|
\[e^{x}+18x+12\] |
|
\[\sum Y_{i}\] |
|
\[\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\] |
|
\[\frac{-6x}{-6}< \frac{18}{-6}\] |
|
\[\frac{1}{ \sqrt{2}}+ \frac{1}{ \sqrt{2}}i\] |
|
\[\cos(x-y)= \cos x \cos y+ \sin x \sin y\] |
|
\[y \in B\] |
|
\[a^{2}+a=a^{2}+a+1-1=-1\] |
|
\[\sqrt{7}+2 \sqrt{7}\] |
|
\[e_{PVT}\] |
|
\[(d-1)(d+1)\] |
|
\[\int \frac{dx}{x}+ \int \frac{2}{x+1}dx\] |
|
\[\frac{6 \div 2}{10 \div 2}= \frac{3}{5}\] |
|
\[\int x \sin xdx\] |
|
\[\frac{1}{2} \int_{1}^{5} \cos(u)du\] |
|
\[\tan(- \theta)=- \tan \theta\] |
|
\[x= \beta\] |
|
\[kg\] |
|
\[\frac{1}{5}+ \frac{3}{5}= \frac{1+3}{5}= \frac{4}{5}\] |
|
\[8+7\] |
|
\[( \cos \theta+i \sin \theta)^{n}= \cos n \theta+i \sin n \theta\] |
|
\[P_{1}\] |
|
\[ds\] |
|
\[8z^{7}+24cz^{5}+24c^{2}z^{3}+8cz^{3}+8c^{3}z+8c^{2}z\] |
|
\[1=1(1)(1)\] |
|
\[a(b+k)=ab+ak\] |
|
\[x \rightarrow 0\] |
|
\[Im\] |
|
\[x_{B5}\] |
|
\[\int f(ax)dx= \frac{1}{a} \int f(x)dx\] |
|
\[( \frac{a}{b})^{n}= \frac{a^{n}}{b^{n}}\] |
|
\[\frac{3}{8}\] |