image
imagewidth (px)
46
1.73k
latex_formula
stringlengths
6
300
\[4 \times 4+4+4\]
\[2^{2}b_{2}+2b_{1}+b_{0}\]
\[\frac{a^{2}-a \sqrt{a}}{a-1}\]
\[c_{1}+c_{2}+c_{3}\]
\[(a_{1}b_{3}-a_{3}b_{1})\]
\[Hz\]
\[\sin x+ \sin y=2 \sin( \frac{x+y}{2}) \cos( \frac{x-y}{2})\]
\[(e^{8}-9)/9\]
\[y_{i+1}=y_{i}+ \int_{x_{i}}^{x_{i+1}}fdx\]
\[\sqrt{75}\]
\[2 \sum_{x=1}^{n}x- \sum_{x=1}^{n}1\]
\[\int( \sin(t)-t)dt=- \cos(t)- \frac{1}{2}t^{2}\]
\[\lim_{n \rightarrow \infty} \frac{4}{3} \frac{2n^{2}+3n+1}{n^{2}}\]
\[\frac{7x}{7}= \frac{14}{7}\]
\[x>A\]
\[kg\]
\[20x-8y=20\]
\[\frac{ \sqrt{2- \sqrt{2}}}{2}\]
\[x_{i} \leq x \leq x_{i+1}\]
\[(4/3,2/3,4/3)\]
\[x_{k}xy_{k}+y_{k}yy_{k}\]
\[\{a \}\]
\[5-3=(1+1+1+1+1)-(1+1+1)=2\]
\[\frac{a+b}{2}\]
\[\frac{p}{q}\]
\[\lim_{z \rightarrow z_{0}}f(z)=f(z_{0})\]
\[x^{3}+8y^{3}\]
\[p^{ \alpha}-p^{ \alpha-1}\]
\[\frac{1}{ \tan( \theta)}= \frac{ \cos( \theta)}{ \sin( \theta)}\]
\[121=1x10^{2}+2x10^{1}+1x10^{0}=100+20+1\]
\[1= \frac{Y}{Y}\]
\[\frac{ \alpha}{2}- \frac{ \alpha+1}{2}= \frac{1}{2}\]
\[\sum_{r=1}^{n}r\]
\[\sin 6 \theta\]
\[\frac{2^{2}+7}{2^{5}7^{2}}\]
\[1-d=(1- \frac{d^{(m)}}{m})^{m}\]
\[M_{1}\]
\[udu=- \frac{dy}{2y^{2}}\]
\[\frac{1}{ \sqrt{k+1}}\]
\[y^{4}-9y^{2}-18+e^{y}\]
\[\frac{7}{6}y_{n}(-y_{n+1}+2y_{n}-y_{n-1})\]
\[18z\]
\[Y_{1}+Y_{2}+Y_{3}+ \ldots+Y_{n}\]
\[P_{1}P_{3}\]
\[\lim_{b \rightarrow \infty}f(b)\]
\[k<1\]
\[\cos 3 \theta=4 \cos^{3} \theta-3 \cos \theta\]
\[47474+5272=52746\]
\[\frac{ \sin A+ \sin 3A}{ \cos A+ \cos 3A}= \tan 2A\]
\[\sum_{i=1}^{n+1}i\]
\[\frac{1}{(x+1)(x+2)^{2}}= \frac{1}{x+1} \frac{1}{x+2}- \frac{1}{(x+2)^{2}}\]
\[\sqrt{a} \sqrt{a}=a\]
\[\sum_{n=5}^{10}(2_{n}+1)\]
\[m_{k}=p_{k}-p_{k-1}\]
\[\frac{11}{3} \sqrt{3}\]
\[\frac{1}{2} \frac{1}{4} \frac{1}{8} \frac{1}{16}\]
\[4-4+4- \sqrt{4}\]
\[\sqrt{9}+ \sqrt{16}\]
\[-7\]
\[\log_{a}x- \log_{a}y= \log_{a} \frac{x}{y}\]
\[p \geq 3\]
\[\lim_{x \rightarrow- \infty}P_{k+1}(x)<0\]
\[(a+b)u=au+bv\]
\[|ab|=|a| \cdot|b|\]
\[a=-2xy-2y^{2}\]
\[1+x+x^{2},x+x^{2},x^{2}\]
\[\frac{m}{mm}\]
\[0.0878\]
\[m \geq 1\]
\[\frac{d}{dx}a^{x}\]
\[y>z\]
\[XX^{-1}=X^{-1}X=I\]
\[R_{a}= \frac{R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{2}}\]
\[8cm\]
\[\frac{d_{1}-2}{d_{1}} \frac{d_{2}}{d_{2}+2}\]
\[6ft\]
\[\alpha+ \beta= \beta+ \alpha\]
\[\sum_{i=1}^{n}x_{n}= \sum_{i=1}^{n}y_{n}\]
\[4+4+ \frac{4}{4}\]
\[( \sqrt{2}x+2)(x+3)\]
\[10,000+1,000=11,000\]
\[\lim_{a \rightarrow \infty}f(a)\]
\[w=q_{H}-q_{C}\]
\[\pi_{t+1}\]
\[R_{0}^{0}\]
\[xyx+xy+yx+y=x^{2}y+xy+xy+y\]
\[\frac{2AB}{A+B}\]
\[[[S]]=[S]\]
\[( \frac{ \pi}{ \sqrt{2}})\]
\[q+w\]
\[(Y)(1)=(Y)( \frac{Y}{Y})\]
\[1 \times 2 \times 3 \times 4 \times 5 \times 6=720\]
\[x^{2}-xy+xy-y^{2}\]
\[g^{2}=gg=e\]
\[d=(24z^{5}+48cz^{3}+8z^{3}+24c^{2}z+16cz)\]
\[n \geq N\]
\[\frac{da}{dc}= \frac{c}{a}\]
\[z= \sqrt{3}( \sqrt{2}+i)\]
\[\sum_{m=1}^{ \infty} \sum_{n=1}^{ \infty} \frac{m^{2}n}{3^{m}(m3^{n}+n3^{m})}\]
\[\pi \int_{0}^{1}xdx\]