image
imagewidth (px) 46
1.73k
| latex_formula
stringlengths 6
300
|
---|---|
\[4 \times 4+4+4\] |
|
\[2^{2}b_{2}+2b_{1}+b_{0}\] |
|
\[\frac{a^{2}-a \sqrt{a}}{a-1}\] |
|
\[c_{1}+c_{2}+c_{3}\] |
|
\[(a_{1}b_{3}-a_{3}b_{1})\] |
|
\[Hz\] |
|
\[\sin x+ \sin y=2 \sin( \frac{x+y}{2}) \cos( \frac{x-y}{2})\] |
|
\[(e^{8}-9)/9\] |
|
\[y_{i+1}=y_{i}+ \int_{x_{i}}^{x_{i+1}}fdx\] |
|
\[\sqrt{75}\] |
|
\[2 \sum_{x=1}^{n}x- \sum_{x=1}^{n}1\] |
|
\[\int( \sin(t)-t)dt=- \cos(t)- \frac{1}{2}t^{2}\] |
|
\[\lim_{n \rightarrow \infty} \frac{4}{3} \frac{2n^{2}+3n+1}{n^{2}}\] |
|
\[\frac{7x}{7}= \frac{14}{7}\] |
|
\[x>A\] |
|
\[kg\] |
|
\[20x-8y=20\] |
|
\[\frac{ \sqrt{2- \sqrt{2}}}{2}\] |
|
\[x_{i} \leq x \leq x_{i+1}\] |
|
\[(4/3,2/3,4/3)\] |
|
\[x_{k}xy_{k}+y_{k}yy_{k}\] |
|
\[\{a \}\] |
|
\[5-3=(1+1+1+1+1)-(1+1+1)=2\] |
|
\[\frac{a+b}{2}\] |
|
\[\frac{p}{q}\] |
|
\[\lim_{z \rightarrow z_{0}}f(z)=f(z_{0})\] |
|
\[x^{3}+8y^{3}\] |
|
\[p^{ \alpha}-p^{ \alpha-1}\] |
|
\[\frac{1}{ \tan( \theta)}= \frac{ \cos( \theta)}{ \sin( \theta)}\] |
|
\[121=1x10^{2}+2x10^{1}+1x10^{0}=100+20+1\] |
|
\[1= \frac{Y}{Y}\] |
|
\[\frac{ \alpha}{2}- \frac{ \alpha+1}{2}= \frac{1}{2}\] |
|
\[\sum_{r=1}^{n}r\] |
|
\[\sin 6 \theta\] |
|
\[\frac{2^{2}+7}{2^{5}7^{2}}\] |
|
\[1-d=(1- \frac{d^{(m)}}{m})^{m}\] |
|
\[M_{1}\] |
|
\[udu=- \frac{dy}{2y^{2}}\] |
|
\[\frac{1}{ \sqrt{k+1}}\] |
|
\[y^{4}-9y^{2}-18+e^{y}\] |
|
\[\frac{7}{6}y_{n}(-y_{n+1}+2y_{n}-y_{n-1})\] |
|
\[18z\] |
|
\[Y_{1}+Y_{2}+Y_{3}+ \ldots+Y_{n}\] |
|
\[P_{1}P_{3}\] |
|
\[\lim_{b \rightarrow \infty}f(b)\] |
|
\[k<1\] |
|
\[\cos 3 \theta=4 \cos^{3} \theta-3 \cos \theta\] |
|
\[47474+5272=52746\] |
|
\[\frac{ \sin A+ \sin 3A}{ \cos A+ \cos 3A}= \tan 2A\] |
|
\[\sum_{i=1}^{n+1}i\] |
|
\[\frac{1}{(x+1)(x+2)^{2}}= \frac{1}{x+1} \frac{1}{x+2}- \frac{1}{(x+2)^{2}}\] |
|
\[\sqrt{a} \sqrt{a}=a\] |
|
\[\sum_{n=5}^{10}(2_{n}+1)\] |
|
\[m_{k}=p_{k}-p_{k-1}\] |
|
\[\frac{11}{3} \sqrt{3}\] |
|
\[\frac{1}{2} \frac{1}{4} \frac{1}{8} \frac{1}{16}\] |
|
\[4-4+4- \sqrt{4}\] |
|
\[\sqrt{9}+ \sqrt{16}\] |
|
\[-7\] |
|
\[\log_{a}x- \log_{a}y= \log_{a} \frac{x}{y}\] |
|
\[p \geq 3\] |
|
\[\lim_{x \rightarrow- \infty}P_{k+1}(x)<0\] |
|
\[(a+b)u=au+bv\] |
|
\[|ab|=|a| \cdot|b|\] |
|
\[a=-2xy-2y^{2}\] |
|
\[1+x+x^{2},x+x^{2},x^{2}\] |
|
\[\frac{m}{mm}\] |
|
\[0.0878\] |
|
\[m \geq 1\] |
|
\[\frac{d}{dx}a^{x}\] |
|
\[y>z\] |
|
\[XX^{-1}=X^{-1}X=I\] |
|
\[R_{a}= \frac{R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{2}}\] |
|
\[8cm\] |
|
\[\frac{d_{1}-2}{d_{1}} \frac{d_{2}}{d_{2}+2}\] |
|
\[6ft\] |
|
\[\alpha+ \beta= \beta+ \alpha\] |
|
\[\sum_{i=1}^{n}x_{n}= \sum_{i=1}^{n}y_{n}\] |
|
\[4+4+ \frac{4}{4}\] |
|
\[( \sqrt{2}x+2)(x+3)\] |
|
\[10,000+1,000=11,000\] |
|
\[\lim_{a \rightarrow \infty}f(a)\] |
|
\[w=q_{H}-q_{C}\] |
|
\[\pi_{t+1}\] |
|
\[R_{0}^{0}\] |
|
\[xyx+xy+yx+y=x^{2}y+xy+xy+y\] |
|
\[\frac{2AB}{A+B}\] |
|
\[[[S]]=[S]\] |
|
\[( \frac{ \pi}{ \sqrt{2}})\] |
|
\[q+w\] |
|
\[(Y)(1)=(Y)( \frac{Y}{Y})\] |
|
\[1 \times 2 \times 3 \times 4 \times 5 \times 6=720\] |
|
\[x^{2}-xy+xy-y^{2}\] |
|
\[g^{2}=gg=e\] |
|
\[d=(24z^{5}+48cz^{3}+8z^{3}+24c^{2}z+16cz)\] |
|
\[n \geq N\] |
|
\[\frac{da}{dc}= \frac{c}{a}\] |
|
\[z= \sqrt{3}( \sqrt{2}+i)\] |
|
\[\sum_{m=1}^{ \infty} \sum_{n=1}^{ \infty} \frac{m^{2}n}{3^{m}(m3^{n}+n3^{m})}\] |
|
\[\pi \int_{0}^{1}xdx\] |