image
imagewidth (px) 46
1.73k
| latex_formula
stringlengths 6
300
|
---|---|
\[\sum p_{i}= \sum p_{f}\] |
|
\[(a_{1}b_{1})(a_{1}b_{2})=(a_{1}b_{2})(b_{1}b_{2})\] |
|
\[y^{ \prime}(x)\] |
|
\[\cos 6 \theta\] |
|
\[\log v=b \log 2\] |
|
\[k_{e}\] |
|
\[p( \alpha)= \alpha^{m}+b_{m-2} \alpha^{m-1}+ \ldots+b_{3} \alpha^{4}+b_{1} \alpha+b_{0}\] |
|
\[\sqrt{v^{2}-v_{v}^{2}}= \frac{v_{v}^{2}}{ \sqrt{v^{2}-v_{v}^{2}}}\] |
|
\[\frac{a}{b}+ \frac{c}{b}= \frac{a+c}{b}\] |
|
\[\sum_{k=1}^{n}a_{k}+ \sum_{k=1}^{n}b_{k}\] |
|
\[\beta=1\] |
|
\[|x^{ \frac{1}{n}}-c^{ \frac{1}{n}}|= \frac{|x^{ \frac{1}{n}}-c^{ \frac{1}{n}}||x^{ \frac{n-1}{n}}+x^{ \frac{n-2}{n}}c^{ \frac{1}{n}}+ \cdots+x^{ \frac{1}{n}}c^{ \frac{n-2}{n}}|}{|x^{ \frac{n-1}{n}}+x^{ \frac{n-2}{n}}c^{ \frac{1}{n}}+ \cdots+x^{ \frac{1}{n}}c^{ \frac{n-2}{n}}+c^{ \frac{n-1}{n}}|}\] |
|
\[\sigma_{x}= \sqrt{ \sigma_{x}^{2}}\] |
|
\[x+ \pi y+6 \pi z=3 \pi\] |
|
\[\lim_{n \rightarrow \infty} \frac{8}{n^{3}} \sum_{i=1}^{n}i^{2}\] |
|
\[- \infty \leq x \leq \infty\] |
|
\[\lim_{x \rightarrow \infty}p_{k}(x)= \infty\] |
|
\[b_{1}B_{1}+b_{2}B_{2}+b_{3}B_{3}\] |
|
\[\sqrt{ab}= \sqrt{a} \sqrt{b}\] |
|
\[rot\] |
|
\[\frac{3}{7}- \frac{2}{7}= \frac{1}{7}\] |
|
\[b_{R}\] |
|
\[\frac{ \sqrt{a}}{ \sqrt{b}}= \sqrt{ \frac{a}{b}}\] |
|
\[p(1-p)\] |
|
\[\sin(-B)=- \sin B\] |
|
\[\pi d=2 \pi r\] |
|
\[\cos( \beta)\] |
|
\[x(x^{2}-2xy+4y^{2})+2y(x^{2}-2xy+4y^{2})\] |
|
\[\tan \alpha_{i}\] |
|
\[-e^{x} \cos(x)+ \int e^{x} \cos(x)dx\] |
|
\[H=H_{1}+H_{2}+ \ldots\] |
|
\[r= \lim \frac{|a_{n}|}{|a_{n+1}|}\] |
|
\[\sin( \beta)\] |
|
\[\frac{1}{4 \pi E_{0}}\] |
|
\[R_{1}\] |
|
\[\frac{1}{2}x+ \frac{1}{2}- \frac{1}{2}= \frac{1}{2}- \frac{1}{2}\] |
|
\[\frac{a}{b}\] |
|
\[Nm\] |
|
\[( \sin(x))^{2}+( \cos(x))^{2}\] |
|
\[\sqrt{7}+ \sqrt{28}\] |
|
\[11100011_{2}\] |
|
\[\frac{4+4+4}{4}\] |
|
\[q \geq 1\] |
|
\[a \geq b\] |
|
\[m^{ \prime}+N=[m^{ \prime}]\] |
|
\[\sin \theta_{1} \sin \theta_{2}\] |
|
\[\frac{a}{b+ \sqrt{c}}= \frac{a}{b+ \sqrt{c}} \times \frac{b- \sqrt{c}}{b- \sqrt{c}}\] |
|
\[a \neq b\] |
|
\[\int_{2}^{b}fd \alpha\] |
|
\[8-7\] |
|
\[\sqrt{91}\] |
|
\[44- \frac{4}{4}\] |
|
\[\frac{1}{9}\] |
|
\[n-n_{1}- \ldots-n_{p_{-1}}\] |
|
\[\tan(3a)= \frac{3 \tan a- \tan^{3}a}{1-3 \tan^{2}a}\] |
|
\[\beta_{j+1}\] |
|
\[\cos(x+y)- \cos x \cos y- \sin x \sin y\] |
|
\[\int d_{X}= \int gtdt\] |
|
\[[e]\] |
|
\[\lim_{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}( \frac{2i}{n})^{2}\] |
|
\[t_{0} \leq t \leq b\] |
|
\[\int u^{8} \frac{du}{12}\] |
|
\[3.00000001\] |
|
\[(x^{2}+2)^{2}-(2x)^{2}\] |
|
\[A^{T}\] |
|
\[\lim_{x \rightarrow c}f(x)\] |
|
\[x_{1}=a_{11}y_{1}+a_{12}y_{2}\] |
|
\[uu_{x}+u_{y}+u_{t}=y\] |
|
\[\int \frac{1}{x} \sqrt{ \frac{1-x}{x}}dx\] |
|
\[BB^{-1}\] |
|
\[c \neq 2\] |
|
\[\mu m\] |
|
\[\tan(2x)= \frac{2 \tan(x)}{1- \tan^{2}(x)}\] |
|
\[-|y| \leq y \leq|y|\] |
|
\[\int \sin xdx\] |
|
\[BFFS\] |
|
\[|A|\] |
|
\[\frac{f(b)-f(a)}{b-a}\] |
|
\[q-(q- \sqrt{2})= \sqrt{2}\] |
|
\[e^{-t} \cos 2^{t}\] |
|
\[e^{mx}y= \frac{n}{m}e^{mx}+C\] |
|
\[4!+4!- \frac{4!}{4}\] |
|
\[s_{2}\] |
|
\[\frac{56 \div 7}{63 \div 7}= \frac{8}{9}\] |
|
\[N+233=236\] |
|
\[G_{b}=gG_{a}g^{-1}\] |