image
imagewidth (px)
46
1.73k
latex_formula
stringlengths
6
300
\[\sum p_{i}= \sum p_{f}\]
\[(a_{1}b_{1})(a_{1}b_{2})=(a_{1}b_{2})(b_{1}b_{2})\]
\[y^{ \prime}(x)\]
\[\cos 6 \theta\]
\[\log v=b \log 2\]
\[k_{e}\]
\[p( \alpha)= \alpha^{m}+b_{m-2} \alpha^{m-1}+ \ldots+b_{3} \alpha^{4}+b_{1} \alpha+b_{0}\]
\[\sqrt{v^{2}-v_{v}^{2}}= \frac{v_{v}^{2}}{ \sqrt{v^{2}-v_{v}^{2}}}\]
\[\frac{a}{b}+ \frac{c}{b}= \frac{a+c}{b}\]
\[\sum_{k=1}^{n}a_{k}+ \sum_{k=1}^{n}b_{k}\]
\[\beta=1\]
\[|x^{ \frac{1}{n}}-c^{ \frac{1}{n}}|= \frac{|x^{ \frac{1}{n}}-c^{ \frac{1}{n}}||x^{ \frac{n-1}{n}}+x^{ \frac{n-2}{n}}c^{ \frac{1}{n}}+ \cdots+x^{ \frac{1}{n}}c^{ \frac{n-2}{n}}|}{|x^{ \frac{n-1}{n}}+x^{ \frac{n-2}{n}}c^{ \frac{1}{n}}+ \cdots+x^{ \frac{1}{n}}c^{ \frac{n-2}{n}}+c^{ \frac{n-1}{n}}|}\]
\[\sigma_{x}= \sqrt{ \sigma_{x}^{2}}\]
\[x+ \pi y+6 \pi z=3 \pi\]
\[\lim_{n \rightarrow \infty} \frac{8}{n^{3}} \sum_{i=1}^{n}i^{2}\]
\[- \infty \leq x \leq \infty\]
\[\lim_{x \rightarrow \infty}p_{k}(x)= \infty\]
\[b_{1}B_{1}+b_{2}B_{2}+b_{3}B_{3}\]
\[\sqrt{ab}= \sqrt{a} \sqrt{b}\]
\[rot\]
\[\frac{3}{7}- \frac{2}{7}= \frac{1}{7}\]
\[b_{R}\]
\[\frac{ \sqrt{a}}{ \sqrt{b}}= \sqrt{ \frac{a}{b}}\]
\[p(1-p)\]
\[\sin(-B)=- \sin B\]
\[\pi d=2 \pi r\]
\[\cos( \beta)\]
\[x(x^{2}-2xy+4y^{2})+2y(x^{2}-2xy+4y^{2})\]
\[\tan \alpha_{i}\]
\[-e^{x} \cos(x)+ \int e^{x} \cos(x)dx\]
\[H=H_{1}+H_{2}+ \ldots\]
\[r= \lim \frac{|a_{n}|}{|a_{n+1}|}\]
\[\sin( \beta)\]
\[\frac{1}{4 \pi E_{0}}\]
\[R_{1}\]
\[\frac{1}{2}x+ \frac{1}{2}- \frac{1}{2}= \frac{1}{2}- \frac{1}{2}\]
\[\frac{a}{b}\]
\[Nm\]
\[( \sin(x))^{2}+( \cos(x))^{2}\]
\[\sqrt{7}+ \sqrt{28}\]
\[11100011_{2}\]
\[\frac{4+4+4}{4}\]
\[q \geq 1\]
\[a \geq b\]
\[m^{ \prime}+N=[m^{ \prime}]\]
\[\sin \theta_{1} \sin \theta_{2}\]
\[\frac{a}{b+ \sqrt{c}}= \frac{a}{b+ \sqrt{c}} \times \frac{b- \sqrt{c}}{b- \sqrt{c}}\]
\[a \neq b\]
\[\int_{2}^{b}fd \alpha\]
\[8-7\]
\[\sqrt{91}\]
\[44- \frac{4}{4}\]
\[\frac{1}{9}\]
\[n-n_{1}- \ldots-n_{p_{-1}}\]
\[\tan(3a)= \frac{3 \tan a- \tan^{3}a}{1-3 \tan^{2}a}\]
\[\beta_{j+1}\]
\[\cos(x+y)- \cos x \cos y- \sin x \sin y\]
\[\int d_{X}= \int gtdt\]
\[[e]\]
\[\lim_{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}( \frac{2i}{n})^{2}\]
\[t_{0} \leq t \leq b\]
\[\int u^{8} \frac{du}{12}\]
\[3.00000001\]
\[(x^{2}+2)^{2}-(2x)^{2}\]
\[A^{T}\]
\[\lim_{x \rightarrow c}f(x)\]
\[x_{1}=a_{11}y_{1}+a_{12}y_{2}\]
\[uu_{x}+u_{y}+u_{t}=y\]
\[\int \frac{1}{x} \sqrt{ \frac{1-x}{x}}dx\]
\[BB^{-1}\]
\[c \neq 2\]
\[\mu m\]
\[\tan(2x)= \frac{2 \tan(x)}{1- \tan^{2}(x)}\]
\[-|y| \leq y \leq|y|\]
\[\int \sin xdx\]
\[BFFS\]
\[|A|\]
\[\frac{f(b)-f(a)}{b-a}\]
\[q-(q- \sqrt{2})= \sqrt{2}\]
\[e^{-t} \cos 2^{t}\]
\[e^{mx}y= \frac{n}{m}e^{mx}+C\]
\[4!+4!- \frac{4!}{4}\]
\[s_{2}\]
\[\frac{56 \div 7}{63 \div 7}= \frac{8}{9}\]
\[N+233=236\]
\[G_{b}=gG_{a}g^{-1}\]