psycholinguistic_eval / Ettinger.py
Kevin Zhao
Initial commit
e6ec423
raw
history blame
9.33 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import datasets
import pandas as pd
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_PATHS = {
"CPRAG": "CPRAG/test.csv",
"ROLE": "ROLE/test.csv",
"NEG-NAT": "NEG-NAT/test.csv",
"NEG-SIMP": "NEG-SIMP/test.csv",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="CPRAG", version=VERSION, description="[CPRAG description]"),
datasets.BuilderConfig(name="ROLE", version=VERSION, description="[ROLE description]"),
datasets.BuilderConfig(name="NEG-NAT", version=VERSION, description="[NEG-NAT description]"),
datasets.BuilderConfig(name="NEG-SIMP", version=VERSION, description="[NEG-SIMP description]"),
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "CPRAG": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"context_s1": datasets.Value("string"),
"context_s2": datasets.Value("string"),
"expected": datasets.Value("string"),
"within_category": datasets.Value("string"),
"between_category": datasets.Value("string"),
}
)
elif self.config.name == "ROLE":
features = datasets.Features(
{
"context": datasets.Value("string"),
"expected": datasets.Value("string"),
}
)
elif self.config.name == "NEG-NAT":
features = datasets.Features(
{
"context_aff": datasets.Value("string"),
"context_neg": datasets.Value("string"),
"target_aff": datasets.Value("string"),
"target_neg": datasets.Value("string"),
}
)
elif self.config.name == "NEG-SIMP":
features = datasets.Features(
{
"context_aff": datasets.Value("string"),
"context_neg": datasets.Value("string"),
"target_aff": datasets.Value("string"),
"target_neg": datasets.Value("string"),
}
)
else:
raise NotImplementedError
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _PATHS[self.config.name],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
df = pd.read_csv(filepath)
for index, row in df.iterrows():
if self.config.name == "NEG-NAT":
features = datasets.Features(
{
"context_aff": datasets.Value("string"),
"context_neg": datasets.Value("string"),
"target_aff": datasets.Value("string"),
"target_neg": datasets.Value("string"),
}
)
elif self.config.name == "NEG-SIMP":
features = datasets.Features(
{
"context_aff": datasets.Value("string"),
"context_neg": datasets.Value("string"),
"target_aff": datasets.Value("string"),
"target_neg": datasets.Value("string"),
}
)
if self.config.name == "CPRAG":
# Yields examples as (key, example) tuples
yield index, {
"context_s1": row["context_s1"],
"context_s2": row["context_s2"],
"expected": row["expected"],
"within_category": row["within_category"],
"between_category": row["between_category"],
}
elif self.config.name == "ROLE":
yield index, {
"context": row["context"],
"expected": row["expected"],
}
elif self.config.name == "NEG-NAT":
yield index, {
"context_aff": row["context_aff"],
"context_neg": row["context_neg"],
"target_aff": row["target_aff"],
"target_neg": row["target_neg"],
}
elif self.config.name == "NEG-SIMP":
yield index, {
"context_aff": row["context_aff"],
"context_neg": row["context_neg"],
"target_aff": row["target_aff"],
"target_neg": row["target_neg"],
}
else:
raise NotImplementedError