system HF staff commited on
Commit
c36ff88
0 Parent(s):

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +170 -0
  3. dataset_infos.json +1 -0
  4. dummy/1.0.0/dummy_data.zip +3 -0
  5. freebase_qa.py +141 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|trivia_qa
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - open-domain-qa
20
+ ---
21
+
22
+ # Dataset Card for FreebaseQA
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+ - [Contributions](#contributions)
47
+
48
+ ## Dataset Description
49
+
50
+ - **Homepage:**
51
+ - **Repository: [FreebaseQA repository](https://github.com/kelvin-jiang/FreebaseQA)**
52
+ - **Paper: [FreebaseQA ACL paper](https://www.aclweb.org/anthology/N19-1028.pdf)**
53
+ - **Leaderboard:**
54
+ - **Point of Contact: [Kelvin Jiang](https://github.com/kelvin-jiang)**
55
+
56
+ ### Dataset Summary
57
+
58
+ FreebaseQA is a dataset for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ [More Information Needed]
63
+
64
+ ### Languages
65
+
66
+ English
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ Here is an example from the dataset:
73
+
74
+ ```
75
+ {'Parses': {'Answers': [{'AnswersMid': ['m.01npcx'], 'AnswersName': [['goldeneye']]}, {'AnswersMid': ['m.01npcx'], 'AnswersName': [['goldeneye']]}], 'InferentialChain': ['film.film_character.portrayed_in_films..film.performance.film', 'film.actor.film..film.performance.film'], 'Parse-Id': ['FreebaseQA-train-0.P0', 'FreebaseQA-train-0.P1'], 'PotentialTopicEntityMention': ['007', 'pierce brosnan'], 'TopicEntityMid': ['m.0clpml', 'm.018p4y'], 'TopicEntityName': ['james bond', 'pierce brosnan']}, 'ProcessedQuestion': "what was pierce brosnan's first outing as 007", 'Question-ID': 'FreebaseQA-train-0', 'RawQuestion': "What was Pierce Brosnan's first outing as 007?"}
76
+ ```
77
+
78
+ ### Data Fields
79
+ - `Question-ID`: a `string` feature representing ID of each question.
80
+ - `RawQuestion`: a `string` feature representing the original question collected from data sources.
81
+ - `ProcessedQuestion`: a `string` feature representing the question processed with some operations such as removal of trailing question mark and decapitalization.
82
+ - `Parses`: a dictionary feature representing the semantic parse(s) for the question containing:
83
+ - `Parse-Id`: a `string` feature representing the ID of each semantic parse.
84
+ - `PotentialTopicEntityMention`: a `string` feature representing the potential topic entity mention in the question.
85
+ - `TopicEntityName`: a `string` feature representing name or alias of the topic entity in the question from Freebase.
86
+ - `TopicEntityMid`: a `string` feature representing the Freebase MID of the topic entity in the question.
87
+ - `InferentialChain`: a `string` feature representing path from the topic entity node to the answer node in Freebase, labeled as a predicate.
88
+ - `Answers`: a dictionary feature representing the answer found from this parse containing:
89
+ - `AnswersMid`: a `string` feature representing the Freebase MID of the answer.
90
+ - `AnswersName`: a `list` of `string` features representing the answer string from the original question-answer pair.
91
+ ### Data Splits
92
+ This data set contains 28,348 unique questions that are divided into three subsets: train (20,358), dev (3,994) and eval (3,996), formatted as JSON files: FreebaseQA-[train|dev|eval].json
93
+ ## Dataset Creation
94
+
95
+ ### Curation Rationale
96
+
97
+ [More Information Needed]
98
+
99
+ ### Source Data
100
+
101
+ #### Initial Data Collection and Normalization
102
+
103
+ The data set is generated by matching trivia-type question-answer pairs with subject-predicateobject triples in Freebase. For each collected question-answer pair, we first tag all entities in each question and search for relevant predicates that bridge a tagged entity with the answer in Freebase. Finally, human annotation is used to remove false positives in these matched triples.
104
+
105
+ #### Who are the source language producers?
106
+
107
+ [More Information Needed]
108
+
109
+ ### Annotations
110
+
111
+ #### Annotation process
112
+
113
+ [More Information Needed]
114
+
115
+ #### Who are the annotators?
116
+
117
+ [More Information Needed]
118
+
119
+ ### Personal and Sensitive Information
120
+
121
+ [More Information Needed]
122
+
123
+ ## Considerations for Using the Data
124
+
125
+ ### Social Impact of Dataset
126
+
127
+ [More Information Needed]
128
+
129
+ ### Discussion of Biases
130
+
131
+ [More Information Needed]
132
+
133
+ ### Other Known Limitations
134
+
135
+ [More Information Needed]
136
+
137
+ ## Additional Information
138
+
139
+ ### Dataset Curators
140
+
141
+ Kelvin Jiang - Currently at University of Waterloo. Work was done at
142
+ York University.
143
+
144
+ ### Licensing Information
145
+
146
+ [More Information Needed]
147
+
148
+ ### Citation Information
149
+
150
+ ```
151
+ @inproceedings{jiang-etal-2019-freebaseqa,
152
+ title = "{F}reebase{QA}: A New Factoid {QA} Data Set Matching Trivia-Style Question-Answer Pairs with {F}reebase",
153
+ author = "Jiang, Kelvin and
154
+ Wu, Dekun and
155
+ Jiang, Hui",
156
+ booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
157
+ month = jun,
158
+ year = "2019",
159
+ address = "Minneapolis, Minnesota",
160
+ publisher = "Association for Computational Linguistics",
161
+ url = "https://www.aclweb.org/anthology/N19-1028",
162
+ doi = "10.18653/v1/N19-1028",
163
+ pages = "318--323",
164
+ abstract = "In this paper, we present a new data set, named FreebaseQA, for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase. The data set is generated by matching trivia-type question-answer pairs with subject-predicate-object triples in Freebase. For each collected question-answer pair, we first tag all entities in each question and search for relevant predicates that bridge a tagged entity with the answer in Freebase. Finally, human annotation is used to remove any false positive in these matched triples. Using this method, we are able to efficiently generate over 54K matches from about 28K unique questions with minimal cost. Our analysis shows that this data set is suitable for model training in factoid QA tasks beyond simpler questions since FreebaseQA provides more linguistically sophisticated questions than other existing data sets.",
165
+ }
166
+ ```
167
+
168
+ ### Contributions
169
+
170
+ Thanks to [@gchhablani](https://github.com/gchhablani) and [@anaerobeth](https://github.com/anaerobeth) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "FreebaseQA is for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase The data set is generated by matching trivia-type question-answer pairs with subject-predicateobject triples in Freebase.\n", "citation": "@article{jiang2019freebaseqa,\n title={FreebaseQA: A New Factoid QA Dataset Matching Trivia-Style Question-Answer Pairs with Freebase},\n author={Jiang, Kelvin and Wu, Dekun and Jiang, Hui},\n journal={north american chapter of the association for computational linguistics},\n year={2019}\n}\n", "homepage": "https://github.com/kelvin-jiang/FreebaseQA", "license": "", "features": {"Question-ID": {"dtype": "string", "id": null, "_type": "Value"}, "RawQuestion": {"dtype": "string", "id": null, "_type": "Value"}, "ProcessedQuestion": {"dtype": "string", "id": null, "_type": "Value"}, "Parses": {"feature": {"Parse-Id": {"dtype": "string", "id": null, "_type": "Value"}, "PotentialTopicEntityMention": {"dtype": "string", "id": null, "_type": "Value"}, "TopicEntityName": {"dtype": "string", "id": null, "_type": "Value"}, "TopicEntityMid": {"dtype": "string", "id": null, "_type": "Value"}, "InferentialChain": {"dtype": "string", "id": null, "_type": "Value"}, "Answers": {"feature": {"AnswersMid": {"dtype": "string", "id": null, "_type": "Value"}, "AnswersName": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "freebase_qa", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10235375, "num_examples": 20358, "dataset_name": "freebase_qa"}, "test": {"name": "test", "num_bytes": 1987874, "num_examples": 3996, "dataset_name": "freebase_qa"}, "validation": {"name": "validation", "num_bytes": 1974114, "num_examples": 3994, "dataset_name": "freebase_qa"}}, "download_checksums": {"https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/FreebaseQA-train.json": {"num_bytes": 23888089, "checksum": "b9769a0040032e39a62bd4b0b99d7dfa1a3fe29c2108dbf6245f62874d0d4753"}, "https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/FreebaseQA-eval.json": {"num_bytes": 4660561, "checksum": "14d29d8180d2eaa44eda444debba08f292f42337e098e5b717455e462d278451"}, "https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/FreebaseQA-dev.json": {"num_bytes": 4656349, "checksum": "ec08abf2b0d89eca6eac02f6f5ae72f46211c256aadb51760e252eafce14e961"}}, "download_size": 33204999, "post_processing_size": null, "dataset_size": 14197363, "size_in_bytes": 47402362}}
dummy/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e7367eaa9d4ed859e88768c9900b7a8c40f4392e3a8ff5c6641dfa40a1dd62b
3
+ size 3368
freebase_qa.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph"""
16
+
17
+
18
+ import json
19
+
20
+ import datasets
21
+
22
+
23
+ _CITATION = """\
24
+ @article{jiang2019freebaseqa,
25
+ title={FreebaseQA: A New Factoid QA Dataset Matching Trivia-Style Question-Answer Pairs with Freebase},
26
+ author={Jiang, Kelvin and Wu, Dekun and Jiang, Hui},
27
+ journal={north american chapter of the association for computational linguistics},
28
+ year={2019}
29
+ }
30
+ """
31
+
32
+ _DESCRIPTION = """\
33
+ FreebaseQA is for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase The data set is generated by matching trivia-type question-answer pairs with subject-predicateobject triples in Freebase.
34
+ """
35
+
36
+ _HOMEPAGE = "https://github.com/kelvin-jiang/FreebaseQA"
37
+
38
+ _LICENSE = ""
39
+
40
+
41
+ _REPO = "https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/"
42
+
43
+ _URLs = {
44
+ "train": _REPO + "FreebaseQA-train.json",
45
+ "eval": _REPO + "FreebaseQA-eval.json",
46
+ "dev": _REPO + "FreebaseQA-dev.json",
47
+ }
48
+
49
+
50
+ class FreebaseQA(datasets.GeneratorBasedBuilder):
51
+ """FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph"""
52
+
53
+ VERSION = datasets.Version("1.0.0")
54
+
55
+ def _info(self):
56
+ features = datasets.Features(
57
+ {
58
+ "Question-ID": datasets.Value("string"),
59
+ "RawQuestion": datasets.Value("string"),
60
+ "ProcessedQuestion": datasets.Value("string"),
61
+ "Parses": datasets.Sequence(
62
+ {
63
+ "Parse-Id": datasets.Value("string"),
64
+ "PotentialTopicEntityMention": datasets.Value("string"),
65
+ "TopicEntityName": datasets.Value("string"),
66
+ "TopicEntityMid": datasets.Value("string"),
67
+ "InferentialChain": datasets.Value("string"),
68
+ "Answers": datasets.Sequence(
69
+ {
70
+ "AnswersMid": datasets.Value("string"),
71
+ "AnswersName": datasets.Sequence(datasets.Value("string")),
72
+ }
73
+ ),
74
+ }
75
+ ),
76
+ }
77
+ )
78
+
79
+ return datasets.DatasetInfo(
80
+ description=_DESCRIPTION,
81
+ features=features,
82
+ supervised_keys=None,
83
+ homepage=_HOMEPAGE,
84
+ license=_LICENSE,
85
+ citation=_CITATION,
86
+ )
87
+
88
+ def _split_generators(self, dl_manager):
89
+ """Returns SplitGenerators."""
90
+ data_dir = dl_manager.download_and_extract(_URLs)
91
+
92
+ return [
93
+ datasets.SplitGenerator(
94
+ name=datasets.Split.TRAIN,
95
+ gen_kwargs={"filepath": data_dir["train"]},
96
+ ),
97
+ datasets.SplitGenerator(
98
+ name=datasets.Split.TEST,
99
+ gen_kwargs={"filepath": data_dir["eval"]},
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "filepath": data_dir["dev"],
105
+ },
106
+ ),
107
+ ]
108
+
109
+ def _generate_examples(self, filepath):
110
+ """ Yields examples. """
111
+
112
+ with open(filepath, encoding="utf-8") as f:
113
+ dataset = json.load(f)
114
+
115
+ if "Questions" in dataset:
116
+ for data in dataset["Questions"]:
117
+ id_ = data["Question-ID"]
118
+ parses = []
119
+
120
+ for item in data["Parses"]:
121
+ answers = [answer for answer in item["Answers"]]
122
+
123
+ parses.append(
124
+ {
125
+ "Parse-Id": item["Parse-Id"],
126
+ "PotentialTopicEntityMention": item["PotentialTopicEntityMention"],
127
+ "TopicEntityName": item["TopicEntityName"],
128
+ "TopicEntityMid": item["TopicEntityMid"],
129
+ "InferentialChain": item["InferentialChain"],
130
+ "Answers": answers,
131
+ },
132
+ )
133
+
134
+ question = {
135
+ "Question-ID": data["Question-ID"],
136
+ "RawQuestion": data["RawQuestion"],
137
+ "ProcessedQuestion": data["ProcessedQuestion"],
138
+ "Parses": parses,
139
+ }
140
+
141
+ yield id_, question