Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
# -*- coding: utf-8 -*- | |
"""Untitled9.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1qRAN4BBFZkzQKFec3qaXZ_obxuWQa6c6 | |
""" | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Beans leaf dataset with images of diseased and health leaves.""" | |
import os | |
import datasets | |
from datasets.tasks import ImageClassification | |
_HOMEPAGE = "https://huggingface.co/datasets/poolrf2001/mask" | |
_CITATION = """\ | |
@ONLINE {masksdata, | |
author="Pool_rf", | |
title="Mask face dataset", | |
month="January", | |
year="2023", | |
url="https://huggingface.co/datasets/poolrf2001/mask" | |
} | |
""" | |
_DESCRIPTION = """\ | |
MaskFace es un conjunto de datos de imágenes de personas con y sin mascarillas Consta de 3 clases: 1 clase de si la persona está puesta la mascarilla, | |
otra clase si la persona no esta puesta la mascarilla y una clase donde la persona está puesta la mascarilla incorrectamente. | |
""" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/poolrf2001/mask/blob/main/train.zip", | |
"validation": "https://huggingface.co/datasets/poolrf2001/mask/blob/main/validation.zip", | |
"test": "https://huggingface.co/datasets/poolrf2001/mask/blob/main/test.zip", | |
} | |
_NAMES = ["mask_weared_incorrect", "width_mask", "without_mask"] | |
class mask(datasets.GeneratorBasedBuilder): | |
"""MaskFace images dataset.""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"labels": datasets.features.ClassLabel(names=_NAMES), | |
} | |
), | |
supervised_keys=("image", "labels"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
task_templates=[ImageClassification(image_column="image", label_column="labels")], | |
) | |
def _split_generators(self, dl_manager): | |
data_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["train"]]), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["validation"]]), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["test"]]), | |
}, | |
), | |
] | |
def _generate_examples(self, files): | |
for i, path in enumerate(files): | |
file_name = os.path.basename(path) | |
if file_name.endswith(".png"): | |
yield i, { | |
"image": path, | |
"labels": os.path.basename(os.path.dirname(path)).lower(), | |
} |