kimsan0622
commited on
Commit
•
4fa57a6
1
Parent(s):
5624e2c
initial commit
Browse files- README.md +18 -0
- korquad.py +319 -0
README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!--
|
2 |
+
Copyright 2021 san kim
|
3 |
+
|
4 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
you may not use this file except in compliance with the License.
|
6 |
+
You may obtain a copy of the License at
|
7 |
+
|
8 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
|
10 |
+
Unless required by applicable law or agreed to in writing, software
|
11 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
See the License for the specific language governing permissions and
|
14 |
+
limitations under the License.
|
15 |
+
-->
|
16 |
+
|
17 |
+
# KorQuAD
|
18 |
+
|
korquad.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 san kim
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# coding=utf-8
|
16 |
+
# Copyright 2021 The TensorFlow Datasets Authors.
|
17 |
+
#
|
18 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
19 |
+
# you may not use this file except in compliance with the License.
|
20 |
+
# You may obtain a copy of the License at
|
21 |
+
#
|
22 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
23 |
+
#
|
24 |
+
# Unless required by applicable law or agreed to in writing, software
|
25 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
26 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
27 |
+
# See the License for the specific language governing permissions and
|
28 |
+
# limitations under the License.
|
29 |
+
|
30 |
+
# modified by kimsan0622@keti.re.kr
|
31 |
+
"""korquad dataset."""
|
32 |
+
import os
|
33 |
+
import json
|
34 |
+
import copy
|
35 |
+
import glob
|
36 |
+
import hashlib
|
37 |
+
import functools
|
38 |
+
|
39 |
+
import datasets
|
40 |
+
|
41 |
+
# KorQuad: https://korquad.github.io/
|
42 |
+
# ---------------------------------------------
|
43 |
+
_KORQUAD_URL='https://korquad.github.io/'
|
44 |
+
# https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_v1.0_dev.json
|
45 |
+
_KORQUAD_ROOT='https://github.com/korquad/korquad.github.io/raw/master/dataset/'
|
46 |
+
_KORQUADV1_TRAIN_LINK=[os.path.join(_KORQUAD_ROOT, 'KorQuAD_v1.0_train.json')]
|
47 |
+
_KORQUADV1_DEV_LINK=[os.path.join(_KORQUAD_ROOT, 'KorQuAD_v1.0_dev.json')]
|
48 |
+
_KORQUADV1_DEFAULT_SPLIT={'train': _KORQUADV1_TRAIN_LINK, 'dev': _KORQUADV1_DEV_LINK}
|
49 |
+
_KORQUADV1_DESCRIPTION = """
|
50 |
+
KorQuAD1.0
|
51 |
+
"""
|
52 |
+
_KORQUADV1_CITATION = """
|
53 |
+
@article{DBLP:journals/corr/abs-1909-07005,
|
54 |
+
author = {Seungyoung Lim and
|
55 |
+
Myungji Kim and
|
56 |
+
Jooyoul Lee},
|
57 |
+
title = {KorQuAD1.0: Korean {QA} Dataset for Machine Reading Comprehension},
|
58 |
+
journal = {CoRR},
|
59 |
+
volume = {abs/1909.07005},
|
60 |
+
year = {2019},
|
61 |
+
url = {http://arxiv.org/abs/1909.07005},
|
62 |
+
archivePrefix = {arXiv},
|
63 |
+
eprint = {1909.07005},
|
64 |
+
timestamp = {Mon, 23 Sep 2019 18:07:15 +0200},
|
65 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1909-07005.bib},
|
66 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
# https://github.com/korquad/korquad.github.io/raw/master/dataset/KorQuAD_2.1/train/KorQuAD_2.1_train_00.zip
|
71 |
+
_KORQUADV2_TRAIN_LINK=[os.path.join(_KORQUAD_ROOT,'KorQuAD_2.1/train', 'KorQuAD_2.1_train_{0:02d}.zip'.format(idx)) for idx in range(13)]
|
72 |
+
_KORQUADV2_DEV_LINK=[os.path.join(_KORQUAD_ROOT,'KorQuAD_2.1/dev', 'KorQuAD_2.1_dev_{0:02d}.zip'.format(idx)) for idx in range(2)]
|
73 |
+
_KORQUADV2_DEFAULT_SPLIT={'train': _KORQUADV2_TRAIN_LINK, 'dev': _KORQUADV2_DEV_LINK}
|
74 |
+
_KORQUADV2_DESCRIPTION = """
|
75 |
+
KorQuAD2.1
|
76 |
+
"""
|
77 |
+
_KORQUADV2_CITATION = """
|
78 |
+
김영민, 임승영, 이현정, 박소윤, 김명지. (2020). KorQuAD 2.0: 웹문서 기계독해를 위한 한국어 질의응답 데이터셋. 정보과학회논문지, 47(6), 577-586.
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
SQUADLIKE_FEATURES = datasets.Features({
|
83 |
+
"id":
|
84 |
+
datasets.Value("string"),
|
85 |
+
"title":
|
86 |
+
datasets.Value("string"),
|
87 |
+
"context":
|
88 |
+
datasets.Value("string"),
|
89 |
+
"question":
|
90 |
+
datasets.Value("string"),
|
91 |
+
"answers":
|
92 |
+
datasets.Sequence({
|
93 |
+
"text": datasets.Value("string"),
|
94 |
+
"answer_start": datasets.Value("int32"),
|
95 |
+
}),
|
96 |
+
})
|
97 |
+
|
98 |
+
# adopted from question_answering in tensorflow_datasets
|
99 |
+
def generate_squadlike_examples(filepath):
|
100 |
+
"""Parses a SQuAD-like JSON, yielding examples with `SQUADLIKE_FEATURES`."""
|
101 |
+
# We first re-group the answers, which may be flattened (e.g., by XTREME).
|
102 |
+
qas = {}
|
103 |
+
with open(filepath) as f:
|
104 |
+
squad = json.load(f)
|
105 |
+
for article in squad["data"]:
|
106 |
+
title = article.get("title", "")
|
107 |
+
for paragraph in article["paragraphs"]:
|
108 |
+
context = paragraph["context"]
|
109 |
+
for qa in paragraph["qas"]:
|
110 |
+
qa["title"] = title
|
111 |
+
qa["context"] = context
|
112 |
+
id_ = qa["id"]
|
113 |
+
if id_ in qas:
|
114 |
+
qas[id_]["answers"].extend(qa["answers"])
|
115 |
+
else:
|
116 |
+
qas[id_] = qa
|
117 |
+
|
118 |
+
for id_, qa in qas.items():
|
119 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
120 |
+
answers = [answer["text"] for answer in qa["answers"]]
|
121 |
+
yield id_, {
|
122 |
+
"title": qa["title"],
|
123 |
+
"context": qa["context"],
|
124 |
+
"question": qa["question"],
|
125 |
+
"id": id_,
|
126 |
+
"answers": {
|
127 |
+
"answer_start": answer_starts,
|
128 |
+
"text": answers,
|
129 |
+
},
|
130 |
+
}
|
131 |
+
|
132 |
+
_KORQUADV2_KEY_MAP={'context':'context', 'answer_start': 'answer_start', 'text':'text'}
|
133 |
+
_KORQUADV2_HTML_KEY_MAP={'context':'raw_html', 'answer_start': 'html_answer_start', 'text':'html_answer_text'}
|
134 |
+
|
135 |
+
def generate_korquadv2_examples(filepath, KEY_MAP):
|
136 |
+
qas = {}
|
137 |
+
with open(filepath) as f:
|
138 |
+
squad = json.load(f)
|
139 |
+
for article in squad["data"]:
|
140 |
+
title = article.get("title", "").strip()
|
141 |
+
context = article[KEY_MAP['context']]
|
142 |
+
for qa in article["qas"]:
|
143 |
+
qa["title"] = title
|
144 |
+
qa["context"] = context
|
145 |
+
id_ = qa["id"]
|
146 |
+
qa["answers"] = [copy.deepcopy(qa["answer"])]
|
147 |
+
del qa["answer"]
|
148 |
+
qas[id_] = qa
|
149 |
+
|
150 |
+
for id_, qa in qas.items():
|
151 |
+
answer_starts = [answer[KEY_MAP['answer_start']] for answer in qa["answers"]]
|
152 |
+
answers = [answer[KEY_MAP['text']] for answer in qa["answers"]]
|
153 |
+
yield id_, {
|
154 |
+
"title": qa["title"],
|
155 |
+
"context": qa["context"],
|
156 |
+
"question": qa["question"].strip(),
|
157 |
+
"id": id_,
|
158 |
+
"answers": {
|
159 |
+
"answer_start": answer_starts,
|
160 |
+
"text": answers,
|
161 |
+
},
|
162 |
+
}
|
163 |
+
|
164 |
+
_KORQUAD_MANUAL_SPLIT = {
|
165 |
+
'source': {
|
166 |
+
datasets.Split.TRAIN: ['train'],
|
167 |
+
datasets.Split.VALIDATION: ['train'],
|
168 |
+
datasets.Split.TEST: ['dev'],
|
169 |
+
},
|
170 |
+
'split': {
|
171 |
+
datasets.Split.TRAIN: lambda x: x % 10 != 0,
|
172 |
+
datasets.Split.VALIDATION: lambda x: x % 10 == 0,
|
173 |
+
datasets.Split.TEST: lambda x: True,
|
174 |
+
}}
|
175 |
+
|
176 |
+
def _update_split(file_dict, split_dict):
|
177 |
+
source_dict = split_dict['source']
|
178 |
+
return_dict = {}
|
179 |
+
for k, v in source_dict.items():
|
180 |
+
flist = []
|
181 |
+
for vv in v:
|
182 |
+
flist.extend(file_dict[vv] if isinstance(file_dict[vv], list) else [file_dict[vv]])
|
183 |
+
return_dict[k] = flist
|
184 |
+
return return_dict
|
185 |
+
|
186 |
+
def _hash_text(text):
|
187 |
+
return hashlib.md5(text.encode("utf-8")).hexdigest()
|
188 |
+
|
189 |
+
def _filter_fn_hash_id(uid, split_fn):
|
190 |
+
hash_id = _hash_text(str(uid))
|
191 |
+
val = int(hash_id, 16)
|
192 |
+
return split_fn(val)
|
193 |
+
|
194 |
+
|
195 |
+
_VERSION = datasets.Version('1.0.0', "")
|
196 |
+
|
197 |
+
class KorquadConfig(datasets.BuilderConfig):
|
198 |
+
def __init__( self,
|
199 |
+
name,
|
200 |
+
data_url,
|
201 |
+
description,
|
202 |
+
citation,
|
203 |
+
manual_split=None,
|
204 |
+
**kwargs):
|
205 |
+
super(KorquadConfig, self).__init__(
|
206 |
+
name=name,
|
207 |
+
version=_VERSION,
|
208 |
+
**kwargs
|
209 |
+
)
|
210 |
+
self.data_url=data_url
|
211 |
+
self.description=description
|
212 |
+
self.citation=citation
|
213 |
+
self.manual_split=manual_split
|
214 |
+
|
215 |
+
class Korquad(datasets.GeneratorBasedBuilder):
|
216 |
+
"""DatasetBuilder for korquad dataset."""
|
217 |
+
RELEASE_NOTES = {
|
218 |
+
'1.0.0': 'Initial release.',
|
219 |
+
}
|
220 |
+
|
221 |
+
BUILDER_CONFIGS = [
|
222 |
+
KorquadConfig(
|
223 |
+
'v1.0',
|
224 |
+
data_url=_KORQUADV1_DEFAULT_SPLIT,
|
225 |
+
description=_KORQUADV1_DESCRIPTION,
|
226 |
+
citation=_KORQUADV1_CITATION,
|
227 |
+
),
|
228 |
+
KorquadConfig(
|
229 |
+
'v1.0.split',
|
230 |
+
data_url=_KORQUADV1_DEFAULT_SPLIT,
|
231 |
+
description=_KORQUADV1_DESCRIPTION,
|
232 |
+
citation=_KORQUADV1_CITATION,
|
233 |
+
manual_split=_KORQUAD_MANUAL_SPLIT,
|
234 |
+
),
|
235 |
+
KorquadConfig(
|
236 |
+
'v2.1',
|
237 |
+
data_url=_KORQUADV2_DEFAULT_SPLIT,
|
238 |
+
description=_KORQUADV2_DESCRIPTION,
|
239 |
+
citation=_KORQUADV2_CITATION,
|
240 |
+
),
|
241 |
+
KorquadConfig(
|
242 |
+
'v2.1.split',
|
243 |
+
data_url=_KORQUADV2_DEFAULT_SPLIT,
|
244 |
+
description=_KORQUADV2_DESCRIPTION,
|
245 |
+
citation=_KORQUADV2_CITATION,
|
246 |
+
manual_split=_KORQUAD_MANUAL_SPLIT,
|
247 |
+
),
|
248 |
+
KorquadConfig(
|
249 |
+
'v2.1.html',
|
250 |
+
data_url=_KORQUADV2_DEFAULT_SPLIT,
|
251 |
+
description=_KORQUADV2_DESCRIPTION,
|
252 |
+
citation=_KORQUADV2_CITATION,
|
253 |
+
),
|
254 |
+
KorquadConfig(
|
255 |
+
'v2.1.html.split',
|
256 |
+
data_url=_KORQUADV2_DEFAULT_SPLIT,
|
257 |
+
description=_KORQUADV2_DESCRIPTION,
|
258 |
+
citation=_KORQUADV2_CITATION,
|
259 |
+
manual_split=_KORQUAD_MANUAL_SPLIT,
|
260 |
+
),
|
261 |
+
]
|
262 |
+
|
263 |
+
def _info(self) -> datasets.DatasetInfo:
|
264 |
+
"""Returns the dataset metadata."""
|
265 |
+
features_dict = SQUADLIKE_FEATURES
|
266 |
+
|
267 |
+
return datasets.DatasetInfo(
|
268 |
+
description=self.config.description,
|
269 |
+
features=features_dict,
|
270 |
+
homepage=_KORQUAD_URL,
|
271 |
+
citation=self.config.citation,
|
272 |
+
)
|
273 |
+
|
274 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
275 |
+
"""Returns SplitGenerators."""
|
276 |
+
|
277 |
+
path_kv = {k:dl_manager.download_and_extract(v) for k, v in self.config.data_url.items()}
|
278 |
+
if not self.config.name.startswith("v1.0"):
|
279 |
+
for k, v in path_kv.items():
|
280 |
+
file_names = []
|
281 |
+
for vv in v:
|
282 |
+
file_names.extend(glob.glob(os.path.join(vv, "*.json")))
|
283 |
+
path_kv[k] = file_names
|
284 |
+
|
285 |
+
if self.config.manual_split is not None:
|
286 |
+
path_kv = _update_split(path_kv, self.config.manual_split)
|
287 |
+
split_fn = self.config.manual_split['split']
|
288 |
+
#return {k:self._generate_examples(v, split_fn[k]) for k, v in path_kv.items()}
|
289 |
+
return [datasets.SplitGenerator(name=k, gen_kwargs={'path_list': v, 'split_fn': split_fn[k]}) for k, v in path_kv.items()]
|
290 |
+
|
291 |
+
# TODO(korquad): Returns the Dict[split names, Iterator[Key, Example]]
|
292 |
+
#return {k:self._generate_examples(v) for k, v in path_kv.items()}
|
293 |
+
return [datasets.SplitGenerator(name=k, gen_kwargs={'path_list': v}) for k, v in path_kv.items()]
|
294 |
+
|
295 |
+
def _generate_examples(self, path_list, split_fn=None):
|
296 |
+
"""Yields examples."""
|
297 |
+
# TODO(korquad): Yields (key, example) tuples from the dataset
|
298 |
+
if self.config.name.startswith("v2.1.html"):
|
299 |
+
gen_fn = functools.partial(generate_korquadv2_examples, KEY_MAP=_KORQUADV2_HTML_KEY_MAP)
|
300 |
+
elif self.config.name.startswith("v2.1"):
|
301 |
+
gen_fn = functools.partial(generate_korquadv2_examples, KEY_MAP=_KORQUADV2_KEY_MAP)
|
302 |
+
else:
|
303 |
+
gen_fn = generate_squadlike_examples
|
304 |
+
|
305 |
+
if split_fn is not None:
|
306 |
+
split_filter = functools.partial(_filter_fn_hash_id, split_fn=split_fn)
|
307 |
+
else:
|
308 |
+
split_filter = lambda x: True
|
309 |
+
|
310 |
+
_hash_set = set()
|
311 |
+
|
312 |
+
for fpath in path_list:
|
313 |
+
for example in iter(gen_fn(fpath)):
|
314 |
+
uid, _ = example
|
315 |
+
if split_filter(str(uid)) and str(uid) not in _hash_set:
|
316 |
+
_hash_set.add(str(uid))
|
317 |
+
yield example
|
318 |
+
|
319 |
+
# tfds build --data_dir ../../tmp/tensorflow_datasets --config v1.0.split
|